WO2014121528A1 - 圆柱形单体400Ah锂离子电池及其制备方法 - Google Patents

圆柱形单体400Ah锂离子电池及其制备方法 Download PDF

Info

Publication number
WO2014121528A1
WO2014121528A1 PCT/CN2013/071757 CN2013071757W WO2014121528A1 WO 2014121528 A1 WO2014121528 A1 WO 2014121528A1 CN 2013071757 W CN2013071757 W CN 2013071757W WO 2014121528 A1 WO2014121528 A1 WO 2014121528A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
positive
lithium
negative
cylindrical
Prior art date
Application number
PCT/CN2013/071757
Other languages
English (en)
French (fr)
Inventor
唐致远
孙蕾
王琪
凌国维
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310048865.0A external-priority patent/CN103178293B/zh
Priority claimed from CN201320070958.9U external-priority patent/CN203377335U/zh
Application filed by 天津大学 filed Critical 天津大学
Priority to US14/235,083 priority Critical patent/US9502736B2/en
Publication of WO2014121528A1 publication Critical patent/WO2014121528A1/zh
Priority to US15/278,039 priority patent/US10367190B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a lithium ion battery, and more particularly to a cylindrical monomer 400Ah lithium ion battery and a method of preparing the same.
  • Electrical energy is an indispensable energy source for human society in daily life and work.
  • the use of any other resource generally requires the use of electrical energy.
  • the storage, conversion, and transportation of electrical energy all involve battery technology.
  • Lithium-ion battery is a new type of battery developed on the basis of lithium battery. Its biggest advantage compared with lithium battery is that it can replace lithium metal with lithium ion embedded and extracted material, thus solving the passivation of lithium anode. And dendrite penetration problems. On the basis of maintaining the advantages of high capacity and high voltage of the lithium battery, the battery's charge and discharge efficiency and cycle life are significantly improved, and the safety performance of the battery has also been significantly improved.
  • lithium ion battery cathode materials generally include a layered lithium intercalation compound LiM0 2 , a spinel lithium intercalation compound LiM 2 0 4 and an olivine lithium intercalation compound LiMP0 4 .
  • Lithium cobaltate LiCo0 2 and lithium nickelate LiNi0 2 are the more commonly used layered lithium intercalation compounds.
  • the LiCo0 2 cathode material has a high lithium insertion potential and a theoretical capacity of 274 mAh/g.
  • the actual capacity does not exceed 150 mAh / g.
  • cobalt has limited resources, is expensive, and has some toxicity. Therefore, it is necessary to develop an active material with comprehensive electrochemical performance, wide range of resources, and low cost to replace it.
  • LiM0 2 cathode material The theoretical specific capacity of LiM0 2 cathode material is 275mAh/g, and the actual capacity is up to 190-210 mAh/g, which is significantly higher than LiCo0 2 , so it is considered to be lithium ion.
  • the sub-battery relays one of the most promising cathode materials after LiCo0 2 .
  • LiNi0 2 also has shortcomings such as rapid cycle capacity degradation and poor thermal stability, so its application range is also limited.
  • the lithium manganate LiMn 2 0 4 cathode material is a typical representative of a spinel type lithium intercalation compound, and has a theoretical capacity of 148 mAh/g and an actual capacity of about 120 mAh/g.
  • LiMn 2 0 4 has the advantages of low cost, non-toxicity, good safety, etc., its lattice structure instability and capacity attenuation in the charge and discharge cycle, especially the cycle performance at a high temperature of 55 ° C, hinders its The main issues of development and application.
  • the olivine-type lithium intercalation compound lithium iron phosphate LiFeP0 4 which is one of the most commonly used cathode materials for lithium ion batteries, has a high theoretical specific capacity (about 170 mAh/g), low cost, environmental friendliness, long cycle life, and thermal stability.
  • a series of advantages such as high safety and safety make it stand out among many positive electrode materials, which has become a hot spot in the research and development of the battery industry, and is expected to become a commercial lithium ion battery positive electrode material.
  • lithium iron phosphate battery is bound to become the most promising substitute for lead-acid, nickel-hydrogen and manganese, cobalt and other series of lithium-ion batteries. Therefore, lithium iron phosphate batteries are considered to mark the "new arrival of a new era of lithium-ion batteries.”
  • the more common lithium iron phosphate battery uses graphite as the negative electrode material because of its high specific capacity and low and stable discharge platform.
  • the potential of the carbon negative electrode is very close to the standard potential of lithium, when the battery is overcharged, metallic lithium may precipitate on the surface of the carbon electrode to form dendrites, thereby causing a short circuit; and most of the electrolyte is unstable at this potential, and the electrolyte is easy.
  • Decomposition on the surface of the electrode produces a combustible gas mixture, which poses a safety hazard; in addition, the insertion of Li + in the carbon electrode will cause a volume deformation of 10%, resulting in discontinuity between the particles, causing electrode/electrolyte and electrode/current collector interfaces.
  • Lithium titanate Li 4 Ti 5 0 12 is an ideal embedded electrode material. Li + insertion and deintercalation have little effect on the material structure and are therefore referred to as "zero strain" materials.
  • the potential of the lithium-titanium composite oxide Li 4 Ti 5 0 12 with respect to the lithium electrode was 1.55 V (vs Li/Li + ), the theoretical capacity was 175 mAh/g, and the experimental specific capacity was 150 to 160 mAh/g.
  • Excellent cycle performance, long and flat discharge platform, obvious voltage abrupt change at the end of charge and discharge, high lithium insertion potential and easy to cause metal lithium precipitation, can be used in the stable voltage range of most liquid electrolytes, high coulombic efficiency (close to 100 %), wide source of materials, clean and environmentally friendly, etc.
  • An object of the present invention is to provide a cylindrical ultra-large capacity lithium ion battery and a simple preparation method thereof.
  • Cylindrical monomer 400Ah lithium ion battery including:
  • the battery negative electrode is composed of lithium titanate, conductive carbon black, graphite, binder PVDF, solvent NMP, and the mass percentage is: 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0- 46.0, aluminum foil as a current collector.
  • the terminal is fixedly connected to the battery core in the axial direction, and further includes: a support frame 5, a sliding ring 7, a tab clamping nut 8, an insulating mat 9, an O-ring 10, a terminal lock nut
  • the aluminum foil has a thickness of 30 ⁇ 2 ⁇ m and a width of 320 ⁇ 1 mm, and the positive electrode tab and the negative electrode tab have a length of 33.81 m.
  • the tab specifications are: 70 ⁇ lmm in length, 10 ⁇ 0.1 mm in width, and 0.15 ⁇ 0.015 mm in thickness.
  • the cylindrical battery case 1 and the positive and negative end caps 11 are made of stainless steel, 134 mm in diameter, 450 mm in length and lmm thick.
  • a method of manufacturing the above cylindrical monomer 400Ah lithium ion battery is as follows:
  • the pre-baked raw material lithium iron phosphate, conductive carbon black, graphite, binder PVDF, solvent MP are thoroughly stirred in a ratio of mass percentage 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0. Mixing uniformly, making the battery positive electrode slurry; pre-baked raw material lithium titanate, conductive carbon black, graphite, binder PVDF, solvent MP according to the mass percentage 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0 -4.0: 44.0-46.0 ratio is fully stirred and mixed uniformly to form a battery negative electrode slurry;
  • the positive and negative electrodes are all made of aluminum foil as the current collector.
  • the thickness of the aluminum foil is 30 ⁇ 2 ⁇ , width.
  • the degree is 320 ⁇ lmm, and the lengths of the positive and negative pole pieces are both 33.81m;
  • the pole piece prepared in the above step was baked at 100 ° C for 48 h, and the positive and negative pole pieces were aligned in parallel with the separator, placed on a fully automatic winding machine, and 100 aluminum were welded at the edge of the positive and negative pole pieces.
  • the ear, and the high-temperature adhesive tape is used to firmly stick the root of the pole.
  • the specifications of the positive and negative aluminum tabs are: 70 ⁇ lmm in length, 10 ⁇ 0.1mm in width and 0.15 ⁇ 0.015mm in thickness;
  • the positive and negative tabs 4, which are equally divided into groups, are passed through the gap between the terminal 6 and the slip ring 7, and are fixedly clamped by the tab clamping nut 8.
  • This connection is called a "tray hoop structure";
  • the battery core is installed in the cylindrical battery case 1; the support frame 5 is respectively sleeved on both ends of the battery case, and after the support frame is assembled, the terminal block 6, the 0-ring 10, the insulating pad 9, the positive and negative terminals are respectively arranged in order.
  • the cover 11 is connected together and fixed by the terminal lock nut 12 and the set screw 13; three safety valve pieces are respectively arranged on the positive and negative end caps, the diameter is 13 mm, the thickness is 0.5 mm, and the burst pressure is 7.5- 8kg, during winding, assembly and welding, use a multimeter for short-circuit inspection, vacuum injection for liquid injection, electrolyte is LiPF 6 (EC+PC+DMC +DEC), and finally use laser welder to battery two The end cap of the end is sealed and welded.
