WO2014125862A1 - Semiconductor device including clamp element - Google Patents

Semiconductor device including clamp element Download PDF

Info

Publication number
WO2014125862A1
WO2014125862A1 PCT/JP2014/050672 JP2014050672W WO2014125862A1 WO 2014125862 A1 WO2014125862 A1 WO 2014125862A1 JP 2014050672 W JP2014050672 W JP 2014050672W WO 2014125862 A1 WO2014125862 A1 WO 2014125862A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
clamp
diode
clamp element
semiconductor device
Prior art date
Application number
PCT/JP2014/050672
Other languages
French (fr)
Japanese (ja)
Inventor
智光 理崎
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Publication of WO2014125862A1 publication Critical patent/WO2014125862A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Definitions

  • the present invention relates to a semiconductor device.
  • the present invention relates to a semiconductor device on which a clamp element is mounted.
  • FIG. 7 is a diagram showing a conventional clamp circuit.
  • the clamp circuit includes a diode 51 and a control circuit 52 arranged in the opposite direction in normal operation.
  • the control circuit 52 includes a resistor and a current source. With these resistors and current sources, the control circuit 52 generates a voltage at the anode of the diode 51 and controls the clamp voltage at the cathode of the diode 51 by causing a constant current to flow through the diode 51.
  • the circuit is designed so that these resistors and current sources do not have temperature dependency so that the clamp voltage does not have temperature dependency. (For example, refer to Patent Document 1).
  • This invention is made in view of the said subject, and provides the semiconductor device provided with the clamp element with which a clamp voltage is hard to depend on temperature and an area is small.
  • the present invention provides a clamp element mounted on a semiconductor device in which a predetermined number of forward diodes and one diode connected in series between a clamped node and a power supply voltage supply terminal.
  • a semiconductor device including a clamp element, characterized in that a reverse diode is provided, and polysilicon is used for the forward diode.
  • FIG. 1 It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. It is a figure which shows the voltage with respect to temperature, (A) is a figure regarding the forward drop voltage of the forward diode 10, (B) is a figure regarding the breakdown voltage of the reverse diode 20, (C) is It is a figure regarding the clamp voltage of a clamp element. It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. It is a figure which shows
  • FIG. 1 is a diagram illustrating a semiconductor device including a clamp element
  • FIG. 1A is a cross-sectional view.
  • a LOCOS (Local Oxidation of Silicon) oxide film 13 is grown on the surface of the semiconductor substrate 24 by a conventional semiconductor manufacturing process.
  • P-type polysilicon 11 and N-type polysilicon 12 are formed on LOCOS oxide film 13.
  • a P-type well 23 is formed on the surface of the semiconductor substrate 24.
  • a P-type diffusion layer 21 and an N-type diffusion layer 22 are formed on the surface of the P-type well 23.
  • the P-type polysilicon 11 and the N-type polysilicon 12 constitute a forward diode 10, the P-type polysilicon 11 functions as an anode electrode, and the N-type polysilicon 12 functions as a cathode electrode.
  • the P-type well 23 and the N-type diffusion layer 22 constitute a reverse diode 20, the P-type diffusion layer 21 functions as an anode electrode, and the N-type diffusion layer 22 functions as a cathode electrode.
  • the withstand voltage of the clamp element is determined by the impurity concentration of the P-type well 23 and the N-type diffusion layer 22.
  • the impurity concentration of the P-type well 23 is lower than the impurity concentration of the P-type diffusion layer 21.
  • the withstand voltage of the clamp element is increased accordingly. Therefore, the withstand voltage of the clamp element can be easily adjusted by a normal semiconductor manufacturing process.
  • FIG. 1 is a diagram showing a clamp element
  • (B) is a circuit diagram.
  • the anode electrode of the forward diode 10 is connected to the node to be clamped, and the cathode electrode is connected to the cathode electrode of the reverse diode 20.
  • the anode electrode of the reverse diode 20 is connected to the ground terminal. That is, between the clamped node and the ground terminal, the forward diode 10 is connected in the forward direction, the reverse diode 20 is connected in the reverse direction, and the forward diode 10 and the reverse diode 20 are serially connected in order. Connected.
