WO2014127977A1 - Procédé basse température pour produire du lithium à partir de sel de lithium difficilement soluble - Google Patents

Procédé basse température pour produire du lithium à partir de sel de lithium difficilement soluble Download PDF

Info

Publication number
WO2014127977A1
WO2014127977A1 PCT/EP2014/052000 EP2014052000W WO2014127977A1 WO 2014127977 A1 WO2014127977 A1 WO 2014127977A1 EP 2014052000 W EP2014052000 W EP 2014052000W WO 2014127977 A1 WO2014127977 A1 WO 2014127977A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
anode
lithium
temperature
cathode
Prior art date
Application number
PCT/EP2014/052000
Other languages
German (de)
English (en)
Inventor
Günter Schmid
Dan Taroata
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2014127977A1 publication Critical patent/WO2014127977A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/02Electrolytic production, recovery or refining of metals by electrolysis of solutions of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals

Definitions

  • Lithium salt is metered continuously into the anode compartment.
  • an anion which is not reducible under reaction conditions such as e.g. Chloride or fluoride.
  • This can be achieved, for example, by mechanically separating the anode and cathode compartments from each other by an ion-selective membrane which is permeable only to lithium ions.
  • Anionenzusammen arrangement in the cathode and anode space can prevent the formation of gaseous by-products at the cathode.
  • Possible procedural embodiments of this type of melt electrolysis are described for example in US 498817 and JP 2003049291-A.
  • a continuous lithium low-temperature electrolysis process for the production of elemental lithium by means of an electrolytic cell comprising a current source, an anode compartment, a cathode compartment and a Li-ion permeable membrane which separates the anode from the cathode compartment, characterized in that the electrolyte comprises an aprotic solvent in the anode and cathode compartment, the anions in the cathode compartment can not be reduced by elemental lithium and the sparingly soluble lithium salt is metered continuously into the anode compartment.
  • This process can be carried out directly from a sparingly soluble lithium salt without complicated chemical reaction steps
  • Suitable Li-ion-permeable membranes are the membranes or separators which are known in the prior art and are selectively permeable to Li ions. These are usually polymeric films, which may also consist of several layers or microporous ceramic separators. Furthermore, ceramic-coated nonwovens such as, for example, Separion or Celgard membranes can also be used. Examples of possible types of membranes are listed in Pankaj A. et al, Chem. Rev. 2004, 104, 4419-4462.
  • ceramic-coated polymeric membranes can preferably be used as the Li-ion permeable membrane. This can contribute to the extended life of the electrolysis cell by the higher mechanical load capacity of the polymer-based membranes.
  • the anions in the cathode compartment are stable to reduction with lithium if they do not exchange electrons with elemental lithium under the given reaction conditions. If lithium-reducible anions were introduced into the cathode space, they would be reduced by the elemental lithium formed and, if appropriate, removed from the process as gaseous reaction products.
  • the anions which are inert to an undesired redox reaction can be added to the aprotic solvent in the cathode space at the start of the process in the form of a lithium salt.
  • each of these anions is stable to reduction by elemental lithium.
  • these are to be understood as those anions whose normal potential, including any overvoltage that may occur, is greater than or equal to 1.0 V.
  • Non-inventive anions in the cathode region are, for example, the carbonates, oxides or hydroxides.
  • a continuous production and a continuous supply in the sense of the presented method means in particular that the method is not designed as a pure batch operation, but that during the ongoing process from the outside further reactants of the electrolysis cell fed and formed products can be removed from the electrolysis cell.
  • the supply of the educts and the discharge of the products formed can take place either continuously or else sequentially at certain regular or irregular points in time.
  • Lithium salt can be obtained either by introducing the pure lithium salt or by introducing a solution or suspension of the sparingly soluble lithium salt in one
  • anode material all those used in lithium battery technology electrically conductive materials can be used, which can be formed to sufficiently mechanically stable anodes and which are chemically stable to any redox products occurring. These may be simple precious metals, stainless steels, graphite, Li 4 Ti 5 0i 2 in the form of nets, rods or cylinders.
  • the cathode material can consist of cathode materials of the lithium ion accumulator usually used in the prior art, which generally have low overvoltages for lithium.
