WO2014129857A1 - 복사열을 이용한 자동차용 면상 발열체 - Google Patents

복사열을 이용한 자동차용 면상 발열체 Download PDF

Info

Publication number
WO2014129857A1
WO2014129857A1 PCT/KR2014/001459 KR2014001459W WO2014129857A1 WO 2014129857 A1 WO2014129857 A1 WO 2014129857A1 KR 2014001459 W KR2014001459 W KR 2014001459W WO 2014129857 A1 WO2014129857 A1 WO 2014129857A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
layer
planar heating
automobile
carbon nanotube
Prior art date
Application number
PCT/KR2014/001459
Other languages
English (en)
French (fr)
Inventor
송예리
예성훈
이종훈
신창학
박구일
황덕율
박환석
Original Assignee
(주)엘지하우시스
(주)엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스, (주)엘지화학 filed Critical (주)엘지하우시스
Priority to DE112014000959.8T priority Critical patent/DE112014000959T5/de
Priority to JP2015557954A priority patent/JP6353855B2/ja
Priority to US14/768,451 priority patent/US9919583B2/en
Priority to CN201480009204.XA priority patent/CN104995993A/zh
Publication of WO2014129857A1 publication Critical patent/WO2014129857A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2227Electric heaters incorporated in vehicle trim components, e.g. panels or linings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/148Silicon, e.g. silicon carbide, magnesium silicide, heating transistors or diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2268Constructional features
    • B60H2001/2293Integration into other parts of a vehicle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • It relates to a planar heating element for automobiles using radiant heat.
  • the planar heating body using the transfer energy was applied to the battery to ensure uniformity of temperature, but there was a limit in power consumption in warming the interior temperature of the car in winter, so the effect was not large.
  • there is a need for developing a heating element for electric vehicles because a person who is in a car feels comfortable, sets a standard for a general air temperature, and an efficient way to reach the temperature. It is becoming.
  • One embodiment of the present invention provides a planar heating element for an automobile in which heat generated by heat generation of a carbon nanotube heating layer is transferred to a metal layer, and passes through a far-infrared radiation layer to emit radiant heat and transfer radiant heat to a heating element.
  • a planar heating element for an automobile comprising a laminated structure of a carbon nanotube heating layer comprising a far-infrared radiation layer, a metal layer, a metal wire.
  • the exothermic temperature of the carbon nanotube heating layer may be about 100 ° C to about 300 ° C.
  • the carbon nanotube heating layer may include about 1 wt% to about 50 wt% of the metal wire.
  • the far infrared ray emitting layer may include a far infrared ray emitting material.
  • the far-infrared radiation material may include any one selected from the group consisting of octopus, loess, silica, ganban stone, natural jade, charcoal, germanium, tourmaline, and combinations thereof.
  • the far infrared ray emitting layer may emit radiant heat by heat generation of the carbon nanotube heating layer.
  • the metal layer may include a metal sheet having a high thermal conductivity of 200 W / m ⁇ K or more to release heat generated from the carbon nanotube heating layer.
  • the metal layer may include one or more metal sheets selected from the group consisting of aluminum, copper, gold, silver, platinum, and combinations thereof.
  • a primer layer may be included below the far infrared ray emitting layer.
  • the primer layer may include a resin selected from the group consisting of acrylic resins, epoxy resins, ester resins, olefin resins, and combinations thereof.
  • An intermediate layer may be included below the metal layer.
  • the intermediate layer may include glass powder or glass fiber as a binder.
  • the heating temperature of the planar heating element for automobiles may be about 50 ° C to about 100 ° C.
  • the thermal efficiency of the planar heating element for automobiles may be about 30% or more.
  • the ambient air temperature change of the planar heating element for automobiles may be within about 10 ° C.
  • the planar heating element for an automobile may be attached to the inside of the vehicle so as not to directly contact the heating element.
  • the planar heating element for an automobile may increase the winter indoor temperature of the electric vehicle without a separate heating system.
  • FIG. 1 is a schematic view showing a planar heating element for an automobile which is an embodiment of the present invention.
  • FIG. 2 is a SEM photograph of the carbon nanotube heating layer included in the planar heating element for automobiles.
  • Figure 3 shows the measurement of the thermal diffusivity (Thermal Diffusivity) of the aluminum metal sheet when the aluminum metal sheet is used as the metal layer included in the planar heating element for automobiles.
  • FIG. 4 is a schematic view showing a planar heating element for a vehicle which is another embodiment of the present invention.
  • FIG. 5 is a schematic view showing a planar heating element for a vehicle which is another embodiment of the present invention.
  • FIG. 6 is a diagram illustrating various shapes of the planar heating element for automobiles.
  • FIG. 7 is a diagram illustrating the position of the planar heating element for a vehicle installed in a vehicle in Experimental Example 2.
  • FIG. 7 is a diagram illustrating the position of the planar heating element for a vehicle installed in a vehicle in Experimental Example 2.
  • a planar heating element for an automobile comprising a laminated structure of a carbon nanotube heating layer comprising a far-infrared radiation layer, a metal layer, a metal wire.
  • the planar heating element for a vehicle is to maintain a comfortable atmospheric temperature felt by a person riding in a car when heating the car's room temperature, and may configure a heating element according to the heating temperature of the planar heating element for a car to maintain an inside temperature of the car.
  • the comfort temperature is a temperature that refers to whether or not the air temperature at which the human body is located is comfortable or not, and there may be a relative difference depending on the person, but the comfort temperature means an air temperature at which most people feel comfortable.
  • planar heating element for automobiles As opposed to a heating handle, a heating seat seat, or a lower body that has been tried in a typical car, and that consumes a lot of power, such as an air blowing PTC heater. It can effectively reduce the energy used. In addition, it is possible to effectively increase the heat flow of the planar heating element for the car to adjust the heating temperature to effectively warm the lower body of the human body, to minimize the energy of the car consumed by the heating element in winter to increase the running distance.
  • a separate heating element does not exist, and when a heating element is present in the lower body of a human body in a car, a passenger riding in a vehicle may feel more comfortable than a heating element does not exist.
  • planar heating element for an automobile may include a far infrared ray emitting layer 300, a metal layer 200, and a carbon nanotube heating layer 100. Can be.
  • the carbon nanotube heating layer 100 may include a metal wire.
  • a metal wire Conventionally, a composite of a metal and carbon nanotubes is used, but as in the case of coating a curved surface by spherical metal particles coated on carbon nanotubes, the dispersion of metal particles is not uniform and the metal particles do not lead to electricity.
  • the carbon nanotube heating layer integrally includes a metal wire in the form of a thin wire instead of a spherical metal particle, the metal wire may be uniformly dispersed on the carbon nanotube, and thus the carbon nanotube When voltage is applied to the heating layer, electricity may flow uniformly.
  • the metal wire refers to a wire structure having a size of a predetermined diameter, and may include nanowires having a diameter of about 10 nm or less to a few hundred nm diameter. Specifically, the diameter of the metal wire may be about 20 nm to about 250 nm.
  • the aspect ratio of the metal wire may be about 4 to about 50.
  • the aspect ratio refers to a ratio between width and length, and means a value obtained by dividing the length of the metal wire by the diameter of the metal wire.
  • the metal wire may have a length of about 1 ⁇ m to about 10 ⁇ m.
  • FIG. 2 is a SEM photograph of the carbon nanotube heating layer included in the planar heating element for automobiles, and it can be seen that the carbon nanotube heating layer includes a metal wire having a diameter of about 20 nm to about 250 m.
  • the automotive surface heating element may further include an electrode layer electrically connected to the carbon nanotube heating layer 100 and inducing heat generation of the carbon nanotube heating layer when power is applied.
  • an electrode layer electrically connected to the carbon nanotube heating layer 100 and inducing heat generation of the carbon nanotube heating layer when power is applied.
  • power is applied to the electrode layer, that is, when voltage is applied and electricity flows, heat is generated in the carbon nanotube heating layer, and the temperature of the carbon nanotube heating layer may increase.
  • the heat generated by the carbon nanotube heating layer is conducted to the far-infrared radiation layer, the conducted heat may pass through the far-infrared radiation layer to radiate radiant heat, and the radiated heat is transferred to the heating element. It can be done.
  • the heating temperature of the carbon nanotube heating layer when the power is applied to the electrode layer may be about 100 °C to about 300 °C.
  • the heating temperature refers to the surface temperature of the carbon nanotube heating layer when power is applied to the electrode layer, and heat is generated in the carbon nanotube heating layer by applying power to the electrode layer.
  • the tube heating layer can maintain a constant heating temperature.
  • the carbon nanotube heating layer includes a metal wire, and when power is applied to the electrode layer, electricity may flow uniformly, and the heating temperature may be maintained in the above range. By maintaining the exothermic temperature of the carbon nanotube heating layer it is possible to prevent the heat loss conducted to the far-infrared emission layer and the metal layer to maintain a comfortable temperature.
  • the carbon nanotube heating layer may have a thickness of about 2 ⁇ m to about 10 ⁇ m. By maintaining the thickness of the carbon nanotube heating layer uniformly in the above range it is possible to prevent the occurrence of cracks, and to ensure a certain level of durability of the planar heating element for automobiles.
  • the carbon nanotube heating layer may include about 1 wt% to about 50 wt% of the metal wire.
  • the metal wire is as described above, and by including the metal wire in the above range, it is easy to control the temperature of the carbon nanotube heating layer, excellent efficiency in implementing the target sheet resistance of the planar heating element, it is possible to smooth the electrical flow.
  • the metal wire may include any one selected from the group consisting of silver, copper, aluminum, gold, platinum, and combinations thereof, and silver is particularly preferable in consideration of electrical conductivity.
  • the far infrared ray emitting layer 300 may include a far infrared ray emitting material.
  • the planar heating element for automobiles may generate heat friendly to the human body by including the far-infrared radiation layer, and may have an energy saving effect by the spectral emissivity of the far-infrared radiation layer itself.
  • the far-infrared radiation material may include any one selected from the group consisting of octopus, loess, quartz, ganban stone, natural jade, charcoal, germanium, tourmaline and combinations thereof.
  • Far infrared rays refers to infrared rays that heat stronger than visible light in the range of about 3 ⁇ m to about 1000 ⁇ m of the wavelength range of light, heat generated by the carbon nanotube heating layer passes through the far infrared emitting layer is generated
  • the far-infrared radiation layer may absorb the generated far-infrared rays and emit radiant heat.
  • the radiant heat refers to heat generated when an object directly absorbs electromagnetic waves emitted from an object and turns into heat. The radiant heat is generated by absorbing the far infrared rays emitted from the far-infrared radiation layer and converting it into heat at the same time. You can.
  • a metal layer 200 may be included between the far-infrared radiation layer 300 and the carbon nanotube heating layer 100.
  • the metal layer includes a heat-dissipating metal sheet having a high thermal conductivity, thereby rapidly transferring heat generated from the carbon nanotube heating layer to the far-infrared radiation layer, and minimizing heat loss to maintain thermal efficiency of the planar heating element for automobiles of 30% or more.
  • the metal layer serves as a heat sink for dissipating heat generated from the carbon nanotube heating layer, thereby preventing thermal deformation of the metal layer and thereby suppressing thermal deformation of the planar heating plate for a vehicle as a whole. Can be.
  • the metal layer may include a heat-dissipating metal sheet having a high thermal conductivity of 200W / m ⁇ K or more so as to release heat generated from the carbon nanotube heating layer.
  • the metal layer may include at least one metal sheet selected from the group consisting of aluminum, copper, gold, silver, platinum, and combinations thereof.
  • An aluminum metal sheet may be used as the metal layer in terms of thermal conductivity and price competitiveness. In the case of the aluminum metal sheet, since the thermal diffusion coefficient is particularly high in the thickness direction, the thermal conductivity is excellent, and thus heat can be easily released without accumulating heat.
  • the metal layer may have a thickness of about 0.1 mm to about 2 mm. If the thickness of the metal layer is too thin, the heat generated from the carbon nanotube heating layer may not be properly released, and if the thickness of the metal layer is too thick, it is difficult to manufacture a planar heating element for a vehicle in a curved surface.
  • Figure 3 shows the measurement of the thermal diffusivity (Thermal Diffusivity) of the aluminum metal sheet when the aluminum metal sheet is used as the metal layer included in the planar heating element for automobiles.
  • the thermal diffusion coefficients (thickness directions) of aluminum metal sheets having a thickness of 1 mm, 0.5 mm, 0.5 mm and 0.2 mm are 92.99 mm 2 / s, 60.82 mm 2 / s, 39.88 mm 2 / s and 23.23 mm 2 at about 25 ° C. It is determined that both have a high value as / s, and thus the thermal conductivity is also high in proportion to the thermal diffusion coefficient.
