WO2014127646A1 - 一种利用直拉区熔法制备太阳能级硅单晶的方法 - Google Patents

一种利用直拉区熔法制备太阳能级硅单晶的方法 Download PDF

Info

Publication number
WO2014127646A1
WO2014127646A1 PCT/CN2013/086395 CN2013086395W WO2014127646A1 WO 2014127646 A1 WO2014127646 A1 WO 2014127646A1 CN 2013086395 W CN2013086395 W CN 2013086395W WO 2014127646 A1 WO2014127646 A1 WO 2014127646A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon single
single crystal
grade silicon
angle
solar
Prior art date
Application number
PCT/CN2013/086395
Other languages
English (en)
French (fr)
Inventor
王彦君
张雪囡
沈浩平
乔柳
刘嘉
王遵义
刘铮
孙健
Original Assignee
天津市环欧半导体材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津市环欧半导体材料技术有限公司 filed Critical 天津市环欧半导体材料技术有限公司
Priority to JP2015558331A priority Critical patent/JP2016508479A/ja
Priority to US14/769,627 priority patent/US20160002819A1/en
Priority to EP13875504.6A priority patent/EP2955252A4/en
Publication of WO2014127646A1 publication Critical patent/WO2014127646A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/32Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/26Stirring of the molten zone
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • C30B13/30Stabilisation or shape controlling of the molten zone, e.g. by concentrators, by electromagnetic fields; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction

Definitions

  • the invention belongs to the technical field of preparation of silicon single crystals, and in particular relates to a method for preparing solar grade silicon single crystals by a straight pull zone melting method.
  • the straight-pull zone molten silicon single crystal production technology overcomes the inherent defects in the traditional Czochralski method and the zone melting process, and is easy to scale production.
  • the silicon single crystal obtained by the straight-pull zone melting method has a good performance-price ratio and has the characteristics of being easily incorporated into a special solid impurity element, so it has a broad market and application prospect in the field of semiconductor materials.
  • the single crystal is unidirectionally rotated in the zone melting process in the preparation process, so the dopant and the oxygen and carbon are unevenly distributed during the gas phase doping process.
  • the black core phenomenon common to Czochralski silicon single crystals still occurs, and its radial uniformity is poor, affecting the conversion efficiency of the solar cell sheets produced therefrom.
  • the problem to be solved by the present invention is to provide a method for preparing a solar-grade silicon single crystal by a Czochralski melting method, which is particularly suitable for improving the photovoltaic performance of a solar-grade silicon single crystal.
  • the technical solution adopted by the present invention is: A method for preparing a solar-grade silicon single crystal by a straight-pull zone melting method: in an equal-diameter growth process in a zone melting stage, in a zone-fused silicon single crystal furnace electrical Under the control of the control system, the down-rotating motor is alternately rotated in the forward and reverse directions, and the down-turning motor drives the silicon single crystal to rotate according to the set forward angle and reverse angle.
  • the ratio of the forward angle to the reverse angle is a preset value. Further, the ratio of the forward angle to the reverse angle is 380: 620.
  • the forward angle is 100°-800°
  • the reverse angle is 50°-750.
  • the invention has the advantages and positive effects that the invention is introduced in the equal-path growth process for preparing a solar-grade silicon single crystal.
  • the bidirectional rotation process greatly improves the uniformity of the radial resistivity of the solar grade silicon single crystal, solves the black core problem of the solar grade silicon single crystal, and can improve the solar cell sheet produced by the solar grade silicon single crystal. Conversion efficiency.
  • the invention provides a method for preparing a solar grade silicon single crystal by using a straight-pull zone melting method: in the equal-path growth process in the zone melting stage, under the control of the electric control system of the zone melting silicon single crystal furnace, the down-turning motor is positive The rotation of the opposite direction is reversed, and the lower rotation motor drives the silicon single crystal to rotate according to the set forward angle and the reverse angle, and the ratio of the forward angle to the reverse angle is a preset value.
  • the preferred range of the positive angle is from 100° to 800°, and the reverse angle is preferably from 50° to 750°.
  • the ratio of the positive angle to the reverse angle is preferably 380: 620.
  • the silicon single crystal is first drawn by a Czochralski method, and then ingot processing is performed. The corrosion is cleaned, and then in the equal-path growth process in the zone melting stage, the bi-directional rotation process is used to draw the solar-grade silicon single crystal.
  • the specific steps are as follows:
  • the neck is pulled, and a thin neck with a diameter of about 8 mm and a length of 20 mm is pulled out from the molten polycrystalline material through the seed crystal;
  • Adjust the diameter sensor to control the pulling speed for equal-diameter pulling, and the equal-path growth time is 20 hours;
  • the material is processed. After the polycrystalline material is melted, the seed crystal and the molten silicon are subjected to After welding, the melting zone is shaped and seeded after welding;
  • the neck is grown, the diameter of the neck is 3-6mm, and the length is 20-100mm;
  • the solar-grade silicon single crystal obtained by the Czochralski melting method of the prior art has a radial uniformity (RRV value) of 30% to 40%, as shown in FIG. 1, using a silicon single wafer prepared by the prior art.
  • RRV value radial uniformity
  • the solar-grade silicon single crystal obtained in this embodiment has a radial uniformity (RRV value) of 10%. As shown in FIG. 2, no black-heart phenomenon occurs, and the conversion efficiency of the solar cell produced in the later stage reaches 24%. Efficiency is basically not attenuated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种利用直拉区熔法制备太阳能级硅单晶的方法:在区熔阶段的等径生长工艺中,在区熔硅单晶炉电气控制系统的控制下,使下转电机正向、反向交替转动,所述下转电机带动硅单晶按照设定的正向角度和反向角度转动。本发明提高了太阳能级硅单晶的径向均匀性,解决了太阳能级硅单晶的黑心问题,能够提高由该太阳能级硅单晶制得的太阳能电池片的转换效率。

