WO2014121635A1 - 白光发光器件及其制作方法 - Google Patents

白光发光器件及其制作方法 Download PDF

Info

Publication number
WO2014121635A1
WO2014121635A1 PCT/CN2013/088964 CN2013088964W WO2014121635A1 WO 2014121635 A1 WO2014121635 A1 WO 2014121635A1 CN 2013088964 W CN2013088964 W CN 2013088964W WO 2014121635 A1 WO2014121635 A1 WO 2014121635A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
inorganic
white light
emitting device
Prior art date
Application number
PCT/CN2013/088964
Other languages
English (en)
French (fr)
Inventor
江彦志
黄少华
赵志伟
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014121635A1 publication Critical patent/WO2014121635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor light emitting device, and more particularly to a hybrid white light emitting device and a method of fabricating the same.
  • white light in the visible light spectrum at wavelengths ranging from 380 nm to 760 nm.
  • this range is a spectrum without white light, because white light is not a single-wavelength light, but a composite light synthesized from a variety of single-wavelength light, just as sunlight is white light synthesized by seven monochromatic lights, and color televisions
  • the white light in the middle is also composed of three primary colors red, green and blue. It can be seen that in order for the light emitting device to emit white light, its spectral characteristics should include the entire visible spectral range. However, it is impossible to manufacture a light-emitting device of this performance under the current process conditions.
  • white light that can be seen by human eyes requires at least two kinds of light mixing, that is, two-wavelength light (blue light + yellow light), which is the commonly used blue light source plus yellow phosphor or
  • the mode of three-wavelength luminescence blue light + green light + red light
  • blue light + green light + red light also has a short-wavelength ultraviolet light source plus blue, green, and red phosphors.
  • the commonly used blue light source plus inorganic yellow phosphor or short-wavelength ultraviolet light source plus inorganic blue, green and red phosphors in the process of conversion to white light, need to take into account the absorption of the phosphor itself
  • the conversion efficiency and the phosphor itself is not an active illuminating source, so that the white light conversion efficiency must depend on the quality of the phosphor.
  • FIG. 1 shows a conventional white light emitting device comprising: a growth substrate 110; an N-type gallium nitride based epitaxial layer 121, an emission layer 122, a P-type gallium nitride based epitaxial layer 123, and a transparent Conductive layer 130, P electrode 140, N electrode 141, and fluorescent glue 150.
  • the invention provides a white light emitting device with no need of phosphor conversion and active illumination, a light source of the mixed inorganic light emitting diode and a light source of the organic light emitting diode, which are connected together to achieve higher efficiency and active White light source.
  • the inorganic light emitting diode and the organic light emitting diode are electrically connected in parallel, and the bottom layer is an organic light emitting diode, and the inorganic light emitting diode is stacked on the organic light emitting diode, wherein the inorganic light emitting diode comprises n (n ⁇ 1 integer) independent units that match the voltage when the OLED is connected in parallel, thereby emitting white light.
  • the inorganic light emitting diode comprises n (n ⁇ 2 integers) of individual cells electrically connected in series.
  • the electrical connection between the inorganic light emitting diode and the organic light emitting diode is: the inorganic light emitting diode is divided into m (m ⁇ 2 The integer number of modules, each of the inorganic light emitting diode modules is a single unit or a plurality of independent units connected in series, and the m modules are electrically connected in parallel with the organic light emitting diodes.
  • m consisting of inorganic light-emitting diodes ( m ⁇ 2 ).
  • the integer number of modules can be integrated as a point source on the first substrate, and the organic light emitting diode acts as a surface light source to share the first substrate with the inorganic light emitting diode.
  • the size of the white light emitting device is the same as the size of the first substrate.
  • the same substrate may be 2 inches or 4 inches or 6 inches or 8 inches or more.
  • the inorganic light emitting diode comprises: a first substrate having a first surface and a second surface; an N-type III-V group-based epitaxial laminate, an active light-emitting layer and A P-type III-V family-based epitaxial stack is sequentially formed on the first surface of the first substrate.
  • the inorganic light emitting diode has an emission wavelength of 200 to 700 nm.
  • the organic light emitting diode has one or more active light emitting layers and has one or more light emitting wavelengths and does not overlap with the inorganic light emitting diode wavelength.
  • the white light emitting mode is 440 nm to 470 nm, and the blue light emitting diode is matched with 530 to 560 nm. Green light and 610nm ⁇ 640nm red organic light-emitting diodes are achieved.
  • the white light emitting mode is 530 ⁇ 560nm green light emitting diode with 440nm ⁇ 470nm Blue light and 610nm ⁇ 640nm red organic light-emitting diodes are achieved.
  • the white light emitting mode is 610 nm to 640 nm red light emitting inorganic light emitting diode with 440 nm to 470 nm. Blue light and 530 ⁇ 560nm green organic light-emitting diodes are achieved.
  • the white light emitting mode is a 200 nm to 400 nm ultraviolet light emitting diode. 440nm ⁇ 470nm blue light, 530 ⁇ 560nm green light and 610nm ⁇ 640nm red light organic light emitting diode are achieved.
  • the light transmissive growth substrate is a sapphire growth substrate or a silicon carbide growth substrate.
  • the transparent conductive layer is ITO, IWO or IZO.
  • FIG. 1 is a schematic structural view of a conventional white light emitting device.
  • FIG. 2 is a schematic structural view of a white light emitting device of a positive assembly according to Embodiment 1 of the present invention.
  • Fig. 3 to Fig. 9 are schematic cross-sectional views showing the manufacturing process of the white light emitting device shown in Fig. 2.
  • FIG. 10 is a schematic structural view of a flip-chip white light emitting device according to Embodiment 2 of the present invention.
  • 11 to 18 are schematic cross-sectional views showing the manufacturing process of the flip-chip white light emitting device shown in FIG.
  • Figure 19 is a top plan view showing the fabrication process of the flip-chip white light emitting device shown in Figure 2.
  • first substrate growth substrate
  • N-type gallium nitride based epitaxial laminate N-type gallium nitride based epitaxial laminate
  • 270, 370 an organic light emitting device anode
  • 410 a second substrate (insulating substrate).
  • the following embodiments disclose a white light emitting device and a manufacturing method thereof, wherein the manufacturing method of the white light emitting device comprises the steps of fabricating the inorganic light emitting diode and the organic light emitting diode.
  • the transparent anode, the hole transport layer, the active light emitting layer, the electron transport layer, and the reflective cathode are directly evaporated on the second surface of the first substrate, and then the transparent Anode and Inorganic Light Emitting Diode P The type region is connected, and the reflective cathode is connected to the N-type region of the inorganic light emitting diode;
  • the transparent anode, the hole transport layer, the active light emitting layer, the electron transport layer, and the reflective cathode are sequentially evaporated on the second substrate, and the inorganic light emitting diode is inverted and vapor-deposited.
  • the organic light emitting diodes on the second substrate are connected in parallel, and the transparent anode and the inorganic light emitting diode are The P-type region is connected, and the reflective cathode is connected to the N-type region of the inorganic light-emitting diode.