  • the area is small.
  • the clamp voltage is the total voltage of the forward drop voltage of the forward diode 10 and the breakdown voltage of the reverse diode 20.
  • the clamp circuit does not malfunction.
  • FIGS. 2A and 2B are diagrams illustrating voltage with respect to temperature
  • FIG. 2A is a diagram regarding a forward drop voltage of the forward diode 10
  • FIG. 2B is a diagram regarding a breakdown voltage of the reverse diode 20
  • (C) is a figure regarding the clamp voltage of a clamp element.
  • the forward voltage drop of the forward diode 10 has a negative temperature coefficient as shown in FIG.
  • the breakdown voltage of the reverse diode 20 has a positive temperature coefficient as shown in FIG.
  • the clamp voltage is the total voltage of the forward drop voltage of the forward diode 10 having a negative temperature coefficient and the breakdown voltage of the reverse diode 20 having a positive temperature coefficient.
  • the positive temperature coefficient of the clamp voltage becomes smaller by the negative temperature coefficient of the forward voltage of the forward diode 10, The temperature dependence of the clamp voltage is reduced.
  • a plurality of forward diodes 10 are provided in series, so that the clamp voltage can be reduced.
  • the positive temperature coefficient is further reduced, and the temperature dependence of the clamp voltage can be further reduced, that is, flattened.
  • the reverse diode 20 using the diffusion layer in the semiconductor substrate 24 is used.
  • a reverse diode 30 using polysilicon may be used.
  • the P-type polysilicon 31 and the N-type polysilicon 12 constitute a reverse diode 30, the P-type polysilicon 32 functions as an anode electrode, and the N-type polysilicon 12 functions as a cathode electrode.
  • the breakdown voltage of the clamp element is determined by the impurity concentration of the P-type polysilicon 31 and the N-type polysilicon 12.
  • the impurity concentration of the P-type polysilicon 31 is lower than the impurity concentration of the P-type polysilicon 32. When the impurity concentration of the P-type polysilicon 31 is reduced, the withstand voltage of the clamp element is increased accordingly.
  • the P-type polysilicon 32 and the N-type polysilicon 33 constitute a reverse diode 30a
  • the P-type polysilicon 32 functions as an anode electrode
  • the N-type polysilicon 12 serves as a cathode electrode. May function.
  • the P-type polysilicon 31 and the N-type polysilicon 33 constitute a reverse diode 30b
  • the P-type polysilicon 32 functions as an anode electrode
  • the N-type polysilicon 12 serves as a cathode electrode. May function.
  • the reverse diode 30b since the reverse diode 30b has two of the P-type polysilicon 31 and the N-type polysilicon 33 as the low concentration region, the reverse diode 30b has a higher breakdown voltage.
  • the P-type polysilicon 32 and the N-type polysilicon 12 constitute a reverse diode 30c
  • the P-type polysilicon 32 functions as an anode electrode
  • the N-type polysilicon 12 serves as a cathode electrode. May function.
  • the reverse diode 30c does not have a low concentration region, and thus has a low breakdown voltage.
  • forward diode 10 and the reverse diode 20 are connected in series in order between the clamped node and the ground terminal, they may be connected in series in the reverse order.
  • the forward diode 10 is formed on the LOCOS oxide film 13, it may be formed on another insulating means in the semiconductor substrate 24 such as a gate insulating film or STI (Shallow Trench Isolation).
  • the node to be clamped is clamped based on the ground terminal (power supply voltage supply terminal), it may be clamped based on the power supply terminal (power supply voltage supply terminal).
  • the forward diode 10 and the reverse diode 20 are similarly connected in series between the power supply terminal and the node to be clamped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

In order to provide a semiconductor device that includes a clamp element having a clamp voltage hardly dependent on temperature and having a small area, the clamp voltage of the clamp element is a voltage obtained by summing a forward drop voltage of a forward diode (10) made of polysilicon having a negative temperature coefficient and a breakdown voltage of a reverse diode (20) having a positive temperature coefficient. The positive temperature coefficient of the reverse diode is decreased for the negative temperature coefficient of the forward voltage of the forward diode (10), whereby the temperature dependency of the clamp voltage is decreased and flattened.