Description

一种利用直拉区熔法制备太阳能级硅单晶的方法
技术领域
本发明属于硅单晶的制备技术领域,尤其是涉及一种利用直拉区 熔法制备太阳能级硅单晶的方法。
背景技术
直拉区熔硅单晶生产技术克服了传统直拉法和区熔法生产工艺 中的固有缺陷, 易于规模化生产。 由直拉区熔法制得的硅单晶具有良 好的性能价格比, 且具有易于掺入特殊固态杂质元素的特性, 所以在 半导体材料领域具有广阔的市场和应用前景。但目前用于太阳能领域 的直拉区熔硅单晶,在其制备工艺中的区熔阶段单晶是单方向旋转的, 所以气相掺杂过程中, 掺杂剂和氧碳等分布不均, 仍然会出现直拉硅 单晶常见的黑心现象, 且其径向均匀性差, 影响由其制得的太阳能电 池片的转换效率。
发明内容
本发明要解决的问题是提供一种利用直拉区熔法制备太阳能级 硅单晶的方法, 尤其适合用于改善太阳能级硅单晶的光伏性能。
为解决上述技术问题, 本发明采用的技术方案是: 一种利用直拉 区熔法制备太阳能级硅单晶的方法: 在区熔阶段的等径生长工艺中, 在区熔硅单晶炉电气控制系统的控制下, 使下转电机正向、反向交替 转动,所述下转电机带动硅单晶按照设定的正向角度和反向角度转动。
进一步, 所述正向角度和所述反向角度的比值为一预设值。 进一步, 所述正向角度和所述反向角度之比为 380: 620。
进一步, 所述正向角度为 100° -800°, 所述反向角度为 50° -750 本发明具有的优点和积极效果是:本发明在制备太阳能级硅单晶 的等径生长工艺中引入双向旋转工艺,使太阳能级硅单晶的径向电阻 率的均匀性有了很大改善, 解决了太阳能级硅单晶的黑心问题, 能够 提高由该太阳能级硅单晶制得的太阳能电池片的转换效率。
附图说明
图 1是利用现有技术制得的太阳能级硅单晶;
图 2是利用实施例所述的技术方案制得的太阳能级硅单晶。
具体实施方式
本发明提供一种利用直拉区熔法制备太阳能级硅单晶的方法:在 区熔阶段的等径生长工艺中,在区熔硅单晶炉电气控制系统的控制下, 使下转电机正向、反向交替转动, 下转电机带动硅单晶按照设定的正 向角度和反向角度转动, 正向角度和反向角度的比值为一预设值。正 向角度的优选范围为 100° -800°, 反向角度优选为 50° -750°。正向角 度和反向角度的比值优选为 380: 620。
在整个太阳能级硅单晶的制备过程中,正向角度和反向角度的数 值一直不变。在不同的太阳能级硅单晶的制备工艺中,根据制备需求, 可以预设不同的正向角度和反向角度的比值。
具体实施例:
在本实施例中, 首先用直拉法拉制硅单晶, 然后进行锭型加工, 清洗腐蚀, 然后在区熔阶段的等径生长工艺中, 采用双向旋转工艺进 行太阳能级硅单晶的拉制, 具体步骤如下:
1. 将 80 公斤腐蚀清洗干净的块状硅多晶料装入直拉炉中的石 英干锅内, 然后抽真空、 充氩气, 经 30-60分钟抽真空到压力 100 毫乇时充氩气至真空压力 14乇;
