WO2014129459A1 - L-リジン水酸化酵素およびそれを利用したヒドロキシ-l-リジンの製造法およびヒドロキシ-l-ピペコリン酸の製造法 - Google Patents

L-リジン水酸化酵素およびそれを利用したヒドロキシ-l-リジンの製造法およびヒドロキシ-l-ピペコリン酸の製造法 Download PDF

Info

Publication number
WO2014129459A1
WO2014129459A1 PCT/JP2014/053774 JP2014053774W WO2014129459A1 WO 2014129459 A1 WO2014129459 A1 WO 2014129459A1 JP 2014053774 W JP2014053774 W JP 2014053774W WO 2014129459 A1 WO2014129459 A1 WO 2014129459A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
hydroxy
amino acid
oxoglutarate
dependent
Prior art date
Application number
PCT/JP2014/053774
Other languages
English (en)
French (fr)
Inventor
木野 邦器
良太郎 原
良磨 三宅
潤 川端
Original Assignee
株式会社エーピーアイ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エーピーアイ コーポレーション filed Critical 株式会社エーピーアイ コーポレーション
Priority to CN201480002505.XA priority Critical patent/CN104685061B/zh
Priority to US14/431,193 priority patent/US9512452B2/en
Priority to JP2015501458A priority patent/JP6476110B2/ja
Priority to IN2381DEN2015 priority patent/IN2015DN02381A/en
Priority to EP14754464.7A priority patent/EP2889378B1/en
Publication of WO2014129459A1 publication Critical patent/WO2014129459A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • C12Y114/11004Procollagen-lysine 5-dioxygenase (1.14.11.4), i.e. lysine-hydroxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing hydroxy-L-lysine using a novel lysine hydroxylase and a method for producing hydroxy-L-pipecolic acid using the obtained hydroxy-L-lysine.
  • Hydroxy-L-lysine is an intermediate useful as a pharmaceutical intermediate or the like.
  • (3R) -hydroxy-L-lysine can be used as a precursor of a protein kinase C inhibitor (-)-balanol (Non-patent Document 1), and (5R) -hydroxy-L-lysine has antitumor activity. It is known that it can be used as a precursor of certain Bengamide B (Non-patent Document 2). It has also been reported that hydroxy-L-lysine can be used as a raw material for hydroxy-L-pipecolic acid (Non-Patent Documents 3 and 4).
  • (4R) -hydroxy-L-pipecolic acid can be used as a precursor of the HIV protease inhibitor palinavir (Non-Patent Document 5), (5S) -hydroxy-L-pipecolic acid and (5R) -hydroxy- L-pipecolic acid can be used as a precursor of an antibacterial agent (Patent Document 1).
  • 5S -hydroxy-L-pipecolic acid
  • 5R -hydroxy- L-pipecolic acid
  • an antibacterial agent Patent Document 1
  • 3R 3R) -hydroxy-L-lysine has been reported as a method utilizing asymmetric hydrogenation by Ru catalyst (Non-patent Document 1).
  • Amino acid hydroxylase is an enzyme useful for the production of pharmaceutical intermediates, and the presence of proline 4-position hydroxylase (Non-patent Document 6), L-isoleucine dioxygenase (Non-patent Document 7), and the like. It has been reported. However, no enzyme acting on L-lysine has been reported so far.
  • An object of the present invention is to provide a novel method for producing hydroxy-L-lysine having higher optical purity at low cost and in a simple manner.
  • the present inventors have intensively studied a method for producing optically active hydroxy-L-lysine.
  • a transformant is prepared using DNAs encoding these proteins, and the transformant cell, its preparation and / or culture medium is allowed to act on L-lysine, thereby allowing hydroxyl with high optical purity and high concentration.
  • -L-lysine can be obtained.
  • hydroxy-L-pipecolic acid can be produced using the obtained hydroxy-L-lysine.
  • the present invention has been accomplished based on these findings.
  • the gist of the present invention is as follows. (1) By reacting L-lysine with 2-oxoglutarate-dependent L-lysine hydroxylase or a cell containing the same, a preparation of the cell or a culture solution obtained by culturing the cell, the following general formula (I)
  • a method for producing hydroxy-L-lysine characterized by comprising:
  • the cell containing the 2-oxoglutarate-dependent L-lysine hydroxylase is a cell transformed with a DNA encoding the 2-oxoglutarate-dependent L-lysine hydroxylase, (1) Or the manufacturing method of the hydroxy-L-lysine as described in (2).
  • the 2-oxoglutarate-dependent L-lysine hydroxylase or a cell containing the same, a preparation of the cell, or a culture solution obtained by culturing the cell is mixed with 2-oxoglutarate and divalent
  • Hydroxy-L-lysine is produced by the production method described in any one of (1) to (5), and L-amino acid oxidase, L-amino acid dehydrogenase, L- At least one enzyme selected from the group consisting of amino acid transferases, or at least one enzyme selected from the group consisting of D-amino acid oxidase, D-amino acid dehydrogenase, and D-amino acid transferase and an amino acid racemase are reacted, and the following general formula (II )
  • N-methyl-L-amino acid dehydrogenase acts on the resulting compound.
  • Hydroxy-L-lysine is produced by the production method according to any one of (1) to (5), and the resulting hydroxy-L-lysine is added to L-lysine 6-oxidase and L-lysine 6- At least one enzyme selected from the group consisting of dehydrogenase and L-lysine 6-transferase is reacted to give the following general formula (IV)
  • Hydroxy-L-lysine is produced by the production method according to any one of (1) to (5), and lysine cyclodeaminase is allowed to act on the obtained hydroxy-L-lysine to produce the following general formula ( III)
  • (9) Depends on 2-oxoglutarate, which has an activity of acting on L-lysine to produce hydroxy-L-lysine and contains the following polypeptide (A), (B) or (C) Type L-lysine hydroxylase protein: (A) a polypeptide having an amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10 or 12; (B) an amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, or 12, having an amino acid sequence in which one or several amino acids are deleted, substituted, and / or added; A polypeptide having acid-dependent L-lysine hydroxylase activity; or (C) an amino acid sequence having 60% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10 or 12 And a polypeptide having 2-oxoglutarate-dependent L-lysine hydroxylase activity.
  • hydroxy-L-lysine can be produced efficiently, and hydroxy-L-lysine with high optical purity can be obtained. Moreover, hydroxy-L-pipecolic acid with high optical purity can be efficiently produced from the obtained hydroxy-L-lysine.
  • the present invention is described in detail below.
  • the method for producing hydroxy-L-lysine of the present invention is obtained by culturing 2-oxoglutarate-dependent L-lysine hydroxylase or a cell containing the same, a preparation of the cell, or the cell on L-lysine. It is characterized in that a culture broth is allowed to act.
  • the production method of the present invention is preferably carried out in the presence of 2-oxoglutaric acid and divalent iron ions.
  • the 2-oxoglutarate-dependent L-lysine hydroxylase used in the present invention (hereinafter sometimes referred to as “the L-lysine hydroxylase of the present invention”) is a position when hydroxylating L-lysine. Since it has high selectivity and stereoselectivity, hydroxy-L-lysine with high optical purity can be obtained efficiently by using this.
  • the L-lysine hydroxylase of the present invention is not particularly limited as long as it is an enzyme having 2-oxoglutarate-dependent L-lysine hydroxylase activity, but SEQ ID NO: 2, 4, 6, 8, 10 or 12 It is preferable to have the amino acid sequence described above, or a homologue of the amino acid sequence that has 2-oxoglutarate-dependent L-lysine hydroxylase activity. That is, the L-lysine hydroxylase of the present invention preferably contains a polypeptide shown in the following (A), (B) or (C).
  • A a polypeptide having an amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10 or 12;
  • B an amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, or 12, having an amino acid sequence in which one or several amino acids are deleted, substituted, and / or added;
  • C an amino acid sequence having 60% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10 or 12 And a polypeptide having 2-oxoglutarate-dependent L-lysine hydroxylase activity.
  • the homologue of 2-oxoglutarate-dependent L-lysine hydroxylase having the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10 or 12 that can be used in the present invention is described in (B) above.
  • 2-oxoglutarate-dependent L-lysine hydroxylase activity is maintained, one or several amino acids are deleted in the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10 or 12. , Having a substituted or added amino acid sequence.
  • “1 or several amino acids” means, for example, 1 to 100, preferably 1 to 50, more preferably 1 to 20, further preferably 1 to 10, particularly preferably. 1 to 5 amino acids.
  • the homologue is an amino acid represented by SEQ ID NO: 2, 4, 6, 8, 10 or 12 as long as it retains 2-oxoglutarate-dependent L-lysine hydroxylase activity. It may be a protein having at least 60% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more sequence identity with the entire sequence length.
  • 2-oxoglutarate-dependent L-lysine hydroxylase activity means that a hydroxyl group is added to the carbon atom at the 3-position, 4-position and / or 5-position of L-lysine in a 2-oxoglutarate-dependent manner. Refers to activity.
  • the target protein, a cell expressing the protein, or a preparation thereof is allowed to act as an enzyme.
  • it can be confirmed by measuring the production of hydroxy-L-lysine as in Examples described later.
  • amino acid sequences set forth in SEQ ID NOs: 2, 4, 6, 8, 10 or 12 are respectively Flavobacterium johnsonae UW101 strain, Kineococcus radiotolerans SRS30216 strain, Kitinophaga pinna in ph. ) DSM2588 strain, Chryseobacteriumassem ATCC 35910 strain, Niastella koreensis GR20-10 strain, a marine actinobacterium genome information PHSC20C based on marine actinobacterium PHSC20C
  • amino acid sequences set forth in SEQ ID NOs: 2, 4, 6, 8, 10 or 12 are respectively translated amino acid sequences GenBank accession Nos. Of DNA sequences predicted to encode proteins.
  • the L-lysine hydroxylase of the present invention comprising the amino acid sequences of SEQ ID NOs: 2, 6, 8, and 10 hydroxylates the 4-position of L-lysine, thus generating (2S, 4R) hydroxy-L-lysine can do.
  • SEQ ID NO: 8 is preferred because of its high yield.
  • the L-lysine hydroxylase of the present invention containing the amino acid sequences of SEQ ID NOs: 4 and 12 hydroxylates the 3-position of L-lysine, so that (2S, 3S) hydroxy-L-lysine is generated. Can do.
  • SEQ ID NO: 12 is preferred because of its high yield.
  • a plurality of 2-oxoglutarate-dependent L-lysine hydroxylases may be used in combination.
  • the 2-oxoglutarate-dependent L-lysine hydroxylase that can be used in the present invention includes Flavobacterium johnsonae, Kineococcus radiotolerans, Kitinophaga pinensis, and Chitinopagas 2-oxoglutarate-dependent L-lysine hydroxylase, which can also be obtained by purification from Chryseobacterium gleum, Niastera korensis, or marine actinobacteria Known DNA such as PCR and hybridization Cloned by the method, it can also be obtained by expressing in a suitable host.
  • Examples of DNAs encoding 2-oxoglutarate-dependent L-lysine hydroxylase having the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 include SEQ ID NOs: 1, 3, 5, and 7, respectively. As long as it encodes a protein having 2-oxoglutarate-dependent L-lysine hydroxylase activity, the base of SEQ ID NO: 1, 3, 5, 7, 9 or 11 is included. It may be a homologue of DNA containing the sequence. That is, the DNA encoding the L-lysine hydroxylase of the present invention includes the base sequences shown in the following (D), (E) or (F).
  • a base sequence in which one or several bases are substituted, deleted or added in the base sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 is used.
  • the term “one or several bases” as used herein means, for example, 1 to 300, preferably 1 to 150, more preferably 1 to 60, still more preferably 1 to 30, particularly preferably 1. 15 to 15 bases.
  • the homologue of the DNA is SEQ ID NO: 1, 3, 5, 7, 9 as long as it encodes a protein having 2-oxoglutarate-dependent L-lysine hydroxylase activity. It may be a DNA that hybridizes with a complementary strand of 11 base sequences under stringent conditions.
  • stringent conditions include conditions including washing under conditions of 0.1 ⁇ SSC, 0.1% SDS, 60 ° C.
  • a homology search is performed on a database such as DNA Databank of JAPAN (DDBJ) to obtain amino acid information of 2-oxoglutarate-dependent L-lysine hydroxylase activity or DNA sequence information encoding the same. It is also possible to put in.
  • DDBJ DNA Databank of JAPAN
  • 2-oxoglutarate-dependent L-lysine hydroxylase may be used for the direct reaction, but 2-oxoglutarate-dependent L-lysine hydroxylase is used. It is preferable to use a cell, a preparation thereof, or a culture solution obtained by culturing the cell.
  • cells containing 2-oxoglutarate-dependent L-lysine hydroxylase cells such as microorganisms having 2-oxoglutarate-dependent L-lysine hydroxylase may be used originally, but 2-oxoglutarate-dependent type
  • a cell such as a microorganism transformed with a gene encoding L-lysine hydroxylase.
  • cells regardless of whether they are viable or not, for example, resting cells can be suitably used.
  • Examples of cell preparations containing 2-oxoglutarate-dependent L-lysine hydroxylase include, for example, cells treated with organic solvents and surfactants such as acetone, dimethyl sulfoxide (DMSO), and toluene, Cell preparations such as lyophilized products, physically or enzymatically disrupted cells, those obtained by removing enzyme fractions in cells as crude products or purified products, and polyacrylamide gels, carrageenan gels, etc. Those immobilized on a carrier represented by the above can be used.
  • Examples of the culture solution obtained by culturing cells containing 2-oxoglutarate-dependent L-lysine hydroxylase include a suspension of the cells and a liquid medium, or when the cells are secretory expression cells. May be a supernatant obtained by removing the cells by centrifugation or the like or a concentrate thereof.
  • 2-oxoglutarate-dependent L-lysine water By inserting the DNA encoding 2-oxoglutarate-dependent L-lysine hydroxylase isolated as described above into a known expression vector so as to allow expression, 2-oxoglutarate-dependent L-lysine water can be obtained.
  • An oxidase expression vector is provided. Then, by transforming a host cell with this expression vector, a transformant introduced with a DNA encoding 2-oxoglutarate-dependent L-lysine hydroxylase can be obtained.
  • a transformant can also be obtained by incorporating a DNA encoding 2-oxoglutarate-dependent L-lysine hydroxylase into a host chromosomal DNA so that it can be expressed by a technique such as homologous recombination.
  • 2-oxoglutarate-dependent L-lysine hydroxylase is encoded in a plasmid vector, phage vector, or virus vector that is stably present in a host cell such as a microorganism.
  • a host cell such as a microorganism.
  • Examples thereof include a method of introducing DNA and introducing the constructed expression vector into the host cell, or introducing the DNA directly into the host genome and transcription / translation of the genetic information.
  • promoters and terminators are not particularly limited as long as they are known to function in cells used as hosts. For example, “Microbiology Basic Course 8 Genetic Engineering / Kyoritsu Shuppan” etc. Describes in detail the vectors, promoters and terminators available in the host microorganism.
  • the host microorganism to be transformed to express 2-oxoglutarate-dependent L-lysine hydroxylase is not particularly limited as long as the host itself does not adversely affect the L-lysine reaction, Specific examples include the following microorganisms.
  • Escherichia Bacillus, Pseudomonas, Serratia, Brevibacterium, Corynebacter, Streptococcus b Bacteria with established host vector systems belonging to the genus.
  • Saccharomyces genus Kluyveromyces genus, Schizosaccharomyces genus, Zygosaccharomyd genus Yeast with established host vector systems belonging to the genus Hansenula, Pichia, Candida and the like.
  • the procedure for producing a transformant, the construction of a recombinant vector suitable for the host, and the method for culturing the host can be performed according to techniques commonly used in the fields of molecular biology, biotechnology, and genetic engineering (for example, the method described in Molecular Cloning).
  • plasmid vectors include pBR, pUC-based plasmids, etc., and include lac ( ⁇ -galactosidase), trp (tryptophan operon), tac, trc (lac, trp Fusion), promoters derived from ⁇ phage PL, PR and the like.
  • lac ⁇ -galactosidase
  • trp tryptophan operon
  • tac tac
  • trc lac, trp Fusion
  • promoters derived from ⁇ phage PL PR and the like.
  • the terminator include trpA-derived, phage-derived, and rrnB ribosomal RNA-derived terminators.
  • examples of the vector include a pUB110 series plasmid and a pC194 series plasmid, and can also be integrated into a chromosome.
  • promoter and terminator promoters and terminators of enzyme genes such as alkaline protease, neutral protease, ⁇ -amylase and the like can be used.
  • vectors include general host vector systems established in Pseudomonas putida, Pseudomonas cepacia, etc., plasmids involved in the degradation of toluene compounds, and TOL plasmids.
  • a basic broad host range vector including genes necessary for autonomous replication derived from RSF1010 and the like
  • pKT240 Gene, 26, 273-82 (1983)
  • examples of the vector include plasmid vectors such as pAJ43 (Gene2839,281 (1985)).
  • plasmid vectors such as pAJ43 (Gene2839,281 (1985)
  • promoter and terminator various promoters and terminators used in E. coli can be used.
  • pCS11 Japanese Patent Laid-Open No. 57-183799
  • pCB101 Mol. Gen. Genet. 196, 175 (1984)
  • plasmid vector In the genus Corynebacterium, particularly Corynebacterium glutamicum, pCS11 (Japanese Patent Laid-Open No. 57-183799), pCB101 (Mol. Gen. Genet. 196, 175 (1984)) and the like are used as vectors.
  • pCS11 Japanese Patent Laid-Open No. 57-183799
  • pCB101 Mol. Gen. Genet. 196, 175 (1984)
  • examples of the vector include YRp, YEp, YCp, and YIp plasmids.
  • promoters and terminators of various enzyme genes such as alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, acid phosphatase, ⁇ -galactosidase, phosphoglycerate kinase, and enolase can be used.
  • the vector is Mol. Cell. Biol. And a plasmid vector derived from Schizosaccharomyces pombe as described in US Pat. No. 6,80 (1986).
  • pAUR224 is commercially available from Takara Shuzo and can be easily used.
  • Aspergillus Aspergillus niger, Aspergillus oryzae, etc. are the most studied among molds, and integration into plasmids and chromosomes is available. Promoters derived from external proteases or amylases can be used (TrendsinsBiotechnology 7,283-287 (1989)).
  • host vector systems corresponding to various microorganisms have been established, and these can be used as appropriate.
  • various host / vector systems have been established in plants and animals, particularly in animals such as insects (eg, moths) (Nature 315, 592-594 (1985)), rapeseed, corn,
  • insects eg, moths
  • rapeseed e.g., rapeseed
  • 2-oxoglutarate-dependent L-lysine hydroxylase a cell containing the enzyme, a preparation of the cell, or a culture solution obtained by culturing the cell is mixed with 2-oxoglutarate.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents a hydroxyl group
  • the hydroxy-L-lysine represented by this can be manufactured.
  • R 1 , R 2 , and R 3 in the above general formula (I) may be selected in consideration of the compound to be finally obtained. Among them, one or two of R 1 , R 2, and R 3 may be selected. Is preferably a hydroxyl group, more preferably one of R 1 , R 2 and R 3 is a hydroxyl group.
  • the production method of the present invention is obtained by culturing 2-oxoglutarate and 2-oxoglutarate-dependent L-lysine hydroxylase or a cell containing the same, a preparation of the cell, or the cell on L-lysine.
  • the culture medium can be allowed to act, it is usually preferably carried out in an aqueous medium or a mixture of the aqueous medium and an organic solvent.
  • the production method of the present invention is preferably carried out in the presence of divalent iron ions.
  • the aqueous medium include water and a buffer solution.
  • organic solvent those having high solubility of the reaction substrate such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tert-butanol, acetone, dimethyl sulfoxide and the like can be used.
  • organic solvent ethyl acetate, butyl acetate, toluene, chloroform, n-hexane, etc., which are effective for removing reaction by-products, can also be used.
  • L-lysine as a reaction substrate is usually used in a substrate concentration range of 0.01% w / v to 90% w / v, preferably 0.1% w / v to 30% w / v.
  • the reaction substrate may be added all at once at the start of the reaction. However, from the viewpoint of reducing the effects when there is enzyme substrate inhibition and improving the accumulated concentration of the product, it may be continuous or intermittent. It is desirable to add to.
  • the 2-oxoglutaric acid necessary for the reaction is usually added in an equimolar amount or more, preferably in the range of equimolar to 1.2 molar equivalents with respect to the substrate.
  • 2-Oxoglutaric acid may be added all at once at the start of the reaction, but it is a continuous process from the viewpoint of reducing the effects of an inhibitory action on the enzyme and improving the accumulated concentration of the product. Or it is desirable to add intermittently.
  • an inexpensive compound that can be metabolized by the host such as glucose, can be added to the host to be metabolized, and 2-oxoglutaric acid generated in the process can be used in the reaction.
  • the production method of the present invention is preferably carried out in the presence of divalent iron ions.
  • the divalent iron ion is preferably used in a range of usually 0.01 mM to 100 mM, preferably 0.1 mM to 10 mM.
  • Divalent iron ions can be added all at once at the start of the reaction, such as iron sulfate. During the reaction, the added divalent iron ions are oxidized to trivalent or decreased by forming a precipitate. If this happens, it is also effective to add it.
  • the L-lysine hydroxylase of the present invention a cell containing the enzyme, a preparation of the cell, or a culture solution obtained by culturing the cell already contains a sufficient amount of divalent iron ions. In some cases, it is not always necessary to add them.
  • the reaction is usually carried out at a reaction temperature of 4 ° C. to 60 ° C., preferably 10 ° C. to 45 ° C., usually pH 3 to 11, preferably pH 5 to 8.
  • the reaction time is usually about 1 to 72 hours.
  • the amount of cells and / or cell preparation added to the reaction solution is such that when cells are added, the concentration of the cells in the reaction solution is usually 0.1% w / v to 50% w / v in the body weight of wet bacteria.
  • a preparation such as an enzyme