Description

クランプ素子を備えた半導体装置Semiconductor device having a clamp element
 本発明は、半導体装置に関する。特に、クランプ素子が搭載された半導体装置に関する。 The present invention relates to a semiconductor device. In particular, the present invention relates to a semiconductor device on which a clamp element is mounted.
 従来のクランプ回路について説明する。図7は、従来のクランプ回路を示す図である。 A conventional clamp circuit will be described. FIG. 7 is a diagram showing a conventional clamp circuit.
 クランプ回路は、通常動作においては逆方向となる向きに配置されたダイオード51及び制御回路52を備える。制御回路52は、図示しないが、抵抗及び電流源を備える。これらの抵抗及び電流源により、制御回路52は、ダイオード51のアノードに電圧を発生させ、且つ、ダイオード51に定電流を流すことにより、ダイオード51のカソードのクランプ電圧を制御する。この時、クランプ電圧が温度依存性を持たないように、これらの抵抗及び電流源が温度依存性を持たないように回路設計する。(例えば、特許文献1参照)。 The clamp circuit includes a diode 51 and a control circuit 52 arranged in the opposite direction in normal operation. Although not shown, the control circuit 52 includes a resistor and a current source. With these resistors and current sources, the control circuit 52 generates a voltage at the anode of the diode 51 and controls the clamp voltage at the cathode of the diode 51 by causing a constant current to flow through the diode 51. At this time, the circuit is designed so that these resistors and current sources do not have temperature dependency so that the clamp voltage does not have temperature dependency. (For example, refer to Patent Document 1).
特開2008-109239号公報JP 2008-109239 A
 しかし、特許文献1によって開示された技術では、クランプ回路のクランプ電圧を制御する制御回路52が存在するので、その分、回路の面積が大きくなってしまう。 However, in the technique disclosed in Patent Document 1, since there is a control circuit 52 that controls the clamp voltage of the clamp circuit, the area of the circuit increases accordingly.
 本発明は、上記課題に鑑みてなされ、クランプ電圧が温度に依存しにくく、面積が小さいクランプ素子を備えた半導体装置を提供する。 This invention is made in view of the said subject, and provides the semiconductor device provided with the clamp element with which a clamp voltage is hard to depend on temperature and an area is small.
 本発明は、上記課題を解決するため、半導体装置に搭載されるクランプ素子において、クランプされるノードと電源電圧供給端子との間で直列接続される、所定数個の順方向ダイオード及び1個の逆方向ダイオード、を備え、順方向ダイオードに、ポリシリコンが用いられる、ことを特徴とするクランプ素子を備えた半導体装置を提供する。 In order to solve the above-described problems, the present invention provides a clamp element mounted on a semiconductor device in which a predetermined number of forward diodes and one diode connected in series between a clamped node and a power supply voltage supply terminal. There is provided a semiconductor device including a clamp element, characterized in that a reverse diode is provided, and polysilicon is used for the forward diode.
 本発明では、クランプ素子において、クランプ電圧を制御する制御回路が存在しないので、面積を小さくすることが可能である。 In the present invention, since there is no control circuit for controlling the clamp voltage in the clamp element, the area can be reduced.
クランプ素子を示す図であり、(A)は、断面図であり、(B)は、回路図である。It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. 温度に対する電圧を示す図であり、(A)は、順方向ダイオード10の順方向降下電圧に関する図であり、(B)は、逆方向ダイオード20のブレークダウン電圧に関する図であり、(C)は、クランプ素子のクランプ電圧に関する図である。It is a figure which shows the voltage with respect to temperature, (A) is a figure regarding the forward drop voltage of the forward diode 10, (B) is a figure regarding the breakdown voltage of the reverse diode 20, (C) is It is a figure regarding the clamp voltage of a clamp element. クランプ素子を示す図であり、(A)は、断面図であり、(B)は、回路図である。It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. クランプ素子を示す図であり、(A)は、断面図であり、(B)は、回路図である。It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. クランプ素子を示す図であり、(A)は、断面図であり、(B)は、回路図である。It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. クランプ素子を示す図であり、(A)は、断面図であり、(B)は、回路図である。It is a figure which shows a clamp element, (A) is sectional drawing, (B) is a circuit diagram. 従来のクランプ回路を示す図である。It is a figure which shows the conventional clamp circuit.