  • the wavelength matching form of the inorganic light emitting diode and the organic light emitting diode for mixing and emitting white light may be the following:
  • the white light is formed by 440nm ⁇ 470nm blue light-emitting diode with 530 ⁇ 560nm green light and 610nm ⁇ 640nm red organic light emitting diode to achieve.
  • the white light is formed by a 530 ⁇ 560nm green light-emitting diode with 440nm ⁇ 470nm blue light and 610nm ⁇ 640nm red organic light emitting diode to achieve.
  • the white light forming method is 610nm ⁇ 640nm red light inorganic light emitting diode with 440nm ⁇ 470nm blue light and 530 ⁇ 560nm green organic light-emitting diodes are achieved.
  • the white light is formed by a 200 nm to 400 nm ultraviolet light-emitting diode combined with 440 nm to 470 nm blue light. 530 ⁇ 560nm green light and 610nm ⁇ 640nm red organic light-emitting diodes are achieved.
  • FIG. 2 shows a positive-fit white light-emitting device, which includes an organic light-emitting device cathode 270 and an organic light-emitting layer 280 from bottom to top.
  • the organic light-emitting device anode 290, the first substrate 210, the N-type gallium nitride-based epitaxial laminate 221, the light-emitting layer 222, the P-type gallium nitride-based epitaxial laminate 223, and the transparent conductive layer 230 , P electrode 240 , N electrode 241 , insulating protective layer 250 , internal PN wire connecting layer 260 , positive connecting layer 261 , negative connecting layer 262 .
  • the manufacturing process of the above-mentioned positive-fit white light-emitting device specifically includes the following steps.
  • a first substrate 210 such as a translucent sapphire substrate, is first provided, and an N-type gallium nitride based semiconductor layer is formed on the first surface. 221, a light-emitting layer 222, a P-type gallium nitride-based epitaxial layer 223, and a transparent conductive layer 230, such as ITO.
  • the platform is formed by dry etching.
  • n (n ⁇ 2 integers) individual cells are formed by dry etching.
  • an insulating protective layer is formed by chemical vapor deposition (CVD). Yellow light and wet etching are used to define the insulating protective layer pattern.
  • CVD chemical vapor deposition
  • the P electrode 240 and the N electrode 241 are defined by yellow light and physical vapor deposition (PVD). And the internal PN wire connection layer 260 to form an internal series connection.
  • PVD physical vapor deposition
  • the organic light-emitting device anode is sequentially formed by physical vapor deposition (PVD) on the second surface of the first substrate 210.
  • PVD physical vapor deposition
  • an organic light-emitting layer 280 an organic light-emitting device cathode 290, wherein the anode 270 is made of a light-transmitting material.
  • the positive electrode connection layer 261 is formed by physical vapor deposition (PVD), and the P electrode 240 is formed.
  • the negative electrode connection layer 262 is formed by physical vapor deposition (PVD)
  • the N electrode 241 and the cathode of the organic light-emitting device are 290
  • a white light-emitting device is formed, and a white light source can be prepared through the combination of the wavelengths of the inorganic light-emitting diode device and the organic light-emitting diode device, and the light source is not achieved by light conversion, so there is no light loss in the light conversion. In the process, it can produce more efficient white light devices.
  • FIG. 10 shows a flip-chip white light emitting device including a second substrate 410 and an organic light emitting device anode 370 from bottom to top. , organic light-emitting layer 380 , organic light-emitting device cathode 390 , positive electrode connection layer 361 , negative electrode connection layer 362 , P electrode 340 , N electrode 341 , internal PN Conductor connection layer 360, insulating protective layer 350, transparent conductive layer 330, P-type gallium nitride based epitaxial stack 323, luminescent layer 322, N-type gallium nitride based epitaxial stack 321 , growth substrate 310.
  • the manufacturing process of the above-mentioned flip-chip white light emitting device specifically includes the following steps.
  • a first substrate (growth substrate) 310 such as a silicon carbide substrate, is first provided to form N on the first surface.
  • the platform is formed by dry etching.
  • n individual cells are formed by wet etching.
  • an insulating protective layer is formed by chemical vapor deposition (CVD). Yellow light and wet etching are used to define the insulating protective layer pattern.
  • CVD chemical vapor deposition
  • the P electrode 340 and the N electrode 341 are defined by yellow light and physical vapor deposition (PVD). And the internal PN wire connection layer 360 to form an internal series connection.
  • PVD physical vapor deposition
  • the first substrate 310 is thinned and inverted.
  • PVD physical vapor deposition
  • the method comprises sequentially forming an organic light-emitting device cathode 390, an organic light-emitting layer 380, an organic light-emitting device anode 370, and forming a positive electrode connection layer by physical vapor deposition (PVD). And a negative connection layer 362, wherein the organic light-emitting layer 380 comprises a hole transport layer, an active light-emitting layer, and an electron transport layer.
  • the P electrode 340 and the anode of the organic light-emitting device are connected by an anode bonding layer 361 by an inverted solid crystal method. 370 is connected; the negative electrode is connected by the negative connection layer 362, the N electrode 341 and the cathode of the organic light emitting device 390 The connection is completed, and the fabrication of the flip-chip white light-emitting device is completed.
  • a white light source can be prepared and the light source is not realized by light conversion, so that no light loss occurs. In the process of light conversion, a more efficient white light device can be manufactured.
  • the inorganic light emitting diode is divided into a plurality of modules, and each module can be a single unit or a plurality of independent units connected in series. As shown in Figure 19, they have the same number of n ( n ⁇ 2 The integer number of individual unit inorganic light-emitting diodes are connected in series to form two modules, and the two modules are electrically connected in parallel with an organic light-emitting diode (not shown).
  • the two modules formed by the inorganic light-emitting diodes are formed as a point light source in an integrated manner on the first substrate 210.
  • the organic light emitting diode is used as a surface light source to share the first substrate 210 with the inorganic light emitting diode.
  • the size of the white light-emitting device formed in this embodiment is the same as the size of the first substrate, and the size of the first substrate 210 is 4 inches.
  • the LED chip is prepared first, and then the LED is taken by the rotary disk suction device.
  • the chip is placed on the organic light emitting diode by a particle and connected by a solid crystal method.
  • a series of LED chips are obtained by using a conventional LED chip process.
  • the organic light-emitting device cathode 390, the organic light-emitting layer 380, the organic light-emitting device anode 370, and the physical vapor deposition (PVD) are sequentially formed by physical vapor deposition (PVD).
  • the method comprises forming a positive electrode connection layer 361 and a negative electrode connection layer 362, wherein the organic light-emitting layer 380 comprises a hole transport layer, an active light-emitting layer, and an electron transport layer.
  • using a rotating disk suction device to turn the LED
  • the chip is placed on the organic light emitting diode by a particle and connected by a solid crystal method.
  • This embodiment is suitable for a large-sized surface light source, and the area of the insulating substrate can be set according to the application.

