WO2014115609A1 - 信号処理装置および信号処理方法、並びにプログラム - Google Patents

信号処理装置および信号処理方法、並びにプログラム Download PDF

Info

Publication number
WO2014115609A1
WO2014115609A1 PCT/JP2014/050497 JP2014050497W WO2014115609A1 WO 2014115609 A1 WO2014115609 A1 WO 2014115609A1 JP 2014050497 W JP2014050497 W JP 2014050497W WO 2014115609 A1 WO2014115609 A1 WO 2014115609A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal processing
band
unit
signal
command
Prior art date
Application number
PCT/JP2014/050497
Other languages
English (en)
French (fr)
Inventor
一高 岡本
雄一 平山
裕之 鎌田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2014115609A1 publication Critical patent/WO2014115609A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/61Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast
    • H04H20/63Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast to plural spots in a confined site, e.g. MATV [Master Antenna Television]

Definitions

  • the present technology relates to a signal processing device, a signal processing method, and a program, and in particular, for signals from a plurality of satellites distributed for each frequency band set in association with a plurality of signal processing devices (receiving devices).
  • the present invention relates to a signal processing device, a signal processing method, and a program that enable the processing device itself to specify in which frequency band a signal assigned to which signal processing device is distributed.
  • a television receiver (reception device) possessed by a user is provided with a switch for switching a plurality of satellites, and the switch is based on a command from the reception device.
  • a utilization method is adopted in which a satellite specified by a command among a plurality of satellites and reception programs is selected for viewing.
  • each user desires each receiving device possessed by each user.
  • a satellite wave needs to be selected and connected to each receiving device. For this reason, a switch that distributes the signal supplied from each of the antennas corresponding to the satellite wave to each receiving device of a plurality of users is required.
  • the switch connects a plurality of receiving devices with a single cable, assigns a frequency band, that is, a user band (hereinafter also referred to as UB) to each receiving device, and receives each receiving device.
  • a user band hereinafter also referred to as UB
  • a broadcast wave signal composed of an IF band desired by the user of the apparatus is assigned to each assigned UB and transmitted.
  • a plurality of receiving apparatuses can receive a channel desired by the user of each receiving apparatus by selecting and receiving only the signal of the UB that is a band allocated to each receiving apparatus. .
  • This method stipulates a method of multiplexing and distributing a desired bandwidth of a maximum of 2 satellites (total 8 LNBs) on one coaxial cable shared by a maximum of 8 receivers (see Non-Patent Document 1). .
  • each receiving device recognizes a UB number that identifies a usable UB (not used by others) among a maximum of eight UBs, and specifies a frequency band to be its own UB, It is necessary to receive the signal of the specified frequency band as the signal of the UB assigned to itself.
  • the receiving device searches for its own UB number and UB frequency, and the receiving device itself sets up.
  • a set of commands is defined to do this.
  • the present technology has been made in view of such a situation.
  • the receiving device itself searches for an available UB frequency even when information on the usable UB frequency for the receiving device itself is not clear. And make it possible to set up.
  • the signal processing device distributes and transmits a plurality of signals transmitted from a plurality of satellites to the plurality of signal processing devices for each band associated with the plurality of signal processing devices.
  • a signal processing device for receiving a signal transmitted from a distribution unit, a measurement unit for measuring reception intensity of a signal for each band distributed and transmitted by the distribution unit, and all signals by the distribution unit A measurement result by the measurement unit when a signal in a band associated with a processing device is transmitted, and a signal distributed to all bands associated with a signal processing device other than the predetermined signal processing device is transmitted
  • a specifying unit that specifies a band whose difference from the measurement result by the measuring unit in the case of being performed is larger than a predetermined value as a band associated with the predetermined signal processing device.
  • the distribution unit may further include a command transmission unit that transmits a stop command for stopping transmission of a signal distributed and transmitted in a band associated with a predetermined signal processing device, Based on the measurement result by the measurement unit when the signal of the band corresponding to all signal processing devices is transmitted by the distribution unit and the stop command to the specifying unit, the predetermined signal processing device.
  • the command transmission unit may be configured to transmit a transmission command when requesting transmission of a signal distributed in a band associated with all signal processing devices.
  • the command transmitted by the command transmission unit can be a command obtained by extending a command defined in the DiSEqC standard
  • the stop command can be an ODU_UBxSignal_ON command
  • the transmission command is an ODU_PowerOFF command be able to.
  • a plurality of signals transmitted from a plurality of satellites are distributed and transmitted to the plurality of signal processing devices for each band associated with the plurality of signal processing devices.