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、クランプ素子の断面構造について説明する。図1は、クランプ素子を備えた半導体装置を示す図であり、(A)は、断面図である。 First, the cross-sectional structure of the clamp element will be described. FIG. 1 is a diagram illustrating a semiconductor device including a clamp element, and FIG. 1A is a cross-sectional view.
 従来の半導体製造プロセスにより、半導体基板24の表面に、LOCOS(Local Oxidation of Silicon)酸化膜13を成長させる。LOCOS酸化膜13の上に、P型ポリシリコン11及びN型ポリシリコン12を形成する。また、半導体基板24の表面に、P型ウェル23を形成する。P型ウェル23の表面に、P型拡散層21及びN型拡散層22を形成する。P型ポリシリコン11及びN型ポリシリコン12は順方向ダイオード10を構成し、P型ポリシリコン11はアノード電極として機能し、N型ポリシリコン12はカソード電極として機能する。P型ウェル23及びN型拡散層22は逆方向ダイオード20を構成し、P型拡散層21はアノード電極として機能し、N型拡散層22はカソード電極として機能する。 A LOCOS (Local Oxidation of Silicon) oxide film 13 is grown on the surface of the semiconductor substrate 24 by a conventional semiconductor manufacturing process. P-type polysilicon 11 and N-type polysilicon 12 are formed on LOCOS oxide film 13. Further, a P-type well 23 is formed on the surface of the semiconductor substrate 24. A P-type diffusion layer 21 and an N-type diffusion layer 22 are formed on the surface of the P-type well 23. The P-type polysilicon 11 and the N-type polysilicon 12 constitute a forward diode 10, the P-type polysilicon 11 functions as an anode electrode, and the N-type polysilicon 12 functions as a cathode electrode. The P-type well 23 and the N-type diffusion layer 22 constitute a reverse diode 20, the P-type diffusion layer 21 functions as an anode electrode, and the N-type diffusion layer 22 functions as a cathode electrode.
 次に、クランプ素子の耐圧について説明する。 Next, the breakdown voltage of the clamp element will be described.
 クランプ素子の耐圧は、P型ウェル23及びN型拡散層22の不純物濃度によって決定される。P型ウェル23の不純物濃度は、P型拡散層21の不純物濃度よりも低い。P型ウェル23の不純物濃度が低くなると、その分、クランプ素子の耐圧が高くなる。よって、このクランプ素子の耐圧は、通常の半導体製造プロセスにより、容易に調整可能となっている。 The withstand voltage of the clamp element is determined by the impurity concentration of the P-type well 23 and the N-type diffusion layer 22. The impurity concentration of the P-type well 23 is lower than the impurity concentration of the P-type diffusion layer 21. When the impurity concentration of the P-type well 23 is lowered, the withstand voltage of the clamp element is increased accordingly. Therefore, the withstand voltage of the clamp element can be easily adjusted by a normal semiconductor manufacturing process.
 次に、クランプ素子の回路構成について説明する。図1は、クランプ素子を示す図であり、(B)は、回路図である。 Next, the circuit configuration of the clamp element will be described. FIG. 1 is a diagram showing a clamp element, and (B) is a circuit diagram.
 順方向ダイオード10のアノード電極は、クランプされるノードに接続され、カソード電極は、逆方向ダイオード20のカソード電極に接続される。逆方向ダイオード20のアノード電極は、接地端子に接続される。つまり、クランプされるノードと接地端子との間で、順方向ダイオード10は順方向に接続され、逆方向ダイオード20は逆方向に接続され、順方向ダイオード10と逆方向ダイオード20とは順番に直列接続される。ここで、クランプ素子において、ダイオードが2個だけ使用され、クランプ電圧を制御する制御回路は存在しないので、面積が小さい。 The anode electrode of the forward diode 10 is connected to the node to be clamped, and the cathode electrode is connected to the cathode electrode of the reverse diode 20. The anode electrode of the reverse diode 20 is connected to the ground terminal. That is, between the clamped node and the ground terminal, the forward diode 10 is connected in the forward direction, the reverse diode 20 is connected in the reverse direction, and the forward diode 10 and the reverse diode 20 are serially connected in order. Connected. Here, since only two diodes are used in the clamp element and there is no control circuit for controlling the clamp voltage, the area is small.
 次に、クランプ素子の動作について説明する。 Next, the operation of the clamp element will be described.
