WO2014122764A1 - 流体圧縮システムまたはその制御装置 - Google Patents

流体圧縮システムまたはその制御装置 Download PDF

Info

Publication number
WO2014122764A1
WO2014122764A1 PCT/JP2013/052981 JP2013052981W WO2014122764A1 WO 2014122764 A1 WO2014122764 A1 WO 2014122764A1 JP 2013052981 W JP2013052981 W JP 2013052981W WO 2014122764 A1 WO2014122764 A1 WO 2014122764A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
compressor
control operation
fluid
pressure
Prior art date
Application number
PCT/JP2013/052981
Other languages
English (en)
French (fr)
Inventor
之家 任
高安 広宣
兼本 喜之
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51299376&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014122764(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to KR1020177017158A priority Critical patent/KR101790545B1/ko
Priority to EP13874565.8A priority patent/EP2955377B1/en
Priority to CN201380072545.7A priority patent/CN104968939B/zh
Priority to JP2014560602A priority patent/JP6200905B2/ja
Priority to PCT/JP2013/052981 priority patent/WO2014122764A1/ja
Priority to CN201711267266.2A priority patent/CN107939662B/zh
Priority to KR1020157018429A priority patent/KR101752163B1/ko
Priority to US14/766,240 priority patent/US10514026B2/en
Publication of WO2014122764A1 publication Critical patent/WO2014122764A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • F04C11/003Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/02Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for several machines or pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/06Pressure in a (hydraulic) circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/06Pressure in a (hydraulic) circuit
    • F04B2205/063Pressure in a (hydraulic) circuit in a reservoir linked to the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/04Settings
    • F04B2207/043Settings of time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86131Plural