Abstract

提供一种无须经过荧光粉转换且为主动发光的白光发光器件,混和无机发光二极管的发光源与有机发光二极管的发光源,两者以并联方式做电性结合。最底层为有机发光二极管,无机发光二极管叠置于有机发光二极管之上,所述无机发光二极管包含n(n≥1的整数)个独立单元,与有机发光二极管并联时的电压匹配,从而达成更高效率且主动式的白光光源。

Description

白光发光器件及其制作方法
本申请主张如下优先权:中国发明专利申请号201310048884.3,题为 ' 白光发光器件及其制作方法 ' ,于 2013从 年 2 月 7 日提交。上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种半导体发光器件,尤其是一种具有混合式白光发光器件及其制作方法。
背景技术
随着固态照明应用迅速发展,其中重要的是如何发出白光,而在可见光光谱的波长范围 380nm ~ 760nm 内,此范围中是没有白色光的光谱,因为白光不是单一波长的光,而是由多种单一波长光合成的复合光,正如太阳光是由七种单色光合成的白色光,而彩色电视机中的白色光也是由三基色红、绿、蓝合成。由此可知,要使发光器件发出白光,它的光谱特性应包括整个可见的光谱范围。但要制造这种性能的发光器件,在目前的工艺条件下是不可能的。根据人们对可见光的研究,人眼睛所能见的白光,至少需两种光的混合,即二波长发光(蓝色光+黄色光)也就是目前普遍使用的蓝光发光源加上黄色荧光粉或者是三波长发光(蓝色光+绿色光+红色光)的模式,也有短波长的紫外发光源加上蓝、绿、红三色荧光粉。
另外,普遍使用的蓝光发光源加上无机黄色荧光粉或短波长的紫外发光源加上无机蓝、绿、红三色荧光粉,在转换成白光的过程,需要考虑到荧光粉本身的吸收及转换效率且荧光粉本身不是一个主动发光光源,致使白光转换效率必须依赖荧光粉的质量好坏。
如图 1 所示为一种常规的白光发光器件,其包括:生长衬底 110 ;由 N 型氮化镓基外延叠层 121 、发光层 122 、 P 型氮化镓基外延叠层 123 、透明导电层 130 、 P 电极 140 、 N 电极 141 以及荧光胶 150 。
发明内容
本发明提供一种具无须经过荧光粉转换且为主动发光的白光发光器件,混和无机发光二极管的发光源与有机发光二极管的发光源,两者并连在一起,来达成更高效率且主动式的白光光源。
无机发光二极管与有机发光二极管,两者以并联方式做电性结合,最底层为有机发光二极管,无机发光二极管叠置于有机发光二极管之上,所述无机发光二极管包含 n ( n ≥ 1 的整数)个独立单元,与有机发光二极管并联时的电压匹配,从而发出白光。
无机发光二极管包含 n ( n ≥ 2 的整数)个独立单元的电性连接方式为串联。
所述无机发光二极管与有机发光二极管的电性连接方式为:所述无机发光二极管分为 m ( m ≥ 2 的整数)个模组,各个无机发光二极管模组为一个独立单元或多个独立单元串联而成,所述 m 个模组与有机发光二极管做并联电性结合。
无机发光二极管构成的 m ( m ≥ 2 的整数)个模组可以作为点光源,集成在第一衬底上,而有机发光二极管作为一个面光源,与所述无机发光二极管共用第一衬底。
所述白光发光器件的尺寸与所述第一衬底的尺寸一致。
所述同一个衬底的尺寸可以为 2 英寸或 4 英寸或 6 英寸或 8 英寸及以上。
无机发光二极管,包含:第一衬底,其具有第一表面与第二表面; N 型 III-V 族基外延叠层、主动发光层与 P 型 III-V 族基外延叠层,依次形成于所述第一衬底的第一表面上。
在一些实施例中,所述无机发光二极管的发光波长介于 200~700nm 。
在一些实施例中,所述有机发光二极管具有一个或一个以上的主动发光层,且具一个或一个以上的发光波长,且不与无机发光二极管波长重叠。
在一些实施例中,所述发出白光方式为 440nm~470nm 蓝光无机发光二极管搭配 530~560nm 绿光及 610nm~640nm 红光有机发光二极管来达成。
在一些实施例中,所述发出白光方式为 530~560nm 绿光无机发光二极管搭配 440nm~470nm 蓝光及 610nm~640nm 红光有机发光二极管来达成。
在一些实施例中,所述发出白光方式为 610nm~640nm 红光无机发光二极管搭配 440nm~470nm 蓝光及 530~560nm 绿光有机发光二极管来达成。
在一些实施例中,所述发出白光方式为 200nm~400nm 紫外光无机发光二极管搭配 440nm~470nm 蓝光、 530~560nm 绿光及 610nm~640nm 红光有机发光二极管来达成。
在一些实施例中,所述透光性生长衬底为蓝宝石生长衬底或碳化硅生长衬底。
在一些实施例中,所述透明导电层为 ITO 、 IWO 或 IZO 。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图 1 为现有的白光发光器件的结构示意图。
图 2 为本发明实施例 1 之一种正装白光发光器件结构示意图。
图 3 ~图 9 为图 2 所示正装白光发光器件制作过程的截面示意图。
图 10 为本发明实施例 2 之一种倒装白光发光器件结构示意图。
图 11 ~图 18 为图 10 所示倒装白光发光器件制作过程的截面示意图。
图 19 为图 2 所示倒装白光发光器件制作过程的俯视图。
图中各标号表示:
110 , 210 , 310 :第一衬底(生长衬底);
121 , 221 , 321 : N 型氮化镓基外延叠层;
122 , 222 , 322 :发光层;
123 , 223 , 323 : P 型氮化镓基外延叠层;
130 , 230 , 330 :透明导电层;
140 , 240 , 340 : P 电极;
141 , 241 , 341 : N 电极;
150 :荧光胶;
250 , 350 :绝缘保护层;
260 , 360 :内部 PN 导线连接层;
261 , 361 :正极连接层;
262 , 362 :负极连接层;
270 , 370 :有机发光器件阳极;
280 , 380 :有机发光层;
290 , 390 :有机发光器件阴极;
410 :第二衬底(绝缘衬底)。
具体实施方式
下面将结合示意图对本发明的白光发光器件结构及其制作方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
以下各实施例公开了白光发光器件及其制作方法,其中白光发光器件的制作方法,包括无机发光二极管与有机发光二极管的制作步骤。
无机发光二极管的制作步骤:
( 1 )无机发光二极管, III-V 族基发光外延叠层形成于所述透光性生长衬底的第一表面上,包含 III-V 族基 N 型外延叠层、主动发光层与 III-V 族基 P 型外延叠层;
( 2 )此器件中,可利用湿式蚀刻或干式蚀刻来形成 n 个独立单元,再藉由金属布线彼此形成串联或并联。
有机发光二极管及并联连接的制作步骤:
( 1 )在正装白光发光器件中是依序将透明性阳极、电洞传输层、主动发光层、电子传输层、反射式阴极直接蒸镀在第一衬底的第二表面上,再将透明性的阳极与无机发光二极管 P 型区做连接,反射式的阴极与无机发光二极管 N 型区做连接;