  • the cylindrical lithium ion battery prepared by the invention has a monomer capacity of more than 400 Ah, and is a cylindrical maximum monomer capacity battery which has been reported and reported in the domestic and international lithium ion battery market.
  • the invention adopts a unique matching positive and negative slurry process recipe and advanced preparation technology.
  • lithium iron phosphate with good thermal stability was used as the positive electrode material
  • lithium titanate was used as the negative electrode material.
  • the cycle life of the battery was estimated to be more than 8000 times according to the most conservative estimation (200,000 theoretical calculations). It is 2-4 times the life of general lithium-ion batteries in domestic and foreign markets; it significantly improves battery safety and cycle life.
  • the invention has a novel cylindrical shape, has strong practicability, strong corrosion resistance, pressure resistance, impact resistance, vibration resistance, low cost, large single battery capacity, reasonable internal structure of the battery, and greatly improved battery Heat dissipation, thermal stability and safety.
  • the positive and negative current collectors are all made of aluminum foil.
  • the positive and negative poles are made of aluminum tabs. Compared with the more expensive copper material, it is used as the current collector and the ear, which greatly reduces the cost.
  • 1 is a schematic cross-sectional view showing the assembly of a cylindrical monomer 400Ah LiFePO 4 /Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1.
  • 1 represents a cylindrical battery case
  • 2 represents a battery core
  • 3 represents a battery core
  • 4 represents a tab
  • 5 represents a support frame
  • 6 represents a terminal
  • 7 represents a slip ring
  • 8 represents a clamp nut
  • 9 represents a clamp nut.
  • Insulation pad, 10 stands for 0-ring
  • 11 stands for positive and negative end caps
  • 12 stands for terminal lock nut
  • 13 stands for locating pin.
  • 2 is a photograph of a product of a cylindrical monomer 400Ah LiFePO 4 / Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1.
  • FIG. 3 is a schematic view showing the outer dimensions of a cylindrical monomer 400Ah LiFePO 4 /Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1; unit: mm. 4 is a graph showing charge and discharge curves of a cylindrical monomer 400Ah LiFePO 4 /Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1.
  • the abscissa represents capacity, in units of ampere, and the ordinate represents voltage, in volts.
  • Figure 5 is a photograph of the cylindrical monomer 400Ah LiFePO 4 / Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1 before the acupuncture experiment.
  • Figure 6 is a photograph of a cylindrical monomer 400Ah LiFePO 4 / Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1 after an acupuncture experiment.
  • Figure 7 is a photograph of a cylindrical 20Ah LiCoO 2 /C lithium ion battery prepared in Comparative Example 3 after ignition, burning, and explosion after the impact test.
  • the pre-baked raw material lithium iron phosphate, conductive carbon black, graphite, binder PVDF, solvent MP are weighed according to the mass percentage of 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0. A total of 7.279kg, fully stirred and mixed to form a battery positive electrode slurry.
  • the percentage of the content is 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0:
  • the ratio of 44.0-46.0 is weighed, totaling 6.656kg, and the mixture is thoroughly stirred and mixed to form a battery negative electrode slurry.
  • the positive and negative electrodes are all made of aluminum foil as a current collector.
  • the thickness of the aluminum foil is 30 ⁇ 2 ⁇ , and the width is 320 ⁇ lmm; the length of the positive and negative pole pieces of a single battery is 33.81m.
  • the pole piece prepared by the above method is baked at 100 ° C for 48 h, and the positive and negative electrode pieces are aligned in parallel with the separator, placed on a fully automatic winding machine, and 100 aluminum pieces are welded at the edge of the positive and negative pole pieces. Extremely ear, and use high-temperature adhesive tape to stick the roots of the poles firmly.
  • the specifications of the positive and negative aluminum tabs are: length 70 ⁇ lmm, width 10 ⁇ 0.1mm, thickness 0.15 ⁇ 0.015mm.
  • the positive and negative poles divided into groups are passed through the gap between the positive and negative terminals and the slip ring, and clamped by the tab clamp nut.
  • This connection method is called "wire clamp structure"; carefully The battery core is placed in the battery tube; the support frame is respectively placed on both ends of the battery case, and after the support frame is assembled, the positive and negative terminals are sequentially arranged,
  • the 0-ring, the insulating mat, and the positive and negative end caps are connected together and fixed with the terminal lock nut and the set screw (see Figure 1).
  • There are three safety valve plates on the positive and negative end caps the diameter is 13mm, the thickness is 0.5mm, and the bursting pressure is 7.5-8kg.
  • the liquid was injected by vacuum injection, and the electrolyte was LiPF 6 (EC+PC+DMC+DEC).
  • the end caps on both ends of the battery were sealed by laser welding.
  • Battery case stainless steel; diameter: 134mm; length: 450mm; weight: 12kg;
  • the cylindrical monomer 400 Ah LiFeP0 4 / Li 4 Ti 5 0 12 lithium ion battery prepared in Example 1 was tested for constant current charge and discharge performance using a BTS-5V200A battery test equipment manufactured by Shenzhen Xinweier Electronics Co., Ltd.
  • the charging process is constant voltage charging after constant current charging, the charging limit voltage is 2.3V;
  • the discharging process is constant current discharge, discharge cutoff voltage For 0.5V, a charge and discharge test was performed using a current of 0.33C.
  • the cylindrical monomer 400Ah LiFePO 4 / Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1 has a weight of 12 kg, a discharge capacity of 417.718 Ah, a charge and discharge efficiency of 99.6%, and an internal resistance of the battery of 0.33 ⁇ , cycle life. According to the most conservative estimate, it can reach more than 8000 times (the theoretical calculation is 20,000 times). As can be seen from Figure 4, the charge and discharge voltage of the battery is very stable, and the platform potential is kept for a long time (the platform capacity is about 95% of the discharge capacity), which is the presence of spinel Li 4 Ti 5 0 12 and rock salt type. Characteristics of the two-phase reaction of Li 7 Ti 5 0 12 . The mutual transformation of the two phases keeps the electrode potential stable. When the two-phase transition is substantially completed, its potential rapidly rises or falls. A significant voltage abrupt phenomenon at the end of charge and discharge can be used to indicate termination of charge and discharge, facilitating detection of battery capacity.
  • Example 1 The prepared cylindrical monomer 400Ah LiFeP0 4 / Li 4 Ti 5 0 12 lithium ion battery has an internal resistance of only 0.33 ⁇ , and the conductivity is very good.
  • the cross-sectional area of the large-capacity battery pole piece is also large, so the internal resistance of the battery is small (the resistance is inversely proportional to the cross-sectional area).
  • the battery prepared by the technology has a tight bond between the positive electrode and the negative electrode plate due to the tension during the winding process of the battery, and the core is compacted. And the cross-sectional area is large, which makes the internal resistance of the battery extremely small.
  • the capacity of the cylindrical LiFeP0 4 /Li 4 Ti 5 0 12 lithium ion battery was not attenuated, and according to the characteristics of the Li 4 Ti 5 0 12 material and the data of the previous small-capacity battery,
  • the cycle life of the 400Ah cylindrical LiFeP0 4 / Li 4 Ti 5 0 12 lithium-ion battery is estimated to be more than 8,000 times according to the most conservative estimate (200,000 theoretical calculations). It is the current life of lithium-ion batteries in domestic and foreign markets. 2-4 times.
  • the cylindrical monomer 400Ah LiFePO 4 / Li 4 Ti 5 O 12 lithium ion battery prepared in Example 1 has completed the expected design requirements for internal resistance, cycle life and other major technical indicators. The specific parameters are shown in Table 1. .
  • the pre-baked raw artificial graphite, conductive carbon black, binder PVDF, solvent MP are weighed according to the mass percentage of 36.0-37.0: 0.8-1.2: 3.0-4.0: 58.0-60.0, totaling 1.192kg, fully stirred and mixed evenly. , made into battery negative electrode slurry.
  • the positive electrode is made of aluminum foil as a current collector
  • the negative electrode is made of copper foil as a current collector.
  • the aluminum foil has a thickness of 30 ⁇ 2 ⁇ m and a width of 320 ⁇ 1 mm
  • the copper foil has a thickness of 22 ⁇ 2 ⁇ m and a width of 320 ⁇ 1 mm.
  • the pole piece prepared by the above method is baked at 100 ° C for 48 hours, and then the positive and negative pole pieces and the diaphragm are aligned in parallel, placed on a fully automatic winding machine, and 73 aluminum tabs are welded at the edge of the positive electrode sheet. Solder 73 copper tabs at the edge of the negative electrode sheet and bond the base of the pole with a high temperature adhesive tape.
  • the specifications of the positive electrode aluminum ear are: length 70 ⁇ lmm, width 10 ⁇ 0.1mm, thickness 0.1 ⁇ 0.01mm; negative copper ear specifications are: length 70 ⁇ lmm, width 10 ⁇ 0.05mm, thickness 0.05 ⁇ 0.01mm.
  • each of the positive and negative end caps is provided with a safety valve piece having a diameter of 13 mm, a thickness of 0.5 mm, and a bursting pressure of 7.5-8 kg.
