WO2014131224A1 - 透过率检测设备 - Google Patents

透过率检测设备 Download PDF

Info

Publication number
WO2014131224A1
WO2014131224A1 PCT/CN2013/073901 CN2013073901W WO2014131224A1 WO 2014131224 A1 WO2014131224 A1 WO 2014131224A1 CN 2013073901 W CN2013073901 W CN 2013073901W WO 2014131224 A1 WO2014131224 A1 WO 2014131224A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
support frame
frame
support
touch sensor
Prior art date
Application number
PCT/CN2013/073901
Other languages
English (en)
French (fr)
Inventor
杨盛际
Original Assignee
北京京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/236,216 priority Critical patent/US9182346B2/en
Publication of WO2014131224A1 publication Critical patent/WO2014131224A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Definitions

  • Embodiments of the present invention relate to a transmittance detecting apparatus. Background technique
  • Embodiments of the present invention provide a transmittance detecting device that improves measurement accuracy for a touch sensor transmittance.
  • One aspect of the present invention provides a transmittance detecting apparatus including a frame struts for providing support and a illuminator support frame, a support frame to be tested, and a light receiving frame supported by the frame struts from low to high
  • the illuminating member support frame is configured to place the illuminating member capable of emitting light; the dash member supporting frame is used for fixing the touch sensor; and the light receiving member supporting frame is provided with the light receiving member facing the support member of the device to be tested.
  • a to-be-measured height adjustment knob for adjusting the height of the test piece support frame on the frame strut is further disposed on the workpiece support frame; and/or, on the light-receiving member support frame
  • a light-receiving member height adjustment knob for adjusting the height of the light-receiving member support frame on the frame struts is also provided.
  • a position between the member support holder and the illuminator holder on the frame struts is further provided with a scale.
  • a horizontal coordinate adjuster for controlling the movement of the light-receiving member relative to the touch sensor in a horizontal plane is further disposed on the light-receiving member support frame; and/or, the container is supported on the test object support frame.
  • the horizontal coordinate adjuster includes an X-direction coordinate adjustment member and a Y-direction coordinate adjustment member.
  • a scale covering the moving position of the X-direction coordinate adjusting member is also provided; and/or a scale covering the moving position of the Y-direction coordinate adjusting member is also provided.
  • the touch sensor is fixed to the holder to be tested by a fixing clip.
  • a sleeve is further disposed on the frame strut, and the sleeve is connected to the microscope through a microscope link; the sleeve is rotatable on the frame strut and slides up and down, and the microscope link is axially rotatable. Retractable link.
  • a sleeve is further disposed on the frame strut, and the sleeve is connected to the probe through the probe link; the sleeve is rotatable on the frame strut and slides up and down, and the probe link is capable of the shaft Rotating telescopic link.
  • a flexible circuit board (FPC) connected to the touch sensor for introducing a touch signal into the touch sensor is further disposed on the holder of the device to be tested.
  • FIG. 1 is a structural diagram of a transmittance detecting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of a transmittance detecting device according to an embodiment of the present invention.
  • 3a to 3c are different top views corresponding to different top view positions A-A', B-B' and C-C' in Fig. 2;
  • the transmittance detecting apparatus of the embodiment of the present invention can be configured as shown in FIG.
  • the frame struts 1 are fixed to support the illuminating member support frame 4, the test piece support frame 3 and the light receiving member support frame 2 from low to high.
  • the outer shape of the illuminating member support frame 4, the member to be tested support frame 3, and the light absorbing member support frame 2 may be, for example, rectangular or square, but the present invention is not limited thereto, and may be provided in different shapes as needed.
  • the illuminating member support frame 4 can be provided with a illuminating member such as an LCD display module (LCM) 13 capable of emitting light; the support member support frame 3 is provided with one or more fixing clips 11, and the fixing clip 11 can wait for the touch sensor 24 to be tested.
  • the piece is horizontally fixed on the support frame 3 of the device to be tested; the light-receiving member support frame 2 is provided with a light-receiving member 7 facing the support frame 3 of the device to be tested, and the light-receiving member 7 and the support frame 3 to be tested are disposed between The light-receiving member 7 is tightly coupled and faces the light-transmitting cylinder 8 of the holder support 3 to be tested.
