WO2014131189A1 - 低温多晶硅晶体管的制作方法 - Google Patents

低温多晶硅晶体管的制作方法 Download PDF

Info

Publication number
WO2014131189A1
WO2014131189A1 PCT/CN2013/072030 CN2013072030W WO2014131189A1 WO 2014131189 A1 WO2014131189 A1 WO 2014131189A1 CN 2013072030 W CN2013072030 W CN 2013072030W WO 2014131189 A1 WO2014131189 A1 WO 2014131189A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
low
temperature polysilicon
insulating layer
manufacturing
Prior art date
Application number
PCT/CN2013/072030
Other languages
English (en)
French (fr)
Inventor
徐源竣
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2014131189A1 publication Critical patent/WO2014131189A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Definitions

  • the invention relates to the field of flat display, in particular to a low temperature polysilicon
  • Liquid crystal display has many advantages such as thin body, power saving, and no radiation, and has been widely used.
  • Most of the liquid crystal display devices on the market are backlight type liquid crystal displays, which include a liquid crystal display panel and a baddight module.
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, control the liquid crystal molecules to change direction by energizing the circuit of the glass substrate, and refract the light of the backlight module to produce a picture.
  • the liquid crystal display panel generally includes a TFT (thin film transistor) substrate 100, a CF substrate 300 disposed opposite to the TFT substrate 100, and a liquid crystal 500 disposed between the TFT substrate 100 and the CF substrate 300.
  • TFT thin film transistor
  • the conventional thin film transistor mainly includes: a substrate. 102, a first insulating layer 104 formed on the substrate 102, an active layer 106 formed on the first insulating layer 104, formed in the a pole insulating layer 108 on the source layer 106, a gate 10 formed on the gate insulating layer 108, a second insulating layer 112 formed on the gate 110, and a source formed on the second insulating layer 1 /Drain 114, wherein the active layer i06 and the gate insulating layer 108 are two key layers that determine the performance of the thin film transistor.
  • the thin film transistor can be classified into a single crystal silicon thin film transistor (c-Si TFT), an amorphous silicon thin film transistor (a-Si TFT), a polysilicon thin film transistor (p-Si TFT), organic Thin film transistor (OTFT) and zinc oxide thin film transistor (ZnO TFT).
  • c-Si TFT single crystal silicon thin film transistor
  • a-Si TFT amorphous silicon thin film transistor
  • p-Si TFT polysilicon thin film transistor
  • OTFT organic Thin film transistor
  • ZnO TFT zinc oxide thin film transistor
  • Polysilicon is a silicon-based material of about 0.1 to several ⁇ , which is composed of a plurality of silicon particles, which are usually treated by LPCVD (low pressure chemical vapor deposition). It is made by SPC (Solid Phase Crystallization) method above 900 °C. However, since the maximum temperature of glass is only 650, the polysilicon is not suitable for the manufacture of flat panel displays.
  • Low temperature poly-silicon (LTPS) process temperature is generally less than 600 ⁇ , suitable for manufacturing flat panel displays, and transistors made of low temperature polysilicon have High mobility, fast response, high integration, P/N conductivity mode, self-aligned quasi-structure, power saving, high light resistance, high resolution, integrated driver circuit, etc.
  • the advantages are more suitable for high-capacity high-frequency display, the size can be made smaller, which is beneficial to improve the yield and reduce the production cost, and the P/N type conductive mode can realize the advantages of LCD, OLED driving, etc., and has been widely used. application.
  • low temperature polysilicon requires high temperature activation, its activation temperature is generally greater than 500 ⁇ , so the tree of the existing low temperature polysilicon transistor is generally formed by high temperature resistant metal molybdenum (Mo) by deposition, yellow light and etching process, but due to metal molybdenum Higher resistance values can cause severe RC-Dday (delay effect), which in turn affects the response speed of flat panel displays, and at the same time, the resolution of flat panel displays and the size of flat panel displays cannot be improved.
  • Mo metal molybdenum
  • the object of the present invention is to provide a method for fabricating a low-temperature polysilicon transistor, which replaces the gate of the existing all-molybdenum structure with a gate of a laminated structure of molybdenum Z-aluminum-Z-molybdenum or titanium/aluminum/titanium, thereby effectively reducing the gate.
  • the pole resistance value which in turn increases the response rate of the transistor, facilitates the improvement of the resolution of the flat panel display and the expansion of the size of the flat panel display.