  • Cited here are, for example, carbonaceous materials such as graphite or carbonaceous intercalation compounds, nanocrystalline, amorphous silicon, Li 4 Ti 5 0i 2 , LiCoO 2 , LiNiO 2 , LiNii_ x Co x O 2 , LiNio, 85COO, 1 Al 0 , 050 2 , LiNio, 33Co 0 , 33Mn 0 , 330 2 , LiMnO 4 , spinel, SnO 2 and LiFePO 4 .
  • Other usable cathode materials are described, for example, in Mansour, J. et al. J. Electrochem. Soc. 146 (1999), p.
  • the temperature of the low-temperature electrolysis process during the electrolysis may be greater than or equal to 20 ° C and less than or equal to 500 ° C. Further preferably, the temperature of the low-temperature electrolysis process may be greater than or equal to 20 ° C and less than or equal to 300 ° C, and most preferably greater than or equal to 20 ° C and less than or equal to 200 ° C. Due to the method according to the invention, sufficient electrochemical mobilities of the Li ions can be adjusted by this temperature range, which are present in the previously known electrolysis process only at significantly higher temperatures. For this reason, the process temperature can be lowered significantly and thus a significant cost reduction in the manufacturing process can be achieved.
  • the aprotic solvent used in the low-temperature electrolysis process can be selected from the group consisting of polycarbonates, ionic liquids, ethers, polyethers, aliphatic and aromatic amines, C 2 -C 5 -alkyl carbonates, C 2 -C 5 -dialkyl carbonates, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropene and crown ethers are selected.
  • These aprotic solvents show a sufficiently good solubility with respect to the sparingly soluble lithium compounds used and are also chemically and electrochemically inert.
  • solvents By means of these solvents, even in a low temperature range, a sufficiently low viscosity of the electrolyte solution with correspondingly high mobilities of the lithium ions can be achieved. This can contribute to a cost reduction of the manufacturing process.
  • the solvents can be used alone or as a mixture. different solvents are used. Potentially higher viscosity solvents such as polyvinylidene fluoride or polyvinylidene fluoride-hexafluoropropene can be used as low molecular weight compounds as sole solvents. Should higher molecular compounds of this type for
  • these solvents can preferably be used with further, low-viscosity solvents.
  • the actual solvent composition of the anode and the cathode compartment may differ in principle.
  • ionic liquids are, for example, salt-like compounds as described in Trans. Nonferrous Met. Soc. China 19, 2009 are described.
  • the aprotic solvents used are anhydrous, i. they either have no or only a negligible amount of water of, for example, less than 10 ppm.
  • the water content of the aprotic solvents can be determined by the method known in the art, for example Karl Fischer titration.
  • the sparingly soluble lithium salt in aqueous solution at a temperature of 20 ° C have a solubility of less than or equal to 30 g / liter. It is precisely the lithium salts which are sparingly soluble in aqueous solution which can preferably be used in the process according to the invention, since these generally exhibit a sufficiently high solubility in the aprotic solvents used according to the invention. This facilitates process management and can contribute to time and energy savings. However, it is also within the meaning of the invention that the poorly soluble lithium salt in the electrolyte of the anode compartment is only suspended and dissolves further in the course of the electrolysis process.
  • the solubility of the sparingly soluble salts in water can be determined by conventional methods such as, for example, conductometry.
  • Lithium sparingly soluble salts of lithium include, for example, lithium carbonate and lithium phosphate.
  • the sparingly soluble lithium salt used in the low temperature electrolysis process may comprise lithium carbonate.
  • Lithium carbonate may be particularly preferred as starting material of the process according to the invention, since the base material is obtained in large quantities, at reasonable prices and sufficiently pure, so that expensive preparative pretreatment steps can be dispensed with. This can thus contribute to the implementation of a low-cost process.
  • dry, ie anhydrous lithium carbonate is metered into the anode compartment.
  • the aprotic solvent in the anode compartment may additionally comprise anions selected from the group of sulfates, chlorides, phosphates, fluorophosphates, fluoroborates.
  • the addition of further anions to the anode compartment can be accomplished, for example, by an initial addition of the corresponding lithium salts.
  • the addition can generally increase the conductivity of the electrolyte and thus lead to a faster and more efficient electrolysis process.
  • the anions added as additional conductive salt eg PF 6 " , BF 4 " ) should be electrochemically stable and in particular not anodically oxidizable under the given process conditions.