  • LCD LCD display module
  • the light-receiving member 7 and the light-transmitting tube 8 can be integrated.
  • the light-receiving member 7 may be, for example, a device for performing transmittance detection such as a CA-210 color analyzer, or an optical fiber for introducing light into a device for performing transmittance detection, such as a CA-210 color analyzer.
  • a device for performing transmittance detection such as a CA-210 color analyzer
  • an optical fiber for introducing light into a device for performing transmittance detection, such as a CA-210 color analyzer.
  • the scope of protection of the present invention is not limited thereto.
  • test object to be tested fixed on the test piece support frame 3 is the touch sensor 24, and the light emitted by the LCM 13 is transmitted by the light receiving member 7 through the light receiving device 24 after being fixed through the touch sensor 24 fixed on the test piece support frame 3.
  • the cartridge 8 is received, and then the transmittance of the touch sensor 24 can be determined based on the amount of light received by the light receiving member 7 and the amount of light originally emitted by the LCM 13.
  • the frame strut 1 can fixedly support the illuminating member support frame 4, the test piece support frame 3 and the light receiving member support frame 2, the illuminating device support frame 4 and the test piece support frame 3 can be disposed at the initial design.
  • the distance between the DCM 13 on the illuminator support frame 4 and the touch sensor 24 on the DUT support frame 3 can be appropriately set.
  • the light transmission distance; the distance between the touch sensor 24 on the test piece support frame 3 and the light transmission tube 8 on the light receiving member support frame 2 is also sufficiently close to ensure that the light emitted by the LCM 13 is transmitted through the touch sensor.
  • the light-receiving member 7 After 24, it can be efficiently received by the light-receiving member 7 through the light-transmitting tube 8.
  • the positions of the LCM 13, the touch sensor 24, and the light-receiving member 7 are fixed, so that they are not easily changed as in the manual measurement in the prior art, and therefore, in such a stable measurement environment, A stable and accurate measurement value is obtained, and thus a stable and accurate transmittance of the touch sensor 24 can be obtained, and the measurement accuracy for the transmittance of the touch sensor 24 is significantly improved relative to the prior art.
  • the height adjustment knob 10 to be tested may be disposed on the workpiece support frame 3; as shown in FIG. 10 is set on both sides.
  • the height of the DUT support frame 3 on the frame strut 1 is adjusted by the DUT height adjustment knob 10 so that the touch sensor 24 fixed on the DUT support frame 3 and the LCM 13 on the illuminator support frame 4 are The distance is adjustable.
  • a scale 14 can be disposed on the frame strut 1 at a position between the workpiece support frame 3 and the illuminator support frame 4, so as to fix the touch sensor 24 and the illuminator support frame 4 fixed on the test object support frame 3.
  • the distance between the upper LCMs 13 is accurately quantified; as shown in Figure 1, the scale 14 is placed on the left side.
  • a light-receiving member height adjustment knob 6 may also be disposed on the light-receiving member support frame 2; as shown in FIG. 1, the light-receiving member height adjustment knob 6 is disposed on the left side; The knob 6 adjusts the height of the light-receiving member support frame 2 on the frame strut 1 so that the distance between the light-transmitting tube 8 on the light-receiving member support frame 2 and the touch sensor 24 fixed on the test piece support frame 3 is adjustable. .
  • the touch sensor 24 can be multi-point measured.
  • a horizontal coordinate adjuster can be disposed on the light-receiving member support frame 2 so that the light-receiving member 7 can be fixed relative to the fixed clip 11.
  • the fixed touch sensor 24 moves in a horizontal plane.
  • the horizontal coordinate adjuster can be implemented in many ways, such as a mechanical structure such as a slide rail or a lead screw, as long as the coordinates of the light receiving member 7 in the horizontal plane can be adjusted.
  • the light-receiving member 7 can be fixed on the touch-substrate support frame 3 by touch sensing. The movement of the device 24 in the horizontal plane enables receiving light transmitted through different locations on the touch sensor to achieve multi-point measurement of the touch sensor 24.
  • the horizontal coordinate adjuster may include a light-receiving member X disposed in the light-receiving member support 2 to the coordinate adjusting member 5 and the light-receiving member Y to the coordinate adjusting member 9; the light-receiving member X can be adjusted to the coordinate adjusting member 5