  • the cylindrical lOOAh LiFeP0 4 / C (artificial graphite) lithium ion battery prepared in Comparative Example 1 was tested for constant current charge and discharge performance using the BTS-5V200A battery test equipment manufactured by Shenzhen Xinweier Electronics Co., Ltd.
  • the charging process is constant voltage charging after constant current charging, the charging limit voltage is 3.8V; the discharging process is constant current discharge, discharge cutoff voltage For 2.0V, a charge and discharge test was performed using a current of 0.33C.
  • the cylindrical 100Ah LiFePO 4 / C (artificial graphite) lithium ion battery prepared in Comparative Example 1 has a weight of 3.7 kg, a discharge capacity of 102.245 Ah, a charge and discharge efficiency of 93.9%, an internal resistance of the battery of 0.60 ⁇ , and a cycle life of 3000. About a second.
  • the pre-baked raw material lithium iron phosphate, conductive carbon black, graphite, binder PVDF, solvent MP are weighed according to the mass percentage of 38.0-39.0: 0.8-1.2: 0.3-0.7: 2.5-3.5: 56.0-58.0. A total of 2.672kg, fully stirred and mixed to form a battery positive electrode slurry.
  • the raw carbon fiber ball, conductive carbon black, binder PVDF, and solvent MP which are previously baked are in accordance with the quality
  • the ratio of 36.0-37.0: 0.8-1.2: 3.0-4.0: 58.0-60.0 was weighed, totaling 1.192 kg, and the mixture was thoroughly stirred and mixed to prepare a battery negative electrode slurry.
  • the positive electrode is made of aluminum foil as a current collector
  • the negative electrode is made of copper foil as a current collector.
  • the aluminum foil has a thickness of 30 ⁇ 2 ⁇ m and a width of 320 ⁇ 1 mm
  • the copper foil has a thickness of 22 ⁇ 2 ⁇ m and a width of 320 ⁇ 1 mm.
  • the positive and negative pole pieces of the battery are 11.00m long.
  • the pole piece prepared by the above method is baked at 100 ° C for 48 hours, and then the positive and negative pole pieces and the diaphragm are aligned in parallel, placed on a fully automatic winding machine, and 73 aluminum tabs are welded at the edge of the positive electrode sheet. Solder 73 copper tabs at the edge of the negative electrode sheet and bond the base of the pole with a high temperature adhesive tape.
  • the specifications of the positive electrode aluminum ear are: length 70 ⁇ lmm, width 10 ⁇ 0.1mm, thickness 0.1 ⁇ 0.01mm; negative copper ear specifications are: length 70 ⁇ lmm, width 10 ⁇ 0.05mm, thickness 0.05 ⁇ 0.01mm.
  • each of the positive and negative end caps is provided with a safety valve piece having a diameter of 13 mm, a thickness of 0.5 mm, and a bursting pressure of 7.5-8 kg.
  • the cylindrical 100Ah LiFePO 4 / C (carbon fiber ball) lithium ion battery prepared in Comparative Example 2 was tested for constant current charge and discharge performance using the BTS-5V200A battery test equipment manufactured by Shenzhen Xinweier Electronics Co., Ltd.
  • the charging process is constant voltage charging after constant current charging, the charging limit voltage is 3.8V; the discharging process is constant current discharge, discharge cutoff voltage For 2.0V, a charge and discharge test was performed using a current of 0.33C.
  • the cylindrical lOOAh LiFeP0 4 / C (carbon fiber ball) lithium ion battery prepared in Comparative Example 2 has a weight of 3.7 kg, a discharge capacity of 104.662 Ah, a charge and discharge efficiency of 95.2%, an internal resistance of the battery of 0.50 ⁇ , and a cycle life of 3000. About a second.
  • Comparative example 3 The pre-baked raw material lithium cobaltate, conductive carbon black, graphite, binder PVDF, solvent MP are weighed according to the mass percentage of 39.0-40.0: 0.3-0.7: 0.8-1.2: 1.5-2.5: 56.0-58.0. A total of 0.467kg, fully stirred and mixed to form a battery positive electrode slurry.
  • the previously baked raw material graphite, conductive carbon black, binder PVDF, and solvent NMP are weighed according to the mass percentage of 37.0-38.0: 0.8-1.2: 2.0-3.0: 58.0-60.0, totaling 0.261 kg, and fully stirred and mixed. Evenly, a battery negative electrode slurry was prepared.
  • the positive electrode is made of aluminum foil as a current collector
  • the negative electrode is made of copper foil as a current collector.
  • the aluminum foil has a thickness of 20 ⁇ 2 ⁇ m and a width of 183 ⁇ 1 mm
  • the copper foil has a thickness of 12 ⁇ 2 ⁇ m and a width of 183 ⁇ 1 mm.
  • the length of the positive and negative pole pieces of a single battery is 2.13m.
  • the pole piece prepared by the above method is baked at 100 ° C for 48 h, and then the positive and negative pole pieces and the diaphragm are aligned in parallel, placed on a fully automatic winding machine, and 6 aluminum tabs are welded at the edge of the positive electrode sheet.
  • Six nickel tabs were soldered at the edge of the negative electrode sheet, and the roots of the poles were firmly adhered with high temperature adhesive tape.
  • the specifications of the positive aluminum tab are: length 70 ⁇ lmm, width 10 ⁇ 0.1mm, thickness 0.1 ⁇ 0.01mm; negative nickel tab specifications: length 70 ⁇ 1mm, width 10 ⁇ 0.05mm, thickness 0.1 ⁇ 0.01mm.
  • the cylindrical 20Ah LiCo0 2 / C lithium ion battery prepared in Comparative Example 3 was tested for constant current charge and discharge performance using the BTS-5V200A battery test equipment manufactured by Shenzhen Xinweier Electronics Co., Ltd.
  • the charging process is constant current charging after constant current charging, the charging limit voltage is 4.2V; the discharging process is constant current discharge, discharge cutoff voltage For 3.0V, a charge and discharge test was performed using a current of 0.33C.
  • the cylindrical 20Ah LiCoO 2 / C lithium ion battery prepared in Comparative Example 3 had a weight of 0.58 kg, a discharge capacity of 20.392 Ah, a charge and discharge efficiency of 87.1%, an internal resistance of the battery of 4.77 ⁇ , and a cycle life of about 2,500 times.
  • the pre-baked raw material lithium iron phosphate, conductive carbon black, graphite, binder PVDF, solvent MP are weighed according to the mass percentage of 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0. A total of 3.795kg, fully stirred and mixed to form a battery positive electrode slurry.
  • the pre-baked raw material lithium titanate, conductive carbon black, graphite, binder PVDF, solvent MP are weighed according to the mass percentage of 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0-46.0. A total of 3.472kg, fully stirred and mixed uniformly to form a battery negative electrode slurry.
  • the positive and negative electrodes are all made of aluminum foil as a current collector.
  • the aluminum foil has a thickness of 30 ⁇ 2 ⁇ m and a width of 320 ⁇ 1 mm.
  • the positive and negative pole pieces of the battery are 17.63m long.
  • the pole piece prepared by the above method is baked at 100 ° C for 48 h, and then the positive and negative pole pieces are aligned in parallel with the separator, placed on a fully automatic winding machine, and 60 aluminum pieces are welded at the edge of the positive and negative pole pieces at the edge of the foil. Extremely ear, and use high-temperature adhesive tape to stick the roots of the poles firmly.
  • the specifications of the positive and negative aluminum tabs are: length 70 ⁇ lmm, width 10 ⁇ 0.1mm, thickness 0.15 ⁇ 0.015mm.
  • the positive and negative poles divided into groups are passed through the gap between the positive and negative terminals and the slip ring, and clamped with the tab clamping nut (this type of connection is called "tray hoop structure"); Put the battery core into the battery tube; respectively, put the support frame on both ends of the battery case, and after the assembly of the support frame is finished, connect the positive and negative terminals, the 0-ring ring, the insulating pad, and the positive and negative end covers in sequence, Secure with terminal block lock nut and set screw.
  • the constant current charge and discharge performance of the cylindrical monomer 200 Ah LiFeP0 4 / Li 4 Ti 5 0 12 lithium ion battery prepared in Comparative Example 4 was tested using BTS-5V200A battery testing equipment manufactured by Shenzhen Xinweier Electronics Co., Ltd.
  • the charging process is constant voltage charging after constant current charging, the charging limit voltage is 2.3V;
  • the discharging process is constant current discharge, discharge cutoff voltage For 0.5V, a charge and discharge test was performed using a current of 0.33C.
  • the cylindrical monomer 200Ah LiFeP0 4 / Li 4 Ti 5 0 12 lithium ion battery prepared in Comparative Example 4 has a weight of 7 kg, a discharge capacity of 204.754 Ah, a charge and discharge efficiency of 98.9%, and an internal resistance of the battery of 0.47 ⁇ , according to Li.
  • the characteristics of the 4 Ti 5 0 12 material and the data of the previous small-capacity battery speculate that the cycle life can reach 8000 according to the most conservative estimate. More than once (theoretical calculation is 20,000 times).
  • the cylindrical monomer 400Ah LiFePO 4 / Li 4 Ti 5 O 12 lithium ion battery prepared in the first embodiment of the invention has large capacity, small internal resistance, long cycle life, good safety and reliability, and strong environmental adaptability. Good performance consistency, can be widely used in electric vehicles, hybrid vehicles, military equipment, aerospace, hydraulic, firepower, wind power, solar power storage power systems, and uninterruptible power supplies for postal and telecommunications, thus meeting the growing Market demand has broad prospects for development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种圆柱形单体400Ah锂离子电池及其制备方法,其包括:圆柱形电池外壳(1),电池芯轴(3),极耳(4),接线端子(6),正、负极端盖(11),正极极片,电池正极由磷酸铁锂、导电炭黑、石墨、粘结剂PVDF、溶剂NMP组成;负极极片,电池负极由钛酸锂、导电炭黑、石墨、粘结剂PVDF、溶剂NMP组成。