2. 加热前通冷却水, 启动加热按钮, 加热至 1500-1600°C, 块 状硅多晶全部熔化后, 开动籽晶旋转机构, 下降籽晶熔接籽晶;
3. 液面稳定后拉细颈, 通过籽晶从融熔状多晶料中拉出一段直 径约 8mm、 长为 20mm的细颈;
4. 下降籽晶升速, 设定升速为 0. 5mm/min左右进行放肩, 60分 钟左右将直径从细颈的 8mm扩大至 140mm-150mm;
5. 调节直径传感器, 控制拉晶速度进行等径拉晶, 等径生长时 间为 20小时;
6. 降低晶体拉速进行收尾, 收尾时间为 2小时;
7. 提高晶体使其离开液面, 按下停炉按钮进行停炉操作, 待功 率表回零后切断电源,2小时后停止主真空泵抽空,将多晶棒料出炉;
8. 将出炉后的多晶棒进行锭型加工, 清洗腐蚀后装入区熔炉内 晶体夹持器上, 将〈100>籽晶装入籽晶固定夹头上;
9. 将预热片放在籽晶周围, 关闭炉门抽真空充氩气后, 对多晶 棒进行加热;同时设置掺杂气体的掺杂值和电机旋转的正向角度和反 向角度比值, 正向角度和反向角度的比值设定为 380 : 620;
10. 预热结束后进行化料, 待多晶料熔化后, 将籽晶与熔硅进行 熔接, 熔接后对熔区进行整形和引晶;
11. 引晶结束后, 进行细颈生长, 细颈直径为 3-6mm, 长度为 20-100mm;
12. 降低下部晶体速度, 控制扩肩角度在 50-70 ° (开始扩肩时 打开掺杂气, 掺杂气通过流量计按照设定值进入炉室) , 扩肩至要求 直径后, 进行等径生长, 此时按下电机控制按钮, 使电机按设定程序 进行正向和反向的交替旋转,正向角度为 380 °,反向角度为 620 °, 直至单晶等径生长阶段结束, 关闭程序, 使电机开始带动单晶单向旋 转;
13. 上料不足时, 开始进行收尾, 收尾后停止掺杂气体充入, 当 收尾至单晶直径达到需要值时,将熔区拉开,下轴带动单晶继续向下, 上轴带动多晶料改向上运动, 并关闭氩气;
14. 10-60分钟后, 晶体尾部由红色逐渐变成黑色后, 进行拆炉 清炉工作, 将单晶取出。
利用现有技术中的直拉区熔法制得的太阳能级硅单晶的径向均 匀性 (RRV值) 为 30%-40%, 如图 1所示, 利用现有技术制得的硅单 晶片存在黑心现象, 后期制得的太阳能电池片的转换效率为 21%, 且 存在一定的效率衰减效应。
本实施例制得的太阳能级硅单晶的径向均匀性(RRV值)为 10%, 如图 2所示, 没有黑心现象产生, 后期制得的太阳能电池片的转换效 率达到 24%, 电池效率基本不衰减。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本 发明的较佳实施例, 不能被认为用于限定本发明的实施范围。凡依本 发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利 涵盖范围之内。