Definitions

  • the present invention relates to a fluid compression device or a control device thereof.
  • Patent Document 1 describes a control device for an air compression device that increases or decreases the number of operating compressors in accordance with the rate of increase or decrease of the pressure in the tank per hour.
  • an object of the present invention is to provide a fluid compression system or a control device thereof capable of supplying a compressed fluid in response to a sudden change in the amount of fluid used even when the number of installed compressors is increased.
  • the present invention includes a plurality of compression devices that compress fluid and a number control device that controls the number of operating the plurality of compression devices, and among the plurality of compression devices At least one unit is composed of a plurality of compressor bodies, and capacity control operation that changes the number of operating units according to the amount of compressed fluid used or fixed control operation that does not change the output during operation regardless of the amount of compressed fluid used And the number control device switches whether the plurality of compression devices perform capacity control operation or fixed control operation.
  • the present invention is composed of a plurality of compressor bodies, and capacity control operation that changes the number of operating units according to the amount of compressed fluid used, or fixed control that does not change the output during operation regardless of the amount of compressed fluid used
  • a fluid compression system characterized by controlling the number of operating a plurality of compressors including at least one compressor that operates, and controlling whether the compressor performs a capacity control operation or a fixed control operation.
  • a control apparatus is provided.
  • the present invention it is possible to provide a fluid compression system or its control device that can supply a compressed fluid in response to a sudden change in the amount of fluid used even when the number of compressors installed is increased.
  • the number control device 1 is a device that controls the number of operating compressors 2A to 2D.
  • a pressure sensor 15 which is a means for measuring the pressure P ′ (t) of air stored in the air tank 12 is provided, the measured pressure is taken into the control circuit 16 as a voltage signal, and an analog / digital conversion circuit of the control circuit 16 To convert it into a digital signal. Then, it has a function of controlling the number of operating compressors connected to the number controller using the rate of change of the pressure measurement value P ′ (t).
  • the compressor 2A for compressing air mainly includes compressor bodies 31A to 33A for compressing three airs, motors 21A to 23A for driving the three compressor bodies, and a control circuit 4A for controlling the number of operating compressor bodies. And a tank 5A for storing the compressed air, and a pressure sensor 6A that is a means for measuring the pressure P (t) of the tank 5A.
  • the control circuit 4A has a function of recording the measured pressure value, a function of recording the cumulative operation time of the compressor main bodies 31A to 33A, and an operation and a stop of the motors 21A to 23A for driving the compressor main bodies 31A to 33A. It has a function to control.
  • the control circuit 4A controls the number of operating compressor bodies using the measured pressure value P (t). Further, the lower limit pressure Pmin and the upper limit pressure Pmax of the tank 5A set by the user are recorded in the control circuit 4A.
  • the other compression devices 2B to 2D are similar to the compression device 2A, respectively, including three compressor bodies 31B to 33B, 31C to 33C, 31D to 33D, three motors 21B to 23B, 21C to 23C, 21D to 23D, and a control circuit 4B.
  • tanks 5B to 5D for storing air, and pressure sensors 6B to 6D as means for measuring the pressure of the air tank.
  • the functions of each wiring connected to the number control device 1 through the wirings 7A to 7D, 8A to 8D, 9A to 9D, and 17A to 17D will be described later.
  • the tanks 5A to 5D for storing each air send compressed air to the air tank 12 through the pipes 10A to 10D for transporting the air.
  • the tank 12 is provided with an output pipe 14 having a take-out valve 13. Thereby, the tank 12 is connected to an external pneumatic device (not shown) via the output pipe 14 and supplies compressed air to the pneumatic device by opening and closing the take-off valve 13. It is. Further, the pressure sensor 15 built in the number control device 1 is connected from the air tank 12 through the pipe 25.
  • the compression devices 2A to 2D are independent compression devices, and can be operated alone. Switching between independent operation and control by the number control device 1 is possible through the wirings 7A to 7D connected to the number control device 1.
  • the signal lines 8A to 8D are operation signal lines from the number control device 1 to the respective compression devices. Upon receiving the operation signal, the compression devices 2A to 2D are started and stopped.
  • the number control device 1 sends an instruction as to which control method to operate to the compression devices 2A to 2D through the signal lines 9A to 9D.
  • the compressors 2A to 2D receive the above command and change the number of operating units according to the amount of compressed air used to increase or decrease the number of operating units of the compressing units 2A to 2D.
  • the operation is switched according to the capacity control method to be changed, or whether the operation is to be performed with the fixed control method in which the discharge air amount (output) is constant without changing the number of the operating units regardless of the amount of compressed air used.
  • a signal is sent to the number control device 1 through 17A to 17D.
  • the number control device 1 receives the signal, removes the compression device from the number control target, and substitutes the compression device. Can be started.
  • the pressure measurement value P ′ (t) of the air tank 12 and the pressure measurement value P (t) of the air tanks 5A to 5D are the same value. is there.
  • the upper limit pressure value Pmax and the lower limit pressure value Pmin of the air tank 12 are set to the same value as the upper limit pressure value Pmax and the lower limit pressure value Pmin of the air tanks 5A to 5D.
  • the air compression system according to the present embodiment has the above-described configuration.
  • the pressure measurement values P ′ (of the number control device 1 and the compression devices (2A to 2D) are respectively shown.
  • a control process of the number of operating compressors (2A to 2D) and the number of operating compressors will be described using t) and P (t).
  • the operation control process shown in FIG. 2 is performed every predetermined sampling cycle Ts (for example, 200 ms).
  • step 1 using the pressure signal P '(t) from the pressure sensor 15, the current pressure P' (t) in the air tank 12 is measured at a constant sampling period Ts.
  • step 2 it is determined whether or not the current tank pressure value P ′ (t) is smaller than the preset lower limit pressure value Pmin of the air tank 12. If “Yes” is determined, the next step is determined. 3 to start all the compression devices (2A to 2D). If it is determined as “No”, it is determined in the next step 4 whether or not the current pressure value P ′ (t) is equal to or higher than the preset upper limit pressure value Pmax of the air tank 12. If “Yes” is determined, all the compression devices (2A to 2D) are stopped in the next step 5. If it is determined as “No”, the tank pressure change rate K ′ is calculated by Equation 1 using the currently measured pressure P ′ (t) and the previously measured pressure value P ′ (t ⁇ 1) in Step 6.
  • K ' (P' (t)-P '(t-1)) / Ts
  • K ′ (P' (t)-P '(t-1)) / Ts
  • step 7 it is determined whether or not the calculated K ′ is a negative value. If it is determined as “Yes”, the process proceeds to step 8 with k indicating that the pressure is decreasing. When it determines with "No”, it moves to step 13 because the pressure is rising.
  • the time from the current state to the lower limit pressure Pmin is calculated by dividing the difference between the lower limit pressure Pmin and the current pressure P ′ (t) by the pressure change rate K ′ using Equation 2. calculate. Calculated value as Td 'value
  • Td ' (Pmin-P' (t)) / K '
  • Td ′ threshold for example, 2 seconds. If “No” is determined, the process proceeds to step 19 and returns. If it is determined as “Yes”, it is determined in step 10 that the number of operating compressors (2A to 2D) is increased by one. In the next step 11, the compressor (2A to 2D) having the shortest accumulated operation time and stopped is preferentially activated, and the newly activated compressor (2A to 2D) is switched to capacity control. In step 12, the other compressors in operation are switched to a fixed control in which the air discharge amount is constant. Finally, the process proceeds to step 19 and returns.
  • a predetermined Td ′ threshold for example, 2 seconds.
  • Step 7 the process proceeds to Step 13 to determine whether or not the pressure change rate K ′ is positive. If “No” is determined, the process proceeds to step 19 and returns. If “Yes” is determined, the process proceeds to step 14. In step 14, the time from the current state to the upper limit pressure Pmax is calculated by dividing the difference between the upper limit pressure Pmax and the current pressure P '(t) by the pressure change rate K'. The calculated value is the Tu ′ value.
  • Tu ′ (Pmax-P' (t)) / K '
  • Tu ′ threshold for example, 5 seconds. If “No” is determined, the process proceeds to step 19 and returns. If it is determined as “Yes”, it is determined in step 16 that the number of operating compressors (2A to 2D) is decreased by one. In the next step 17, the compressors (2A to 2D) that are in operation are stopped by capacity control. Then, in step 18, the compressor having the longest accumulated operation time among the compressors (2A to 2D) in operation is preferentially switched to capacity control, and finally, the process proceeds to step 19 and returns.
  • a predetermined Tu ′ threshold for example, 5 seconds.
  • the unit control device 1 can reduce the number of operating compressors before reaching the upper limit pressure Pmax of the air tank according to the amount of air used by the above unit control process, avoiding operation in a high pressure region and wasting. Save power consumption. Further, by increasing the number of operating compressors (2A to 2D) before reaching the lower limit pressure Pmin of the tank, the lower limit pressure Pmin is not lowered. In addition, by holding the compressor that operates with one capacity control during operation, fine capacity control is possible, and interference phenomenon that occurs when a plurality of compressors simultaneously perform capacity control can be prevented.
  • FIG. 3 a control method for increasing / decreasing the number of operating compressor main bodies inside the compressors (2A to 2D) will be described.
  • the compressor 2A is operating under capacity control.
  • the operation control process shown in FIG. 3 is performed every predetermined sampling period Ts (for example, 200 ms).
  • step 31 using the pressure signal from the pressure sensor 6A, the current pressure P (t) in the air tank 5A is measured at a constant sampling period Ts.
  • step 32 it is determined whether or not the current tank pressure value P (t) is smaller than a preset lower limit pressure value Pmin of the air tank 5A. If “Yes” is determined, the next step 33 is performed. To start all the compressor bodies (31A to 33A). If it is determined as “No”, in the next step 34, it is determined whether or not the current pressure value P (t) is equal to or higher than the preset upper limit pressure value Pmax of the air tank 5A. If “Yes” is determined, all the compressor main bodies (31A to 33A) are stopped in the next step 35. If it is determined as “No”, the tank pressure change rate K is calculated by Equation 4 using the pressure P (t) currently measured in Step 36 and the pressure value P (t ⁇ 1) measured last time.
  • step 37 it is determined whether or not the calculated K is a negative value. If it is determined as “Yes”, the process proceeds to step 38 because the pressure is decreasing. When it determines with "No”, it moves to step 42 because the pressure is rising.
  • step 38 the time from the current state to the lower limit pressure Pmin is calculated by dividing the difference between the lower limit pressure Pmin and the current pressure P (t) by the pressure change rate K using Equation 5. . Calculated value as Td value
  • Td (Pmin-P (t)) / K
  • Td threshold (Pmin-P (t)) / K
  • step 39 If it is determined “No” in step 39, the process proceeds to step 47 and returns. If “Yes” is determined, it is determined in step 40 that the number of operating compressor main bodies (31A to 33A) is increased by one. In the next step 41, the compressor main body having the shortest operation time and being stopped is started. Finally, the process proceeds to step 47 and returns.
  • the reason why the Td threshold must be larger than the Td 'threshold is that if the Td threshold is set to the same value as the Td' threshold, the start of the compressor and the start of the compressor occur at the same time. This is because the phenomenon occurs.
  • the start determination of the compressor main body in step 39 is always determined to be “Yes” before the start determination of the compression apparatus in step 9.
  • the increase in the number of operating units 31A to 33A) is performed before the increase in the compression devices (2A to 2D). Therefore, it is possible to prevent an interference phenomenon that an increase in the number of operating compressor main bodies and an increase in the number of compressors occur simultaneously.
  • step 37 If it is determined as “No” in step 37, the process proceeds to step 42 to determine whether or not the pressure change rate K is positive. If it is determined as “No”, it means that the pressure has not changed, and the routine goes to Step 47 and returns. If “Yes” is determined, the process proceeds to step 43 because the pressure is increasing. In step 43, the time from the current state to the upper limit pressure Pmax is calculated by dividing the difference between the upper limit pressure Pmax and the current pressure P (t) by the pressure change rate K. Calculated value as Tu value
  • Tu (Pmax-P (t)) / K
  • Tu threshold (Pmax-P (t)) / K
  • the Tu threshold value on the compression device side and the Tu ′ threshold value on the unit control device side must have a relationship of Tu threshold value> Tu ′ threshold value. The reason will be described later.
  • the Tu threshold is set to 10 seconds.
  • step 47 If “No” is determined, the process proceeds to step 47 and returns. If “Yes” is determined, it is determined in step 45 that the number of operating compressor main bodies (31A to 33A) has decreased by one, and in step 46, the compressor main body having the longest cumulative operating time is stopped. Finally, the process proceeds to step 47 and returns.
  • the reason why the Tu threshold value must be greater than the Tu 'threshold value is that if the Td threshold value is set to the same value as the Td' threshold value, the interference of control that the stop of the compressor and the stop of the compressor body occur simultaneously. This is because the phenomenon occurs.
  • the determination of the compressor main body in step 44 is always “Yes” prior to the stop determination of the compression device in step 15.
  • the reduction in the number of operating units in (33A) is performed before the reduction in the compression devices (2A to 2D). Therefore, it is possible to prevent the interference phenomenon that the decrease in the number of operating compressor main bodies and the decrease in the number of compressors occur at the same time.
  • the increase / decrease operation number of the compressor main body and the increase / decrease operation number of the compressor operation unit when the pressure of the air tank 12 increases or decreases will be described with reference to FIG.
  • the number control device when the number control device is in operation, no compression device (2A to 2D) is in operation, and the relationship between the cumulative operation time of the compression devices is 2A ⁇ 2B ⁇ 2C ⁇ 2D.
  • the movement of the entire air compression system will be described on the assumption that the pressure in the tank 12 is decreasing.
  • the number control device calculates the Td ′ value using the pressure P ′ (t) of the air tank 12 every 200 ms.
  • the unit control device starts the compressor 2A having the shortest cumulative operation time and operates it with capacity control.
  • the activated compressor 2A calculates the Td value using the pressure value P (t) of the tank 5A. Since the air tank 5A and the air tank 12 are connected by piping, the pressure values P ′ (t) and P (t) are the same value. Therefore, the calculated Td value is the same value (less than 2 seconds) as the Td 'value, and is smaller than the Td threshold value (3 seconds). Start the compressor main unit.
  • the Td ′ value and the Td value are updated every 200 ms. Since the Td threshold (3 seconds) for determining the start of the compressor is larger than the Td 'threshold (2 seconds) for determining the start of the compressor, the determination of increasing the number of operating compressors is always the number of operating compressors. Is performed prior to the determination of increase. Therefore, before the number of operating compressors is increased, the number of operating compressor bodies inside the compressor 2A is increased first.
  • the unit control device determines an increase in the number of operating compressors, starts the compressor 2B with the shortest cumulative operating time, and performs capacity control.
  • the compressor 2A is operated, and the compressor 2A is operated with a fixed control in which the amount of discharged air is constant.
  • the started compressor 2B calculates the Td value using the pressure value P (t) of the tank 5B. At this time, since the Td value is less than 2 seconds and smaller than the Td threshold (3 seconds), the compressor 2B activates the compressor body with the shortest accumulated operation time.