  • the present invention provides a method of fabricating a low temperature polysilicon transistor, comprising the steps of:
  • Step 1 Form a low temperature polysilicon layer on the substrate, and pattern the low temperature polysilicon layer; Step 2. Form a first insulating layer on the low temperature polysilicon layer;
  • Step 3 sequentially forming first, second, and third metal layers on the first insulating layer, and forming a gate through a photomask process;
  • Step 4 Activate the low temperature polysilicon layer, and the activation temperature is between 20 ° C and 370 ° C.
  • the second metal layer is an aluminum layer
  • the first and third metal layers are a molybdenum layer or a titanium layer.
  • the activation time of the low temperature polysilicon layer is 1-2 hours.
  • the low temperature polysilicon layer is activated by an excimer laser crystallization process at room temperature.
  • the substrate is a glass substrate or a plastic substrate.
  • the second and third insulating layers are sequentially formed on the substrate, and the low temperature polysilicon layer is formed on the third insulating layer.
  • the second insulating layer is a silicon nitride layer
  • the third insulating layer is a silicon oxide layer.
  • fourth and fifth insulating layers are sequentially formed on the gate, and an active/drain is further formed on the fifth insulating layer.
  • the fourth insulating layer is a silicon oxide layer
  • the fifth insulating layer is a silicon nitride layer.
  • the step i after the low temperature polysilicon layer is patterned, it is also doped.
  • the present invention also provides a method for fabricating a low temperature polysilicon transistor, comprising the steps of: Step 1, forming a low temperature polysilicon layer on a substrate, and patterning the low temperature polysilicon layer; Step 2, forming a first insulating layer on the low temperature polysilicon layer;
  • Step 3 sequentially forming first, second, and third metal layers on the first insulating layer, and forming a cabinet by a photomask process;
  • Step 4 activating the low-temperature polysilicon layer, the activation temperature is between 20 ° C and 370 ; wherein, the second metal layer is an aluminum layer, and the first and third metal layers are a molybdenum layer or a titanium layer;
  • the activation time of the low-temperature polysilicon layer is 1-2 hours; wherein the substrate is a glass substrate or a plastic substrate;
  • the second and third insulating layers are sequentially formed on the substrate, and the low temperature polysilicon layer is formed on the third insulating layer;
  • the second insulating layer is a silicon nitride layer, and the third insulating layer is a silicon oxide layer.
  • the fourth and fifth insulating layers are sequentially formed on the gate. Also forming an active/drain;
  • the fourth insulating layer is a silicon oxide layer
  • the fifth insulating layer is a silicon nitride layer. In the step 1, after the low-temperature polysilicon layer is patterned, it is also doped.
  • the method for fabricating a low temperature polysilicon transistor of the present invention which activates a low temperature polysilicon layer by a temperature of less than 370 ° C, such that the gate electrode can be a stack of molybdenum/aluminum/molybdenum or titanium/aluminum/titanium
  • the layer structure effectively reduces the resistance of the ⁇ -pole, thereby greatly increasing the response rate of the transistor, and is advantageous for the resolution of the flat panel display and the expansion of the size of the flat panel display.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel
  • FIG. 2 is a schematic structural view of a conventional low temperature polysilicon transistor
  • 3 is a flow chart of a method for fabricating a low temperature polysilicon transistor of the present invention
  • 4 is a schematic structural view of a low-temperature polysilicon transistor fabricated by the method for fabricating the low-temperature polysilicon transistor of the present invention.
  • the present invention provides a method for fabricating a low temperature polysilicon transistor, which includes the following steps:
  • Step 1 Form a low temperature polysilicon layer 202 on the substrate 200 and pattern the low temperature polysilicon layer 202.
  • the substrate 200 is a transparent substrate, which may be a glass substrate or a plastic substrate, preferably a glass substrate, which has good light transmittance to ensure the illumination intensity of the display panel.
  • the patterning of the low temperature polysilicon layer 202 is generally achieved by a mask process, which may be: coating a low temperature polysilicon layer 202 with a photo-sensitive material, the layer being a so-called photoresist.