  • the aprotic solvent may be in the Ka Thode space anions selected from the group consisting BF 4 ", PF 6" comprise, Cl ", CF 3 -SO 3". Due to their electrochemical mobility, electrochemical stability and chemical inertness, this group of anions can contribute to a stable electrolyte process without the occurrence of undesired, possibly toxic, by-products. In particular, these anions can not be electrochemically reduced by lithium, so that advantageously a subsequent metering of these anions in Form of their salts can be omitted due to potential losses during the course of the process.
  • a continuously operating, low-temperature electrochemical cell for producing elemental lithium comprising an anode, a cathode, a Li-ion permeable membrane which separates the anode and cathode region and a current source, characterized in that the poorly soluble lithium salt can be fed to the anode compartment and elemental lithium is removable from the cathode compartment.
  • This arrangement of the electrolytic cell enables continuous and safe production of elemental lithium at low temperatures.
  • Lithium salt can be directed either to the supply of a pure, dry solid or to the supply of a suspension or solution. In the case of solid feed, this can be realized by a feed screw, a chute or a hopper, if necessary.
  • the metering of liquid or pasty starting materials can be accomplished by the common methods known in the art.
  • the anode compartment can be stirred in a special embodiment of the electrolysis cell.
  • a device for removing the metallic lithium from the cathode space may expediently be directed to the selected process temperature. If the electrolysis is carried out above about 180.degree. C., the lithium can be separated off as a liquid, below 180.degree. C., purely mechanically as a solid and removed from the cathode compartment.
  • the delivery of the poorly soluble lithium salt and the removal of the elemental lithium can take place without interrupting the electrolysis process.
  • the anode material of the low-temperature electrochemical cell may be selected from the group comprising graphite and stainless steel.
  • the anode material of this electrolysis cell can be made of a material which is unable to reversibly bind lithium. Chemical resistance to potentially occurring reaction products, such as oxygen, and sufficiently high conductivity may be sufficient. This makes it possible to realize a simple and inexpensive cell structure and save production costs.
  • the anode of the low temperature electrochemical cell may have a thin exterior
  • the outer layer may conveniently have a layer thickness of greater than or equal to 1 ⁇ and less than or equal to 5 cm, preferably greater than or equal to 10 ⁇ and less than or equal to 3 cm and further preferably greater than or equal to 50 ⁇ and less than or equal to 1 cm.
  • the conductive substrate may be selected from the group consisting of stainless steels, copper, aluminum and graphite.
  • poorly soluble lithium salt can be supplied to the anode compartment via a pump.
  • the sparingly soluble lithium salt can be dissolved or suspended as such or in an aprotic solvent and can be metered in via conveying or metering pumps known in the prior art.
  • the metering can be carried out continuously, pulsed or discontinuously in the anode compartment.
  • displacers such as rotary piston, rotary vane, rotary piston, eccentric screw, impeller, tubular or rotary piston pumps or flow pumps can be used for this purpose.
  • the preliminary dissolution and subsequent dosing of the sparingly soluble lithium salt can influence the weight setting of the dissolution process favorably and thus contribute to a lower concentration of conductive salts in the anode compartment.
  • the low-temperature cell may be closed by a mechanical barrier from the external environment gas and moisture sealed. This embodiment can prevent the ingress of moisture and oxygen into the region of the electrolysis cell and thus lead to a smaller number of side reactions.
  • the barrier can be designed so that the entire electrolysis cell can be pressurized. The pressurization may favorably influence the solubility product of the sparingly soluble lithium compounds in the aprotic solvent.
  • a preferred range of the compressive strength of the mechanical barrier is between greater than or equal to 1 bar and less than or equal to 500 bar, more preferably between greater than or equal to 1 bar and less than or equal to 400 bar and even more preferably between greater than or equal to 1 bar and smaller or equal to 300 bar.
  • this can be used for the continuous production of elemental lithium.
  • FIG. 1 shows by way of example the structure of a low-temperature electrolysis cell in which Lithium carbonate is converted to elemental lithium, carbon dioxide and oxygen.
  • FIG. 1 shows in detail
  • Lithium salt for example Li 2 C0 3 ) (9).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