  • the specific activity of the enzyme is obtained, and when added, the above cell concentration is obtained. Add such amount.
  • Hydroxy-L-lysine produced by the production method of the present invention is obtained by separating cells and proteins in the reaction solution by centrifugation, membrane treatment, etc. after completion of the reaction, and then separating organic substances such as 1-butanol and tert-butanol. Purification is performed by appropriate combination of solvent extraction, distillation, column chromatography using ion exchange resin or silica gel, crystallization at isoelectric point, crystallization with monohydrochloride, dihydrochloride, calcium salt, etc. be able to.
  • Hydroxy-L-lysine produced by the method of the present invention can be used for the production of hydroxy-L-pipecolic acid.
  • Examples of the method for producing hydroxy-L-pipecolic acid from hydroxy-L-lysine of the present invention include the following three methods.
  • the first method for producing hydroxy-L-pipecolic acid from hydroxy-L-lysine of the present invention is as follows. ⁇ I> Hydroxy-L-lysine is reacted with at least one enzyme selected from the group consisting of ⁇ I-1> L-amino acid oxidase, L-amino acid dehydrogenase and L-amino acid transferase, or ⁇ I-2> By reacting at least one enzyme selected from the group consisting of D-amino acid oxidase, D-amino acid dehydrogenase, D-amino acid transferase, and amino acid racemase, a double bond is formed at position 1 represented by the general formula (II).
  • Hydroxy-L represented by the following general formula (III) is produced by causing N-methyl-L-amino acid dehydrogenase to act on the obtained cyclic amino acid having a double bond at the 1-position.
  • -A method for producing hydroxy-L-pipecolic acid characterized by producing pipecolic acid.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents a hydroxyl group
  • Scheme 1-1 is a case where N-methyl-L-amino acid dehydrogenase and at least one enzyme selected from the group consisting of L-amino acid oxidase, L-amino acid dehydrogenase and L-amino acid transferase are used (wherein R 1 , R 2 and R 3 each represent a hydrogen atom or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents a hydroxyl group).
  • compound (a) (hydroxy-L-lysine) is converted to compound (b) by an enzyme selected from the group consisting of L-amino acid oxidase, L-amino acid dehydrogenase, and L-amino acid transferase. Is converted to compound (c). Then, compound (c) is converted to compound (d) (hydroxy-L-pipecolic acid) by N-methyl-L-amino acid dehydrogenase (NMAADH).
  • NMAADH N-methyl-L-amino acid dehydrogenase
  • the L-amino acid oxidase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-L-lysine to an oxo group.
  • the amino acid sequence of SEQ ID NO: 26 is used.
  • the L-amino acid dehydrogenase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-L-lysine into an oxo group.
  • Examples include proteins.
  • L-amino acid transferase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-L-lysine into an oxo group.
  • L-amino acid aminotransferase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-L-lysine into an oxo group.
  • a protein comprising the amino acid sequence described in Biochem., 1998, 254, 347, or an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with the amino acid sequence, Examples include proteins that retain the activity.
  • the N-methyl-L-amino acid dehydrogenase is not particularly limited as long as it can catalyze the reaction of converting the compound of the above general formula (II) into hydroxy-L-pipecolic acid.
  • the amino acid of SEQ ID NO: 24 examples thereof include a protein comprising a sequence, or a protein having an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with SEQ ID NO: 24, and retaining the activity.
  • Scheme 1-2 is a case of using at least one enzyme selected from the group consisting of D-amino acid oxidase, D-amino acid dehydrogenase, D-amino acid transferase, and amino acid racemase, and N-methyl-L-amino acid dehydrogenase (
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents a hydroxyl group).
  • compound (a) (hydroxy-L-lysine) is converted to D-form compound (a ′) (hydroxy-D-lysine) by amino acid racemase, which is converted to D-amino acid oxidase, D-amino acid dehydrogenase, D- It is converted into compound (b) by an enzyme selected from the group consisting of amino acid transferases, and compound (b) is spontaneously converted into compound (c). Then, compound (c) is converted to compound (d) (hydroxy-L-pipecolic acid) by N-methyl-L-amino acid dehydrogenase (NMAADH).
  • NMAADH N-methyl-L-amino acid dehydrogenase
  • the amino acid racemase is not particularly limited as long as it can catalyze the reaction of converting hydroxy-L-lysine to hydroxy-D-lysine, but for example, a protein comprising the amino acid sequence of SEQ ID NO: 30 or SEQ ID NOs: 30 and 80 % Or more, preferably 90% or more, more preferably 95% or more of the amino acid sequence having the identity and retaining the activity.
  • the D-amino acid oxidase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-D-lysine into an oxo group.
  • amino acids described in Biochemistry, 2005, 70, 40 examples thereof include a protein containing a sequence, or a protein having an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with the amino acid sequence and retaining the activity.
  • the D-amino acid dehydrogenase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-D-lysine into an oxo group.
  • Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 906 have 80% or more, preferably 90% or more, more preferably 95% or more identity with DauA or DauA Examples include proteins having an amino acid sequence and retaining the activity.
  • the D-amino acid transferase (D-amino acid aminotransferase) is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-D-lysine to an oxo group.
  • D-amino acid aminotransferase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-D-lysine to an oxo group.
  • D-amino acid aminotransferase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 2-position of hydroxy-D-lysine to an oxo group.
  • Protein-Eng 1998 A protein having an amino acid sequence having the identity of 80% or more, preferably 90% or more, more preferably 95% or more with D-AAT or D-AAT described in. Can be mentioned.
  • the N-methyl-L-amino acid dehydrogenase is not particularly limited as long as it can catalyze the reaction of converting the compound of the above general formula (II) into hydroxy-L-pipecolic acid.
  • the amino acid of SEQ ID NO: 24 examples thereof include a protein comprising a sequence, or a protein having an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with SEQ ID NO: 24, and retaining the activity.
  • each enzyme reaction may be performed separately, but it is preferable to perform them continuously in the same reaction system. More preferably, it is preferably carried out by reacting a cell containing an enzyme that catalyzes each reaction with hydroxy-L-lysine. Cells containing enzymes that catalyze each reaction may be originally microorganisms having these enzymes, but cells transformed with DNA encoding each enzyme are preferably used.
  • Each of these DNAs may be integrated into the chromosome, or these DNAs may be introduced into a single vector to transform the host, or each of these DNAs may be introduced separately into the vector. The host may later be transformed.
  • the transformation method of host cells such as microorganisms, the type of host, etc. are the same as described in the item of 2-oxoglutarate-dependent L-lysine hydroxylase.
  • N-methyl-L-amino acid dehydrogenase requires NAD (P) H as a coenzyme
  • NAD (P) H regeneration system also coexists. That is, when NAD (P) H is added, it is preferable to regenerate NAD (P) + generated from NAD (P) H to NAD (P) H in order to improve production efficiency.
  • NAD (P) + reducing ability of the host microorganism itself
  • a microorganism or preparation thereof having the ability to produce NAD (P) H from NAD (P) + , or glucose dehydrogenation Reaction with enzymes (regenerative enzymes) that can be used to regenerate NAD (P) H such as enzymes, formate dehydrogenase, alcohol dehydrogenase, amino acid dehydrogenase, and organic acid dehydrogenase (malate dehydrogenase, etc.) 3)
  • a method of adding the gene to the regenerative enzyme which is an enzyme that can be used for the regeneration of NAD (P) H, into the host simultaneously with the DNA of the present invention.
  • a microorganism preparation containing the regenerated enzyme a microorganism preparation such as an acetone-treated microorganism microorganism, a freeze-dried microorganism, a physically or enzymatically disrupted one
  • a product obtained by removing the enzyme fraction as a crude product or a purified product, a product obtained by immobilizing the enzyme fraction on a carrier represented by polyacrylamide gel, carrageenan gel, or the like may be used, or a commercially available enzyme may be used. May be.
  • a compound serving as a substrate for the regenerating enzyme such as glucose when using glucose dehydrogenase, formic acid when using formate dehydrogenase, ethanol or isopropanol when using alcohol dehydrogenase, and the like.
  • aqueous medium containing a culture solution obtained by culturing the transformed cells or in a mixture of the aqueous medium and an organic solvent.
  • the aqueous medium include water and a buffer solution.
  • the organic solvent those having high solubility of the reaction substrate such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tert-butanol, acetone, dimethyl sulfoxide and the like can be used.
  • the organic solvent ethyl acetate, butyl acetate, toluene, chloroform, n-hexane, etc., which are effective for removing reaction by-products and the like, can also be used.
  • Hydroxy-L-lysine as a reaction substrate is usually used in a substrate concentration range of 0.01% w / v to 90% w / v, preferably 0.1% w / v to 30% w / v. .
  • the reaction substrate may be added all at once at the start of the reaction. However, from the viewpoint of reducing the effects when there is enzyme substrate inhibition and improving the accumulated concentration of the product, it may be continuous or intermittent. It is desirable to add to.
  • a coenzyme such as NAD (P) H is usually added in an amount of 0.001 mM to 100 mM, preferably 0.01 mM to 10 mM.
  • the reaction is usually carried out at a reaction temperature of 4 ° C. to 60 ° C., preferably 10 ° C. to 45 ° C., usually pH 3 to 11, preferably pH 5 to 8.
  • the reaction time is usually about 1 to 72 hours.
  • Hydroxy-L-pipecolic acid produced by the method of the present invention is obtained by separating cells and proteins in the reaction solution by centrifugation, membrane treatment, etc. after completion of the reaction, and then separating organic substances such as 1-butanol and tert-butanol. Purification is performed by appropriate combination of solvent extraction, distillation, column chromatography using ion exchange resin or silica gel, crystallization at isoelectric point, crystallization with monohydrochloride, dihydrochloride, calcium salt, etc. be able to.
  • a second method for producing hydroxy-L-pipecolic acid from hydroxy-L-lysine of the present invention is as follows. ⁇ II> Hydroxy-L-lysine is reacted with at least one enzyme selected from the group consisting of L-lysine 6-oxidase, L-lysine 6-dehydrogenase, and L-lysine 6-transferase, and represented by the general formula (IV) After producing a cyclic amino acid having a double bond at the 6-position, pyrroline-5-carboxylate reductase is allowed to act on the obtained cyclic amino acid having a double bond at the 6-position to obtain a general formula (III The method for producing hydroxy-L-pipecolic acid is characterized by producing hydroxy-L-pipecolic acid represented by
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents a hydroxyl group
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents a hydroxyl group).
  • compound (a) (hydroxy-L-lysine) is converted into compound (b) by at least one enzyme selected from the group consisting of L-lysine 6-oxidase, L-lysine 6-dehydrogenase, and L-lysine 6-transferase.
  • compound (b ′) is spontaneously converted to compound (c ′).
  • compound (c ′) is converted to compound (d) (hydroxy-L-pipecolic acid) by pyrroline-5-carboxylic acid (P5C) reductase.
  • P5C pyrroline-5-carboxylic acid
  • L-lysine 6-oxidase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 6-position of hydroxy-L-lysine into an oxo group.
  • Examples include lodA described in 1764 to 1577, or a protein having an amino acid sequence having identity of 80% or more, preferably 90% or more, more preferably 95% or more with lodA and retaining the activity.
  • L-lysine 6-dehydrogenase is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 6-position of hydroxy-L-lysine into an oxo group.
  • L-lysine 6-transferase (lysine- 6-aminotransferase) is not particularly limited as long as it can catalyze the reaction of converting the amino group at the 6-position of hydroxy-L-lysine to an oxo group.
  • a protein comprising the amino acid sequence described in the published publication WO2001 / 048216 or an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with the amino acid sequence, and having the activity Examples include proteins to be retained.
  • Pyrroline-5-carboxylic acid (P5C) reductase can be used as long as it can catalyze the reaction of converting the compound represented by general formula (IV) into hydroxy-L-pipecolic acid represented by general formula (III).
  • a protein comprising the amino acid sequence described in International Publication No. WO2001 / 048216 or an amino acid having 80% or more, preferably 90% or more, more preferably 95% or more identity with the amino acid sequence Examples thereof include proteins having a sequence and retaining the activity.
  • each enzyme reaction may be performed separately, but it is preferably performed continuously in the same reaction system. More preferably, it is preferably carried out by reacting a cell containing an enzyme that catalyzes each reaction with hydroxy-L-lysine.
  • Cells containing enzymes that catalyze each reaction may inherently use cells having these enzymes, but it is preferable to use cells transformed with DNA encoding each enzyme.
  • Transformed with at least one enzyme selected from the group consisting of -lysine 6-oxidase, L-lysine 6-dehydrogenase and L-lysine 6-transferase and DNA encoding pyrroline-5-carboxylic acid (P5C) reductase It is preferable to use cells.
  • the transformation method of host cells such as microorganisms, the type of host, etc. are the same as described in the item of 2-oxoglutarate-dependent L-lysine hydroxylase.
  • a third method for producing hydroxy-L-pipecolic acid from hydroxy-L-lysine of the present invention is as follows. ⁇ III> Production of hydroxy-L-pipecolic acid, wherein lysine cyclodeaminase is allowed to act on hydroxy-L-lysine to produce hydroxy-L-pipecolic acid represented by the general formula (III) Method.
  • the lysine cyclodeaminase is not particularly limited as long as it can catalyze the reaction of converting hydroxy-L-lysine to hydroxy-L-pipecolic acid.
  • a protein containing the amino acid sequence described in Biochimie 2007, 89, 591 Alternatively, a protein having an amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with the amino acid sequence and retaining the activity can be mentioned.
  • the reaction with lysine cyclodeaminase is preferably performed by reacting cells containing lysine cyclodeaminase with hydroxy-L-lysine.
  • the microorganism containing lysine cyclodeaminase may originally use cells having these enzymes, it is preferable to use cells transformed with DNA encoding lysine cyclodeaminase.
  • the transformation method of host cells such as microorganisms, the type of host, etc. are the same as described in the item of 2-oxoglutarate-dependent L-lysine hydroxylase.
  • cells transformed with DNA encoding hydroxy-L-lysine and lysine cyclodeaminase are preferably carried out in an aqueous medium containing a preparation and / or a culture solution obtained by culturing the transformant or in a mixture of the aqueous medium and an organic solvent.
  • the reaction conditions, coenzyme addition and regeneration, and the method for recovering hydroxy-L-pipecolic acid are the same as those described in the section ⁇ I> above.
  • 2-oxoglutarate-dependent L-lysine hydroxylase and an enzyme or enzyme group that performs a conversion reaction of hydroxy-L-lysine to hydroxy-L-pipecolic acid can be used directly from L-lysine.
  • -Pipecolic acid can also be produced, but before 2-oxoglutarate-dependent L-lysine hydroxylase acts on L-lysine, the conversion reaction of hydroxy-L-lysine to hydroxy-L-pipecolic acid
  • the enzyme or enzyme group that performs the conversion reaction of hydroxy-L-lysine to hydroxy-L-pipecolic acid because the enzyme or enzyme group that acts acts on L-lysine and L-pipecolic acid may be produced as a by-product It is necessary to select those that preferentially act on hydroxy-L-lysine compared to L-lysine.
  • a host cell is simultaneously transformed with 2-oxoglutarate-dependent L-lysine hydroxylase and DNA of an enzyme or enzyme group that converts hydroxy-L-lysine to hydroxy-L-pipecolic acid. It may be used.
  • hydroxy-L-lysine produced by the method of the present invention is used for the production of hydroxy-L-pipecolic acid, purification of hydroxy-L-lysine is omitted, and after conversion to hydroxy-L-pipecolic acid It is also possible to carry out purification only.
  • primers hyl2_f SEQ ID NO: 15
  • hyl2_r SEQ ID NO: 16
  • primers hyl3_f SEQ ID NO: 17
  • hyl3_r SEQ ID NO: 18
  • hyl-4 Is synthesized with primers hyl4_f (SEQ ID NO: 19) and hy4_r (SEQ ID NO: 20), and with respect to hyl-5
  • primers hy5_f SEQ ID NO: 21
  • hy5_r SEQ ID NO: 22
  • a DNA fragment of about 1.0 kbp was obtained for each.
  • the obtained 5 types of DNA fragments were digested with restriction enzymes NdeI and XhoI, respectively, and ligated to pET21a (Novagen) digested with NdeI and XhoI according to a standard method to obtain pEHYL1, pEHYL2, pEHYL3, pEHYL4, and pEHYL5, respectively.
  • a gene sequence encoding Hyl-6 (GenBank Accession No.
  • EAR24255, SEQ ID NO: 12) derived from the marine actinobacterium PHSC20C1 was artificially synthesized by DNA2.0, and pJExpress 401 Plasmid pJHYL6 inserted into (DNA2.0) was prepared.
  • Escherichia coli BL21 (DE3) (manufactured by Invitrogen) was transformed according to a standard method using each of the obtained plasmids, and recombinant Escherichia coli BL21 (DE3) / pEHYL1, BL21 (DE3) / pEHYL2, BL21 (DE3 ) / PEHYL3, BL21 (DE3) / pEHYL4, BL21 (DE3) / pEHYL5, BL21 (DE3) / pJHYL6.
  • each recombinant Escherichia coli was cultured at 30 ° C. in a liquid LB medium containing ampicillin and a lac promoter inducer, and collected at about 20 hours of culture.
  • BL21 (DE3) / pEHYL2 and BL21 (DE3) / pJHYL6 produced compounds having a retention time of 8.04 minutes of the 3-hydroxylysine standard product. It was.
  • BL21 (DE3) / pEHYL1, BL21 (DE3) / pEHYL3, BL21 (DE3) / pEHYL4, and BL21 (DE3) / pEHYL5 produce compounds that match the retention time of 8.16 minutes of the 4-hydroxylysine standard. It was confirmed.
  • the conditions for analysis of hydroxylysine by HPLC are as follows.
  • Example 2 coli BL21 (DE3) / pEHYL2 obtained by the method according to Example 1 The reaction was carried out for 17 hours at 30 ° C., pH 7.0, agitation number of 500 rpm, and air flow rate of 2.0 vvm. Completion of the reaction was judged by confirming the disappearance of L-lysine peak by HPLC analysis. Bacteria and cell residues were removed from the liquid after the reaction by centrifugation and microfiltration to obtain 390 g of a filtrate.
  • the L-lysine analysis conditions by HPLC are as follows.
  • reaction solution was washed twice with toluene-tetrahydrofuran (1: 1), made strongly acidic by adding 250 ⁇ l of concentrated hydrochloric acid, further washed three times with ethyl acetate, and then the aqueous layer was extracted four times with 1-butanol. .
  • the 1-butanol layer was dried over anhydrous magnesium sulfate and concentrated to give (4S, 5S) -5- (3-benzyloxycarbonylaminopropyl) -2-oxo-4-oxazolidinecarboxylic acid 14.6 mg (0 0.045 mmol, 89% yield).
  • the result of NOESY measurement is shown in the following equation.
  • DpkA N-methyl-L-amino acid dehydrogenase
  • AIP L-amino acid oxidase
  • GDH glucose-1-dehydrogenase
  • KR amino acid racemase
  • Primers dpkA_F (SEQ ID NO: 31) and dpkA_R (SEQ ID NO: 32) were designed and synthesized. PCR was performed according to a conventional method using a chromosomal DNA of Pseudomonas putida as a template to obtain a DNA fragment of about 1.0 kbp.
  • a gene sequence (hereinafter aip, SEQ ID NO: 25) encoding a protein AIP (SEQ ID NO: 26) obtained by adding methionine to a sequence obtained by removing a signal peptide from L-amino acid oxidase (GenBank Accession No. CAC00499) derived from Japanese mackerel (Scabber japonicus) was designed and synthesized artificially. Furthermore, primers aip_F (SEQ ID NO: 33) and aip_R (SEQ ID NO: 34) for amplifying the full length of the aip gene were designed and synthesized. PCR was performed according to a conventional method to obtain a DNA fragment of about 1.5 kbp.
  • a gene sequence (hereinafter referred to as gdh, SEQ ID NO: 27) encoding a protein (SEQ ID NO: 28) in which the glutamic acid at the 96th amino acid residue is substituted with alanine in GDH (GenBank Accession No. NP_388275) derived from Bacillus subtilis
  • primers gdh_F (SEQ ID NO: 35) and gdh_R (SEQ ID NO: 36) for amplifying the full length of gdh gene were designed and synthesized. PCR was performed according to a conventional method to obtain a DNA fragment of about 0.8 kbp.
  • kr SEQ ID NO: 29
  • KR GenBank Accession No. NP_745855, SEQ ID NO: 30
  • kr_F a primer for amplifying the full length of the rk gene
  • SEQ ID NO: 37 SEQ ID NO: 37
  • kr_R SEQ ID NO: 38
  • pKW32aip was digested with SpeI and NdeI, and a DNA fragment of about 2.4 kbp containing aip was introduced downstream of about 4.2 kbp of dpkA, an open plasmid obtained by digesting pKW32dpkA with XbaI and NdeI.
  • PKW32 (dpkA, aip) was obtained.
  • pKW32gdh was digested with SpeI and NdeI, and an about 1.7 kbp DNA fragment containing gdh was digested. It was introduced downstream to obtain pKW32 (dpkA, aip, gdh).
  • pKW32kr was digested with SpeI and NdeI to obtain a DNA fragment of about 2.1 kbp containing kr
  • pKW32 (dpkA, aip, gdh) was digested with XbaI and NdeI to obtain an about 6.5 kbp open-circulation plasmid.
  • gdh was introduced downstream of gdh to obtain pKW32 (dpkA, aip, gdh, kr).
  • this solid substance contains 20% by weight (0.35 mmol, 66.3% yield) of (2S, 3R) -3-hydroxypipecolic acid and 80% by weight of trishydroxymethylaminomethane. It was a mixture.
  • It can be used as a method for producing hydroxy-L-lysine useful as a pharmaceutical intermediate or the like and a method for producing hydroxy-L-pipecolic acid using the obtained hydroxy-L-lysine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