  • the layer is then exposed to light through a gray scale mask or a half gray mask to expose the photoresist layer. Due to the pattern of the active area on the gray-scale film or the half-gray mask, part of the light will be irradiated onto the photoresist layer through the gray-scale mask or the half-gray mask, so that the light
  • the exposure of the resist layer is selective, whereby the pattern on the gray scale mask or the half gray mask is completely copied onto the photoresist layer.
  • a suitable developer solution developer Removing a portion of the photoresist such that the photoresist layer develops the desired pattern.
  • a portion of the low temperature polysilicon layer 202 is removed by an etching process, where the etching process may be wet etching, thousand etching, or two
  • the remaining patterned photoresist layers are completely removed, thereby completing the patterning process of the low temperature polysilicon layer 202.
  • the patterned low-temperature polysilicon layer 202 also needs to be doped, such as: N+ ions, N-ions, and P+ ions to form an N-type semiconductor and a P-type semiconductor.
  • Step 2 Form a first insulating layer 204 on the low temperature polysilicon layer 202.
  • the first insulating layer 204 is a gate insulating layer formed by laminating a silicon oxide layer (SiOx) and a silicon nitride layer (SiNx), which is formed by chemical vapor deposition (CVD). On the low temperature polycrystalline layer 202.
  • Step 3 Form the first, second, and third metal layers 206, 208, and 210 on the first insulating layer 204, and form the gate electrode 212 through the photomask process.
  • the first layer 206 is formed on the first insulating layer 204 by a sputtering process
  • the second metal layer 208 is formed on the first metal layer 206 by a sputtering process
  • the third metal layer 210 is formed on the second metal layer 208 by a subtractive process, and then the t-pole 212 is formed by the photomask process, that is, the drain 212 is the first, second, and third metal layers 206, A stack of 208, 210.
  • the second metal layer 208 is an aluminum (A1) layer
  • the first and third metal layers 206, 210 are a molybdenum (Mo) layer or a titanium (Ti) layer.
  • the resistance value of aluminum is smaller than that of molybdenum and titanium, which can effectively reduce the resistance of the gate 212, thereby greatly increasing the response rate of the transistor, and is advantageous for improving the resolution of the flat panel display using the transistor.
  • the size of the flat panel display is "large.
  • Step 4 Activate the low temperature polysilicon layer 202 with an activation temperature between 201 and 370X.
  • the activation temperature of the low-temperature polysilicon layer 202 is relatively small when activated.
  • the activation temperature is less than 370 ° C, and the activation time is 1-2 hours, and the resistance of the * pole 212 is effectively reduced while ensuring that the cabinet 212 is not affected.
  • the low-temperature polysilicon layer 202 can also be activated by excimer laser crystallization (ELA) at room temperature (20 ° C), and the technical effects of the present invention can be achieved.
  • ELA excimer laser crystallization
  • the second and third insulating layers 216 and 218 are sequentially formed on the substrate 200, and the low temperature polysilicon layer 202 is formed on the third insulating layer 218.
  • the second and third insulating layers 216 and 218 may each be a silicon nitride (SiNx) layer or a silicon oxide (SiOx) layer.
  • the second insulating layer 216 is a silicon nitride layer
  • the third insulating layer 218 is a silicon oxide layer.
  • the gate 212 is further formed with fourth and fifth insulating layers 22CK 222, and an active/drain 224 is formed on the fifth insulating layer 222.
  • the fourth and fifth insulating layers 220 and 222 may each be a silicon nitride layer or a silicon oxide layer.
  • the fourth insulating layer 220 is a silicon oxide layer
  • the fifth insulating layer 222 is a nitrogen layer.
  • the low temperature polysilicon transistor of the present invention is fabricated by activating the low temperature polysilicon layer by a temperature of less than 370 Torr, so that the drain can be a laminated structure of molybdenum/aluminum/molybdenum or titanium/aluminum/titanium.
  • the resistance of the * pole is effectively reduced, thereby greatly increasing the response rate of the transistor, and is advantageous for the improvement of the resolution of the flat panel display and the expansion of the size of the flat panel display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种低温多晶硅晶体管的制作方法,包括以下步骤:步骤1、在基板(200)上形成低温多晶硅层(202),并图案化该低温多晶硅层(202);步骤2、在低温多晶硅层(202)上形成第一绝缘层(204);步骤3、在第一绝缘层(204)上依次形成第一、第二和第三金属层(206、208、210),并通过光罩制程形成栅极(212);步骤4、活化该低温多晶硅层(202),其活化温度介于20°C-370°C之间。该方法通过小于370°C的温度对低温多晶硅层进行活化,使得栅极可为钼/铝/钼或钛/铝/钛的叠层结构,有效降低栅极的电阻阻值,进而极大地提高晶体管的响应速率,且利于平面显示器的解析度的提高与平面显示器的尺寸的扩大。