  • the coordinates of the light member 7 on the X-axis, and the light-receiving member Y-direction coordinate adjusting member 9 can adjust the coordinates of the light-receiving member 7 on the Y-axis.
  • a scale 25 may also be provided on the light-receiving member support 2 to quantify the movement position of the horizontal coordinate adjuster, such as a scale 25 covering the position of the light-receiving member X to the coordinate adjustment member 5, so as to The light-receiving member X is quantized to the moving position of the coordinate adjusting member 5; and/or a scale 25 covering the moving position of the light-receiving member Y to the coordinate adjusting member 9 is provided to quantify the moving position of the light-receiving member Y toward the coordinate adjusting member 9. .
  • the above-mentioned horizontal coordinate adjuster may not be disposed on the light-receiving member support frame 2, but a horizontal coordinate adjuster is disposed on the test piece support frame 3 for adjusting the fixed clamp 11 at a horizontal plane. Coordinates such that the touch sensor 24 fixed by the fixing clip 11 can move in a horizontal plane with respect to the light-receiving member 7; the horizontal coordinate adjuster is implemented in many ways, such as a mechanical structure such as a slide rail or a lead screw, as long as It is sufficient to adjust the coordinates of the touch sensor 24 on the horizontal plane. Of course, a horizontal coordinate adjuster can also be provided on the light-receiving member support frame 2 and the test piece support frame 3.
  • a sleeve 15 may be provided on the frame stay 1, and the sleeve 15 is connected to the microscope 17 through the microscope link 16.
  • the sleeve 15 is rotatable on the frame strut 1 and slides up and down, and the microscope link 16 is a telescopic link that is axially rotatable.
  • the microscope 17 can be moved by the rotation of the sleeve 15 and up and down to the top of the touch sensor 24 fixed on the holder support 3, and even the position can be finely adjusted by the rotation and telescopic of the mirror link 16, the operator can The touch sensor 24 is observed through the microscope 17 to detect the defect of the touch sensor 24.
  • a sleeve 18 can be provided on the frame strut 1, which is connected to the probe 20 via a probe link 19.
  • the sleeve 18 is rotatable on the frame strut 1 and slides up and down.
  • the probe link 19 is a telescopic link that is axially rotatable. In this way, the probe 20 can be moved up and down by the rotation of the sleeve 18 and up and down to the touch sensor 24 fixed on the test piece support frame 3, and even the position of the probe link 19 can be finely adjusted by the rotation and expansion of the probe link 19, the operator The position of the pin (pin) of the touch sensor 24 can be detected by the probe 20.
  • the FPC 12 connected to the touch sensor 24 may be disposed on the DUT support frame 3, and the touch signal is introduced into the touch sensor 24 by the FPC 12, and the touch sensor 24 with the touch signal is introduced. It is likely that there is a fitting signal interference between the LCM 13 placed on the illuminating member support frame 4, and the operator can detect the fitting signal interference through the microscope 17, the probe 20, and the like.
  • a line port 21 for routing may be provided on the frame struts 1 to support signal transmission.
  • an FPC adjuster may also be provided at the position of the frame strut 1 or the like for controlling specific parameters such as the semaphore of the FPC 12 and applications.
  • the level 23 can also be placed on at least one of the illuminator support frame 4, the DUT support frame 3, and the light receiver support frame 2.
  • Figure 3a is a plan view of the A-A' position (light-emitting member support frame 4) of Figure 2;
  • Figure 3b is a top view of the position BB (the test piece support frame 3) of Figure 2;
  • Figure 3c is the CC position of Figure 2 (Top view of the light-receiving member support 2).
  • the related description of the device in Figures 3a to 3c has been provided in the above, and will not be described herein.
  • the transmittance detecting device of the embodiment of the present invention can relatively fix the positions of the illuminating member, the touch sensor and the light collecting member, and thus is not easily changed as in the manual measurement in the prior art.
  • stable and accurate measurement values can be obtained, thereby obtaining a stable and accurate transmittance of the touch sensor, and the measurement accuracy for the transmittance of the touch sensor is significantly improved compared with the prior art;
  • the transmittance detecting device of the present invention further has other functions such as detecting a defect of the touch sensor, and realizes diversification of detection.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种透过率检测设备,包括用于提供支撑的框架支杆(1)以及该框架支杆(1)由低到高支撑的发光件支撑架(4)、待测件支撑架(3)和收光件支撑架(2)。发光件支撑架(4)用于放置能够发光的发光件(13);待测件支撑架(3)用于固定触摸传感器(24);收光件支撑架(2)上设置有面向待测件支撑架(3)的收光件(7)。该设备可使发光件(13)、触摸传感器(24)以及收光件(7)的位置相对固定,能够得到稳定、准确的测量值。