効率よくヒドロキシ-L-リジンを製造できる方法を提供することを課題とする。本発明は、L-リジンに2-オキソグルタル酸依存型L-リジン水酸化酵素またはそれを含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を作用させて、下記一般式(I)(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)で表されるヒドロキシ-L-リジンを生成させることを特徴とする、ヒドロキシ-L-リジンの製造方法を提供する。

Description

L-リジン水酸化酵素およびそれを利用したヒドロキシ-L-リジンの製造法およびヒドロキシ-L-ピペコリン酸の製造法
 本発明は、新規なリジン水酸化酵素を利用したヒドロキシ-L-リジンの製造法、および得られたヒドロキシ-L-リジンを利用したヒドロキシ-L-ピペコリン酸の製造法に関するものである。
 ヒドロキシ-L-リジンは、医薬品の中間体等として有用な中間体である。例えば、(3R)-ヒドロキシ-L-リジンはプロテインキナーゼC阻害剤 (-)-balanolの前駆体として利用可能であり(非特許文献1)、(5R)-ヒドロキシ-L-リジンは抗腫瘍活性のあるBengamide Bの前駆体として利用可能である(非特許文献2)ことが知られている。また、ヒドロキシ-L-リジンはヒドロキシ-L-ピペコリン酸の原料として利用可能なことも報告されている(非特許文献3,4)。例えば、(4R)-ヒドロキシ-L-ピペコリン酸はHIVプロテアーゼ阻害剤palinavirの前駆体として利用可能であり(非特許文献5)、(5S)-ヒドロキシ-L-ピペコリン酸および(5R)-ヒドロキシ-L-ピペコリン酸は抗菌剤の前駆体として利用可能である(特許文献1)。
 ヒドロキシ-L-リジンの合成法としては、たとえば、(3R)-ヒドロキシ-L-リジンはRu触媒による不斉水素化を活用した方法が報告されている(非特許文献1)。
 なお、アミノ酸水酸化酵素は、医薬品の中間体等の製造に有用な酵素であり、プロリン4位水酸化酵素(非特許文献6)やL-イソロイシンジオキシゲナーゼ(非特許文献7)などの存在が報告されている。しかしながら、L-リジンに作用する酵素はこれまでに報告されていない。
特表2004-505088号公報
Coulonら、Tetrahedron Lett., 1998, 39, 6467 Kinderら、J. Org. Chem., 2001, 66, 2118 Yasudaら、Tetrahedron Asymm., 2006, 17, 1775 Tsotsouら、Biochemie, 2007, 89, 591 Gillardら、J. Org. Chem., 1996, 61, 2226 Shibasakiら、Appl. Environ. Microbiol., 1999, 65, 4028 Hibiら、Appl. Environ. Microbiol., 2011, 77, 6926
 非特許文献1に記載のヒドロキシ-L-リジンの合成法は、原料の調製が煩雑であり、また、触媒の調製やリサイクルのためのコスト負荷が大きく、より効率的な合成法が求められていた。
 本発明は、より光学純度の高いヒドロキシ-L-リジンを、安価かつ簡便に製造する新規な方法を提供することを課題とする。
 本発明者らは、上記課題を解決するために、光学活性ヒドロキシ-L-リジンの製造方法について鋭意検討した結果、これまでタンパク質として単離された報告が無く、機能が不明であったL-アルギニンβヒドロキシラーゼVioCのホモログタンパク質が2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有することを見出した。そしてこれらのタンパク質をコードするDNAを用いて形質転換体を作製し、該形質転換体細胞、その調製物および/または培養液をL-リジンに作用させることにより、高い光学純度かつ高濃度でヒドロキシ-L-リジンを得ることができることを見出した。さらに、得られたヒドロキシ-L-リジンを用いてヒドロキシ-L-ピペコリン酸を製造できることを見出した。本発明はこれらの知見に基づいて成し遂げられたものである。
 すなわち、本発明の要旨は、以下のとおりである。
(1) L-リジンに2-オキソグルタル酸依存型L-リジン水酸化酵素またはそれを含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を作用させて、下記一般式(I)
Figure JPOXMLDOC01-appb-C000007
(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)で表されるヒドロキシ-L-リジンを生成させることを特徴とする、ヒドロキシ-L-リジンの製造方法。
(2) 前記2-オキソグルタル酸依存型L-リジン水酸化酵素が、以下の(A)、(B)または(C)に示すポリペプチドを含む、(1)に記載のヒドロキシ-L-リジンの製造方法:
 (A) 配列番号2,4,6,8,10または12で表されるアミノ酸配列を有するポリペプチド;
 (B) 配列番号2,4,6,8,10または12で表されるアミノ酸配列において、1または数個のアミノ酸が欠失、置換及び/または付加されたアミノ酸配列を有し、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド;または
 (C) 配列番号2,4,6,8,10または12で表されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列を有し、かつ、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド。
(3) 前記2-オキソグルタル酸依存型L-リジン水酸化酵素を含む細胞が、前記2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAで形質転換された細胞である、(1)または(2)に記載のヒドロキシ-L-リジンの製造方法。
(4) 前記2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAが以下の(D)、(E)または(F)に示すDNAを含む、(3)に記載のヒドロキシ-L-リジンの製造方法:
 (D) 配列番号1、3、5、7、9または11で表される塩基配列を有するDNA;
 (E) 配列番号1、3、5、7、9または11で表される塩基配列において1または数個の塩基が置換、欠失及び/または付加された塩基配列を含み、かつ2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチドをコードするDNA;または
 (F) 配列番号1、3、5、7、9または11で表される塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を含み、かつ2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチドをコードするDNA。
(5) 前記2-オキソグルタル酸依存型L-リジン水酸化酵素またはそれを含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を、2-オキソグルタル酸、および2価の鉄イオンの存在下、前記L-リジンに作用させる、(1)~(4)のいずれかに記載のヒドロキシ-L-リジンの製造方法。
(6) (1)~(5)のいずれかに記載の製造方法によりヒドロキシ-L-リジンを製造し、得られたヒドロキシ-L-リジンに、L-アミノ酸オキシダーゼ、L-アミノ酸デヒドロゲナーゼ、L-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素、もしくはD-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素およびアミノ酸ラセマーゼを反応させ、下記一般式(II)
Figure JPOXMLDOC01-appb-C000008
(式中、R1、R2およびR3は一般式(I)と同義である)で表される化合物を生成させた後、得られた化合物に、N-メチル-L-アミノ酸デヒドロゲナーゼを作用させて、下記一般式(III)
Figure JPOXMLDOC01-appb-C000009
(式中、R1、R2およびR3は一般式(I)と同義である)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
(7) (1)~(5)のいずれかに記載の製造方法によりヒドロキシ-L-リジンを製造し、得られたヒドロキシ-L-リジンに、L-リジン 6-オキシダーゼ、L-リジン 6-デヒドロゲナーゼ、L-リジン 6-トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素を反応させ、下記一般式(IV)
Figure JPOXMLDOC01-appb-C000010
(式中、R1、R2およびR3は一般式(I)と同義である)で表される化合物を生成させた後、得られた化合物に、ピロリン-5-カルボン酸レダクターゼを作用させて、下記一般式(III)
Figure JPOXMLDOC01-appb-C000011
(式中、R1、R2およびR3は一般式(I)と同義である)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
(8) (1)~(5)のいずれかに記載の製造方法によりヒドロキシ-L-リジンを製造し、得られたヒドロキシ-L-リジンに、リジンシクロデアミナーゼを作用させて、下記一般式(III)
Figure JPOXMLDOC01-appb-C000012
(式中、R1、R2およびR3は一般式(I)と同義である)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
(9) L-リジンに作用してヒドロキシ-L-リジンを生成する活性を有し、かつ、以下の(A)、(B)または(C)に示すポリペプチドを含む、2-オキソグルタル酸依存型L-リジン水酸化酵素タンパク質:
 (A) 配列番号2,4,6,8,10または12で表されるアミノ酸配列を有するポリペプチド;
 (B) 配列番号2,4,6,8,10または12で表されるアミノ酸配列において、1または数個のアミノ酸が欠失、置換及び/または付加されたアミノ酸配列を有し、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド;または
 (C) 配列番号2,4,6,8,10または12で表されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列を有し、かつ、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド。
 本発明によれば、効率よくヒドロキシ-L-リジンを製造することができ、さらに、光学純度の高いヒドロキシ-L-リジンを得ることができる。また、得られたヒドロキシ-L-リジンから効率よく、光学純度の高いヒドロキシ-L-ピペコリン酸を製造することができる。
Hyl-1,3,4,5によるL-リジンの4-ヒドロキシリジンへの変換を示す図。 Hyl-2,6によるL-リジンの3-ヒドロキシリジンへの変換を示す図。
 以下に、本発明を詳細に説明する。
<2-オキソグルタル酸依存型L-リジン水酸化酵素を用いたヒドロキシ-L-リジンの製造方法>
 本発明のヒドロキシ-L-リジンの製造方法は、L-リジンに、2-オキソグルタル酸依存型L-リジン水酸化酵素またはそれを含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を作用させることを特徴とする。本発明の製造方法は、後述するように、2-オキソグルタル酸および2価鉄イオンの存在下、行なうことが好ましい。
 本発明で使用される2-オキソグルタル酸依存型L-リジン水酸化酵素(以下、「本発明のL-リジン水酸化酵素」と称することがある。)はL-リジンを水酸化する際の位置選択性および立体選択性が高いため、これを用いることにより、効率よく、光学純度の高いヒドロキシ-L-リジンを得ることができる。
 本発明のL-リジン水酸化酵素は、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有する酵素であれば特に制限はないが、配列番号2,4,6,8,10または12に記載のアミノ酸配列を有するもの、又は該アミノ酸配列のホモログであって2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するものであることが好ましい。即ち、本発明のL-リジン水酸化酵素は、以下の(A)、(B)または(C)に示すポリペプチドを含むものであることが好ましい。
 (A) 配列番号2,4,6,8,10または12で表されるアミノ酸配列を有するポリペプチド;
 (B) 配列番号2,4,6,8,10または12で表されるアミノ酸配列において、1または数個のアミノ酸が欠失、置換及び/または付加されたアミノ酸配列を有し、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド;または
 (C) 配列番号2,4,6,8,10または12で表されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列を有し、かつ、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド。
 本発明において使用しうる、配列番号2,4,6,8,10または12に記載のアミノ酸配列を有する2-オキソグルタル酸依存型L-リジン水酸化酵素のホモログとしては、前記(B)に記載の通り、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を保持する限り、配列番号2,4,6,8,10または12に記載のアミノ酸配列において、1または数個のアミノ酸が欠失、置換、若しくは付加されたアミノ酸配列を有するものが挙げられる。ここで「1または数個のアミノ酸」とは、例えば、1個~100個、好ましくは1個~50個、より好ましくは1個~20個、さらに好ましくは1個~10個、特に好ましくは1個~5個、のアミノ酸である。
 また、上記ホモログは、前記(C)に記載の通り、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を保持する限り、配列番号2,4,6,8,10または12に示されるアミノ酸配列全長と少なくとも60%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するタンパク質であってもよい。
 本明細書において、2-オキソグルタル酸依存型L-リジン水酸化酵素活性とは、2-オキソグルタル酸依存的にL-リジンの3位、4位および/または5位の炭素原子に水酸基を付加する活性をいう。このような活性は、L-リジンを基質として含有し、さらに2-オキソグルタル酸を補酵素として含有する反応系において、酵素として、目的のタンパク質、該タンパク質を発現する細胞またはその調製物を作用させて、後述の実施例のようにヒドロキシ-L-リジンの生成を測定することにより確認することができる。
 配列番号2,4,6,8,10または12に記載のアミノ酸配列はそれぞれ、フラボバクテリウム・ジョンソネ(Flavobacterium johnsoniae) UW101株、キネオコッカス・ラジオトレランス(Kineococcus radiotolerans) SRS30216株、キチノファーガ・ピネンシス(Chitinophaga pinensis) DSM2588株、クリセオバクテリウム・グレウム(Chryseobacterium gleum) ATCC35910株、ニアステラ・コリエンシス(Niastella koreensis) GR20-10株、海洋性放線菌(marine actinobacterium) PHSC20C1のゲノム情報に基づくものである。
 また、配列番号2,4,6,8,10または12に記載のアミノ酸配列はそれぞれ、タンパク質をコードすると予測されたDNA配列の翻訳アミノ酸配列GenBank accession No. ABQ06186、ABS05421、ACU60313、EFK34737、AEV99100およびEAR24255と同一である。いずれも、タンパク質として単離するなどして、実際に存在を確認した報告例は無く、タンパク質としての機能についても全く不明であったものである。
 配列番号2、6、8、および10のアミノ酸配列を含む本発明のL-リジン水酸化酵素は、L-リジンの4位を水酸化するので、(2S,4R)ヒドロキシ‐L-リジンを生成することができる。これらの中では、収率が高いことから、配列番号8が好ましい。
 一方、配列番号4、および12のアミノ酸配列を含む本発明のL-リジン水酸化酵素は、L-リジンの3位を水酸化するので、(2S,3S)ヒドロキシ‐L-リジンを生成することができる。これらの中では、収率が高いことから、配列番号12が好ましい。
 なお、本発明の製造方法において、複数の2-オキソグルタル酸依存型L-リジン水酸化酵素を併用してもよい。
 本発明に使用しうる2-オキソグルタル酸依存型L-リジン水酸化酵素は、それぞれ、フラボバクテリウム・ジョンソネ(Flavobacterium johnsoniae)、キネオコッカス・ラジオトレランス(Kineococcus radiotolerans)、キチノファーガ・ピネンシス(Chitinophaga pinensis)、クリセオバクテリウム・グレウム(Chryseobacterium gleum)、ニアステラ・コリエンシス(Niastella koreensis)、または、海洋性放線菌(marine actinobacterium)から精製して得ることもできるが、2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAをPCRやハイブリダイゼーションなどの公知の方法でクローン化し、それを適当な宿主で発現させることによって得ることもできる。
 配列番号2,4,6,8,10または12に示されるアミノ酸配列を有する2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAとしては、それぞれ、配列番号1,3,5,7,9または11の塩基配列を含むDNAが挙げられ、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するタンパク質をコードする限り、配列番号1,3,5,7,9または11の塩基配列を含むDNAのホモログでもよい。即ち、本発明のL-リジン水酸化酵素をコードするDNAとしては、以下の(D)、(E)または(F)に示す塩基配列が挙げられる。
 (D) 配列番号1、3、5、7、9または11で表される塩基配列を有するDNA;
 (E) 配列番号1、3、5、7、9または11で表される塩基配列において1または数個の塩基が置換、欠失及び/または付加された塩基配列を含み、かつ2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチドをコードするDNA;または
 (F) 配列番号1、3、5、7、9または11で表される塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を含み、かつ2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチドをコードするDNA。