( 2 )在倒装白光发光器件中是依序将透明性阳极、电洞传输层、主动发光层、电子传输层、反射式阴极蒸镀在第二衬底上,再将无机发光二极管倒置与蒸镀在第二衬底上的有机发光二极管并联,将透明性阳极与无机发光二极管 P 型区做连接,反射式阴极与无机发光二极管 N 型区做连接。
白光发光器件中,用于混合发出白光的无机发光二极管与有机发光二极管的波长搭配形式可以为以下几种:
( 1 )白光形成方式为 440nm~470nm 蓝光无机发光二极管搭配 530~560nm 绿光及 610nm~640nm 红光有机发光二极管来达成。
( 2 )白光形成方式为 530~560nm 绿光无机发光二极管搭配 440nm~470nm 蓝光及 610nm~640nm 红光有机发光二极管来达成。
( 3 )白光形成方式为 610nm~640nm 红光无机发光二极管搭配 440nm~470nm 蓝光及 530~560nm 绿光有机发光二极管来达成。
( 4 )白光形成方式为 200nm~400nm 紫外光无机发光二极管搭配 440nm~470nm 蓝光、 530~560nm 绿光及 610nm~640nm 红光有机发光二极管来达成。
下面结合附图和实施例对本发明进一步说明。
实施例 1
图 2 所示为一种正装白光发光器件,其自下而上包括:有机发光器件阴极 270 ,有机发光层 280 ,有机发光器件阳极 290 ,第一衬底 210 , N 型氮化镓基外延叠层 221 ,发光层 222 , P 型氮化镓基外延叠层 223 ,透明导电层 230 , P 电极 240 , N 电极 241 ,绝缘保护层 250 ,内部 PN 导线连接层 260 ,正极连接层 261 ,负极连接层 262 。
上述正装白光发光器件的制作工艺,具体包括下面步骤。
如图 3 所示,先提供第一衬底 210 ,例如透光性蓝宝石衬底,在第一表面形成 N 型氮化镓基半导体层 221 ,发光层 222 , P 型氮化镓基外延叠层 223 ,透明导电层 230 ,例如 ITO 。
如图 4 所示,采用干式蚀刻的方式形成平台。
如图 5 所示,采用干式蚀刻的方式形成 n ( n ≥ 2 的整数)个独立单元。
如图 6 所示,采用化学气相沉积( CVD )的方式形成绝缘保护层 250 ,并采用黄光与湿式蚀刻来定义出绝缘保护层图形。
如图 7 所示,采用黄光及物理气相沉积( PVD )方式定义出 P 电极 240 , N 电极 241 ,及内部 PN 导线连接层 260 来形成内部串接。
如图 8 所示,在第一衬底 210 的第二表面利用物理气相沉积( PVD )方式依序形成有机发光器件阳极 270 ,有机发光层 280 ,有机发光器件阴极 290 ,其中阳极 270 由透光性材料构成。
如图 9 所示,采用物理气相沉积( PVD )方式形成正极连接层 261 ,将 P 电极 240 与机发光器件阳极 270 做连接;采用物理气相沉积( PVD )方式形成负极连接层 262 ,将 N 电极 241 与有机发光器件阴极 290 做连接,至此形成正装白光发光器件,经由无机发光二极管器件与有机发光二极管器件两者波长的搭配,能够调配出白光光源且此光源并无经由光转换来达成,所以无任何光损失在光转换的过程之中,能制造更高效率的白光器件。
实施例 2
图 10 所示为一种具有倒装白光发光器件,其自下而上包括:第二衬底 410 ,有机发光器件阳极 370 ,有机发光层 380 ,有机发光器件阴极 390 ,正极连接层 361 ,负极连接层 362 , P 电极 340 , N 电极 341 ,内部 PN 导线连接层 360 ,绝缘保护层 350 ,透明导电层 330 , P 型氮化镓基外延叠层 323 ,发光层 322 , N 型氮化镓基外延叠层 321 ,生长衬底 310 。
上述倒装白光发光器件的制作工艺,具体包括下面步骤。
如图 11 所示,先提供第一衬底(生长衬底) 310 ,例如碳化硅衬底,在第一表面形成 N 型氮化镓基半导体层 321 ,发光层 322 , P 型氮化镓基外延叠层 323 以及透明导电层 330 ,例如 IZO 。
如图 12 所示,采用干式蚀刻的方式形成平台。
如图 13 所示,采用湿式蚀刻的方式形成 n 个独立单元。
如图 14 所示,采用化学气相沉积( CVD )的方式形成绝缘保护层 350 ,并采用黄光与湿式蚀刻来定义出绝缘保护层图形。
如图 15 所示,采用黄光及物理气相沉积( PVD )方式定义出 P 电极 340 , N 电极 341 ,及内部 PN 导线连接层 360 来形成内部串接。
如图 16 所示,对第一衬底 310 减薄并将其倒置。
如图 17 所示,在第二衬底(绝缘衬底) 410 利用物理气相沉积( PVD )方式依序形成有机发光器件阴极 390 ,有机发光层 380 ,有机发光器件阳极 370 ,并采用物理气相沉积( PVD )方式形成正极连接层 361 及负极连接层 362 ,其中有机发光层 380 包括电洞传输层、主动发光层、电子传输层。
如图 18 所示,采用倒置固晶方式藉由正极连接层 361 ,将 P 电极 340 以及机发光器件阳极 370 做连接;采用倒置固晶方式藉由负极连接层 362 ,将 N 电极 341 以及机发光器件阴极 390 做连接,至此完成倒装白光发光器件的制作经由无机发光二极管器件与有机发光二极管器件两者波长的搭配,能够调配出白光光源且此光源并无经由光转换来达成,所以无任何光损失在光转换的过程之中,能制造更高效率的白光器件。
实施例 3
本实施例与实施例 1 的区别在于:将无机发光二极管划分为多个模组,每个模组可以为一个独立单元或多个独立单元串联而成。如图 19 所示,分别具有相同数目的 n ( n ≥ 2 的整数)个独立单元无机发光二极管串联后构成 2 个模组,所述 2 个模组与有机发光二极管(图中未示出)做并联电性结合。
在本实施例中,上述无机发光二极管构成的 2 个模组作为点光源,通过集成方式,形成于在第一衬底 210 上,而有机发光二极管作为一个面光源,与无机发光二极管共用第一衬底 210 。
本实施例形成的白光发光器件的尺寸与所述第一衬底的尺寸一致,第一衬底 210 的尺寸 4 英寸。
实施例 4
本实施例与实施例 2 的区别在于:先制备好 LED 芯片,然后采用旋转盘吸取设备将 LED 芯片按粒置于有机发光二极管上面,并采用固晶方式进行连接。
具体可以为:首先,采用常规 LED 芯片工艺制备获得一系列 LED 芯片。接着,在绝缘衬底 410 利用物理气相沉积( PVD )方式依序形成有机发光器件阴极 390 ,有机发光层 380 ,有机发光器件阳极 370 ,并采用物理气相沉积( PVD )方式形成正极连接层 361 及负极连接层 362 ,其中有机发光层 380 包括电洞传输层、主动发光层、电子传输层。然后,采用旋转盘吸取设备将 LED 芯片按粒置于有机发光二极管上面,并采用固晶方式进行连接。
本实施例适用于大尺寸的面光源,可根据应用需要设置绝缘衬底的面积。