 クランプされるノードの電圧が高くなり、クランプ電圧になると、逆方向ダイオード20のブレークダウン動作により、そのクランプ電圧でクランプされる。クランプ電圧は、順方向ダイオード10の順方向降下電圧と、逆方向ダイオード20のブレークダウン電圧と、の合計電圧である。 When the voltage of the node to be clamped becomes high and becomes the clamp voltage, the reverse diode 20 is clamped by the clamp voltage by the breakdown operation. The clamp voltage is the total voltage of the forward drop voltage of the forward diode 10 and the breakdown voltage of the reverse diode 20.
 また、クランプ回路において半導体基板24の中の拡散層を用いたダイオードが複数個使用されてしまうと、これらのダイオードの間やダイオードと半導体基板24との間の寄生素子が動作してしまい、クランプ回路が誤動作してしまう可能性がある。しかし、本発明では、半導体基板24の中の拡散層を用いたダイオードは1個だけ使用されるので、クランプ回路は誤動作しない。 In addition, if a plurality of diodes using the diffusion layer in the semiconductor substrate 24 are used in the clamp circuit, parasitic elements between these diodes or between the diode and the semiconductor substrate 24 operate, and the clamp The circuit may malfunction. However, in the present invention, since only one diode using the diffusion layer in the semiconductor substrate 24 is used, the clamp circuit does not malfunction.
 次に、クランプ電圧の温度依存性について説明する。図2は、温度に対する電圧を示す図であり、(A)は、順方向ダイオード10の順方向降下電圧に関する図であり、(B)は、逆方向ダイオード20のブレークダウン電圧に関する図であり、(C)は、クランプ素子のクランプ電圧に関する図である。 Next, the temperature dependence of the clamp voltage will be described. 2A and 2B are diagrams illustrating voltage with respect to temperature, FIG. 2A is a diagram regarding a forward drop voltage of the forward diode 10, and FIG. 2B is a diagram regarding a breakdown voltage of the reverse diode 20. (C) is a figure regarding the clamp voltage of a clamp element.
 順方向ダイオード10の順方向降下電圧は、図2の(A)に示すように、負の温度係数を有する。逆方向ダイオード20のブレークダウン電圧は、図2の(B)に示すように、正の温度係数を有する。ここで、クランプ電圧は、正の温度係数を有する逆方向ダイオード20のブレークダウン電圧と等しいとすると、図2の(C)の“0個の順方向ダイオード10”に示すように、正の温度係数を有してしまう。しかし、本発明では、クランプ電圧は、負の温度係数を有する順方向ダイオード10の順方向降下電圧と、正の温度係数を有する逆方向ダイオード20のブレークダウン電圧と、の合計電圧である。すると、順方向ダイオード10の順方向電圧の負の温度係数の分、図2の(C)の“1個の順方向ダイオード10”に示すように、クランプ電圧の正の温度係数が小さくなり、クランプ電圧の温度依存性は低くなる。 The forward voltage drop of the forward diode 10 has a negative temperature coefficient as shown in FIG. The breakdown voltage of the reverse diode 20 has a positive temperature coefficient as shown in FIG. Here, assuming that the clamp voltage is equal to the breakdown voltage of the reverse diode 20 having a positive temperature coefficient, as shown in “0 forward diodes 10” in FIG. It has a coefficient. However, in the present invention, the clamp voltage is the total voltage of the forward drop voltage of the forward diode 10 having a negative temperature coefficient and the breakdown voltage of the reverse diode 20 having a positive temperature coefficient. Then, as shown in “one forward diode 10” in FIG. 2C, the positive temperature coefficient of the clamp voltage becomes smaller by the negative temperature coefficient of the forward voltage of the forward diode 10, The temperature dependence of the clamp voltage is reduced.
 なお、図2の(C)の“2個の順方向ダイオード10”及び“3個の順方向ダイオード10”に示すように、複数個の順方向ダイオード10が直列に設けることにより、クランプ電圧の正の温度係数がさらに小さくなり、クランプ電圧の温度依存性をさらに低く、即ち、平坦にすることが可能である。 As shown in “two forward diodes 10” and “three forward diodes 10” in FIG. 2C, a plurality of forward diodes 10 are provided in series, so that the clamp voltage can be reduced. The positive temperature coefficient is further reduced, and the temperature dependence of the clamp voltage can be further reduced, that is, flattened.