  • the compressor 2B determines to reduce the number of operating compressor bodies and stops the operating compressor body. Let Here, if the pressure continues to rise even when the compressor main body is stopped, nothing is done because the compressor main body inside the compressor 2B is completely stopped even if the pressure becomes smaller than the Tu threshold (10 seconds) again. Thereafter, when the Tu ′ value becomes smaller than the Tu ′ threshold value (5 seconds), it is determined that the number control device decreases the number of operating compressors, the compressor 2B in operation is stopped by capacity control, and the compressor 2A is stopped. Is switched from fixed control to capacity control. When the compressor 2A switches to capacity control, the Tu value is calculated.
  • the compressor 2A determines that the number of compressor main units to be operated is reduced, and the compressor main unit for the cumulative operation time To stop. After that, if the pressure continues to rise, it will be caught again at the Tu threshold (10 seconds) and the other compressor body will be stopped. Thereafter, the increase or decrease in the number of operating compressor bodies or compressors is repeated according to the Tu, Tu ′ value and the Td, Td ′ value.
  • the operation pattern and power consumption in the case of using the conventional technique and in the present embodiment are compared with the same air consumption (55% of the total discharge amount).
  • the number control device when further controlling the number of compressors having the number control function with the number control device, there is a problem of interfering with the increase / decrease in the number of operating units, so here, when using the conventional technology, the number control device It is assumed that only the function of controlling the number of compressors is performed and the control of the number of compressors in the compressor is disabled.
  • the motors (21A to 23A), (21B to 23B), (21C to 23C), and (21D to 23D) that drive the compressor main body frequently generate reverse induced voltage at stop and inrush current at start. If the motor operation is turned ON / OFF, the motor and related wiring may be burnt. Therefore, in order to protect the motor, the time of stop ⁇ start ⁇ stop needs to be longer than the minimum cycle limit time TC. Therefore, in general, the differential pressure between the upper limit pressure and the lower limit pressure is set as wide as possible so that the differential pressure is not less than the minimum cycle control time Tc.
  • each compressor is operated / stopped, that is, every three compressor bodies are operated / stopped. Therefore, the frequency of operation ON / OFF is suppressed, and the minimum cycle control time Tc is exceeded. It is necessary to provide a large pressure.
  • the compressor main body can be operated / stopped one by one, so that it can be operated for a long time with less pressure fluctuation compared to the prior art, so the differential pressure between the upper limit pressure and the lower limit pressure is reduced. There is no problem.
  • FIG. 5 shows the result of comparing the operation pattern of this example with that of the prior art under the condition that the cycle of stopping, starting, and stopping of the motor driving the compressor body is the same.
  • the operation pattern of the air compression system of the present embodiment is indicated by a solid line.
  • the operation pattern of the air compression system is indicated by a dotted line.
  • the increase / decrease in the number of operating units of the compressor and the compressor main body due to the change in pressure is shown in a timing chart, and the comparison of power consumption is shown in the lowermost part of FIG.
  • the compressors 2A and 2B are operated with fixed control, and the compressor 2C is operated with capacity control.
  • the number of units can be finely controlled, and the amount of discharged air can be finely adjusted. Therefore, the compressor body is operated with 6 to 7 units.
  • the number of operating compressor bodies varies from 6 to 9 units. Compared to the present embodiment, the power required to drive two compressor bodies is larger. Consumed wastefully.
  • twelve compressor bodies can be integrated into four compressors, and the number of man-hours for wiring and piping work is greater than when twelve compressor stem bodies are controlled by a single compressor. Installation space can be reduced.
  • the number of compressor main bodies can be finely controlled one by one, and at the same time, even if the air consumption changes rapidly, the compressor increases or decreases the number of compressor main bodies, and at the same time, the number control device As the number of operating units increases and decreases, it can respond quickly to sudden changes in air consumption.
  • the compressor system can continuously increase or decrease the compressor body according to changes in air usage.
  • the compression device is started in the order of short cumulative operation time, and stopped in the order of long cumulative operation time.
  • the starting and stopping of the compressor main body is determined in the same order as the compressor by the cumulative operation time. Therefore, since the cumulative operation time of each compressor is averaged, and the cumulative operation time of the compressor main body inside the compressor is also averaged, there is no compressor main body that fails first due to load bias. Maintenance is easy.
  • the compression device when the compression device is abnormal, it is possible to notify the unit control device 1 through the signal lines 17A to 17D.
  • the number control device 1 can receive these signals, remove the compressor in which an abnormality has occurred from the number control, and perform the number control with the remaining compression devices.
  • the one with the shortest cumulative operation time is activated with the highest priority from the compression devices that are stopped.
  • the cumulative time of the compressor during operation may exceed the cumulative compressor time during operation.
  • the purpose of averaging time is contrary. Therefore, in this embodiment, when the compression device is continuously operated for a certain time (for example, 30 minutes), an operation in which the compression device having a shorter cumulative operation time than the compression device is started and stopped when the compression device is stopped. Also take turns. Therefore, the cumulative operation time of each compressor is averaged even in the continuous operation state, and the maximum difference is within 30 minutes. This further facilitates machine maintenance.
  • Embodiment 2 of the present invention will be described with reference to FIGS.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the feature of the present embodiment is that it has a plurality of compressor bodies and is capable of capacity-controlled operation in which the amount of discharged air (output) is changed by changing the number of operating units according to the amount of compressed air used. It is a point comprised by the compressor which performs only the fixed control driving
  • the structure of the air compression system of a present Example is shown in FIG.
  • the number control device 1 the compression devices 2A to 2D, and the air tank 12 are configured.
  • the number control device 1 is composed of a pressure sensor 15 that measures the pressure of the control board 16 and the tank 12, and has a function of switching operation / stop and control method for each compression device (2A to 2D).
  • the compression devices 2A to 2B are configured by a plurality of compressor main bodies in the same manner as the air compression system of the first embodiment, and capacity control operation for increasing or decreasing the number of operating compressor main bodies according to the amount of air used. A fixed control operation in which the air discharge amount (output) during operation is constant is performed.
  • the compressors 2C and 2D are configured by only one compressor body, and perform only a fixed control operation in which the air discharge amount (output) is constant. Note that it is necessary for the number control device 1 to recognize in advance the models whose capacity can be controlled among the compression devices 2A to 2D.
  • As a recognition method there is a method in which a model is set in advance and the model information is stored in the control circuit 16 in the number control device 1. Alternatively, there is a method of automatically recognizing the model when the number control device and the compression device are connected. With reference to FIG. 7, a control method in which the number control device increases or decreases the number of operation units of the compression device will be described.
  • the number control process shown in FIG. 7 is performed every predetermined sampling cycle Ts (for example, 200 ms) as in the first embodiment.
  • step 51 as in the first embodiment, the pressure sensor 15 is used to measure the current pressure P ′ (t) in the air tank 12 at a constant sampling period Ts.
  • step 52 it is determined whether or not the current tank pressure value P '(t) is smaller than a preset lower limit pressure value Pmin of the air tank 12. If “Yes” is determined, the next step In 53, all the compression devices (2A to 2D) are activated. If it is determined as “No”, it is determined in the next step 54 whether or not the current pressure value P ′ (t) is equal to or higher than a preset upper limit pressure value Pmax of the air tank 12. If it is determined as “Yes”, in the next step 55, all the compression devices (2A to 2D) are stopped. If it is determined as “No”, the tank pressure change rate K ′ is calculated by the above-described equation 1 using the pressure P ′ (t) currently measured in step 56 and the pressure value P ′ (t ⁇ 1) measured last time. .
  • step 57 it is determined whether or not the calculated K ′ is a negative value. If “Yes” is determined, the process proceeds to step 58 because the pressure is decreasing. When it determines with "No”, it moves to step 65 because the pressure is rising.
  • step 58 the difference between the minimum pressure Pmin (lower limit pressure) of the tank 12 set by the user and the current pressure P ′ (t) is divided by the pressure change rate K ′ using the above-described formula 2. Calculate how many seconds after the current state the minimum pressure Pmin is reached. The calculated value is set as the Td ′ value. In the next step 59, it is determined whether or not the Td ′ value is less than a predetermined Td ′ threshold (for example, 2 seconds).
  • a predetermined Td ′ threshold for example, 2 seconds
  • step 73 If “No” is determined, the process moves to step 73 and returns. If “Yes” is determined, the number of operating compressors (2A to 2D) is increased by one in step 60.
  • step 61 it is determined whether or not there is a compression device in capacity control operation. If it is determined as “Yes”, in the next step 62, the compressor that has been stopped for the shortest cumulative operation time is started, and is operated in a fixed control in which the air discharge amount is constant. If “No” is determined in step 61, that is, if there is no compression device in capacity control operation (if all the compression devices are stopped), in step 63, the capacity control operation with the shortest operation time is performed. A possible compression device is activated preferentially, and the compression device activated in the next step 64 is switched to capacity control. Finally, the process moves to step 73 and returns.
  • step 65 it is determined whether or not K ′ is a positive value. If “No” is determined, that is, the pressure in the tank 12 is not changed, the process proceeds to step 73 and returns. If “Yes” is determined in step 65, it means that the pressure in the tank 12 is increasing. Therefore, if this state continues in step 66, the Tu ′ value for reaching the preset upper limit pressure Pmax is set. Calculation is performed using Equation 3 described above. The calculated Tu ′ value is compared with a predetermined Tu ′ threshold value (for example, 5 seconds) in step 67. If "No” is determined, the process moves to step 73 and returns.
  • a predetermined Tu ′ threshold value for example, 5 seconds
  • step 69 it is determined whether or not there is a compressor operating in the fixed control. If it is determined as “Yes”, in step 70, the compressor having the longest operating time is stopped among the compressors operating in the fixed control, and then the process proceeds to step 73 and returns.
  • step 71 it is determined whether or not there is a compressor operating in capacity control. If “No” is determined in step 71, it means that all the capacity control compressors have been stopped, so that the process proceeds to step 73 without doing anything and returns. If “Yes” is determined in step 71, that is, only the compressor that is operating under capacity control remains, the corresponding compressor is stopped in step 72. Finally, the process moves to step 73 and returns. In other words, the compressor that is operating with the fixed control is stopped before the compressor that is operating with the capacity control.
  • FIG. 8 shows a process in which the compression device increases or decreases the number of operating internal compressor bodies by changing the pressure. This process is also performed at a constant sampling time period Ts (for example, 200 ms). Since the process in FIG. 8 is similar to the process in FIG. 3 described above, detailed description thereof is omitted here.
  • Ts for example, 200 ms
  • the unit controller calculates the Td ′ value using the pressure P ′ (t) of the air tank 12.
  • the unit control device starts the compression device 2A capable of capacity control with the shortest cumulative operation time and operates with capacity control.
  • the activated compressor 2A calculates the Td value using the pressure value P (t) of the tank 5A.
  • the calculated Td value is the same as the Td 'value (less than 2 seconds) and smaller than the Td threshold (3 seconds), so the compressor 2A increases the number of operating compressor units. Is determined to be necessary, and the compressor body with the shortest accumulated operation time is started. Then, as the tank pressure continues to decrease, the Td ′ value and the Td value are updated every 200 ms.
  • the determination of increasing the number of operating compressors is always the number of operating compressors. Is performed prior to the determination of increase. Therefore, before the number of operating compressors is increased, the number of operating compressor bodies inside the compressor 2A is increased first.
  • the unit control device determines an increase in the number of compressors in operation, activates the compressor 2B with the shortest cumulative operating time during a stop, The compressor 2A is operated by fixed control, and the compressor 2A is left operating by capacity control.
  • the compression devices 2C and 2D are also activated in sequence and operate with fixed control. If the compressor 2B is activated and the pressure P '(t) increases, the compressor 2A calculates the Tu value using the pressure value P (t) of the tank 5A. When the Tu value becomes smaller than the Tu threshold (10 seconds), the compressor 2A stops the operating compressor main bodies one by one in order to determine that the number of operating compressor main bodies is decreased.
  • the compressor main body inside the compressor 2A is sequentially stopped. If the pressure continues to rise even when all the compressor bodies 21A to 23A are stopped, the unit control device will determine that the number of compressors to be operated will decrease when the Tu 'value becomes smaller than the Tu' threshold (5 seconds). Then, the compressor 2B that is operating in the fixed control is stopped. Thereafter, when the change in the amount of air used is small, the amount of air discharged is controlled by increasing or decreasing the number of operating compressor main bodies inside the compressor 2A. On the other hand, when the change in the amount of air used is large and cannot be handled only by the capacity control of the compressor 2A, the discharge amount is controlled by increasing or decreasing the number of compressors 2B to 2D.
  • the operation pattern and power consumption in the case of using the conventional technology and in the present embodiment are compared in a state where the amount of air used (55% of the total discharge amount) is constant.
  • the number control device when further controlling the number of compressors having the number control function with the number control device, there is a problem of interfering with the increase / decrease in the number of operating units, so here, when using the conventional technology, the number control device It is assumed that only the control of the number of compressors is performed, and the number of compressors in the compressor is not controlled.
  • the motors (21A to 23A), (21B to 23B), 20C, and 20D that drive the compressor main body have a minimum cycle of stop ⁇ start ⁇ stop to protect the motor. It is necessary to exceed the time limit Tc. Therefore, in general, the differential pressure between the upper limit pressure and the lower limit pressure is set as wide as possible so that the differential pressure is not less than the minimum cycle control time Tc.
  • each compressor is operated / stopped, that is, every three compressor bodies are operated / stopped.
  • the compressor main body can be operated / stopped one by one, so that it can be operated for a long time with less pressure fluctuation compared to the prior art, so the differential pressure between the upper limit pressure and the lower limit pressure is reduced. There is no problem.
  • FIG. 10 shows the result of comparing the operation pattern of this example with that of the prior art under the condition that the cycle of stop ⁇ start ⁇ stop of the motor driving the compressor body is the same.
  • the operation pattern of the air compression system of a present Example is displayed with a continuous line.
  • the operation pattern of the air compression system is displayed with a dotted line.
  • the increase / decrease in the number of operating units of the compressor and the compressor main body due to the change in pressure is shown in a timing chart, and the comparison of power consumption is shown in the lowermost part of FIG.
  • the compressors 2B and 2C are operated with fixed control, and the compressor 2A is operated with capacity control.
  • the number of units can be finely controlled, and the amount of discharged air can be finely adjusted.
  • the compression device since the compression device is operated / stopped for every one unit, the power for driving the two compressor main bodies is wasted compared to the present embodiment.
  • the capacity controllable compression device is preferentially activated and the compression device capable of only fixed control is preferentially stopped, so that fine capacity control is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