Claims (16)

  1. 白光发光器件,包括:无机发光二极管与有机发光二极管,两者以并联方式做电性结合,其特征在于:所述无机发光二极管叠置于所述有机发光二极管之上,所述无机发光二极管包含 n ( n ≥ 1 的整数)个独立单元,当器件通电后,激发无机发光二极管和有机二极管发光,两者混合从而发出白光。
  2. 根据权利要求 1 所述的白光发光器件,其特征在于:所述无机发光二极管包含 n ( n ≥ 2 的整数)个独立单元,其电性连接方式为串联。
  3. 根据权利要求 2 所述的白光发光器件,其特征在于:所述无机发光二极管与有机发光二极管的电性连接方式为:所述无机发光二极管分为 m ( m ≥ 2 的整数)个模组,各个无机发光二极管模组为一个独立单元或多个独立单元串联而成,所述 m 个模组与有机发光二极管做并联电性结合。
  4. 根据权利要求 1 所述的白光发光器件,其特征在于:所述无机发光二极管与有机发光二极管并联的形式为直接并联或倒装并联形式。
  5. 根据权利要求 4 所述的白光发光器件,其特征在于:还包括第一衬底,其具有第一表面与第二表面;所述无机发光二极管形成于第一表面上,所述有机发光二极管形成于第二表面上。
  6. 根据权利要求 5 所述的混合式白光发光器件,其特征在于:所述白光发光器件的尺寸与所述第一衬底的尺寸一致。
  7. 根据权利要求 4 所述的白光发光器件,其特征在于:所述有机发光二极管还包含第二衬底,其具有第一表面与第二表面,所述有机发光二极管形成于第一表面上,所述无机发光二极管倒装形成于所述有机发光二极管之上。
  8. 根据权利要求 1 所述的白光发光器件,其特征在于:所述有机发光二极管具有一个或一个以上的主动发光层,且具一个或一个以上的发光波长,其不与无机发光二极管波长重叠。
  9. 根据权利要求 8 所述的白光发光器件,其特征在于:所述白光发光器件发出白光的方式为 440nm~470nm 蓝光无机发光二极管搭配 530~560nm 绿光及 610nm~640nm 红光有机发光二极管来达成。
  10. 根据权利要求 8 所述的白光发光器件,其特征在于:所述白光发光器件发出白光的方式为 530~560nm 绿光无机发光二极管搭配 440nm~470nm 蓝光及 610nm~640nm 红光有机发光二极管来达成。
  11. 根据权利要求 8 所述的白光发光器件,其特征在于:所述白光发光器件发出白光的方式为 610nm~640nm 红光无机发光二极管搭配 440nm~470nm 蓝光及 530~560nm 绿光有机发光二极管来达成。
  12. 根据权利要求 8 所述的白光发光器件,其特征在于:所述白光发光器件发出白光的方式为 200nm~400nm 紫外光无机发光二极管搭配 440nm~470nm 蓝光、 530~560nm 绿光及 610nm~640nm 红光有机发光二极管来达成。
  13. 白光发光器件的制作方法,包括步骤:
    1 )分别制作无机发光二极管和有机发光二极管,其中所述无机发光二极管叠置于所述有机发光二极管之上,所述无机发光二极管包含 n ( n ≥ 1 的整数)个独立单元;
    2 )并联连接所述无机发光二极管与所述有机发光二极管,当器件通电后,激发无机发光二极管和有机二极管发光,两者混合从而发出白光。
  14. 根据权利要求 13 所述的白光发光器件的制作方法,所述步骤 1 )包括:
    提供第一衬底,其具有两个表面;
    在所述第一衬底的第一表面上外延生长 N 型半导体材料层、主动发光层和 P 型半导体材料层,形成无机发光二极管;
    在所述第一衬底的第二表面上直接蒸镀透明性阳极、电洞传输层、主动发光层、电子传输层与反射式的阴极,形成有机发光二极管。
  15. 根据权利要求 13 所述的白光发光器件的制作方法,所述步骤 1 )包括:
    提供第一衬底,其具有两个表面,在所述第一衬底的第一表面上外延生长 N 型半导体材料层、主动发光层和 P 型半导体材料层,形成无机发光二极管;
    提供第二衬底,其具有两个表面,在所述第二衬底的第一表面上依次蒸镀透明性阳极、电洞传输层、主动发光层、电子传输层、反射式阴极,形成有机发光二极管;
    将所述无机发光二极管倒装置于所述有机发光二极管上。
  16. 根据权利要求 14 或 15 所述的白光发光器件的制作方法,所述步骤 2 )为:将所述有机发光二极管的透明性阳极与无机发光二极管的 P 型半导体材料层做连接,反射式的阴极与无机发光二极管的 N 型半导体材料层做连接。
PCT/CN2013/088964 2013-02-07 2013-12-10 白光发光器件及其制作方法 WO2014121635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310048884.3 2013-02-07
CN201310048884.3A CN103094269B (zh) 2013-02-07 2013-02-07 白光发光器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2014121635A1 true WO2014121635A1 (zh) 2014-08-14