Description

透过率检测设备 技术领域
本发明的实施例涉及一种透过率检测设备。 背景技术
目前, 在测试液晶显示器中的触摸传感器的透过率时, 通常采用日本了 尼卡美能达公司的 CA-210色彩分析仪进行手动测量。 测量过程中一般随机 选定触摸传感器上的 5 个点进行测量。 但是, 上述手动测量方式无法保证 CA-210色彩分析仪与触摸传感器之间的位置、距离的一致性, 因此测量准确 性差。 发明内容
本发明的实施例提供了一种透过率检测设备, 提高针对触摸传感器透过 率的测量准确性。
本发明的一个方面提供了一种透过率检测设备, 该设备包括用于提供支 撑的框架支杆以及该框架支杆由低到高支撑的发光件支撑架、 待测件支撑架 和收光件支撑架; 其中, 发光件支撑架用于放置能够发光的发光件; 待测件 支撑架用于固定触摸传感器; 收光件支撑架上设置有面向待测件支撑架的收 光件。
在该设备中, 例如, 在待测件支撑架上还设置有用于调整待测件支撑架 在框架支杆上的高度的待测件高度调节旋钮; 和 /或, 在收光件支撑架上还设 置有用于调整收光件支撑架在框架支杆上的高度的收光件高度调节旋钮。
在该设备中, 例如, 在框架支杆上待测件支撑架与发光件支撑架之间的 位置上, 还设置有标尺。
在该设备中, 例如, 在收光件支撑架上还设置有用于控制收光件相对于 触摸传感器在水平面内移动的水平坐标调节器; 和 /或, 在待测件支撑架上还 器。 在该设备中,例如,水平坐标调节器包括 X向坐标调节件和 Y向坐标调 节件。
在该设备中, 例如, 还设置有覆盖 X向坐标调节件移动位置的标尺; 和 /或, 还设置有覆盖 Y向坐标调节件移动位置的标尺。
在该设备中, 例如, 触摸传感器通过固定夹固定于待测件支撑架上。 在该设备中, 例如, 在框架支杆上还设置有套, 该套通过显微镜连杆与 显微镜相连; 所述套能够在框架支杆上转动以及上下滑动, 显微镜连杆是能 够轴向旋转的可伸缩连杆。
在该设备中, 例如, 在框架支杆上还设置有套, 该套通过探针连杆与探 针相连; 所述套能够在框架支杆上转动以及上下滑动, 探针连杆是能够轴向 旋转的可伸缩连杆。
在该设备中, 例如, 在待测件支撑架上还设置有与触摸传感器相连的用 于将触控信号导入触摸传感器的柔性线路板(FPC ) 。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例的透过率检测设备结构图;
图 2为本发明实施例的透过率检测设备的俯视位置示意图;
图 3a至图 3c为图 2中不同的俯视位置 A-A'、: B-B'和 C-C'所对应的不同 俯视图;
附图标记:
1、 框架支杆; 2、 收光件支撑架; 3、 待测件支撑架; 4、 发光件支撑架; 5、 收光件 X向坐标调节件; 6、 收光件高度调节旋钮; 7、 收光件; 8、 光传 输筒; 9、 收光件 Y向坐标调节件; 10、 待测件高度调节旋钮; 11、 固定夹; 12、 柔性线路板(FPC ); 13、 LCD显示模组(LCM ); 14、 标尺; 15、 套; 16、 显 镜连杆; 17、 显微镜; 18、 套; 19、 探针连杆; 20、 探针; 21、 线 路端口; 22、 FPC调节器; 23、 水平仪; 24、 触摸传感器; 25、 标尺。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 "一个"、 "一"或 "该" 等类似 词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包含" 等 类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵盖出现 在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排除其他 元件或者物件。 "连接"或者"相连"等类似的词语并非限定于物理的或者机械 的连接,而是可以包括电性的连接,不管是直接的还是间接的。 "上"、 "下"、 "左" 、 "右" 等仅用于表示相对位置关系, 当被描述对象的绝对位置改变 后, 则该相对位置关系也可能相应地改变。
本发明实施例的透过率检测设备可以设置成如图 1所示的结构。图 1中, 框架支杆 1 由低到高可以固定支撑水平的发光件支撑架 4、 待测件支撑架 3 和收光件支撑架 2。发光件支撑架 4、待测件支撑架 3和收光件支撑架 2的外 形例如均可以为长方形或正方形, 但本发明不限于此, 可以根据需要设置为 不同的形状。
发光件支撑架 4上可以放置能够发光的 LCD显示模组 ( LCM ) 13等发 光件; 待测件支撑架 3上设置有一个或一个以上固定夹 11 , 固定夹 11能够 将触摸传感器 24等待测件水平固定在待测件支撑架 3上; 收光件支撑架 2 上设置有面向待测件支撑架 3的收光件 7, 收光件 7与待测件支撑架 3之间 设置有与收光件 7紧密连接并且面向待测件支撑架 3的光传输筒 8。收光件 7 与光传输筒 8可以是一个整体。 收光件 7可以是例如 CA-210色彩分析仪等 用于进行透过率检测的设备, 或者是将光导入到例如 CA-210 色彩分析仪等 用于进行透过率检测的设备的光纤等, 本发明的保护范围不限于此。