  • planar heating element 10 for a vehicle is far-infrared radiation layer 300, a primer layer 400, and a metal layer from above. 200, the carbon nanotube heating layer 100 may be included.
  • the primer layer 400 has an adhesive performance, and serves to prepare for the case where the adhesive force between the far infrared ray emitting layer 300 and the metal layer 200 does not come out, the far infrared ray emitting layer 300 and the metal layer 200. ) May be included.
  • the thickness of the primer layer may be about 2 ⁇ m to about 20 ⁇ m, it is possible to minimize the occurrence of cracks by maintaining the thickness in the above range to allow the far-infrared radiation layer is uniformly coated.
  • the primer layer may include a resin selected from the group consisting of acrylic resins, epoxy resins, ester resins, olefin resins, and combinations thereof.
  • the urethane-based resin is a polyurethane resin prepared from isophorene diisocyanate, adipic acid and polyhydric alcohol such as polyurethane dispersion resin, polyethylene modified polyurethane resin and the like, and acrylic such as acrylic-urethane resin, polyethylene-acrylic modified polyurethane resin and the like.
  • Polyurethane resins made from polyols and polyisocyanates and polycaprolactone polyols or polycarbonate polyols and isocyanates, polyurethane resins made from paraphenylenediisocyanates, 4,4'-bis ( ⁇ -hydroxyalkyleneoxy) biphenyl And polyurethane resins prepared from methyl-2,6-diisocyanate hexanoate, polyurethane resins having acetal bonds, and the like.
  • polyhydric alcohol an acrylic polyol, polyester polyol, polyether polyol, polyolefin polyol, or the like can be used.
  • the acrylic resin is excellent in high temperature, high humidity, cold resistance, and workability, and is inexpensive, the acrylic resin can be used on the upper portion of the metal layer to increase adhesion to the far-infrared radiation layer.
  • the acrylic resin an acrylic resin synthesized in a conventional monomer composition including a carboxyl group of an acceptable level may be used.
  • the acrylic resin monomers may be, for example, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, normal butyl (meth) acrylate, isobutyl (meth) acrylate, 2- Ethylhexyl (meth) acrylate, hydroxypropyl (meth) acrylate, stearyl (meth) acrylate, and hydroxybutyl (meth) acrylate.
  • the epoxy resin is also excellent in adhesion, corrosion resistance, top coat paint, etc. can be suitably used on the upper metal layer.
  • Bisphenol A type resin, bisphenol F type resin, a novolak resin, etc. can be used for the said epoxy resin.
  • the ester resin is excellent in curability, chemical resistance, heat resistance, plasticity and excellent adhesion to organic materials can be used on the upper metal layer, the ester resin is maleic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, And polyester resins prepared from methyltetrahydrophthalic anhydride, adipic acid, and pimic acid, ethylene glycol modified ester resins, propyleneene glycol modified ester resins, and neopentyl glycol modified ester resins.
  • FIG. 5 is a schematic view showing a planar heating element for a vehicle according to another embodiment of the present invention.
  • the planar heating element 10 for a vehicle may be a far infrared ray emitting layer 300, a metal layer 200, an intermediate layer (from above). 500) and the carbon nanotube heating layer 100.
  • the intermediate layer 500 is not electrically conductive as an electric insulation layer, heat generated by the carbon nanotube heating layer 100 is transferred to the far-infrared radiation layer 300 through the metal layer 200, and emits far-infrared radiation.
  • the layer may not be uniformly attached to the upper metal layer, and bubbles may be generated between the metal layer and the far-infrared radiation layer to prevent the far-infrared radiation layer from crushing.
  • the intermediate layer may include glass powder or glass fiber as a binder.
  • glass powder or glass fiber as a binder, it becomes an electrical insulating layer to prevent electricity from passing through, thereby improving the phenomenon that the far-infrared radiation layer is unevenly formed on the metal layer by heat.
  • Glass powder means that the glass is present in the form of a powder, the particle diameter of the glass powder may be about 0.4 ⁇ m to about 40 ⁇ m.
  • glass fiber refers to a mineral fiber having a glass shape of molten glass, and the diameter of the glass fiber is excellent in physical properties and excellent tensile strength bar diameter of the glass fiber included in the intermediate layer May be about 5 ⁇ m to about 20 ⁇ m.
  • the intermediate layer may be formed of the glass powder and the glass fiber binder and mixed with various additives and synthetic resin materials.
  • the heating temperature of the planar heating element for automobiles may be about 50 ° C to about 100 ° C.
  • the heating temperature of the planar heating element for an automobile refers to the surface temperature of the heating element itself that generates radiant heat.
  • the heating temperature of the carbon nanotube heating layer may be about 100 ° C. to about 300 ° C. Heat is lost by the metal layer and the far-infrared radiation layer, so that the exothermic temperature of the planar heating element for automobiles may be secured at about 50 ° C to about 100 ° C.
  • the thermal efficiency (e) of the planar heating element for automobiles may be about 30% or more.
  • the thermal efficiency (e) can be calculated by the formula ⁇ 1- (Qrad) / (Qref) ⁇ X100, where Qref is the heat flux of the initial heating element without radiant heat and Qrad is the later heating element with radiant heat.
  • Qref and Qrad used ANSYS (Simulation Model), and the temperature of the heating element changed by the surface temperature and the heating element during heating of each heating element can be measured and substituted to calculate thermal efficiency.
  • the amount of heat flow refers to the amount of heat passing through a certain section per unit area of time, and the heat flux of the planar heating element for automobiles is a unit time unit of radiant heat generated by the carbon nanotube heating layer, the metal layer, and the far-infrared radiation layer. It means the amount of heat passing per area, it can be calculated through the following formula and 3D-simulation model.
  • the surface temperature (RST) is a factor that is determined by the heat balance reflecting the heat loss can be measured in consideration of the heat temperature in the car and the radiation temperature from the heating element.
  • the heat flow rate is a value that can directly affect the thermal efficiency and the ambient air temperature of the planar heating element for the car, the planar heating element for the car can maintain a constant air temperature by maintaining a certain range of heat flow rate, the heating element in the car interior in winter You can feel comfortable.
  • the change in the ambient air temperature of the planar heating element for the car was maintained within about 10 ° C. when the thermal efficiency was about 30% or more.
  • the thermal efficiency is about 50% or more
  • the ambient air temperature change of the planar heating element for the vehicle was maintained within about 5 ° C.
  • the comfort temperature could be maintained inside the car, and when the thermal efficiency was about 60% or more, It was confirmed that the ambient temperature of the heating element did not fall below room temperature.
  • the thermal efficiency of the planar heating element for automobiles is about 30% or more, there is an advantage in that the temperature of the human body aboard is maintained at room temperature, and the atmospheric temperature can maintain a comfortable temperature.
  • Ambient ambient temperature change of the planar heating element for vehicles may be within about 10 °C.
  • the change in the ambient air temperature refers to the change in the ambient air temperature before and after the planar heating element for the vehicle. The better the thermal efficiency of the planar heating element, the less the change in the ambient atmospheric temperature, and the appropriate temperature in the vehicle can be maintained.
  • the heating element of the planar heating element for an automobile may be a human body or a tester who rides in an automobile.
  • the heating element detects a change in the ambient air temperature of the planar heating element for the car, and when the change in the ambient air temperature is within about 10 ° C., the human body feels comfortable and thermally comfortable when the body temperature of the legs and hands is maintained. I can feel it.
  • the planar heating element for an automobile may be attached to the inside of the vehicle so as not to directly contact the heating element.
  • the planar heating element for automobiles emits radiant heat due to the far-infrared ray emitting layer, the planar heating element may feel warm through the ambient air temperature heated by the radiant heat, despite not directly contacting the heating element.
  • the heating element becomes a human body, for example, a passenger riding in an automobile, the atmosphere of the heating element of the automobile faced by the heating element is not in direct contact with the heating element of the automobile due to the radiant heat emission of the heating element of the automobile.
  • the temperature can be kept constant.
  • the planar heating element for automobiles may be located toward the lower body rather than the upper body of the human body.
  • the comfort temperature at which the human body feels comfortable is calculated for each part. Was found to have the greatest impact on Therefore, it was confirmed that the lower body of the human body occupies the most important ratio in maintaining the body temperature.
  • the surface heating element for automobiles was placed by placing the surface heating element for automobiles toward the lower body of the human body to maintain the atmospheric temperature at which the human body feels comfortable. could be affected by radiant heat.
  • planar heating element for automobiles may be distributed in various shapes to concentrate on the lower portion of the seat of the vehicle in order to heat the lower body of the human body, and may be applied to the interior of the vehicle in the shape of various polygons.
  • the carbon nanotube heating layer including the far-infrared radiation layer, the metal layer, and the metal wire was printed and coated, and each of the prepared layers was laminated to prepare a planar heating element for automobiles.
  • a planar heating element for automobiles was manufactured in the same manner as in the above example, except that the carbon nanotube heating layer was not included.
  • Table 1 is a change in temperature according to the distance from the far-infrared radiation layer when 88W power is applied to the embodiment
  • Table 2 is a change in temperature according to the distance from the far-infrared radiation layer when 88W is applied to the comparative example
  • Table 3 below shows the temperature change according to the distance from the far-infrared radiation layer when 120W power is applied to the Example
  • Table 4 below shows the temperature change according to the distance from the far-infrared radiation layer when 120W power is applied to the comparative example.
  • the temperature was increased by about 12.5 ° C. when the power was applied at about 8.6 ° C. and 120 W. In this case, the temperature is increased by about 2 times as compared with the case where the electric power of 88W and 120W is applied to the comparative example which does not include the carbon nanotube heating layer. Therefore, it can be seen that the radiant energy effect of the embodiment including the carbon nanotube heating layer was superior to that of the comparative example.
  • FIG. 7 is a diagram showing the position of the planar heating element for the vehicle installed in the automobile in ⁇ Experimental Example 2> Specifically, the position of the planar heating element on the right side of the lower body of the human body 1, the position of the planar heating element of the upper body lower body 2, The position of the planar heating element on the left side of the lower body of the human body was set to 3, and the planar heating element of the above embodiment was attached to the inside of the electric vehicle according to each position, and the planar heating element of the embodiment was operated by giving electric power to the electric vehicle. .
  • the planar heating element was positioned as described in Table 5 below, and the planar heating element for automobiles was operated. Sensors were installed on the head and floor of the driver's seat using DIN EN ISO 7730, and the exothermic temperature of the plane heater was measured. Specifically, the exothermic temperature was measured at 32 km / h speed driving conditions in the second gear.
  • the heat efficiency was calculated by measuring the heat flux before and after operation of the planar heating element for the vehicle by the above-described method. The higher the thermal efficiency, the better the effect of the planar heating element for automobiles.
  • the minimum temperature of the ambient atmosphere felt by 100 people was measured, and the change in the ambient atmospheric temperature before and after the planar heating element for the car was measured.
  • the heating temperature was measured to about 50 °C to about 100 °C, the thermal efficiency of about 30% to about 60%.
  • the change in the ambient air temperature was maintained within about 10 °C, the passengers felt comfortable and confirmed the thermal comfort by maintaining the body temperature of the legs, hands and chest.
  • the time taken to reach about 30 ° C. is similar to about 15 minutes to about 20 minutes.
  • the power consumption of the vehicle was 3.6W
  • the power consumption of the vehicle was measured as 2.8W. Therefore, in the case of using the planar heating element for automobiles, the power consumption of the car was found to be less, and it was found that the use of the planar heating element for automobiles was more appropriate to secure the indoor temperature in the car.
  • the planar heating element of the embodiment reduces the power of 0.8 kW at maximum compared to the case of installing the Air Blowing PTC heater. This decrease was about 21%. Therefore, it can be seen that the energy efficiency of the planar heating element for automobiles of the embodiment is superior to the power consumption compared to the conventional Air Blowing PTC heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Resistance Heating (AREA)
  • Body Structure For Vehicles (AREA)
  • Surface Heating Bodies (AREA)
  • Central Heating Systems (AREA)