 ホモログとしては、例えば、前記(E)に記載の通り、配列番号1、3、5、7、9または11の塩基配列において1または数個の塩基が置換、欠失もしくは付加された塩基配列を含むものが挙げられる。ここでいう1または数個の塩基とは、例えば、1個~300個、好ましくは1個~150個、より好ましくは1個~60個、さらに好ましくは1個~30個、特に好ましくは1個~15個、の塩基である。
 さらに、上記DNAのホモログは、前記(F)に記載の通り、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するタンパク質をコードする限り、配列番号1,3,5,7,9または11の塩基配列の相補鎖とストリンジェントな条件でハイブリダイズするDNAであってもよい。ここで、「ストリンジェントな条件」としては、例えば、0.1×SSC、0.1%SDS、60℃の条件で洗浄することを含む条件が挙げられる。
 当業者であれば、配列番号1,3,5,7,9または11のDNAに部位特異的変異導入法(Nucleic Acids Res.10,pp.6487(1982)、Methods in Enzymol.100,pp.448(1983)、Molecular Cloning、PCR A Practical Approach IRL Press pp.200(1991))等を用いて適宜置換、欠失、挿入及び/または付加変異を導入することにより、上記のようなDNAホモログを得ることが可能である。
 また、配列番号2,4,6,8,10または12のアミノ酸配列またはその一部や、配列番号1,3,5,7,9または11で表される塩基配またはその一部をもとに、例えばDNA Databank of JAPAN(DDBJ)等のデータベースに対してホモロジー検索を行って、2-オキソグルタル酸依存型L-リジン水酸化酵素活性のアミノ酸情報またはそれをコードするDNAの塩基配列情報を手に入れることも可能である。
 本発明のヒドロキシ-L-リジンの製造方法においては、2-オキソグルタル酸依存型L-リジン水酸化酵素を直接反応に使用してもよいが、2-オキソグルタル酸依存型L-リジン水酸化酵素を含む細胞やその調製物もしくは同細胞を培養して得られた培養液を用いることが好ましい。
 2-オキソグルタル酸依存型L-リジン水酸化酵素を含む細胞としては、もともと2-オキソグルタル酸依存型L-リジン水酸化酵素を有する微生物などの細胞を用いてもよいが、2-オキソグルタル酸依存型L-リジン水酸化酵素をコードする遺伝子で形質転換された微生物などの細胞を用いることが好ましい。ここで、細胞としては、その生死は問わず、例えば、休止菌体等を好適に用いることができる。
 また、2-オキソグルタル酸依存型L-リジン水酸化酵素を含む細胞の調製物としては、例えば、該細胞をアセトン、ジメチルスルホキシド(DMSO)、トルエン等の有機溶媒や界面活性剤により処理したもの、凍結乾燥処理したもの、物理的または酵素的に破砕したもの等の細胞調製物、細胞中の酵素画分を粗製物あるいは精製物として取り出したもの、さらには、これらをポリアクリルアミドゲル、カラギーナンゲル等に代表される担体に固定化したもの等を用いることができる。
 2-オキソグルタル酸依存型L-リジン水酸化酵素を含む細胞を培養して得られた培養液としては、例えば、該細胞と液体培地の懸濁液や、該細胞が分泌発現型細胞である場合は該細胞を遠心分離等で除去した上清やその濃縮物を用いることができる。
 上記のようにして単離された、2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAを公知の発現ベクターに発現可能に挿入することにより、2-オキソグルタル酸依存型L-リジン水酸化酵素発現ベクターが提供される。そして、この発現ベクターで宿主細胞を形質転換することにより、2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAが導入された形質転換体を得ることができる。形質転換体は、宿主の染色体DNAに2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAを相同組み換えなどの手法によって発現可能に組み込むことによっても得ることができる。
 形質転換体の作製方法としては、具体的には、微生物などの宿主細胞において安定に存在するプラスミドベクターやファージベクターやウイルスベクター中に、2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAを導入し、構築された発現ベクターを該宿主細胞中に導入するか、もしくは、直接宿主ゲノム中に該DNAを導入し、その遺伝情報を転写・翻訳させる方法が例示される。このとき、宿主において適当なプロモーターをDNAの5'-側上流に連結させることは好ましく、さらに、ターミネーターを3'-側下流に連結させることがより好ましい。このようなプロモーター及びターミネーターとしては、宿主として利用する細胞中において機能することが知られているプロモーター及びターミネーターであれば特に限定されず、例えば、「微生物学基礎講座8遺伝子工学・共立出版」などに宿主微生物において利用可能なベクター、プロモーター及びターミネーターが詳細に記述されている。
 2-オキソグルタル酸依存型L-リジン水酸化酵素を発現させるための形質転換の対象となる宿主微生物としては、宿主自体がL-リジンの反応に悪影響を与えない限り特に限定されることはなく、具体的には以下に示すような微生物を挙げることができる。
 エシェリヒア(Escherichia)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、セラチア(Serratia)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ストレプトコッカス(Streptococcus)属、ラクトバチルス(Lactobacillus)属などに属する宿主ベクター系の確立されている細菌。
 ロドコッカス(Rhodococcus)属、ストレプトマイセス(Streptomyces)属などに属する宿主ベクター系の確立されている放線菌。
 サッカロマイセス(Saccharomyces)属、クルイベロマイセス(Kluyveromyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、チゴサッカロマイセス(Zygosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコスポロン(Trichosporon)属、ロドスポリジウム(Rhodosporidium)属、ハンゼヌラ(Hansenula)属、ピキア(Pichia)属、キャンディダ(Candida)属などに属する宿主ベクター系の確立されている酵母。
 ノイロスポラ(Neurospora)属、アスペルギルス(Aspergillus)属、セファロスポリウム(Cephalosporium)属、トリコデルマ(Trichoderma)属などに属する宿主ベクター系の確立されているカビ。
 形質転換体作製のための手順、宿主に適合した組換えベクターの構築および宿主の培養方法は、分子生物学、生物工学、遺伝子工学の分野において慣用されている技術に準じて行うことができる(例えば、Molecular Cloningに記載の方法)。
 以下、具体的に、好ましい宿主微生物、各微生物における好ましい形質転換の手法、ベクター、プロモーター、ターミネーターなどの例を挙げるが、本発明はこれらの例に限定されない。
 エシェリヒア属、特にエシェリヒア・コリ(Escherichia coli)においては、プラスミドベクターとしては、pBR、pUC系プラスミドなどが挙げられ、lac(β-ガラクトシダーゼ)、trp(トリプトファンオペロン)、tac、trc(lac、trpの融合)、λファージPL、PRなどに由来するプロモーターなどが挙げられる。また、ターミネーターとしては、trpA由来、ファージ由来、rrnBリボソーマルRNA由来のターミネーターなどが挙げられる。
 バチルス属においては、ベクターとしては、pUB110系プラスミド、pC194系プラスミドなどを挙げることができ、また、染色体にインテグレートすることもできる。プロモーター及びターミネーターとしては、アルカリプロテアーゼ、中性プロテアーゼ、α-アミラーゼ等の酵素遺伝子のプロモーターやターミネーターなどが利用できる。
 シュードモナス属においては、ベクターとしては、シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・セパシア(Pseudomonas cepacia)などで確立されている一般的な宿主ベクター系や、トルエン化合物の分解に関与するプラスミド、TOLプラスミドを基本にした広宿主域ベクター(RSF1010などに由来する自律的複製に必要な遺伝子を含む)pKT240(Gene,26,273-82(1983))などを挙げることができる。
 ブレビバクテリウム属、特にブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)においては、ベクターとしては、pAJ43(Gene 39,281(1985))などのプラスミドベクターを挙げることができる。プロモーター及びターミネーターとしては、大腸菌で使用されている各種プロモーター及びターミネーターが利用可能である。
 コリネバクテリウム属、特にコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)においては、ベクターとしては、pCS11(特開昭57-183799号公報)、pCB101(Mol.Gen.Genet.196,175(1984))などのプラスミドベクターが挙げられる。
 サッカロマイセス(Saccharomyces)属、特にサッカロマイセス・セレビジエ(Saccharomyces cerevisiae)においては、ベクターとしては、YRp系、YEp系、YCp系、YIp系プラスミドなどが挙げられる。また、アルコール脱水素酵素、グリセルアルデヒド-3-リン酸脱水素酵素、酸性フォスファターゼ、β-ガラクトシダーゼ、ホスホグリセレートキナーゼ、エノラーゼといった各種酵素遺伝子のプロモーター、ターミネーターが利用可能である。
 シゾサッカロマイセス(Schizosaccharomyces)属においては、ベクターとしては、Mol.Cell.Biol.6,80(1986)に記載のシゾサッカロマイセス・ポンベ由来のプラスミドベクターなどを挙げることができる。特に、pAUR224は、宝酒造から市販されており容易に利用できる。
 アスペルギルス(Aspergillus)属においては、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・オリジー (Aspergillus oryzae)などがカビの中で最もよく研究されており、プラスミドや染色体へのインテグレーションが利用可能であり、菌体外プロテアーゼやアミラーゼ由来のプロモーターが利用可能である(Trendsin Biotechnology 7,283-287(1989))。
 また、上記以外でも、各種微生物に応じた宿主ベクター系が確立されており、それらを適宜使用することができる。
 また、微生物以外でも、植物、動物において様々な宿主・ベクター系が確立されており、特に昆虫(例えば、蚕)などの動物中(Nature 315,592-594(1985))や、菜種、トウモロコシ、ジャガイモなどの植物中に大量に異種タンパク質を発現させる系、及び大腸菌無細胞抽出液や小麦胚芽などの無細胞タンパク質合成系を用いた系が確立されており、好適に利用できる。
 本発明の製造方法では、2-オキソグルタル酸依存型L-リジン水酸化酵素、前記酵素を含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を、2-オキソグルタル酸の存在下、反応基質であるL-リジンに作用させることにより、下記一般式(I)
Figure JPOXMLDOC01-appb-C000013
(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)
で表されるヒドロキシ-L-リジンを製造することができる。
 上記一般式(I)のR1、R2、R3は、それぞれ、最終的に得たい化合物を考慮して選択すればよいが、中でも、R1、R2およびR3の一つまたは二つがヒドロキシル基であることが好ましく、R1、R2およびR3の一つがヒドロキシル基であることがより好ましい。
 本発明の製造方法は、L-リジンに、2-オキソグルタル酸、及び2-オキソグルタル酸依存型L-リジン水酸化酵素またはそれを含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を作用させることができれば特に制限はないが、通常、水性媒体中、もしくは該水性媒体と有機溶媒との混合物中で行われることが好ましい。本発明の製造方法は、さらに、2価の鉄イオンの存在下で行なうことが好ましい。
 前記水性媒体としては、例えば、水又は緩衝液が挙げられる。
 また、前記有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、tert-ブタノール、アセトン、ジメチルスルホキシド等、反応基質の溶解度が高いものを使用することができる。前記有機溶媒としてはまた、反応副産物の除去等に効果のある、酢酸エチル、酢酸ブチル、トルエン、クロロホルム、n-ヘキサン等を使用することもできる。
 反応基質となるL-リジンは、通常、基質濃度が0.01%w/v~90%w/v、好ましくは0.1%w/v~30%w/vの範囲で用いられる。反応基質は、反応開始時に一括して添加してもよいが、酵素の基質阻害があった場合の影響を減らすという点や生成物の蓄積濃度を向上させるという観点からすると、連続的もしくは間欠的に添加することが望ましい。
 反応に必要な2-オキソグルタル酸は、通常、基質と等モルまたはそれ以上、好ましくは等モル~1.2倍モルの範囲で添加する。2-オキソグルタル酸は、反応開始時に一括して添加してもよいが、酵素への阻害作用があった場合の影響を減らすという点や生成物の蓄積濃度を向上させるという観点からすると、連続的もしくは間欠的に添加することが望ましい。または2-オキソグルタル酸の代わりにグルコース等の宿主が代謝可能な安価な化合物を添加し、宿主に代謝させ、その過程で生じる2-オキソグルタル酸を反応に使用させることも可能である。
 本発明の製造方法は、2価の鉄イオンの存在下で行なうことが好ましい。2価の鉄イオンは、通常0.01mM~100mM、好ましくは0.1mM~10mMの範囲で用いることが好ましい。2価の鉄イオンは、硫酸鉄などとして、反応開始時に一括して添加することができるが、反応中に、添加した2価の鉄イオンが3価に酸化されたり、沈殿を形成して減少してしまった場合には追添加することも効果的である。また、本発明のL-リジン水酸化酵素、該酵素を含む細胞、該細胞の調製物または該細胞を培養して得られる培養液に既に充分な量の2価の鉄イオンが含まれている場合は必ずしも添加しなくてもよい。
 反応は、通常4℃~60℃、好ましくは10℃~45℃の反応温度で、通常pH3~11、好ましくはpH5~8で行われる。反応時間は通常、1時間~72時間程度である。
 反応液に添加する細胞及び/又は該細胞調製物の量は、細胞を添加する場合は反応液にその細胞の濃度が通常、湿菌体重で0.1%w/v~50%w/v程度、好ましくは1%w/v~20%w/vとなるように添加し、酵素のような調製物を用いる場合には、酵素の比活性を求め、添加したときに上記細胞濃度になるような量を添加する。
 本発明の製造方法により生成するヒドロキシ-L-リジンは、反応終了後、反応液中の菌体やタンパク質などを遠心分離、膜処理などにより分離した後に、1-ブタノール、tert-ブタノールなどの有機溶媒による抽出、蒸留、イオン交換樹脂やシリカゲル等を用いたカラムクロマトグラフィー、等電点における晶析や一塩酸塩、二塩酸塩、カルシウム塩等での晶析等を適宜組み合わせることにより精製を行うことができる。
<ヒドロキシ-L-ピペコリン酸の製造方法>
 本発明の方法により製造されたヒドロキシ-L-リジンはヒドロキシ-L-ピペコリン酸の製造に使用できる。
 本発明のヒドロキシ-L-リジンからヒドロキシ-L-ピペコリン酸を製造する方法としては、以下の3種類の方法が挙げられる。
 本発明のヒドロキシ-L-リジンからヒドロキシ-L-ピペコリン酸を製造する第1の方法は以下に示すとおりである。
<I>ヒドロキシ-L-リジンに、<I-1>L-アミノ酸オキシダーゼ、L-アミノ酸デヒドロゲナーゼ、L-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素を反応させるか、もしくは<I-2>D-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素、およびアミノ酸ラセマーゼを反応させることにより、一般式(II)で表される1位に二重結合をもつ環状アミノ酸を生成させた後、得られた1位に二重結合をもつ環状アミノ酸に、N-メチル-L-アミノ酸デヒドロゲナーゼを作用させて、下記一般式(III)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
Figure JPOXMLDOC01-appb-C000014
(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)
 以下、スキームを例示して説明する。
Figure JPOXMLDOC01-appb-C000015
 スキーム1-1はL-アミノ酸オキシダーゼ、L-アミノ酸デヒドロゲナーゼ、L-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素とN-メチル-L-アミノ酸デヒドロゲナーゼを使用する場合である(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)。
 まず、L-アミノ酸オキシダーゼ、L-アミノ酸デヒドロゲナーゼ、L-アミノ酸トランスフェラーゼよりなる群から選ばれる酵素により化合物(a)(ヒドロキシ-L-リジン)を化合物(b)に変換し、化合物(b)は自発的に化合物(c)に変換される。そして、化合物(c)はN-メチル-L-アミノ酸デヒドロゲナーゼ(NMAADH)により化合物(d)(ヒドロキシ-L-ピペコリン酸)に変換される。
 ここで、L-アミノ酸オキシダーゼとしては、ヒドロキシ-L-リジンの2位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、配列番号26のアミノ酸配列を含むタンパク質、または配列番号26と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 L-アミノ酸デヒドロゲナーゼとしては、ヒドロキシ-L-リジンの2位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、Nature, 1966, 211, 854に記載のタンパク質が挙げられる。