L'invention concerne un procédé d'électrolyse basse température de lithium en continu servant à produire l'élément lithium au moyen d'une cellule d'électrolyse comprenant une source de courant, un espace anodique, un espace cathodique et une membrane perméable aux ions Li qui sépare l'espace anodique et l'espace cathodique. Cette invention est caractérisée en ce que l'électrolyte dans l'espace anodique et l'espace cathodique renferme un solvant aprotique, les anions se trouvant dans l'espace cathodique ne se laissent pas réduire par l'élément lithium, et le sel de lithium difficilement soluble est dosé en continu dans l'espace anodique.
PCT/EP2014/052000 2013-02-22 2014-02-03 Procédé basse température pour produire du lithium à partir de sel de lithium difficilement soluble WO2014127977A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013202976.4 2013-02-22
DE201310202976 DE102013202976A1 (de) 2013-02-22 2013-02-22 Niedertemperaturverfahren zur Herstellung von Lithium aus schwerlöslichen Lithiumsalzen

Publications (1)

Publication Number Publication Date
WO2014127977A1 true WO2014127977A1 (fr) 2014-08-28

Family

ID=50114338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/052000 WO2014127977A1 (fr) 2013-02-22 2014-02-03 Procédé basse température pour produire du lithium à partir de sel de lithium difficilement soluble

Country Status (2)

Country Link
DE (1) DE102013202976A1 (fr)
WO (1) WO2014127977A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186190A1 (fr) * 2017-04-03 2018-10-11 株式会社豊田中央研究所 Dispositif de production de lithium métallique, dispositif de décomposition de carbonate de lithium, procédé de production de lithium métallique et procédé de décomposition de carbonate de lithium
WO2021159674A1 (fr) * 2020-02-14 2021-08-19 中国科学院青海盐湖研究所 Séparation d'isotopes de li et procédé d'enrichissement
WO2021159673A1 (fr) * 2020-02-14 2021-08-19 中国科学院青海盐湖研究所 Procédé de séparation et d'enrichissement par électromigration du 6li en isotopes
EP4400616A3 (fr) * 2022-12-15 2024-09-11 Tesfu Tadios Procédé de recyclage à plusieurs étages

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104499002A (zh) * 2014-12-10 2015-04-08 上海大学 由低品位硫化矿直接电沉积制备铜铁纳米镀层的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US498817A (en) 1893-06-06 Water-cooler
US4988417A (en) * 1988-12-29 1991-01-29 Aluminum Company Of America Production of lithium by direct electrolysis of lithium carbonate
CA2340528A1 (fr) 2000-03-13 2001-09-13 Olivo Giuseppe Sivilotti Methode et appareil d'alimentation de piles electrolytiques
JP2003049291A (ja) 2001-08-06 2003-02-21 Santoku Corp 金属リチウムの製造方法
US20030094379A1 (en) * 2001-11-21 2003-05-22 Jacobson Stephen Ernest Low temperature alkali metal electrolysis
US20040178080A1 (en) * 2000-03-28 2004-09-16 Thompson Jeffery S. Low temperature alkali metal electrolysis
WO2010052714A2 (fr) 2008-11-06 2010-05-14 Yeda Research And Development Co. Ltd. Procédés et appareil de production électrochimique de monoxyde de carbone et leurs utilisations

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940069A1 (de) * 1999-08-24 2001-03-08 Basf Ag Verfahren zur elektrochemischen Herstellung eines Alkalimetalls aus wäßriger Lösung
US20090090638A1 (en) * 2007-10-05 2009-04-09 Kelly Michael T Processes and reactors for alkali metal production
JP2013531738A (ja) * 2010-06-30 2013-08-08 シー アメンドラ スティーヴン リチウム金属の電解生成

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US498817A (en) 1893-06-06 Water-cooler
US4988417A (en) * 1988-12-29 1991-01-29 Aluminum Company Of America Production of lithium by direct electrolysis of lithium carbonate
CA2340528A1 (fr) 2000-03-13 2001-09-13 Olivo Giuseppe Sivilotti Methode et appareil d'alimentation de piles electrolytiques
US20040178080A1 (en) * 2000-03-28 2004-09-16 Thompson Jeffery S. Low temperature alkali metal electrolysis
JP2003049291A (ja) 2001-08-06 2003-02-21 Santoku Corp 金属リチウムの製造方法
US20030094379A1 (en) * 2001-11-21 2003-05-22 Jacobson Stephen Ernest Low temperature alkali metal electrolysis
WO2010052714A2 (fr) 2008-11-06 2010-05-14 Yeda Research And Development Co. Ltd. Procédés et appareil de production électrochimique de monoxyde de carbone et leurs utilisations