 また、図1では、半導体基板24の中の拡散層を用いた逆方向ダイオード20を使用しているが、図3に示すように、ポリシリコンを用いた逆方向ダイオード30を使用しても良い。この時、P型ポリシリコン31及びN型ポリシリコン12は逆方向ダイオード30を構成し、P型ポリシリコン32はアノード電極として機能し、N型ポリシリコン12はカソード電極として機能する。また、クランプ素子の耐圧は、P型ポリシリコン31及びN型ポリシリコン12の不純物濃度によって決定される。P型ポリシリコン31の不純物濃度は、P型ポリシリコン32の不純物濃度よりも低い。P型ポリシリコン31の不純物濃度が低くなると、その分、クランプ素子の耐圧が高くなる。 In FIG. 1, the reverse diode 20 using the diffusion layer in the semiconductor substrate 24 is used. However, as shown in FIG. 3, a reverse diode 30 using polysilicon may be used. . At this time, the P-type polysilicon 31 and the N-type polysilicon 12 constitute a reverse diode 30, the P-type polysilicon 32 functions as an anode electrode, and the N-type polysilicon 12 functions as a cathode electrode. The breakdown voltage of the clamp element is determined by the impurity concentration of the P-type polysilicon 31 and the N-type polysilicon 12. The impurity concentration of the P-type polysilicon 31 is lower than the impurity concentration of the P-type polysilicon 32. When the impurity concentration of the P-type polysilicon 31 is reduced, the withstand voltage of the clamp element is increased accordingly.
 また、図4に示すように、P型ポリシリコン32及びN型ポリシリコン33は逆方向ダイオード30aを構成し、P型ポリシリコン32はアノード電極として機能し、N型ポリシリコン12はカソード電極として機能しても良い。 As shown in FIG. 4, the P-type polysilicon 32 and the N-type polysilicon 33 constitute a reverse diode 30a, the P-type polysilicon 32 functions as an anode electrode, and the N-type polysilicon 12 serves as a cathode electrode. May function.
 また、図5に示すように、P型ポリシリコン31及びN型ポリシリコン33は逆方向ダイオード30bを構成し、P型ポリシリコン32はアノード電極として機能し、N型ポリシリコン12はカソード電極として機能しても良い。この時、逆方向ダイオード30bは、低濃度領域として、P型ポリシリコン31及びN型ポリシリコン33の2つを有するので、より高耐圧になる。 Further, as shown in FIG. 5, the P-type polysilicon 31 and the N-type polysilicon 33 constitute a reverse diode 30b, the P-type polysilicon 32 functions as an anode electrode, and the N-type polysilicon 12 serves as a cathode electrode. May function. At this time, since the reverse diode 30b has two of the P-type polysilicon 31 and the N-type polysilicon 33 as the low concentration region, the reverse diode 30b has a higher breakdown voltage.
 また、図6に示すように、P型ポリシリコン32及びN型ポリシリコン12は逆方向ダイオード30cを構成し、P型ポリシリコン32はアノード電極として機能し、N型ポリシリコン12はカソード電極として機能しても良い。この時、逆方向ダイオード30cは、低濃度領域を有さないので、低耐圧になる。 Further, as shown in FIG. 6, the P-type polysilicon 32 and the N-type polysilicon 12 constitute a reverse diode 30c, the P-type polysilicon 32 functions as an anode electrode, and the N-type polysilicon 12 serves as a cathode electrode. May function. At this time, the reverse diode 30c does not have a low concentration region, and thus has a low breakdown voltage.
 また、順方向ダイオード10と逆方向ダイオード20とは、クランプされるノードと接地端子との間で、順番に直列接続されているが、逆の順番で直列接続されても良い。 Further, although the forward diode 10 and the reverse diode 20 are connected in series in order between the clamped node and the ground terminal, they may be connected in series in the reverse order.
 また、順方向ダイオード10は、LOCOS酸化膜13の上に形成しているが、ゲート絶縁膜やSTI(Shallow TrenchIsolation)などの半導体基板24における他の絶縁手段の上に形成しても良い。 Further, although the forward diode 10 is formed on the LOCOS oxide film 13, it may be formed on another insulating means in the semiconductor substrate 24 such as a gate insulating film or STI (Shallow Trench Isolation).
 また、クランプするノードは、接地端子(電源電圧供給端子)基準でクランプしているが、電源端子(電源電圧供給端子)基準でクランプしても良い。この時、順方向ダイオード10と逆方向ダイオード20とを、電源端子とクランプされるノードとの間で、同様に直列接続する。 Further, although the node to be clamped is clamped based on the ground terminal (power supply voltage supply terminal), it may be clamped based on the power supply terminal (power supply voltage supply terminal). At this time, the forward diode 10 and the reverse diode 20 are similarly connected in series between the power supply terminal and the node to be clamped.
10 順方向ダイオード
11 P型ポリシリコン
12 N型ポリシリコン
13 LOCOS酸化膜
20 逆方向ダイオード
21 P型拡散層
22 N型拡散層
23 P型ウェル
24 半導体基板
DESCRIPTION OF SYMBOLS 10 Forward direction diode 11 P type polysilicon 12 N type polysilicon 13 LOCOS oxide film 20 Reverse direction diode 21 P type diffusion layer 22 N type diffusion layer 23 P type well 24 Semiconductor substrate