 L-アミノ酸トランスフェラーゼ(L-アミノ酸アミノトランスフェラーゼ)としては、ヒドロキシ-L-リジンの2位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、Eur. J. Biochem., 1998, 254, 347に記載のアミノ酸配列を含むタンパク質または、該アミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 N-メチル-L-アミノ酸デヒドロゲナーゼとしては、上記一般式(II)の化合物をヒドロキシ-L-ピペコリン酸に変換する反応を触媒しうるものであれば特に制限されないが、例えば、配列番号24のアミノ酸配列を含むタンパク質または、配列番号24と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 スキーム1-2はD-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素、およびアミノ酸ラセマーゼと、N-メチル-L-アミノ酸デヒドロゲナーゼを使用する場合である(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)。
 まず、アミノ酸ラセマーゼにより化合物(a)(ヒドロキシ-L-リジン)をD体の化合物(a’)(ヒドロキシ-D-リジン)に変換し、これをD-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼよりなる群から選ばれる酵素により化合物(b)に変換し、化合物(b)は自発的に化合物(c)に変換される。そして、化合物(c)はN-メチル-L-アミノ酸デヒドロゲナーゼ(NMAADH)により化合物(d)(ヒドロキシ-L-ピペコリン酸)に変換される。
 アミノ酸ラセマーゼは、ヒドロキシ-L-リジンをヒドロキシ-D-リジンに変換する反応を触媒しうるものであれば特に制限されないが、例えば、配列番号30のアミノ酸配列を含むタンパク質または、配列番号30と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 D-アミノ酸オキシダーゼは、ヒドロキシ-D-リジンの2位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、Biochemistry, 2005, 70, 40に記載のアミノ酸配列を含むタンパク質または、該アミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 D-アミノ酸デヒドロゲナーゼは、ヒドロキシ-D-リジンの2位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、Microbiology, 2010, 156(Pt 1), 60およびProc. Natl. Acad. Sci. U. S. A., 2009, 106, 906に記載のDauAまたは、DauAと80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 D-アミノ酸トランスフェラーゼ(D-アミノ酸アミノトランスフェラーゼ)は、ヒドロキシ-D-リジンの2位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、Protein Eng, 1998, 11, 53に記載のD-AATまたは、D-AATと80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 N-メチル-L-アミノ酸デヒドロゲナーゼとしては、上記一般式(II)の化合物をヒドロキシ-L-ピペコリン酸に変換する反応を触媒しうるものであれば特に制限されないが、例えば、配列番号24のアミノ酸配列を含むタンパク質または、配列番号24と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 スキーム1-1および1-2の反応は各酵素反応を別々に行ってもよいが、同一反応系で連続的に行うことが好ましい。
 より好ましくは、各反応を触媒する酵素を含む細胞をヒドロキシ-L-リジンと反応させることにより行うことが好ましい。各反応を触媒する酵素を含む細胞は本来的にこれらの酵素を有する微生物を用いてもよいが、各酵素をコードするDNAで形質転換された細胞を用いることが好ましく、スキーム1-1の場合は、L-アミノ酸オキシダーゼ、L-アミノ酸デヒドロゲナーゼ、L-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素とN-メチル-L-アミノ酸デヒドロゲナーゼをそれぞれコードするDNAで形質転換された細胞を用いることが好ましく、スキーム1-2の場合は、D-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素とアミノ酸ラセマーゼとN-メチル-L-アミノ酸デヒドロゲナーゼをそれぞれコードするDNAで形質転換された細胞を用いることが好ましい。
 また、これらのDNAはそれぞれ染色体に組み込まれてもよいし、単一のベクター中にこれらのDNAを導入し、宿主を形質転換してもよいし、これらのDNAをそれぞれ別個にベクターに導入した後に宿主を形質転換してもよい。
 なお、微生物等の宿主細胞の形質転換方法、宿主の種類等は2-オキソグルタル酸依存型L-リジン水酸化酵素の項目で述べたのと同様である。
 なお、N-メチル-L-アミノ酸デヒドロゲナーゼは補酵素にNAD(P)Hを必要とするため、NAD(P)Hの再生系も共存させることが好ましい。すなわち、上記NAD(P)Hを添加する場合には、NAD(P)Hから生成するNAD(P)+をNAD(P)Hへの再生させることが生産効率向上のため好ましく、再生方法としては、1)宿主微生物自体のNAD(P)+還元能を利用する方法、2)NAD(P)+からNAD(P)Hを生成する能力を有する微生物やその調製物、あるいは、グルコース脱水素酵素、ギ酸脱水素酵素、アルコール脱水素酵素、アミノ酸脱水素酵素、有機酸脱水素酵素(リンゴ酸脱水素酵素など)などのNAD(P)Hの再生に利用可能な酵素(再生酵素)を反応系内に添加する方法、3)形質転換体を製造するに当たり、NAD(P)Hの再生に利用可能な酵素である上記再生酵素類の遺伝子を本発明のDNAと同時に宿主に導入する方法が挙げられる。
 このうち、上記1)の方法においては、反応系にグルコースやエタノール、ギ酸などを添加する方が好ましい。
 また、上記2)の方法においては、上記再生酵素類を含む微生物、該微生物菌体をアセトン処理したもの、凍結乾燥処理したもの、物理的または酵素的に破砕したもの等の菌体調製物、該酵素画分を粗製物あるいは精製物として取り出したもの、さらには、これらをポリアクリルアミドゲル、カラギーナンゲル等に代表される担体に固定化したもの等を用いてもよく、また市販の酵素を用いてもよい。この場合、再生酵素の基質となる化合物、例えば、グルコースデヒドロゲナーゼを利用する場合のグルコース、ギ酸デヒドロゲナーゼを利用する場合のギ酸、アルコールデヒドロゲナーゼを利用する場合のエタノールもしくはイソプロパノールなどの添加も必要となる。
 スキーム1-1、または1-2の反応を同一反応系で連続的に行う場合は、ヒドロキシ-L-リジン、各酵素をコードする遺伝子群で形質転換された細胞、該形質転換体された細胞の調製物および/または該形質転換体された細胞を培養して得られた培養液を含有する水性媒体中もしくは該水性媒体と有機溶媒との混合物中で行うことが好ましい。
 前記水性媒体としては、水又は緩衝液が挙げられる。また、前記有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、tert-ブタノール、アセトン、ジメチルスルホキシド等、反応基質の溶解度が高いものを使用することができる。有機溶媒としてはまた、反応副産物の除去等に効果のある、酢酸エチル、酢酸ブチル、トルエン、クロロホルム、n-ヘキサン等を使用することもできる。
 反応基質となるヒドロキシ-L-リジンは、通常、基質濃度が0.01%w/v~90%w/v、好ましくは0.1%w/v~30%w/vの範囲で用いられる。反応基質は、反応開始時に一括して添加してもよいが、酵素の基質阻害があった場合の影響を減らすという点や生成物の蓄積濃度を向上させるという観点からすると、連続的もしくは間欠的に添加することが望ましい。
 必要に応じて、NAD(P)Hなどの補酵素を、通常、0.001mM~100mM、好ましくは0.01mM~10mM添加する。
 反応は、通常4℃~60℃、好ましくは10℃~45℃の反応温度で、通常pH3~11、好ましくはpH5~8で行われる。反応時間は通常、1時間~72時間程度である。
 本発明の方法により生成するヒドロキシ-L-ピペコリン酸は、反応終了後、反応液中の菌体やタンパク質などを遠心分離、膜処理などにより分離した後に、1-ブタノール、tert-ブタノールなどの有機溶媒による抽出、蒸留、イオン交換樹脂やシリカゲル等を用いたカラムクロマトグラフィー、等電点における晶析や一塩酸塩、二塩酸塩、カルシウム塩等での晶析等を適宜組み合わせることにより精製を行うことができる。
 本発明のヒドロキシ-L-リジンからヒドロキシ-L-ピペコリン酸を製造する第2の方法は以下に示すとおりである。
<II>ヒドロキシ-L-リジンに、L-リジン 6-オキシダーゼ、L-リジン 6-デヒドロゲナーゼ、L-リジン 6-トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素を反応させ、一般式(IV)で表される6位に二重結合をもつ環状アミノ酸を生成させた後、得られた6位に二重結合をもつ環状アミノ酸に、ピロリン-5-カルボン酸レダクターゼを作用させて、一般式(III)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
Figure JPOXMLDOC01-appb-C000017
(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)
 以下、スキームを例示して説明する(式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)。
Figure JPOXMLDOC01-appb-C000018
 まず、L-リジン 6-オキシダーゼ、L-リジン 6-デヒドロゲナーゼ、L-リジン 6-トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素により化合物(a)(ヒドロキシ-L-リジン)を化合物(b)に変換し、化合物(b’)は自発的に化合物(c’)に変換される。そして、化合物(c’)はピロリン-5-カルボン酸(P5C)レダクターゼにより化合物(d)(ヒドロキシ-L-ピペコリン酸)に変換される。
 L-リジン 6-オキシダーゼは、ヒドロキシ-L-リジンの6位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、Biochim. Biophys. Acta., 2006, 1764 1577に記載のlodAまたは、lodAと80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 L-リジン 6-デヒドロゲナーゼは、ヒドロキシ-L-リジンの6位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、J. Biochem., 105, 1002-1008 (1989)に記載のアミノ酸配列を含むタンパク質または、該アミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 L-リジン 6-トランスフェラーゼ(リジン- 6 - アミノトランスフェラーゼ)は、ヒドロキシ-L-リジンの6位のアミノ基をオキソ基に変換する反応を触媒しうるものであれば特に制限されないが、例えば、国際公開公報WO2001/048216号に記載のアミノ酸配列を含むタンパク質または、該アミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 ピロリン-5-カルボン酸(P5C)レダクターゼは、一般式(IV)で表される化合物を一般式(III)で表されるヒドロキシ-L-ピペコリン酸に変換する反応を触媒しうるものであれば特に制限されないが、例えば、国際公開公報WO2001/048216号に記載のアミノ酸配列を含むタンパク質または、該アミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 スキーム2の反応は各酵素反応を別々に行ってもよいが、同一反応系で連続的に行うことが好ましい。
 より好ましくは、各反応を触媒する酵素を含む細胞をヒドロキシ-L-リジンと反応させることにより行うことが好ましい。各反応を触媒する酵素を含む細胞は本来的にこれらの酵素を有する細胞を用いてもよいが、各酵素をコードするDNAで形質転換された細胞を用いることが好ましく、具体的には、L-リジン 6-オキシダーゼ、L-リジン 6-デヒドロゲナーゼ、L-リジン 6-トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素とピロリン-5-カルボン酸(P5C)レダクターゼをそれぞれコードするDNAで形質転換された細胞を用いることが好ましい。
 なお、微生物等の宿主細胞の形質転換方法、宿主の種類等は2-オキソグルタル酸依存型L-リジン水酸化酵素の項目で述べたのと同様である。
 スキーム2の反応を同一反応系で連続的に行う場合は、ヒドロキシ-L-リジン、各酵素をコードする遺伝子群で形質転換された細胞、該形質転換体の調製物および/または該形質転換体を培養して得られた培養液を含有する水性媒体中もしくは該水性媒体と有機溶媒との混合物中で行うことが好ましい。
 反応条件、補酵素の添加および再生、ヒドロキシ-L-ピペコリン酸の回収方法は上記<I>の項で述べたのと同様である。
 本発明のヒドロキシ-L-リジンからヒドロキシ-L-ピペコリン酸を製造する第3の方法は以下に示すとおりである。
<III>ヒドロキシ-L-リジンに、リジンシクロデアミナーゼを作用させて、一般式(III)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
 リジンシクロデアミナーゼは、ヒドロキシ-L-リジンをヒドロキシ-L-ピペコリン酸に変換する反応を触媒しうるものであれば特に制限されないが、例えば、Biochimie 2007, 89, 591に記載のアミノ酸配列を含むタンパク質または、該アミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列を有し、該活性を保持するタンパク質が挙げられる。
 リジンシクロデアミナーゼによる反応は、リジンシクロデアミナーゼを含む細胞をヒドロキシ-L-リジンと反応させることにより行うことが好ましい。リジンシクロデアミナーゼを含む微生物は本来的にこれらの酵素を有する細胞を用いてもよいが、リジンシクロデアミナーゼをコードするDNAで形質転換された細胞を用いることが好ましい。
 なお、微生物等の宿主細胞の形質転換方法、宿主の種類等は2-オキソグルタル酸依存型L-リジン水酸化酵素の項目で述べたのと同様である。
 リジンシクロデアミナーゼによるヒドロキシ-L-リジンのヒドロキシ-L-ピペコリン酸への変換反応を行う場合は、ヒドロキシ-L-リジン、リジンシクロデアミナーゼをコードするDNAで形質転換された細胞、該形質転換体の調製物および/または該形質転換体を培養して得られた培養液を含有する水性媒体中もしくは該水性媒体と有機溶媒との混合物中で行うことが好ましい。
 反応条件、補酵素の添加および再生、ヒドロキシ-L-ピペコリン酸の回収方法は上記<I>の項で述べたのと同様である。
 なお、2-オキソグルタル酸依存型L-リジン水酸化酵素と、ヒドロキシ-L-リジンのヒドロキシ-L-ピペコリン酸への変換反応を行う酵素または酵素群を同時に用いてL-リジンから直接ヒドロキシ-L-ピペコリン酸を製造することもできるが、L-リジンに2-オキソグルタル酸依存型L-リジン水酸化酵素が作用する前に、ヒドロキシ-L-リジンのヒドロキシ-L-ピペコリン酸への変換反応を行う酵素または酵素群がL-リジンに作用し、L-ピペコリン酸が副生する可能性もあるため、ヒドロキシ-L-リジンのヒドロキシ-L-ピペコリン酸への変換反応を行う酵素または酵素群についてはL-リジンにくらべてヒドロキシ-L-リジンに優先的に作用するものを選択する必要がある。この場合、2-オキソグルタル酸依存型L-リジン水酸化酵素と、ヒドロキシ-L-リジンのヒドロキシ-L-ピペコリン酸への変換反応を行う酵素または酵素群のDNAで同時に宿主細胞を形質転換して用いてもよい。
 また、本発明の方法により製造されたヒドロキシ-L-リジンをヒドロキシ-L-ピペコリン酸の製造に使用する場合、ヒドロキシ-L-リジンの精製は省略し、ヒドロキシ-L-ピペコリン酸に変換した後のみに精製を行うことも可能である。
[実施例]
 以下、実施例により本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。
2-オキソグルタル酸依存型L-リジン水酸化酵素遺伝子のクローニング
 フラボバクテリウム・ジョンソネ( Flavobacterium johnsoniae)NBRC14942株由来L-アルギニンβヒドロキシラーゼVioCホモログHyl-1(GenBank Accession No. ABQ06186、配列番号2)をコードする遺伝子配列(hyl-1、配列番号1)を元に、hyl-1遺伝子の全長を増幅させるためのプライマーhyl1_F(配列番号13)とhyl1_R(配列番号14)を設計、合成した。フラボバクテリウム・ジョンソネの染色体DNAを鋳型とし、常法に従ってPCR反応を行い、約1.0kbpのDNA断片を得た。
 同様に、キネオコッカス・ラジオトレランス(Kineococcus radiotolerans)NBRC101839 株、キチノファーガ・ピネンシス(Chitinophaga pinensis)NBRC15968株、クリセオバクテリウム・グレウム(Chryseobacterium gleum)NBRC15054株、ニアステラ・コリエンシス(Niastella koreensis)NBRC106392株由来のVioCホモログについて、それぞれHyl-2(GenBank Accession No.ABS05421、配列番号4)、Hyl-3(GenBank Accession No.ACU60313、配列番号6)、Hyl-4(GenBank Accession No.EFK34737、配列番号8)、Hyl-5(GenBank Accession No.AEV99100、配列番号10)とした。各酵素をコードする遺伝子配列(hyl-2(配列番号3)、hyl-3(配列番号5)、hyl-4(配列番号7)、hyl-5(配列番号9))を元に、各遺伝子の全長を増幅させるためのプライマーを設計、合成した。hyl-2に対してはプライマーhyl2_f(配列番号15)とhyl2_r(配列番号16)、hyl-3に対してはプライマーhyl3_f(配列番号17)とhyl3_r(配列番号18)、hyl-4に対してはプライマーhyl4_f(配列番号19)とhyl4_r(配列番号20)、hyl-5に対してはプライマーhyl5_f(配列番号21)とhyl5_r(配列番号22)を合成し、各株の染色体DNAを鋳型とし常法に従ってPCR反応を行った。それぞれ約1.0kbpのDNA断片を得た。