Description

圆柱形单体 400Ah锂离子电池及其制备方法
技术领域
本发明涉及一种锂离子电池, 特别是涉及一种圆柱形单体 400Ah锂离子电池及其 制备方法。
技术背景
面向 21世纪, 随着科学技术的发展和信息社会的到来,特别是由于各种移动通讯 设备、 电子器件、 办公自动化用品、 家用电器和医疗器械的普及, 人们对能源的需求 越来越大。 同时, 为了减缓人类本身和自然界的冲突, 寻求可持续发展之路, 保护自 然环境和自然资源已成为人类进入 21世纪后所面临的严峻挑战。因此, 新能源和新材 料的开发及利用已成为世界各国必须解决的首要课题。
电能是人类社会在日常生活和工作中不可缺少的重要能源, 任何其它资源的利用 一般都要借助电能。 而电能的储存、 转化、 输送都要涉及电池技术。
当今的信息时代, 人们不但对电源的需求量日益增加, 更重要的是对电源性能的 要求越来越高。 这种要求主要体现在高比功率、 高比能量、 长循环寿命和大的容量等 指标上; 同时对电源的安全性、 价格以及环境友好程度也提出了更高的标准。 传统的 铅酸电池、 镍镉电池、 镍氢电池等, 因使用寿命短, 能量密度较低以及环境污染等问 题而大大地限制了它们的使用。 由于锂离子电池具有优良的电化学性能, 使其成为目 前新型高能绿色电池中的佼佼者。
锂离子电池是在锂电池的基础上发展起来的一种新型电池, 它与锂电池相比最大 的优点在于可利用锂离子嵌入、 脱出的材料来代替金属锂, 从而解决了锂阳极的钝化 和枝晶穿透问题。 在保持了锂电池高容量、 高电压等优势的基础上, 显著提高了电池 的充放电效率和循环寿命, 电池的安全性能, 也得到了明显改善。
目前常用的锂离子电池正极材料一般包括层状嵌锂化合物 LiM02, 尖晶石型嵌锂 化合物 LiM204和橄榄石型嵌锂化合物 LiMP04
钴酸锂 LiCo02和镍酸锂 LiNi02是较常用的层状嵌锂化合物。 LiCo02正极材料的嵌 锂电位高, 理论容量达 274mAh/g, 但在实际循环过程中, 当有超过一半的锂离子脱出 时, 材料的容量发生严重的退化, 其层状结构倾向于塌陷, 使得实际容量不超过 150mAh/g。 与此同时, 钴的资源有限, 价格昂贵, 且有一定毒性, 因而需要开发综合 电化学性能好、 资源广范、 成本低的活性物质来取代它。 LiM02正极材料的理论比容 量为 275mAh/g, 实际容量可达 190-210 mAh/g, 明显高于 LiCo02, 因此被认为是锂离 子电池中继 LiCo02之后最有前途的正极材料之一。但 LiNi02也存在循环容量衰退较快、 热稳定性差等缺点, 因此它的应用范围也受到一定的限制。
锰酸锂 LiMn204正极材料是尖晶石型嵌锂化合物中的典型代表, 其理论容量为 148mAh/g, 实际容量在 120mAh/g左右。 尽管 LiMn204具有价廉、 无毒、 安全性好等优 点, 但其在充放电循环中的晶格结构不稳定性和容量衰减, 特别是高温 55°C下的循环 性能, 成为阻碍其发展和应用的主要问题。
橄榄石型嵌锂化合物磷酸铁锂 LiFeP04, 作为目前最常用的锂离子电池正极材料 之一, 具有理论比容量高 (约 170mAh/g)、 成本低、 环境友好、 循环寿命长、 热稳定 性高、 安全性好等一系列优点, 使其在众多正极材料中脱颖而出, 成为目前电池界研 究开发的热点, 并有望成为商业化的锂离子动力电池正极材料。 磷酸铁锂电池作为动 力型电源, 必将成为铅酸、 镍氢及锰、 钴等系列锂离子电池最有前景的替代品。 因此, 磷酸铁锂电池被认为是标志着 "锂离子电池一个新时代的到来"。
目前, 比较常见的磷酸铁锂电池是以石墨作为负极材料的, 这是由于其具有比容 量高, 放电平台低而平稳等优点。 但由于碳负极的电位与锂的标准电位很接近, 电池 过充电时, 金属锂可能在碳电极表面析出形成枝晶, 从而引起短路; 而且大多数的电 解液在此电位下不稳定, 电解质易在电极表面分解, 产生可燃气体混合物, 存在着安 全隐患; 另外, 碳电极中 Li+的插入将引起 10 %的体积形变, 导致颗粒间的不连续, 引起电极 /电解质及电极 /集流体界面的松散与剥落。这些因素都促使着研究者们对原有 负极材料进行修饰和改性研究, 并不断寻找性能优良、 制备工艺简单且成本低廉的新 型锂离子电池负极材料。 对 lOOAh圆柱形 LiFeP04/C锂离子电池进行针剌实验的结果 表明, 电池表面温度可达 200°C。 可见对于 lOOAh以上的大容量动力电池来说, 寻找 安全可靠性高的负极材料是十分重要的。
钛酸锂 Li4Ti5012是一种理想的嵌入型电极材料, Li+插入和脱嵌对材料结构几乎没 有影响, 因此被称作"零应变"材料。 锂钛复合氧化物 Li4Ti5012相对锂电极的电位为 1.55V(vs Li/Li+), 理论容量为 175mAh/g, 实验比容量达到了 150〜160mAh/g。 具有循 环性能优良、 放电平台长而平坦、 充放电结束时有明显的电压突变、 嵌锂电位高而不 易引起金属锂析出、 能够在大多数液体电解质的稳定电压区间使用、 库仑效率高 (接 近 100%)、材料来源广、清洁环保等优良特性, 具备了下一代锂离子电池必需的充电 次数更多、 充电过程更快、 更安全的特性。 同样对 lOOAh圆柱形 LiFeP04/ Li4Ti5012 锂离子电池进行针剌实验,电池表面温度仅为 40°C。可见采用 Li4Ti5012作为负极材料, 使得大容量锂离子动力电池的安全性显著提高, 推动了其商品化的应用。 发明内容
本发明的目的在于提供一种圆柱形超大容量锂离子电池及其工艺流程简单的制备 方法。
圆柱形单体 400Ah锂离子电池, 包括:
圆柱形电池外壳 1, 电池芯轴 3, 极耳 4, 接线端子 6, 正、 负极端盖 11, 正极极片,所述电池正极由磷酸铁锂、导电炭黑、石墨、粘结剂 PVDF、溶剂 NMP 组成, 质量百分比为: 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0, 铝箔作为集流 体;
负极极片, 所述电池负极由钛酸锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 NMP 组成, 质量百分比为: 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0-46.0, 铝箔作为集流 体。
作为优选方案, 所述接线端子与电池芯轴在轴线方向固定连接, 还包括: 支撑架 5、 滑动环 7、 极耳夹紧螺母 8、 绝缘垫 9、 0型圈 10、 接线端子锁紧螺母
12、 定位螺钉 13。
所述铝箔厚度为 30±2μιη, 宽度为 320±lmm, 正极极片、负极极片长度为 33.81m。 所述极耳规格为: 长 70±lmm, 宽为 10±0.1mm, 厚为 0.15±0.015mm。
在正、 负极端盖上各设有 3个安全阀片, 其直径为 13mm, 厚度为 0.5mm, 爆破 压力为 7.5-8kg。
圆柱形电池外壳 1 和正、 负极端盖 11 材质为不锈钢, 直径为 134mm, 长度为 450mm, 壁厚为 lmm。
制造上述圆柱形单体 400Ah锂离子电池的方法, 过程如下:
(一) 电极的制备
将事先烘烤好的原料磷酸铁锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照 质量百分比 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0的比例充分搅拌混合均匀, 制成电池正极浆料; 将事先烘烤好的原料钛酸锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照质量百分比 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0-46.0的比例充分 搅拌混合均匀, 制成电池负极浆料;