Abstract

원적외선 방사층, 금속층, 금속 와이어를 포함하는 탄소나노튜브 발열층의 적층구조를 포함하는 자동차용 면상 발열체를 제공한다.

Description

복사열을 이용한 자동차용 면상 발열체
복사열을 이용한 자동차용 면상 발열체에 관한 것이다.
전기 자동차의 개발이 가속화되면서 종래 자동차에서는 문제가 되지 않았던 난방 시스템에 대한 관심이 급증하고 있다. 종래 자동차에서는 공기취입식(Air-blowing system) 난방체를 사용하였으나, 전기 자동차는 별도의 난방 수단을 가지고 있지 않으며 전기 자동차의 배터리는 겨울철에 외부 온도가 급감하여 영하 약 10℃ 이하가 되면 연비 및 효율이 감소하는 단점을 가지고 있었다.
상기의 단점을 극복하기 위해 전달 에너지를 이용한 면상난방체를 배터리에 적용하여 온도의 균일성을 확보하였으나, 동절기에 차 내부 온도를 따뜻하게 하는데에는 소비 전력의 한계가 있어 그 효과가 크지 않았다. 또한 차에 탑승하는 사람이 쾌적하다고 느끼고, 일반적으로 통용할 수 있는 대기 온도의 기준을 정하고, 그 온도에 도달할 수 있는 효율적인 방법이 필요한바, 전기 자동차에 적용하기 위한 난방체 개발의 필요성이 대두되고 있다.
본 발명의 일 구현예는 탄소나노튜브 발열층의 발열로 인해 발생한 열이 금속층에 전달되고, 원적외선 방사층을 통과함으로써 복사열을 방출하고 피발열체에 복사열을 전달하게 되는 자동차용 면상 발열체를 제공한다.
본 발명의 일 구현예에서, 원적외선 방사층, 금속층, 금속 와이어를 포함하는 탄소나노튜브 발열층의 적층구조를 포함하는 자동차용 면상 발열체를 제공한다.
상기 탄소나노튜브 발열층에 전기적으로 연결되며 전원 인가시 상기 탄소나노튜브 발열층의 발열을 유도하는 전극층을 더 포함할 수 있다.
상기 전극층에 전원 인가시 상기 탄소나노튜브 발열층의 발열온도는 약 100℃ 내지 약 300℃일 수 있다.
상기 탄소나노튜브 발열층은 금속 와이어를 약 1중량% 내지 약 50중량% 포함할 수 있다.
상기 원적외선 방사층은 원적외선 방사물질을 포함할 수 있다.
상기 원적외선 방사물질은 옥토, 황토, 규석, 맥반석, 천연옥, 숯, 게르마늄, 토르말린 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
상기 원적외선 방사층은 상기 탄소나노튜브 발열층의 발열에 의해 복사열을 방출할 수 있다.
상기 금속층은 상기 탄소나노튜브 발열층에서 발생되는 열을 방출시킬 수 있도록 200W/m·K 이상의 높은 열전도도를 갖는 금속시트를 포함할 수 있다.
상기 금속층은 알루미늄, 구리, 금, 은, 백금 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 금속시트를 포함할 수 있다.
상기 원적외선 방사층 하부에 프라이머층을 포함할 수 있다.
상기 프라이머층은 아크릴계 수지, 에폭시계 수지, 에스테르계 수지, 올레핀 수지 및 이들의 조합으로 이루어진 군으로부터 선택된 수지를 포함할 수 있다.
상기 금속층 하부에 중간층을 포함할 수 있다.
상기 중간층은 유리 분말 또는 유리섬유를 바인더로 포함할 수 있다.
상기 자동차용 면상 발열체의 발열온도는 약 50℃ 내지 약 100℃일 수 있다.
상기 자동차용 면상 발열체의 열효율이 약 30% 이상일 수 있다.
상기 자동차용 면상발열체의 주변 대기 온도 변화는 약 10℃ 이내일 수 있다.
상기 자동차용 면상발열체는 피발열체에 직접 닿지 않도록 자동차 내부에 부착할 수 있다.
상기 자동차용 면상 발열체는 별도의 난방 시스템이 없는 전기자동차의 동절기 실내 온도를 높일 수 있다.
또한, 상기 자동차용 면상발열체가 적용되는 위치에 따라 탑승차가 편안함을 느끼는 자동차 실내 온도를 유지할 수 있다.
도 1은 본 발명의 일실시예인 자동차용 면상 발열체를 도식화하여 나타낸 것이다.
도 2는 상기 자동차용 면상발열체가 포함하는 탄소나노튜브 발열층을 SEM촬영하여 나타낸 것이다.
도 3은 상기 자동차용 면상발열체가 포함하는 금속층으로 알루미늄 금속시트를 사용한 경우, 알루미늄 금속시트의 열확산계수(Thermal Diffusivity)를 측정하여 나타낸 것이다.
도 4는 본 발명의 다른 실시예인 자동차용 면상 발열체를 도식화하여 나타낸 것이다.
도 5는 본 발명의 또다른 실시예인 자동차용 면상 발열체를 도식화하여 나타낸 것이다.
도 6은 상기 자동차용 면상 발열체의 다양한 형상을 도식화하여 나타낸 것이다.
도 7은 <실험예 2>에서 자동차에 설치된 상기 자동차용 면상발열체의 위치를 도식화하여 나타낸 것이다.
도 8 및 도 9는 <실험예 3>에서 실시예의 자동차용 면상발열체를 설치한 경우와 Air Blowing PTC 히터를 설치한 경우의 소모전력을 그래프로 나타낸 것이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서, 원적외선 방사층, 금속층, 금속 와이어를 포함하는 탄소나노튜브 발열층의 적층구조를 포함하는 자동차용 면상 발열체를 제공한다.
상기 자동차용 면상 발열체는 자동차 실내온도 가열시 차에 탑승하는 사람이 느끼는 쾌적한 대기 온도를 유지하기 위한 것으로, 자동차용 면상 발열체의 발열온도에 따라 발열체를 구성하여 자동차 내부 대기 온도를 유지하게 할 수 있다. 상기 쾌적온도는 인체가 처해있는 대기온도를 쾌적하다고 느끼는가 혹은 아닌가를 일컫는 온도로, 사람에 따라 상대적인 차이가 있을 수 있으나, 상기 쾌적온도는 대다수의 사람들이 편안함을 느끼는 대기 온도를 의미한다.
통상의 자동차에 시도되었던 발열 핸들이나 발열 좌석시트 또는 신체 하부를 덥히는 역할을 하며 소비전력이 큰 공기취입식 발열체(예를 들어, Air Blowing PTC 히터)와 대조적으로 상기 자동차용 면상발열체를 사용함으로써 사용되는 에너지를 효과적으로 줄일 수 있다. 또한, 상기 자동차용 면상발열체의 열류량을 최대한 높여 발열온도를 조절함으로써 인체의 하반신을 효과적으로 따뜻하게 하고, 동절기에 난방체로 소모되는 자동차의 에너지를 최소화해 운행거리를 높일 수 있다.
구체적으로 전기 자동차의 경우 별도의 발열체가 존재하지 않는바, 자동차 실내에서 인체의 하반신에 발열체가 존재하는 경우 차량에 탑승한 시승자는 발열체가 존재하지 않는 경우보다 더 편안함을 느낄 수 있다.
도 1은 본 발명의 실시예인 자동차용 면상 발열체를 도식화하여 나타낸 것으로, 상기 자동차용 면상 발열체(10)는 원적외선 방사층(300), 금속층(200), 탄소나노튜브 발열층(100)을 포함할 수 있다.
상기 탄소나노튜브 발열층(100)은 금속 와이어를 포함할 수 있다. 종래에는 금속과 탄소나노튜브 자체의 복합체를 사용하기도 하였으나, 구 형태의 금속입자가 탄소나노튜브에 표면처리됨으로써 곡면에 코팅이 이루어지는 경우와 마찬가지로 금속입자의 분산이 균일하지 않으며 금속입자가 이어지지 않아 전기가 한쪽으로 흐를 수 있었다. 이에, 탄소나노튜브 발열층이 구 형태의 금속입자가 아닌 가는 선 형태의 금속 와이어를 일체로 포함함으로써, 금속 와이어가 탄소나노튜브 상에 금속 와이어가 균일하게 분산될 수 있고, 이로 인해 탄소나노튜브 발열층에 전압이 인가되는 경우 전기가 균일하게 흐를 수 있다.
금속 와이어는 일정 직경의 크기를 가지는 와이어 구조체를 일컫는바, 대체로 약 10nm미만의 지름을 가지는 것에서부터 수백 nm지름의 나노와이어를 포함할 수 있다. 구체적으로 금속 와이어의 직경은 약 20nm 내지 약 250nm일 수 있다.
또한, 상기 금속 와이어의 종횡비는 약 4 내지 약 50일 수 있다. 상기 종횡비는 가로 및 세로의 비율을 일컫는바, 금속 와이어의 길이를 금속 와이어의 직경으로 나눈 값을 의미한다. 구체적으로, 상기 금속 와이어의 길이는 약 1㎛ 내지 약 10㎛가 될 수 있다.
도 2는 상기 자동차용 면상발열체가 포함하는 탄소나노튜브 발열층을 SEM촬영하여 나타낸 것으로, 탄소나노튜브 발열층이 약 20nm 내지 약 250m의 지름을 가진 금속 와이어를 포함하고 있음을 알 수 있다.
상기 자동차 면상 발열체는 탄소나노튜브 발열층(100)에 전기적으로 연결되며 전원 인가시 상기 탄소나노튜브 발열층의 발열을 유도하는 전극층을 더 포함할 수 있다. 상기 전극층에 전원인가시, 즉 전압이 가해지고 전기가 흐르면 상기 탄소나노튜브 발열층에 열이 발생하고, 상기 탄소나노튜브 발열층의 온도가 상승할 수 있다. 구체적으로, 상기 탄소 나노튜브 발열층에 의해 발생된 열이 원적외선 방사층에 전도되고, 전도된 열이 상기 원적외선 방사층을 통과하여 복사열을 방출할 수 있고, 방출된 복사열이 피발열체에 복사열이 전달되게 할 수 있다.
보다 구체적으로, 상기 전극층에 전원 인가시 상기 탄소나노튜브 발열층의 발열온도는 약 100℃ 내지 약 300℃일 수 있다. 발열온도는 상기 전극층에 전원 인가시 상기 탄소나노튜브 발열층의 표면온도를 일컫는바, 전극층에 전원이 가해짐으로써 탄소나노튜브 발열층에 열이 발생하는바, 이 때 발생하는 열로 인해 상기 탄소나노튜브 발열층이 일정한 발열온도를 유지할 수 있다.
상기 탄소나노튜브 발열층은 금속 와이어를 포함하고 있는바 전극층에 전원이 인가되는 경우, 균일하게 전기가 흐를 수 있고, 상기 발열온도를 상기 범위로 유지할 수 있다. 상기 탄소나노튜브 발열층의 발열온도를 유지함으로써 원적외석 방사층 및 금속층으로 전도되는 열손실을 방지하여 쾌적온도를 유지할 수 있다.
상기 탄소나노튜브 발열층의 두께는 약 2㎛ 내지 약 10㎛일 수 있다. 상기 탄소나노튜브 발열층의 두께를 상기 범위로 균일하게 유지함으로써 크랙 발생을 방지할 수 있고, 자동차용 면상발열체의 일정수준의 내구성을 확보할 수 있다.
상기 탄소나노튜브 발열층은 금속 와이어를 약 1중량% 내지 약 50중량%를 포함할 수 있다. 금속 와이어는 전술한 바와 같으며, 상기 범위의 금속 와이어를 포함함으로써 탄소나노튜브 발열층의 온도제어가 용이하며, 면상발열체의 목표 면저항 구현에 있어서 효율이 우수하며, 전기흐름을 원활하게 할 수 있다. 구체적으로, 상기 금속 와이어는 은, 구리, 알루미늄, 금, 백금 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있으며, 전기전도도를 고려할 때, 은이 특히 바람직하다.
상기 원적외선 방사층(300)은 원적외선 방사물질을 포함할 수 있다. 상기 자동차용 면상 발열체가 상기 원적외선 방사층을 포함함으로써 인체에 친화적인 열을 발생시킬 수 있고, 상기 원적외선 방사층 자체의 분광방사율에 의해 에너지 절감효과를 가질 수 있다. 구체적으로, 상기 원적외선 방사물질은 옥토, 황토, 규석, 맥반석, 천연옥, 숯, 게르마늄, 토르말린 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
원적외선은 빛의 파장 영역중 약 3㎛ 내지 약 1000㎛의 범위에서 가시광선보다 강한 열작용을 하는 적외선을 일컫는바, 상기 탄소나노튜브 발열층에 의해 발생한 열이 상기 원적외선 방사층을 통과함으로써 원적외선이 발생되고, 상기 발생된 원적외선을 상기 원적외선 방사층이 흡수하여 복사열을 방출할 수 있다. 상기 복사열은 물체에서 방출하는 전자기파를 직접 물체가 흡수함과 동시에 열로 변했을 때의 발생하는 열을 일컫는바, 상기 원적외선 방사층에서 방출하는 원적외선을 상기 원적외선 방사층이 흡수하는 동시에 열로 변화시켜 복사열을 발생시킬 수 있다.
상기 원적외선 방사층(300) 및 상기 탄소나노튜브 발열층(100) 사이에 금속층(200)을 포함할 수 있다. 상기 금속층은 높은 열전도도를 갖는 방열 금속시트를 포함함으로써, 탄소나노튜브 발열층에서 발생되는 열을 원적외선 방사층에 빠르게 전달하고, 열손실을 최소화시켜 자동차용 면상 발열체의 열효율이 30% 이상으로 유지될 수 있도록 한다. 또한, 상기 금속층은 상기 탄소나노튜브 발열층에서 발생되는 열을 방출시키는 힛-싱크(heat sink)의 역할을 수행함으로써, 상기 금속층의 열변형을 방지하여 전체적으로 자동차용 면상 발열판의 열변형을 억제할 수 있다.
구체적으로, 상기 금속층은 상기 탄소나노튜브 발열층에서 발생되는 열을 방출시킬 수 있도록 200W/m·K 이상의 높은 열전도도를 갖는 방열 금속시트를 포함할 수 있다. 보다 구체적으로, 상기 금속층은 알루미늄, 구리, 금, 은, 백금 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 금속시트를 포함할 수 있다. 열전도도 및 가격경쟁력의 면에서 상기 금속층으로 알루미늄 금속시트를 사용할 수 있다. 알루미늄 금속시트의 경우, 두께 방향으로 특히 열확산계수가 높아 열전도도가 뛰어나므로, 열을 누적시키지 아니하고 쉽게 방출시킬 수 있다.
상기 금속층의 두께는 약 0.1mm 내지 약 2mm일 수 있다. 금속층의 두께가 너무 얇으면 탄소나노튜브 발열층에서 발생하는 열을 제대로 방출시키지 못하고, 금속층의 두께가 너무 두꺼우면 자동차용 면상 발열체를 곡면으로 제조하기 어려워지는 문제점이 있다.
도 3은 상기 자동차용 면상발열체가 포함하는 금속층으로 알루미늄 금속시트를 사용한 경우, 알루미늄 금속시트의 열확산계수(Thermal Diffusivity)를 측정하여 나타낸 것이다. 도 3을 참고하면, 1mm, 0.5mm, 0.5mm 및 0.2mm 두께의 알루미늄 금속시트의 열확산계수(두께 방향)는 약 25℃에서 92.99mm2/s, 60.82mm2/s, 39.88mm2/s 및 23.23mm2/s로 모두 높은 값을 가지는 것으로 측정되는바, 열확산계수에 비례하여 열전도도 또한 높은 값을 가짐을 확인할 수 있다.
도 4는 본 발명의 다른 실시예인 자동차용 면상 발열체를 도식화하여 나타낸 것으로, 도 4를 참고하면, 상기 자동차용 면상발열체(10)는 위로부터 원적외선 방사층(300), 프라이머층(400), 금속층(200), 탄소나노튜브발열층(100)을 포함할 수 있다.
상기 프라이머층(400)은 접착성능을 띄고 있는 것으로, 원적외선 방사층(300) 및 금속층(200)간의 부착력이 나오지 않는 경우를 대비하는 역할을 하는바, 상기 원적외선 방사층(300) 및 금속층(200) 사이에 포함될 수 있다.
그러므로, 상기 프라이머층의 두께는 약 2㎛ 내지 약 20㎛일 수 있는바, 상기 범위의 두께를 유지함으로써 크랙의 발생을 최소화 상기 원적외선 방사층이 균일하게 코팅되게 할 수 있다.
상기 프라이머층은 아크릴계 수지, 에폭시계 수지, 에스테르계 수지, 올레핀 수지 및 이들의 조합으로 이루어진 군으로부터 선택된 수지를 포함할 수 있다.
상기 우레탄계 수지는 폴리우레탄 디스퍼젼 수지, 폴리에틸렌 변성 폴리우레탄 수지 등과 같은 이소포렌 디이소시아네이트, 아디픽산 및 다가 알코올로부터 제조되는 폴리우레탄 수지, 및 아크릴-우레탄 수지, 폴리에틸렌-아크릴 변성 폴리우레탄 수지 등과 같은 아크릴 폴리올과 폴리이소시아네이트 로부터 제조되는 폴리우레탄 수지 및 폴리카프로락톤 폴리올 또는 폴리카보네이트 폴리올과 이소시아네이트, 파라페닐렌디이소시아네이트로부터 제조된 폴리우레탄 수지, 4,4'-비스(ω-히드록시알킬렌옥시)비페닐과 메틸-2,6-디이소시아네이트헥사 노에이트로부터 제조되는 폴리우레탄수지, 아세탈 결합을 갖는 폴리우레탄수지 등이 사용될 수 있다.
구체적으로, 상기 다가 알코올로서는 아크릴 폴리올, 폴리에스테르폴리올, 폴리에테르폴리올, 폴리올레핀계 폴리올 등을 사용할 수 있다.
상기 아크릴 수지는, 내고온고습성과 내한성 및 가공성이 우수하며 가격이 저렴하기 때문에 금속층 상부에 사용함으로써 상기 원적외선 방사층과의 부착력을 상승시킬 수 있다. 상기 아크릴 수지로는 수용화 가능한 정도의 카르복실기를 포함하는 통상의 단량체 조성으로 합성된 아크릴계 수지가 사용될 수 있다.
상기 아크릴계 수지 단량체는 예를 들어, 메틸(메타) 아크릴레이트, 에틸(메타)아크릴레이트, 이소프로필(메타)아크릴릴레이트, 노르말부틸(메타) 아크릴레이트, 이소부틸(메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, 히드록시프로필(메타)아크릴레이트, 스테아릴(메타)아크릴레이트, 히드록시부틸(메타) 아크릴레이트를 들 수 있다.
상기 에폭시 수지 또한, 부착성, 내식성, 상도 도장성 등이 우수하여 금속층 상부에 적절하게 사용될 수 있다. 상기 에폭시 수지는 비스페놀 A형 수지, 비스페놀 F형 수지 및 노볼락 수지 등을 사용할 수 있다.
상기 에스테르 수지는 경화성이 우수하고, 내약품성, 내열성, 가소성이 우수하며 유기물과의 부착성이 우수하여 금속층 상부에 사용될 수 있고, 상기 에스테르 수지는 무수말레인산, 이소프탈산, 테레프탈산, 테트라하이드로무수프탈산, 메칠테트라히드로무수프탈산, 아디핀산, 피밀산으로부터 제조되는 폴리에스테르 수지 및 에틸렌글리콜 변성 에스테르 수지, 프로필렌렌글리콜 변성 에스테르 수지, 네오펜틸글리콜 변성 에스테르 수지를 들 수 있다.
도 5는 본 발명의 또다른 실시예인 자동차용 면상 발열체를 도식화하여 나타낸 것으로, 도 5를 참조하면 상기 자동차용 면상 발열체(10)는 위로부터 원적외선 방사층(300), 금속층(200), 중간층(500), 탄소나노튜브 발열층(100)을 포함할 수 있다.
상기 중간층(500)은 전기절연층으로써 전기가 통하지 아니하는바, 탄소나노튜브 발열층(100)에 의해 발생된 열이 금속층(200)을 통하여 원적외선 방사층(300)에 전달됨에 있어서, 원적외선 방사층이 균일하게 금속층 상부에 부착되어 형성되지 못하고, 상기 금속층 및 상기 원적외선 방사층 사이에 기포가 발생하여 원적외선 방사층이 쭈글쭈글해 지는 현상을 방지하는 역할을 한다.
상기 중간층은 유리 분말 또는 유리섬유를 바인더로 포함할 수 있다. 상기 유리 분말 또는 유리섬유를 바인더로 포함함으로써, 전기 절연층이 되어 전기가 통하지 않게 할 수 있고, 이로 인해 원적외선 방사층이 열에 의해 불균일하게 금속층 상부에 형성되는 현상을 개선할 수 있다.
유리 분말(Glass powder)은 유리가 분말 형태로 존재하는 것을 의미하는 바, 유리 분말의 입자직경은 약 0.4㎛ 내지 약 40㎛일 수 있다. 또한, 유리 섬유는(Glass fiber)는 용융한 유리를 섬유모양으로 한 광물 섬유를 의미하며, 유리 섬유의 지름은 가늘수록 물성이 뛰어나고, 인장강도도 우수한바, 상기 중간층이 포함하는 유리섬유의 직경은 약 5㎛ 내지 약 20㎛일 수 있다.
상기 중간층은 상기 유리분말 및 유리섬유 바인더로 하고, 각종 첨가제 및 합성수지재와 혼합하여 형성될 수 있다.
상기 자동차용 면상 발열체의 발열온도는 약 50℃ 내지 약 100℃일 수 있다. 자동차용 면상 발열체의 발열온도는 복사열을 발생하는 발열체 자체의 표면온도를 일컫는바, 상기 전극층에 전원 인가시 상기 탄소나노튜브 발열층의 발열온도가 약 100℃ 내지 약 300℃가 될 수 있으나, 상기 금속층 및 원적외선 방사층에 의해 열이 손실되어, 상기 자동차용 면상발열체의 발열온도는 약 50℃ 내지 약 100℃가 확보될 수 있다.
상기 자동차용 면상발열체의 열효율(e)은 약 30%이상일 수 있다. 상기 열효율(e)은 {1-(Qrad)/(Qref)}X100의 식으로 계산될 수 있는바, 이 때, Qref는 복사열이 없는 초기상태 발열체의 열류량을, Qrad는 복사열이 있는 나중상태 발열체의 열류량을 의미하고, 각각의 Qref 및 Qrad는 ANSYS(시뮬레이션 모델)를 사용하였고, 각 발열체 가열시 표면온도와 발열체에 의해 변화하는 피발열체의 온도를 측정하고, 대입하여 열효율을 계산할 수 있다.
상기 열류량은 어떤 단면을 단위시간 단위면적당 통과하는 열량을 일컫는바, 상기 자동차용 면상 발열체의 열류량(heat flux)은 상기 탄소나노튜브 발열층, 금속층 및 상기 원적외선 방사층으로 인해 발생한 복사열의 단위시간 단위면적당 통과하는 열량을 의미하며, 하기 [식] 및 3D-시뮬레이션 모델을 통해 계산할 수 있다.
[식]
Figure PCTKR2014001459-appb-I000001
(Q: 열류량, hc: 대류열전달계수, RST: 표면온도, ta: 대기온도,
εs, εa : 방출계수, σ: 볼츠만 상수, tr: 평균복사온도)
이 때, 상기 표면온도(RST)는 열손실이 반영된 열평형에 의해 결정되는 인자이며 자동차내의 대기온도 및 발열체로부터의 복사온도 등을 고려하여 열류량을 측정할 수 있다.
상기 열류량은 자동차용 면상발열체의 열효율 및 주변 대기 온도에 직접적인 영향을 미칠 수 있는 수치로, 상기 자동차용 면상발열체가 일정범위의 열류량을 유지함으로써 일정한 대기 온도를 유지할 수 있고 피발열체가 겨울철 자동차 실내에서 편안함을 느낄 수 있다.
예를 들어, 자동차 탑승자의 하반신을 기준으로 좌, 우, 상면부에 상기 자동차용 면상발열체를 설치한 후, 상기 면상발열체의 복사열에 대해 단위시간당 단위면적을 통하여 이동한 열류량을 비교하여 전술한 바에 의해 열효율을 계산한 결과 열효율이 약 30%이상일 때 상기 자동차용 면상발열체의 주변 대기 온도 변화가 약 10℃이내로 유지되었는바, 자동차용 면상발열체로써 효율을 가짐을 보였다.
또한, 상기 열효율이 약 50%이상인 경우 상기 자동차용 면상발열체의 주변 대기 온도 변화가 약 5℃ 이내로 유지되었는바 차 내부에서 쾌적 온도를 유지할 수 있었고, 상기 열효율이 약 60% 이상인 경우 상기 자동차용 면상발열체의 주변 온도가 상온 이하로 내려가지 않음을 확인하였다.
그러므로, 상기 자동차용 면상발열체의 열효율이 약 30%이상인 경우 탑승한 인체의 온도가 상온으로 유지되고, 대기온도가 쾌적한 온도를 유지할 수 있다는 면에서 장점이 있다.
상기 자동차용 면상발열체의 주변 대기 온도 변화는 약 10℃이내 일 수 있다. 주변 대기 온도변화는 상기 자동차용 면상발열체 작동 전과 작동 후의 주변 대기 온도변화를 일컫는바, 상기 면상발열체의 열효율이 좋을수록 주변 대기 온도 변화가 적어지며, 적정한 자동차내의 온도를 유지할 수 있다.
예를 들어, 상기 자동차용 면상 발열체의 피발열체는 인체, 자동차에 탑승한 시승자가 될 수 있다. 상기 피발열체는 상기 자동차용 면상발열체의 주변 대기 온도 변화를 감지하는바, 주변 대기 온도 변화가 약 10℃이내인 경우, 인체는 편안함을 느끼고, 다리와 손 가슴의 체온이 유지될 때 열적인 쾌적함을 느낄 수 있다.
상기 자동차용 면상발열체는 피발열체에 직접 닿지 않도록 자동차 내부에 부착할 수 있다. 상기 자동차용 면상발열체는 원적외선 방사층으로 인해 복사열을 방출하는바 피발열체에 직접 닿지 않음에도 불구하고, 피발열체가 상기 복사열오 인해 가열된 주변 대기 온도를 통해 따뜻함을 느낄 수 있다. 상기 피발열체가 인체, 예를 들어, 자동차에 탑승한 시승자가 된 경우, 상기 자동차용 면상발열체의 복사열 방출로 인해 상기 자동차 면상 발열체와의 직접적인 접촉없이, 피발열체가 처한 상기 자동차용 면상발열체의 대기 온도를 일정하게 유지될 수 있다.
구체적으로, 상기 자동차용 면상발열체는 인체의 상반신이 아닌 하반신을 향해 위치할 수 있다. 열류량을 5단으로 조절할 수 있는 자동차용 면상발열체를 작동시켜 각 단의 세기에서 방출된 복사열의 기록을 이용하여 인체가 편안함을 느끼는 쾌적 온도를 부위별로 산출하였는바, 다리 부위가 인체가 느끼는 쾌적온도에 가장 큰 영향을 미치는 것을 알 수 있었다. 따라서, 체온을 유지시키는데 있어서 인체의 하반신이 가장 중요한 비율을 차지함을 확인하였는바, 인체가 쾌적함을 느끼는 대기온도의 유지를 위해 인체의 하반신을 향해 자동차용 면상발열체를 위치하게 하여 상기 자동차용 면상발열체의 복사열의 영향을 받게 할 수 있었다.
도 6은 상기 자동차용 면상 발열체의 다양한 형상을 도식화하여 나타낸 것이다. 상기 자동차용 면상 발열체는 인체의 하반신을 가열하기 위해 다양한 형상으로 자동차의 좌석 아래 부분에 집중하여 분포시킬 수 있는바, 여러 다각형의 형상으로 자동차 내부에 적용될 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<실시예 및 비교예>
실시예
실크스크린 프린트 및 바-코팅의 방법을 이용하여 원적외선 방사층, 금속층 및 금속 와이어를 포함하는 탄소나노튜브 발열층을 인쇄, 코팅하였으며 제조된 각각의 층을 라미네이트하여 자동차용 면상 발열체를 제조하였다.
비교예
상기 탄소나노튜브 발열층을 포함하지 않는 것을 제외하고는 상기 실시예와 동일한 방법으로 자동차용 면상 발열체를 제조하였다.
<실험예1> - 자동차용 면상 발열체의 원적외선 효과 입증 실험
닫힌계(Closed System) 박스에 상기 실시예 및 비교예의 자동차용 면상발열체를 설치하고, 원적외선 방사층 자체를 처음거리(0cm)로 하여 원적외선 방사층으로부터 10cm, 20cm, 30cm 떨어진 거리에 따른 온도 변화를 관찰하였다. 이 때, 닫힌계 박스에 88W, 120W의 전력을 가하여 전력에 따른 온도 변화를 각각 측정하였다.
이 때, 하기 표 1은 실시예에 88W의 전력이 가해진 경우 원적외선 방사층으로부터의 거리에 따른 온도변화, 하기 표 2는 비교예에 88W의 전력이 가해진 경우 원적외선 방사층으로부터의 거리에 따른 온도변화, 하기 표 3은 실시예에 120W의 전력이 가해진 경우 원적외선 방사층으로부터의 거리에 따른 온도변화, 하기 표 4는 비교예에 120W의 전력이 가해진 경우 원적외선 방사층으로부터의 거리에 따른 온도변화를 나타낸다.
표 1
Figure PCTKR2014001459-appb-T000001
표 2
Figure PCTKR2014001459-appb-T000002
표 3
Figure PCTKR2014001459-appb-T000003
표 4
Figure PCTKR2014001459-appb-T000004
상기 표 1 내지 4를 참조하면, 탄소나노튜브 발열층이 포함하는 상기 실시예에 88W의 전력을 가한 경우 약 8.6℃, 120W의 전력을 가한 경우 약 12.5℃의 온도가 증가하는 하는 것으로 측정되었는바, 이는 탄소나노튜브 발열층을 포함하지 않는 상기 비교예에 88W 및 120W의 전력을 가한 경우에 비해 약 2배 가량 온도가 증가한 것이다. 그러므로, 탄소나노튜브 발열층을 포함하는 실시예의 복사에너지 효과가 비교예에 비해 우수함을 알 수 있었다.
<실험예2> - 자동차용 면상발열체의 설측 평가
도 7은 <실험예2>에서 자동차에 설치된 상기 자동차용 면상발열체의 위치를 도식화하여 나타낸 것으로, 구체적으로, 인체 하반신 오른쪽의 면상발열체의 위치를 1, 인체 하반신 위쪽의 면상발열체의 위치를 2, 인체 하반신 왼쪽의 면상발열체의 위치를 3으로 하였고, 각각의 위치에 따라 상기 실시예의 자동차용 면상발열체를 전기자동차 내부에 부착하였고, 전기자동차에 일정전력을 주어 상기 실시예의 자동차용 면상발열체를 작동시켰다.
1) 발열온도 및 열효율
하기 표 5에 기재된 대로 면상발열체를 위치시키고, 자동차용 면상발열체를 작동시켰다. DIN EN ISO 7730을 이용하여 운전석의 머리 및 바닥 부분에 센서를 설치하였고 자동차용 면상발열체에 의한 발열온도를 측정하였다. 구체적으로, 상기 발열온도는 2단 기어에서 32 km/h 속도 주행 조건에서 측정하였다.
또한, 상기 전술한 방법으로 상기 자동차용 면상발열체 작동전, 작동후의 열류량(heat flux)을 측정하여 열효율을 계산하였다. 열효율 값이 높을수록 자동차용 면상발열체의 효과가 좋은 것으로 판단한다.
2) 인체가 느끼는 주변 대기 최저온도
상기 자동차용 면상발열체가 구비되어 있는 자동차에 100명의 사람들을 탑승시킨후, 100명의 사람들이 느낀 주변 대기의 최저 온도를 측정하였고, 상기 자동차용 면상발열체 작동 전과 작동 후의 주변 대기 온도 변화를 측정하였다.
표 5
Figure PCTKR2014001459-appb-T000005
상기 표5를 참조하면, 실시예의 경우 자동차의 면상발열체의 위치 및 작동여부에 따라 차이가 있기는 하나 발열온도는 약 50℃ 내지 약 100℃, 열효율은 약 30% 내지 약 60%로 측정되었다. 또한, 주변 대기 온도 변화는 약 10℃ 이내를 유지하였는바, 탑승자들은 편안함을 느꼈으며 다리와 손, 가슴의 체온이 유지됨으로써 열적인 쾌적함을 느낌을 확인하였다.
<실험예3> - 자동차용 면상발열체의 전력소모 비교
전기 자동차 내부에 Air Blowing PTC 히터(상품명, VW POLO BEHR 6R0.988.235)를 설치한 경우와, 전술한 도 6과 같이 실시예의 자동차용 면상발열체 1,2,3을 전기 자동차 내부에 설치한 경우, 자동차 내부 온도를 동일하게 상승시키는데 있어서 필요한 소모전력을 DIN 1946-3으로 각각 측정하였고, 그 결과를 도 7에 나타내었다.
도 8을 참고하면, Air Blowing PTC 히터를 설치한 경우와, 실시예의 자동차용 면상발열체를 전기 자동차 내부에 설치한 경우 약 30℃에 도달하는데 걸리는 시간은 약 15분 내지 약 20분 사이로 유사하였으나, Air Blowing PTC 히터를 설치한 경우 자동차의 소모전력은 3.6W였고, 실시예을 설치한 경우 자동차의 소모전력은 2.8W로 측정되었다. 그러므로, 실시예의 자동차용 면상발열체를 사용하는 경우에 자동차의 소모전력이 더 적음을 확인하였는바, 자동차내 실내온도를 확보를 위해서 자동차용 면상발열체의 사용이 더 적절함을 알 수 있었다.
또한, Air Blowing PTC 히터를 및 실시예의 자동차용 면상발열체를 전기자동차 내부에 설치한 경우, 발생되는 복사에너지를 정확하게 측정하기 위해 온도 상승 반응이 가장 빠르고, 포화도달온도를 가장 높은 은박지를 이용한 D-Type 센서를 이용하여 측정하였는바, 그 결과를 도 8에 나타내었다.
도 9를 참고하면, 전기자동차를 약 30분 가동시 실시예의 자동차용 면상발열체의 경우가 Air Blowing PTC 히터를 설치한 경우에 비해 최대 0.8kW의 전력을 감소시키는 것으로 측정되었고, 전기자동차의 소비전력이 약 21% 감소함을 확인하였다. 그러므로, 종래의 Air Blowing PTC 히터에 비해 실시예의 자동차용 면상발열체의 경우가 소비전력 대비 에너지 효율이 탁월하게 뛰어남을 알 수 있었다.