 得られた5種のDNA断片をそれぞれ制限酵素NdeI、XhoIにより消化し、NdeI、XhoIにより消化したpET21a(Novagen)に定法に従ってライゲーションすることで、それぞれpEHYL1、pEHYL2、pEHYL3、pEHYL4、pEHYL5を得た。
 また、海洋性放線菌marine actinobacterium PHSC20C1由来Hyl-6(GenBank Accession No.EAR24255、配列番号12)をコードする遺伝子配列(hyl-6、配列番号11)をDNA2.0社にて人工合成し、pJExpress401(DNA2.0)に挿入されたプラスミドpJHYL6を作製した。
 次に得られた各プラスミドを用いて大腸菌(Eschelichia coli)BL21(DE3)(インビトロジェン製)を定法に従い形質転換し、組換え大腸菌BL21(DE3)/pEHYL1、BL21(DE3)/pEHYL2、BL21(DE3)/pEHYL3、BL21(DE3)/pEHYL4、BL21(DE3)/pEHYL5、BL21(DE3)/pJHYL6を得た。導入した遺伝子を発現する菌体を得るために、各組換え大腸菌についてアンピシリン、およびlacプロモーター誘導物質を含む液体LB培地を用いて30℃で培養し、培養約20時間目に集菌した。
休止菌体反応による2-オキソグルタル酸依存型L-リジン水酸化酵素の活性確認
 プラスチックチューブ内で5mM L-リジン、10mM 2-オキソグルタル酸、1mM L-アスコルビン酸、0.1mM硫酸鉄、そして、実施例1に準ずる方法で得られた組換え大腸菌を濁度OD600=10となるように反応液を混合した。調製された混合液0.5mlを30℃、pH7.0で3時間反応させた。反応産物を1-fluoro-2,4-dinitrophenyl-5-L-alaninamide(FDAA)により誘導体化し、その後HPLCにより分析した。その結果、図1,図2に示す通り、BL21(DE3)/pEHYL2、BL21(DE3)/pJHYL6が3-ヒドロキシリジン標準品の保持時間8.04分に一致する化合物を生成することが確認された。また、BL21(DE3)/pEHYL1、BL21(DE3)/pEHYL3、BL21(DE3)/pEHYL4、BL21(DE3)/pEHYL5が4-ヒドロキシリジン標準品の保持時間8.16分に一致する化合物を生成することが確認された。
 なお、HPLCによるヒドロキシリジン分析条件は以下の通りである。
 カラム:ナカライテスク社製COSMOSIL 5C18-AR-II(4.6mm×150mm)、移動相:50mMリン酸緩衝液(pH2.7)、流速:1.0mL/分、カラム温度:40℃、UV:340nm
(2S,3S)-3-ヒドロキシリジンの合成
 1Lジャーファーメンターに、1Mリン酸カリウム緩衝液(pH7.0)35mL、脱塩水304mL、L-リジン塩酸塩1.28g、2-オキソグルタル酸2.05g、L-アスコルビン酸ナトリウム0.14g、硫酸鉄0.02g、アデカノールLG109 0.35g、及び実施例1に準ずる方法で得られた組換え大腸菌BL21(DE3)/pEHYL2の湿菌体8gを混合し、30℃、pH7.0、撹拌数500rpm、空気の通気量2.0vvmで17時間反応させた。反応終了はHPLCによる分析によりL-リジンのピーク消失を確認することで判断した。反応終了後の液から遠心分離および精密ろ過により菌体及び菌体残渣を取り除き、390gの濾液が得られた。
 なお、HPLCによるL-リジン分析条件は以下の通りである。
 カラム:住化分析センター社製SUMICHIRAL OA-6100(4.6mm×250mm)、移動相:1mM硫酸銅、流速:1.0mL/分、カラム温度:30℃、UV:254nm
 濾液390gをイオン交換樹脂カラム(ダイヤイオン(登録商標)SK-1B(H型)60.0g)に通液し、水で洗浄した後、150mmolのアンモニアを含む水溶液で溶出させた。アンモニア溶出液を濃縮し、(2S,3S)-3-ヒドロキシリジン1.0g(6.17mmol、収率88%)を得た。
 得られた(2S,3S)-3-ヒドロキシリジンの物性の測定結果を以下に示す。
 1H-NMR(400MHz,D2O)δ,1.45-1.58(2H,m),1.63-1.73(1H,m),1.74-1.88(1H,m),2.93-3.04(2H,m),3.47(1H,d,J=4.3Hz),3.89(1H,dt,J=8.4, 4.5Hz)
(2S,3S)-3-ヒドロキシリジンの立体化学決定
 フラスコに、実施例3に準ずる方法で得られた(2S,3S)-3-ヒドロキシリジン8.3mg(0.051mmol)、1mol/L水酸化ナトリウム水溶液0.26ml、ベンジルオキシカルボニルクロリド18μl(0.13mmol)を添加し、室温で1時間撹拌した。さらに1mol/L水酸化ナトリウム水溶液0.26ml、ベンジルオキシカルボニルクロリド18μl(0.13mmol)を添加し、室温で一晩反応させた後、テトラヒドロフラン0.5mlを添加して、60℃でさらに2時間反応させた。室温に冷却後、水酸化ナトリウム95mgを添加し、室温で一晩反応させた。反応液をトルエン-テトラヒドロフラン(1:1)で2回洗浄した後、濃塩酸250μlを添加して強酸性にし、さらに酢酸エチルで3回洗浄した後、水層を1-ブタノールで4回抽出した。1-ブタノール層を無水硫酸マグネシウムで乾燥した後に濃縮し、白色固体として(4S,5S)-5-(3-ベンジルオキシカルボニルアミノプロピル)-2-オキソ-4-オキサゾリジンカルボン酸14.6mg(0.045mmol、収率89%)を得た。
 NOESY測定の結果を下式に示す。3位水素原子(H4)と4位水素原子(H5)の間にクロスピークが観測され、4位と1’位間には観測されなかったことから、4位と5位の置換基はシス配置であることが確かめられた。酵素反応に用いたリジンの絶対配置はSであることから、本実施例で得られた5-(3-ベンジルオキシカルボニルアミノプロピル)-2-オキソ-4-オキサゾリジンカルボン酸は(4S,5S)の立体化学を持ち、その原料である3-ヒドロキシリジンは(2S,3S)の立体化学を有することが確かめられた。
 得られた(4S,5S)-5-(3-ベンジルオキシカルボニルアミノプロピル)-2-オキソ-4-オキサゾリジンカルボン酸の物性の測定結果を以下に示す。
1H-NMR(400MHz,MeOH-d4)δ,1.39-1.53(3H,m,H1',H2'x2),1.59-1.68(1H,m,H1'),3.02-3.08(2H,m,H3'),3.60-3.64(1H,m,H4),3.93-4.00(1H,m,H5),4.90-5.02(2H,m,Bn),7.18-7.28(5H,m,Bn).
Figure JPOXMLDOC01-appb-C000019
[参考例1]
[N-メチル-L-アミノ酸デヒドロゲナーゼ(以下、DpkA)、L-アミノ酸オキシダーゼ(以下、AIP)、グルコース-1-デヒドロゲナーゼ(以下、GDH)、及びアミノ酸ラセマーゼ(以下、KR)を共発現した組換え大腸菌JM109/pKW32(dpkA,aip,gdh,kr)の調製例]
(1)遺伝子のクローニング
 シュードモナス・プチダ(Pseudomonas putida)由来DpkA(GenBank Accession No.BAD89743、配列番号24)をコードする遺伝子配列(以下dpkA、配列番号23)を元に、dpkA遺伝子の全長を増幅させるためのプライマーdpkA_F(配列番号31)とdpkA_R(配列番号32)を設計、合成した。シュードモナス・プチダ(Pseudomonas putida)の染色体DNAを鋳型とし、常法に従ってPCRを行い、約1.0kbpのDNA断片を得た。
 マサバ(Scomber japonicus)由来のL-アミノ酸オキシダーゼ(GenBank Accession No.CAC00499)からシグナルペプチドを除いた配列にメチオニンを付加したタンパク質AIP(配列番号26)をコードする遺伝子配列(以下aip、配列番号25)を設計し、人工合成した。さらにaip遺伝子の全長を増幅させるためのプライマーaip_F(配列番号33)とaip_R(配列番号34)を設計、合成した。常法に従ってPCRを行い、約1.5kbpのDNA断片を得た。
 バチルス・サチルス(Bacillus subtilis)由来GDH(GenBank Accession No.NP_388275)において96番目のアミノ酸残基のグルタミン酸をアラニンに置換したタンパク質(配列番号28)をコードする遺伝子配列(以下gdh、配列番号27)を元に、gdhの遺伝子の全長を増幅させるためのプライマーgdh_F(配列番号35)とgdh_R(配列番号36)を設計、合成した。
 常法に従ってPCRを行い約0.8kbpのDNA断片を得た。
 シュードモナス・プチダ(Pseudomonas putida)由来のKR(GenBank Accession No. NP_745855、配列番号30)をコードする遺伝子配列(以下kr、配列番号29)を元に、rk遺伝子の全長を増幅させるためのプライマーkr_F(配列番号37)とkr_R(配列番号38)を設計、合成した。シュードモナス・プチダ(Pseudomonas putida)の染色体DNAを鋳型とし、常法に従ってPCRを行い、約1.2kbpのDNA断片を得た。
(2)発現用プラスミドの調製
 上記(1)で得られたDNA断片をそれぞれ制限酵素EcoRI及びXbaIにより消化し、MunI及びXbaIにより消化した国際公開公報WO2012/029819号に記載のプラスミドpKW32にLigation-Convenience Kit(ニッポンジーン社製)を用いてtrcプロモーターの下流に導入し、それぞれpKW32dpkA,pKW32aip,pKW32gdh,pKW32krを得た。
 続いて、pKW32aipをSpeI及びNdeIにより消化してaipを含む約2.4kbpのDNA断片を、pKW32dpkAをXbaI及びNdeIにより消化して得られた開環プラスミド約4.2kbpのdpkAの下流に導入して、pKW32(dpkA,aip)を得た。
 さらに、pKW32gdhをSpeI及びNdeIにより消化してgdhを含む約1.7kbpのDNA断片を、pKW32(dpkA、aip)をXbaI及びNdeIにより消化して得られた開環プラスミド約5.7kbpのaipの下流に導入して、pKW32(dpkA,aip,gdh)を得た。
 最後に、pKW32krをSpeI及びNdeIにより消化してkrを含む約2.1kbpのDNA断片を、pKW32(dpkA,aip,gdh)をXbaI及びNdeIにより消化して得られた開環プラスミド約6.5kbpのgdhの下流に導入して、pKW32(dpkA,aip,gdh,kr)を得た。
(3)発現株の調製
 上記(2)で得られたプラスミドpKW32(dpkA,aip,gdh,kr)を用いて、大腸菌(Escherichia coli)JM109(タカラバイオ株式会社製)を常法に従い形質転換し、組換え大腸菌JM109/pKW32(dpkA,aip,gdh,kr)を得た。
(2S,3S)-3-ヒドロキシピペコリン酸の製造
 プラスチックチューブに、1Mトリスヒドロキシメチルアミノメタン緩衝液(pH8.0)0.75mL、脱塩水9.21mL、実施例3で得られた(2S,3S)-3-ヒドロキシリジン86mg、50mM NADPH 0.083ml、1.0Mグルコース0.7ml、及び参考例1で得られた組換え大腸菌JM109/pKW32(dpkA,aip,gdh,kr)の100g/Lけん濁液1.25mlを混合し、30℃、pH8.0、撹拌数1000rpmで20時間反応させた。反応終了はHPLCによる分析により(2S,3S)-3-ヒドロキシリジンのピーク消失を確認することで判断した。反応終了後の液から、遠心分離により菌体及び菌体残渣を取り除いた10.5gの上清を得た。
 HPLCによる(2S,3S)-3-ヒドロキシリジン分析条件は以下の通りである。
 カラム:SUPELCO社製CLC-D(4.6mm×150mm)、移動相:2mM硫酸銅、流速:1.0mL/分、カラム温度:30℃、UV:254nm
 上清10.5gをイオン交換樹脂カラム(ダイヤイオン(登録商標)SK-1B(H型)4.0g)に通液し、水で洗浄した後、16.4mmolのアンモニアを含む水溶液で溶出させた。アンモニア溶出液を濃縮し、褐色固形物質255mgを取得した。NMR解析の結果、この固形物質は、(2S,3R)-3-ヒドロキシピペコリン酸を20重量%(0.35mmol、収率66.3%)、トリスヒドロキシメチルアミノメタンを80重量%含有する混合物であった。
 得られた固形物質の物性の測定結果を以下に示す。
1H-NMR(400MHz, D2O)δ,1.38-1.56(2H, m),1.73-1.85(2H, m),2.71-2.79(1H, m),3.04-3.11(1H, m),3.23(1H, d, J=7.6Hz),3.79-3.86(1H, m).
(2S,4R)-4-ヒドロキシリジンの合成
 1Lジャーファーメンターに、脱塩水335mL、L-リジン塩酸塩1.28g、2-オキソグルタル酸2.05g、L-アスコルビン酸ナトリウム0.14g、硫酸鉄0.02g、アデカノールLG109 0.35g、及び実施例1に準ずる方法で得られた組換え大腸菌BL21(DE3)/pEHYL1の湿菌体8gを混合し、30℃、pH6.8、撹拌数500rpm、空気の通気量2.0vvmで19時間反応させた。反応終了はHPLCによる分析によりL-リジンのピーク消失を確認することで判断した。反応終了後の液から、遠心分離および精密ろ過により菌体及び菌体残渣を取り除いた。その結果345gの濾液が得られた。
 なお、HPLCによるL-リジン分析条件は以下の通りである。
 カラム:住化分析センター社製SUMICHIRAL OA-6100(4.6mm×250mm)、移動相:1mM硫酸銅、流速:1.0mL/分、カラム温度:30℃、UV:254nm
 得られた濾液345gをNH3で置換したイオン交換樹脂カラム(ダイヤイオン(登録商標)SK-1B(H型)40.0g)に通液し、水で洗浄した後、64mmolのアンモニアを含む水溶液で溶出させた。アンモニア溶出液を濃縮し、(2S,4R)-4-ヒドロキシリジン1.1g(6.79mmol、収率97%)を得た。
 得られた(2S,4R)-4-ヒドロキシリジンの物性の測定結果を以下に示す。
1H-NMR(400MHz,D2O)δ,1.50-1.65(3H,m),1.71(1H,ddd,J=14.4,9.1,4.3Hz),2.62-2.75(2H,m),3.32(1H,dd,J=8.6,4.8Hz),3.72-3.80(1H,m).
(2S,4R)-4-ヒドロキシリジンの立体化学決定
 フラスコに、実施例6で得られた(2S,4R)-4-ヒドロキシリジン47mg(0.30mmol)、水0.2ml、6N塩酸0.2mlを添加し、室温で1時間反応させた。反応液を濃縮し、白色結晶として粗(3S,5R)-3-アミノ-5-(2-アミノエチル)-2(3H)-ジヒドロフラノン二塩酸塩67mgを得た。
 得られた粗(3S,5R)-3-アミノ-5-(2-アミノエチル)-2(3H)-ジヒドロフラノン二塩酸塩42mg(0.19mmol)、トリエチルアミン0.56ml(4.0mmol)、ジクロロメタン1mlをフラスコ仕込み、氷冷下トリフルオロ酢酸無水物0.14ml(1.0mmol)を添加した。2時間撹拌した後反応液を濃縮し、シリカゲルカラムクロマトグラフィーで精製した。得られた油状物質を酢酸エチルに溶解し、炭酸カリウム水溶液、飽和食塩水で洗浄した。水層を酢酸エチルで再抽出し、得られた有機層を硫酸マグネシウムで乾燥、有機層を濃縮し、褐色油状物質43mgを取得した。NMR解析の結果、この油状物質は、(3S,5R)-3-トリフルオロアセチルアミノ-5-(2-トリフルオロアセチルアミノエチル)-2(3H)-ジヒドロフラノンを34重量%(0.044mmol、収率23%)、トリエチルアミン・トリフルオロ酢酸塩を66重量%含有する混合物であった。
 NOESY測定の結果を下式に示す。3位水素原子(H3)と5位水素原子(H5)の間、及び4位水素原子の一方(H4a)と、3位及び5位の水素原子の間にクロスピークが観測されたことから、3位と5位の置換基はシス配置であることが確かめられた。酵素反応に用いたリジンの絶対配置はSであることから、3-トリフルオロアセチルアミノ-5-(2-トリフルオロアセチルアミノエチル)-2(3H)-ジヒドロフラノンは(3S,5R)の立体化学を持ち、その原料である4-ヒドロキシリジンは(2S,4R)の立体化学を有することが確かめられた。
 得られた(3S,5R)-3-トリフルオロアセチルアミノ-5-(2-トリフルオロアセチルアミノエチル)-2(3H)-ジヒドロフラノンの物性の測定結果を以下に示す。
1H-NMR(400MHz,CDCl3)δ1.93-2.22(3H,m,H4b,H1'x2),2.76(1H,ddd,J=12.6,8.8,5.6Hz,H4a),3.51-3.56(2H,m,H2'),4.52-4.60(1H,m,H5),4.75(1H,dd,J=11.9,9.1Hz,H3),7.86(1H,brs,NH),8.87(1H,brs,NH).
Figure JPOXMLDOC01-appb-C000020
(2S,4R)-4-ヒドロキシピペコリン酸の製造
 プラスチックチューブに、1Mトリスヒドロキシメチルアミノメタン緩衝液(pH8.0)0.75mL、脱塩水9.21mL、実施例6で得られた(2S,4R)-4-ヒドロキシリジン86mg、50mM NADPH 0.083ml、1.0Mグルコース0.7ml、及び参考例1で得られた組換え大腸菌JM109/pKW32(dpkA,aip,gdh,kr)の100g/Lけん濁液1.25mlを混合し、30℃、pH8.0、撹拌数1000rpmで20時間反応させた。反応終了はHPLCによる分析により(2S,4R)-4-ヒドロキシリジンのピーク消失を確認することで判断した。反応終了後の液から、遠心分離により菌体及び菌体残渣を取り除いた上清10.5gを得た。
 HPLCによる(2S,4R)-4-ヒドロキシリジン分析条件は以下の通りである。
 カラム:SUPELCO社製CLC-D(4.6mm×150mm)、移動相:2mM硫酸銅、流速:1.0mL/分、カラム温度:30℃、UV:254nm
 上清10.5gをイオン交換樹脂カラム(ダイヤイオン(登録商標)SK-1B(H型)4.0g)に通液し、水で洗浄した後、16.4mmolのアンモニアを含む水溶液で溶出させた。アンモニア溶出液を濃縮し、褐色固形物質219mgを取得した。NMR解析の結果、この固形物質は、(2S,4R)-4-ヒドロキシピペコリン酸を22重量%(0.33mmol、収率62.6%)、トリスヒドロキシメチルアミノメタンを78重量%含有する混合物であった。
 得られた(2S,4R)-4-ヒドロキシピペコリン酸の物性の測定結果を以下に示す。
1H-NMR(400MHz, D2O)δ,1.28-1.45(2H, m),1.91-1.99(1H, m),2.26-2.33(1H, m),2.77(1H, td, J=13.2, 3.1Hz),3.25(1H, ddd, J=13.2, 4.4, 2.6Hz),3.36-3.41(1H, m),3.78(1H, tt, J=11.1, 4.5Hz).
 医薬品の中間体等として有用なヒドロキシ-L-リジンの製造法、および得られたヒドロキシ-L-リジンを利用したヒドロキシ-L-ピペコリン酸の製造法として、使用できる。