涂布和辊压过程中, 正、 负极均采用铝箔作为集流体, 铝箔厚度为 30±2μιη, 宽 度为 320±lmm, 正、 负极极片长度均为 33.81m;
(二) 电池的组装
将上面步骤制得的极片 100°C烘烤 48h, 再将正、 负极极片与隔膜平行对齐, 放置 于全自动卷绕机上, 在正、 负极极片边缘光箔位置各焊接 100根铝极耳, 并用高温胶 纸将极耳根部粘贴牢固, 正、 负极铝极耳规格为: 长 70±lmm, 宽为 10±0.1mm, 厚为 0.15±0.015mm;
将均分成组的正、 负极极耳 4穿过接线端子 6和滑动环 7之间的空隙, 并用极耳 夹紧螺母 8固定夹紧, 这种连接方式称为 "接线箍结构"; 小心地将电芯装入圆柱形电 池外壳 1 中; 分别在电池壳两端套上支撑架 5, 支撑架装配结束后, 分别按照顺序将 接线端子 6、 0型圈 10、 绝缘垫 9、 正负极端盖 11连接在一起, 用接线端子锁紧螺母 12和定位螺钉 13固定; 在正、 负极端盖上各设有 3个安全阀片, 其直径为 13mm, 厚 度为 0.5mm, 爆破压力为 7.5-8kg, 在卷绕、 装配和焊接过程中, 要用万用表进行短路 检验, 采用真空注液进行注液, 电解液为 LiPF6 (EC+PC+DMC +DEC), 最后用激光 焊机将电池两端的端盖密封焊上。
本发明相对于现有技术的优点在于:
(一)本发明制备出的圆柱形锂离子电池, 单体容量达到 400Ah以上, 是目前国 内外锂离子电池市场上已见报道研制出的圆柱形最大单体容量的电池。
(二) 本发明采用了独特相匹配的正、 负极浆料工艺配方和先进的制备技术。 首 次采用了热稳定性良好的磷酸铁锂为正极材料, 以 "零应变"材料钛酸锂为负极材料; 电池的循环寿命按最保守的估计可达到 8000次以上 (理论计算为 20000次), 是目前 国内、外市场上一般锂离子电池寿命的 2-4倍; 显著提高了电池的安全性和循环寿命。
(三) 本发明制备的圆柱形锂离子电池针剌实验的结果表明, 电池不燃烧、 不爆 炸, 电池表面温度仅 34°C。 而目前市场上常规 LiFeP04/C电池针剌实验, 电池表面温 度为 200°C, 电池的安全性显著得到提高。
(四) 本发明设计了新颖的圆柱形外型, 实用性强, 耐蚀、 耐压、 抗冲击、 耐振 动性强, 成本低, 单体电池容量大, 电池内部结构合理, 大大提高了电池的散热性, 热稳定性和安全性。
(五) 正、 负极集流体均采用铝箔, 正、 负极极耳均采用铝极耳, 相比较为昂贵 的铜材质作为集流体和极耳, 大大地降低了成本。
(六) 在优选方案中, 在电池两端的端盖上巧妙地分别安放了 3个安全阀片; 在 电池芯和接线端子的连接方式上采用了独特的"接线箍结构",这些设计显著降低了电 池的内阻, 提高了电池的安全可靠性。
(七) 本发明工艺流程简单, 适合应用于工业化规模生产。
附图说明
附图 1是实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池的装配 剖面示意图。 图中, 1代表圆柱形电池外壳, 2代表电池卷芯, 3代表电池芯轴, 4代 表极耳, 5代表支撑架, 6代表接线端子, 7代表滑动环, 8代表夹紧螺母, 9代表绝 缘垫, 10代表 0型圈、 11代表正、 负极端盖, 12代表接线端子锁紧螺母, 13代表定 位销。 图 2是实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池的产品照 片。 图 3是实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池的外形尺 寸示意图; 单位: 毫米。 图 4是实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池的充放电 曲线图。 图中, 横坐标代表容量, 单位: 安时, 纵坐标代表电压, 单位: 伏特。
图 5以实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池在针剌实 验前的照片。
图 6是实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池在针剌实 验后的照片。
图 7是以对比例 3制备的圆柱形 20Ah LiCoO2/ C锂离子电池在针剌实验后起火、 燃烧、 爆炸的照片。
具体实施方式
为了进一步更加清楚地说明本发明, 下面将结合附图与具体实施例对本发明做进 一步详细说明。
实施例 1
将事先烘烤好的原料磷酸铁锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照 质量百分比 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0的比例称量, 共计 7.279kg, 充分搅拌混合均匀, 制成电池正极浆料。
将事先烘烤好的原料钛酸锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照质 量百分比 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0-46.0的比例称量, 共计 6.656kg, 充分搅拌混合均匀, 制成电池负极浆料。
涂布和辊压过程中, 正、 负极均采用铝箔作为集流体。 铝箔厚度为 30±2μιη, 宽 度为 320±lmm; 单只电池正、 负极极片长度均为 33.81m。
将上述方法制得的极片 100°C烘烤 48h, 再将正、 负极极片与隔膜平行对齐, 放置 于全自动卷绕机上, 在正、 负极极片边缘光箔位置各焊接 100根铝极耳, 并用高温胶 纸将极耳根部粘贴牢固。 正、 负极铝极耳规格为: 长 70±lmm, 宽 10±0.1mm, 厚 0.15±0.015mm。
将均分成组的正负极极耳穿过正负极接线端子和滑动环之间的空隙, 并用极耳夹 紧螺母固定夹紧, 这种连接方式称为 "接线箍结构"; 小心地将电芯装入电池筒中; 分 别在电池壳两端套上支撑架, 支撑架装配结束后, 分别按照顺序将正负极接线端子、
0型圈、 绝缘垫、 正负极端盖连接在一起, 用接线端子锁紧螺母和定位螺钉固定 (见 附图 1 )。 在正、 负极端盖上各设有 3个安全阀片, 其直径为 13mm, 厚度为 0.5mm, 爆破压力为 7.5-8kg。 在卷绕、 装配和焊接过程中, 要用万用表进行短路检验。 采用真 空注液进行注液, 电解液为 LiPF6 (EC+PC+DMC+DEC), 最后用激光焊机将电池两端 的端盖密封焊上。
各项参数如下:
电池外壳: 不锈钢; 直径: 134mm; 长度: 450mm; 重量: 12kg;
额定容量: 400Ah; 额定工作电压 1.8V; 内阻: 0.33 ιη Ω ; 循环使用寿命: 8000次 以上。
实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池的产品照片如附 图 2所示, 其外形尺寸示意图如附图 3所示。
采用深圳市新威尔电子有限公司生产的 BTS-5V200A电池检测设备, 对实施例 1 制备的圆柱形单体 400 Ah LiFeP04/ Li4Ti5012锂离子电池进行恒流充放电性能测试。 按 照《电动汽车用锂离子蓄电池》 中华人民共和国汽车行业标准 QC/T743-2006, 充电过 程为先恒流充电后恒压充电, 充电限制电压为 2.3V; 放电过程为恒流放电, 放电截止 电压为 0.5V, 采用 0.33C的电流进行充放电测试。