假设待测件支撑架 3上固定的待测件为触摸传感器 24, LCM 13发出的 光在透过待测件支撑架 3上固定的触摸传感器 24后会被收光件 7通过光传输 筒 8接收, 之后可以根据由收光件 7接收的光量以及 LCM 13最初发出的光 量确定所述触摸传感器 24的透过率。
可见, 由于框架支杆 1能够固定支撑发光件支撑架 4、 待测件支撑架 3 和收光件支撑架 2, 因此在最初设计时就可以设置发光件支撑架 4与待测件 支撑架 3之间, 以及待测件支撑架 3与收光件支撑架 2之间的距离, 可以使 得发光件支撑架 4上的 LCM 13与待测件支撑架 3上的触摸传感器 24之间具 备合适的光传输距离;还可以使得待测件支撑架 3上的触摸传感器 24与收光 件支撑架 2上的光传输筒 8之间的距离足够近, 以保证 LCM 13发出的光在 透过触摸传感器 24后能够被收光件 7通过光传输筒 8有效接收。在上述情况 下, LCM 13、 触摸传感器 24以及收光件 7的位置都是固定的, 因此不会像 现有技术中的手动测量那样极易出现变动, 因此在这种稳定的测量环境下能 够得到稳定、 准确的测量值, 进而能够得到触摸传感器 24的稳定、 准确的透 过率, 相对于现有技术明显提高了针对触摸传感器 24透过率的测量准确性。
在一个示例中, 为了增加本发明透过率检测设备的操作灵活性, 可以在 待测件支撑架 3上设置待测件高度调节旋钮 10; 如图 1所示, 该待测件高度 调节旋钮 10设置在两侧。 通过该待测件高度调节旋钮 10调整待测件支撑架 3在框架支杆 1上的高度,使得待测件支撑架 3上固定的触摸传感器 24与发 光件支撑架 4上的 LCM 13之间的距离可调。 另外, 还可以在框架支杆 1上 待测件支撑架 3与发光件支撑架 4之间的位置设置标尺 14, 以便将待测件支 撑架 3上固定的触摸传感器 24与发光件支撑架 4上的 LCM 13之间的距离精 确量化; 如图 1所示, 该标尺 14设置在左侧。
在一个示例中,还可以在收光件支撑架 2上设置收光件高度调节旋钮 6; 如图 1所示, 该收光件高度调节旋钮 6设置在左侧; 通过该收光件高度调节 旋钮 6调整收光件支撑架 2在框架支杆 1上的高度, 使得收光件支撑架 2上 的光传输筒 8与待测件支撑架 3上固定的触摸传感器 24之间的距离可调。
为了使透过率检测结果更准确,可以对触摸传感器 24进行多点测量,这 时可以在收光件支撑架 2上设置水平坐标调节器, 以使得收光件 7能够相对 于固定夹 11所固定的触摸传感器 24在水平面内移动。 该水平坐标调节器的 实现方式 4艮多, 例如滑轨、 丝杠等机械结构, 只要能够调节收光件 7在水平 面的坐标即可。 这样, 收光件 7就能够在待测件支撑架 3上固定的触摸传感 器 24上进行水平面内的移动,因此能够接收触摸传感器上不同位置所透过的 光, 实现对触摸传感器 24的多点测量。
例如,水平坐标调节器可以包括设置在收光件支撑架 2中的收光件 X向 坐标调节件 5和收光件 Y向坐标调节件 9; 收光件 X向坐标调节件 5能够调 节收光件 7在 X轴上的坐标, 收光件 Y向坐标调节件 9能够调节收光件 7 在 Y轴上的坐标。 在一个示例中, 还可以在收光件支撑架 2上设置标尺 25, 以便将水平坐标调节器的移动位置量化, 比如设置覆盖收光件 X向坐标调节 件 5移动位置的标尺 25, 以便将收光件 X向坐标调节件 5的移动位置量化; 和 /或, 设置覆盖收光件 Y向坐标调节件 9移动位置的标尺 25, 以便将收光 件 Y向坐标调节件 9的移动位置量化。
需要说明的是, 也可以不在收光件支撑架 2上设置上述的水平坐标调节 器, 而是应用同样原理在待测件支撑架 3上设置水平坐标调节器, 用于调节 固定夹 11在水平面的坐标,以使得固定夹 11所固定的触摸传感器 24能够相 对于收光件 7在水平面内移动; 该水平坐标调节器的实现方式^艮多, 例如滑 轨、 丝杠等机械结构, 只要能够调节触摸传感器 24在水平面上的坐标即可。 当然, 也可以在收光件支撑架 2以及待测件支撑架 3上均设置水平坐标调节 器。
为了实现本发明透过率检测设备的多功能性, 在一个示例中, 还可以在 框架支杆 1上设置套 15, 该套 15通过显微镜连杆 16与显微镜 17相连。 套 15能够套在框架支杆 1上转动以及上下滑动, 显微镜连杆 16是能够轴向旋 转的可伸缩连杆。 这样, 显微镜 17就可以通过套 15的转动以及上下滑动移 动到待测件支撑架 3上固定的触摸传感器 24的上方,甚至可以通过显 镜连 杆 16的旋转以及伸缩进行位置微调, 操作人员可以通过显微镜 17观察触摸 传感器 24, 以检测触摸传感器 24的不良。