Claims

权 利 要 求 书
1.一种利用直拉区熔法制备太阳能级硅单晶的方法,其特征在于: 在区熔阶段的等径生长工艺中,在区熔硅单晶炉电气控制系统的控制 下, 使下转电机正向、 反向交替转动, 所述下转电机带动硅单晶按照 设定的正向角度和反向角度转动。
2. 根据权利要求 1 所述的利用直拉区熔法制备太阳能级硅单晶 的方法, 其特征在于: 所述正向角度和所述反向角度的比值为一预设 值。
3.根据权利要求 2所述的利用直拉区熔法制备太阳能级硅单晶的 方法,其特征在于:所述正向角度和所述反向角度之比为 380: 620。
4. 根据权利要求 1 所述的利用直拉区熔法制备太阳能级硅单晶 的方法, 其特征在于: 所述正向角度为 100° -800°, 所述反向角度为 50。 -750。。
PCT/CN2013/086395 2013-02-25 2013-11-01 一种利用直拉区熔法制备太阳能级硅单晶的方法 WO2014127646A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015558331A JP2016508479A (ja) 2013-02-25 2013-11-01 チョクラルスキー・ゾーンメルト法を用いたソーラーグレードシリコン単結晶の製造方法
US14/769,627 US20160002819A1 (en) 2013-02-25 2013-11-01 Method for preparing solar grade silicon single crystal using czochralski zone melting method
EP13875504.6A EP2955252A4 (en) 2013-02-25 2013-11-01 PROCESS FOR THE PREPARATION OF SOLAR QUALITY SILICON MONOCRYSTAL BY MEANS OF A ZONE FUSION CZOCHRALSKI PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310057877.XA CN103147118B (zh) 2013-02-25 2013-02-25 一种利用直拉区熔法制备太阳能级硅单晶的方法
CN201310057877.X 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014127646A1 true WO2014127646A1 (zh) 2014-08-28

Family

ID=48545424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086395 WO2014127646A1 (zh) 2013-02-25 2013-11-01 一种利用直拉区熔法制备太阳能级硅单晶的方法

Country Status (5)

Country Link
US (1) US20160002819A1 (zh)
EP (1) EP2955252A4 (zh)
JP (1) JP2016508479A (zh)
CN (1) CN103147118B (zh)
WO (1) WO2014127646A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147118B (zh) * 2013-02-25 2016-03-30 天津市环欧半导体材料技术有限公司 一种利用直拉区熔法制备太阳能级硅单晶的方法
CN109440183B (zh) * 2018-12-20 2020-11-13 天津中环领先材料技术有限公司 一种优化型大直径区熔硅单晶收尾方法
CN110904496A (zh) * 2019-11-20 2020-03-24 浙江法曼工业皮带有限公司 一种单晶加热炉及其高效保温方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1865529A (zh) * 2006-04-26 2006-11-22 天津市环欧半导体材料技术有限公司 气相预掺杂和中子辐照掺杂组合的区熔硅单晶的生产方法
CN1865531A (zh) * 2006-04-21 2006-11-22 天津市环欧半导体材料技术有限公司 气相掺杂区熔硅单晶的生产方法
JP2012148953A (ja) * 2010-12-28 2012-08-09 Shin Etsu Handotai Co Ltd 単結晶の製造方法
CN103147118A (zh) * 2013-02-25 2013-06-12 天津市环欧半导体材料技术有限公司 一种利用直拉区熔法制备太阳能级硅单晶的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053958B2 (ja) * 1992-04-10 2000-06-19 光弘 丸山 浮遊帯溶融法による結晶の製造装置
DE10137857B4 (de) * 2001-08-02 2006-11-16 Siltronic Ag Verfahren zur Herstellung eines Einkristalls
NO333319B1 (no) * 2003-12-29 2013-05-06 Elkem As Silisiummateriale for fremstilling av solceller
JP5296992B2 (ja) * 2007-01-31 2013-09-25 Sumco Techxiv株式会社 シリコン結晶素材及びその製造方法
JP5318365B2 (ja) * 2007-04-24 2013-10-16 Sumco Techxiv株式会社 シリコン結晶素材及びこれを用いたfzシリコン単結晶の製造方法
JP4771989B2 (ja) * 2007-04-25 2011-09-14 Sumco Techxiv株式会社 Fz法シリコン単結晶の製造方法
DE102009005837B4 (de) * 2009-01-21 2011-10-06 Pv Silicon Forschungs Und Produktions Gmbh Verfahren und Vorrichtung zur Herstellung von Siliziumdünnstäben
JP4831203B2 (ja) * 2009-04-24 2011-12-07 信越半導体株式会社 半導体単結晶の製造方法および半導体単結晶の製造装置
CN102304757A (zh) * 2011-10-11 2012-01-04 天津市环欧半导体材料技术有限公司 用直拉区熔法制备6英寸p型太阳能硅单晶的方法
CN102534749A (zh) * 2012-02-14 2012-07-04 天津市环欧半导体材料技术有限公司 用直拉区熔法制备6英寸n型太阳能硅单晶的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1865531A (zh) * 2006-04-21 2006-11-22 天津市环欧半导体材料技术有限公司 气相掺杂区熔硅单晶的生产方法
CN1865529A (zh) * 2006-04-26 2006-11-22 天津市环欧半导体材料技术有限公司 气相预掺杂和中子辐照掺杂组合的区熔硅单晶的生产方法
JP2012148953A (ja) * 2010-12-28 2012-08-09 Shin Etsu Handotai Co Ltd 単結晶の製造方法
CN103147118A (zh) * 2013-02-25 2013-06-12 天津市环欧半导体材料技术有限公司 一种利用直拉区熔法制备太阳能级硅单晶的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955252A4 *