Claims (17)

  1. 원적외선 방사층, 금속층, 금속 와이어를 포함하는 탄소나노튜브 발열층의 적층구조를 포함하는
    자동차용 면상 발열체.
  2. 제 1항에 있어서,
    탄소나노튜브 발열층에 전기적으로 연결되며 전원 인가시 상기 탄소나노튜브 발열층의 발열을 유도하는 전극층을 더 포함하는
    자동차용 면상 발열체.
  3. 제 2항에 있어서,
    상기 전극층에 전원 인가시 상기 탄소나노튜브 발열층의 발열온도는 100℃ 내지 300℃인
    자동차용 면상 발열체.
  4. 제 1항에 있어서,
    상기 탄소나노튜브 발열층은 금속 와이어를 1중량% 내지 50중량% 포함하는
    자동차용 면상 발열체.
  5. 제 1항에 있어서,
    상기 원적외선 방사층은 원적외선 방사물질을 포함하는
    자동차용 면상 발열체.
  6. 제 5항에 있어서,
    상기 원적외선 방사물질은 옥토, 황토, 규석, 맥반석, 천연옥, 숯, 게르마늄, 토르말린 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나를 포함하는
    자동차용 면상 발열체.
  7. 제 1항에 있어서,
    상기 원적외선 방사층은 상기 탄소나노튜브 발열층의 발열에 의해 복사열을 방출하는
    자동차용 면상 발열체.
  8. 제 1항에 있어서,
    상기 금속층은 상기 탄소나노튜브 발열층에서 발생되는 열을 방출시킬 수 있도록 200W/m·K 이상의 높은 열전도도를 갖는 금속시트를 포함하는
    자동차용 면상 발열체.
  9. 제 1항에 있어서,
    상기 금속층은 알루미늄, 구리, 금, 은, 백금 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 금속시트를 포함하는
    자동차용 면상 발열체.
  10. 제 1항에 있어서,
    상기 원적외선 방사층 하부에 프라이머층을 더 포함하는
    자동차용 면상발열체.
  11. 제 10항에 있어서,
    상기 프라이머층은 아크릴계 수지, 에폭시계 수지, 에스테르계 수지 및 이들의 조합으로 이루어진 군으로부터 선택된 수지를 포함하는
    자동차용 면상발열체.
  12. 제 1항에 있어서,
    상기 금속층 하부에 중간층을 더 포함하는
    자동차용 면상발열체.
  13. 제 12항에 있어서,
    상기 중간층은 유리 분말 또는 유리섬유를 바인더로 포함하는
    자동차용 면상발열체.
  14. 제 1항에 있어서,
    상기 자동차용 면상 발열체의 발열온도는 50℃ 내지 100℃인
    자동차용 면상 발열체.
  15. 제 1항에 있어서,
    상기 자동차용 면상 발열체의 열효율이 30% 이상인
    자동차용 면상 발열체.
  16. 제 1항에 있어서,
    상기 자동차용 면상발열체의 주변 대기 온도 변화는 10℃ 이내인
    자동차용 면상 발열체.
  17. 제 1항에 있어서,
    상기 자동차용 면상발열체는 피발열체에 직접 닿지 않도록 자동차 내부에 부착하는
    자동차용 면상 발열체.
PCT/KR2014/001459 2013-02-22 2014-02-24 복사열을 이용한 자동차용 면상 발열체 WO2014129857A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014000959.8T DE112014000959T5 (de) 2013-02-22 2014-02-24 Strahlungswärme nutzende Fahrzeugflachheizung
JP2015557954A JP6353855B2 (ja) 2013-02-22 2014-02-24 輻射熱を用いた自動車用面状発熱体
US14/768,451 US9919583B2 (en) 2013-02-22 2014-02-24 Automotive sheet heater using radiant heat
CN201480009204.XA CN104995993A (zh) 2013-02-22 2014-02-24 利用辐射热的汽车用平面状发热体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130019048A KR20140105640A (ko) 2013-02-22 2013-02-22 복사열을 이용한 자동차용 면상 발열체
KR10-2013-0019048 2013-02-22

Publications (1)

Publication Number Publication Date
WO2014129857A1 true WO2014129857A1 (ko) 2014-08-28

Family

ID=51391567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001459 WO2014129857A1 (ko) 2013-02-22 2014-02-24 복사열을 이용한 자동차용 면상 발열체

Country Status (6)