 本発明は圧縮機の設置台数を増やした場合においても急激な流体の使用量の変化に対応して圧縮流体を供給できる流体圧縮システムまたはその制御装置を提供することを目的とする。 上記課題を解決するために、本発明は、流体を圧縮する複数台の圧縮装置と、複数台の前記圧縮装置の運転台数を制御する台数制御装置とを備え、複数台の前記圧縮装置のうち少なくとも1台は、複数台の圧縮機本体から構成され、圧縮流体の使用量に応じて運転台数を変更する容量制御運転または圧縮流体の使用量によらず運転時の出力を変更しない固定制御運転を行い、前記台数制御装置は、複数台の前記圧縮装置が容量制御運転または固定制御運転のいずれを行うかを切り替えることを特徴とする流体圧縮システムを提供する。

Description

流体圧縮システムまたはその制御装置
 本発明は、流体圧縮装置またはその制御装置に関する。
 特許文献1には、タンク内の圧力の時間当たりの増加率または減少率に応じて複数台の圧縮機の運転台数を増加または減少させる空気圧縮装置の制御装置が記載されている。
特開2007-120497号公報
 特許文献1の空気圧縮装置の制御装置では、全ての圧縮機を運転しても空気量が足りない場合、設置する圧縮機の運転台数をさらに増やすことになる。設置する圧縮機の運転台数を増やした場合、全ての圧縮機を特許文献1の制御装置によって制御すると、全ての圧縮機が停止の状態のときに1台ずつ順次に起動したり、全ての圧縮機が運転状態のときに1台ずつ順次に停止したりする。そのため、急激な空気の使用量の変化に対応して空気を供給することができなかった。
 上記問題点に鑑み、本発明は圧縮機の設置台数を増やした場合においても急激な流体の使用量の変化に対応して圧縮流体を供給できる流体圧縮システムまたはその制御装置を提供することを目的とする。
 上記課題を解決するために、本発明は、流体を圧縮する複数台の圧縮装置と、複数台の前記圧縮装置の運転台数を制御する台数制御装置とを備え、複数台の前記圧縮装置のうち少なくとも1台は、複数台の圧縮機本体から構成され、圧縮流体の使用量に応じて運転台数を変更する容量制御運転または圧縮流体の使用量によらず運転時の出力を変更しない固定制御運転を行い、前記台数制御装置は、複数台の前記圧縮装置が容量制御運転または固定制御運転のいずれを行うかを切り替えることを特徴とする流体圧縮システムを提供する。
 また、本発明は、複数台の圧縮機本体から構成され、圧縮流体の使用量に応じて運転台数を変更する容量制御運転または圧縮流体の使用量によらず運転時の出力を変更しない固定制御運転を行う少なくとも1台の圧縮装置を含む複数台の圧縮装置の運転台数を制御し、前記圧縮装置が容量制御運転または固定制御運転のいずれを行うかを制御することを特徴とする流体圧縮システムの制御装置を提供する。
 本発明によれば、圧縮機の設置台数を増やした場合においても急激な流体の使用量の変化に対応して圧縮流体を供給できる流体圧縮システムまたはその制御装置を提供することができる。
本発明の実施例1の空気圧縮システムの構成を示すブロック図である 本発明の実施例1の台数制御装置による圧縮装置の起動または停止制御の処理を示す流れ図である 本発明の実施例1の圧縮装置による圧縮機本体の起動または停止制御の処理を示す流れ図である 本発明の実施例1の圧縮機本体による圧縮装置の起動と停止時の判定タイミング図である 本発明の実施例1のタンク圧力、圧縮機本体のON/OFF、電力の時間変化を示す特性線図である 本発明の実施例2の空気圧縮システムの構成を示すブロック図である 本発明の実施例2の台数制御装置による圧縮装置の起動または停止制御の処理を示す流れ図である 本発明の実施例2の圧縮装置による圧縮機本体の起動または停止制御の処理を示す流れ図である 本発明の実施例2の圧縮機本体と圧縮装置の起動と停止時の判定タイミング図である。 本発明の実施例2のタンク圧力、圧縮機本体のON/OFF、電力の時間変化を示す特性線図である
 以下、本発明の実施の形態による流体圧縮システムとしてタンクに対し個別に圧縮空気を供給する4台の空気圧縮装置を用いて構成した場合を例に挙げ、添付図面に従って詳細に説明する。
 図1ないし図5を用いて本発明の実施例1の空気圧縮システムを説明する。本実施例における空気圧縮システムの構成を図1に示す。図1において、台数制御装置1は圧縮装置2A~2Dの運転台数を制御する装置である。空気タンク12に貯蓄している空気の圧力P’(t)を測定する手段である圧力センサ15を備え、測定した圧力を電圧信号として制御回路16に取り込み、制御回路16のアナログ/デジタル変換回路を介し、デジタル信号に変換する。そして、圧力測定値P’(t)の変化率を用い、台数制御装置と接続する圧縮装置の運転台数を制御する機能を有する。
 空気を圧縮する圧縮装置2Aは主に3つの空気を圧縮する圧縮機本体31A~33Aと、3つの圧縮機本体を駆動するモータ21A~23Aと、圧縮機本体の運転台数を制御する制御回路4Aと、圧縮した空気を貯蓄するタンク5Aと、タンク5Aの圧力P(t)を測定する手段である圧力センサ6Aにより構成されている。制御回路4Aは測定した圧力値を記録する機能、と各圧縮機本体31A~33Aの累積運転時間を記録する機能と、各圧縮機本体31A~33Aを駆動するモータ21A~23Aの運転、停止を制御する機能を有する。制御回路4Aは測定した圧力値P(t)を用いて、圧縮機本体の運転台数を制御する。また、使用者によって設定されたタンク5Aの下限圧力Pminと上限圧力Pmaxは制御回路4Aに記録されている。
 その他の圧縮装置2B~2Dは圧縮装置2Aと同様、それぞれ3つの圧縮機本体31B~33B,31C~33C,31D~33Dと3つのモータ21B~23B,21C~23C,21D~23Dと制御回路4B~4D、空気貯蓄するタンク5B~5D、空気タンクの圧力を測定する手段である圧力センサ6B~6Dにより構成されている。
 圧縮装置2A~2Dは配線7A~7D,8A~8D,9A~9D,17A~17Dを通じて、台数制御装置1と接続している、各配線の機能について後述する。また、各空気を貯蓄するタンク5A~5Dは空気を輸送する配管10A~10Dを介し、空気タンク12に圧縮した空気を送り込む。そして、タンク12には、取り出し弁13を備えた出力配管14が取り付けられている。これにより、タンク12は、出力配管14を介して外部の空圧機器(図示せず)に接続されると共に、取り出し弁13を開閉することによって該空圧機器に向けて圧縮空気を供給するものである。また、空気タンク12から配管25を通じて、台数制御装置1に内蔵される圧力センサ15と接続する。
 圧縮装置2A~2Dはそれぞれ独立な圧縮装置であり、単独での運転も可能である。台数制御装置1と接続する配線7A~7Dを通じて、単独運転するか、台数制御装置1により制御されるかの切替えが可能である。また、信号線8A~8Dは台数制御装置1から各圧縮装置への運転信号線であり、その運転信号を受け、圧縮装置2A~2Dが起動、停止を行う。台数制御装置1は信号線9A~9Dを通じて圧縮装置2A~2Dに対し、どの制御方式で運転するかの命令を送る。圧縮装置2A~2Dは上記の命令を受け、圧縮装置2A~2Dの運転台数を増減させるタイミングで、圧縮空気の使用量に応じて運転台数を変更することにより、吐出し空気量(出力)を変更する容量制御方式で運転するか、それとも圧縮空気の使用量によらず運転時の運転台数を変更せず、吐出し空気量(出力)が一定となる固定制御方式で運転するかを切替える。また、圧縮装置2A~2Dが異常発生した時に、17A~17Dを通じて台数制御装置1に信号を送り、台数制御装置1はその信号を受け、該圧縮装置を台数制御対象から外し、代替の圧縮装置を起動することが可能である。
 また、空気タンク12と空気タンク5A~5Dは配管10A~10Dにより接続したため、空気タンク12の圧力測定値P’(t)と空気タンク5A~5Dの圧力測定値P(t)は同じ値である。そして、空気タンク12の上限圧力値Pmaxと下限圧力値Pminは空気タンク5A~5Dの上限圧力値Pmaxと下限圧力値Pminも同じ値で設定する。
 本実施例による空気圧縮システムは上述の如き構成を有するもので、次に、図1~図4を参照しつつ、台数制御装置1と圧縮装置(2A~2D)各々の圧力測定値P’(t)とP(t)を用いて、圧縮装置(2A~2D)の運転台数と圧縮機本体の運転台数の制御処理を説明する。
 まず、図2を参照し、台数制御装置1が圧縮装置(2A~2D)の運転台数を増減する制御方法について説明する。図2に示す運転制御処理は、予め決められたサンプリング周期Ts(例えば200ms)毎に行うものである。
 ステップ1では、圧力センサ15からの圧力信号P’(t)を用いて、一定のサンプリング周期Tsで現在の空気タンク12内の圧力P’(t)を計測する。
 次に、ステップ2では、現在タンク圧力値P’(t)が予め設定された空気タンク12の下限圧力値Pminより小さいか否かを判定する、もし「Yes」と判定した場合、次のステップ3で圧縮装置(2A~2D)を全台起動させる。 「No」と判定した場合、次のステップ4で現在圧力値P’(t)は予め設定された空気タンク12の上限圧力値Pmax以上か否かを判定する。もし「Yes」と判定した場合、次のステップ5で圧縮装置(2A~2D)を全台停止させる。「No」と判定した場合、ステップ6では現在測定した圧力P’(t)と前回測定した圧力値P’(t-1)を用い、数式1でタンク圧力変化率K’を計算する。
(数式1)
K’ = (P’(t) - P’(t-1))/Ts
 ステップ7では上記計算されたK’がマイナスの値か否かを判定する。もし「Yes」と判定した場合、圧力が下降中というkとで、ステップ8に移る。「No」と判定した場合、圧力が上昇中ということで、ステップ13に移る。ステップ8では、数式2を用いて、下限圧力Pminと現在の圧力P’(t)との差を圧力変化率K’で割ることによって、現在の状態から下限圧力Pminに到達するまでの時間を計算する。計算した値をTd’値とする
(数式2)
Td’=(Pmin-P’(t))/K’
 次のステップ9でTd’値が予め決めたTd’閾値(例えば2秒)より小さいか否かを判定する。もし「No」と判定した場合、ステップ19に移り、リターンする。もし「Yes」と判定した場合、ステップ10で圧縮装置(2A~2D)の運転台数を1台の増加を判定する。次のステップ11で累積運転時間最短かつ停止中の圧縮装置(2A~2D)を優先的に起動させ、新しく起動した圧縮装置(2A~2D)を容量制御に切替える。そして、ステップ12ではその他の運転中の圧縮装置を空気吐出し量一定となる固定制御に切り替える。最後、ステップ19に移りリターンする。
 ステップ7で「No」と判定した場合、ステップ13に移り、圧力変化率K’がプラスか否かを判定する。もし「No」と判定した場合、ステップ19に移り、リターンする。もし「Yes」と判定した場合、ステップ14に移る。ステップ14では、上限圧力Pmaxと現在の圧力P’(t)との差を圧力変化率K’で割ることによって、現在の状態から上限圧力Pmaxまで到達すまでの時間を計算する。計算した値をTu’値とする
(数式3)
Tu’=(Pmax-P’(t))/K’
 次のステップ15ではTu’値が予め決めたTu’閾値(例えば5秒)未満か否かを判定する。もし「No」と判定した場合、ステップ19に移り、リターンする。「Yes」と判定した場合、ステップ16で圧縮装置(2A~2D)の運転台数を1台の減少を判定する。次のステップ17で容量制御で運転中の圧縮装置(2A~2D)を停止させる。そして、ステップ18で運転中の圧縮装置(2A~2D)の中で累積運転時間最長のものを優先的に容量制御に切替え、最後、ステップ19に移りリターンする。
 台数制御装置1は以上の台数制御処理によって、空気使用量に応じ、空気タンクの上限圧Pmaxに達する前に圧縮装置の運転台数を減少することができ、高い圧力領域の運転を避け、無駄な消費電力を省ける。また、タンクの下限圧力Pminに達す前に、圧縮装置(2A~2D)の運転台数を増加することで、下限圧力Pminを下回ることがない。そして、運転中に必ず1台の容量制御で運転する圧縮装置を保持することによって、細かい容量制御が可能かつ複数台の圧縮装置が同時に容量制御を行う際に発生する干渉現象も防げる。
 ここから、図3を参照しながら、圧縮装置(2A~2D)内部の圧縮機本体の運転台数を増減する制御方法について説明する。例として、圧縮装置2Aが容量制御で運転中と仮定する。図3に示す運転制御処理は、予め決められたサンプリング周期Ts(例えば200ms)毎に行うものである。