Claims (9)

  1.  L-リジンに2-オキソグルタル酸依存型L-リジン水酸化酵素またはそれを含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を作用させて、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1、R2およびR3はそれぞれ水素原子もしくはヒドロキシル基を示し、R1、R2およびR3の少なくとも一つはヒドロキシル基を示す)で表されるヒドロキシ-L-リジンを生成させることを特徴とする、ヒドロキシ-L-リジンの製造方法。
  2.  前記2-オキソグルタル酸依存型L-リジン水酸化酵素が、以下の(A)、(B)または(C)に示すポリペプチドを含む、請求項1に記載のヒドロキシ-L-リジンの製造方法:
     (A) 配列番号2,4,6,8,10または12で表されるアミノ酸配列を有するポリペプチド;
     (B) 配列番号2,4,6,8,10または12で表されるアミノ酸配列において、1または数個のアミノ酸が欠失、置換及び/または付加されたアミノ酸配列を有し、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド;または
     (C) 配列番号2,4,6,8,10または12で表されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列を有し、かつ、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド。
  3.  前記2-オキソグルタル酸依存型L-リジン水酸化酵素を含む細胞が、前記2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAで形質転換された細胞である、請求項1または請求項2に記載のヒドロキシ-L-リジンの製造方法。
  4.  前記2-オキソグルタル酸依存型L-リジン水酸化酵素をコードするDNAが以下の(D)、(E)または(F)に示すDNAを含む、請求項3に記載のヒドロキシ-L-リジンの製造方法:
     (D) 配列番号1、3、5、7、9または11で表される塩基配列を有するDNA;
     (E) 配列番号1、3、5、7、9または11で表される塩基配列において1または数個の塩基が置換、欠失及び/または付加された塩基配列を含み、かつ2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチドをコードするDNA;または
     (F) 配列番号1、3、5、7、9または11で表される塩基配列の相補鎖とストリンジェントな条件でハイブリダイズする塩基配列を含み、かつ2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチドをコードするDNA。
  5.  前記2-オキソグルタル酸依存型L-リジン水酸化酵素またはそれを含む細胞、前記細胞の調製物もしくは前記細胞を培養して得られた培養液を、2-オキソグルタル酸、および2価の鉄イオンの存在下、前記L-リジンに作用させる、請求項1~4のいずれか一項に記載のヒドロキシ-L-リジンの製造方法。
  6.  請求項1~5のいずれか一項に記載の製造方法によりヒドロキシ-L-リジンを製造し、得られたヒドロキシ-L-リジンに、L-アミノ酸オキシダーゼ、L-アミノ酸デヒドロゲナーゼ、L-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素、もしくはD-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素およびアミノ酸ラセマーゼを反応させ、下記一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2およびR3は一般式(I)と同義である)で表される化合物を生成させた後、得られた化合物に、N-メチル-L-アミノ酸デヒドロゲナーゼを作用させて、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1、R2およびR3は一般式(I)と同義である)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
  7.  請求項1~5のいずれか一項に記載の製造方法によりヒドロキシ-L-リジンを製造し、得られたヒドロキシ-L-リジンに、L-リジン 6-オキシダーゼ、L-リジン 6-デヒドロゲナーゼ、L-リジン 6-トランスフェラーゼよりなる群から選ばれる少なくとも一種の酵素を反応させ、下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1、R2およびR3は一般式(I)と同義である)で表される化合物を生成させた後、得られた化合物に、ピロリン-5-カルボン酸レダクターゼを作用させて、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1、R2およびR3は一般式(I)と同義である)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
  8.  請求項1~5のいずれか一項に記載の製造方法によりヒドロキシ-L-リジンを製造し、得られたヒドロキシ-L-リジンに、リジンシクロデアミナーゼを作用させて、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R1、R2およびR3は一般式(I)と同義である)で表されるヒドロキシ-L-ピペコリン酸を生成させることを特徴とする、ヒドロキシ-L-ピペコリン酸の製造方法。
  9.  L-リジンに作用してヒドロキシ-L-リジンを生成する活性を有し、かつ、以下の(A)、(B)または(C)に示すポリペプチドを含む、2-オキソグルタル酸依存型L-リジン水酸化酵素タンパク質:
     (A) 配列番号2,4,6,8,10または12で表されるアミノ酸配列を有するポリペプチド;
     (B) 配列番号2,4,6,8,10または12で表されるアミノ酸配列において、1または数個のアミノ酸が欠失、置換及び/または付加されたアミノ酸配列を有し、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド;または
     (C) 配列番号2,4,6,8,10または12で表されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列を有し、かつ、2-オキソグルタル酸依存型L-リジン水酸化酵素活性を有するポリペプチド。
PCT/JP2014/053774 2013-02-19 2014-02-18 L-リジン水酸化酵素およびそれを利用したヒドロキシ-l-リジンの製造法およびヒドロキシ-l-ピペコリン酸の製造法 WO2014129459A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480002505.XA CN104685061B (zh) 2013-02-19 2014-02-18 L-赖氨酸羟化酶和利用了该l-赖氨酸羟化酶的羟基-l-赖氨酸的制造法及羟基-l-2-哌啶酸的制造法
US14/431,193 US9512452B2 (en) 2013-02-19 2014-02-18 L-lysine hydroxylase and production method for hydroxy-L-lysine and hydroxy-L-pipecolic acid using same
JP2015501458A JP6476110B2 (ja) 2013-02-19 2014-02-18 L−リジン水酸化酵素およびそれを利用したヒドロキシ−l−リジンの製造法およびヒドロキシ−l−ピペコリン酸の製造法
IN2381DEN2015 IN2015DN02381A (ja) 2013-02-19 2014-02-18
EP14754464.7A EP2889378B1 (en) 2013-02-19 2014-02-18 Method for producing hydroxy-l-lysine employing an l-lysine hydroxylase and method for producing hydroxy-l-pipecolic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-030311 2013-02-19
JP2013030311 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014129459A1 true WO2014129459A1 (ja) 2014-08-28