Description

本发明涉及平面显示领域, 尤其涉及一种低温多晶硅
液晶显示装置 (LCD, Liquid Crystal Display )具有机身薄、 省电、 无 辐射等众多优点, 得到了广泛的应用。 现有市场上的液晶显示装置大部分 为背光型液晶显示器, 其包括液晶显示面板及背光模组 (baddight module ) 。 液晶面板的工作原理是在两片平行的玻璃基板中放置液晶分 子, 通过给玻璃基板的电路通电来控制液晶分子改变方向, 将背光模组的 光线折射出来产生画面。
请参阅图 1 , 所述液晶显示面板一般包括: TFT (薄膜晶体管)基板 100、 与 TFT基板 100相对贴合设置的 CF基板 300及设于 TFT基板 100 与 CF基板 300之间的液晶 500。
请参阅图 2 , 现有的薄膜晶体管主要包括: 基板 . 102、 形成于基板 102 上的第一绝缘层 104、 形成于第一绝缘层 104 上的有源层 ( active layer ) 106、 形成于有源层 106上的极极绝缘层 108、 形成于柵极绝缘层 108上的 柵极〗10、 形成于栅极 110上的第二绝缘层 112及形成于第二绝缘层 1】2 上的源 /漏极 114, 其中有源层 i06和櫥极绝缘层 108是决定薄膜晶体管性 能的两个关键层。 根据有源层 106的材料不同, 可以将薄膜晶体管分为单 晶硅薄膜晶体管 (c- Si TFT ) 、 非晶硅薄膜晶体管 (a- Si TFT ) 、 多晶硅薄 膜晶体管 (p— Si TFT ) 、 有机薄膜晶体管 (OTFT ) 和氧化锌薄膜晶体管 ( ZnO TFT ) 。
多晶硅 ( Polysilicon )是一种约为 0.1 至数个 μηι大小、 以硅为基底的 材料, 由许多娃粒子组合而成, 其通常经由 LPCVD ( low pressure chemical vapor deposition, 低压化学气相沉积 )处理后, 再以高于 900 °C的 退火程序 SPC ( Solid Phase Crystallization, 固相晶化法)制得, 然而, 由 于玻璃的最高承受温度只有 650 , 所以该多晶硅并不适用于平面显示器 的制造上。
低温多晶硅 ( low temperature poly-silicon, LTPS ) 的制程温度一般低 于 600Ό , 适用于制造平面显示器, 且由低温多晶硅制成的晶体管具有较 高的迁移率, 响应速度较快、 易高度集成化, 具有 P/N型导电模式、 自对' 准结构、 省电、 抗光千扰能力强、 分辨率高、 可以制作集成化驱动电路等 优点, 更加适合于大容量的高频显示, 尺寸可以做得更小, 有利于提高成 品率和降低生产成本, 而且 P/N型导电模式可以实现 LCD, OLED的驱动 等优点, 得到了广泛的应用。
由于低温多晶硅需要高温活化, 其活化温度一般大于 500Ό , 所以现 有的低温多晶硅晶体管的树极一般由耐高温的金属钼 (Mo )通过沉积、 黄 光及蚀刻工艺形成, 但, 由于金属钼的电阻阻值较高, 会导致严重的 RC- Dday (延迟效应) , 进而影响平面显示器的响应速度, 同时, 导致无法提 高平面显示器的解析度与平面显示器的尺寸。 发明内容
本发明的目的在于, 提供一种低温多晶硅晶体管的制作方法, 其用钼 Z 铝 Z钼或钛 /铝 /钛的叠层结构的栅极代替现有的全钼结构的栅极, 有效降低 柵极阻值, 进而提高晶体管的响应速率, 利于平面显示器的解析度的提高 与平面显示器的尺寸的扩大。
为实现上述目的, 本发明提供一种低温多晶硅晶体管的制作方法, 其 包括以下步骤:
步骤 1、 在基板上形成低温多晶硅层, 并图案化该低温多晶硅层; 步骤 2、 在低温多晶硅层上形成第一绝缘层;