 ステップ31では、圧力センサ6Aからの圧力信号を用いて、一定のサンプリング周期Tsで現在の空気タンク5A内の圧力P(t)を計測する。
 次に、ステップ32では、現在タンク圧力値P(t)は予め設定された空気タンク5Aの下限圧力値Pminより小さいか否かを判定する、もし「Yes」と判定した場合、次のステップ33で圧縮機本体(31A~33A)を全台起動させる。 「No」と判定した場合、次のステップ34で現在圧力値P(t)は予め設定された空気タンク5Aの上限圧力値Pmax以上か否かを判定する。もし「Yes」と判定した場合、次のステップ35で圧縮機本体(31A~33A)を全台停止させる。「No」と判定した場合、ステップ36で現在測定した圧力P(t)と前回測定した圧力値P(t-1)を用い、数式4でタンク圧力変化率Kを計算する。
(数式4)
K = (P(t) - P(t-1))/Ts
 ステップ37で上記計算されたKはマイナスの値か否かを判定する。もし「Yes」と判定した場合、圧力が下降中ということで、ステップ38に移る。「No」と判定した場合、圧力が上昇中ということで、ステップ42に移る。ステップ38では、数式5を用いて、下限圧力Pminと現在の圧力P(t)との差を圧力変化率Kで割ることによって、現在の状態から下限圧力Pminに到達するまでの時間を計算する。計算した値をTd値とする
(数式5)
Td=(Pmin-P(t))/K
 次のステップ39でTd値が予め決めたTd閾値より小さいか否かを判定する。ここで、圧縮装置Td閾値と台数制御装置側のTd’閾値はTd閾値>Td’閾値の関係を持たなくてはならない。その理由について後述する。ここて、仮にTd閾値を3秒にする。
 もしステップ39で「No」と判定した場合、ステップ47に移り、リターンする。もし「Yes」と判定した場合、ステップ40で圧縮機本体(31A~33A)の運転台数を1台の増加を判定する。次のステップ41で累積運転時間最短かつ停止中の圧縮機本体を起動させる。最後、ステップ47に移りリターンする。
 Td閾値は必ずTd’閾値より大きくしなくといけない理由は、もしTd閾値をTd’閾値と同じ値に設定した場合は、圧縮装置の起動と圧縮機本体の起動が同時発生するという制御の干渉現象が起きるためである。ここで、Td閾値をTd’閾値より大きくすることで、必ず、ステップ39の圧縮機本体の起動判定はステップ9の圧縮装置の起動判定より先に「Yes」と判定するので、圧縮機本体(31A~33A)の運転台数の増加は圧縮装置(2A~2D)の増加より先に行うことになる。そのため、圧縮機本体運転台数の増加と圧縮装置の増加が同時に発生するという干渉現象を防ぐことができる。
 ステップ37で「No」と判定した場合、ステップ42に移り、圧力変化率Kがプラスか否かを判定する。もし「No」と判定した場合は、圧力が変化無しということで、ステップ47に移り、リターンする。もし「Yes」と判定した場合、圧力が上昇中ということで、ステップ43に移る。ステップ43では、上限圧力Pmaxと現在の圧力P(t)との差を圧力変化率Kで割ることによって、現在の状態から上限圧力Pmaxまでに到達するまでの時間を計算する。計算した値をTu値とする
(数式6)
Tu=(Pmax-P(t))/K
 次のステップ44でTu値が予め決めたTu閾値未満か否かを判定する。ここで、圧縮装置側Tu閾値と台数制御装置側のTu’閾値はTu閾値>Tu’閾値の関係を持たなくてはならない。その理由について後述する。ここて、仮にTu閾値を10秒にする。
 もし「No」と判定した場合、ステップ47に移り、リターンする。「Yes」と判定した場合、ステップ45で圧縮機本体(31A~33A)の運転台数を1台の減少を判定し、次のステップ46で運転中の累積運転時間最長の圧縮機本体を停止させる、最後、ステップ47に移りリターンする。
 Tu閾値は必ずTu’閾値より大きくしなくといけない理由は、もしTd閾値をTd’閾値と同じ値に設定した場合は、圧縮装置の停止と圧縮機本体の停止が同時発生するという制御の干渉現象が起きるためである。ここで、Td閾値はTd’閾値より大きくすることで、必ず、ステップ44の圧縮機本体の判定はステップ15の圧縮装置の停止判定より先に「Yes」と判定するので、圧縮機本体(31A~33A)の運転台数の減少は圧縮装置(2A~2D)の減少より先に行われることになる。そのため、圧縮機本体運転台数の減少と圧縮装置の減少が同時に発生するという干渉現象を防ぐことができる。
 ここから、図4を参照しながら、空気タンク12の圧力が上昇や下降する際に、圧縮機本体の運転台数の増減及び圧縮装置運転台数の増減動作タイミングについて説明する。例として、台数制御装置が運転中、圧縮装置(2A~2D)1台も運転していない状態かつ圧縮装置の累積運転時間の関係が2A<2B<2C<2Dである。タンク12の圧力が下降している状態を前提とし、空気圧縮システム全体の動きを説明する。
 まず、台数制御装置は200msごとに空気タンク12の圧力P’(t)を用い、Td’値を計算する。Td’値が2秒未満になった時に、台数制御装置が累積運転時間最短の圧縮装置2Aを起動し、容量制御で運転させる。起動した圧縮装置2Aは、タンク5Aの圧力値P(t)を用い、Td値を計算する。空気タンク5Aと空気タンク12は配管により接続されているため、それぞれの圧力値P’(t)とP(t)は同じ値である。よって、計算されたTd値がTd’値と同じ値(2秒未満)になり、Td閾値(3秒)より小さいため、圧縮機本体の運転台数の増加が必要と判定し、累積運転時間最短の圧縮機本体を起動する。そして、タンク圧力が下がり続けて、Td’値とTd値は200msごとに更新される。圧縮機本体の起動判定用のTd閾値(3秒)が圧縮装置の起動判定用のTd’閾値(2秒)より大きいため、圧縮機本体の運転台数を増加の判定は常に圧縮装置の運転台数を増加の判定より先に行うことになる。よって、圧縮装置の運転台数が増加される前に、圧縮装置2A内部の圧縮機本体の運転台数が先に増加される。
 圧縮装置2A内部の圧縮機本体(31A~33A)が全台運転の状態でも圧力P’(t)が下がり続けると、起動できる圧縮機本体が存在しないため、Td値が再度Td閾値(3秒)を下回る。その状況を続けると、Td’値がTd’閾値(2秒)を下回り、台数制御装置は圧縮装置の運転台数の増加を判定し、累積運転時間最短の圧縮装置2Bを起動し、容量制御で運転させ、圧縮装置2Aを吐き出し空気量一定となる固定制御で運転させる。起動した圧縮装置2Bは、タンク5Bの圧力値P(t)を用い、Td値を計算する。この時、Td値が2秒未満でTd閾値(3秒)より小さいので、圧縮装置2Bは累積運転時間最短の圧縮機本体を起動する。
 もし圧力P(t)が上昇し、計算されたTuがTu閾値(10秒)より小さくなった場合、圧縮装置2Bは圧縮機本体の運転台数を減少判定し、運転中の圧縮機本体を停止させる。ここで、圧縮機本体停止しても圧力が上昇し続ける場合、再度Tu閾値(10秒)より小さくなっても、圧縮装置2B内部の圧縮機本体が全停止の状態なので、何もしない。その後、Tu’値はTu’閾値(5秒)より小さくなった時に、台数制御装置が圧縮装置の運転台数を減少すると判定し、容量制御で運転中の圧縮装置2Bを停止し、圧縮装置2Aを固定制御から容量制御に切り替える。圧縮装置2Aが容量制御に切替えたら、Tu値を計算する。Tu値はTu’値と同じ値(5秒未満)であり、Tu閾値(10秒)より小さいため、圧縮装置2Aは圧縮機本体の運転台数を減少すると判定し、累積運転時間の圧縮機本体を停止する。その後、もし圧力が上昇しつづけると、再度Tu閾値(10秒)に引っ掛かり、もう1台の圧縮機本体を停止する。その後、Tu,Tu’値とTd,Td’値により、圧縮機本体または圧縮装置の運転台数の増減が繰り返す。
 ここから、図5を参照しながら、同じ空気使用量(全体吐出し量の55%)の状態で、従来技術を使用の場合と本実施例の場合の運転パターン及び消費電力を比較する。従来技術では台数制御機能を有する圧縮装置を台数制御装置でさらに台数制御する場合、お互いに運転台数の増減を干渉してしまう問題があるため、ここで、従来技術を利用する場合、台数制御装置の圧縮装置の台数制御機能のみを行い、圧縮装置における圧縮機本体の台数制御を無効にすることを前提とする。
 まず、従来技術の場合と本実施例の場合にそれぞれの上限圧力P’maxとPmaxを設定する必要がある。圧縮機本体を駆動するモータ(21A~23A)、(21B~23B)、(21C~23C)、(21D~23D)は停止時の逆誘起電圧及び起動時の突入電流が発生するため、頻繁にモータの運転をON/OFFすると、モータや関連配線が焼けてしまう恐れがある。そのため、モータを保護するために、停止→起動→停止の時間は最低サイクル制限時間TC以上になる必要がある。ということで、一般的に上限圧力と下限圧力の差圧をできるだけ広く設定し、差圧の広さで最低サイクル制御時間Tc以上になるようにする。従来技術の場合、圧縮装置1台ごとに運転/停止し、すなわち、圧縮機本体3台ごとに運転/停止するため、運転ON/OFF頻度を抑え、最低サイクル制御時間Tc以上なるためには差圧を大きく設ける必要がある。一方、本実施例では、圧縮機本体1台ずつ運転/停止が可能のため、従来技術と比べ、圧力変動が少ない状態で長時間運転できるため、上限圧力と下限圧力の差圧を小さくしても問題ない。
 そして、圧縮機本体を駆動するモータの停止→起動→停止のサイクルが同じになる条件で、本実施例と従来技術の運転パターンを比較した結果は図5に示す。本実施例の空気圧縮システムの運転パターンは実線で表示する。従来技術を利用し、空気圧縮システムの運転パターンは点線で表示する。圧力の変化により、圧縮装置及び圧縮機本体の運転台数の増減はタイミングチャートで示し、消費電力の比較は図5の最下部に示す。
 まず、空気使用量が全体吐出し量の55%の場合、本実施例では、圧縮装置2Aと2Bを固定制御で運転させ、圧縮装置2Cを容量制御で運転させることによって、圧縮機本体の運転台数を細かく制御し、吐出し空気量を微調整することが可能になった。よって、圧縮機本体は6台~7台で運転する。一方、従来技術では、圧縮装置が1台運転/停止するため、圧縮機本体の運転台数が6台~9台変動し、本実施例と比べ、2台分の圧縮機本体を駆動する電力が無駄に消費してしまう。
 そして、従来技術では運転サイクルは最小サイクル時間Tc以上になるように、高い圧力領域で運転してしまい、さらに電力が無駄に消費する問題がある。本実施例では、圧縮機本体台数1台ずつ細かく制御可能のため、最小サイクル時間を保持した上で低い圧力範囲内で運転することができ、省エネ効果が高い。
 また、本実施例では、12台の圧縮機本体を4台の圧縮装置に集約することができ、12台の圧縮茎本体を1台の圧縮装置で制御する場合よりも配線配管作業の工数と設置スペースを低減できる。
 また、12台の圧縮茎本体を1台の圧縮装置で制御した場合、全台数の圧縮機本体を停止または運転した状態から1台ずつ順次に圧縮機本体を停止する必要があるため、空気使用量が急激に変化した場合に対応できなかった。一方、本実施例では圧縮機本体台数を1台ずつ細かく制御できるのと同時に空気使用量が急激に変化しても、圧縮装置が圧縮機本体の台数を増減すると同時に、台数制御装置が圧縮装置の運転台数も増減するので、空気使用量の急激な変化にも迅速に対応できる。
 また、本実施例では、新しく起動した圧縮装置を容量制御に切り替えることにより、空気使用量の変化に応じ、圧縮システムは連続的に圧縮機本体の増減が可能になる。
 また、本実施例では、圧縮装置の起動は累積運転時間の短い順で行われ、停止は累積運転時間の長い順で行われる。一方、圧縮機本体の起動と停止も、圧縮装置と同じ、累積運転時間により起動と停止順が決まる。そのため、各圧縮装置の累積運転時間が平均化され、かつ圧縮装置内部の圧縮機本体の累積運転時間も平均化されるので、負荷の偏りで先に故障する圧縮機本体は存在しないため、機械のメンテナンスが容易となる。
 また、本実施例では、圧縮装置が異常発生した際に、信号線17A~17Dを通じて、台数制御装置1に知らせることができる。台数制御装置1はそれらの信号を受け、異常発生した圧縮装置を台数制御から外し、残りの圧縮装置で台数制御を行うことができる。
