WO2014127646A1 - 一种利用直拉区熔法制备太阳能级硅单晶的方法 - Google Patents
一种利用直拉区熔法制备太阳能级硅单晶的方法 Download PDFInfo
- Publication number
- WO2014127646A1 WO2014127646A1 PCT/CN2013/086395 CN2013086395W WO2014127646A1 WO 2014127646 A1 WO2014127646 A1 WO 2014127646A1 CN 2013086395 W CN2013086395 W CN 2013086395W WO 2014127646 A1 WO2014127646 A1 WO 2014127646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon single
- single crystal
- grade silicon
- angle
- solar
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/32—Mechanisms for moving either the charge or the heater
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/08—Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
- C30B13/10—Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/26—Stirring of the molten zone
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/28—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/28—Controlling or regulating
- C30B13/30—Stabilisation or shape controlling of the molten zone, e.g. by concentrators, by electromagnetic fields; Controlling the section of the crystal
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/02—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
- C30B15/04—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
Definitions
- the invention belongs to the technical field of preparation of silicon single crystals, and in particular relates to a method for preparing solar grade silicon single crystals by a straight pull zone melting method.
- the straight-pull zone molten silicon single crystal production technology overcomes the inherent defects in the traditional Czochralski method and the zone melting process, and is easy to scale production.
- the silicon single crystal obtained by the straight-pull zone melting method has a good performance-price ratio and has the characteristics of being easily incorporated into a special solid impurity element, so it has a broad market and application prospect in the field of semiconductor materials.
- the single crystal is unidirectionally rotated in the zone melting process in the preparation process, so the dopant and the oxygen and carbon are unevenly distributed during the gas phase doping process.
- the black core phenomenon common to Czochralski silicon single crystals still occurs, and its radial uniformity is poor, affecting the conversion efficiency of the solar cell sheets produced therefrom.
- the problem to be solved by the present invention is to provide a method for preparing a solar-grade silicon single crystal by a Czochralski melting method, which is particularly suitable for improving the photovoltaic performance of a solar-grade silicon single crystal.
- the technical solution adopted by the present invention is: A method for preparing a solar-grade silicon single crystal by a straight-pull zone melting method: in an equal-diameter growth process in a zone melting stage, in a zone-fused silicon single crystal furnace electrical Under the control of the control system, the down-rotating motor is alternately rotated in the forward and reverse directions, and the down-turning motor drives the silicon single crystal to rotate according to the set forward angle and reverse angle.
- the ratio of the forward angle to the reverse angle is a preset value. Further, the ratio of the forward angle to the reverse angle is 380: 620.
- the forward angle is 100°-800°
- the reverse angle is 50°-750.
- the invention has the advantages and positive effects that the invention is introduced in the equal-path growth process for preparing a solar-grade silicon single crystal.
- the bidirectional rotation process greatly improves the uniformity of the radial resistivity of the solar grade silicon single crystal, solves the black core problem of the solar grade silicon single crystal, and can improve the solar cell sheet produced by the solar grade silicon single crystal. Conversion efficiency.
- the invention provides a method for preparing a solar grade silicon single crystal by using a straight-pull zone melting method: in the equal-path growth process in the zone melting stage, under the control of the electric control system of the zone melting silicon single crystal furnace, the down-turning motor is positive The rotation of the opposite direction is reversed, and the lower rotation motor drives the silicon single crystal to rotate according to the set forward angle and the reverse angle, and the ratio of the forward angle to the reverse angle is a preset value.
- the preferred range of the positive angle is from 100° to 800°, and the reverse angle is preferably from 50° to 750°.
- the ratio of the positive angle to the reverse angle is preferably 380: 620.
- the silicon single crystal is first drawn by a Czochralski method, and then ingot processing is performed. The corrosion is cleaned, and then in the equal-path growth process in the zone melting stage, the bi-directional rotation process is used to draw the solar-grade silicon single crystal.
- the specific steps are as follows:
- the neck is pulled, and a thin neck with a diameter of about 8 mm and a length of 20 mm is pulled out from the molten polycrystalline material through the seed crystal;
- Adjust the diameter sensor to control the pulling speed for equal-diameter pulling, and the equal-path growth time is 20 hours;
- the material is processed. After the polycrystalline material is melted, the seed crystal and the molten silicon are subjected to After welding, the melting zone is shaped and seeded after welding;
- the neck is grown, the diameter of the neck is 3-6mm, and the length is 20-100mm;
- the solar-grade silicon single crystal obtained by the Czochralski melting method of the prior art has a radial uniformity (RRV value) of 30% to 40%, as shown in FIG. 1, using a silicon single wafer prepared by the prior art.