步骤 3、 在第一绝缘层上依次形成第一、 第二与第三金属层, 并通过 光罩制程形成柵极;
步骤 4、 活化该低温多晶硅层, 其活化温度介于 20°C-370°C之间。
所述第二金属层为铝层, 第一与第三金属层为钼层或钛层。
所述步骤 4中, 该低温多晶硅层的活化时间为 1 -2小时。
所述步骤 4 中, 在室温下, 通过准分子激光晶化工艺对低温多晶硅层 进行活化。
所述基板为玻璃基板或塑胶基板。
所述步骤 1 中, 先在基板上依次形成第二与第三绝缘层, 再在第三绝 缘层上形成低温多晶硅层。
所述第二绝缘层为氮化硅层, 所述第三绝缘层为氧化硅层。
所述栅极上还依次形成有第四与第五绝缘层, 该第五绝缘层上还形成 有源 /漏极。
所述第四绝缘层为氧化硅层, 所述第五绝缘层为氮化硅层。 所述步骤 i中, 低温多晶硅层图案化后, 还对其进行掺杂工艺。
本发明还提供一种低温多晶硅晶体管的制作方法, 包括以下步骤: 步骤 1、 在基板上形成低温多晶硅层, 并图案化该低温多晶硅层; 步骤 2、 在低温多晶硅层上形成第一绝缘层;
步骤 3、 在第一绝缘层上依次形成第一、 第二与第三金属层, 并通过 光罩制程形成櫥极;
步骤 4、 活化该低温多晶硅层, 其活化温度介于 20°C- 370Ό之间; 其中, 所述第二金属层为铝层, 第一与第三金属层为钼层或钛层; 其中, 所述步驟 4中, 该低温多晶硅层的活化时间为 1-2小时; 其中, 所述基板为玻璃基板或塑胶基板;
其中, 所述步骤 1 中, 先在基板上依次形成第二与第三绝缘层, 再在 第三绝缘层上形成低温多晶硅层;
其中, 所述第二绝缘层为氮化硅层, 所述第三绝缘层为氧化硅层; 其中, 所述栅极上还依次形成有第四与第五绝缘层, 该第五绝缘层上 还形成有源 /漏极;
其中, 所述第四绝缘层为氧化硅层, 所述第五绝缘层为氮化硅层; 其中, 所述步骤 1 中, 低温多晶硅层图案化后, 还对其进行掺杂工 乙。
本发明的有益效杲: 本发明的低温多晶硅晶体管的制作方法, 其通过 小于 370 °C的温度对低温多晶硅层进行活化, 使得栅极可为钼 /铝 /钼或钛 / 铝 /钛的叠层结构, 有效降低楣-极的电阻阻值, 进而极大地提高晶体管的响 应速率, 且, 利于平面显示器的解析度的提高与平面显示器的尺寸的扩 大。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见„
附图中,
图 1为液晶显示面板的结构示意图;
图 2为现有的低温多晶硅晶体管的结构示意图;
图 3为本发明低温多晶硅晶体管的制作方法的流程图; 图 4为用本发明低温多晶硅晶体管的制作方法制成的低温多晶硅晶体 管的结构示意图„ 具体实旅方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行、详细描述。
请参阅图 3及图 4, 本发明提供一种低温多晶硅晶体管的制作方法, 其包括以下步骤:
步骤 1、 在基板 200上形成低温多晶硅层 202, 并图案化该低温多晶 硅层 202。
在本实施例中, 所述基板 200为透明基板, 其可为玻璃基板或塑胶基 板, 优选玻璃基板, 其透光性好, 以保证显示面板的光照强度。
所述.低温多晶硅层 202 的图案化一般通过光罩制程实现, 其具体方式 可为: 在低温多晶硅层 202上覆一层感光( photo- sensitive )材料, 该层即 所谓的光致抗蚀剂层, 然后使得光线通过灰阶掩膜或半灰阶掩膜照射于光 致抗蚀剂层上以将该光致抗蚀剂层曝光。 由于灰阶^"膜或半灰阶掩膜上具 有有源区域的图案 , 将使部分光线得以穿过灰阶掩膜或半灰阶掩膜而照射 于光致抗蚀剂层上, 使得光致抗蚀剂层的曝光具有选择性, 同时借此将灰 阶掩膜或半灰阶掩膜上的图案完整的复印至光致抗蚀剂层上。 然后, 利用 合适的显影液剞 ( developer ) 除去部分光致抗蚀剂, 使得光致抗蚀剂层显 现所需要的图案。 接着, 通过蚀刻工艺将部分低温多晶硅层 202去除, 在 此的蚀刻工艺可选用湿式蚀刻、 千式蝕刻或两者配合使用。 最后, 将剩余 的图案化的光致抗蚀剂层全部去除, 进而完成低温多晶硅层 202 的图案化 制程。