 また、本実施例では、圧縮装置2A~2Dの運転台数を増加する判定した時に、停止中の圧縮装置から累積運転時間最短のものを最優先起動させる。しかし、空気使用量の変動がなく、圧縮装置の運転状態が継続した場合、運転中の圧縮装置の累積時間が停止中の圧縮装置累積時間を超えてしまう可能性があり、各圧縮装置の運転時間を平均化する目的を反してしまう。そのため、本実施例では、圧縮装置が一定時間(例えば30分)連続運転したら、停止中の圧縮装置の中で該圧縮装置より累積運転時間短いものを起動させ、該圧縮装置を停止させるという運転交代も行う。そのため、各圧縮装置の累積運転時間が連続運転状態においても平均化され、かつ最大差異は30分以内に収まる。これにより、さらに機械のメンテナンスが容易になる。
 図6ないし図10を用いて本発明の実施例2を説明する。実施例1と同一の構成については、同一の符号を付し、その説明を省略する。本実施例の特徴は、複数台の圧縮機本体を有し、圧縮空気の使用量に応じて運転台数を変更することにより、吐出し空気量(出力)を変更する容量制御運転が可能な圧縮装置と圧縮空気の使用量によらず運転時の運転台数を変更せず、運転時の空気吐出し量(出力)が一定となる固定制御運転のみを行う圧縮装置により構成される点である。
 本実施例の空気圧縮システムの構成を図6に示す。実施例1と同様に、台数制御装置1、圧縮装置2A~2Dと空気タンク12により構成されている。台数制御装置1は制御基板16とタンク12の圧力を測定する圧力センサ15により構成され、各圧縮装置(2A~2D)に対し、運転・停止、制御方式を切替する機能を有する。組合せ例として、圧縮装置2A~2Bは実施例1の空気圧縮システムと同様に、複数台の圧縮機本体により構成され、空気使用量に応じ、圧縮機本体の運転台数を増減する容量制御運転と運転時の空気吐出し量(出力)が一定となる固定制御運転とを行う。圧縮装置2Cと2Dは1台の圧縮機本体のみ構成され、空気吐出し量(出力)が一定となる固定制御運転のみを行う。なお、上記の圧縮装置2A~2Dの中で容量制御可能な機種を予め台数制御装置1に認識させる必要がある。認識方法として、予め機種を設定し、台数制御装置1内部の制御回路16に機種情報を保存させる方法がある。もしくは、台数制御装置と圧縮装置を接続したときに、自動的に機種を認識させる方法もある
 図7を参照し、台数制御装置が圧縮装置の運転台数を増減する制御方法について説明する。図7に示す台数制御処理は、実施例1と同様に、予め決められたサンプリング周期Ts(例えば200ms)毎に行うものである。
 ステップ51では、実施例1と同様に、圧力センサ15を用い、一定サンプリング周期Tsで現在の空気タンク12内の圧力P’(t)を計測する。
 次に、ステップ52では、現在タンク圧力値P’(t)が予め設定された空気タンク12の下限圧力値Pminより小さいか否かを判定する、もし「Yes」と判定した場合、次のステップ53で圧縮装置(2A~2D)を全台起動させる。 「No」と判定した場合、次のステップ54で現在圧力値P’(t)は予め設定された空気タンク12の上限圧力値Pmax以上か否かを判定する。もし「Yes」と判定した場合、次のステップ55で圧縮装置(2A~2D)を全台停止させる。「No」と判定した場合、ステップ56で現在測定した圧力P’(t)と前回測定した圧力値P’(t-1)を用い、前述した数式1でタンク圧力変化率K’を計算する。
 ステップ57で上記計算されたK’はマイナスの値か否かを判定する。もし「Yes」と判定した場合、圧力が下降中ということで、ステップ58に移る。「No」と判定した場合、圧力が上昇中ということで、ステップ65に移る。ステップ58では、前述した数式2を用いて、使用者が設定したタンク12の最低圧力Pmin(下限圧力)と現在の圧力P’(t)との差を圧力変化率K’で割ることによって、現在の状態からあと何秒後に下限圧力Pminまで達すかを計算する。計算した値をTd’値とする
 次のステップ59でTd’値が予め決めたTd’閾値(例えば2秒)未満か否かを判定する。もし「No」と判定した場合、ステップ73に移り、リターンする。もし「Yes」と判定した場合、ステップ60で圧縮装置(2A~2D)の運転台数を1台増加させる。次のステップ61では、容量制御運転中の圧縮装置があるか否かを判定する。もし「Yes」と判定した場合、次のステップ62で累積運転時間最短かつ停止中の圧縮装置を起動させ、空気吐出し量が一定となる固定制御で運転させる。もし、ステップ61で「No」と判定した場合、すなわち、容量制御運転中の圧縮装置が無ければ(全ての圧縮装置が停止した状態であれば)、ステップ63で運転時間最短の容量制御運転が可能な圧縮装置を優先的に起動し、そして、次のステップ64で起動した圧縮装置を容量制御に切り替える。最後、ステップ73に移り、リターンする。
 もしステップ57では「No」と判定した場合、ステップ65に移り、K’はプラスの値か否か判定する。もし「No」と判定した場合、すなわち、タンク12の圧力は変化なしということなので、そのままステップ73に移り、リターンする。もしステップ65で「Yes」と判定した場合、タンク12の圧力が上昇中ということなので、ステップ66であと何秒間この状態が継続したら、予め設定された上限圧力Pmaxに達すかのTu’値を前述した数式3で計算する。計算したTu’値をステップ67で予め決められたTu’閾値(例えば5秒)と比較する。もし「No」と判定した場合、ステップ73に移り、リターンする。もし「Yes」と判定した場合、次のステップ68で圧縮装置(2A~2D)の運転台数を1台減少させる。次のステップ69では固定制御で運転中の圧縮装置があるかどうかを判定する。もし「Yes」と判定した場合、ステップ70では、固定制御で運転中の圧縮装置の中で運転時間最長のものを停止させ、ステップ73に移り、リターンする。ステップ71では、容量制御で運転中の圧縮装置があるかどうかを判定する。もしステップ71で「No」と判定した場合、容量制御の圧縮装置が全部停止したということなので、何もしないでそのままステップ73に移りリターンする。もしステップ71で「Yes」と判定した場合、すなわち、容量制御で運転中の圧縮機のみ残っているため、ステップ72で該当圧縮装置を停止させる。最後、ステップ73に移り、リターンする。即ち、固定制御で運転中の圧縮装置を容量制御で運転中の圧縮装置よりも先に停止させる。
 圧縮装置が圧力の変化により内部の圧縮機本体の運転台数を増減する処理を図8に示す。この処理も一定サンプリング時間周期Ts(例えば200ms)で行う。そして、図8の処理は前述した図3の処理は同様な処理なので、ここでは詳細説明を省略する。
 ここから、図9を参照しながら、圧縮機本体の増減や圧縮装置の増減動作タイミングについて説明する。例として、台数制御装置が運転中、圧縮装置(2A~2D)が1台も運転していない状態かつ圧縮装置の累積運転時間の関係は2A<2B<2C<2Dで、タンク12の圧力が下降している状態を前提とし、空気圧縮システム全体の動きを説明する。
 まず、圧力が下降中のため、台数制御装置は空気タンク12の圧力P’(t)を用い、Td’値を計算する。Td’値が2秒未満になった時に、台数制御装置が累積運転時間最短の容量制御可能な圧縮装置2Aを起動し、容量制御で運転させる。
 起動した圧縮装置2Aはタンク5Aの圧力値P(t)を用い、Td値を計算する。圧縮装置2Aが起動した時に、計算されたTd値はTd’値と同じ値(2秒未満)であり、Td閾値(3秒)より小さいため、圧縮装置2Aは圧縮機本体の運転台数の増加が必要と判定し、累積運転時間最短の圧縮機本体を起動する。そして、タンク圧力が下がり続けて、Td’値とTd値は200msごとに更新される。
 圧縮機本体の起動判定用のTd閾値(3秒)が圧縮装置の起動判定用のTd’閾値(2秒)より大きいため、圧縮機本体の運転台数を増加の判定は常に圧縮装置の運転台数を増加の判定より先に行うことになる。よって、圧縮装置の運転台数が増加される前に、圧縮装置2A内部の圧縮機本体の運転台数が先に増加される。
 圧縮装置2A内部の圧縮機本体(31A~33A)が全台運転の状態でも圧力P’(t)が下がり続けると、起動できる圧縮機本体が存在しないため、Td値が再度Td閾値(3秒)を下回る。その状況を続けると、Td’値がTd’閾値(2秒)を下回り、台数制御装置は圧縮装置の運転台数の増加を判定し、停止中の累積運転時間最短の圧縮装置2Bを起動し、固定制御で運転させ、圧縮装置2Aは容量制御で運転のままにする。
 もし、圧力P’(t)がさらに下降し続けると、圧縮装置2C、2Dも順次に起動し、固定制御で運転する。もし、圧縮装置2Bが起動して、圧力P’(t)が上昇したら、圧縮装置2Aはタンク5Aの圧力値P(t)を用い、Tu値を計算する。Tu値がTu閾値(10秒)より小さくなった場合、圧縮装置2Aが圧縮機本体の運転台数を減少判定するため、運転中の圧縮機本体を1台ずつ停止させる。
 ここで、圧縮機本体を1台停止しても圧力が上昇し続ける場合、圧縮装置2A内部の圧縮機本体が順次に停止する。全圧縮機本体21A~23Aが停止しても、圧力上昇しつづけた場合、Tu’値がTu’閾値(5秒)より小さくなった時に、台数制御装置が圧縮装置の運転台数を減少すると判定し、固定制御で運転中の圧縮装置2Bを停止する。その後、空気使用量の変化が小さい時、圧縮装置2A内部の圧縮機本体の運転台数を増減することで空気吐き出し量を制御する。一方、空気使用量の変化が大きく、圧縮装置2Aの容量制御のみで対応しきれない場合、圧縮装置2B~2D運転台数の増減により、吐き出し量を制御する。
 ここから、図10を参照しながら、空気使用量(全体吐出し量の55%)が一定の状態で、従来技術を使用の場合と本実施例の場合の運転パターン及び消費電力を比較する。従来技術では台数制御機能を有する圧縮装置を台数制御装置でさらに台数制御する場合、お互いに運転台数の増減を干渉してしまう問題があるため、ここで、従来技術を利用する場合、台数制御装置の圧縮装置の台数制御のみを行い、圧縮装置における圧縮機本体の台数制御を行わないことを前提とする。
 まず、従来技術の場合と本実施例の場合にそれぞれの上限圧力P’maxとPmaxを設定する必要がある。圧縮機本体を駆動するモータ(21A~23A)、(21B~23B)、20C、20Dは、実施例1で述べたように、モータを保護するために、停止→起動→停止の時間は最低サイクル制限時間Tc以上になる必要がある。従って、一般的には上限圧力と下限圧力の差圧をできるだけ広く設定し、差圧の広さで最低サイクル制御時間Tc以上になるようにする。従来技術の場合、圧縮装置1台ごとに運転/停止し、すなわち、圧縮機本体3台ごとに運転/停止するため、運転ON/OFF頻度を抑え、最低サイクル制御時間Tc以上なるためには差圧を大きく設ける必要がある。一方、本実施例では、圧縮機本体1台ずつ運転/停止が可能のため、従来技術と比べ、圧力変動が少ない状態で長時間運転できるため、上限圧力と下限圧力の差圧を小さくしても問題ない。
 そして、圧縮機本体を駆動するモータの停止→起動→停止のサイクルが同じになる条件で、本実施例と従来技術の運転パターンを比較した結果は図10に示す。本実施例の空気圧縮システムの運転パターンを実線で表示する。従来技術を利用し、空気圧縮システムの運転パターンを点線で表示する。圧力の変化により、圧縮装置及び圧縮機本体の運転台数の増減はタイミングチャートで示し、消費電力の比較は図10の最下部に示す。
 まず、空気使用量が全体吐出し量の55%の場合、本実施例では、圧縮装置2Bと2Cを固定制御で運転させ、圧縮装置2Aを容量制御で運転させることによって、圧縮機本体の運転台数を細かく制御し、吐出し空気量を微調整することが可能になった。一方、従来技術では、圧縮装置は1台丸ごとに運転/停止するため、本実施例と比べ、2台分の圧縮機本体を駆動する電力が無駄に消費してしまう。
 そして、従来技術では運転サイクルは最小サイクル時間Tc以上になるように、高い圧力領域で運転してしまい、電力が無駄に消費する問題がある。本実施例では、圧縮機本体を1台ずつ細かく制御可能のため、最小サイクル時間を保持した上で低い圧力範囲内で運転することができる。従来技術と比べ、省エネ効果が高い。
 また、本実施例では、実施例1と比較して、1台以上の台数制御可能な圧縮装置があれば、固定制御のみの圧縮装置と組み合わせて、細かい容量制御が可能になり、省エネ効果を得られると同時に、空気圧縮システムの導入コストも削減できる。
 また、本実施例によれば、容量制御可能な圧縮装置を優先的に起動させ、固定制御のみ可能な圧縮装置を優先的に停止させるため、細かい容量制御が可能となる。
 これまで説明してきた実施例は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
1 台数制御装置
2 圧縮装置
4、16 制御回路
5、12 空気タンク
6、15 圧力センサ
20、21、22、23 モータ
30、31、32、33 圧縮機本体