- RRV value radial uniformity
- the solar-grade silicon single crystal obtained in this embodiment has a radial uniformity (RRV value) of 10%. As shown in FIG. 2, no black-heart phenomenon occurs, and the conversion efficiency of the solar cell produced in the later stage reaches 24%. Efficiency is basically not attenuated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015558331A JP2016508479A (ja) | 2013-02-25 | 2013-11-01 | チョクラルスキー・ゾーンメルト法を用いたソーラーグレードシリコン単結晶の製造方法 |
US14/769,627 US20160002819A1 (en) | 2013-02-25 | 2013-11-01 | Method for preparing solar grade silicon single crystal using czochralski zone melting method |
EP13875504.6A EP2955252A4 (en) | 2013-02-25 | 2013-11-01 | PROCESS FOR THE PREPARATION OF SOLAR QUALITY SILICON MONOCRYSTAL BY MEANS OF A ZONE FUSION CZOCHRALSKI PROCESS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310057877.XA CN103147118B (zh) | 2013-02-25 | 2013-02-25 | 一种利用直拉区熔法制备太阳能级硅单晶的方法 |
CN201310057877.X | 2013-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014127646A1 true WO2014127646A1 (zh) | 2014-08-28 |
Family
ID=48545424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/086395 WO2014127646A1 (zh) | 2013-02-25 | 2013-11-01 | 一种利用直拉区熔法制备太阳能级硅单晶的方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160002819A1 (zh) |
EP (1) | EP2955252A4 (zh) |
JP (1) | JP2016508479A (zh) |
CN (1) | CN103147118B (zh) |
WO (1) | WO2014127646A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103147118B (zh) * | 2013-02-25 | 2016-03-30 | 天津市环欧半导体材料技术有限公司 | 一种利用直拉区熔法制备太阳能级硅单晶的方法 |
CN109440183B (zh) * | 2018-12-20 | 2020-11-13 | 天津中环领先材料技术有限公司 | 一种优化型大直径区熔硅单晶收尾方法 |
CN110904496A (zh) * | 2019-11-20 | 2020-03-24 | 浙江法曼工业皮带有限公司 | 一种单晶加热炉及其高效保温方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1865529A (zh) * | 2006-04-26 | 2006-11-22 | 天津市环欧半导体材料技术有限公司 | 气相预掺杂和中子辐照掺杂组合的区熔硅单晶的生产方法 |
CN1865531A (zh) * | 2006-04-21 | 2006-11-22 | 天津市环欧半导体材料技术有限公司 | 气相掺杂区熔硅单晶的生产方法 |
JP2012148953A (ja) * | 2010-12-28 | 2012-08-09 | Shin Etsu Handotai Co Ltd | 単結晶の製造方法 |
CN103147118A (zh) * | 2013-02-25 | 2013-06-12 | 天津市环欧半导体材料技术有限公司 | 一种利用直拉区熔法制备太阳能级硅单晶的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3053958B2 (ja) * | 1992-04-10 | 2000-06-19 | 光弘 丸山 | 浮遊帯溶融法による結晶の製造装置 |
DE10137857B4 (de) * | 2001-08-02 | 2006-11-16 | Siltronic Ag | Verfahren zur Herstellung eines Einkristalls |
NO333319B1 (no) * | 2003-12-29 | 2013-05-06 | Elkem As | Silisiummateriale for fremstilling av solceller |
JP5296992B2 (ja) * | 2007-01-31 | 2013-09-25 | Sumco Techxiv株式会社 | シリコン結晶素材及びその製造方法 |
JP5318365B2 (ja) * | 2007-04-24 | 2013-10-16 | Sumco Techxiv株式会社 | シリコン結晶素材及びこれを用いたfzシリコン単結晶の製造方法 |
JP4771989B2 (ja) * | 2007-04-25 | 2011-09-14 | Sumco Techxiv株式会社 | Fz法シリコン単結晶の製造方法 |
DE102009005837B4 (de) * | 2009-01-21 | 2011-10-06 | Pv Silicon Forschungs Und Produktions Gmbh | Verfahren und Vorrichtung zur Herstellung von Siliziumdünnstäben |