另外, 还可以在框架支杆 1上设置套 18, 该套 18通过探针连杆 19与探 针 20相连。 套 18能够套在框架支杆 1上转动以及上下滑动, 探针连杆 19 是能够轴向旋转的可伸缩连杆。 这样, 探针 20就可以通过套 18的转动以及 上下滑动移动到待测件支撑架 3上固定的触摸传感器 24的上方,甚至可以通 过探针连杆 19的旋转以及伸缩进行位置微调, 操作人员可以通过探针 20探 测触摸传感器 24的引脚( Pin ) 的位置。 再有, 在一个示例中, 还可以在待测件支撑架 3上设置与触摸传感器 24 相连的 FPC 12, 由该 FPC 12将触控信号导入触摸传感器 24, 导入了触控信 号的触摸传感器 24很可能与发光件支撑架 4上放置的 LCM 13之间存在贴合 信号干扰, 操作人员可以通过显微镜 17、 探针 20等器件检测所述贴合信号 干扰。 为了支持触控信号的导入以及有可能需要的其它信号处理器件, 可以 在框架支杆 1上设置用于走线的线路端口 21 , 以支持信号传输。 在一个示例 中, 还可以在框架支杆 1等位置上设置 FPC调节器, 用于对 FPC 12的信号 量等具体参数以及应用进行控制。
在一个示例中,还可以在发光件支撑架 4、待测件支撑架 3、 收光件支撑 架 2中至少之一上放置水平仪 23。
为了使上述描述更清楚, 基于图 2所示的不同透过率检测设备的俯视位 置, 提供相应的俯视图。 图 3a为图 2中 A-A'位置(发光件支撑架 4 ) 的俯 视图; 图 3b为图 2中 B-B,位置(待测件支撑架 3 ) 的俯视图; 图 3c为图 2 中 C-C,位置(收光件支撑架 2 ) 的俯视图。 图 3a至图 3c中的器件的相关描 述已在上述内容中提供, 在此不再赘述。
结合以上描述可知, 本发明实施例的透过率检测设备, 可使发光件、 触 摸传感器以及收光件的位置相对固定, 因此不会像现有技术中的手动测量那 样极易出现变动, 因此在这种稳定的测量环境下能够得到稳定、 准确的测量 值, 进而能够得到触摸传感器的稳定、 准确的透过率, 相对于现有技术明显 提高了针对触摸传感器透过率的测量准确性; 并且, 本发明的透过率检测设 备还具有检测触摸传感器的不良等其它功能, 实现了检测多元化。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、一种透过率检测设备, 包括用于提供支撑的框架支杆以及该框架支杆 由低到高支撑的发光件支撑架、 待测件支撑架和收光件支撑架; 其中, 发光 件支撑架用于放置能够发光的发光件; 待测件支撑架用于固定触摸传感器; 收光件支撑架上设置有面向待测件支撑架的收光件。
2、 根据权利要求 1所述的设备, 其中,
在待测件支撑架上还设置有用于调整待测件支撑架在框架支杆上的高度 的待测件高度调节旋钮; 和 /或,
在收光件支撑架上还设置有用于调整收光件支撑架在框架支杆上的高度 的收光件高度调节旋钮。
3、根据权利要求 1所述的设备, 其中, 在框架支杆上待测件支撑架与发 光件支撑架之间的位置上, 还设置有标尺。
4、 根据权利要求 1至 3任一项所述的设备, 其中,
在收光件支撑架上还设置有用于控制收光件相对于触摸传感器在水平面 内移动的水平坐标调节器; 和 /或,
在待测件支撑架上还设置有用于控制触摸传感器相对于收光件在水平面 内移动的水平坐标调节器。
5、 根据权利要求 4所述的设备, 其中, 水平坐标调节器包括 X向坐标 调节件和 Y向坐标调节件。
6、 根据权利要求 5所述的设备, 还包括覆盖 X向坐标调节件移动位置 的标尺; 和 /或, 覆盖 Y向坐标调节件移动位置的标尺。
7、根据权利要求 1所述的设备, 其中, 触摸传感器通过固定夹固定于待 测件支撑架上。
8、 根据权利要求 1所述的设备, 其中, 在框架支杆上还设置有套, 该套 通过显微镜连杆与显微镜相连;
所述套能够在框架支杆上转动以及上下滑动, 显微镜连杆是能够轴向旋 转的可伸缩连杆。
9、 根据权利要求 1所述的设备, 其中, 在框架支杆上还设置有套, 该套 通过探针连杆与探针相连; 所述套能够在框架支杆上转动以及上下滑动, 探 针连杆是能够轴向旋转的可伸缩连杆。
10、 根据权利要求 1所述的设备, 其中, 在待测件支撑架上还设置有与 触摸传感器相连的用于将触控信号导入触摸传感器的柔性线路板 FPC。
PCT/CN2013/073901 2013-02-26 2013-04-08 透过率检测设备 WO2014131224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/236,216 US9182346B2 (en) 2013-02-26 2013-04-08 Transmittance testing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310060534.9A CN104006949A (zh) 2013-02-26 2013-02-26 一种透过率检测设备
CN201310060534.9 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014131224A1 true WO2014131224A1 (zh) 2014-09-04