Also Published As

Publication number Publication date
EP2955252A1 (en) 2015-12-16
EP2955252A4 (en) 2015-12-16
JP2016508479A (ja) 2016-03-22
CN103147118A (zh) 2013-06-12
CN103147118B (zh) 2016-03-30
US20160002819A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
CN103014852B (zh) 一种用于铸造高效多晶硅锭的方法
CN114606567B (zh) n型单晶硅的制造方法、n型单晶硅的锭、硅晶片及外延硅晶片
WO2014091671A1 (ja) シリコン単結晶の製造方法
CN204251762U (zh) 一种单晶炉热场结构
WO2014127646A1 (zh) 一种利用直拉区熔法制备太阳能级硅单晶的方法
CN101851779A (zh) 一种太阳能电池单晶硅片的制造方法
WO2008128378A1 (fr) Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin
CN204251758U (zh) 用于直拉法生产单晶的装置
CN113604870A (zh) 一种用于降低大尺寸直拉单晶硅片缺陷的拉制方法
CN114016122B (zh) 一种提高大尺寸n型硅片转换效率的方法
CN104451872A (zh) 一种太阳能级直拉单晶硅的生产方法
CN103361727A (zh) 蓝宝石单晶及其制备方法
CN204251761U (zh) 单晶炉热场结构
CN107268071A (zh) 一种太阳能电池板用单晶硅制备工艺
CN204251757U (zh) 直拉法单晶炉
CN104264213A (zh) 一种大尺寸掺杂蓝宝石晶体的efg生长装置及其生长工艺
CN105239152A (zh) 一种太阳能级直拉单晶硅的生产方法
CN206799790U (zh) 单晶炉
CN110528074A (zh) 一种单晶硅提炼生产工艺及其精炼装置
TW202022178A (zh) 一種晶體生長爐的導流筒和晶體生長爐
CN103422156A (zh) 一种多晶料在区熔单晶硅中的一次成晶工艺制备方法
CN217948333U (zh) 具有多生长腔的生长碳化硅单晶的坩埚
JPWO2013145558A1 (ja) 多結晶シリコンおよびその鋳造方法
CN103396170B (zh) 多晶硅铸锭用坩埚涂层的制备方法以及坩埚
CN116043321A (zh) 一种控制硼富集的单晶硅拉制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14769627

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015558331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013875504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013875504

Country of ref document: EP