Family

ID=48206657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088964 WO2014121635A1 (zh) 2013-02-07 2013-12-10 白光发光器件及其制作方法

Country Status (2)

Country Link
CN (1) CN103094269B (zh)
WO (1) WO2014121635A1 (zh)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409466A (zh) * 2014-12-08 2015-03-11 厦门市三安光电科技有限公司 倒装高压发光器件及其制作方法
WO2016030422A1 (en) * 2014-08-26 2016-03-03 X-Celeprint Limited Micro assembled hybrid displays and lighting elements
US9437782B2 (en) 2014-06-18 2016-09-06 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9537069B1 (en) 2014-09-25 2017-01-03 X-Celeprint Limited Inorganic light-emitting diode with encapsulating reflector
US9741785B2 (en) 2014-09-25 2017-08-22 X-Celeprint Limited Display tile structure and tiled display
US9786646B2 (en) 2015-12-23 2017-10-10 X-Celeprint Limited Matrix addressed device repair
US9818725B2 (en) 2015-06-01 2017-11-14 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
US9871345B2 (en) 2015-06-09 2018-01-16 X-Celeprint Limited Crystalline color-conversion device
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US9928771B2 (en) 2015-12-24 2018-03-27 X-Celeprint Limited Distributed pulse width modulation control
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
US9991163B2 (en) 2014-09-25 2018-06-05 X-Celeprint Limited Small-aperture-ratio display with electrical component
US9997100B2 (en) 2014-09-25 2018-06-12 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US9997501B2 (en) 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
US9997102B2 (en) 2016-04-19 2018-06-12 X-Celeprint Limited Wirelessly powered display and system
US10008465B2 (en) 2011-06-08 2018-06-26 X-Celeprint Limited Methods for surface attachment of flipped active components
US10008483B2 (en) 2016-04-05 2018-06-26 X-Celeprint Limited Micro-transfer printed LED and color filter structure
US10066819B2 (en) 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
US10109753B2 (en) 2016-02-19 2018-10-23 X-Celeprint Limited Compound micro-transfer-printed optical filter device
US10133426B2 (en) 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
US10150325B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid banknote with electronic indicia
US10153257B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
US10150326B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid document with variable state
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
US10157563B2 (en) 2015-08-25 2018-12-18 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US10193025B2 (en) 2016-02-29 2019-01-29 X-Celeprint Limited Inorganic LED pixel structure
US10200013B2 (en) 2016-02-18 2019-02-05 X-Celeprint Limited Micro-transfer-printed acoustic wave filter device
US10199546B2 (en) 2016-04-05 2019-02-05 X-Celeprint Limited Color-filter device
US10198890B2 (en) 2016-04-19 2019-02-05 X-Celeprint Limited Hybrid banknote with electronic indicia using near-field-communications
US10217730B2 (en) 2016-02-25 2019-02-26 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10224231B2 (en) 2016-11-15 2019-03-05 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10230048B2 (en) 2015-09-29 2019-03-12 X-Celeprint Limited OLEDs for micro transfer printing
US10255834B2 (en) 2015-07-23 2019-04-09 X-Celeprint Limited Parallel redundant chiplet system for controlling display pixels
CN109979928A (zh) * 2017-12-20 2019-07-05 乐金显示有限公司 发光器件和发光设备
US10347168B2 (en) 2016-11-10 2019-07-09 X-Celeprint Limited Spatially dithered high-resolution
US10361677B2 (en) 2016-02-18 2019-07-23 X-Celeprint Limited Transverse bulk acoustic wave filter
US10360846B2 (en) 2016-05-10 2019-07-23 X-Celeprint Limited Distributed pulse-width modulation system with multi-bit digital storage and output device
US10380930B2 (en) 2015-08-24 2019-08-13 X-Celeprint Limited Heterogeneous light emitter display system
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10396137B2 (en) 2017-03-10 2019-08-27 X-Celeprint Limited Testing transfer-print micro-devices on wafer
US10418331B2 (en) 2010-11-23 2019-09-17 X-Celeprint Limited Interconnection structures and methods for transfer-printed integrated circuit elements with improved interconnection alignment tolerance
US10438859B2 (en) 2016-12-19 2019-10-08 X-Celeprint Limited Transfer printed device repair
US10453826B2 (en) 2016-06-03 2019-10-22 X-Celeprint Limited Voltage-balanced serial iLED pixel and display
US10600671B2 (en) 2016-11-15 2020-03-24 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10782002B2 (en) 2016-10-28 2020-09-22 X Display Company Technology Limited LED optical components
US10832609B2 (en) 2017-01-10 2020-11-10 X Display Company Technology Limited Digital-drive pulse-width-modulated output system
US11024608B2 (en) 2017-03-28 2021-06-01 X Display Company Technology Limited Structures and methods for electrical connection of micro-devices and substrates
US11061276B2 (en) 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
US11137641B2 (en) 2016-06-10 2021-10-05 X Display Company Technology Limited LED structure with polarized light emission