实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池, 重量为 12kg, 放电容量为 417.718Ah, 充放电效率为 99.6%, 电池的内阻为 0.33ιηΩ, 循环寿命按最 保守的估计可达到 8000次以上 (理论计算为 20000次)。 从附图 4可以看出, 电池的充放电电压十分平稳, 平台电位保持时间较长 (平台 容量达放电容量的 95%左右), 这是存在尖晶石型 Li4Ti5012与岩盐型 Li7Ti5012两相反 应的特征。 两相的互变使得该电极电位保持平稳。 当两相转变基本完成时, 其电位便 发生快速上升或下降的突跃。 充放电结束时产生的明显的电压突变现象可用于指示终 止充放电, 便于电池容量的检测。
实施例 1 制备的圆柱形单体 400Ah LiFeP04/ Li4Ti5012锂离子电池的内阻仅为 0.33ιηΩ, 导电性非常好。 大容量电池极片横截面积也较大, 故电池内阻较小 (电阻与 横截面积成反比)。采用该技术制备的电池与采用叠片技术制备的电池相比, 由于电池 的极片在卷绕过程中, 在张力的作用下, 使得正、 负极片与隔膜之间紧密结合, 卷芯 紧实且横截面积大, 这使得电池的内阻极其微小。
在本发明实施例 1的实验范围内, 圆柱形 LiFeP04/ Li4Ti5012锂离子电池的容量未 见衰减, 根据 Li4Ti5012材料的特点以及前期小容量电池的数据推测, 该款 400Ah圆柱 形 LiFeP04/ Li4Ti5012锂离子电池的循环寿命按最保守的估计可达到 8000次以上 (理 论计算为 20000次), 是目前国内、 外市场上一般锂离子电池寿命的 2-4倍。
实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池, 其内阻、 循环 寿命以及其他主要技术指标均完成了预期的设计要求, 具体参数如附表 1所示。
对实施例 1制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子电池, 按照《电动 汽车用锂离子蓄电池》 中华人民共和国汽车行业标准 QC/T743-2006, 进行针剌实验, 电池不燃烧、 不爆炸; 电池两端端盖上的 6个安全阀片均未被打开 (见附图 5 ); 电池 表面温度仅有 34°C。 而目前市场上常规 LiFeP04/ C 电池针剌实验, 电池表面温度为 200 °C , 电池的安全性显著得到提高。
对比例 1:
将事先烘烤好的原料磷酸铁锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照 质量百分比 38.0-39.0: 0.8-1.2: 0.3-0.7: 2.5-3.5: 56.0-58.0称量, 共计 2.672kg, 充分 搅拌混合均匀, 制成电池正极浆料。
将事先烘烤好的原料人造石墨、 导电炭黑、粘结剂 PVDF、溶剂 MP按照质量百 分比 36.0-37.0: 0.8-1.2: 3.0-4.0: 58.0-60.0称量, 共计 1.192kg, 充分搅拌混合均匀, 制成电池负极浆料。
涂布和辊压过程中, 正极采用铝箔作为集流体, 负极采用铜箔作为集流体。 铝箔 厚度为 30±2μιη, 宽度为 320±lmm; 铜箔厚度为 22±2μιη, 宽度为 320±lmm。 单只电 池正、 负极极片长度均为 11.00m。
将上述方法制得的极片于 100°C烘烤 48h, 再将正、 负极极片、 隔膜平行对齐, 放 置于全自动卷绕机上,在正极片边缘光箔位置焊接 73根铝极耳,在负极片边缘光箔位 置焊接 73 根铜极耳, 并用高温胶纸将极耳根部粘贴牢固。 正极铝极耳规格为: 长 70±lmm, 宽 10±0.1mm, 厚 0.1±0.01mm; 负极铜极耳规格为: 长 70± lmm, 宽 10士 0.05mm, 厚 0.05 ±0.01mm。
用极耳螺栓、 正负极耳板将正负极耳固定在正负极接线端子上, 极耳要夹紧, 小 心地将电芯装入电池筒中; 分别在电池壳两端套上支撑架, 支撑架装配结束后, 分别 按照顺序将正负极接线端子、 正负极内绝缘圈、 0型圈、 正负极端盖、 外绝缘圈、 接 线端子防松垫片连接在一起, 用接线端子锁紧螺母固定。 在正、 负极端盖上各设有 1 个安全阀片, 其直径为 13mm, 厚度为 0.5mm, 爆破压力为 7.5-8kg。 在卷绕、 装配和 焊接过程中, 要用万用表进行短路检验。 采用真空注液进行注液, 电解液为 LiPF6 ( EC+PC+DMC+DEC ), 最后用激光焊机将电池两端的端盖密封焊上。
采用深圳市新威尔电子有限公司生产的 BTS-5V200A电池检测设备, 对对比例 1 制备的圆柱形 lOOAh LiFeP04/ C (人造石墨) 锂离子电池进行恒流充放电性能测试。 按照《电动汽车用锂离子蓄电池》 中华人民共和国汽车行业标准 QC/T743-2006, 充电 过程为先恒流充电后恒压充电, 充电限制电压为 3.8V; 放电过程为恒流放电, 放电截 止电压为 2.0V, 采用 0.33C的电流进行充放电测试。
对比例 1制备的圆柱形 100Ah LiFePO4/ C (人造石墨)锂离子电池,重量为 3.7kg, 放电容量为 102.245Ah,充放电效率为 93.9%,电池的内阻为 0.60ιηΩ,循环寿命为 3000 次左右。
对对比例 1制备的圆柱形 lOOAh LiFeP04/ C (人造石墨) 锂离子电池, 按照 《电 动汽车用锂离子蓄电池》中华人民共和国汽车行业标准 QC/T743-2006,进行针剌实验, 电池不燃烧、 不爆炸; 电池两端端盖上的两个安全阀片其中有一个被打开; 电池表面 温度为 200°C。
对比例 2:
将事先烘烤好的原料磷酸铁锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照 质量百分比 38.0-39.0: 0.8-1.2: 0.3-0.7: 2.5-3.5: 56.0-58.0的比例称量, 共计 2.672kg, 充分搅拌混合均匀, 制成电池正极浆料。
将事先烘烤好的原料碳纤维球、 导电炭黑、粘结剂 PVDF、溶剂 MP按照质量百 分比 36.0-37.0: 0.8-1.2: 3.0-4.0: 58.0-60.0的比例称量, 共计 1.192kg, 充分搅拌混合 均匀, 制成电池负极浆料。
涂布和辊压过程中, 正极采用铝箔作为集流体, 负极采用铜箔作为集流体。 铝箔 厚度为 30±2μιη, 宽度为 320±lmm; 铜箔厚度为 22±2μιη, 宽度为 320±lmm。 电池正、 负极极片长度均为 11.00m。
将上述方法制得的极片于 100°C烘烤 48h, 再将正、 负极极片、 隔膜平行对齐, 放 置于全自动卷绕机上,在正极片边缘光箔位置焊接 73根铝极耳,在负极片边缘光箔位 置焊接 73 根铜极耳, 并用高温胶纸将极耳根部粘贴牢固。 正极铝极耳规格为: 长 70±lmm, 宽 10±0.1mm, 厚 0.1±0.01mm; 负极铜极耳规格为: 长 70± lmm, 宽 10士 0.05mm, 厚 0.05 ±0.01mm。
用极耳螺栓、 正负极耳板将正负极耳固定在正负极接线端子上, 极耳要夹紧, 小 心地将电芯装入电池筒中; 分别在电池壳两端套上支撑架, 支撑架装配结束后, 分别 按照顺序将正负极接线端子、 正负极内绝缘圈、 0型圈、 正负极端盖、 外绝缘圈、 接 线端子防松垫片连接在一起, 用接线端子锁紧螺母固定。 在正、 负极端盖上各设有 1 个安全阀片, 其直径为 13mm, 厚度为 0.5mm, 爆破压力为 7.5-8kg。 在卷绕、 装配和 焊接过程中, 要用万用表进行短路检验。 采用真空注液进行注液, 电解液为 LiPF6 ( EC+PC+DMC+DEC ), 最后用激光焊机将电池两端的端盖密封焊上。
采用深圳市新威尔电子有限公司生产的 BTS-5V200A电池检测设备, 对对比例 2 制备的圆柱形 100Ah LiFePO4/ C (碳纤维球) 锂离子电池进行恒流充放电性能测试。 按照《电动汽车用锂离子蓄电池》 中华人民共和国汽车行业标准 QC/T743-2006, 充电 过程为先恒流充电后恒压充电, 充电限制电压为 3.8V; 放电过程为恒流放电, 放电截 止电压为 2.0V, 采用 0.33C的电流进行充放电测试。