  • a signal processing method of a signal processing device for receiving a signal transmitted from a distribution unit, the measurement processing for measuring the reception intensity of a signal for each band distributed and transmitted by the distribution unit, and the distribution unit Is distributed to all bands associated with signal processing devices other than the predetermined signal processing device, and measurement results by the measurement unit when signals in a band associated with all signal processing devices are transmitted.
  • a step of specifying a band whose difference from the measurement result by the measurement unit when a signal is transmitted is larger than a predetermined value as a band associated with the predetermined signal processing device Including.
  • a program is a distribution unit that distributes and transmits a plurality of signals transmitted from a plurality of satellites to the plurality of signal processing devices for each band associated with the plurality of signal processing devices.
  • a band whose difference from the measurement result by the measurement unit when a signal distributed to the band is transmitted is larger than a predetermined value is a band associated with the predetermined signal processing device To execute processing including a specifying step of specifying the computer Te.
  • a plurality of signals transmitted from a plurality of satellites by a distribution unit are distributed and transmitted to the plurality of signal processing devices for each band associated with the plurality of signal processing devices.
  • the reception intensity of the signal for each band distributed and transmitted by the distribution unit is measured, and the signal of the band associated with all signal processing devices is transmitted by the distribution unit
  • the difference between the measurement result when a signal distributed to all bands associated with a signal processing device other than the predetermined signal processing device is transmitted is greater than a predetermined value, It is specified as a band associated with a predetermined signal processing device.
  • the signal processing device may be an independent device or a block that performs each processing.
  • a plurality of satellite wave signals received by a switch that is a distribution unit are allocated and transmitted for each frequency band set in each of a plurality of receiving apparatuses. It becomes possible to specify the frequency band of an unknown UB assigned to the receiving apparatus itself.
  • FIG. 11 is a diagram illustrating a configuration example of a general-purpose personal computer.
  • First embodiment an example of detecting all UBs
  • First modification example of detecting only a predetermined UB
  • Second modification an example of detecting a predetermined UB at high speed
  • the antennas 11-1 to 11-M correspond to the respective satellite waves. Is supplied to LNBs (Low Noise Block Converters) 12-1 to 12-M.
  • the LNBs 12-1 to 12-N amplify the signals received by the antennas 11-1 to 11-M and supply the amplified signals to the switch 22 via the cables 21-1 to 21-M.
  • the receiving device 24 supplies a command for designating a channel of a signal supplied to the switch 22 via the cables 21-1 to 21 -M via the cable 23.
  • the switch 22 supplies a signal of a channel designated based on a command supplied from the receiving device 24 via the cable 23 to the receiving device 24.
  • the receiving device 24 receives the signal supplied from the switch 22 in this way and displays it on a display unit (not shown), for example.
  • a display unit not shown
  • the antennas 11-1 to 11-M and the cables 21-1 to 12-M will be simply referred to as the antenna 11 and the cable 21 unless otherwise distinguished. Shall be referred to similarly.
  • the switch 22 when there is only one receiving device 24, the switch 22 only transmits a signal of a designated channel based on a command from one receiving device 24. Will be processed.
  • the switch 31 transmits the signals received by the antennas 11-1 to 11-M in response to commands from the plurality of receiving devices 24-1 to 24-N.
  • the signals of the channels specified by the respective commands of the receiving devices 24-1 to 24-N supplied via -N are transmitted via the cables 23-1 to 23-N.
  • the switch 41 that receives signals from the plurality of antennas 11-1 to 11-M is connected to one cable 42 as shown in FIG. Via the plurality of receiving devices 24-1 to 24-N connected to the cable 42. Then, the switch 41 assigns the signal of the reception channel of the IF band (intermediate frequency band) specified by the received command to each of the reception devices 24-1 to 24-N as shown in FIG. The frequency is converted so as to be allocated to the user bands UB 1 to UBN which are frequency bands, and is transmitted via the cable 42. Each of the reception devices 24-1 to 24-N receives a signal in a frequency band assigned to itself. In this way, the cable 42 that connects the switch 41 and the plurality of receiving devices 24-1 to 24-N can have a simple configuration.
  • the horizontal axis indicates the frequency band and the vertical axis indicates the signal intensity
  • user bands UB1 to UBN corresponding to the receiving devices 24-1 to 24-N are assigned in order from the left. It is shown that. Accordingly, the receiving devices 24-1 to 24-N receive the signals allocated to the user bands UB1 to UBN, which are bands as shown in FIG. 3, respectively, and execute processing based on the signals. For example, the image is displayed on a display unit (not shown).
  • the receiving device 24 includes an RF (Radio Frequency) unit 101, a carrier frequency synchronization unit 102, a clock timing synchronization unit 103, a matched filter 104, an equalizer 105, a carrier phase synchronization unit 106, a transmission frame estimation unit 107, and automatic signal power control.
  • Unit 108, control bus 109, and control unit 110 includes an RF (Radio Frequency) unit 101, a carrier frequency synchronization unit 102, a clock timing synchronization unit 103, a matched filter 104, an equalizer 105, a carrier phase synchronization unit 106, a transmission frame estimation unit 107, and automatic signal power control.
  • Unit 108 control bus 109, and control unit 110.
  • the RF unit 101 receives a signal transmitted at a frequency specified by the control unit 110 via the control bus 109, and receives a carrier wave as an I component and Q component signal. This is output to the frequency synchronization unit 102 and the automatic signal power control unit 108.
  • the RF unit 101 is gain-controlled based on a signal indicating the power control amount supplied from the automatic signal power control unit 108, and amplifies the received signal level according to the signal indicating the power control amount. Signals are output to the carrier frequency synchronization unit 102 and the automatic signal power control unit 108.
  • the carrier frequency synchronization unit 102 synchronizes the signal supplied from the RF unit with the carrier frequency based on the frequency displacement control signal supplied from the control unit 110 via the control bus 109 to the clock timing synchronization unit 103. Supply. Also, the carrier frequency synchronization unit 102 controls the frequency displacement amount information indicating the displacement of the carrier frequency based on the frequency displacement control signal supplied from the control unit 110 via the control bus 109 via the control bus 109. To the unit 110.
  • the clock timing synchronization unit 103 is controlled by the control unit 110 via the control bus 109, synchronizes the clock of the signal output from the carrier frequency synchronization unit 102, and outputs it to the matched filter 104.
  • the matched filter 104 attenuates the waveform close to the rising portion and the waveform close to the falling portion of the signal corresponding to the symbol of the signal output from the clock timing synchronization unit 103 to reduce interference due to the reflected wave. , And output to the equalizer 105.
  • the equalizer 105 restores a signal equal to the transmitted signal based on the signal output from the matched filter 104 and outputs the signal to the carrier phase synchronization unit 106.
  • the carrier phase synchronization unit 106 synchronizes the signal output from the equalizer 105 with the phase of the carrier and outputs it as a synchronization signal, and also outputs it to the transmission frame estimation unit 107.
  • the transmission frame estimation unit 107 estimates a transmission frame based on the synchronization signal output from the carrier phase synchronization unit 106, and supplies the estimated transmission frame information to the control unit 110 via the control bus 109.
  • the automatic signal power control unit 108 measures the power indicating the reception level of the baseband signal supplied from the RF unit 101 based on the power measurement control signal supplied from the control unit 110 and controls it as a power measurement value.
  • the data is supplied to the control unit 110 via the bus 109.
  • the control unit 110 controls the overall operation of the receiving device 24, and includes an RF control unit 121, a carrier frequency control unit 122, a spectrum measurement unit 123, a spectrum storage unit 124, a command output unit 125, and a UB (user band).
  • a storage unit 126, a power measurement unit 127, a power change measurement unit 128, and a band specifying unit 129 are provided.
  • the RF control unit 121 supplies a signal specifying a frequency band received by the RF unit 101 to the RF unit 101 via the control bus 109.
  • the RF unit 101 receives a signal in a frequency band specified based on a signal designating this frequency band.
  • the carrier frequency control unit 122 supplies a frequency displacement control signal for controlling the carrier frequency to be synchronized to the carrier frequency synchronization unit 102 and controls the carrier frequency to be synchronized.
  • the carrier frequency synchronization unit 102 supplies frequency displacement amount information indicating the displacement amount of the carrier frequency set based on the frequency displacement control signal to the control unit 110 via the control bus 109.
  • the carrier frequency control unit 122 generates an appropriate frequency displacement control signal based on the information on the frequency displacement amount and supplies the frequency displacement control signal to the carrier frequency synchronization unit 102.
  • the power measurement unit 127 measures the level of the output signal of the RF unit 101 supplied from the automatic signal power control unit 108, that is, a power measurement value indicating the reception level.
  • the spectrum measurement unit 123 reads the power measurement value measured by the power measurement unit 127 for each frequency and stores it in the spectrum storage unit 124 as a spectrum of the power measurement value for the frequency band.
  • the command output unit 125 is defined by the DiSEqC (Digital Satellite Equipment Control) standard based on the Satellite-signal-distribution-over-a-single-coaxial-cable-in-single-dwelling-installations- (BS-EN-50504) (hereinafter referred to as Single-Cable or SC) Are supplied to the switch 41 via the control bus 109 and the RF unit 101. More specifically, the command output unit 125 sends a specific UB signal after an ODU_UBxSignal_ON command and an ODU_UBxSignal_ON command are requested to transmit all UB signals as commands specified in the DiSEqC standard.
  • the switch 41 is supplied with an ODU_PowerOFF command for requesting the stop of the transmission.