JP4831203B2 (ja) * | 2009-04-24 | 2011-12-07 | 信越半導体株式会社 | 半導体単結晶の製造方法および半導体単結晶の製造装置 |
CN102304757A (zh) * | 2011-10-11 | 2012-01-04 | 天津市环欧半导体材料技术有限公司 | 用直拉区熔法制备6英寸p型太阳能硅单晶的方法 |
CN102534749A (zh) * | 2012-02-14 | 2012-07-04 | 天津市环欧半导体材料技术有限公司 | 用直拉区熔法制备6英寸n型太阳能硅单晶的方法 |
-
2013
- 2013-02-25 CN CN201310057877.XA patent/CN103147118B/zh active Active
- 2013-11-01 JP JP2015558331A patent/JP2016508479A/ja active Pending
- 2013-11-01 WO PCT/CN2013/086395 patent/WO2014127646A1/zh active Application Filing
- 2013-11-01 EP EP13875504.6A patent/EP2955252A4/en not_active Withdrawn
- 2013-11-01 US US14/769,627 patent/US20160002819A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1865531A (zh) * | 2006-04-21 | 2006-11-22 | 天津市环欧半导体材料技术有限公司 | 气相掺杂区熔硅单晶的生产方法 |
CN1865529A (zh) * | 2006-04-26 | 2006-11-22 | 天津市环欧半导体材料技术有限公司 | 气相预掺杂和中子辐照掺杂组合的区熔硅单晶的生产方法 |
JP2012148953A (ja) * | 2010-12-28 | 2012-08-09 | Shin Etsu Handotai Co Ltd | 単結晶の製造方法 |
CN103147118A (zh) * | 2013-02-25 | 2013-06-12 | 天津市环欧半导体材料技术有限公司 | 一种利用直拉区熔法制备太阳能级硅单晶的方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2955252A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2955252A1 (en) | 2015-12-16 |
EP2955252A4 (en) | 2015-12-16 |
JP2016508479A (ja) | 2016-03-22 |
CN103147118A (zh) | 2013-06-12 |
CN103147118B (zh) | 2016-03-30 |
US20160002819A1 (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103014852B (zh) | 一种用于铸造高效多晶硅锭的方法 | |
CN114606567B (zh) | n型单晶硅的制造方法、n型单晶硅的锭、硅晶片及外延硅晶片 | |
WO2014091671A1 (ja) | シリコン単結晶の製造方法 | |
CN204251762U (zh) | 一种单晶炉热场结构 | |
WO2014127646A1 (zh) | 一种利用直拉区熔法制备太阳能级硅单晶的方法 | |
CN101851779A (zh) | 一种太阳能电池单晶硅片的制造方法 | |
WO2008128378A1 (fr) | Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin | |
CN204251758U (zh) | 用于直拉法生产单晶的装置 | |
CN113604870A (zh) | 一种用于降低大尺寸直拉单晶硅片缺陷的拉制方法 | |
CN114016122B (zh) | 一种提高大尺寸n型硅片转换效率的方法 | |
CN104451872A (zh) | 一种太阳能级直拉单晶硅的生产方法 | |
CN103361727A (zh) | 蓝宝石单晶及其制备方法 | |
CN204251761U (zh) | 单晶炉热场结构 | |
CN107268071A (zh) | 一种太阳能电池板用单晶硅制备工艺 | |
CN204251757U (zh) | 直拉法单晶炉 | |
CN104264213A (zh) | 一种大尺寸掺杂蓝宝石晶体的efg生长装置及其生长工艺 | |
CN105239152A (zh) | 一种太阳能级直拉单晶硅的生产方法 | |
CN206799790U (zh) | 单晶炉 | |
CN110528074A (zh) | 一种单晶硅提炼生产工艺及其精炼装置 | |
TW202022178A (zh) | 一種晶體生長爐的導流筒和晶體生長爐 | |
CN103422156A (zh) | 一种多晶料在区熔单晶硅中的一次成晶工艺制备方法 | |
CN217948333U (zh) | 具有多生长腔的生长碳化硅单晶的坩埚 | |
JPWO2013145558A1 (ja) | 多結晶シリコンおよびその鋳造方法 | |
CN103396170B (zh) | 多晶硅铸锭用坩埚涂层的制备方法以及坩埚 | |
CN116043321A (zh) | 一种控制硼富集的单晶硅拉制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13875504 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14769627 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015558331 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013875504 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013875504 Country of ref document: EP |