 

Claims (17)

  1.  流体を圧縮する複数台の圧縮装置と、
     複数台の前記圧縮装置の運転台数を制御する台数制御装置とを備え、
     複数台の前記圧縮装置のうち少なくとも1台は、複数台の圧縮機本体から構成され、圧縮流体の使用量に応じて運転台数を変更する容量制御運転または圧縮流体の使用量によらず運転時の出力を変更しない固定制御運転を行い、
     前記台数制御装置は、複数台の前記圧縮装置が容量制御運転または固定制御運転のいずれを行うかを切り替えることを特徴とする流体圧縮システム。
  2.  2台以上の前記圧縮装置は複数台の圧縮機本体から構成され、前記台数制御装置は1台の前記圧縮装置を容量制御運転させ、他の前記圧縮装置を固定制御運転とすることを特徴とする請求項1に記載の流体圧縮システム。
  3.  前記台数制御装置は新しく起動した前記圧縮装置を容量制御運転させることを特徴とする請求項2に記載の流体圧縮システム。
  4.  前記台数制御装置は、前記圧縮装置の運転台数を増減させるタイミングで容量制御運転または固定制御運転を切り替えることを特徴とする請求項1に記載の流体圧縮システム。
  5.  前記台数制御装置は、累積運転時間が短い前記圧縮装置を優先的に起動させ、累積運転時間が長い前記圧縮装置を優先的に停止させることを特徴とする請求項1に記載の流体圧縮システム。
  6.  前記台数制御装置は、前記圧縮装置が生成した流体を貯留する流体タンク内の圧力が所定の上限圧力値または下限圧力値に到達するまでの時間が第1の閾値以下になると前記圧縮装置の運転台数を増減させ、前記圧縮装置は前記流体タンク内の圧力が所定の上限圧力値または下限圧力値に到達するまでの時間が前記第1の閾値よりも大きい第2の閾値以下になると前記圧縮機本体の運転台数を増減させることを特徴とする請求項1に記載の流体圧縮システム。
  7.  複数台の前記圧縮装置のうち少なくとも1台は、圧縮流体の使用量によらず、運転時の出力を変更しない固定制御運転を行うことを特徴とする請求項1に記載の流体圧縮システム。
  8.  複数台の前記圧縮装置のうち、容量制御運転または固定制御運転を行う圧縮装置を固定制御運転を行う圧縮装置よりも先に起動することを特徴とする請求項7に記載の流体圧縮システム。
  9.  複数台の前記圧縮装置のうち、固定制御運転を行う圧縮装置を容量制御運転または固定制御運転を行う圧縮装置よりも先に停止することを特徴とする請求項7に記載の流体圧縮システム。
  10.  複数台の圧縮機本体から構成され、圧縮流体の使用量に応じて運転台数を変更する容量制御運転または圧縮流体の使用量によらず運転時の出力を変更しない固定制御運転を行う少なくとも1台の圧縮装置を含む複数台の圧縮装置の運転台数を制御し、前記圧縮装置が容量制御運転または固定制御運転のいずれを行うかを制御することを特徴とする流体圧縮システムの制御装置。
  11.  2台以上の前記圧縮装置は複数台の圧縮機本体から構成され、前記台数制御装置は1台の前記圧縮装置を容量制御運転させ、他の前記圧縮装置を固定制御運転とすることを特徴とする請求項10に記載の流体圧縮システムの制御装置。
  12.  新しく起動した前記圧縮装置を容量制御運転させることを特徴とする請求項10に記載の流体圧縮システムの制御装置。
  13.  前記圧縮装置の運転台数を増減させるタイミングで容量制御運転または固定制御運転を切り替えることを特徴とする請求項10に記載の流体圧縮システムの制御装置。
  14.  累積運転時間が短い前記圧縮装置を優先的に起動させ、累積運転時間が長い前記圧縮装置を優先的に停止させることを特徴とする請求項10に記載の流体圧縮システムの制御装置。
  15.  前記圧縮装置が生成した流体を貯留する流体タンク内の圧力が所定の上限圧力値または下限圧力値に到達するまでの時間が第1の閾値以下になると前記圧縮装置の運転台数を増減させ、前記圧縮装置は前記流体タンク内の圧力が所定の上限圧力値または下限圧力値に到達するまでの時間が前記第1の閾値よりも大きい第2の閾値以下になると前記圧縮機本体の運転台数を増減させることを特徴とする請求項10に記載の流体圧縮システムの制御装置。
  16.  複数台の前記圧縮装置のうち少なくとも1台は、圧縮流体の使用量によらず、運転時の出力を変更しない固定制御運転を行い、複数台の前記圧縮装置のうち、容量制御運転または固定制御運転を行う圧縮装置を固定制御運転を行う圧縮装置よりも先に起動することを特徴とする請求項15に記載の流体圧縮システムの制御装置。
  17.  複数台の前記圧縮装置のうち少なくとも1台は、圧縮流体の使用量によらず、運転時の出力を変更しない固定制御運転を行い、複数台の前記圧縮装置のうち、固定制御運転を行う圧縮装置を容量制御運転または固定制御運転を行う圧縮装置よりも先に停止することを特徴とする請求項15に記載の流体圧縮システムの制御装置。
PCT/JP2013/052981 2013-02-08 2013-02-08 流体圧縮システムまたはその制御装置 WO2014122764A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020177017158A KR101790545B1 (ko) 2013-02-08 2013-02-08 유체 압축 시스템 및 그 제어 장치
EP13874565.8A EP2955377B1 (en) 2013-02-08 2013-02-08 Fluid compression system and control device therefor
CN201380072545.7A CN104968939B (zh) 2013-02-08 2013-02-08 流体压缩系统及其控制装置
JP2014560602A JP6200905B2 (ja) 2013-02-08 2013-02-08 流体圧縮システムまたはその制御装置
PCT/JP2013/052981 WO2014122764A1 (ja) 2013-02-08 2013-02-08 流体圧縮システムまたはその制御装置
CN201711267266.2A CN107939662B (zh) 2013-02-08 2013-02-08 流体压缩系统及其控制装置
KR1020157018429A KR101752163B1 (ko) 2013-02-08 2013-02-08 유체 압축 시스템 및 그 제어 장치
US14/766,240 US10514026B2 (en) 2013-02-08 2013-02-08 Fluid compression system and control device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052981 WO2014122764A1 (ja) 2013-02-08 2013-02-08 流体圧縮システムまたはその制御装置