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094269B (zh) * 2013-02-07 2016-03-23 厦门市三安光电科技有限公司 白光发光器件及其制作方法
CN104752463B (zh) * 2013-12-27 2019-02-19 昆山工研院新型平板显示技术中心有限公司 一种有机发光显示装置及其制备方法
CN108899333A (zh) * 2018-07-17 2018-11-27 南方科技大学 一种Micro-LED显示面板及其制造方法
CN110875358A (zh) * 2018-08-31 2020-03-10 中国科学院半导体研究所 Led与oled串联的白光发光芯片及其制备方法
CN110896088A (zh) * 2018-09-13 2020-03-20 上海微电子装备(集团)股份有限公司 一种显示面板、显示装置及显示面板制作方法
CN111370543A (zh) * 2020-03-23 2020-07-03 中国科学院半导体研究所 Led与oled结合的可调谐白光三端发光器件及制备方法
WO2023092571A1 (zh) * 2021-11-29 2023-06-01 厦门市芯颖显示科技有限公司 混合发光单元、显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898185A (en) * 1997-01-24 1999-04-27 International Business Machines Corporation Hybrid organic-inorganic semiconductor light emitting diodes
CN101093068A (zh) * 2007-07-23 2007-12-26 佛山市国星光电科技有限公司 白光器件及制造方法
CN101983399A (zh) * 2008-04-02 2011-03-02 皇家飞利浦电子股份有限公司 发光二极管装置
US20110241027A1 (en) * 2010-03-31 2011-10-06 Toppan Printing Co., Ltd. Organic EL Element, Image Display Device and Method for Manufacturing the Same
CN103094269A (zh) * 2013-02-07 2013-05-08 厦门市三安光电科技有限公司 白光发光器件及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898185A (en) * 1997-01-24 1999-04-27 International Business Machines Corporation Hybrid organic-inorganic semiconductor light emitting diodes
CN101093068A (zh) * 2007-07-23 2007-12-26 佛山市国星光电科技有限公司 白光器件及制造方法
CN101983399A (zh) * 2008-04-02 2011-03-02 皇家飞利浦电子股份有限公司 发光二极管装置
US20110241027A1 (en) * 2010-03-31 2011-10-06 Toppan Printing Co., Ltd. Organic EL Element, Image Display Device and Method for Manufacturing the Same
CN103094269A (zh) * 2013-02-07 2013-05-08 厦门市三安光电科技有限公司 白光发光器件及其制作方法