图案化后的低温多晶硅层 202, 还需要还对其进行掺杂工艺, 如: 注 入 N+离子、 N-离子及 P+离子, 以形成 N型半导体及 P型半导体。
步骤 2、 在低温多晶硅层 202上形成第一绝缘层 204。
在本实施例中, 该第一绝缘层 204 为柵极绝缘层, 其由氧化硅层 ( SiOx )与氮化硅层 ( SiNx )层叠形成, 其通过化学气相沉积 ( Chemical vapor deposition, CVD )形成于低温多晶政层 202上。
步骤 3、 在第一绝缘层 204 上依次形成第一、 第二与第三金属层 206、 208 , 210, 并通过光罩制程形成柵极 212。
所述第 -―^属层 206 通过溅射 (Sputtering ) 工艺形成于第一绝缘层 204, 所述第二金属层 208通过溅射工艺形成于第一金属层 206上, 所述 第三金属层 210通过減射工艺形成于第二金属层 208上, 然后, 在通过光 罩制程形成 t极 212, 即, 该槲极 212 为该第一、 第二与第三金属层 206、 208、 210的叠层。
在本实施例中, 所述第二金属层 208 为铝 (A1 )层, 第一与第三金属 层 206、 210 为钼 (Mo )层或钛(Ti ) 层。 铝的电阻阻值相对钼、 钛的电 阻阻值小, 能有效降低栅极 212 的电阻阻值, 进而极大地提高晶体管的响 应速率, 且, 利于用该晶体管的平面显示器的解析度的提高与平面显示器 的尺寸的 "大。
步骤 4、 活化该低温多晶硅层 202 , 其活化温度介于 201 - 370 X之 间。
由于槲极 212为钼 /铝 /钼或钛 /铝 /钛的叠层结构, 其中铝的熔点较低, 为 660.37Ό , 所以在活化该低温多晶硅层 202 时, 其活化温度要相对较 小, 以免影响槲极 212, 在发明中, 所述活化温度小于 370°C, 其活化时 间为 1-2小时, 在保证櫥极 212不受影响的同时, 有效降低 *极 212的阻 值。
且, 还可以在室温 ( 20。C ) 下, 通过准分子激光晶化(ELA )对低温 多晶硅层 202进行活化, 同样可以达到本发明的技术效果。
值得一提的是, 在本实施例中, 所述步骤 1 中, 先在基板 200上依次 形成第二与第三绝缘层 216、 218 , 再在第三绝缘层 218上形成低温多晶硅 层 202, 该第二与第三绝缘层 216、 218均可为氮化硅 ( SiNx )层或氧化硅 ( SiOx )层, 在本实施例中, 所述第二绝缘层 216为氮化硅层, 所述第三 绝缘层 218为氧化硅层。
所述,柵极 212上还依次形成有第四与第五绝缘层 22CK 222, 该第五绝 缘层 222上还形成有源 /漏极 224„
该第四与第五绝缘层 220、 222 均可为氮化硅层或氧化硅层, 在本实 施例中, 所述第四绝缘层 220为氧化硅层, 所述第五绝缘层 222为氮化硅 层, 所述源 /漏极 224含有钼层、 铝层、 钛层或铜 (Cu ) 层其中之一或其 叠层。
综上所述, 本发明的低温多晶硅晶体管的制作方法, 其通过小于 370 Ό的温度对低温多晶硅层进行活化, 使得槲极可为钼 /铝 /钼或钛 /铝 /钛的叠 层结构, 有效降低 *极的电阻阻值, 进而极大地提高晶体管的响应速率, 且, 利于平面显示器的解析度的提高与平面显示器的尺寸的扩大。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围„