对比例 2制备的圆柱形 lOOAh LiFeP04/ C (碳纤维球)锂离子电池,重量为 3.7kg, 放电容量为 104.662Ah,充放电效率为 95.2%,电池的内阻为 0.50ιηΩ,循环寿命为 3000 次左右。
对对比例 2制备的圆柱形 100Ah LiFePO4/ C (碳纤维球) 锂离子电池, 按照 《电 动汽车用锂离子蓄电池》中华人民共和国汽车行业标准 QC/T743-2006,进行针剌实验, 电池不爆炸、 不燃烧; 电池两端端盖上的两个安全阀片均未被打开; 电池表面温度为 180°C。
对比例 3: 将事先烘烤好的原料钴酸锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照质 量百分比 39.0-40.0: 0.3-0.7: 0.8-1.2: 1.5-2.5: 56.0-58.0的比例称量, 共计 0.467kg, 充分搅拌混合均匀, 制成电池正极浆料。
将事先烘烤好的原料石墨、 导电炭黑、粘结剂 PVDF、溶剂 NMP按照质量百分比 37.0-38.0: 0.8-1.2: 2.0-3.0: 58.0-60.0的比例称量, 共计 0.261kg, 充分搅拌混合均匀, 制成电池负极浆料。
涂布和辊压过程中, 正极采用铝箔作为集流体, 负极采用铜箔作为集流体。 铝箔 厚度为 20±2μιη, 宽度为 183±lmm; 铜箔厚度为 12±2μιη, 宽度为 183±lmm。 单只电 池正、 负极极片长度均为 2.13m。
将上述方法制得的极片于 100°C烘烤 48h, 再将正、 负极极片、 隔膜平行对齐, 放 置于全自动卷绕机上, 在正极片边缘光箔位置焊接 6根铝极耳, 在负极片边缘光箔位 置焊接 6 根镍极耳, 并用高温胶纸将极耳根部粘贴牢固。 正极铝极耳规格为: 长 70±lmm, 宽 10±0.1mm, 厚 0.1±0.01mm; 负极镍极耳规格为: 长 70± lmm, 宽为 10 ±0.05mm, 厚为 0.1 ±0.01mm。
将正极极耳穿过绝缘片上的小孔, 套上支撑架后, 直接焊在正极端盖(平板端盖) 内侧; 然后小心地将电芯装入电池外壳中, 再将负极极耳穿过绝缘片上的小孔, 焊在 正极耳板上, 套上支撑架; 然后分别按照顺序将 0型圈、 负极端盖、 负极接线端子连 接在一起,旋紧固定。在负极端盖上设有 1个安全阀片,其直径为 13mm,厚度为 0.5mm, 爆破压力为 7.5-8kg。 在卷绕、 装配和焊接过程中, 要用万用表进行短路检验。 采用真 空注液进行注液, 电解液为 LiPF6 (EC+PC+DMC+DEC), 最后用激光焊机将电池两端 的端盖密封焊上。
采用深圳市新威尔电子有限公司生产的 BTS-5V200A电池检测设备, 对对比例 3 制备的圆柱形 20Ah LiCo02/ C锂离子电池进行恒流充放电性能测试。 按照《电动汽车 用锂离子蓄电池》中华人民共和国汽车行业标准 QC/T743-2006, 充电过程为先恒流充 电后恒压充电, 充电限制电压为 4.2V; 放电过程为恒流放电, 放电截止电压为 3.0V, 采用 0.33C的电流进行充放电测试。
对比例 3制备的圆柱形 20Ah LiCoO2/ C锂离子电池, 重量为 0.58kg, 放电容量为 20.392Ah, 充放电效率为 87.1%, 电池的内阻为 4.77ιηΩ, 循环寿命为 2500次左右。
对对比例 3制备的圆柱形 20Ah LiCo02/ C锂离子电池, 按照《电动汽车用锂离子 蓄电池》 中华人民共和国汽车行业标准 QC/T743-2006, 进行针剌实验, 负极端盖以及 其上的安全阀片均被打开; 电池起火、 燃烧、 爆炸, 如附图 7所示。
对比例 4:
将事先烘烤好的原料磷酸铁锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照 质量百分比 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0的比例称量, 共计 3.795kg, 充分搅拌混合均匀, 制成电池正极浆料。
将事先烘烤好的原料钛酸锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 MP按照质 量百分比 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0-46.0的比例称量, 共计 3.472kg, 充分搅拌混合均匀, 制成电池负极浆料。
涂布和辊压过程中, 正、 负极均采用铝箔作为集流体。 铝箔厚度为 30±2μιη, 宽 度为 320±lmm。 电池正、 负极极片长度均为 17.63m。
将上述方法制得的极片 100°C烘烤 48h, 再将正、 负极极片与隔膜平行对齐, 放置 于全自动卷绕机上, 在正、 负极极片边缘光箔位置各焊接 60根铝极耳, 并用高温胶纸 将极耳根部粘贴牢固。 正、 负极铝极耳规格为: 长 70±lmm, 宽 10±0.1mm, 厚 0.15±0.015mm。
将均分成组的正负极极耳穿过正负极接线端子和滑动环之间的空隙, 并用极耳夹 紧螺母固定夹紧 (这种连接方式称为 "接线箍结构"); 小心地将电芯装入电池筒中; 分别在电池壳两端套上支撑架,支撑架装配结束后, 分别按照顺序将正负极接线端子、 0型圈、 绝缘垫、 正负极端盖连接在一起, 用接线端子锁紧螺母和定位螺钉固定。 在 正、 负极端盖上各设有 2个安全阀片, 其直径为 13mm, 厚度为 0.5mm, 爆破压力为 7.5-8kg。 在卷绕、 装配和焊接过程中, 要用万用表进行短路检验。 采用真空注液进行 注液, 电解液为 LiPF6 (EC+PC+DMC +DEC ) , 最后用激光焊机将电池两端的端盖密 封焊上。
采用深圳市新威尔电子有限公司生产的 BTS-5V200A电池检测设备, 对对比例 4 制备的圆柱形单体 200 Ah LiFeP04/ Li4Ti5012锂离子电池进行恒流充放电性能测试。 按 照《电动汽车用锂离子蓄电池》 中华人民共和国汽车行业标准 QC/T743-2006, 充电过 程为先恒流充电后恒压充电, 充电限制电压为 2.3V; 放电过程为恒流放电, 放电截止 电压为 0.5V, 采用 0.33C的电流进行充放电测试。
对比例 4制备的圆柱形单体 200Ah LiFeP04/ Li4Ti5012锂离子电池, 重量为 7kg, 放电容量为 204.754Ah, 充放电效率为 98.9%, 电池的内阻为 0.47ιηΩ, 根据 Li4Ti5012 材料的特点以及前期小容量电池的数据推测, 循环寿命按最保守的估计可达到 8000 次以上 (理论计算为 20000次)。
对对比例 4制备的圆柱形单体 200Ah LiFePO4/ Li4Ti5O12锂离子电池, 按照《电动 汽车用锂离子蓄电池》 中华人民共和国汽车行业标准 QC/T743-2006, 进行针剌实验, 电池不燃烧、 不爆炸; 电池两端端盖上的 4个安全阀片均未打开, 电池表面温度为 34
°C。
综上所述, 本发明实施例 1所制备的圆柱形单体 400Ah LiFePO4/ Li4Ti5O12锂离子 电池容量大、 内阻小、 循环寿命长、 安全可靠性好、 环境适应性强、 性能一致性佳, 可广泛应用于电动汽车、 混合动力汽车、 军事装备、 航天航空、 水力、 火力、 风力、 太阳能电站储存电源系统, 以及邮电通讯的不间断电源上, 从而满足了日益增长的市 场需求, 具有广阔的发展前景。
开发和应用绿色能源, 是历史的必然选择。 高容量、 大功率、 安全可靠的圆柱形 锂离子动力电池, 将在国内、 外市场上占据重要地位, 具有无限的发展潜力和应用前 景!

Claims

权利要求
1、 圆柱形单体 400Ah锂离子电池, 其特征在于, 包括:
圆柱形电池外壳 (1 ), 电池芯轴 (3 ), 极耳 (4), 接线端子 (6), 正、 负极端盖 ( 11 ),
正极极片,所述电池正极由磷酸铁锂、导电炭黑、石墨、粘结剂 PVDF、溶剂 NMP 组成, 质量百分比为: 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0, 铝箔作为集流 体;
负极极片, 所述电池负极由钛酸锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 NMP 组成, 质量百分比为: 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0-46.0, 铝箔作为集流 体。
2、 根据权利要求 1所述圆柱形单体 400Ah锂离子电池, 其特征在于, 所述接线 端子与电池芯轴在轴线方向固定连接, 还包括:
支撑架 (5 )、 滑动环 (7)、 极耳夹紧螺母 (8)、 绝缘垫 (9)、 0 型圈 (10)、 接 线端子锁紧螺母 (12)、 定位螺钉 (13 )。
3、 根据权利要求 2所述圆柱形单体 400Ah锂离子电池, 其特征在于, 所述铝箔 厚度为 30±2μιη, 宽度为 320±lmm, 正极极片、 负极极片长度为 33.81m。
4、 根据权利要求 3所述圆柱形单体 400Ah锂离子电池, 其特征在于, 所述极耳 规格为: 长 70±lmm, 宽为 10±0.1mm, 厚为 0.15±0.015mm。
5、 根据权利要求 4所述圆柱形单体 400Ah锂离子电池, 其特征在于, 在正、 负 极端盖上各设有 3个安全阀片,其直径为 13mm,厚度为 0.5mm,爆破压力为 7.5-8kg。
6、 根据权利要求 5所述圆柱形单体 400Ah锂离子电池, 其特征在于, 圆柱形电 池外壳 (1 ) 和正、 负极端盖 (11 ) 材质为不锈钢, 直径为 134mm, 长度为 450mm, 壁厚为 lmm。
7、 制造如权利要求 5所述圆柱形单体 400Ah锂离子电池的方法, 其特征在于, 过程如下:
(一) 电极的制备
将事先烘烤好的原料磷酸铁锂、 导电炭黑、 石墨、 粘结剂 PVDF、 溶剂 NMP按 照质量百分比 42.0-43.0: 1.3-1.7: 0.8-1.2: 2.5-3.5: 51.0-53.0的比例充分搅拌混合均 匀,制成电池正极浆料;将事先烘烤好的原料钛酸锂、导电炭黑、石墨、粘结剂 PVDF、 溶剂 MP按照质量百分比 49.0-50.0: 0.8-1.2: 0.8-1.2: 3.0-4.0: 44.0-46.0的比例充分 搅拌混合均匀, 制成电池负极浆料;
涂布和辊压过程中, 正、 负极均采用铝箔作为集流体, 铝箔厚度为 30±2μιη, 宽 度为 320±lmm, 正、 负极极片长度均为 33.81m;
(二) 电池的组装
将上面步骤制得的极片 100°C烘烤 48h, 再将正、 负极极片与隔膜平行对齐, 放 置于全自动卷绕机上, 在正、 负极极片边缘光箔位置各焊接 100根铝极耳, 并用高温 胶纸将极耳根部粘贴牢固, 正、 负极铝极耳规格为: 长 70±lmm, 宽为 10±0.1mm, 厚为 0.15±0.015mm;
将均分成组的正、 负极极耳 (4) 穿过接线端子 (6) 和滑动环 (7) 之间的空隙, 并用极耳夹紧螺母 (8 ) 固定夹紧, 这种连接方式称为 "接线箍结构"; 小心地将电芯 装入圆柱形电池外壳 (1 ) 中; 分别在电池壳两端套上支撑架 (5 ), 支撑架装配结束 后, 分别按照顺序将接线端子 (6)、 0型圈 (10)、 绝缘垫 (9)、 正负极端盖(11 )连 接在一起, 用接线端子锁紧螺母 (12) 和定位螺钉 (13 ) 固定; 在正、 负极端盖上各 设有 3个安全阀片, 其直径为 13mm, 厚度为 0.5mm, 爆破压力为 7.5-8kg, 在卷绕、 装配和焊接过程中, 要用万用表进行短路检验, 采用真空注液进行注液, 电解液为 LiPF6 (EC+PC+DMC +DEC), 最后用激光焊机将电池两端的端盖密封焊上。
PCT/CN2013/071757 2013-02-07 2013-02-22 圆柱形单体400Ah锂离子电池及其制备方法 WO2014121528A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/235,083 US9502736B2 (en) 2013-02-07 2013-02-22 Cylindrical single-piece lithium-ion battery of 400Ah and its preparation method
US15/278,039 US10367190B2 (en) 2013-02-07 2016-09-28 Cylindrical single-piece lithium-ion battery of 400Ah and its preparation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310048865.0A CN103178293B (zh) 2013-02-07 2013-02-07 圆柱形单体400Ah锂离子电池及其制备方法
CN201310048865.0 2013-02-07
CN201320070958.9U CN203377335U (zh) 2013-02-07 2013-02-07 圆柱形单体400Ah锂离子电池
CN201320070958.9 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014121528A1 true WO2014121528A1 (zh) 2014-08-14

Family

ID=51299228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071757 WO2014121528A1 (zh) 2013-02-07 2013-02-22 圆柱形单体400Ah锂离子电池及其制备方法

Country Status (2)

Country Link
US (2) US9502736B2 (zh)
WO (1) WO2014121528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134072A (zh) * 2018-01-30 2018-06-08 中国科学院宁波材料技术与工程研究所 一种钛酸锂基复合材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340483B2 (en) 2014-08-26 2019-07-02 Cps Technology Holdings Llc Welding process for sealing a battery module
WO2017206095A1 (en) * 2016-06-01 2017-12-07 GM Global Technology Operations LLC Lithium ion battery and capacitor hybridization in material and electrode level

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862869A (zh) * 2006-06-16 2006-11-15 天津力神电池股份有限公司 高安全高循环性能的2v锂离子二次电池
CN101262078A (zh) * 2008-04-14 2008-09-10 天津巴莫科技股份有限公司 可快速充电的锂离子电池及其制备方法
CN101752611A (zh) * 2008-12-04 2010-06-23 深圳市比克电池有限公司 锂电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470700B2 (ja) * 2007-12-10 2014-04-16 住友大阪セメント株式会社 電極材料およびその製造方法、並びに、電極および電池
CN101183731A (zh) 2007-12-14 2008-05-21 山东海霸通讯设备有限公司 一种磷酸铁锂铝壳10安时圆柱电池及其制作工艺
DE102008026580A1 (de) * 2008-06-03 2009-12-10 Süd-Chemie AG Verfahren zur Herstellung von Lithiumtitan-Spinell und dessen Verwendung
CN102097647B (zh) 2009-12-09 2014-03-26 微宏动力系统(湖州)有限公司 锂离子电池
CN101740809A (zh) 2009-12-29 2010-06-16 奇瑞汽车股份有限公司 一种大容量动力锂电池及其制备方法
CN102299339A (zh) 2011-08-03 2011-12-28 珠海锂源动力科技有限公司 一种钛酸锂与磷酸钒锂体系锂离子电池及其制备方法
US9673447B2 (en) * 2012-04-12 2017-06-06 Nanotek Instruments, Inc. Method of operating a lithium-ion cell having a high-capacity cathode
CN102629695A (zh) 2012-04-20 2012-08-08 山东奚仲电子科技有限公司 一种高容量锂离子动力电池及其制备方法
US9887047B2 (en) * 2012-12-19 2018-02-06 Imra America, Inc. Negative electrode active material for energy storage devices and method for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862869A (zh) * 2006-06-16 2006-11-15 天津力神电池股份有限公司 高安全高循环性能的2v锂离子二次电池
CN101262078A (zh) * 2008-04-14 2008-09-10 天津巴莫科技股份有限公司 可快速充电的锂离子电池及其制备方法
CN101752611A (zh) * 2008-12-04 2010-06-23 深圳市比克电池有限公司 锂电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134072A (zh) * 2018-01-30 2018-06-08 中国科学院宁波材料技术与工程研究所 一种钛酸锂基复合材料及其制备方法
CN108134072B (zh) * 2018-01-30 2022-01-28 中国科学院宁波材料技术与工程研究所 一种钛酸锂基复合材料及其制备方法

Also Published As

Publication number Publication date
US10367190B2 (en) 2019-07-30
US9502736B2 (en) 2016-11-22
US20170084904A1 (en) 2017-03-23
US20150333364A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
CN114937814A (zh) 一种降低电池内阻的锂二次电池电解液及锂二次电池
CN103325991B (zh) 一种全温域锂离子电池
CN106058245B (zh) 一种低温锂离子电池
CN101699590B (zh) 一种混合超级电容器
CN109509909B (zh) 二次电池
CN101577324A (zh) 磷酸铁锂电池混合型正极浆料及使用该正极浆料的磷酸铁锂电池
CN101626096B (zh) 一种同时用于低温放电和大电流放电的可充电电池的生产方法
CN112290080A (zh) 一种可低温充电的锂离子电池
CN102427123A (zh) 锂离子二次电池及其正极片
CN101794914A (zh) 一种使用寿命长的大容量锂电池的制造方法
CN111883765A (zh) 锂电池正极活性材料及其制备方法和锂电池
CN103579563B (zh) 一种圆柱快充2000mAh锂离子动力电池及制造方法
US10367190B2 (en) Cylindrical single-piece lithium-ion battery of 400Ah and its preparation method
CN107785537B (zh) 一种新型锂离子电池正极极片、其用途及极片的修饰方法
CN104934633A (zh) 具有大电流快速充放电性能的圆柱型2000mAh锂离子动力电池
CN203377335U (zh) 圆柱形单体400Ah锂离子电池
CN103178293B (zh) 圆柱形单体400Ah锂离子电池及其制备方法
CN114695942A (zh) 一种21700锂离子电池及其制备方法
CN102299375A (zh) 锂离子动力电池及锂离子动力电池的制备方法
CN2433737Y (zh) 锂离子动力电池
CN110957454A (zh) 一种以硅碳材料为负极的快充型锂离子电池及其制备方法
CN105990602A (zh) 一种高容量高功率动力型锂离子电池制造方法
CN219321378U (zh) 一种极片和电芯
CN214428670U (zh) 一种可低温充电的锂离子电池
CN102403527B (zh) 一种大容量高功率软包装锂离子动力电池及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235083

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874388

Country of ref document: EP

Kind code of ref document: A1