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418331B2 (en) 2010-11-23 2019-09-17 X-Celeprint Limited Interconnection structures and methods for transfer-printed integrated circuit elements with improved interconnection alignment tolerance
US10262966B2 (en) 2011-06-08 2019-04-16 X-Celeprint Limited Methods for surface attachment of flipped active components
US10008465B2 (en) 2011-06-08 2018-06-26 X-Celeprint Limited Methods for surface attachment of flipped active components
US9520537B2 (en) 2014-06-18 2016-12-13 X-Celeprint Limited Micro assembled LED displays and lighting elements
US10431719B2 (en) 2014-06-18 2019-10-01 X-Celeprint Limited Display with color conversion
US10224460B2 (en) 2014-06-18 2019-03-05 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9698308B2 (en) 2014-06-18 2017-07-04 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9705042B2 (en) 2014-06-18 2017-07-11 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9444015B2 (en) 2014-06-18 2016-09-13 X-Celeprint Limited Micro assembled LED displays and lighting elements
US10985143B2 (en) 2014-06-18 2021-04-20 X Display Company Technology Limited Micro assembled LED displays and lighting elements
US10833225B2 (en) 2014-06-18 2020-11-10 X Display Company Technology Limited Micro assembled LED displays and lighting elements
US9437782B2 (en) 2014-06-18 2016-09-06 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9991423B2 (en) 2014-06-18 2018-06-05 X-Celeprint Limited Micro assembled LED displays and lighting elements
US10446719B2 (en) 2014-06-18 2019-10-15 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9716082B2 (en) 2014-08-26 2017-07-25 X-Celeprint Limited Micro assembled hybrid displays and lighting elements
WO2016030422A1 (en) * 2014-08-26 2016-03-03 X-Celeprint Limited Micro assembled hybrid displays and lighting elements
US9741785B2 (en) 2014-09-25 2017-08-22 X-Celeprint Limited Display tile structure and tiled display
US10381430B2 (en) 2014-09-25 2019-08-13 X-Celeprint Limited Redistribution layer for substrate contacts
US9991163B2 (en) 2014-09-25 2018-06-05 X-Celeprint Limited Small-aperture-ratio display with electrical component
US9899465B2 (en) 2014-09-25 2018-02-20 X-Celeprint Limited Redistribution layer for substrate contacts
US9997100B2 (en) 2014-09-25 2018-06-12 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US9537069B1 (en) 2014-09-25 2017-01-03 X-Celeprint Limited Inorganic light-emitting diode with encapsulating reflector
US10181507B2 (en) 2014-09-25 2019-01-15 X-Celeprint Limited Display tile structure and tiled display
US10170535B2 (en) 2014-09-25 2019-01-01 X-Celeprint Limited Active-matrix touchscreen
CN104409466A (zh) * 2014-12-08 2015-03-11 厦门市三安光电科技有限公司 倒装高压发光器件及其制作方法
CN104409466B (zh) * 2014-12-08 2017-08-18 厦门市三安光电科技有限公司 倒装高压发光器件及其制作方法
US9818725B2 (en) 2015-06-01 2017-11-14 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
US10164404B2 (en) 2015-06-09 2018-12-25 X-Celeprint Limited Crystalline color-conversion device
US9871345B2 (en) 2015-06-09 2018-01-16 X-Celeprint Limited Crystalline color-conversion device
US10133426B2 (en) 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
US11061276B2 (en) 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
US10289252B2 (en) 2015-06-18 2019-05-14 X-Celeprint Limited Display with integrated electrodes
US10255834B2 (en) 2015-07-23 2019-04-09 X-Celeprint Limited Parallel redundant chiplet system for controlling display pixels
US10395582B2 (en) 2015-07-23 2019-08-27 X-Celeprint Limited Parallel redundant chiplet system with printed circuits for reduced faults
US10262567B2 (en) 2015-08-10 2019-04-16 X-Celeprint Limited Two-terminal store-and-control circuit
US10380930B2 (en) 2015-08-24 2019-08-13 X-Celeprint Limited Heterogeneous light emitter display system
US10157563B2 (en) 2015-08-25 2018-12-18 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US10388205B2 (en) 2015-08-25 2019-08-20 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US11289652B2 (en) 2015-09-29 2022-03-29 X Display Company Technology Limited OLEDs for micro transfer printing
US10230048B2 (en) 2015-09-29 2019-03-12 X-Celeprint Limited OLEDs for micro transfer printing
US10066819B2 (en) 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
US10451257B2 (en) 2015-12-09 2019-10-22 X-Celeprint Limited Micro-light-emitting diode backlight system
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US10158819B2 (en) 2015-12-23 2018-12-18 X-Celeprint Limited Matrix-addressed systems with row-select circuits comprising a serial shift register
US9786646B2 (en) 2015-12-23 2017-10-10 X-Celeprint Limited Matrix addressed device repair
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
US9928771B2 (en) 2015-12-24 2018-03-27 X-Celeprint Limited Distributed pulse width modulation control
US10361677B2 (en) 2016-02-18 2019-07-23 X-Celeprint Limited Transverse bulk acoustic wave filter
US11139797B2 (en) 2016-02-18 2021-10-05 X-Celeprint Limited Micro-transfer-printed acoustic wave filter device
US10200013B2 (en) 2016-02-18 2019-02-05 X-Celeprint Limited Micro-transfer-printed acoustic wave filter device
US10109753B2 (en) 2016-02-19 2018-10-23 X-Celeprint Limited Compound micro-transfer-printed optical filter device
US10468398B2 (en) 2016-02-25 2019-11-05 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10217730B2 (en) 2016-02-25 2019-02-26 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10675905B2 (en) 2016-02-29 2020-06-09 X-Celeprint Limited Hybrid banknote with electronic indicia
US10150325B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid banknote with electronic indicia
US10150326B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid document with variable state
US10193025B2 (en) 2016-02-29 2019-01-29 X-Celeprint Limited Inorganic LED pixel structure
US10153257B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
US10930623B2 (en) 2016-03-03 2021-02-23 X Display Company Technology Limited Micro-transfer printable electronic component
US10692844B2 (en) 2016-04-05 2020-06-23 X Display Company Technology Limited Micro-transfer printed LED and color filter structures
US10008483B2 (en) 2016-04-05 2018-06-26 X-Celeprint Limited Micro-transfer printed LED and color filter structure
US10522719B2 (en) 2016-04-05 2019-12-31 X-Celeprint Limited Color-filter device
US10199546B2 (en) 2016-04-05 2019-02-05 X-Celeprint Limited Color-filter device
US10198890B2 (en) 2016-04-19 2019-02-05 X-Celeprint Limited Hybrid banknote with electronic indicia using near-field-communications
US10217308B2 (en) 2016-04-19 2019-02-26 X-Celeprint Limited Hybrid banknote with electronic indicia using near-field-communications
US9997102B2 (en) 2016-04-19 2018-06-12 X-Celeprint Limited Wirelessly powered display and system
US10360846B2 (en) 2016-05-10 2019-07-23 X-Celeprint Limited Distributed pulse-width modulation system with multi-bit digital storage and output device
US9997501B2 (en) 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
US10453826B2 (en) 2016-06-03 2019-10-22 X-Celeprint Limited Voltage-balanced serial iLED pixel and display
US11137641B2 (en) 2016-06-10 2021-10-05 X Display Company Technology Limited LED structure with polarized light emission
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
US10782002B2 (en) 2016-10-28 2020-09-22 X Display Company Technology Limited LED optical components
US10347168B2 (en) 2016-11-10 2019-07-09 X-Celeprint Limited Spatially dithered high-resolution
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10224231B2 (en) 2016-11-15 2019-03-05 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10964583B2 (en) 2016-11-15 2021-03-30 X Display Company Technology Limited Micro-transfer-printable flip-chip structures and methods
US10600671B2 (en) 2016-11-15 2020-03-24 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10431487B2 (en) 2016-11-15 2019-10-01 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10438859B2 (en) 2016-12-19 2019-10-08 X-Celeprint Limited Transfer printed device repair
US10832609B2 (en) 2017-01-10 2020-11-10 X Display Company Technology Limited Digital-drive pulse-width-modulated output system
US10396137B2 (en) 2017-03-10 2019-08-27 X-Celeprint Limited Testing transfer-print micro-devices on wafer
US11024608B2 (en) 2017-03-28 2021-06-01 X Display Company Technology Limited Structures and methods for electrical connection of micro-devices and substrates
CN109979928A (zh) * 2017-12-20 2019-07-05 乐金显示有限公司 发光器件和发光设备

Also Published As

Publication number Publication date
CN103094269A (zh) 2013-05-08
CN103094269B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2014121635A1 (zh) 白光发光器件及其制作方法
US7994531B2 (en) White-light light emitting diode chips and fabrication methods thereof
US7279350B2 (en) White-light emitting devices and methods for manufacturing the same
US6744196B1 (en) Thin film LED
CN204167323U (zh) 发光二极管
US7875473B2 (en) Method of manufacturing light emitting diode device
KR20120040011A (ko) 발광 다이오드
CN101728462A (zh) 多波长发光二极管及其制造方法
KR20080089859A (ko) 질화물 반도체 발광소자 및 그 제조 방법
US8710522B2 (en) Organic light emitting diode light source device
WO2021210919A1 (ko) 단일칩 복수 대역 발광 다이오드
TW201250983A (en) Manufacturing method and device of three-dimensional light emitting diode stack
KR20100066209A (ko) 반도체 발광소자 및 그 제조방법
WO2022177306A1 (ko) 단일칩 복수 대역 발광 다이오드, 그것을 갖는 발광 소자 및 발광 모듈
CN100389496C (zh) 白光发光元件及其制造方法
CN111370543A (zh) Led与oled结合的可调谐白光三端发光器件及制备方法
WO2023027474A1 (ko) 발광 다이오드 및 그것을 갖는 발광 소자
KR102261952B1 (ko) 형광체 조성물 및 이를 포함하는 발광 소자 패키지
KR20140108756A (ko) 발광 장치
US20100140646A1 (en) Semiconductor light emitting diode
WO2022186593A1 (ko) 단일칩 복수 대역 발광 다이오드 및 그 제조 방법
CN101800273B (zh) 形成横向分布发光二极管的方法
KR101423929B1 (ko) 발광다이오드 소자
WO2023106886A1 (ko) 발광 다이오드 및 그것을 갖는 발광 소자
WO2023128561A1 (ko) 발광 소자 및 이를 포함하는 발광 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874838

Country of ref document: EP

Kind code of ref document: A1