Claims

权 利 要 求
】、 一种低温多晶硅晶体管的制作方法, 包括以下步骤:
步骤 1、 在基板上形成低温多晶硅层, 并图案化该低温多晶硅层; 步骤 2、 在低温多晶硅层上形成第一绝缘层;
步骤 3、 在第一绝缘层上依次形成第一、 第二与第三金属层, 并通过 步骤 4、 活化该低温多晶硅层, 其活化温度介于 20 C- 370Ό之间。
2、 如权利要求 所述的低温多晶硅晶体管的制作方法, 其中, 所述 第二金属层为铝层, 第一与第三金属层为钼层或钛层。
3、 如权利要求 2 所述的低温多晶硅晶体管的制作方法, 其中, 所述 步骤 4中, 该低温多晶硅层的活化时间为 1-2小时。
4、 如权利要求 2 所述的低温多晶硅晶体管的制作方法, 其中, 所述 步骤 4 中, 在室温下, 通过准分子激光晶化工艺对低温多晶硅层进行活 化。
5、 如权利要求 所述的低温多晶硅晶体管的制作方法, 其中, 所述 基板为玻璃基板或塑胶基板.。
6、 如权利要求 1 所述的低温多晶硅晶体管的制作方法, 其中, 所述 步骤 1 中, 先在基板上依次形成第二与第三绝缘层, 再在第三绝缘层上形 成低温多晶硅层。
7、 如权利要求 6 所述的低温多晶硅晶体管的制作方法, 其中, 所述 第二绝缘层为氮化硅层, 所述第三绝缘层为氧化硅层。
8、 如权利要求 1 所述的低温多晶硅晶体管的制作方法, 其中, 所述 柵极上还依次形成有第四与第五绝缘层, 该第五绝缘层上还形成有源 /漏 极。
9、 如权利要求 8 所述的低温多晶硅晶体管的制作方法, 其中, 所述 第四绝缘层为氧化硅层, 所述第五绝缘层为氮化硅层。
10、 如权利要求 1 所述的低温多晶硅晶体管的制作方法, 其中, 所述 步骤 1中, 低温多晶硅层图案化后, 还对其进行掺杂工艺。
1 1、 一种低温多晶硅晶体管的制作方法, 包括以下步骤:
步骤 1、 在基板上形成低温多晶硅层, 并图案化该低温多晶硅层; 步骤 2、 在低温多晶硅层上形成第一绝缘层;
步骤 3、 在第一绝缘层上依次形成第一、 第二与第三金属层, 并通过 早 i 王 71:?风 u .;
步骤 4、 活化该低温多晶硅层, 其活化温度介于 20°C- 370Ό之间; 其中, 所述第二金属层为铝层, 第一与第三金属层为钼层或钛层; 其中, 所述步骤 4中, 该低温多晶硅层的活化时间为 1-2小时; 其中, 所述基板为玻璃基板或塑胶基板;
其中, 所述步骤 1 中, 先在基板上依次形成第二与第三绝缘层, 再在 第三绝缘层上形成低温多晶硅层;
其中, 所述第二绝缘层为氮化硅层, 所述第三绝缘层为氧化硅层; 其中, 所述柵极上还依次形成有第四与第五绝缘层, 该第五绝缘层上 还形成有源 /漏极;
其中, 所述第四绝缘层为氧化硅层, 所述第五绝缘层为氮化硅层; 其中, 所述步骤 1 中, 低温多晶硅层图案化后, 还对其进行掺杂工
PCT/CN2013/072030 2013-02-26 2013-02-28 低温多晶硅晶体管的制作方法 WO2014131189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310059776.6 2013-02-26
CN2013100597766A CN103137497A (zh) 2013-02-26 2013-02-26 低温多晶硅晶体管的制作方法

Publications (1)

Publication Number Publication Date
WO2014131189A1 true WO2014131189A1 (zh) 2014-09-04

Family

ID=48497142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072030 WO2014131189A1 (zh) 2013-02-26 2013-02-28 低温多晶硅晶体管的制作方法