Country Link
US (1) US9919583B2 (ko)
JP (1) JP6353855B2 (ko)
KR (1) KR20140105640A (ko)
CN (1) CN104995993A (ko)
DE (1) DE112014000959T5 (ko)
WO (1) WO2014129857A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150114119A (ko) * 2014-03-31 2015-10-12 (주)엘지하우시스 자동차용 고효율 발열시트
KR20160070869A (ko) * 2014-12-10 2016-06-21 현대자동차주식회사 차량의 히팅패널
DE112016004155T5 (de) 2015-09-14 2018-07-05 Hanon Systems Fahrzeugstrahlungsheizung
US20180093696A1 (en) * 2016-09-30 2018-04-05 Ford Global Technologies, Llc Steering wheel assembly and heated steering wheel system
CA3039632A1 (en) 2016-12-06 2018-06-14 Neograf Solutions, Llc Energy regulating system and methods using same
JP2018101490A (ja) * 2016-12-19 2018-06-28 ニチコン株式会社 ヒーターユニットおよびその製造方法
DE202016107478U1 (de) * 2016-12-29 2018-04-03 Rehau Ag + Co Vorrichtung zur Luftzuführung in einen Innenraum eines Fahrzeuges
US20190038797A1 (en) * 2017-08-01 2019-02-07 Paul Richard Van Kleef Sanitary Napkin
FR3083044A1 (fr) * 2018-06-21 2019-12-27 Valeo Systemes Thermiques Procede de regulation de la temperature d’une surface chauffante d’un panneau radiant et dispositif de regulation correspondant.
US10962980B2 (en) 2018-08-30 2021-03-30 Ford Global Technologies, Llc System and methods for reverse braking during automated hitch alignment
US10821862B2 (en) 2018-12-06 2020-11-03 Ford Global Technologies, Llc Temperature control system for seating assembly
KR102602434B1 (ko) 2018-12-31 2023-11-14 현대자동차주식회사 이중 히팅구조의 전기차용 히터
KR20200139308A (ko) * 2019-06-03 2020-12-14 현대자동차주식회사 히터 조립체
KR102405164B1 (ko) * 2019-10-17 2022-06-08 한국생산기술연구원 면상발열시트와 이를 구비하는 차량용 시트커버 및 그 제조 방법
JPWO2022114083A1 (ko) * 2020-11-26 2022-06-02
KR102579272B1 (ko) * 2021-06-09 2023-09-15 에코엔텍주식회사 히팅 갱폼
NL2028825B1 (en) 2021-07-23 2023-01-30 Greeniuz Holding B V method for modulating an electric infrared heating panel.
KR20230036254A (ko) * 2021-09-07 2023-03-14 숭실대학교산학협력단 고효율 하이브리드 발열체 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070079862A (ko) * 2006-02-03 2007-08-08 (주) 나노텍 탄소나노튜브를 이용한 발열체
KR20100090621A (ko) * 2009-02-06 2010-08-16 (주)엘지하우시스 탄소나노튜브-금속입자 복합 조성물 및 이를 이용한 발열 조향핸들
WO2010095844A2 (ko) * 2009-02-17 2010-08-26 (주)엘지하우시스 탄소나노튜브 발열시트
US20110217451A1 (en) * 2010-03-04 2011-09-08 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
KR20120124103A (ko) * 2011-05-03 2012-11-13 김경현 탄소나노튜브 파우더가 첨가된 직류식 다용도 찜찔 시트

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335298A (en) * 1979-04-30 1982-06-15 Plas-Tanks Industries, Inc. Reinforced plastic container with an integral heating element
US5138133A (en) * 1988-11-16 1992-08-11 Think Corporation Heating sheet having far infrared radiator attached and various equipments utilizing heating sheet
US5356724A (en) * 1992-01-16 1994-10-18 Sumitomo Metal Industries, Ltd. Excellent far-infrared radiating material
JPH09173479A (ja) * 1995-12-25 1997-07-08 Kazuyuki Torii 遠赤外線放射体およびそれを用いた医薬品ならびに食品
JPH11141901A (ja) * 1997-11-05 1999-05-28 Engel Sangyo:Kk 床暖房システム
JP5097203B2 (ja) * 2006-06-27 2012-12-12 ナオス カンパニー リミテッド カーボンマイクロファイバーを用いた面状発熱体及びその製造方法
JP2008044911A (ja) * 2006-08-21 2008-02-28 Misaki Miura 温熱制御パップ剤
KR101039543B1 (ko) * 2006-09-28 2011-06-09 후지필름 가부시키가이샤 자발광 표시 장치, 자발광 표시 장치의 제조 방법, 투명 도전성 필름, 전계 발광 소자, 태양 전지용 투명 전극 및 전자 페이퍼용 투명 전극
JP5221088B2 (ja) * 2007-09-12 2013-06-26 株式会社クラレ 透明導電膜およびその製造方法
CN101636008B (zh) * 2008-07-25 2012-08-29 清华大学 面热源
KR200448882Y1 (ko) 2008-04-04 2010-05-31 주식회사 엑사이엔씨 페이스트 조성물을 이용한 히터
JP5409094B2 (ja) * 2008-07-17 2014-02-05 富士フイルム株式会社 曲面状成形体及びその製造方法並びに車両灯具用前面カバー及びその製造方法
US8086154B2 (en) * 2008-10-23 2011-12-27 Xerox Corporation Nanomaterial heating element for fusing applications
JP2010103041A (ja) * 2008-10-27 2010-05-06 Konica Minolta Holdings Inc 透明フィルムヒーター、ヒーター機能付きガラス、ヒーター機能付き合わせガラスおよび自動車用窓ガラス
CN201436822U (zh) * 2009-04-03 2010-04-07 东莞市盈盛电器制品有限公司 一种纳米碳纤维低电压电热毯
WO2010129234A2 (en) * 2009-04-27 2010-11-11 Lockheed Martin Corporation Cnt-based resistive heating for deicing composite structures
US8699866B2 (en) * 2009-05-04 2014-04-15 Lg Electronics Inc. Heating apparatus
JP5603939B2 (ja) * 2009-08-20 2014-10-08 エルジー・ハウシス・リミテッド 炭素ナノチューブ−金属粒子複合組成物及びそれを用いた発熱操向ハンドル
CN102012060B (zh) * 2009-09-08 2012-12-19 清华大学 壁挂式电取暖器
CN102056353A (zh) * 2009-11-10 2011-05-11 清华大学 加热器件及其制备方法
KR101166542B1 (ko) 2011-06-14 2012-07-18 한국기계연구원 발열 기능을 갖는 차량용 창유리
CN103281811B (zh) 2011-08-12 2016-03-23 李春学 高分子复合电热材料、其制备方法、以及其用途
KR101820483B1 (ko) * 2012-02-24 2018-01-19 에스프린팅솔루션 주식회사 저항발열 조성물, 및 이를 이용한 발열 복합체 및 그 제조방법, 가열장치 및 정착장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070079862A (ko) * 2006-02-03 2007-08-08 (주) 나노텍 탄소나노튜브를 이용한 발열체
KR20100090621A (ko) * 2009-02-06 2010-08-16 (주)엘지하우시스 탄소나노튜브-금속입자 복합 조성물 및 이를 이용한 발열 조향핸들
WO2010095844A2 (ko) * 2009-02-17 2010-08-26 (주)엘지하우시스 탄소나노튜브 발열시트
US20110217451A1 (en) * 2010-03-04 2011-09-08 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
KR20120124103A (ko) * 2011-05-03 2012-11-13 김경현 탄소나노튜브 파우더가 첨가된 직류식 다용도 찜찔 시트

Also Published As

Publication number Publication date
JP2016512593A (ja) 2016-04-28
CN104995993A (zh) 2015-10-21
KR20140105640A (ko) 2014-09-02
US9919583B2 (en) 2018-03-20
US20160001632A1 (en) 2016-01-07
DE112014000959T5 (de) 2015-11-05
JP6353855B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
WO2014129857A1 (ko) 복사열을 이용한 자동차용 면상 발열체
US20160374147A1 (en) Heating seat with high efficiency for vehicle
WO2013141629A1 (ko) 발열체 및 이의 제조방법
JP2005212556A (ja) 車両用輻射暖房装置
WO2016003031A1 (ko) 면상발열천 및 그 제조방법
US11438971B2 (en) High-performance far-infrared surface heating element of carbon composite material and application thereof
JP2009152537A (ja) 高効率放熱ヒートシンクおよびそれを用いた産業機器、電子機器、コンピューター製品および自動車
WO2018047434A1 (ja) フレキシブルプリント基板およびフレキシブルプリント基板の製造方法
JP2008213661A (ja) 車両用面状発熱体及びこれを用いた車両暖房装置
KR101939220B1 (ko) 온풍기용 면상 발열 히터, 온풍기용 발열 조립체 및 온풍기
ES2946545T3 (es) Vehículo eléctrico con sistema de regulación de energía
CN109572504B (zh) 一种汽车座椅
CN107222165A (zh) 具有加热装置的路面发电系统
WO2016182198A1 (ko) 전기차량의 히터장치 및 그 제어방법
CN202399963U (zh) 风道通风热电空调座椅
KR101246615B1 (ko) 헤어 드라이기
US20210053417A1 (en) Air conditioning system for a vehicle and vehicle with an air conditioning system
CN209454518U (zh) 一种电动汽车采暖装置
CN106458071A (zh) 一种车载空调椅
KR20160070242A (ko) 자동차용 발열 내장재
JP2009153366A (ja) 高効率放熱コイルおよびそれを適用した高効率放熱モーター、高効率放熱電源装置、高効率放熱マグネトロン発生装置、およびそれらを適用した電子機器、産業機器、家庭電化製品、コンピューターハードディスク製品、電気自動車
CN201342967Y (zh) 具加热功能的车辆座椅
CN202264669U (zh) 热电空调单元和热电模块
CN103057449B (zh) 热电空调单元及具有该热电空调单元的汽车空调座椅
CN104851854A (zh) 芯片散热组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557954

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14768451

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000959

Country of ref document: DE

Ref document number: 1120140009598

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754888

Country of ref document: EP

Kind code of ref document: A1