Claims (4)

  1.  半導体基板と、
     前記半導体基板の上であって、クランプされるノードと電源電圧供給端子との間に配置された、直列接続された所定個数の順方向ダイオード、及び1個の逆方向ダイオードと、
    を有し、
     前記所定個数の順方向ダイオードはポリシリコンから形成されていることを特徴とするクランプ素子を備えた半導体装置。
    A semiconductor substrate;
    A predetermined number of forward diodes and one reverse diode connected in series on the semiconductor substrate and disposed between a node to be clamped and a power supply voltage supply terminal;
    Have
    The semiconductor device having a clamp element, wherein the predetermined number of forward diodes are made of polysilicon.
  2.  前記所定個数の順方向ダイオードにより、前記逆方向ダイオードのみの温度係数よりも、平坦な温度係数を有していることを特徴とする請求項1記載のクランプ素子を備えた半導体装置。 The semiconductor device having a clamp element according to claim 1, wherein the predetermined number of forward diodes has a flat temperature coefficient rather than a temperature coefficient of only the reverse diode.
  3.  前記逆方向ダイオードは、半導体基板の中の拡散層から形成されていることを特徴とする請求項2記載のクランプ素子を備えた半導体装置。 3. The semiconductor device having a clamp element according to claim 2, wherein the reverse diode is formed of a diffusion layer in a semiconductor substrate.
  4.  前記逆方向ダイオードは、ポリシリコンから形成されていることを特徴とする請求項2記載のクランプ素子を備えた半導体装置。 3. The semiconductor device having a clamp element according to claim 2, wherein the reverse diode is made of polysilicon.
PCT/JP2014/050672 2013-02-12 2014-01-16 Semiconductor device including clamp element WO2014125862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013024973A JP2014154786A (en) 2013-02-12 2013-02-12 Semiconductor apparatus provided with clamp element
JP2013-024973 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125862A1 true WO2014125862A1 (en) 2014-08-21