Family

ID=51391249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053774 WO2014129459A1 (ja) 2013-02-19 2014-02-18 L-リジン水酸化酵素およびそれを利用したヒドロキシ-l-リジンの製造法およびヒドロキシ-l-ピペコリン酸の製造法

Country Status (6)

Country Link
US (1) US9512452B2 (ja)
EP (1) EP2889378B1 (ja)
JP (2) JP6476110B2 (ja)
CN (1) CN104685061B (ja)
IN (1) IN2015DN02381A (ja)
WO (1) WO2014129459A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015078889A1 (en) * 2013-11-26 2015-06-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives New enzymes and method for preparing hydroxylated l-lysine or l-ornithine and analogs thereof
WO2017057730A1 (ja) * 2015-10-02 2017-04-06 株式会社エーピーアイ コーポレーション ヒドロキシ-l-ピペコリン酸の製造方法
JP2019062927A (ja) * 2013-02-19 2019-04-25 株式会社エーピーアイ コーポレーション L−リジン水酸化酵素およびそれを利用したヒドロキシ−l−リジンの製造法およびヒドロキシ−l−ピペコリン酸の製造法
WO2020059891A1 (ja) 2018-09-21 2020-03-26 株式会社エーピーアイ コーポレーション アミノ酸誘導体の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287255A (zh) * 2016-03-31 2017-10-24 南京诺云生物科技有限公司 Pseudomonas veronii CIP104663蛋白的新用途
CN107630049B (zh) * 2017-04-01 2018-09-21 武汉茵茂特生物技术有限公司 麻黄碱的生物制备方法
EP3922728B1 (en) 2019-04-19 2023-11-29 API Corporation Method for producing (1r,3r)-3-(trifluoromethyl)cyclohexan-1-ol and intermediate thereof
JP7386616B2 (ja) * 2019-04-25 2023-11-27 株式会社エーピーアイ コーポレーション L体環状アミノ酸の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
WO2001048216A1 (fr) 1999-12-28 2001-07-05 Mercian Corporation Methode de production biologique d'acide l-pipecolique
WO2002101003A2 (fr) * 2001-06-08 2002-12-19 Rhodia Chimie Preparation stereoselective de l-acides amines cycliques
JP2004505088A (ja) 2000-08-01 2004-02-19 アベンティス ファルマ ソシエテ アノニム 新規な複素環式化合物、それらの製造法及びそれらの薬剤、特に抗菌剤としての使用
JP2005095167A (ja) * 2003-08-26 2005-04-14 Mitsubishi Chemicals Corp 光学活性環状アミノ酸の製造方法
JP2010088395A (ja) * 2008-10-10 2010-04-22 Hokko Chem Ind Co Ltd 微生物による環状アミノ酸の製造法
WO2012029819A1 (ja) 2010-08-31 2012-03-08 株式会社エーピーアイ コーポレーション 新規加水分解酵素タンパク質

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370712B2 (ja) 2012-12-20 2018-08-08 株式会社エーピーアイ コーポレーション cis−5−ヒドロキシ−2−ピペリジンカルボン酸誘導体の製造方法およびcis−5−ヒドロキシ−2−ピペリジンカルボン酸の精製方法
JP6476110B2 (ja) * 2013-02-19 2019-02-27 株式会社エーピーアイ コーポレーション L−リジン水酸化酵素およびそれを利用したヒドロキシ−l−リジンの製造法およびヒドロキシ−l−ピペコリン酸の製造法
EP2876156A1 (en) 2013-11-26 2015-05-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives New enzymes and method for preparing hydroxylated L-lysine or L-ornithine and analogs thereof
WO2015098774A1 (ja) 2013-12-26 2015-07-02 株式会社カネカ 光学活性環状イミノ酸の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
WO2001048216A1 (fr) 1999-12-28 2001-07-05 Mercian Corporation Methode de production biologique d'acide l-pipecolique
JP2004505088A (ja) 2000-08-01 2004-02-19 アベンティス ファルマ ソシエテ アノニム 新規な複素環式化合物、それらの製造法及びそれらの薬剤、特に抗菌剤としての使用
WO2002101003A2 (fr) * 2001-06-08 2002-12-19 Rhodia Chimie Preparation stereoselective de l-acides amines cycliques
JP2005095167A (ja) * 2003-08-26 2005-04-14 Mitsubishi Chemicals Corp 光学活性環状アミノ酸の製造方法
JP2010088395A (ja) * 2008-10-10 2010-04-22 Hokko Chem Ind Co Ltd 微生物による環状アミノ酸の製造法
WO2012029819A1 (ja) 2010-08-31 2012-03-08 株式会社エーピーアイ コーポレーション 新規加水分解酵素タンパク質

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning, PCR A Practical Approach", 1991, IRL PRESS, pages: 200
BIOCHEMISTRY, vol. 70, 2005, pages 40
BIOCHIM. BIOPHYS. ACTA, vol. 1764, 2006, pages 1577
BIOCHIMIE, vol. 89, 2007, pages 591
COULON ET AL., TETRAHEDRON LETT., vol. 39, 1998, pages 6467
DATABASE UNIPROT [online] 13 October 2009 (2009-10-13), XP055197109, retrieved from IBIS Database accession no. C7PLM6 *
DATABASE UNIPROT [online] 21 August 2007 (2007-08-21), XP055197106, retrieved from IBIS Database accession no. A6WF32 *
DATABASE UNIPROT [online] 22 February 2012 (2012-02-22), XP055197112, retrieved from IBIS Database accession no. G8T8D0 *
DATABASE UNIPROT [online] 3 April 2007 (2007-04-03), XP055197115, retrieved from IBIS Database accession no. A4AK12 *
DATABASE UNIPROT [online] 5 October 2010 (2010-10-05), XP055197111, retrieved from NCBI Database accession no. D7W326 *
DATABASE UNIPROT [online] XP055197098, retrieved from IBIS Database accession no. A5FF23 *
EUR. J. BIOCHEM., vol. 254, 1998, pages 347
GENE, vol. 26, 1983, pages 273 - 82
GENE, vol. 39, 1985, pages 281
GILLARD ET AL., J. ORG. CHEM., vol. 61, 1996, pages 2226
HIBI ET AL., APPL. ENVIRON. MICROBIOL., vol. 77, 2011, pages 6926
J. BIOCHEM., vol. 105, 1989, pages 1002 - 1008
KINDER ET AL., J. ORG. CHEM., vol. 66, 2001, pages 2118
METHODS IN ENZYMOL., vol. 100, 1983, pages 448
MICROBIOLOGY, vol. 156, 2010, pages 60
MOL. CELL. BIOL., vol. 6, 1986, pages 80
MOL. GEN. GENET., vol. 196, 1984, pages 175
NATURE, vol. 211, 1966, pages 854
NATURE, vol. 315, 1985, pages 592 - 594
NUCLEIC ACIDS RES., vol. 10, 1982, pages 6487
PROC. NATL. ACAD. SCI. U. S. A., vol. 106, 2009, pages 906
PROTEIN ENG, vol. 11, 1998, pages 53
PUISTOLA U. ET AL.: "Studies on the lysyl hydroxylase reaction I. Initial velocity kinetics and related aspects", BIOCHIM. BIOPHYS. ACTA, vol. 611, no. 1, pages 40 - 50, XP023510737 *
SHIBASAKI ET AL., APPL. ENVIRON. MICROBIOL., vol. 65, 1999, pages 4028
TRENDS IN BIOTECHNOLOGY, vol. 7, 1989, pages 283 - 287
TSOTSOU ET AL., BIOCHEMIE, vol. 89, 2007, pages 591
YASUDA ET AL., TETRAHEDRON ASYMM., vol. 17, 2006, pages 1775

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062927A (ja) * 2013-02-19 2019-04-25 株式会社エーピーアイ コーポレーション L−リジン水酸化酵素およびそれを利用したヒドロキシ−l−リジンの製造法およびヒドロキシ−l−ピペコリン酸の製造法
WO2015078889A1 (en) * 2013-11-26 2015-06-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives New enzymes and method for preparing hydroxylated l-lysine or l-ornithine and analogs thereof
WO2017057730A1 (ja) * 2015-10-02 2017-04-06 株式会社エーピーアイ コーポレーション ヒドロキシ-l-ピペコリン酸の製造方法
CN107532185A (zh) * 2015-10-02 2018-01-02 株式会社Api 羟基‑l‑哌可酸的制造方法
JPWO2017057730A1 (ja) * 2015-10-02 2018-07-19 株式会社エーピーアイ コーポレーション ヒドロキシ−l−ピペコリン酸の製造方法
US10954539B2 (en) 2015-10-02 2021-03-23 Api Corporation Method for producing hydroxy-L-pipecolic acid
JP2022000037A (ja) * 2015-10-02 2022-01-04 株式会社エーピーアイ コーポレーション ヒドロキシ−l−ピペコリン酸の製造方法
CN107532185B (zh) * 2015-10-02 2023-01-06 株式会社Api 羟基-l-哌可酸的制造方法
JP7221350B2 (ja) 2015-10-02 2023-02-13 株式会社エーピーアイ コーポレーション ヒドロキシ-l-ピペコリン酸の製造方法
US11591577B2 (en) 2015-10-02 2023-02-28 Api Corporation Method for producing hydroxy-L-pipecolic acid
WO2020059891A1 (ja) 2018-09-21 2020-03-26 株式会社エーピーアイ コーポレーション アミノ酸誘導体の製造方法

Also Published As

Publication number Publication date
JPWO2014129459A1 (ja) 2017-02-02
JP2019062927A (ja) 2019-04-25
IN2015DN02381A (ja) 2015-09-04
CN104685061A (zh) 2015-06-03
EP2889378B1 (en) 2018-01-10
EP2889378A1 (en) 2015-07-01
EP2889378A4 (en) 2016-03-09
US20150259715A1 (en) 2015-09-17
JP6476110B2 (ja) 2019-02-27
US9512452B2 (en) 2016-12-06
CN104685061B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6476110B2 (ja) L−リジン水酸化酵素およびそれを利用したヒドロキシ−l−リジンの製造法およびヒドロキシ−l−ピペコリン酸の製造法
JP7221350B2 (ja) ヒドロキシ-l-ピペコリン酸の製造方法
US7335757B2 (en) Carbonyl reductase, gene encoding the same, and process for producing optically active alcohols using the same
JP6959379B2 (ja) ピペコリン酸4位水酸化酵素およびそれを利用した4−ヒドロキシアミノ酸の製造法
Hanson et al. Enzymatic preparation of a D-amino acid from a racemic amino acid or keto acid
JP6539212B2 (ja) 光学活性環状イミノ酸の製造方法
US20100028959A1 (en) Method for production of l-amino acid
WO2016076159A1 (ja) シス-5-ヒドロキシ-l-ピペコリン酸の製造方法
JPWO2016076159A6 (ja) シス−5−ヒドロキシ−l−ピペコリン酸の製造方法
JPWO2019189724A1 (ja) 新規加水分解酵素及びそれを利用した(1s,2s)−1−アルコキシカルボニル−2−ビニルシクロプロパンカルボン酸の製造方法
JP6844073B1 (ja) (1r,3r)−3−(トリフルオロメチル)シクロヘキサン−1−オール及びその中間体の製造法
Latham et al. Enzymatic Cascades
JP2011177029A (ja) 光学活性なアミン誘導体の製造方法
JP2007274901A (ja) 光学活性プロパルギルアルコールの製造方法
JP2005027552A (ja) 新規な光学活性2−ヒドロキシメチル−3−アリールプロピオン酸の製造方法
Würges Enzyme supported crystallization of chiral amino acids
JPWO2005005648A1 (ja) 新規な光学活性カルボン酸の製造法
JP2007029089A (ja) 光学活性ヒドロキシアミノ酸誘導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501458

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431193

Country of ref document: US

Ref document number: 2014754464

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE