WO2014119821A1 - 유리 용융로 온도 측정장치 - Google Patents

유리 용융로 온도 측정장치 Download PDF

Info

Publication number
WO2014119821A1
WO2014119821A1 PCT/KR2013/004368 KR2013004368W WO2014119821A1 WO 2014119821 A1 WO2014119821 A1 WO 2014119821A1 KR 2013004368 W KR2013004368 W KR 2013004368W WO 2014119821 A1 WO2014119821 A1 WO 2014119821A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
melting furnace
temperature measuring
glass melting
glass window
Prior art date
Application number
PCT/KR2013/004368
Other languages
English (en)
French (fr)
Inventor
김득만
김영일
김천우
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to CH01119/15A priority Critical patent/CH709446B1/it
Priority to US14/765,645 priority patent/US10107688B2/en
Priority to JP2015555898A priority patent/JP6045722B2/ja
Priority to GB1513465.3A priority patent/GB2524449B/en
Publication of WO2014119821A1 publication Critical patent/WO2014119821A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means

Definitions

  • the present invention relates to the field of radioactive waste treatment, and more particularly to an apparatus for measuring the temperature of a glass melting furnace.
  • Radioactive waste vitrification is a technique for capturing radionuclides in a linkage of glass, which allows for a fairly stable treatment.
  • radioactive waste is added to the glass melting furnace together with the glass to be melted, and then solidified to produce a glass solid containing radioactive waste nuclides.
  • the temperature measuring device currently used in such a glass melting furnace is mostly a thermocouple, which is in direct contact with a measurement object to sense temperature. Because of this direct contact with the measurement object, the protective tube surrounding the thermocouple is exposed to high temperature glass melt, causing chemical corrosion, which is the main cause of shortening the life of the protective tube. Consequently, she is replacing the sheriffs at frequent intervals.
  • Patent Document 1 Korean Patent Publication No. 10-2010-0126922
  • the present invention has been made in view of the above-described conventional problems, and provides a glass melting furnace temperature measuring apparatus capable of indirectly measuring the temperature of the molten glass in the glass melting furnace including a thermal imaging camera.
  • the present invention provides a glass melting furnace temperature measuring apparatus having a cooling configuration of a thermal imaging camera as a temperature measuring apparatus including a thermal imaging camera, which can stably and accurately measure the temperature of molten glass in a glass melting furnace.
  • the present invention provides a glass melting furnace temperature measuring device, which is: an overall cylindrical shape, mounted in a temperature measuring hole of a glass melting furnace, to form a transparent hole communicating with the temperature measuring hole and extending out of the glass melting furnace.
  • a glass window unit provided with a glass window;
  • a camera unit in which a thermal image camera is disposed to photograph the inside of the glass melting furnace through the glass window portion, wherein the glass window is disposed away from the glass melting furnace in the viewing hole.
  • the glass window portion is a multi-layer structure that can be separated and combined individually.
  • the multilayer structure of the glass window unit includes at least one cooling gas flow path through which cooling gas from the outside flows.
  • the at least one cooling gas flow path a first flow path for introducing the cooling gas into the see-through hole through the sidewall of the cylindrical glass window portion, and directing the cooling gas toward the glass window; And a second flow path for directing the cooling gas toward the temperature measuring hole.
  • the glass window portion a flange plate mounted to the temperature measuring hole; A body plate disposed on the flange plate; A body plate cover disposed on the body plate; A glass flange disposed on the body plate cover; A glass holder disposed on the glass flange; And a glass window unit detachably mounted to the glass holder.
  • the glass window unit is a slide type in which a plurality of individual glass windows are mounted, and the glass holder slidably fixes the slide glass window unit.
  • the camera portion is coupled to the support, the rear end of the glass window portion and the front end of the camera portion to maintain a non-contact state.
  • the camera unit a case coupled to the support; And a thermal imaging camera embedded in the case.
  • the case consists of a double wall in which part or all of the wall has a space therebetween, and has a cooling gas inlet and an outlet through which the cooling gas circulates.
  • the present invention does not directly measure the temperature of the molten glass in the glass melting furnace but indirectly using a thermal imaging camera, so that the life of the measuring equipment is long. Moreover, in the apparatus employing such a thermal imaging camera, since the fume is not fixed to the glass window, the stopping of the apparatus for replacement or maintenance is reduced.
  • FIG. 1 is a view of a glass melting furnace temperature measuring apparatus of the present invention, (a) is a perspective view, (b) is a cross-sectional view taken along line A-A 'of (a), (c) is B-B of (a) 'Is a sectional view along (d) is a sectional view along C-C.
  • FIG. 2 is a cross-sectional view of a glass melting furnace temperature measuring apparatus of the present invention.
  • FIG. 3 is an enlarged view of a see-through hole in the glass melting furnace temperature measuring apparatus of FIG. 2.
  • Figure 4 is a view showing a glass flange employed in the apparatus for measuring the melting furnace temperature of the present invention, (a) is a perspective view, (b) is a plan view, and (c) is a sectional view.
  • FIG. 5 is a view showing a first guide ring employed in the glass melting furnace temperature measuring apparatus of the present invention, (a) is a perspective view, and (b) is a cross-sectional view.
  • FIG. 6 is a view showing a body plate cover employed in the apparatus for measuring the melting furnace temperature of the present invention, (a) is a perspective view, (b) is a plan view, and (c) is a sectional view.
  • FIG. 7 is a view showing a second guide ring employed in the glass melting furnace temperature measuring apparatus of the present invention, (a) is a perspective view and (b) is a sectional view.
  • FIG. 8 is a view showing a glass holder employed in the glass melting furnace temperature measuring apparatus of the present invention.
  • FIG. 9 is a view showing a glass window unit employed in the glass melting furnace temperature measuring apparatus of the present invention.
  • window section 2 camera section
  • first cover 222 second cover
  • FIG. 1 is a view of a glass melting furnace temperature measuring apparatus of the present invention
  • (a) is a perspective view
  • (b) is a cross-sectional view taken along line A-A 'of (a)
  • (c) is B-B of
  • (d) is a sectional view along C-C.
  • 2 is a cross-sectional view of a glass melting furnace temperature measuring apparatus of the present invention.
  • FIG. 3 is an enlarged view of a see-through hole in the glass melting furnace temperature measuring apparatus of FIG. 2.
  • the glass melting furnace temperature measuring apparatus of the present invention includes a glass window portion (1) and the camera portion (2).
  • the glass window 1 is mounted in the temperature measuring hole of the glass melting furnace and is equipped with a transparent glass window 11.
  • the glass window 1 has a tubular shape as a whole to provide a viewing hole 12 communicating with a temperature measuring hole of a glass melting furnace, and the glass window 11 described above is disposed to block the viewing hole 12.
  • the see-through hole 12 Since the glass window 1 is generally cylindrical, the see-through hole 12 has a form extending outward from the temperature measuring hole, and preferably the glass window 11 is disposed at a position far from the temperature measuring hole.
  • the camera unit 2 includes a case 22 and a thermal imaging camera 21 mounted inside the case 22, and the built-in thermal imaging camera 21 has a glass window 11 of the glass window unit 1. And through the hole 12 to measure the temperature of the inside of the glass melting furnace or the glass melt.
  • the glass window unit 1 and the camera unit 2 are coupled to the support 3, respectively, so that the rear end of the glass window unit 1 and the front end of the camera unit 2 are substantially in contact with each other. Therefore, the camera unit 2 does not directly transfer the heat of the glass melting furnace.
  • the glass window 1 has a multi-layer structure that can be separated and combined individually.
  • a multi-layer structure allows at least one cooling gas flow path through which the cooling gas from the outside is introduced.
  • the multi-layer structure of the glass window 1 includes a flange plate 13 mounted on a temperature measuring hole, a body plate 14 disposed on the flange plate 13, and a body plate disposed on the body plate 14.
  • the glass 15 detachably mounted to the cover 15, the glass flange 16 disposed on the body plate cover 15, the glass holder 17 disposed on the glass flange 16, and the glass holder 17.
  • the window unit 18 is included. As will be described later, the glass window unit 18 is a slide having a plurality of individual glass windows 11 and is detachably mounted to and detachable from the glass holder 17.
  • first coupling element 191 such as a bolt or screw
  • second coupling element 192 attached to the outside.
  • cooling gas flow path in a desired shape.
  • at least one cooling gas flow path may be provided with two.
  • the first flow path 51 introduces the cooling gas into the see-through hole 12 through the sidewall of the glass window 1, and directs the cooling gas toward the glass window 11.
  • the glass flange 16 and the first guide ring 41 in the glass window 1 of the glass melting furnace temperature measuring apparatus of the present invention forms a first flow path 51.
  • 4 is a view of the glass flange 16
  • FIG. 5 is a view of the first guide ring 41.
  • the glass flange 16 has a donut shape to form a part of the see-through hole 12 as a whole.
  • the inner wall has an inclined surface 162, the inner diameter of which is narrowed upward. That is, the inner wall of the glass flange 16 has a form that is widened downward.
  • the glass flange 16 is formed with a first gas inlet 161 penetrating from the outer wall surface to the inner wall surface. When the cooling gas is injected through the first gas inlet 161, the gas may be injected into the see-through hole 12.
  • the holes formed on the upper surface of the glass flange 16 are coupling holes 163 to which the fastening member is coupled, and one or more holes may be provided.
  • the first guide ring 41 is a donut-shaped ring and is seated on the body plate cover 15 to form an upward first flow path 51 together with the inclined surface 162 of the glass flange 16.
  • the first guide ring 41 has a sidewall 411 having a predetermined height to prevent the cooling gas injected through the first gas inlet 161 from being directed in the horizontal direction.
  • the first guide ring 41 may also have a chamfered portion 413 at an angle outside the top of the sidewall 411 as needed.
  • the first guide ring 41 may be extended to the outside in the lower portion 412 in the form of a flange so as to be stably seated on the body plate cover 15.
  • the first flow path 51 formed by the glass flange 16 and the first guide ring 41 as described above is upwardly cooled over the inner circumference of the see-through hole 12 as shown in FIG. 3. To provide gas. Therefore, it is possible to prevent the fume from sticking to the surface of the glass window 11 exposed in the see-through hole 12.
  • FIG. 6 is a view showing a body plate cover employed in the apparatus for measuring the melting furnace temperature of the present invention, (a) is a perspective view, (b) is a plan view, and (c) is a sectional view.
  • 7 is a view showing a second guide ring employed in the glass melting furnace temperature measuring apparatus of the present invention, (a) is a perspective view and (b) is a sectional view.
  • the second flow path 52 may be formed by the body plate cover 15 and the second guide ring 42.
  • the body plate cover 15 has a donut shape as a whole to form a part of the see-through hole 12 and includes a second gas inlet 151 penetrating from the outer surface to the inner wall surface.
  • the body plate cover 15 has a protruding portion 152 that is narrowed downward so that the gas introduced into the second gas inlet 151 does not face the horizontal direction.
  • the holes formed on the upper surface are the coupling holes 153.
  • the second guide ring 42 has an inclined surface 421 inclined in a direction narrowing downward on the inner surface. Therefore, a second downward flow path 52 is formed by the protrusion 422 and the inclined surface 421.
  • the second guide ring 42 may have a protrusion 422 in the form of a flange on the lower outer side. The second guide ring 42 is disposed on the body plate 14, as shown.
  • the second flow path 52 Since the second flow path 52 is directed to the temperature measuring hole, the second flow path 52 primarily serves to block the fume and heat inside the glass melting furnace toward the glass window 11.
  • the glass holder 17 disposed on the upper end of the glass window 1 has a donut shape as a whole to form a part of the see-through hole 12.
  • the glass holder 17 has guide jaws 171 on both sides thereof.
  • the glass holder 17 is coupled to the glass flange 16 through the coupling hole 172 so that the guide jaw 171 faces downward.
  • the glass window unit 18 is inserted between the guide jaws 171 to be slidably mounted.
  • the glass window unit 18 has one or more glass holes 182 on which the individual glass windows 11 are mounted, and is inserted into the glass holder 17 in the sliding direction. Therefore, one or more individual glass windows 11 mounted on the glass window unit 18 may be selectively used. For example, it may be moved to another glass window 11 to a use position by slidingly moving for cleaning or replacing one glass window 11 in use.
  • the camera unit 2 includes a case 22 and a thermal imager 21 mounted inside the case 22 as described above.
  • the camera unit 2 is disposed so that the thermal imaging camera 21 can photograph the inside of the glass melting furnace through the sight hole 12 of the glass window unit 1.
  • the glass window unit 1 and the camera unit 2 are coupled to the support 3, respectively, so that the rear end of the glass window unit 1 and the front end of the camera unit 2 are maintained in a non-contact state.
  • the infrared ray associated with the thermal image is in a range of 3 to 25 ⁇ m, and the thermal imaging camera 21 operates as if it is similar to a video camera, but detects infrared energy instead of general light to make an image.
  • the case 22 of the camera unit 2 may include a plurality of portions, and may include, for example, a first cover 221, a second cover 222, and a third cover 223.
  • the third cover 223 positioned on the side of the thermal imaging camera 21 may be a double wall having an interspace therebetween.
  • a case glass part 224 is disposed at the tip portion of the case 22, and includes a glass bracket 2241 and a case glass 2242 mounted to the glass bracket.
  • the thermal imager 21 is fixed inside the case by a camera guide bracket 225 disposed outside the case 22 and a camera guide 226 disposed inside the case.
  • Reference numeral 2251 denotes a coupler.
  • the third cover 223 of the case 22 is provided with a cooling gas inlet and a cooling gas outlet to circulate nitrogen for the cooling gas into the space between the double walls.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Radiation Pyrometers (AREA)

Abstract

유리용융로 온도 측정장치가 개시된다. 이는 유리용융로의 온도측정홀에 장착되어 온도측정홀과 연통되고 유리용융로 외측으로 연장된 투시홀을 형성하도록 전체적으로 통형이며, 투시가능한 글라스 윈도우가 구비된 글라스 윈도우부와, 글라스 윈도우부를 통해 유리용융로 내부를 촬영가능하도록 배치되는 열화상카메라가 내장된 카메라부를 포함하고, 글라스 윈도우는, 투시홀에 있어서 유리용융로로부터 먼쪽에 배치된다. 이러한 측정장치는 투시홀 내부로 냉각가스를 상하방향으로 투입함으로써 글라스 윈도우면에 퓨움이 고착되는 것을 방지하고 또한 유리용융로 내의 열기 및 퓨움을 최대한 차단할 수 있다.

Description

유리 용융로 온도 측정장치
본 발명은 방사성 폐기물 처리 분야에 관한 것으로서, 보다 상세하게는 유리 용융로의 온도를 측정하는 장치에 관한 것이다.
방사성 폐기물 처리에 유리화 기술이 유용하게 이용되고 있다. 방사성 폐기물 유리화란 방사성 폐기물의 핵종을 유리의 연결고리에 포집하는 기술로 상당히 안정적인 처리가 가능하다.
유리화 처리를 위해서는 유리용융로에 유리와 함께 방사성 폐기물을 투입하여 용융시킨 후 이를 고화시키면 방사성 폐기물 핵종이 포함된 유리고화체가 생성된다.
이러한 유리용융로에서 현재 사용되고 있는 온도 측정장치는, 한국공개특허 10-2010-0126922호와 같이, 대부분 썸모커플(thermocouple)이며, 이는 측정대상물과 직접 접촉하여 온도를 감지한다. 이렇게 측정대상물과 직접 접촉을 하기 때문에, 썸모커플을 둘러싸고 있는 보호관이 고온의 유리용융물에 노출되어 화학적 부식을 일으키고, 이는 보호관의 수명을 단축시키는 주원인이 되고 있다. 따라서 불가피하게 빈번한 주기로 보호관을 교체하고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국공개특허 10-2010-0126922호
본 발명은 상술한 종래의 문제를 감안한 것으로서, 열화상카메라를 포함하여 유리용융로 내 용융유리의 온도를 간접적으로 측정할 수 있는 유리용융로 온도 측정장치를 제공한다.
본 발명은 열화상카메라를 포함하는 온도 측정장치로서 열화상카메라의 냉각 구성을 구비하여 안정적이고 정밀하게 유리용융로 내 용융유리의 온도를 측정할 수 있는 유리용융로 온도 측정장치를 제공한다.
본 발명은 유리용융로 온도 측정장치를 제공하며, 이 측정장치는: 유리용융로의 온도측정홀에 장착되어 상기 온도측정홀과 연통되고 상기 유리용융로 외측으로 연장된 투시홀을 형성하도록 전체적으로 통형이며, 투시가능한 글라스 윈도우가 구비된 글라스 윈도우부; 및 상기 글라스 윈도우부를 통해 상기 유리용융로 내부를 촬영가능하도록 배치되는 열화상카메라가 내장된 카메라부;를 포함하고, 상기 글라스 윈도우는, 상기 투시홀에 있어서 상기 유리용융로로부터 먼쪽에 배치된다.
상기 글라스 윈도우부는 개별적으로 분리와 결합이 가능한 다층 구조이다.
상기 글라스 윈도우부의 다층구조는 외부로부터의 냉각가스가 유입되는 적어도 하나의 냉각가스 흐름로가 구비된다.
상기 적어도 하나의 냉각가스 흐름로는: 통형의 상기 글라스 윈도우부의 측벽을 통하여 상기 투시홀 내부로 상기 냉각가스를 유입시키며, 상기 냉각가스가 상기 글라스 윈도우 쪽으로 향하도록 유도하는 제1흐름로와, 상기 냉각가스가 상기 온도측정홀 쪽으로 향하도록 유도하는 제2흐름로를 포함한다.
상기 글라스 윈도우부는: 상기 온도측정홀에 장착되는 플랜지 플레이트; 상기 플랜지 플레이트 상에 배치되는 바디 플레이트; 상기 바디 플레이트 상에 배치되는 바디 플레이트 커버; 상기 바디 플레이트 커버 상에 배치되는 글라스 플랜지; 상기 글라스 플랜지 상에 배치되는 글라스 홀더; 및 상기 글라스 홀더에 삽탈가능하게 장착되는 글라스 윈도우 유닛;를 포함한다.
상기 글라스 윈도우 유닛은 개별 글라스 윈도우가 복수개 장착된 슬라이드형이고, 상기 글라스 홀더는 상기 슬라이드형 글라스 윈도우 유닛을 슬라이딩 가능하게 고정한다.
상기 바디 플레이트에 결합되는 지지대를 더 포함하고, 상기 카메라부는 상기 지지대에 결합됨으로써, 상기 글라스 윈도우부의 후단과 상기 카메라부의 선단이 비접촉상태를 유지한다.
상기 카메라부는: 상기 지지대에 결합되는 케이스; 및 상기 케이스 내부에 내장되는 열화상카메라;를 포함한다.
상기 케이스는 벽체의 일부 또는 전부가 사이 공간을 가지는 이중벽으로 이루어지고, 냉각가스가 순환하는 냉각가스 유입구와 배출구를 가진다.
본 발명은 유리용융로내 용융유리의 온도를 직접 접촉하여 측정하지 않고 열화상카메라를 이용하여 간접적으로 측정하기 때문에 측정장비의 수명이 길어진다. 더구나, 이러한 열화상카메라를 채용하는 장치에 있어서, 글라스 윈도우에 퓸이 고착되지 않기 때문에 교체나 정비를 위한 장치의 정지가 줄어든다.
도 1은 본 발명의 유리용융로 온도 측정장치에 대한 도면으로서, (a)는 사시도, (b)는 (a)의 A-A'에 따른 단면도이고, (c)는 (a)의 B-B'에 따른 단면도이고, (d)는 C-C'에 따른 단면도이다.
도 2는 본 발명의 유리용융로 온도 측정장치에 대한 단면도이다.
도 3은 도 2의 유리용융로 온도 측정장치에서 투시홀 부위를 확대한 도면이다.
도 4는 본 발명의 유리용융로 온도 측정장치에 채용된 글라스 플랜지를 보여주는 도면으로서, (a)는 사시도, (b)는 평면도, 및 (c)는 단면도이다.
도 5는 본 발명의 유리용융로 온도 측정장치에 채용된 제1안내링를 도시한 도면으로서, (a)는 사시도, 및 (b)는 단면도이다.
도 6은 본 발명의 유리용융로 온도 측정장치에 채용된 바디 플레이트 커버를 도시한 도면으로서, (a)는 사시도, (b)는 평면도, 및 (c)는 단면도이다.
도 7은 본 발명의 유리용융로 온도 측정장치에 채용된 제2안내링를 도시한 도면으로서, (a)는 사시도 그리고 (b)는 단면도이다.
도 8은 본 발명의 유리용융로 온도 측정장치에 채용된 글라스 홀더를 도시한 도면이다.
도 9는 본 발명의 유리용융로 온도 측정장치에 채용된 글라스 윈도우 유닛을 도시한 도면이다.
[부호의 설명]
1: 윈도우부 2: 카메라부
3: 지지대 11: 글라스 윈도우
12: 투시홀 13: 플랜지 플레이트
14: 바디 플레이트 15: 바디 플레이트 커버
16: 글라스 플랜지 17: 글라스 홀더
18: 글라스 윈도우 유닛 21: 열화상카메라
22: 케이스 41: 제1안내링
42: 제2안내링 51: 제1흐름로
52: 제2흐름로 161: 제1가스주입구
151: 제2가스주입구 171: 가이드턱
221: 제1커버 222: 제2커버
223: 제3커버
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다.
도 1은 본 발명의 유리용융로 온도 측정장치에 대한 도면으로서, (a)는 사시도, (b)는 (a)의 A-A'에 따른 단면도이고, (c)는 (a)의 B-B'에 따른 단면도이고, (d)는 C-C'에 따른 단면도이다. 도 2는 본 발명의 유리용융로 온도 측정장치에 대한 단면도이다. 도 3은 도 2의 유리용융로 온도 측정장치에서 투시홀 부위를 확대한 도면이다.
도면을 참조하여, 본 발명의 유리용융로 온도 측정장치는 글라스 윈도우부(1)와 카메라부(2)를 포함한다.
글라스 윈도우부(1)는 유리용융로의 온도측정홀에 장착되며 투시가능한 글라스 윈도우(11)를 장착된다. 글라스 윈도우부(1)는 전체적으로 통형상을 가짐으로써 유리용융로의 온도측정홀과 연통하는 투시홀(12)을 제공하며, 상술한 글라스 윈도우(11)는 투시홀(12)을 막는 형태로 배치된다. 글라스 윈도우부(1)가 전체적으로 통형이기 때문에 투시홀(12)은 온도측정홀로부터 외측으로 연장된 형태를 가지며, 바람직하게는 글라스 윈도우(11)가 온도측정홀로부터 먼위치에 배치된다.
카메라부(2)는 케이스(22)와 케이스(22) 내부에 장착된 열화상카메라(21)를 포함하며, 내장된 열화상카메라(21)가 글라스 윈도우부(1)의 글라스 윈도우(11) 및 투시홀(12)을 통해 유리용융로의 내부 또는 유리용융물에 대한 온도를 측정하게 된다.
글라스 윈도우부(1)와 카메라부(2)는 지지대(3)에 각각 결합됨으로써 글라스 윈도우부(1)의 후단과 카메라부(2)의 선단이 실질적으로 비접촉인 상태를 유지하게 된다. 따라서 카메라부(2)는 유리용융로의 열이 직접 전달되지 않는다.
보다 구체적으로, 글라스 윈도우부(1)는 개별적으로 분리와 결합이 가능한 다층 구조를 가진다. 이러한 다층구조는 이를 이용하여 외부로부터의 냉각가스가 유입되는 적어도 하나의 냉각가스 흐름로가 구비되도록 한다.
글라스 윈도우부(1)의 다층구조는 온도측정홀에 장착되는 플랜지 플레이트(13)와, 플랜지 플레이트(13) 상에 배치되는 바디 플레이트(14)와, 바디 플레이트(14) 상에 배치되는 바디 플레이트 커버(15)와, 바디 플레이트 커버(15) 상에 배치되는 글라스 플랜지(16)와 글라스 플랜지(16) 상에 배치되는 글라스 홀더(17)와, 글라스 홀더(17)에 삽탈가능하게 장착되는 글라스 윈도우 유닛(18)을 포함한다. 후술되는 바와 같이 글라스 윈도우 유닛(18)은 복수개의 개별 글라스 윈도우(11)를 가지는 슬라이드로서, 글라스 홀더(17)에 슬라이딩 가능하도록 장착되어 삽탈가능하다.
이들 다층구조의 개별층 요소들은 볼트 또는 나사와 같은 제1결합요소(191) 및 외측에 부착되는 제2결합요소(192)를 이용하여 결합된다.
특히 이러한 다층구조는 냉각가스 흐름로를 원하는 형상으로 구현하기에 유리하다. 도시한 실시예에서 적어도 하나의 냉각가스 흐름로는 2개가 구비될 수 있다.
제1흐름로(51)는 글라스 윈도우부(1)의 측벽을 통하여 투시홀(12) 내부로 냉각가스를 유입시키며, 냉각가스가 글라스 윈도우(11) 쪽으로 향하도록 유도하게 된다.
이를 위해, 본 발명의 유리용융로 온도 측정장치의 글라스 윈도우부(1)에는 글라스 플랜지(16)와 제1안내링(41)이 제1흐름로(51)를 형성하게 된다. 도 4는 글라스 플랜지(16)에 대한 도면이고, 도 5는 제1안내링(41)에 대한 도면이다.
도면을 참조하여, 글라스 플랜지(16)는 전체적으로 투시홀(12)의 일부분을 형성하도록 도우넛 형상을 가진다. 또한 제1흐름로(51)를 형성하기 위해 내측벽은 위로 향할수록 내경이 좁아지는 경사면(162)을 가진다. 즉, 글라스 플랜지(16)의 내측벽은 아래로 갈수록 넓어진 형태를 갖는다. 또한 글라스 플랜지(16)는 외벽면에서 내벽면까지 관통된 제1가스주입구(161)이 형성된다. 이러한 제1가스주입구(161)을 통해 냉각가스를 주입하면 투시홀(12)으로 투입될 수 있다. 글라스 플랜지(16) 상면에 형성된 홀들은 체결부재가 결합되는 결합홀(163)이며, 하나 이상이 구비될 수 있다.
제1안내링(41) 역시 도우넛 형상의 링으로서, 바디 플레이트 커버(15) 상에 안착되어 글라스 플랜지(16)의 경사면(162)과 함께 상향의 제1흐름로(51)를 형성한다. 제1안내링(41)은 제1가스주입구(161)을 통해 주입되는 냉각가스가 수평방향으로 향하는 것을 방지하는 측벽(411)이 소정 높이를 가진다. 제1안내링(41)은 또한 필요에 따라서 측벽(411)의 상단 외측이 소정각도의 모따기 부위(413)를 가질 수 있다. 또한 제1안내링(41)은 안정적으로 바디 플레이트 커버(15) 상에 안착될 수 있도록 하단 부위(412)가 플랜지 형태로 외측으로 연장될 수 있다.
이상과 같은 글라스 플랜지(16)와 제1안내링(41)에 의해 형성되는 제1흐름로(51)는 도 3에서 알 수 있는 바와 같이 투시홀(12)의 내측면 둘레에 걸쳐서 상향의 냉각가스를 제공하게 된다. 따라서 투시홀(12)에 노출된 글라스 윈도우(11)의 면에 퓨움(fume)이 고착되는 것을 방지할 수 있게 된다.
도 6은 본 발명의 유리용융로 온도 측정장치에 채용된 바디 플레이트 커버를 도시한 도면으로서, (a)는 사시도, (b)는 평면도, 및 (c)는 단면도이다. 도 7은 본 발명의 유리용융로 온도 측정장치에 채용된 제2안내링를 도시한 도면으로서, (a)는 사시도 그리고 (b)는 단면도이다.
제2흐름로(52)는 바디 플레이트 커버(15)와 제2안내링(42)에 의해 형성될 수 있다. 바디 플레이트 커버(15)는 투시홀(12)의 일부분을 형성하도록 전체적으로 도우넛 형상을 가지며, 외면으로부터 내측벽면까지 관통된 제2가스주입구(151)를 구비한다. 또한 바디 플레이트 커버(15)는 제2가스주입구(151)로 투입된 가스가 수평방향으로 향하지 않도록 아랫방향으로 좁아지는 돌출부위(152)를 가진다. 또한 상면에 형성된 홀들은 결합홀(153)이다.
또한 제2안내링(42)은 내측면에 아랫방향으로 좁아지는 방향으로 경사진 경사면(421)을 가진다. 따라서 돌출부위(422)와 경사면(421)에 의해 하향의 제2흐름로(52)가 형성된다. 또한 제2안내링(42)은 하단 외측부에 플랜지 형태의 돌출부(422)가 형성될 수 있다. 제2안내링(42)은 도시한 바와 같이, 바디 플레이트(14) 상에 배치된다.
이상과 같은 제2흐름로(52)는 온도측정홀을 향하기 때문에 1차적으로 유리용융로 내부의 퓨움(fume) 및 열기가 글라스 윈도우(11) 쪽으로 향하는 것을 차단하는 역할을 한다.
도 8과 도 9은 각각 본 발명의 유리용융로 온도 측정장치의 글라스 윈도우부(1)에 채용되는 글라스 홀더(17)와 글라스 윈도우 유닛(18)을 나타낸다.
글라스 윈도우부(1)의 상단부위에 배치되는 글라스 홀더(17)는, 도 7에 도시한 바와 같이, 투시홀(12)의 일부분을 형성하도록 전체적으로 도우넛 형상을 가진다. 또한 글라스 홀더(17)는 하면 양측에 가이드턱(171)을 가진다. 글라스 홀더(17)는 가이드턱(171)이 아래로 향하도록 글라스 플랜지(16)에 결합홀(172)을 통해 결합된다. 이러한 가이드턱(171) 사이로 글라스 윈도우 유닛(18)이 삽입되어 슬라이딩 가능하게 장착된다.
글라스 윈도우 유닛(18)은 개별 글라스 윈도우(11)가 장착되는 글라스홀(182)을 하나 이상 가지며, 글라스 홀더(17)에 슬라이딩 방향으로 삽입 장착된다. 따라서 글라스 윈도우 유닛(18)에 장착된 하나 이상의 개별 글라스 윈도우(11)를 선택적으로 사용할 수 있다. 예를 들어, 사용중이던 어느 글라스 윈도우(11)의 청소나 교체를 위해 슬라이딩 이동시켜서 다른 글라스 윈도우(11)로 사용위치로 이동시킬 수 있다.
카메라부(2)는 상술한 바와 같이 케이스(22)와 케이스(22) 내부에 장착된 열화상카메라(21)를 포함한다. 이러한 카메라부(2)는 열화상카메라(21)가 글라스 윈도우부(1)의 투시홀(12)을 통해 유리용융로 내부를 촬영할 수 있도록 배치된다. 상술한 바와 같이 글라스 윈도우부(1)와 카메라부(2)는 지지대(3)에 각각 결합되기 때문에 글라스 윈도우부(1)의 후단과 카메라부(2)의 선단은 비접촉상태로 유지된다. 열화상카메라(21)에 있어서 열화상과 관련된 적외선은 3 내지 25㎛ 영역이며, 열화상카메라(21)는 비디오 카메라와 비슷한 것처럼 동작하나 일반적인 빛이 아닌 적외선 에너지를 검출하여 영상을 만든다.
카메라부(2)의 케이스(22)는 다수 부위로 이루어질 수 있는데, 예를 들어, 제1커버(221), 제2커버(222), 및 제3커버(223)을 포함할 수 있다. 특히, 열화상카메라(21)의 측면부위에 위치하는 제3커버(223)은 사이 공간을 가지는 이중벽일 수 있다.
케이스(22)의 선단부위에는 케이스글라스부(224)가 배치되며, 이는 글라스브라켓(2241)과 글라스브라켓에 장착된 케이스글라스(2242)를 포함한다.
열화상카메라(21)는 케이스(22) 외부에 배치되는 카메라가이드 브라켓(225)과 케이스 내부에 배치되는 카메라가이드(226)에 의해 케이스 내부에 고정된다. 도면부호 2251은 결합구이다.
케이스(22)의 제3커버(223)에는 냉각가스 유입구와 냉각가스 배출구가 구비되어 이중벽의 사이공간으로 냉각가스용 질소를 순환시킬 수 있다.

Claims (9)

  1. 유리용융로 온도 측정장치로서:
    유리용융로의 온도측정홀에 장착되어 상기 온도측정홀과 연통되고 상기 유리용융로 외측으로 연장된 투시홀을 형성하도록 전체적으로 통형이며, 투시가능한 글라스 윈도우가 구비된 글라스 윈도우부; 및
    상기 글라스 윈도우부를 통해 상기 유리용융로 내부를 촬영가능하도록 배치되는 열화상카메라가 내장된 카메라부;를 포함하고,
    상기 글라스 윈도우는, 상기 투시홀에 있어서 상기 유리용융로로부터 먼쪽에 배치되는 것인,
    유리용융로 온도 측정장치.
  2. 청구항 1에 있어서,
    상기 글라스 윈도우부는 개별적으로 분리와 결합이 가능한 다층 구조인 것인,
    유리용융로 온도 측정장치.
  3. 청구항 2에 있어서,
    상기 글라스 윈도우부의 다층구조는 외부로부터의 냉각가스가 유입되는 적어도 하나의 냉각가스 흐름로가 구비되는 것인,
    유리용융로 온도 측정장치.
  4. 청구항 3에 있어서,
    상기 적어도 하나의 냉각가스 흐름로는:
    통형의 상기 글라스 윈도우부의 측벽을 통하여 상기 투시홀 내부로 상기 냉각가스를 유입시키며,
    상기 냉각가스가 상기 글라스 윈도우 쪽으로 향하도록 유도하는 제1흐름로와, 상기 냉각가스가 상기 온도측정홀 쪽으로 향하도록 유도하는 제2흐름로를 포함하는 것인,
    유리용융로 온도 측정장치.
  5. 청구항 4에 있어서,
    상기 글라스 윈도우부는:
    상기 온도측정홀에 장착되는 플랜지 플레이트;
    상기 플랜지 플레이트 상에 배치되는 바디 플레이트;
    상기 바디 플레이트 상에 배치되는 바디 플레이트 커버;
    상기 바디 플레이트 커버 상에 배치되는 글라스 플랜지;
    상기 글라스 플랜지 상에 배치되는 글라스 홀더; 및
    상기 글라스 홀더에 삽탈가능하게 장착되는 글라스 윈도우 유닛;를 포함하는,
    유리용융로 온도 측정장치.
  6. 청구항 5에 있어서,
    상기 글라스 윈도우 유닛은 개별 글라스 윈도우가 복수개 장착된 슬라이드형이고,
    상기 글라스 홀더는 상기 슬라이드형 글라스 윈도우 유닛을 슬라이딩 가능하게 고정하는 것인,
    유리용융로 온도 측정장치.
  7. 청구항 5에 있어서,
    상기 바디 플레이트에 결합되는 지지대를 더 포함하고,
    상기 카메라부는 상기 지지대에 결합됨으로써,
    상기 글라스 윈도우부의 후단과 상기 카메라부의 선단이 비접촉상태를 유지하는 것인,
    유리용융로 온도 측정장치.
  8. 청구항 1에 있어서,
    상기 카메라부는:
    상기 지지대에 결합되는 케이스; 및
    상기 케이스 내부에 내장되는 열화상카메라;를 포함하는 것인,
    유리용융로 온도 측정장치.
  9. 청구항 8에 있어서,
    상기 케이스는 벽체의 일부 또는 전부가 사이 공간을 가지는 이중벽으로 이루어지고, 냉각가스가 순환하는 냉각가스 유입구와 배출구를 가지는 것인,
    유리용융로 온도 측정장치.
PCT/KR2013/004368 2013-02-04 2013-05-16 유리 용융로 온도 측정장치 WO2014119821A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CH01119/15A CH709446B1 (it) 2013-02-04 2013-05-16 Apparecchiatura per misurare la temperatura di un forno di fusione del vetro.
US14/765,645 US10107688B2 (en) 2013-02-04 2013-05-16 Apparatus for measuring temperature of glass melting furnace
JP2015555898A JP6045722B2 (ja) 2013-02-04 2013-05-16 ガラス溶融炉の温度測定装置
GB1513465.3A GB2524449B (en) 2013-02-04 2013-05-16 Apparatus for measuring temperature of glass melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130012151A KR101404715B1 (ko) 2013-02-04 2013-02-04 유리 용융로 온도 측정장치
KR10-2013-0012151 2013-02-04

Publications (1)

Publication Number Publication Date
WO2014119821A1 true WO2014119821A1 (ko) 2014-08-07

Family

ID=51132127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004368 WO2014119821A1 (ko) 2013-02-04 2013-05-16 유리 용융로 온도 측정장치

Country Status (6)

Country Link
US (1) US10107688B2 (ko)
JP (1) JP6045722B2 (ko)
KR (1) KR101404715B1 (ko)
CH (1) CH709446B1 (ko)
GB (1) GB2524449B (ko)
WO (1) WO2014119821A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035819B (zh) 2016-11-30 2023-06-02 索尔维公司 先进多孔含碳材料及其制备方法
JP7267878B2 (ja) * 2019-09-06 2023-05-02 株式会社日立国際電気 高温炉内を移動する耐熱撮影カメラ
US11976549B2 (en) * 2020-09-21 2024-05-07 Saudi Arabian Oil Company Monitoring temperatures of a process heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548936A (ja) * 1991-08-21 1993-02-26 Hitachi Zosen Corp 炉内監視カメラの冷却装置
JPH07229796A (ja) * 1994-02-22 1995-08-29 Mitsubishi Heavy Ind Ltd 溶融物質の表面温度測定方法及び装置
KR20010013012A (ko) * 1997-05-29 2001-02-26 마에다 시게루 용융로의 운전제어방법 및 장치
KR100607052B1 (ko) * 2004-04-01 2006-08-01 소재춘 노(爐)내부 삽입형 공랭식 감시카메라용 슬리브 하우징
KR20120028759A (ko) * 2010-09-15 2012-03-23 한국수력원자력 주식회사 용융로 유리용탕 감시 카메라 장치

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1717637A (en) * 1925-08-24 1929-06-18 George M Vastine Observation window for furnaces
US2261211A (en) * 1940-01-22 1941-11-04 Detroit Stoker Co Observation window for furnaces
US3145705A (en) * 1962-10-25 1964-08-25 Riley Stoker Corp Furnace observation window
US3609236A (en) * 1968-09-30 1971-09-28 Bethlehem Steel Corp Apparatus for televising the interior of hazardous chamber
US3718758A (en) * 1969-06-27 1973-02-27 Centre Nat Rech Metall Method and device for monitoring the working of a furnace
US4617638A (en) * 1981-12-08 1986-10-14 Bethlehem Steel Corporation Method and system for determining mass temperature in a hostile environment
US4468771A (en) * 1982-04-19 1984-08-28 Institut Problem Litya Akademii Nauk Ukrainskoi Ssr Light-guide unit for transmitting thermal radiation from molten metal to pyrometer
US4840474A (en) * 1987-07-02 1989-06-20 Heft Dallas E Furnace viewing system
US5162906A (en) * 1988-04-06 1992-11-10 Shinagawa Refractories Co., Ltd. Apparatus for observing the interior of a hot furnace
GB8829695D0 (en) * 1988-12-20 1989-02-15 British Steel Plc Observation of furnace interiors
US5139412A (en) * 1990-05-08 1992-08-18 Weyerhaeuser Company Method and apparatus for profiling the bed of a furnace
US5777668A (en) * 1994-08-25 1998-07-07 Amano & Associates Incorporated Furnace monitoring camera with pivoting zoom lens
US6069652A (en) * 1997-09-26 2000-05-30 Ultrak, Inc. Furnace video camera apparatus
US6111599A (en) * 1998-01-14 2000-08-29 Westinghouse Savannah River Company Apparatus for observing a hostile environment
JPH11351556A (ja) 1998-06-08 1999-12-24 Babcock Hitachi Kk 燃焼炉の燃焼監視装置
US6229563B1 (en) * 1998-07-14 2001-05-08 Fosbel International Limited Camera insertion into a furnace
JP2000295502A (ja) * 1999-04-06 2000-10-20 Asahi Glass Co Ltd 炉内観察装置
GB2365242B (en) * 2000-07-27 2004-09-29 Imaging & Sensing Tech Corp Fluid-powered inspection camera
KR100467747B1 (ko) * 2001-09-01 2005-01-26 주식회사 영국전자 로 내부 감시를 위한 비젼튜브의 자동 추출장치
JP2003083813A (ja) 2001-09-12 2003-03-19 Hitachi Zosen Corp 温度計測方法及び装置
CN1156149C (zh) * 2002-06-25 2004-06-30 北京科技大学 一种插入式炉窑摄象仪
US7316176B2 (en) * 2005-08-26 2008-01-08 Tdw Delaware, Inc. Remote monitor system for a longitudinally positionable control bar
JP2007158106A (ja) * 2005-12-06 2007-06-21 Epicrew Inc 観察装置
US8269828B2 (en) * 2006-12-22 2012-09-18 Perceptron, Inc. Thermal dissipation for imager head assembly of remote inspection device
FR2948223B1 (fr) * 2009-07-17 2011-08-26 Commissariat Energie Atomique Instrument, cellule chaude comportant cet instrument et procede de maintenance de cet instrument
KR101162484B1 (ko) 2010-12-13 2012-07-05 주식회사 우진 방사성 폐기물 유리화 설비 온도 측정용 S-Type 온도측정장치 조립체
TWI583646B (zh) * 2011-02-28 2017-05-21 康寧公司 玻璃熔化方法、系統和設備
US8896661B2 (en) * 2012-01-31 2014-11-25 Siemens Energy, Inc. System and method for online inspection of turbines including aspheric lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548936A (ja) * 1991-08-21 1993-02-26 Hitachi Zosen Corp 炉内監視カメラの冷却装置
JPH07229796A (ja) * 1994-02-22 1995-08-29 Mitsubishi Heavy Ind Ltd 溶融物質の表面温度測定方法及び装置
KR20010013012A (ko) * 1997-05-29 2001-02-26 마에다 시게루 용융로의 운전제어방법 및 장치
KR100607052B1 (ko) * 2004-04-01 2006-08-01 소재춘 노(爐)내부 삽입형 공랭식 감시카메라용 슬리브 하우징
KR20120028759A (ko) * 2010-09-15 2012-03-23 한국수력원자력 주식회사 용융로 유리용탕 감시 카메라 장치

Also Published As

Publication number Publication date
GB2524449A (en) 2015-09-23
JP2016505154A (ja) 2016-02-18
KR101404715B1 (ko) 2014-06-09
CH709446B1 (it) 2016-06-30
JP6045722B2 (ja) 2016-12-14
GB201513465D0 (en) 2015-09-16
US20160003680A1 (en) 2016-01-07
US10107688B2 (en) 2018-10-23
GB2524449B (en) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2014119821A1 (ko) 유리 용융로 온도 측정장치
WO2017026562A1 (ko) 측면 배출게이트가 구비된 플라즈마 용융로
WO2013154331A1 (ko) 플로트 배스 및 이를 포함하는 유리 제조 장치
WO2013042841A1 (ko) 용융유리 배출장치
EP2675357A2 (en) Radiographic apparatus
US4229069A (en) Device for remote viewing of objects in ionizing radiation fields
ITUB20159279A1 (it) Metodo ed apparecchiatura per l'ispezione o l'osservazione operativa di spazi pericolosi, inospitali o spazi con condizioni ambientali ostili
WO2024058324A1 (ko) 의료용 스콥 워머 보관 겸용 충전 발열장치
WO2020256209A1 (ko) 강화유리 제조 장치 및 제조 방법
WO2018056489A1 (ko) 몰드, 몰드셋 및 주조장치
WO2013048067A2 (ko) 슬래그 배출 도어 제조 방법
WO2015080443A1 (en) Continuous temperature measuring device and rh apparatus including the same
WO2012026740A2 (ko) 흡입유체 가열 및 냉각 장치 및 그것을 구비한 흡입유체 공급 시스템
JP3160453U (ja) 高炉用羽口の監視装置
KR101824673B1 (ko) 고온 환경에서의 온도 측정 설비
WO2010147388A2 (ko) 조립 도가니를 구비한 실리콘 잉곳 제조용 도가니
CN109115345A (zh) 一种红外线测温装置以及热处理设备
WO2015102314A1 (ko) 결합 장치
CN208765852U (zh) 一种红外线测温装置以及热处理设备
WO2020004708A1 (ko) 피가열부재의 상태를 계측하기 위한 계측장치 및 이의 제어방법
WO2015199498A1 (ko) 폴리실리콘 절편을 이용한 폴리실리콘 필라멘트 접합장치
WO2015108315A1 (ko) 엑스레이 촬영장치
WO2013036073A2 (ko) 세팔로센서와 파노센서를 포함하는 x선 촬영장치
WO2021045325A1 (ko) 고온의 로 내부 검사 방법 및 상기 방법에 사용되는 영상 촬영 장치
WO2024058605A1 (ko) 폐배터리 재활용 장치용 내화갑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1513465

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130516

Ref document number: 2015555898

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1513465.3

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14765645

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13873930

Country of ref document: EP

Kind code of ref document: A1