Family

ID=51367708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073901 WO2014131224A1 (zh) 2013-02-26 2013-04-08 透过率检测设备

Country Status (3)

Country Link
US (1) US9182346B2 (zh)
CN (1) CN104006949A (zh)
WO (1) WO2014131224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445141A (zh) * 2018-12-27 2019-03-08 浙江晶鲸科技有限公司 用于多稳态液晶调光玻璃透光性检测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170118384A1 (en) * 2015-10-26 2017-04-27 National Applied Research Laboratories Adaptive lighting device for optical inspection
CN107014589B (zh) * 2017-03-01 2019-07-09 中国科学院光电研究院 一种光学测量台架装置
CN107389316B (zh) * 2017-07-19 2020-11-10 京东方科技集团股份有限公司 显示面板测试装置和显示面板测试方法
CN109738360A (zh) * 2019-01-28 2019-05-10 广州玉科仪器有限公司 显微透过率测试仪及显微透过率测试支架
CN110095439B (zh) * 2019-06-06 2021-08-06 东莞市听雨轩服装有限公司 一种面料透光检测系统及检测方法
CN112525863A (zh) * 2020-10-13 2021-03-19 温州市质量技术检测科学研究院 一种塑料激光透射率检测装备
CN112525864B (zh) * 2020-10-14 2023-09-26 温州市质量技术检测科学研究院 一种用于塑料激光透射率检测的调节装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2267961A (en) * 1938-10-22 1941-12-30 American Optical Corp Means of testing lenses
US3758217A (en) * 1971-10-20 1973-09-11 P Stokstad Optical bench and components therefor
JPH06225676A (ja) * 1993-02-05 1994-08-16 Earth Chem Corp Ltd 屋内小動物の確認方法及びその装置
WO1995019558A1 (en) * 1994-01-12 1995-07-20 Roger Dore Lens markings viewer
US5617213A (en) * 1995-03-22 1997-04-01 Shih; Sun-Fu Spot microdensitometer for spectral density analysis of film
CN2251136Y (zh) * 1994-05-27 1997-04-02 地质矿产部宜昌地质矿产研究所 微束光源数控透射率测量仪
US5801822A (en) * 1997-02-06 1998-09-01 Pbh, Inc. Ophthalmic lens inspection system
CN201765108U (zh) * 2010-05-25 2011-03-16 冠捷显示科技(厦门)有限公司 新型透光率检测仪
CN202024963U (zh) * 2011-01-21 2011-11-02 苏州汉朗光电有限公司 近晶态液晶显示屏用光透过率测量装置
US20120105092A1 (en) * 2009-09-29 2012-05-03 Sharp Kabushiki Kaisha Defect inspecting apparatus and defect inspecting method
CN203132817U (zh) * 2013-02-26 2013-08-14 北京京东方光电科技有限公司 一种透过率检测设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714221A1 (de) * 1997-04-07 1998-10-08 Zeiss Carl Fa Konfokales Mikroskop mit einem motorischen Scanningtisch
TW200506375A (en) * 2003-05-16 2005-02-16 Tokyo Electron Ltd Inspection apparatus
US7084970B2 (en) * 2004-05-14 2006-08-01 Photon Dynamics, Inc. Inspection of TFT LCD panels using on-demand automated optical inspection sub-system
KR101301517B1 (ko) * 2008-02-21 2013-09-04 엘지디스플레이 주식회사 액정표시장치용 기판 검사장치 이를 사용하는 기판검사방법
CN102213848B (zh) * 2010-04-09 2013-03-13 北京京东方光电科技有限公司 液晶面板透过率的测量方法及系统
KR101914231B1 (ko) * 2012-05-30 2018-11-02 삼성디스플레이 주식회사 주사 전자 현미경을 이용한 검사 시스템