Publications (1)

Publication Number Publication Date
WO2014122764A1 true WO2014122764A1 (ja) 2014-08-14

Family

ID=51299376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052981 WO2014122764A1 (ja) 2013-02-08 2013-02-08 流体圧縮システムまたはその制御装置

Country Status (6)

Country Link
US (1) US10514026B2 (ja)
EP (1) EP2955377B1 (ja)
JP (1) JP6200905B2 (ja)
KR (2) KR101790545B1 (ja)
CN (2) CN107939662B (ja)
WO (1) WO2014122764A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101094A (ja) * 2018-12-20 2020-07-02 株式会社日立産機システム 流体機械システム、及びその制御方法
WO2022230252A1 (ja) * 2021-04-28 2022-11-03 株式会社日立産機システム 圧縮機
JP7568565B2 (ja) 2021-03-30 2024-10-16 株式会社日立産機システム 気体圧縮システム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139843B2 (en) 2012-02-22 2018-11-27 Honeywell International Inc. Wireless thermostatic controlled electric heating system
US9806705B2 (en) 2013-04-23 2017-10-31 Honeywell International Inc. Active triac triggering circuit
US9584119B2 (en) 2013-04-23 2017-02-28 Honeywell International Inc. Triac or bypass circuit and MOSFET power steal combination
US11054448B2 (en) 2013-06-28 2021-07-06 Ademco Inc. Power transformation self characterization mode
US10811892B2 (en) 2013-06-28 2020-10-20 Ademco Inc. Source management for a power transformation system
US9983244B2 (en) 2013-06-28 2018-05-29 Honeywell International Inc. Power transformation system with characterization
US9857091B2 (en) 2013-11-22 2018-01-02 Honeywell International Inc. Thermostat circuitry to control power usage
US9673811B2 (en) 2013-11-22 2017-06-06 Honeywell International Inc. Low power consumption AC load switches
US9628074B2 (en) 2014-06-19 2017-04-18 Honeywell International Inc. Bypass switch for in-line power steal
US9683749B2 (en) 2014-07-11 2017-06-20 Honeywell International Inc. Multiple heatsink cooling system for a line voltage thermostat
JP7010578B2 (ja) * 2015-08-07 2022-01-26 マックス株式会社 エアコンプレッサ
DE102015116148A1 (de) 2015-09-24 2017-03-30 Mehrer Compression GmbH Modular untergliederte Kompressoranlage
CN109983227B (zh) * 2016-11-29 2020-04-21 三菱电机株式会社 控制系统和控制装置
DE102017209992B4 (de) * 2017-06-13 2019-05-29 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Vorrichtung zum Steuern einer Druckluftversorgung
CN107831720A (zh) * 2017-10-20 2018-03-23 爱普(福建)科技有限公司 优化设备运行模式的控制方法及计算机设备
EP3859155B1 (en) * 2018-09-27 2024-09-18 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor and method for controlling same
CN110469509B (zh) * 2019-08-21 2021-06-01 聚才实业(深圳)有限公司 涡旋空压机组的控制方法及其控制系统
US11625053B2 (en) * 2020-12-30 2023-04-11 Ingersoll-Rand Industrial U.S., Inc. Away mode for a compressed air system
WO2022168270A1 (ja) * 2021-02-05 2022-08-11 株式会社日立産機システム 気体圧縮システム及びその制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421607A (en) * 1977-07-20 1979-02-19 Ishikawajima Harima Heavy Ind Co Ltd Group operational control of compressors
JP2007120497A (ja) 2005-09-30 2007-05-17 Hitachi Ltd 空気圧縮装置の制御装置
JP2009221977A (ja) * 2008-03-17 2009-10-01 Mitsui Seiki Kogyo Co Ltd コンプレッサ運転台数拡張制御方法
JP2010190108A (ja) * 2009-02-18 2010-09-02 Hitachi Ltd 空気圧縮設備の運転制御方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167889A (ja) 1982-03-29 1983-10-04 Hitachi Ltd 圧縮機の運転装置
JPS60147585A (ja) * 1984-01-11 1985-08-03 Hitachi Ltd 圧縮機の制御方法
JPS60147586A (ja) 1984-01-11 1985-08-03 Hitachi Ltd 圧縮機の制御方法
US5054995A (en) 1989-11-06 1991-10-08 Ingersoll-Rand Company Apparatus for controlling a fluid compression system
US5301513A (en) * 1993-05-07 1994-04-12 Carrier Corporation Monitoring and control of chiller units
US5797729A (en) * 1996-02-16 1998-08-25 Aspen Systems, Inc. Controlling multiple variable speed compressors
JP3404492B2 (ja) * 1998-04-02 2003-05-06 株式会社日立産機システム 圧縮機運転制御方法及び圧縮機運転制御装置
JP3547314B2 (ja) 1998-06-02 2004-07-28 株式会社日立産機システム 圧縮空気製造装置
JP4248077B2 (ja) * 1999-04-14 2009-04-02 株式会社日立産機システム 圧縮機装置
US6419454B1 (en) * 2000-06-14 2002-07-16 Leo P. Christiansen Air compressor control sequencer
US6672846B2 (en) * 2001-04-25 2004-01-06 Copeland Corporation Capacity modulation for plural compressors
DE10151032A1 (de) * 2001-10-16 2003-04-30 Siemens Ag Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate einer Erdgasverdichtungsstation
JP2004340024A (ja) 2003-05-15 2004-12-02 Anest Iwata Corp 圧縮機の運転制御方法
JP2005048755A (ja) 2003-07-28 2005-02-24 Hitachi Industrial Equipment Systems Co Ltd コンプレッサの台数制御システム
US7207183B2 (en) * 2004-04-12 2007-04-24 York International Corp. System and method for capacity control in a multiple compressor chiller system
US7918655B2 (en) 2004-04-30 2011-04-05 Computer Process Controls, Inc. Fixed and variable compressor system capacity control
DE102005016433A1 (de) 2005-04-05 2006-10-12 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichter
CN1940294B (zh) 2005-09-30 2011-06-01 株式会社日立制作所 空气压缩装置的控制装置
WO2010005313A1 (en) * 2008-07-10 2010-01-14 Jets As Method for controlling the vacuum generator^ in a vacuum sewage system
CN201671865U (zh) 2010-04-27 2010-12-15 胥麟毅 Ffu集中监控系统
JP5621457B2 (ja) 2010-09-21 2014-11-12 株式会社デンソー コンプレッサ運転制御システム
JP5913811B2 (ja) 2011-01-18 2016-04-27 株式会社Ihi回転機械 圧縮機台数制御装置及びそれを用いた圧縮機台数制御方法
JP4924855B1 (ja) 2011-07-22 2012-04-25 三浦工業株式会社 圧縮機台数制御システム
KR101167556B1 (ko) * 2011-07-22 2012-07-30 미우라고교 가부시키카이샤 압축기 대수 제어 시스템
CN202597046U (zh) 2012-05-10 2012-12-12 上海昶嘉工业设备有限公司 空压机集中控制联控柜
US8951019B2 (en) * 2012-08-30 2015-02-10 General Electric Company Multiple gas turbine forwarding system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421607A (en) * 1977-07-20 1979-02-19 Ishikawajima Harima Heavy Ind Co Ltd Group operational control of compressors
JP2007120497A (ja) 2005-09-30 2007-05-17 Hitachi Ltd 空気圧縮装置の制御装置
JP2009221977A (ja) * 2008-03-17 2009-10-01 Mitsui Seiki Kogyo Co Ltd コンプレッサ運転台数拡張制御方法
JP2010190108A (ja) * 2009-02-18 2010-09-02 Hitachi Ltd 空気圧縮設備の運転制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101094A (ja) * 2018-12-20 2020-07-02 株式会社日立産機システム 流体機械システム、及びその制御方法
JP7261579B2 (ja) 2018-12-20 2023-04-20 株式会社日立産機システム 流体機械システム、及びその制御方法
JP7568565B2 (ja) 2021-03-30 2024-10-16 株式会社日立産機システム 気体圧縮システム
WO2022230252A1 (ja) * 2021-04-28 2022-11-03 株式会社日立産機システム 圧縮機

Also Published As

Publication number Publication date
JPWO2014122764A1 (ja) 2017-01-26
EP2955377A4 (en) 2017-02-15
US10514026B2 (en) 2019-12-24
CN107939662B (zh) 2020-03-27
CN104968939A (zh) 2015-10-07
KR20150092318A (ko) 2015-08-12
CN104968939B (zh) 2018-01-09
KR101790545B1 (ko) 2017-10-26
JP6200905B2 (ja) 2017-09-20
EP2955377A1 (en) 2015-12-16
CN107939662A (zh) 2018-04-20
KR20170075814A (ko) 2017-07-03
EP2955377B1 (en) 2021-09-22
US20150370265A1 (en) 2015-12-24
KR101752163B1 (ko) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6200905B2 (ja) 流体圧縮システムまたはその制御装置
JP6014508B2 (ja) 流体圧縮システム
JP5816529B2 (ja) 空気圧縮装置の制御装置
JP2007120497A (ja) 空気圧縮装置の制御装置
CN102086856A (zh) 压缩机容量控制方法及用于控制压缩机的容量的设备
JP2000297765A (ja) 圧縮機装置
KR20160093668A (ko) 컴프레서 시스템, 그리고 철도 차량의 작동 상태에 따른 컴프레서 시스템의 작동 방법
KR20160093053A (ko) 압축기 시스템 및 철도 차량의 현재 상황에 따라 압축기 시스템을 작동하기 위한 방법
JP2009156208A (ja) 圧縮機の制御装置
JP5978062B2 (ja) 空気圧縮機
CN101008391A (zh) 螺旋压缩机的容量控制装置及容量控制方法
JP6539319B2 (ja) 流体圧縮システムまたはその制御装置
CA2459659C (en) Compressed air system and method of control
JP5646282B2 (ja) 圧縮装置及びその運転制御方法
JP5205032B2 (ja) 空気圧縮装置および空気圧縮機本体の制御装置
CN103133318A (zh) 空气压缩机
KR101983116B1 (ko) 다중 공기압축기 통합 제어 시스템 및 그 제어 방법
JP6397660B2 (ja) 流体圧縮システム
JP2020502410A (ja) 真空ポンプシステム、及び真空ポンプシステムを作動させるための方法
JP5896965B2 (ja) 圧縮機およびその圧力制御方法
JP6014509B2 (ja) 流体圧縮システム
JP6012417B2 (ja) 流体圧縮装置
JP5444264B2 (ja) 気体圧縮装置の制御装置
JP2009228955A (ja) 冷蔵庫
JP6176518B2 (ja) 圧縮機台数制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560602

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018429

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013874565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14766240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE