WO2014119421A1 - ナノピラー及びその形成方法並びに当該ナノピラーを用いた接合材料、電池、炭酸ガス回収・貯留装置及び電力変換機器用モジュール - Google Patents

ナノピラー及びその形成方法並びに当該ナノピラーを用いた接合材料、電池、炭酸ガス回収・貯留装置及び電力変換機器用モジュール Download PDF

Info

Publication number
WO2014119421A1
WO2014119421A1 PCT/JP2014/051064 JP2014051064W WO2014119421A1 WO 2014119421 A1 WO2014119421 A1 WO 2014119421A1 JP 2014051064 W JP2014051064 W JP 2014051064W WO 2014119421 A1 WO2014119421 A1 WO 2014119421A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanopillar
metal
shape
oxide
nanopillars
Prior art date
Application number
PCT/JP2014/051064
Other languages
English (en)
French (fr)
Inventor
隆彦 加藤
精一 渡辺
岩崎 富生
宝蔵寺 裕之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2014119421A1 publication Critical patent/WO2014119421A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • ZnO Zinc Oxide
  • One of them is usage that makes use of the characteristics of being transparent and conductive.
  • a transparent electrode used for a flat panel display (FPD) and a white light emitting diode (white LED).
  • FPD flat panel display
  • white LED white light emitting diode
  • the other is to use the characteristics of the semiconductor itself.
  • a transparent thin film transistor transparent TFT
  • transparent TFT transparent TFT
  • white LEDs using ZnO as a transparent electrode have been produced by molecular beam epitaxy and have already been put into practical use. Thereby, it became possible to improve the luminous efficiency of white LED.
  • ZnO transparent electrodes are attracting attention as an alternative to transparent electrodes of indium tin oxide (ITO) used for FPDs such as liquid crystal displays and plasma displays (PDP) in addition to LEDs.
  • ITO indium tin oxide
  • PDP liquid crystal displays and plasma displays
  • ITO indium tin oxide
  • an apparatus capable of forming a film with a large area of 1 m ⁇ 1 m or more is required.
  • 30 cm ⁇ 30 cm is the limit, and it is difficult to form a film with a large area. For this reason, development of a new film forming method that enables a large area such as a reactive plasma deposition (RPD) method is underway.
  • RPD reactive plasma deposition
  • the first step is to produce p-type ZnO.
  • a-Si TFT amorphous silicon TFT
  • ZnO nanowires oriented in a direction perpendicular to the substrate on the surface of a silicon (Si) substrate and evaluate the structure.
  • ZnO nanowires are known as nanostructures useful as laser elements that emit light in the ultraviolet region.
  • Au (gold) atoms are dispersedly supported on the surface of the Si substrate, and ZnO nanowires are grown by the VLS (Vapor-Liquid-Solid) method. Has been adopted.
  • a method for producing ZnO nanowires in which a germanium (Ge) thin film having a eutectic point with Zn is formed on the surface of a Si substrate and oriented in a direction perpendicular to the surface of the Si substrate by a vapor transport method has been developed.
  • This manufacturing method is simple. First, ZnO powder and carbon (C) powder are enclosed in a quartz tube and heated to 1100 ° C. in an electric furnace. ZnO is reduced by carbon (C) powder to become Zn particles. The vapor of Zn particles moves to the surface of the substrate having a low temperature and is deposited. The deposited Zn particles are oxidized by O 2 (oxygen) gas introduced at 100 ml / min to form ZnO nanowires.
  • the prepared ZnO nanowire has a tip portion with a diameter of 30 nm, a root of 200 nm, a length of 3 ⁇ m, and an orientation density of 6 ⁇ 10 12 / m 2 .
  • the produced ZnO nanowire is a single crystal, and its growth direction is the [001] direction (c-axis direction). Identified.
  • the ZnO nanowire obtained by this production method has many oxygen vacancies and crystal defects, so that satisfactory optical characteristics are not obtained by PL (photoluminescence) spectrum measurement. In the future, in order to increase the light emission efficiency as a laser element, development of a manufacturing method for removing such defects is expected.
  • zinc oxide crystal particles are manufactured by applying laser ablation effect, which is generally used as a particle production method, by irradiating metal zinc with laser in aqueous surfactant solution.
  • Methods Patent Document 1 and Patent Document 2 are disclosed.
  • a surface structure having zinc oxide nanopillars or nanorods cannot be formed.
  • Patent Document 3 describes that metallic aluminum was immersed in a solution containing nitrous oxide (N 2 O), irradiated with ultraviolet rays, and an oxide film was attached to 10.9%. Patent Document 3 clarifies that nitrous oxide is an essential component in principle in order to obtain an oxidation effect. However, it is only effective in increasing the thickness of the oxide film, and is not a technique for forming a surface structure having nanopillars or nanorods.
  • nitrous oxide N 2 O
  • Patent Document 3 clarifies that nitrous oxide is an essential component in principle in order to obtain an oxidation effect. However, it is only effective in increasing the thickness of the oxide film, and is not a technique for forming a surface structure having nanopillars or nanorods.
  • Non-Patent Document 1 describes a method of solving a Schroedinger equation in quantum mechanics, a so-called first principle calculation method, among molecular dynamics calculation methods.
  • An object of the present invention is to provide a method of easily forming nano-pillars such as needles, columns, and rods formed of an oxide of the metal on the surface of the metal.
  • FIG. 9B is a cross-sectional view taken along line AB of the Zn nanopillar of FIG. 9A. It is a model side view which shows the analysis result of the decomposition reaction of water in the front-end
  • the metals include Li, Be, Na, Mg, K, Ca, Rb, Sr, Cs, Ba, Fr and Ra alkali metals or alkaline earth metals, Sc, Ti, V, Cr, Mn, Fe , Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg transition metals, and Al, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi and Po P metal is included.
  • metal oxide-based crystal nanopillars or alloy oxide-based crystal nanopillars were found to have the following characteristics from the shape evaluation, component analysis, and X-ray diffraction measurement (XRD) of the formed nanopillars.
  • a joined body using a surface having a nanopillar structure made of the above-described metal crystal as a joined portion is the joined body of the present invention. That is, a reducing substance between the surface having the nanopillar structure made of the metal oxide crystal and any other substance, metal, alloy surface, or surfaces having the nanopillar structure made of the metal oxide crystal. It was also found that by reducing nanopillars through a reducing atmosphere, the surface having nanopillar structure and the surface of another substance, metal, alloy, or nanopillar structure made of metal oxide crystals can be joined together. .
  • the method for forming a bonded body and the bonded body itself are obtained by applying the method for forming a surface having a nanopillar structure made of a metal oxide crystal of the present invention.
  • the surface of the metal oxide nanopillar obtained in the present invention can also be used as the surface of a high-efficiency carbon dioxide absorber, and is adsorbed by a carbon dioxide adsorption / recovery / storage (CCS) device attached to a thermal power plant. It has been found that it can also be used as a body element material. In this case, the nanopillar surface or nanopillar formed with ceria formed by the forming method of the present invention using Ce as a metal was particularly effective.
  • the nanopillar includes a metal oxide and a hydroxide.
  • the shape of the nanopillar is a needle shape, a column shape, a rod shape, a tube shape, a scale shape, a lump shape, a flower shape, a branch shape, or an amorphous convex shape.
  • the surface of the substrate whose roughness has been increased by machining has a structure in which irregularities with different periods overlap.
  • the size of the projections and depressions is as follows.
  • the size of the bottoms of the projections is 10 nm or more on average, and the interval between adjacent projections is 10 nm or more on average.
  • there are fine irregularities in FIG. 3A and there are irregularities with a large period in which the interval between adjacent convex portions is 5 to 10 ⁇ m or more on average.
  • the Zn nanopillars and the Zn flat surface are naturally Analysis of electron distribution and water decomposition reaction on the oxidized surface was carried out by molecular dynamics calculation.
  • FIG. 5B and 5C show the Zn nanopillar 10 shown in FIG. 5A in which an electron cloud having a predetermined electron density is displayed in a semi-transparent manner, such as 1.5 electrons / ⁇ 3 and 2.0 electrons / ⁇ 3 , respectively.
  • the electron density surface is shown.
  • FIG. 5F, FIG. 5G, and FIG. 5H are a side view of a state in which a flat surface of Zn is naturally oxidized instead of a Zn nanopillar.
  • FIG. 5G and FIG. 5H show the electron clouds having a predetermined electron density in a semi-transparent manner and superimposed, and show the isoelectron density surfaces of 1.5 electron / ⁇ 3 and 2.0 electrons / ⁇ 3 respectively. .
  • FIG. 5G shows an isoelectron density surface 4 of 1.5 electrons / ⁇ 3 slightly, but FIG. 5H does not show an isoelectron density surface of 2.0 electrons / ⁇ 3 . From this result, in the case of the Zn nanopillar 10 (FIG. 5C), an isoelectron density surface 5 of 2.0 electrons / ⁇ 3 is generated, whereas on the flat surface (FIG. 5H), a place with a high electron density does not occur. Recognize.
  • FIG. 8B and 8C show the Zn nanopillars of FIG. 8A superimposed with a semitransparent electron cloud having a predetermined electron density, which is 1.5 electrons / ⁇ 3 and 2.0 electrons / ⁇ 3 respectively. The density surface is shown.
  • the water molecules 11 are also decomposed in the Zn nanopillar 30 in a state where the hydrogen termination is not performed (a state in which the hydrogen atom 3 does not exist).
  • the product becomes two OH radicals 23 and one hydrogen molecule 22 (H 2 ), unlike the case where the hydrogen termination shown in FIG. 6 is performed. Therefore, even in a state not hydrogen terminated by a convex portion to cause 2.0 electrons / ⁇ 3 or more equal electron density surface 5 1 or more provided uneven surface, the decomposition reaction of water is promoted I understand that.
  • FIG. 11 is an SEM image showing the formation process of the nano pillar surface of the Cu oxide crystal.
  • the surface (a) obtained by machining the surface of a copper (Cu) plate having a purity of 99% or more is made into a surface (b) roughened by submerged discharge treatment by applying a voltage of 130 V for 10 minutes in a K 2 CO 3 solution.
  • FIG. 12 shows XRD measurement results corresponding to the surfaces shown in (a), (b) and (c) of FIG.
  • FIG. 13 is an SEM image showing the formation process of the nano pillar surface of the Al oxide-based crystal.
  • the surface (a) obtained by machining the surface of an aluminum (Al) plate having a purity of 99% or more is made into a surface (b) roughened by submerged discharge treatment by applying a voltage of 120 V for 10 minutes in a K 2 CO 3 solution. Thereafter, the surface (c) immersed in pure water (electric conductivity of 1.0 ⁇ S / cm or less) and irradiated with light having a wavelength of 365 nm by an ultraviolet LED lamp for 24 hours was observed with each SEM. It is the result.
  • FIG. 15 shows the damage mechanism assumed here.
  • the joint material 41 constituting the joint between the chip and the electrode has an interface in contact with the chip and the electrode.
  • the joint material 41 has grain boundaries 42 and vacancies 43 (atomic vacancies) inside thereof.
  • the holes 43 should be referred to as thermal equilibrium holes, and are generated by thermal equilibrium even at room temperature.
  • the vacancies 43 serve as a carrier for the movement of atoms, and the movement of atoms causes void formation and causes damage.
  • FIG. 17 is an SEM photograph showing the surface of the Cu-based material before bonding.
  • (a) is a surface roughened by in-liquid discharge treatment by applying a voltage of 130 V for 10 minutes in a K 2 CO 3 solution, and (b) is then pure water (electric conductivity 1.0 ⁇ S). / Cm or less) and irradiated with light having a wavelength of 365 nm for 24 hours by an ultraviolet LED lamp. It can be seen that an oxide-based nanopillar surface having a structure in which scale-like or flower-like and amorphous convex portions are mixed is obtained.
  • the joined body was manufactured using the surface shown in FIG. 17B, but the joined body front surface nanopillar shape of the present invention is not limited to this, and is a columnar shape, a tubular shape. Scale-like, lump-like, flower-like, branch-like, or amorphous convex nano-pillar surfaces can be reduced and bonded.
  • the chip material of the power conversion device module used here may be Si, SiC, or GaN, and the plating layer on the chip bonding side and the nano pillar bonding surface showed a good bonding strength of 20 to 30 MPa or more.
  • the metal on the electrode side for example, Ti, Zr, Nb, Mo, Ta, W, Cr or Cu, and the nanopillar bonding surface showed a good bonding strength of 20 to 30 MPa or more.
  • FIG. 18 shows a negative electrode manufacturing process of a lithium ion battery.
  • Step 1 a metal Cu foil 1312 having an oxide-based nanopillar surface 1311 produced by the forming method of the present invention in which metal Cu foil is immersed in water and irradiated with light having a wavelength of 365 nm for 24 hours is produced.
  • Step 2 Si particles 1324 having an average diameter of about 20 to 200 nm are dispersed and mixed between the nanopillar structures 1323 as shown in this cross-sectional view, as shown in the cross section 1322 of the Cu foil having the oxide-based nanopillar structure as a surface.
  • Cu foil 1321 was prepared.
  • step 3 the electrode slurry 1331 is adjusted by mixing the binder and carbon (C) particles as the electrode aid.
  • this electrode slurry is applied as a slurry layer 1342 to the Si particle-dispersed Cu foil 1341, heat-treated at 80 to 100 ° C. for about 2 hours, and primarily dried. Thereafter, the Cu foil is roll-pressed in step 5, and further heat-treated at 100 to 120 ° C. for about 2 hours in step 6 and secondarily dried.
  • a negative electrode component 1371 is manufactured by punching a Cu foil into an arbitrary shape from the Cu foil after secondary drying.
  • step 8 the two negative electrode components 1381 produced in step 7 are bonded to each other on the side having the nanopillar surface to form a negative electrode 1382.
  • Step 9 a large number of pores having a diameter on the order of micrometers serving as lithium ion entrances and exits are provided as vias 1391 vacated by laser via machining or machining to produce a negative electrode 1392.
  • a pressure heat treatment may be used, but a method in which a mechanical frame is provided around the negative electrode component 1381 to pressurize can also be used.
  • Step 10 is incorporation into a device for measuring the cycle characteristics of the negative electrode 13101.
  • This device is composed of metallic lithium 13102, a separator 13103, a spacer 13104, an electrolyte solution 13105, and a Cu current collector 13106, which are the counter electrodes of the negative electrode 13101, and the movement of lithium ions 13107 during charging and the lithium ions during discharging. Movement 13108 is indicated by a thick arrow.
  • FIG. 19 shows the cycle characteristics of a lithium ion battery negative electrode produced by the method of the present invention.
  • the oxide-based nanopillar surface 1311 produced by the forming method of the present invention in which the metal Cu foil in Step 1 was immersed in water and irradiated with light having a wavelength of 365 nm for 24 hours was further added to 100% hydrogen.
  • the same cycle characteristics as in FIG. 19 were obtained even in a metal Cu foil 1312 having a metal Cu nanopillar structure by reduction treatment at a temperature of 200 to 400 ° C. and a holding time of 300 s in an atmosphere.
  • the method for forming a surface structure having metal nanopillars of the present invention can also be used for electrodes.
  • This example shows another example in which the method for forming a surface having a nanopillar structure of the present invention is applied to a battery electrode.
  • FIG. 20 shows a negative electrode manufacturing process of a lithium ion battery.
  • a metal foil 1511 having an oxide-based nanopillar surface 1512 produced by the forming method of the present invention is produced by immersing the metal foil in water and irradiating light with a wavelength of 365 nm for 24 hours.
  • the electrode slurry 1521 is adjusted by mixing the binder and the C particles as the electrode aid.
  • this electrode slurry is applied as a slurry layer 1532 to the metal foil 1531, heat-treated at 80 to 100 ° C. for about 2 hours, and primarily dried. Thereafter, in step 4, the metal foil is roll-pressed.
  • Step 5 heat treatment is performed at 100 to 120 ° C. for about 2 hours, followed by secondary drying.
  • Step 6 a negative electrode component 1561 is manufactured by punching a metal foil into an arbitrary shape from the metal foil after secondary drying.
  • Step 7 the two negative electrode parts 1571 produced in Step 6 are bonded to each other on the side having the nanopillar surface to form a negative electrode 1572.
  • Step 8 a large number of pores having a diameter on the order of micrometers serving as lithium ion entrances and exits are provided as vias 1581 vacated by laser via machining or machining to produce a negative electrode 1582.
  • a pressure heat treatment may be used, but a method in which a mechanical frame is provided around the negative electrode component 1571 and the pressure is applied can also be used.
  • Step 9 is incorporation into a device for measuring the cycle characteristics of the negative electrode 1591.
  • This apparatus is composed of metallic lithium 1592, a separator 1593, a spacer 1594, an electrolytic solution 1595, and a metal current collector 1596, which are counter electrodes of the negative electrode 1591.
  • the movement of lithium ions 1597 during charging and the lithium ions during discharging. Movement 1598 is indicated by a thick arrow.
  • FIG. 21 shows the cycle characteristics of the negative electrode of a lithium ion battery produced by the method of the present invention.
  • a lithium ion battery using a lithium ion negative electrode that uses a metal plate as a current collector and an oxide-based nanopillar structure formed on the surface of the current collector by the formation method of the present invention as an active material has cycle characteristics. Was found to work as a good battery.
  • FIG. 22 is an SEM image showing the nanopillar surface of Ce oxide-based crystal.
  • the surface of the nanopillar shown in this figure is a surface roughened by submerged discharge treatment by applying a voltage of 130 V in a NaOH solution for 10 minutes after machining the surface of a cerium (Ce) plate having a purity of 99% or more.
  • the light intensity in this example was 2 Wm ⁇ 2 when measured 5 cm away from the ultraviolet LED lamp, and the output was 100 W.
  • the light intensity is not particularly limited to this condition.
  • Surface nanopillars could be produced in the same manner even when the mercury lamp or xenon flash lamp was used to change the range to 185 to 800 nm.
  • the step of roughening the surface before the light irradiation is changed to a K 2 CO 3 solution, similarly, by irradiation with light in water, from the cerium oxide in the form of needles, rods, scales, and lumps. A large number of nanopillars can be simultaneously assembled on the Ce plate.
  • FIG. 23 is a configuration diagram showing a CO 2 recovery / storage system for coal-fired power generation using a solid-type CO 2 adsorbent having a nanopillar surface made of ceria in FIG.
  • 23 is a system for generating electricity by burning coal 182 together with air 183 in a boiler 181 and rotating a steam turbine 185 using generated steam 184.
  • This coal-fired power generation system efficiently recovers CO 2 after exhaust gas treatment 188 that removes nitrogen oxides (NOx) 186, sulfur oxides (SOx) 187, etc., in order to suppress CO 2 emissions into the atmosphere.
  • a CO 2 recovery device 189 is provided.
  • the recovery towers 1810 and 1811 are alternately switched to recover CO 2 .
  • the nanopillar of the present invention made of ceria shown in FIG. 22 is used as a solid-type CO 2 adsorbent, and after passing through the CO 2 adsorption process, the stack 1813 has a concentration sufficiently lower than the CO 2 reference value.
  • the CO 2 gas 1814 regenerated through the recovery tower 1811 is compressed by a compressor 1815 and stored in a storage system 1816.
  • the solid-type CO 2 adsorbent having the nanopillar structure of the present invention made of ceria shown in FIG. 22 can efficiently adsorb CO 2 even in the presence of moisture. Therefore, the CO 2 recovery / storage system as shown in FIG. 23 is also the system of the present invention.
  • nanopillars made of metal oxide crystals on the metal surface various metals are used, a metal plate is immersed in pure water (electric conductivity of 1.0 ⁇ S / cm or less), and 185 is deposited on the metal surface. Irradiation with light having a wavelength selected from ⁇ 800 nm was performed to observe the formation of nanopillar structures made of oxide crystals.
  • the surface of the oxide nanopillar of the present invention containing Zn, Cu and Al described in Examples 1, 2, 4 and 5 is brought into contact with a liquid substance such as water or seawater, hydrophobicity is caused by the oxide nanopillar. It was shown that the contaminants were washed away from the surface along with the liquid material. By utilizing this action, the surface having the metal oxide crystal nanopillar structure of the present invention can be used as an antifouling surface.
  • the hydrophobic performance can be controlled, enhanced, or reduced.
  • the material which controls the adsorption amount of a substance, a water repellent material, a hydrophilic material, and a lipophilic material can be formed.
  • solvents examples include hydrocarbon solvents such as hexane, cyclohexane, and toluene; chlorinated hydrocarbon solvents such as dichloroethylene, dichloroethane, and dichlorobenzene; tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, 1, 3 -Cyclic ether solvents such as dioxolane and trioxane; Amides solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; Sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; Acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, etc.
  • hydrocarbon solvents such as hexane, cyclohexane, and toluene
  • chlorinated hydrocarbon solvents such as dichloroethylene, dichloroethane, and dich
  • Ketone solvents alcohol compounds such as ethanol, 2-propanol, 1-butanol and diacetone alcohol; 2,2,4-trimethyl-1,3-pentanediol monoa Tate, 2,2,4-trimethyl-1,3-pentanediol monopropiolate, 2,2,4-trimethyl-1,3-pentanediol monobutyrate, 2,2,4-trimethyl-1,3 -Ester solvents of polyhydric alcohols such as pentanediol monoisobutyrate, 2,2,4-triethyl-1,3-pentanediol monoacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate; butyl cellosolve, diethylene glycol monobutyl ether , Ether solvents of polyhydric alcohols such as diethylene glycol diethyl ether; ⁇ -terpinene, ⁇ -terpineol, myrcene
  • the solvent is preferably at least one selected from an ester solvent of a polyhydric alcohol, a terpene solvent, and an ether solvent of a polyhydric alcohol from the viewpoints of coatability and printability. More preferably, it is at least one selected from an ester solvent of alcohol and a terpene solvent. Furthermore, in the present invention, the above solvents may be used alone or in combination of two or more.
  • the resin is not particularly limited.
  • cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and nitrocellulose
  • polyvinyl alcohols such as polyvinyl alcohols
  • polyvinyl pyrrolidones acrylic resins
  • vinyl acetate-acrylate copolymers such as polyvinyl butyral
  • butyral resins such as polyvinyl butyral
  • phenol-modified alkyd resins examples include alkyd resins such as castor oil fatty acid-modified alkyd resins; epoxy resins; phenol resins; rosin ester resins.
  • it may be a fluorine-based resin; (difluoromethylene) fluoronium, trifluoromethanide, trifluoromethanide, trifluoromethyl cation, trifluoromethylium, trifluoromethaneylium, or trifluoromethyl radical.
  • said resin it is preferable that it is at least 1 sort (s) chosen from a cellulose resin and an acrylic resin from a viewpoint of the loss
  • the above resins may be used singly or in combination of two or more.
  • the weight average molecular weight of the resin in the present invention is not particularly limited.
  • the weight average molecular weight is preferably from 5,000 to 500,000, and more preferably from 10,000 to 300,000. It can suppress that the viscosity of an adhesive composition increases that the weight average molecular weight of the said resin is 5000 or more.
  • the weight average molecular weight of the resin is 500000 or less, aggregation of the resins in the solvent is suppressed, and an increase in the viscosity of the adhesive composition can be suppressed.
  • the hydrophobic performance can be controlled, enhanced, or reduced in the same manner as described above. It is possible to form materials that control the amount of adsorption of substances, water repellent materials, hydrophilic and lipophilic materials. Further, it was found that a surface having a low coefficient of friction or a surface having a high coefficient of friction can be formed as a part of the above surfaces.
  • the surface having the nanopillar structure made of the metal oxide crystal of the present invention or the surface having the nanopillar structure made of the metal crystal can be used as the wettability control function surface of the liquid substance. It is.
  • FIG. 24 is an SEM image showing a nano pillar surface of a Ce oxide-based crystal formed by irradiation with visible light.
  • the Ce substrate was machined under the same conditions as in Example 9, and after applying a voltage of 130 V for 10 minutes in a NaOH solution and roughening by submerged discharge treatment, pure water (electric conductivity 1.0 ⁇ S) was obtained.
  • pure water electric conductivity 1.0 ⁇ S
  • visible light with a wavelength of 400 to 600 nm was irradiated for 3 hours to obtain a nano pillar surface of a Ce oxide crystal.
  • the nano pillars of Ce oxide-based crystals are needle-shaped or rod-shaped.
  • FIG. 25 is an SEM image showing a comparative example in which light was not irradiated to a Zn substrate immersed in pure water (electric conductivity of 1.0 ⁇ S / cm or less).
  • A is a surface obtained by subjecting a Zn substrate to mechanical polishing
  • (b) is a surface after being immersed in pure water (electric conductivity of 1.0 ⁇ S / cm or less) for 144 hours without irradiation with light. It is.
  • (B) of this figure shows that nanopillars are not formed when light is not irradiated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、金属酸化物を含むナノピラーを金属の表面に形成する方法であって、金属と、金属に接触した水との界面に波長185~800nmの光を照射するものである。光を照射する前に、金属の表面を粗化することが望ましい。これにより、金属の表面に該金属の酸化物系結晶から構成される針状、柱状、ロッド状などの複数のナノピラーを同時に形成・被覆できる。

Description

ナノピラー及びその形成方法並びに当該ナノピラーを用いた接合材料、電池、炭酸ガス回収・貯留装置及び電力変換機器用モジュール
 本発明は、金属酸化物又は金属のナノピラー及びその形成方法に関する。
 ZnO(酸化亜鉛:Zinc Oxide)を代表とする金属酸化物系結晶の工業的な用途が拡大しつつある。
 ZnOは、工業的には、金属亜鉛を加熱、気化して空気で燃焼させる方法、又は硫酸亜鉛若しくは硝酸亜鉛を燃焼させる方法により製造する。ZnOは、粒径0.1μm以下と細かい白色の粉末状材料であり、毒性がないことなどから、白色顔料として多用されている。このほか、ゴムの加硫促進助剤、塗料、印刷インキ、医薬品、歯科材料など多様な用途に普及している。
 一方、近年、新たな用途が注目されている。
 その一つは、透明で導電性を持つという特徴を活かした使い方である。例えば、フラットパネル・ディスプレイ(FPD)や白色発光ダイオード(白色LED)に用いる透明電極として期待されている。
 もう一つは、半導体としての特性そのものを利用しようとする使い方である。例えば、FPD駆動用の透明薄膜トランジスタ(透明TFT)や白色LED向けの近紫外LEDである。ZnOを透明電極として用いた白色LEDは、分子線エピタキシー法により製造され、すでに実用化されている。これにより、白色LEDの発光効率を高めることが可能となった。
 ZnO透明電極は、LED以外にも液晶ディスプレイやプラズマディスプレイ(PDP)などのFPDに用いる酸化インジウムスズ(ITO)の透明電極の代替材としても注目されている。FPD用のITOを代替するためには、1m×1m以上の大面積で成膜できる装置が必要である。分子線エピタキシー法では30cm×30cmが限界であり、大面積の成膜は難しい。このため、例えば反応性プラズマ蒸着(RPD)法といった大面積を可能にする新しい成膜方法の開発が進められている。
 透明電極に続いて、ZnOの半導体としての特徴を活かした発光デバイスとしての可能性に注目が集まってきている。例えば、ZnOの励起子の束縛エネルギーがGaN(28meV)などと比べて60meVと大きいことに着目して、GaNを超える発光デバイスを目指して研究が進められている。その第一歩は、p型ZnOを作製することであるが、コンビナトリアルケミストリーの手法を応用することによって実験のスピードが格段にはやくなり、より系統的な研究が行えるようになってきている。
 さらに、透明なTFTの研究も活発化している。例えば、ZnOを用いたTFTに関しては、ゲート電界によりZnOの電子が蓄積状態(ON状態)、空乏状態(OFF状態)にコントロールされていることが明らかとなっている。そして、ZnOを用いたTFTの電界効果移動度は、2.3cm/Vsであり、アモルファスシリコンTFT(a-Si TFT)よりも高いという結果が知られている。
 一方、基板に垂直な方向に配向したZnOナノワイヤーをシリコン(Si)基板の表面に形成し、その構造を評価する研究も行われている。ZnOナノワイヤーは、紫外領域の光を発するレーザ素子として有用なナノ構造体として知られている。しかし、Znは、基板材のSiと共晶点を持たないため、従来はAu(金)原子をSi基板の表面に分散担持し、VLS(Vapor-Liquid-Solid)法によってZnOナノワイヤーを成長させる方法が採用されてきた。
 Znと共晶点を持つゲルマニウム(Ge)薄膜をSi基板の表面に形成し、気相輸送法によってSi基板の表面に垂直な方向に配向させるZnOナノワイヤーの作製方法も開発されている。
 この作製方法は、シンプルである。まず、石英管内部にZnOパウダーと炭素(C)パウダーを封入し、電気炉で1100℃まで加熱する。ZnOは、炭素(C)パウダーによって還元され、Zn粒子となる。Zn粒子の蒸気は、温度の低い基板の表面に移動し、堆積する。堆積したZn粒子は、100ml/minで導入しているO(酸素)ガスによって酸化され、ZnOナノワイヤーを形成する。作製されたZnOナノワイヤーは、先端部の直径が30nm、根元が200nm、長さが3μmであり、配向密度は6×1012本/mである。
 また、SAED(制限視野電子線回折)およびHRTEM(高分解能電子顕微鏡)による解析により、作製されたZnOナノワイヤーが単結晶であり、その成長方向は[001]方向(c軸方向)であると同定された。
 この作製方法で得られたZnOナノワイヤーは、酸素欠損や結晶欠陥が多く存在するため、PL(フォトルミネッセンス)スペクトル測定によって満足できる光学特性は得られていない。今後、レーザ素子としての発光効率を上げるため、こうした欠陥を取り除く製造方法の開発が期待されている。
 このように、金属酸化物であるZnO結晶の製造方法を例に取り上げても、(1)金属亜鉛加熱・気化・空気燃焼法、(2)硫酸亜鉛燃焼法、(3)硝酸亜鉛燃焼法、(4)分子線エピタキシー法、(5)反応性プラズマ蒸着法、(6)VLS法、(7)気相輸送法など多数の方法が用いられている。しかしながら、いずれの方法も、多量の電気エネルギーや熱エネルギーの投入と共に、ZnO結晶の成長を可能とするために金属と酸素との反応を制御する高価な手段や高精度の反応装置を用いる。いわゆる反応時間のかかる製造方法であり、これら以外の方法が考えられていないのが現状である。また、これらの製造方法に関する文献の中には、安価で単純に材料表面に金属酸化物系結晶ナノピラーを形成することができる方法は言及されていない。
 さらに、金属全般を対象とした金属酸化物の製法としては、界面活性剤水溶液中で金属亜鉛にレーザ照射し、一般に粒子製造法として用いられているレーザアブレーション効果を応用した酸化亜鉛結晶粒子の製造方法(特許文献1及び特許文献2)が開示されている。しかしながら、酸化亜鉛のナノピラーやナノロッドを有する表面構造を形成することはできていない。
 また、特許文献3には、金属アルミニウムを、亜酸化窒素(NO)を含む溶液に浸漬し、紫外線を照射し、酸化皮膜を10.9Å付けたことが記載されている。特許文献3では、酸化効果を得るために亜酸化窒素が原理的に必須の成分であることを明らかにしている。しかしながら、酸化皮膜の厚さを増加する効果があるのみであり、ナノピラーやナノロッドを有する表面構造を形成する手法ではない。
 非特許文献1には、分子動力学計算手法のうち、量子力学におけるシュレーディンガー方程式を解く方法、いわゆる第一原理計算の手法が記載されている。
特開2009-57568号公報 特開2005-264089号公報 特開2006-8499号公報
Kohn, W.; Sham, L. J. "Self-consistent equations including exchange and correlation effects", Phys. Rev. A, 140, 1133-1138 (1965)
 本発明の目的は、金属の表面に該金属の酸化物で形成された針状、柱状、ロッド状などのナノピラーを簡単に形成する方法を提供することにある。
 本発明は、金属と、金属に接触した水との界面に波長185~800nmの光を照射し、金属と水との反応により、金属酸化物を含むナノピラーを金属の表面に形成することを特徴とする。
 本発明によれば、金属の表面に該金属の酸化物で形成された針状、柱状、ロッド状などのナノピラーを簡単に形成することができる。
 また、本発明によれば、当該ナノピラーを用いた種々の機能性部材を作製することができる。
Zn酸化物系結晶で形成されたナノピラーを有する表面構造(ナノピラー表面)を示すSEM画像である。 図1のナノピラー表面のX線回折(XRD)の測定結果を示すグラフである。 一様に形成されたZn酸化物系結晶のナノピラー表面を示すSEM画像である。 フラワー状に形成されたZn酸化物系結晶のナノピラー表面を示すSEM画像である。 実施例のZn酸化物系結晶のナノピラー表面の形成過程を示すSEM画像である。 自然酸化したZnナノピラーにおける原子の配置を示す模式側面図である。 図5AのZnナノピラーにおける電子分布を示す模式側面図である。 図5AのZnナノピラーにおける電子分布を示す模式側面図である。 図5AのZnナノピラーにおける原子の配置を示す模式上面図である。 図5DのZnナノピラーのA-B断面図である。 自然酸化したZn平滑面における原子の配置を示す模式断面図である。 図5FのZn平滑面における電子分布を示す模式断面図である。 図5FのZn平滑面における電子分布を示す模式断面図である。 図5AのZnナノピラーの先端部における水の分解反応の解析結果を示す模式側面図である。 図5FのZn平滑面に接触する水の状態を解析した結果を示す模式断面図である。 自然酸化したZnナノピラーにおける原子の配置を示す模式側面図である。 図8AのZnナノピラーにおける電子分布を示す模式側面図である。 図8AのZnナノピラーにおける電子分布を示す模式側面図である。 図8AのZnナノピラーにおける原子の配置を示す模式上面図である。 図9AのZnナノピラーのA-B断面図である。 図8AのZnナノピラーの先端部における水の分解反応の解析結果を示す模式側面図である。 実施例のCu酸化物系結晶のナノピラー表面の形成過程を示すSEM画像である。 図11のナノピラー表面のXRDの測定結果を示すグラフである。 実施例のAl酸化物系結晶のナノピラー表面の形成過程を示すSEM画像である。 図13のナノピラー表面のXRDの測定結果を示すグラフである。 電力変換機器の接合部材のパワーサイクルによる損傷メカニズムを模式的に示すフローチャートである。 温度と熱平衡空孔濃度との関係を示すグラフである。 接合に用いたCu酸化物系結晶のナノピラー表面の形成過程を示すSEM画像である。 実施例のナノピラーを有する表面構造を適用したリチウムイオン電池の負極の作製工程を示すフローチャートである。 図18の工程により作製したリチウムイオン電池の負極のサイクル特性を示すグラフである。 実施例のナノピラーを有する表面構造を適用したリチウムイオン電池の負極の作製工程を示すフローチャートである。 図20の工程により作製したリチウムイオン電池の負極のサイクル特性を示すグラフである。 実施例のCe酸化物系結晶のナノピラー表面を示すSEM画像である。 図22のナノピラー表面を有する固体型CO吸着材を用いた石炭火力発電のCO回収・貯留システムを示す構成図である。 可視光を照射して形成したCe酸化物系結晶のナノピラー表面を示すSEM画像である。 純水中に浸漬したZn基板に光を照射しなかった場合である比較例を示すSEM画像である。
 本発明は、金属板を水に浸漬して、同時に185~800nmのうちから選ばれる波長を有する光を照射して、金属の表面に該金属の酸化物系結晶から構成される針状、柱状、ロッド状などの複数のナノピラーを、同時に形成・被覆する製造方法を提供すると共に、その方法で作製した表面、接合体、電池、炭酸ガス回収・貯留装置、ナノピラー素材等を提供する。
 以下では、ナノピラーを有する表面構造及びその形成方法並びに当該表面構造を有する機能性部材についても説明する。
 本発明者は、熱や電気エネルギーを殆ど用いないで、金属表面に金属酸化物系結晶からなるナノピラーを形成する方法を研究した結果、金属板を一義的に水に浸漬し、同時に光を当てるだけで、金属表面に該金属から構成される金属酸化物系結晶がナノピラー状に該金属板表面を一面に覆うように形成することを発見し、本発明をするに至った。詳細を以下に述べる。
 本発明者は、金属板を純水中に浸漬した状態で、金属板の表面に波長185~800nmの範囲の光を照射することにより、金属板を構成する金属の酸化物で形成された結晶が、針状またはロッド状の形状を有するナノピラーとして、金属板の表面を覆うように同時に多数形成されることを見出した。
 図1は、金属板(Zn)を純水中に浸漬し、波長185~800nmの範囲の光を照射することにより、ロッド状の形態を有する金属酸化物系結晶のナノピラーが金属板の表面に一様に形成された状態(以下、「ナノピラーを有する表面構造」又は「ナノピラー表面」ともいう。)の例を示すSEM画像である。本図においては、波長365nmの光を照射した場合である。
 ここで用いることが可能な金属は、アルカリ金属、アルカリ土類金属、遷移金属及びpメタルのうちいずれを用いてもよいことを確認した。すなわち、当該金属には、Li、Be、Na、Mg、K、Ca、Rb、Sr、Cs、Ba、Fr及びRaのアルカリ金属又はアルカリ土類金属、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au及びHgの遷移金属、並びにAl、Ga、Ge、In、Sn、Sb、Tl、Pb、Bi及びPoのpメタルが含まれる。
 さらに、上記金属の代わりに、上記金属(アルカリ金属、遷移金属及びpメタル)の元素の群から選ばれる少なくとも2種類以上の元素から構成される合金を用いても、合金酸化物系結晶ナノピラー表面を製造できることを発見した。
 これらの金属酸化物系結晶ナノピラーまたは合金酸化物系結晶ナノピラーは、形成したナノピラーの形状評価、成分分析及びX線回折測定(XRD)から、次の特徴を有することが判った。
 すなわち、上記ナノピラーは、酸化物、水酸化物及び炭酸水酸化物のうち少なくとも一つ以上を含む特徴を有する。上記ナノピラーは、針状、柱状、ロッド状、チューブ状、鱗片状、塊状、フラワー状、枝状、又は無定形の凸形状を有する。
 上記ナノピラーは、ピラーの周囲の最大幅が2nm~10μmである。また、ピラーの高さに制限はなく、かつ、中実構造または中空構造である。
 さらに、上記ナノピラーは、20μmの平均長さまで、上記光の照射時間の増加に従って、容易に成長することを確認した。ただし、ナノピラーの高さ(長さ)は、20μm以下に限定されるものではなく、ナノピラーの用途に応じ、上記光の照射時間を増加することにより、20μm以上の平均長さのナノピラーも形成できる。
 上記の形成方法により、金属の表面に該金属の酸化物系結晶から構成される針状またはロッド状の複数のナノピラーを同時に形成・被覆する、簡単な形成方法を提供できるようになった。また、金属の代わりに上記の合金を用いても同様に、合金酸化物系結晶から構成される針状またはロッド状の複数のナノピラーを同時に形成・被覆する、簡単な形成方法を提供できる。また、上記の金属酸化物系結晶からなるナノピラー構造を有する表面の形成方法により作製された金属酸化物系結晶からなるナノピラー構造を有する表面は、本発明のナノピラー表面である。
 さらに、上記の金属酸化物系結晶からなるナノピラー構造を有する表面の形成工程の後に、ナノピラーの還元工程を施すことにより、金属結晶ナノピラー表面を形成できることを見出した。したがって、上記の金属酸化物系結晶からなるナノピラー構造を有する表面の形成工程の後に、ナノピラーの還元工程を施す、金属結晶ナノピラー表面の形成方法は、本発明に係る形成方法であり、また、この形成方法で作製した金属結晶からなるナノピラー構造を有する表面は、本発明の表面である。
 上記の金属結晶からなるナノピラー構造を有する表面を接合部に用いた接合体は、本発明の接合体である。すなわち、上記の金属酸化物系結晶からなるナノピラー構造を有する表面と別のあらゆる物質、金属、合金の表面、または上記の金属酸化物系結晶からなるナノピラー構造を有する表面同士の間に、還元物質ないし還元雰囲気を介して、ナノピラーを還元することにより、ナノピラー構造を有する表面と別の物質、金属、合金の表面、または金属酸化物系結晶からなるナノピラー構造を有する表面同士を接合できることを見出した。この接合体の形成方法及び接合体自体は、本発明の金属酸化物系結晶からなるナノピラー構造を有する表面の形成方法を応用したものである。
 本発明の金属酸化物結晶あるいは金属結晶からなるナノピラー構造を有する表面は、電池の電極に用いることができる。
 例えば、リチウムイオン電池における活物質から構成される金属酸化物系負極または金属系負極に、本発明の形成方法を適用することにより、リチウムイオンとの反応が活性化される結果、負極の充放電を効率的に行うことができる。また、活性化の結果、サイクル特性も顕著に改善できる。したがって、本発明の金属酸化物結晶あるいは金属結晶からなるナノピラー構造を有する表面を、電極表面に用いた電池は、本発明のナノピラー構造を有する表面の形成方法を応用した本発明品である。
 電池の電極表面へのナノピラー構造の用い方としては、例えばリチウムイオン電池負極構成の種々の検討結果から、次の2つの使い方が有効であることが判った。
 一つは、本発明の方法により形成した酸化物系ナノピラー構造を備えた金属基板をそのまま集電体とし、ナノピラー構造の間に活物質粒子を分散し、ナノピラー構造を活物質粒子のトラッパーとして使用し、充放電の際の活物質の膨張収縮による活物質の集電体からの離散を防止する使い方である。この場合、ナノピラーは、酸化物系ナノピラーであってもよく、好ましくは還元処理した後の金属系ナノピラーを用いる。
 もう一つの使い方は、金属板を集電体とし、本発明の方法により集電体表面に形成したナノピラー構造を活物質として使用するリチウムイオン電池負極の構造を持つ電池である。
 さらに、上記の金属酸化物系結晶からなるナノピラー構造を有する表面の形成方法において、金属基板から金属酸化物系結晶ナノピラーを切り離す工程を追加することにより、金属酸化物系結晶ナノピラー自体を形成できることを見出した。ナノピラーの切り離し工程には、機械的な直接切削、ガス切断などが応用でき、さらにイオンや電子線などの電磁放射線を吹きかけて切り離す方法でも容易にナノピラーを金属基板から切り離して、金属酸化物系結晶ナノピラー自体を形成できる。
 これらの金属酸化物系結晶ナノピラーは、種々のフィルム材料、粉末材料、量子ドット材料、発光材料などに使用できる。つまり、フィルムの構成材料、粉末状の材料強度強化材、粉末状の研磨材、発光物質として種々の機器への発光体成分としても使用できる。
 また、超格子や量子ドットを用いた太陽電池などの光変換エネルギー機器などにおいて、光変換部物質としても用いることができる。すなわち、エネルギー貯蔵・エネルギー変換材料として、その効率を高めるための要素材料に適用、応用できる。
 また、本発明で得られた金属酸化物系ナノピラー表面は、高効率の炭酸ガス吸収体の表面として用いることもでき、火力プラントなどに付帯した炭酸ガス吸着・回収・貯留(CCS)装置の吸着体要素材料として使用することも可能であることが判った。この場合は、特に、Ceを金属として用いた本発明の形成方法により形成したセリアで形成したナノピラー表面またはナノピラーが特に有効であった。
 上記の還元工程を経て得られた本発明の金属結晶ナノピラー表面の形成方法において、金属基板から金属ナノピラーを切り離す工程を追加する場合でも、上記と同様に金属結晶ナノピラー自体を形成できることを見出した。また、その応用分野においては、上記の金属酸化物系結晶ナノピラーと同様に活用することができた。
 パワーモジュールなどの電力変換機器においては、SiやSiCチップと電極の接合部分、将来的にはGaNチップなどと電極の接合部分に、パワーサイクルによるエレクトロマイグレーションやストレスマイグレーションなどが重畳した現象が発生し、接合部にマイクロボイドや巨大ボイドが発生して供用中に損傷を引き起こす。
 この原因は、ボイド形成を引き起こす原子の移動であると考えられる。この原子の移動の担い手として働くのが、原子空孔(以下、空孔と呼ぶ)であると考えられる。通常、金属中においては、温度上昇に伴い、空孔濃度が高くなると考えられる。
 本発明においては、この空孔濃度を引き下げることのできる金属種として、Ti、Zr、Nb、Mo、Ta、W、Cr及びCuの各系を見出し、これらのナノピラー化及び接合を本発明の方法により実施し、パワーサイクルに極めて耐性のある電力変換機器用モジュールを構築できた。これらの金属種を本発明の方法で接合した接合体および電力変換機器モジュールは、本発明に係るものである。
 以下、本発明の実施形態に係るナノピラー及びその形成方法並びに接合材料、電池、炭酸ガス回収・貯留装置、電力変換機器用モジュール及び濡れ性制御部材について説明する。
 前記ナノピラーの形成方法は、金属酸化物を含むナノピラーを金属の表面に形成する方法であって、金属と、その金属に接触した水との界面に光を照射する光照射工程を含み、光の波長は、185~800nmであることを特徴とする。
 前記ナノピラーの形成方法は、光照射工程の前に、金属の表面を粗化する表面粗化工程を更に含むことが望ましい。
 前記ナノピラーの形成方法において、金属は、Li、Be、Na、Mg、K、Ca、Rb、Sr、Cs、Ba、Fr、Ra、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Al、Ga、Ge、In、Sn、Sb、Tl、Pb、Bi及びPoからなる群から選択される1種類以上を含むことが望ましい。
 前記ナノピラーの形成方法において、表面粗化工程は、金属の表面を機械加工、化学処理又は液中放電処理により粗化するものであることが望ましい。
 ここで、化学処理には、金属の表面を、薬品を用いてエッチング等の溶解処理をすることも含まれる。
 前記ナノピラーの形成方法において、表面粗化工程は、金属の表面に電子密度が2.0 electrons/Å3以上の凸部を設けるものであることが望ましい。
 前記ナノピラーは、前記形成方法により作製したことを特徴とする。
 前記ナノピラーは、金属の酸化物及び炭酸水酸化物を含むことを特徴とする。
 前記ナノピラーは、金属の酸化物及び水酸化物を含むことを特徴とする。
 前記ナノピラーは、金属の酸化物を主成分として含むことを特徴とする。
 前記ナノピラーの形状は、針状、柱状、ロッド状、チューブ状、鱗片状、塊状、フラワー状、枝状、又は無定形の凸形状である。
 前記ナノピラーの断面の最大幅は、2nm~10μmであることが望ましい。また、前記ナノピラーは、中実又は中空であることが望ましい。
 前記ナノピラーの平均長さは、20μm以下であることが望ましい。
 前記ナノピラーの形成方法は、金属のナノピラーを金属の表面に形成する方法であって、金属と、その金属に接触した水との界面に光を照射し、金属酸化物のナノピラーを形成する光照射工程と、金属酸化物を還元し、金属のナノピラーを得る還元工程とを含み、光の波長は、185~800nmであることを特徴とする。
 前記ナノピラーは、還元工程を含む前記形成方法により作製したことを特徴とする。
 前記ナノピラーは、金属を主成分として含むことを特徴とする。
 前記表面は、前記ナノピラー(金属酸化物を含むナノピラー及び金属のナノピラー)を備えたことを特徴とする。
 前記接合材料は、還元工程を含む前記形成方法により作製された前記ナノピラーを表面に備えたことを特徴とする。
 前記電池は、前記ナノピラーを表面に備えた電極に用いたことを特徴とする。
 前記炭酸ガス回収・貯留装置は、前記ナノピラーを炭酸ガス吸着材として用いたことを特徴とする。
 前記電力変換機器用モジュールは、前記接合材料を用いたものであって、前記接合材料を構成する金属は、Ti、Zr、Nb、Mo、Ta、W、Cr及びCuからなる群から選択される1種類以上の金属元素を含むことを特徴とする。
 前記濡れ性制御部材は、前記ナノピラーを表面に備えたことを特徴とする。
 以下、実施例について説明する。
 図1は、Zn酸化物系結晶で形成されたナノピラーを有する表面構造(ナノピラー表面)を走査電子顕微鏡(SEM)により観察した画像である。
 本図に示すナノピラー表面は、次のように作製した。
 まず、純度99%以上の亜鉛(Zn)板の表面を機械加工し、バフ研磨した。その後、そのZn板を純水(電気伝導率1.0μS/cm以下)に浸漬し、Zn板に紫外LEDランプを向けて、波長365nmの光を144時間照射した。
 本図から、水中での光照射により中実六角柱状のナノピラー構造体が多数、同時にZn板上に形成され、Zn板を覆っている様子が明らかである。ナノピラーの寸法は、六角形部分を円とみなした場合の直径がおよそ0.2~0.3μmであり、長さが1μm以上である。
 図2は、図1のナノピラー表面のX線回折(XRD)の測定結果を示したものである。
 本図においては、機械加工後のZn板単体の表面のX線回折プロファイルと、ナノピラー形成後の表面をZn板側までX線が透過するように測定したX線回折プロファイルとが示してある。
 本図から、ナノピラーは、Zn酸化物(ZnO)と少量のZn(CO(OH)とを含む亜鉛酸化物系結晶であることがわかる。ここで、Zn(CO(OH)に含まれる炭素の由来は、大気中の二酸化炭素と考える。
 本図に示すX線回折ピークは明瞭であり、その積分強度比から、ZnO結晶とZn(CO(OH)結晶との比率は、ZnO:Zn(CO(OH)=90:10であり、ZnOのナノピラー形成が支配的であることがわかる。
 本明細書において、Zn(CO(OH)は、亜鉛の炭酸水酸化物と呼ぶことにする。同様に、一般式Me(CO(OH)(式中、Meは金属元素であり、p、q及びrは各成分の比率(組成)を表す。)は、金属Meの炭酸水酸化物と呼ぶ。
 図3A及び図3Bは、図1と同じ条件で機械加工により作製されたナノピラー表面であって、一様に形成されたナノピラー表面と、フラワー状に形成されたナノピラー表面とを比較するために示したものである。
 図3Aは、一様に形成されたナノピラー表面である。ナノピラーは、中実六角柱断面形状のロッド状であり、比較的均一な密度で形成されている。
 一方、図3Bは、フラワー状に形成されたナノピラー表面である。ナノピラーは、中実六角柱断面形状のフラワー状ナノピラー群が形成されている。
 機械加工により粗さを大きくした基板の表面は、周期の異なる凹凸が重なり合った構造を有している。
 この凹凸の大きさは、レーザ顕微鏡による観察の結果、図3Aに示す領域においては、凸部底辺の大きさが平均10nm以上、隣り合う凸部同士の間隔が平均10nm以上であり、図3Bに示す領域においては、図3Aの微細な凹凸が存在し、かつ、隣り合う凸部同士の間隔が平均5~10μm以上という周期の大きい凹凸が存在する。
 図4は、Zn酸化物系結晶のナノピラー表面の形成過程を示すSEM画像である。
 すなわち、純度99%以上の亜鉛(Zn)板の表面を機械加工した表面(a)をKCO溶液中において120Vの電圧を10分間加えて液中放電処理により荒らした表面(b)とし、その後、純水(電気伝導率1.0μS/cm以下)に浸漬し、紫外LEDランプにより波長365nmの光をZn板に照射して、24時間経過させた表面(c)を、各々SEM観察した結果である。
 本実施例においては、光の強度は、紫外LEDランプから5cm離れた位置で2Wm-2である。また、光の出力は100Wであったが、特にこの条件に限定されるものではなく、光の波長を、水銀ランプやキセノン・フラッシュ・ランプを用いて、185~800nmの範囲に変更しても、表面ナノピラーを同様に作製することができた。
 本図の(c)においては、水中での光照射により少なくとも先端部が中空である六角柱状のナノピラーが多数、同時にZn板の表面にフラワー状に集合して形成され、Zn板を覆っている様子が観察できる。
 本図の(b)においては、比較的周期が小さい凹凸構造が観察されるが、これらをマクロに観察した場合、比較的周期が大きい凹凸構造が存在することがわかる。細かい凹凸部の凸部の底辺の大きさが2nm以上であり、隣り合う当該凸部同士の間隔が2nm以上であり、比較的周期が大きい凹凸構造における隣り合う凸部同士の間隔は2μm程度となっている。
 実施例1及び2において形成したナノピラーの発生及び成長のメカニズムについて、水中のZn表面凹凸部における電子密度とその周辺の水分解との関係から明らかにする目的で、Znナノピラー及びZn平坦表面が自然酸化した表面における電子分布並びに水の分解反応の解析を分子動力学計算により実施した。
 図5A~図10は、その結果を示したものである。解析は、分子動力学計算手法のうち、量子力学におけるシュレーディンガー方程式を解く方法、いわゆる第一原理計算手法(非特許文献1参照)を用いて実施した。これらの図においては、一番大きな球が酸素原子2、一番小さな球が水素原子3、この間の大きさの球がZn原子1を示している。
 図5Aは、Znナノピラー10の表面が自然酸化された状態で更に水素終端がされたものを横から見た図である。図5Dは、同じZnナノピラー10を上から見た図である。また、図5Eは、図5DのA-B断面図である。
 図5B及び図5Cは、図5AのZnナノピラー10に所定の電子密度を有する電子雲を半透明にして重ねて表示したものであり、それぞれ、1.5 electrons/Å3、2.0 electrons/Å3の等電子密度面を示している。
 図5Bの場合、すべての原子に1.5 electrons/Å3の等電子密度面4の表示が描かれているのに対し、図5Cの場合、Znナノピラー10の先端部のみに2.0 electrons/Å3の等電子密度面5の表示が描かれている。このことから、Znナノピラー10の先端部ほど電子密度が高いことがわかる。ここで、「electrons/Å3」の「electrons」に関して、「1 electron」は、(1Å3の領域にある)電子雲が電子1個分存在することと等価である。
 図5F、図5G及び図5Hは、Znナノピラーではなく、Znの平坦な表面が自然酸化された場合の状態を横から見たものである。図5G及び図5Hは、所定の電子密度を有する電子雲を半透明にして重ねて表示したものであり、それぞれ、1.5 electron/Å3、2.0 electrons/Å3の等電子密度面を示している。
 図5Gには、わずかに1.5 electrons/Å3の等電子密度面4が表れているものの、図5Hには、2.0 electrons/Å3の等電子密度面は表れていない。この結果から、Znナノピラー10の場合(図5C)には2.0 electrons/Å3の等電子密度面5が生じるのに対し、平坦な表面(図5H)では電子密度の高い場所が生じないことがわかる。
 図6及び図7は、上記のようなナノピラーと平坦な表面との電子分布の差が水の分解反応に及ぼす影響を解析した結果を示したものである。図6がナノピラーの場合であり、図7が平坦な表面の場合である。それぞれの図において、反応開始前の初期状態から3段階の反応過程を示している。
 Znナノピラー10の場合である図6の結果(第3段階)においては、2個の水分子11が分解し、2個の酸素ラジカル21及び2個の水素分子22(H)が生成されることがわかる。また、Znの平坦な表面の場合である図7の結果(第3段階)においては、水分子11が分解しないことがわかる。
 以上より、2.0 electrons/Å3以上の等電子密度面5を生じさせる凸部(Znナノピラー10)を1個以上設けた凹凸面を設けることにより、水の分解反応が促進されることがわかる。
 図8A~図10は、Znナノピラーの表面が自然酸化された状態で水素終端がされていないものの解析結果である。
 図8Aは、Znナノピラーの表面が自然酸化された状態で水素終端がされていないものを横から見た図である。図9Aは、同じZnナノピラーを上から見た図である。また、図9Bは、図9AのA-B断面図である。
 図8B及び図8Cは、図8AのZnナノピラーに所定の電子密度を有する電子雲を半透明にして重ねて表示したものであり、それぞれ、1.5 electrons/Å3、2.0 electrons/Å3の等電子密度面を示している。
 図8Bの場合、すべての原子に等電子密度面の表示が描かれているのに対し、図8Cの場合、Znナノピラー30の先端部のみに等電子密度面の表示が描かれている。このことから、Znナノピラー30の先端部ほど電子分布が高いことがわかる。
 図10は、上記のようなナノピラーによる水の分解反応を解析した結果を示したものである。
 本図から、水素終端がされていない状態(水素原子3が存在しない状態)のZnナノピラー30においても、水分子11が分解することがわかる。ただし、本図の場合、生成物は、図6に示す水素終端がされている場合と異なり、2個のOHラジカル23と1個の水素分子22(H)となる。よって、水素終端がされていない状態においても、2.0 electrons/Å3以上の等電子密度面5を生じさせる凸部を1個以上設けた凹凸面とすることにより、水の分解反応が促進されることがわかる。
 これらの分子動力学の計算結果から、2.0 electrons/Å3以上の等電子密度面を生じさせる凸部を1個以上設けた凹凸面では、凸部周辺で水の分解反応が促進され、その結果、水中に浸した凸部の周辺で局部的に水の分解が生じ、ナノピラーを覆うように酸化雰囲気が形成され、上記の金属凸部から酸化物系結晶から構成されるナノピラーが生成し、更にナノピラーが成長してきたと結論付けられる。
 図11は、Cu酸化物系結晶のナノピラー表面の形成過程を示すSEM画像である。
 すなわち、純度99%以上の銅(Cu)板の表面を機械加工した表面(a)をKCO溶液中において130Vの電圧を10分間加えて液中放電処理により荒らした表面(b)とし、その後、純水(電気伝導率1.0μS/cm以下)に浸漬し、紫外LEDランプにより波長365nmの光をCu板に照射して、24時間経過させた表面(c)を、各々SEM観察した結果である。
 水中での光照射により、鱗片状のナノピラーが多数、同時にCu板上にフラワー状に集合して形成され、Cu板を覆っている様子が観察できる。この例では、光の強度は、紫外LEDランプから5cm離れて測ったとき2Wm-2であり、また、出力は100Wであったが、特にこの条件に限定されるものではなく、光の波長を、水銀ランプやキセノン・フラッシュ・ランプを用いて、185~800nmの範囲に変更しても、表面ナノピラーを同様に作製することができた。
 図12は、図11の(a)、(b)及び(c)に示す表面に対応するXRD測定結果である。
 本図から、ナノピラーは、CuO結晶とCuO結晶とから構成されていることが判る。また、二つの酸化物系結晶の積分強度比から、CuO結晶とCuO結晶との比率は、CuO:CuO=60:40であった。
 図13は、Al酸化物系結晶のナノピラー表面の形成過程を示すSEM画像である。
 すなわち、純度99%以上のアルミニウム(Al)板の表面を機械加工した表面(a)をKCO溶液中において120Vの電圧を10分間加えて液中放電処理により荒らした表面(b)とし、その後、純水(電気伝導率1.0μS/cm以下)に浸漬し、紫外LEDランプにより波長365nmの光をAl板に照射して、24時間経過させた表面(c)を、各々SEM観察した結果である。
 本図から、水中での光照射により、中実三角形断面や中実五角形断面、さらには中実無定形断面のロッド状ナノピラーが多数、同時にAl板を覆うように形成されている様子が観察できる。この例では、光の強度は、紫外LEDランプから5cm離れて測ったとき2Wm-2であり、また、出力は100Wであったが、特にこの条件に限定されるものではなく、光の波長を、水銀ランプやキセノン・フラッシュ・ランプを用いて、185~800nmの範囲に変更しても、表面ナノピラーを同様に作製することができた。
 図14は、図13の(a)、(b)及び(c)に示す表面に対応するXRD測定結果である。
 本図から、ナノピラーがAl(OH)結晶とAlO(OH)結晶とから構成されていることが判る。また、二つの酸化物系結晶の積分強度比から、Al(OH)結晶とAlO(OH)結晶との比率は、Al(OH):AlO(OH)=65:35であることが判った。
 本発明のナノピラーの形成方法を用いて接合体を作製した実施例を示す。
 パワーモジュールなどの電力変換機器に用いるSi、SiC、GaNなどで形成されたチップと電極との接合部分においては、パワーサイクルによりエレクトロマイグレーションやストレスマイグレーションなどが重畳した現象が発生し、その接合部分にマイクロボイドや巨大ボイドが発生して供用中に損傷を引き起こす。
 図15は、ここで想定される損傷のメカニズムを示したものである。
 チップと電極との接合部を構成する接合部材料41は、チップ及び電極に接する界面を有する。また、接合部材料41は、その内部に粒界42及び空孔43(原子空孔)を有する。空孔43は、熱平衡空孔ともいうべきものであり、常温においても熱平衡により発生する。空孔43は、原子の移動の担い手として働くものであり、原子の移動は、ボイド形成を引き起こし、損傷の原因となる。
 金属中においては、通常、温度上昇に伴い、空孔濃度が上昇する(ステージ1)。
 応力勾配などにより空孔43及び原子の移動(拡散)が生じ、空孔43が集合することにより、マイクロボイド及び巨大ボイドを含むボイド44(二次欠陥)が発生し、成長する(ステージ2)。
 この状態にある接合部材料41にパワーサイクルの負荷が加わると、ボイド44の密度が高く、強度が低下した部分は、疲労亀裂45の進展経路となる。
 図16は、温度と熱平衡空孔濃度との関係を示すグラフである。
 本図に示すように、従来の接合材料(はんだ)であるSn系及びAg系に比較して、1けた以上熱平衡空孔濃度を引き下げることのできる金属系材料、すなわち、Ti、Zr、Nb、Mo、Ta、W、Cr及びCuの各系を見出した。これらのナノピラー化及び接合を本発明の方法により実施した。
 具体的には、Ti、Zr、Nb、Mo、Ta、W、Cr又はCuを主成分として含む金属(合金)の表面を水に浸し、水銀ランプやキセノン・フラッシュ・ランプを用いて波長を185~800nmの範囲に調整した光を照射し、これらの金属の表面にナノピラー表面を作製した後、チップ又は電極と上記ナノピラー表面との間をギ酸雰囲気(窒素95体積%)又は水素雰囲気(100%)とし、温度200~400℃、加圧1.2MPa、保持時間300sとして接合を試みた。この結果、20~30MPa以上の接合強度が得られ、かつ、パワーサイクルに極めて耐性のある電力変換機器用モジュールを作製することができた。
 図17は、接合前のCu系材料の表面を示すSEM写真である。
 本図において(a)は、KCO溶液中において130Vの電圧を10分間加えて液中放電処理により荒らした表面であり、(b)は、その後、純水(電気伝導率1.0μS/cm以下)中に浸漬して紫外LEDランプにより波長365nmの光を24時間照射した表面である。鱗片状やフラワー状と無定形の凸部の混在した構造を有する酸化物系ナノピラー表面が得られていることが判る。
 Cu系材料の実施例では、図17の(b)に示す表面を用いて接合体を作製したが、本発明の接合体前表面ナノピラー形状はこれに限定されるものではなく、柱状、チューブ状、鱗片状、塊状、フラワー状、枝状、ないし無定形の凸形状のナノピラー表面が還元接着可能である。また、ここで用いた電力変換機器用モジュールのチップの材料は、Si、SiC又はGaNでもよく、チップ接合側のめっき層と上記ナノピラー接合面とが20~30MPa以上の良好な接合強度を示した。さらに、電極側の金属、例えば、Ti、Zr、Nb、Mo、Ta、W、Cr又はCuと、上記ナノピラー接合面とが20~30MPa以上の良好な接合強度を示した。
 本発明のナノピラー構造を有する表面の形成方法を用いて電池の電極を作製した実施例を示す。
 図18は、リチウムイオン電池の負極作製工程を示す。
 ステップ1では、金属Cu箔を水中に浸漬し、波長365nmの光を24時間照射した本発明の形成方法で作製した酸化物系ナノピラー表面1311を有する金属Cu箔1312を作製する。
 ステップ2では、酸化物系ナノピラー構造を表面としたCu箔の断面1322に示すように、ナノピラー構造1323の間に、平均直径約20~200nmのSi粒子1324を本断面図のように分散混入させたCu箔1321を作製する。
 ステップ3では、バインダと電極助剤である炭素(C)粒子とを混合して電極スラリ1331を調整する。
 ステップ4では、この電極スラリをスラリ層1342として、上記Si粒子分散Cu箔1341に塗布し、80~100℃で2時間程度熱処理を施し1次乾燥する。その後、ステップ5で上記Cu箔をロールプレスし、さらにステップ6で100~120℃で2時間程度熱処理し、2次乾燥する。
 ステップ7では、2次乾燥後のCu箔から任意形状にCu箔を打ち抜きなどで負極部品1371を作製する。
 ステップ8では、ステップ7で作製した2枚の負極部品1381を、ナノピラー表面を有する側同士で張り合わせ負極1382とする。その後、ステップ9では、リチウムイオンの出入り口となるマイクロメートルオーダーの直径を有する細孔を、レーザビア加工又は機械加工により空けたビア1391として多数設け、負極1392を作製する。張り合わせには、加圧熱処理を用いても良いが、機械的な枠を負極部品1381の周りに設けて加圧する方法も用いることができる。
 ステップ10は、負極13101のサイクル特性を測定する装置への組込みである。この装置は、負極13101の対極である金属リチウム13102、セパレータ13103、スペーサ13104、電解液13105及びCu集電体13106から構成されており、充電時のリチウムイオンの動き13107と放電時のリチウムイオンの動き13108を太い矢印で示している。
 図19は、本発明の方法で作製したリチウムイオン電池負極のサイクル特性を示したものである。
 Siを活物質としたリチウムイオン電池負極であるが、充放電サイクルによる放電容量の低下は殆ど観られず、良好なサイクル特性を示していることが判る。
 尚、図18に示す工程において、ステップ1の金属Cu箔を水中に浸漬し、波長365nmの光を24時間照射した本発明の形成方法で作製した酸化物系ナノピラー表面1311を、更に100%水素雰囲気中で、温度200~400℃、保持時間300sで還元処理して金属Cuナノピラー構造とした金属Cu箔1312でも、図19と同様のサイクル特性が得られた。
 以上より、本発明の金属ナノピラーを有する表面構造の形成方法も、電極に使えることが判った。
 本発明のナノピラー構造を有する表面の形成方法を、電池電極へ応用した別の例を本実施例で示す。
 図20は、リチウムイオン電池の負極作製工程を示す。
 ステップ1では、金属箔を水中に浸漬し、波長365nmの光を24時間照射することにより、本発明の形成方法で作製した酸化物系ナノピラー表面1512を有する金属箔1511を作製する。ステップ2では、バインダと電極助剤であるC粒子とを混合して電極スラリ1521を調整する。ステップ3では、この電極スラリをスラリ層1532として金属箔1531に塗布し、80~100℃で2時間程度熱処理を施し1次乾燥する。その後、ステップ4で上記金属箔をロールプレスする。
 さらに、ステップ5で100~120℃で2時間程度熱処理し、2次乾燥する。ステップ6では、2次乾燥後の金属箔から任意形状に金属箔を打ち抜きなどで負極部品1561を作製する。ステップ7では、ステップ6で作製した2枚の負極部品1571を、ナノピラー表面を有する側同士で張り合わせ負極1572とする。その後、ステップ8では、リチウムイオンの出入り口となるマイクロメートルオーダーの直径を有する細孔を、レーザビア加工又は機械加工により空けたビア1581として多数設け、負極1582を作製する。
 張り合わせには、加圧熱処理を用いても良いが、機械的な枠を負極部品1571の周りに設けて加圧する方法も用いることができる。
 ステップ9は、負極1591のサイクル特性を測定する装置への組込みである。この装置は、負極1591の対極である金属リチウム1592、セパレータ1593、スペーサ1594、電解液1595及び金属集電体1596から構成されており、充電時のリチウムイオンの動き1597と放電時のリチウムイオンの動き1598を太い矢印で示している。
 図21は、本発明の方法で作製したリチウムイオン電池の負極のサイクル特性を示したものである。
 本実施例では、金属としてFe、Sn、Co、Mn、Mo及びVを用い、金属酸化物系ナノピラーを活物質としたリチウムイオン電池負極を構成したが、いずれの金属酸化物系ナノピラー表面を活物質としても、放電容量は異なるものの、充放電サイクルによる放電容量の低下は殆ど観られず、良好なサイクル特性を示していることが判った。
 以上のように、金属板を集電体とし、本発明の形成方法により集電体表面に形成した酸化物系ナノピラー構造を活物質として使用するリチウムイオン負極を用いたリチウムイオン電池は、サイクル特性の良好な電池として動作することが判った。
 図22は、Ce酸化物系結晶のナノピラー表面を示すSEM画像である。
 本図に示すナノピラー表面は、純度99%以上のセリウム(Ce)板の表面を機械加工した後、NaOH溶液中において130Vの電圧を10分間加えて液中放電処理により荒らした表面とし、その後、純水(電気伝導率1.0μS/cm以下)中に浸漬し、紫外LEDランプにより波長365nmの光をCe板に3時間照射することにより得られた表面をSEMで観察したものである。
 本図から、水中での光照射により、針状、ロッド状、鱗片状及び塊状の酸化セリウム(セリア)からなるナノピラーが多数、同時にCe板上に集合して形成され、Ce板を覆っていることがわかる。
 本実施例における光の強度は、紫外LEDランプから5cm離れて測ったとき2Wm-2であり、また、出力は100Wであったが、特にこの条件に限定されるものではなく、光の波長を、水銀ランプやキセノン・フラッシュ・ランプを用いて、185~800nmの範囲に変更しても、表面ナノピラーを同様に作製することができた。また、上記の光照射の前の表面を荒らす工程を、KCO溶液中に変えても、同様に、水中での光照射により、針状、ロッド状、鱗片状及び塊状の酸化セリウムからなるナノピラーを多数、同時にCe板上に集合して形成することができた。
 図23は、図22のセリアからなるナノピラー表面を有する固体型CO吸着材を用いた石炭火力発電のCO回収・貯留システムを示す構成図である。
 図23の石炭火力発電システムは、ボイラ181内で石炭182を空気183と共に燃焼させ、発生した水蒸気184を用いて蒸気タービン185を回転させることにより発電する方式である。
 この石炭火力発電システムは、大気中へのCO放出抑制のため、窒素酸化物(NOx)186や硫黄酸化物(SOx)187等を除去する排ガス処理188の後に、効率的にCOを回収できるCO回収装置189を具備している。回収塔1810及び1811を交互に切替えてCOを回収するようになっている。回収塔1810では、図22に示すセリアからなる本発明のナノピラーを固体型CO吸着材として使用し、COの吸着工程を経て、排ガス1812をCOの基準値を十分下回る濃度として煙突1813から大気解放すると共に、回収塔1811を経て再生されたCOガス1814を、圧縮機1815で圧縮して貯留系1816に貯留するシステムである。
 図22に示すセリアからなる本発明のナノピラー構造を有する表面を固体型CO吸着材は、水分共存下でもCOを効率的に吸着できる。したがって、図23のようなCO回収・貯留システムも、本発明のシステムである。
 これらのシステムにより、市販されている一般的なゼオライト固体型吸着材と比較して、水分共存下においても、CO吸着量を約100倍増加でき、吸着材量を約98%削減できる。また、CO回収に必要なエネルギーは、一般的なアミン液を用いた化学吸収法の80%以下まで低減できる。
 金属の表面に金属酸化物系結晶からなるナノピラーを形成する方法として、種々の金属を用い、金属板を純水(電気伝導率1.0μS/cm以下)中に浸漬し、金属の表面に185~800nmのうちから選ばれる波長を有する光を照射して、酸化物系結晶からなるナノピラー構造の形成状況を観察した。
 その結果、上記金属として、Li、Be、Na、Mg、K、Ca、Rb、Sr、Cs、Ba、Fr、Ra、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Al、Ga、Ge、In、Sn、Sb、Tl、Pb、Bi及びPoを用いることにより、該金属からなる金属酸化物系結晶ナノピラー表面を形成できることを確認した。また、上記金属の代わりに、上記金属から選ばれる少なくとも2種類以上の元素を含む合金を用いても、合金酸化物系結晶ナノピラー表面を形成できた。
 金属酸化物系結晶からなるナノピラー構造を有する表面または金属結晶からなるナノピラー構造を有する表面を、液状物質の濡れ性制御面に用いた実施例を示す。
 実施例1、2、4及び5に記載したZn、Cu及びAlを各々含む本発明の酸化物系ナノピラー表面を水や海水等の液状物質に接触させると、上記酸化物系ナノピラーにより疎水性を示し、上記液状物質と共に、汚染物質が表面から洗い流されることが判明した。この作用を利用することにより、本発明の金属酸化物系結晶ナノピラー構造を有する表面は、防汚表面として使用することができる。
 さらに、種々の溶剤や樹脂材料を、上記金属酸化物系結晶ナノピラー構造を有する表面に吸着させることにより、疎水性能を制御し、強化し、又は低減することができる。これにより、物質の吸着量を制御する材料、撥水性材料、親水性材料、及び親油性材料を形成することができる。
 一部の上記表面は、摩擦係数の低い表面や、摩擦係数の高い表面にもできることが判った。さらに、静電気を解消する表面や静電気を貯電する表面の形成も可能であった。
 このような溶剤には、例えば、ヘキサン、シクロヘキサン、トルエンなどの炭化水素系溶剤;ジクロロエチレン、ジクロロエタン、ジクロロベンゼンなどの塩素化炭化水素系溶剤;テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3-ジオキソラン、トリオキサンなどの環状エーテル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド系溶剤;ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶剤;アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノンなどのケトン系溶剤;エタノール、2-プロパノール、1-ブタノール、ジアセトンアルコールなどのアルコール系化合物;2,2,4-トリメチル-1,3-ペンタンジオールモノアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノプロピオレート、2,2,4-トリメチル-1,3-ペンタンジオールモノブチレート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、2,2,4-トリエチル-1,3-ペンタンジオールモノアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどの多価アルコールのエステル系溶剤;ブチルセロソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテルなとの多価アルコールのエーテル系溶剤;α-テルピネン、α-テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、ターピネオール、カルボン、オシメン、フェランドレンなどのテルペン系溶剤、及びこれらの混合物が挙げられる。
 また、上記溶剤としては、塗布性及び印刷性の観点から、多価アルコールのエステル系溶剤、テルペン系溶剤、及び多価アルコールのエーテル系溶剤から選ばれる少なくとも1種であることが好ましく、多価アルコールのエステル系溶剤及びテルペン系溶剤から選ばれる少なくとも1種であることがより好ましい。さらに、本発明において上記溶剤は1種単独でも、2種以上を組み合わせて用いてもよい。
 また、上記樹脂には、特に制限はない。例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロースなどのセルロース系樹脂;ポリビニルアルコール類;ポリビニルピロリドン類;アクリル樹脂;酢酸ビニル-アクリル酸エステル共重合体;ポリビニルブチラール等のブチラール樹脂;フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂のようなアルキド樹脂;エポキシ樹脂;フェノール樹脂;ロジンエステル樹脂等を挙げることができる。また、フッ素系樹脂;(ジフルオロメチレン)フルオロニウム、トリフルオロメタニド、トリフルオロメタンイド、トリフルオロメチルカチオン、トリフルオロメチリウム、トリフルオロメタンイリウム、トリフルオロメチルラジカルであってもよい。
 さらに、上記樹脂としては、硬化時における消失性の観点から、セルロース系樹脂及びアクリル樹脂から選ばれる少なくとも1種であることが好ましいが、上記体積抵抗率や密着力などの硬化後の接着層としての機能が損なわれない範囲では、上記樹脂は硬化時に消失するものに限定されることはない。また、本発明において上記樹脂は1種単独でも、2種以上を組み合わせて用いてもよい。
 また、本発明における上記樹脂の重量平均分子量は特に制限されない。中でも重量平均分子量は5000以上500000以上が好ましく、10000以上300000以下であることがより好ましい。上記樹脂の重量平均分子量が5000以上であると、接着剤組成物の粘度が増加することを抑制できる。一方、樹脂の重量平均分子量が500000以下であると、樹脂同士が溶剤中で凝集することが抑制され、接着剤組成物の粘度が増加することを抑制できる。
 さらに、種々の溶剤や樹脂材料を、本発明の還元の工程により形成した金属結晶ナノピラー構造を有する表面に吸着させることにより、前記と同様に、疎水性能を制御し、強化し、又は低減することができ、物質の吸着量を制御する材料、撥水性材料、親水性及び親油性材料を形成することができる。また、一部の上記表面として摩擦係数の低い表面や、摩擦係数の高い表面も形成できることが判った。
 さらに、静電気を解消する表面や静電気を貯電する表面の形成も可能であった。
 以上のように、本発明の金属酸化物系結晶からなるナノピラー構造を有する表面または金属結晶からなるナノピラー構造を有する表面は、液状物質の濡れ性制御機能表面として用いることができ、本発明の表面である。
 図24は、可視光を照射して形成したCe酸化物系結晶のナノピラー表面を示すSEM画像である。
 本実施例においては、Ce基板を実施例9と同じ条件で機械加工し、NaOH溶液中において130Vの電圧を10分間加えて液中放電処理により荒らした後、純水(電気伝導率1.0μS/cm以下)中に浸漬した状態で、波長400~600nmの可視光と3時間照射することにより、Ce酸化物系結晶のナノピラー表面を得た。
 本図に示すように、Ce酸化物系結晶のナノピラーは、針状又はロッド状である。
 (比較例)
 図25は、純水(電気伝導率1.0μS/cm以下)中に浸漬したZn基板に光を照射しなかった場合である比較例を示すSEM画像である。(a)は、Zn基板に機械研磨を施した表面であり、(b)は、光を照射せずに純水(電気伝導率1.0μS/cm以下)中に144時間浸漬した後の表面である。
 本図の(b)から、光を照射しない場合、ナノピラーが形成されないことがわかる。
 1:Zn原子、2:酸素原子、3:水素原子、4、5:等電子密度面、10、30:Znナノピラー、11:水分子、21:酸素ラジカル、22:水素分子、23:OHラジカル、41:接合部材料、42:粒界、43:空孔、44:ボイド、45:疲労亀裂、1311:酸化物系ナノピラー表面、1312:金属Cu箔、1321:Si粒子分散混入Cu箔、1322:Cu箔断面、1323:ナノピラー構造、1324:Si粒子、1331:電極スラリ、1341:Si粒子分散Cu箔、1342:スラリ層、1371:負極部品、1381:負極部品、1382:張り合わせ負極、1391:ビア、1392:負極、13101:負極、13102:金属リチウム、13103:セパレータ、13104:スペーサ、13105:電解液、13106:Cu集電体、13107:充電時のリチウムイオンの動き、13108:放電時のリチウムイオンの動き、1511:酸化物系ナノピラー表面、1512:金属箔、1521:電極スラリ、1531:金属箔、1532:スラリ層、1561:負極部品、1571:負極部品、1572:張り合わせ負極、1581:ビア、1582:負極、1591:負極、1592:金属リチウム、1593:セパレータ、1594:スペーサ、1595:電解液、1596:金属集電体、1597:充電時のリチウムイオンの動き、1598:放電時のリチウムイオンの動き、181:ボイラ、182:石炭、183:空気、184:水蒸気、185:蒸気タービン、186:窒素酸化物、187:硫黄酸化物、188:排ガス処理、189:CO回収装置、1810:回収塔、1811:回収塔、1812:排ガス、1813:煙突、1814:COガス、1815:圧縮機、1816:貯留系。

Claims (16)

  1.  金属酸化物を含むナノピラーを金属の表面に形成する方法であって、前記金属と、前記金属に接触した水との界面に光を照射する光照射工程を含み、前記光の波長は、185~800nmであることを特徴とするナノピラーの形成方法。
  2.  前記光照射工程の前に、前記金属の表面を粗化する表面粗化工程を更に含むことを特徴とする請求項1記載のナノピラーの形成方法。
  3.  前記金属は、Li、Be、Na、Mg、K、Ca、Rb、Sr、Cs、Ba、Fr、Ra、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Al、Ga、Ge、In、Sn、Sb、Tl、Pb、Bi及びPoからなる群から選択される1種類以上を含むことを特徴とする請求項1記載のナノピラーの形成方法。
  4.  前記表面粗化工程は、前記金属の表面を機械加工、化学処理又は液中放電処理により粗化するものであることを特徴とする請求項2記載のナノピラーの形成方法。
  5.  前記表面粗化工程は、前記金属の表面に電子密度が2.0 electrons/Å3以上の凸部を設けるものであることを特徴とする請求項2記載のナノピラーの形成方法。
  6.  請求項1~5のいずれか一項に記載の形成方法により作製したことを特徴とするナノピラー。
  7.  前記金属の酸化物、水酸化物及び炭酸水酸化物を含むことを特徴とする請求項6記載のナノピラー。
  8.  請求項6又は7に記載のナノピラーであって、その形状は、針状、柱状、ロッド状、チューブ状、鱗片状、塊状、フラワー状、枝状、又は無定形の凸形状であることを特徴とするナノピラー。
  9.  金属の表面に形成されたナノピラーであって、その形状は、針状、柱状、ロッド状、チューブ状、鱗片状、塊状、フラワー状、枝状、又は無定形の凸形状であり、前記金属の酸化物、水酸化物及び炭酸水酸化物を含むことを特徴とするナノピラー。
  10.  金属のナノピラーを前記金属の表面に形成する方法であって、前記金属と、前記金属に接触した水との界面に光を照射し、金属酸化物のナノピラーを形成する光照射工程と、前記金属酸化物を還元し、前記金属のナノピラーを得る還元工程とを含み、前記光の波長は、185~800nmであることを特徴とするナノピラーの形成方法。
  11.  請求項10記載の形成方法により作製したことを特徴とするナノピラー。
  12.  請求項6~9及び11のいずれか一項に記載のナノピラーを備えたことを特徴とする表面。
  13.  請求項11記載のナノピラーを表面に備えたことを特徴とする接合材料。
  14.  請求項6~9及び11のいずれか一項に記載のナノピラーを表面に備えた電極に用いたことを特徴とする電池。
  15.  請求項6~9のいずれか一項に記載のナノピラーを炭酸ガス吸着材として用いたことを特徴とする炭酸ガス回収・貯留装置。
  16.  請求項13記載の接合材料を用いたことを特徴とする電力変換機器用モジュール。
PCT/JP2014/051064 2013-01-29 2014-01-21 ナノピラー及びその形成方法並びに当該ナノピラーを用いた接合材料、電池、炭酸ガス回収・貯留装置及び電力変換機器用モジュール WO2014119421A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013013905A JP2014145105A (ja) 2013-01-29 2013-01-29 ナノピラー及びその形成方法並びに当該ナノピラーを用いた接合材料、電池、炭酸ガス回収・貯留装置及び電力変換機器用モジュール
JP2013-013905 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014119421A1 true WO2014119421A1 (ja) 2014-08-07

Family

ID=51262136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051064 WO2014119421A1 (ja) 2013-01-29 2014-01-21 ナノピラー及びその形成方法並びに当該ナノピラーを用いた接合材料、電池、炭酸ガス回収・貯留装置及び電力変換機器用モジュール

Country Status (2)

Country Link
JP (1) JP2014145105A (ja)
WO (1) WO2014119421A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017009A1 (de) * 2021-08-09 2023-02-16 Norcsi Gmbh Verfahren zur erhöhung der haftfestigkeit von aktivschichten in lithium-batterien
WO2023118095A1 (de) * 2021-12-23 2023-06-29 Norcsi Gmbh Silizium-anode für lithium-ionen-batterien und verfahren zu deren herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029126B2 (ja) * 2017-01-18 2022-03-03 昭和電工マテリアルズ株式会社 ナノ結晶の製造方法、及び半導体デバイスの製造方法
JP7329798B2 (ja) * 2018-02-01 2023-08-21 株式会社レゾナック ナノ結晶膜の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088303A (ja) * 1996-09-19 1998-04-07 Toshiba Corp 合金の加工方法
JPH11200090A (ja) * 1997-11-12 1999-07-27 Canon Inc ナノ構造体及びその製造方法
JP2003168860A (ja) * 2001-11-30 2003-06-13 Cmk Corp プリント配線板及びその製造方法
WO2004057064A1 (ja) * 2002-12-21 2004-07-08 Juridical Foundation Osaka Industrial Promotion Organization 酸化物ナノ構造体及びそれらの製造方法並びに用途
JP2005076039A (ja) * 2003-08-29 2005-03-24 Canon Inc ナノ構造体、その製造方法、細線構造体および光触媒
JP2009084682A (ja) * 2007-10-02 2009-04-23 National Taiwan Univ Of Science & Technology 1次元金属ナノ構造を製作する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088303A (ja) * 1996-09-19 1998-04-07 Toshiba Corp 合金の加工方法
JPH11200090A (ja) * 1997-11-12 1999-07-27 Canon Inc ナノ構造体及びその製造方法
JP2003168860A (ja) * 2001-11-30 2003-06-13 Cmk Corp プリント配線板及びその製造方法
WO2004057064A1 (ja) * 2002-12-21 2004-07-08 Juridical Foundation Osaka Industrial Promotion Organization 酸化物ナノ構造体及びそれらの製造方法並びに用途
JP2005076039A (ja) * 2003-08-29 2005-03-24 Canon Inc ナノ構造体、その製造方法、細線構造体および光触媒
JP2009084682A (ja) * 2007-10-02 2009-04-23 National Taiwan Univ Of Science & Technology 1次元金属ナノ構造を製作する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017009A1 (de) * 2021-08-09 2023-02-16 Norcsi Gmbh Verfahren zur erhöhung der haftfestigkeit von aktivschichten in lithium-batterien
WO2023118095A1 (de) * 2021-12-23 2023-06-29 Norcsi Gmbh Silizium-anode für lithium-ionen-batterien und verfahren zu deren herstellung

Also Published As

Publication number Publication date
JP2014145105A (ja) 2014-08-14

Similar Documents

Publication Publication Date Title
Chang et al. One-step and single source synthesis of Cu-doped ZnO nanowires on flexible brass foil for highly efficient field emission and photocatalytic applications
Sulaiman et al. Review on grain size effects on thermal conductivity in ZnO thermoelectric materials
Kuriakose et al. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method
Ma et al. Controlled assembly of Bi 2 S 3 architectures as Schottky diode, supercapacitor electrodes and highly efficient photocatalysts
Nerle et al. Thermal oxidation of copper for favorable formation of cupric oxide (CuO) semiconductor
Xue et al. Photosensitization of TiO2 nanotube arrays with CdSe nanoparticles and their photoelectrochemical performance under visible light
Sivasubramanian et al. A review on bismuth-based nanocomposites for energy and environmental applications
WO2014119421A1 (ja) ナノピラー及びその形成方法並びに当該ナノピラーを用いた接合材料、電池、炭酸ガス回収・貯留装置及び電力変換機器用モジュール
Lv et al. Photoelectrochemical property of CdS and PbS cosensitized on the TiO2 array by novel successive ionic layer adsorption and reaction method
Zhu et al. Dual-functional hetero-structured TiO 2 nanotrees composed of rutile trunks and anatase branches for improved performance of quantum dot-sensitized solar cells
Chang Cadmium hydroxide and oxide nanoporous walls with high performance photocatalytic properties
Yuyang et al. Synthesis of Au–ZnO hybrid nanostructure arrays and their enhanced photocatalytic activity
Sapkota et al. Coherent CuO-ZnO nanobullets maneuvered for photocatalytic hydrogen generation and degradation of a persistent water pollutant under visible-light illumination
Zhang et al. Design of a novel CuBi2O4/CdMoO4 heterojunctions with nano-microsphere structure: Synthesis and photocatalytic degradation mechanism
Chang ZnO nanopinecone arrays with enhanced photocatalytic performance in sunlight
Zhu et al. A method for modeling and deciphering the persistent photoconductance and long-term charge storage of ZnO nanorod arrays
Sengunthar et al. Core–shell hybrid structured rGO decorated ZnO nanorods synthesized via a facile chemical route with photosensitive properties
Lee et al. Partial conversion reaction of ZnO nanowires to ZnSe by a simple selenization method and their photocatalytic activities
Bian et al. Flow-through TiO 2 nanotube arrays: a modified support with homogeneous distribution of Ag nanoparticles and their photocatalytic activities
Saidin et al. Hydrothermal growth of ZnO: a substrate-dependent study on nanostructures formation
Chen et al. ZnO hemisphere pits nanowire/CdS photoelectrode for high-efficiency photoelectrochemical water splitting
Yousefi et al. Metal chalcogenide hierarchical nanostructures for energy conversion devices
AIEMPANAKIT et al. Enhanced photocatalytic activity of ZnO nanostructures deposited on mesh through electrochemical deposition and thermal oxidation
Fang Structural parameters (size, defect and doping) of ZnO nanostructures and relations with their optical and electrical properties
Pal et al. Spontaneous hyper-branching in ZnO nanostructures: morphology dependent electron emission and light detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745856

Country of ref document: EP

Kind code of ref document: A1