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2267961A (en) * 1938-10-22 1941-12-30 American Optical Corp Means of testing lenses
US3758217A (en) * 1971-10-20 1973-09-11 P Stokstad Optical bench and components therefor
JPH06225676A (ja) * 1993-02-05 1994-08-16 Earth Chem Corp Ltd 屋内小動物の確認方法及びその装置
WO1995019558A1 (en) * 1994-01-12 1995-07-20 Roger Dore Lens markings viewer
CN2251136Y (zh) * 1994-05-27 1997-04-02 地质矿产部宜昌地质矿产研究所 微束光源数控透射率测量仪
US5617213A (en) * 1995-03-22 1997-04-01 Shih; Sun-Fu Spot microdensitometer for spectral density analysis of film
US5801822A (en) * 1997-02-06 1998-09-01 Pbh, Inc. Ophthalmic lens inspection system
US20120105092A1 (en) * 2009-09-29 2012-05-03 Sharp Kabushiki Kaisha Defect inspecting apparatus and defect inspecting method
CN201765108U (zh) * 2010-05-25 2011-03-16 冠捷显示科技(厦门)有限公司 新型透光率检测仪
CN202024963U (zh) * 2011-01-21 2011-11-02 苏州汉朗光电有限公司 近晶态液晶显示屏用光透过率测量装置
CN203132817U (zh) * 2013-02-26 2013-08-14 北京京东方光电科技有限公司 一种透过率检测设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445141A (zh) * 2018-12-27 2019-03-08 浙江晶鲸科技有限公司 用于多稳态液晶调光玻璃透光性检测装置
CN109445141B (zh) * 2018-12-27 2023-11-24 重庆汉朗精工科技有限公司 用于多稳态液晶调光玻璃透光性检测装置

Also Published As

Publication number Publication date
US20150042997A1 (en) 2015-02-12
CN104006949A (zh) 2014-08-27
US9182346B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
WO2014131224A1 (zh) 透过率检测设备
CN206132356U (zh) 一种hud影像测试设备
CN101625519B (zh) 一种摄像头检测设备及系统
KR102229364B1 (ko) 표시장치의 테스트 장치 및 그 장치를 이용한 테스트 방법
CN201122093Y (zh) 厚度测量装置
CN103322917B (zh) 一种基板厚度、规格、正方度高速智能检测仪
CN103363928A (zh) 用于检测pcb板件平整性的方法和装置
CN203216860U (zh) 一种用于电子封装器件红外热成像无损检测的实验装置
CN103512497A (zh) 斜孔检测装置
TW201500747A (zh) 自動化測量系統及方法
CN106370108A (zh) 一种fpc尺寸快速测量装置
CN203732681U (zh) 一种led显示屏检测装置
CN203587047U (zh) 斜孔检测装置
CN103940408A (zh) 五轴影像自动调整测量仪
CN203758508U (zh) 五轴影像自动调整测量仪
CN204115748U (zh) 探针自动升降装置
CN104181106A (zh) 一种透明件的透光率测试工装
CN206671214U (zh) 改进的龙门移动式光学自动化检测设备
CN103791841A (zh) 带摄像功能的手持电子终端的放大度量方法
TW200636221A (en) Apparatus and method for hard-dock a tester to a tiltable imager
CN105841930B (zh) 一种光生物安全性测试系统
CN109737989B (zh) 电子水准仪i角检测校准装置及检测方法
CN203949773U (zh) 一种用于大视场光学镜头的视场检测装置
CN204925809U (zh) 用于工作台的测平和调平装置
CN203132817U (zh) 一种透过率检测设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14236216

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876740

Country of ref document: EP

Kind code of ref document: A1