Country Status (2)

Country Link
CN (1) CN103137497A (zh)
WO (1) WO2014131189A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143533B (zh) * 2014-08-07 2017-06-27 深圳市华星光电技术有限公司 高解析度amoled背板制造方法
CN107863356A (zh) * 2017-11-06 2018-03-30 武汉华星光电半导体显示技术有限公司 Tft基板及其制作方法
CN115911059A (zh) * 2022-12-29 2023-04-04 Tcl华星光电技术有限公司 阵列基板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182570C (zh) * 2000-09-04 2004-12-29 精工爱普生株式会社 场效应晶体管的制造方法
US20060267015A1 (en) * 2005-05-31 2006-11-30 Toshiba Matsushita Display Technology Co., Ltd. Thin film transistor, production method thereof and liquid crystal display device
US20070267635A1 (en) * 2006-05-17 2007-11-22 Au Optronics Corp. Thin film transistor
CN101685780A (zh) * 2008-09-26 2010-03-31 台湾积体电路制造股份有限公司 半导体装置及制造具有金属栅极堆叠的半导体装置的方法
CN102623460A (zh) * 2011-02-01 2012-08-01 三星移动显示器株式会社 薄膜晶体管基板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182570C (zh) * 2000-09-04 2004-12-29 精工爱普生株式会社 场效应晶体管的制造方法
US20060267015A1 (en) * 2005-05-31 2006-11-30 Toshiba Matsushita Display Technology Co., Ltd. Thin film transistor, production method thereof and liquid crystal display device
US20070267635A1 (en) * 2006-05-17 2007-11-22 Au Optronics Corp. Thin film transistor
CN101685780A (zh) * 2008-09-26 2010-03-31 台湾积体电路制造股份有限公司 半导体装置及制造具有金属栅极堆叠的半导体装置的方法
CN102623460A (zh) * 2011-02-01 2012-08-01 三星移动显示器株式会社 薄膜晶体管基板及其制造方法

Also Published As

Publication number Publication date
CN103137497A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
US9941312B2 (en) Manufacturing method for LTPS TFT substrate
US20160370621A1 (en) Array substrate, manufacturing method thereof and liquid crystal display
US9685461B2 (en) Display device, array substrate and method for manufacturing the same
WO2018188146A1 (zh) 一种阵列基板、显示装置及其制作方法
WO2016165187A1 (zh) 双栅极氧化物半导体tft基板的制作方法及其结构
WO2016033840A1 (zh) Tft背板结构及其制作方法
CN107170759B (zh) 一种阵列基板及其制作方法、显示装置
US9006059B2 (en) CMOS transistor and method for fabricating the same
US10192975B2 (en) Low temperature polycrystalline silicon thin film transistor
WO2014183422A1 (zh) 薄膜晶体管及其制备方法、阵列基板
US9876040B1 (en) Method for manufacturing TFT substrate
WO2015096292A1 (zh) 阵列基板及其制造方法、显示装置
WO2018152875A1 (zh) 薄膜晶体管的制作方法、薄膜晶体管及显示器
WO2016019602A1 (zh) 高解析度amoled背板制造方法
WO2016101401A1 (zh) 低温多晶硅tft基板的制作方法及其结构
WO2016101400A1 (zh) 低温多晶硅tft基板的制作方法及其结构
KR20190077570A (ko) 어레이 기판, 그 제조 방법 및 표시 장치
WO2013139128A1 (zh) 顶栅型n-tft、阵列基板及其制备方法和显示装置
WO2018040489A1 (zh) 一种阵列基板及其制备方法
WO2015165174A1 (zh) 一种薄膜晶体管及其制作方法、显示基板、显示装置
WO2013170574A1 (zh) 氧化物薄膜晶体管及其制作方法、阵列基板和显示装置
WO2015100791A1 (zh) 薄膜晶体管基板的制造方法
WO2015192417A1 (zh) Tft背板的制造方法及tft背板结构
WO2015067054A1 (zh) 互补式薄膜晶体管及其制备方法、阵列基板和显示装置
WO2016201725A1 (zh) 低温多晶硅tft基板的制作方法及低温多晶硅tft基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876120

Country of ref document: EP

Kind code of ref document: A1