Family

ID=51353872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050672 WO2014125862A1 (en) 2013-02-12 2014-01-16 Semiconductor device including clamp element

Country Status (3)

Country Link
JP (1) JP2014154786A (en)
TW (1) TW201448169A (en)
WO (1) WO2014125862A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180156A (en) * 1981-04-30 1982-11-06 Nec Corp Hybrid integrated circuit
JPS63146459A (en) * 1986-07-15 1988-06-18 Nec Corp Semiconductor integrated circuit device
JPH04184978A (en) * 1990-11-20 1992-07-01 Nec Corp Manufacture of semiconductor device
JP2009527120A (en) * 2006-02-17 2009-07-23 エヌエックスピー ビー ヴィ Electrostatic discharge protection circuit and method in an integrated circuit
JP2010129663A (en) * 2008-11-26 2010-06-10 Toshiba Corp Semiconductor device
JP2013030091A (en) * 2011-07-29 2013-02-07 Mitsubishi Electric Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180156A (en) * 1981-04-30 1982-11-06 Nec Corp Hybrid integrated circuit
JPS63146459A (en) * 1986-07-15 1988-06-18 Nec Corp Semiconductor integrated circuit device
JPH04184978A (en) * 1990-11-20 1992-07-01 Nec Corp Manufacture of semiconductor device
JP2009527120A (en) * 2006-02-17 2009-07-23 エヌエックスピー ビー ヴィ Electrostatic discharge protection circuit and method in an integrated circuit
JP2010129663A (en) * 2008-11-26 2010-06-10 Toshiba Corp Semiconductor device
JP2013030091A (en) * 2011-07-29 2013-02-07 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
TW201448169A (en) 2014-12-16
JP2014154786A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
US8785931B2 (en) Semiconductor device
US9343568B2 (en) Semiconductor device having high-resistance conductor structure, method of manufacturing the same and method of operating the same
JP5861081B2 (en) Semiconductor device and semiconductor relay using the same
JP2009064974A (en) Semiconductor device
JP2018181955A (en) Semiconductor device
JP2015056634A (en) Semiconductor device
KR20130014952A (en) Poly silicon resistor, reference voltage circuit comprising the same, and manufacturing mehtod of poly silicon resistor
WO2014125862A1 (en) Semiconductor device including clamp element
JP2009252889A (en) Surge protection element
US20120228635A1 (en) Semiconductor rectifier device
JP2012174740A (en) Esd protection circuit of semiconductor integrated circuit and esd protection element thereof
JP4671927B2 (en) Semiconductor device
JP6152860B2 (en) Semiconductor device
JP2009111112A (en) Variable-capacitance diode
TWI685106B (en) High voltage Schottky diode
JP2015012259A (en) Semiconductor device
JP2006245237A (en) Schottky barrier diode and its manufacturing method
JP2010153620A (en) Diode
JP2009141071A (en) Semiconductor element for electrostatic protection
JP6169908B2 (en) ESD protection circuit
KR101416881B1 (en) Power BJT with base ballast resistor
CN106783969B (en) Thin film diode and series structure thereof
JP2017028149A (en) Semiconductor device
JP6292969B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4276118B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751950

Country of ref document: EP

Kind code of ref document: A1