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
APPLIED SURFACE SCIENCE, vol. 253, no. 10, 15 March 2007 (2007-03-15), pages 4782 - 4791
KAPLAN, V. ET AL.: "Conversion of CO2 to CO by electrolysis of molten Lithiumcarbonate", J. OF THE ELECTROCHEMICAL SOCIETY, vol. 157, no. 4, 2010, pages B552 - B556
MANSOUR, J. ET AL., J. ELECTROCHEM. SOC., vol. 146, 1999, pages 2799
PANKAJ A. ET AL., CHEM. REV., vol. 104, 2004, pages 4419 - 4462
TRANS. NONFERROUS MET. SOC. CHINA, vol. 19, 2009

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186190A1 (fr) * 2017-04-03 2018-10-11 株式会社豊田中央研究所 Dispositif de production de lithium métallique, dispositif de décomposition de carbonate de lithium, procédé de production de lithium métallique et procédé de décomposition de carbonate de lithium
JP2018178136A (ja) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 金属リチウムの製造装置、炭酸リチウムの分解装置、金属リチウムの製造方法及び炭酸リチウムの分解方法
WO2021159674A1 (fr) * 2020-02-14 2021-08-19 中国科学院青海盐湖研究所 Séparation d'isotopes de li et procédé d'enrichissement
WO2021159673A1 (fr) * 2020-02-14 2021-08-19 中国科学院青海盐湖研究所 Procédé de séparation et d'enrichissement par électromigration du 6li en isotopes
EP4400616A3 (fr) * 2022-12-15 2024-09-11 Tesfu Tadios Procédé de recyclage à plusieurs étages

Also Published As

Publication number Publication date
DE102013202976A1 (de) 2014-08-28

Similar Documents

Publication Publication Date Title
EP1210471B1 (fr) Procede de preparation electrochimique d'un metal alcalin a partir d'une solution aqueuse
CN106823816B (zh) 废旧锂电池正极材料中锂的电化学回收方法
DE112019005761B4 (de) Prozesse zur Entfernung von reaktivem Lösungsmittel aus Lithium Bis(fluorosulfonyl)imid (LiFSI) unter Verwendung organischer Lösungsmittel, die stabil gegenüber Anoden in Lithium-Ionen- und Lithium-Metall-Batterien sind
WO2014127977A1 (fr) Procédé basse température pour produire du lithium à partir de sel de lithium difficilement soluble
KR101374754B1 (ko) 비수계 전해액에서 전해법을 이용한 금속 리튬의 제련 방법
CN102190573A (zh) 一种电化学催化还原二氧化碳制备甲酸的方法
DE102021118811A1 (de) Flüssige Elektrolytzusammensetzung sowie eine elektrochemische Zelle mit der Elektrolytzusammensetzung
US20160049701A1 (en) Process for preparing and recycling cathode active materials for lithium-ion batteries
EP2877613B1 (fr) Procédé d'extraction électrolytique réductrice sélective
DE2818971A1 (de) Verbesserte vorrichtung und verbessertes verfahren zur abtrennung eines metalles aus einem salz
EP1178050A2 (fr) Phosphates de fluoroalkyl pour cellules électrochimiques
EP1229038A1 (fr) Sels de borates pour utilisation dans les cellules électrochimiques
EP1041177A1 (fr) Procédé de production électrochimique de lithium
KR20200107764A (ko) 이산화탄소의 옥살산 전환 전기화학적 공정
Ito et al. Optimized synthesis of cyclic fluorinated sulfonylimide lithium salts to suppress aluminum corrosion in lithium-ion batteries
CN103031567B (zh) 一种电解制取金属钠的方法
EP1236732A1 (fr) Sels de Phosphates de fluoroalkyl ET PREPARATION DE CEUX-CI
WO2014016247A1 (fr) Procédé de préparation d'un métal alcalin
EP1095942A2 (fr) Sels complexes pour les cellules eletrochimiques
KR101552770B1 (ko) 비수계 전해법에 의한 마그네슘의 전해정련방법
EP4335828A1 (fr) Production d'hydrogène et d'hydroxyde de lithium en milieu basique
WO2024056617A1 (fr) Production électrochimique d'hydrogène et d'hydroxyde de lithium dans des conditions d'écoulement définies
WO2019057431A1 (fr) Production électrochimique sans co2 de métaux et d'alliages correspondants
EP4335827A1 (fr) Production d'hydrogène et d'hydroxyde de lithium solide
EP3818583B1 (fr) Utilisation d'électrolyte dans une batterie à flux et batterie à flux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14704764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14704764

Country of ref document: EP

Kind code of ref document: A1