  • a desired frequency band of a maximum of two satellites (a total of eight LNBs) is distributed by being superimposed on a cable 42 made of one coaxial cable shared by a maximum of eight receivers 24.
  • the satellite wave signal for transmitting satellite broadcasts has a wide satellite bandwidth with respect to the IF bandwidth of 1200 MHz (950 MHz to 2150 MHz), so it must be divided into High Band and Low Band. Since vertically polarized waves can be used independently, different signals can be transmitted, and four types of signals, that is, signals of four channels can be transmitted by combining them. As a result, since there are a total of eight types of signals that can be transmitted by the two satellites, the SC defines a broadcast wave transmission method under such conditions.
  • the configuration of the command specified in the DiSEqC standard is, for example, as shown in the uppermost part of FIG. 5.
  • information indicated by P is parity information.
  • the ODU_UBxSignal_ON command is configured, for example, as shown in the second row from the top in FIG. 5, where E0h is registered as information indicating a frame, 00h, 10h, and 11h are registered as information indicating an address, and ODU_UBxSignal_ON 5Bh is registered as information indicating a command, and 00h is registered as information indicating Data1 and Data2.
  • the ODU_PowerOFF command is configured as shown in the third row from the top in FIG. 5, for example, where E0h is registered as information indicating a frame, and 00h, 10h, and 11h are registered as information indicating an address. , 5Ah is registered as information indicating the ODU_PowerOFF command, information for identifying the UB assigned to the receiving device 24 designated to be stopped is registered in Data1, and Data2 (00h) is registered in Data2. .
  • the specific information of Data1 is shown as the lowermost information in FIG. That is, in the lowermost information in FIG. 5, information for identifying the band allocated to the receiving device 24 that is requested to stop the signal in the SC is registered by 3 bits of Bit 5 to Bit 7 out of Bit 0 to Bit 7. Is done.
  • the power change measurement unit 128 includes the power measurement value measured by the power measurement unit 127 in a state where the ODU_UBxSignal_ON command is transmitted among the UBs specified by the spectrum stored in the spectrum storage unit 124, and then the ODU_PowerOFF command.
  • the difference from the power measurement value measured in a state where the transmission of the signal of the specific UB is stopped is measured as a change.
  • the band specifying unit 129 specifies that the band whose power change, which is the difference between the powers measured by the power change measuring unit 128, is larger than the predetermined value is the UB that requested the stop, and the frequency band of the specified UB Information is stored in the UB storage unit 126.
  • step S11 the command output unit 125 of the control unit 110 outputs a signal including all UB signals (sine wave signal for all UBs) to the switch 41 via the control bus 109 and the RF unit 101. Send the requested ODU_UBxSignal_ON command.
  • step S12 when the switch 41 receives the ODU_UBxSignal_ON command from the receiving device 24, the switch 41 sends the signal from the LNB 12 of the antenna 11 to be received to all the UBs assigned to all the receiving devices 24-1 to 24-N. Is converted to a sine wave signal and output via the cable 42.
  • step S13 the spectrum measurement unit 123 controls the power measurement unit 127 to execute the spectrum measurement process, measures the spectrum of the signal supplied from the switch 41, and stores the spectrum in the spectrum storage unit 124.
  • step S51 the RF control unit 121 controls the reception frequency of the RF unit 101 via the control bus 109, and selects a channel so as to receive a signal having a start frequency.
  • step S52 the carrier frequency control unit 122 sets the frequency displacement for controlling the frequency synchronized by the carrier frequency synchronization unit 102 to the minimum frequency displacement.
  • step S ⁇ b> 53 the power measurement unit 127 supplies a power measurement control signal to the automatic signal power control unit 108 via the control bus 109 to measure power indicating the strength of the signal output from the RF unit 101. . Then, the spectrum measurement unit 123 acquires a power measurement value that is a power measurement result supplied from the automatic signal power control unit 108 and stores the power measurement value in the spectrum storage unit 124 in association with the current reception frequency.
  • step S54 the carrier frequency control unit 122 determines whether or not the frequency displacement that controls the frequency synchronized by the carrier frequency synchronization unit 102 is the maximum frequency displacement. In step S54, when the frequency displacement is not the maximum frequency displacement, the process proceeds to step S55.
  • step S55 the carrier frequency control unit 122 increments and sets a frequency displacement that controls the frequency synchronized by the carrier frequency synchronization unit 102, and the process returns to step S53. That is, in step S54, the processing of steps S53 to S55 is repeated until the maximum frequency displacement is reached, and the signal measured by the automatic signal power control unit 108 while the frequency synchronized by the carrier frequency synchronization unit 102 is displaced. The measured power value indicating the intensity of the spectrum is stored in the spectrum storage unit 124. If it is determined in step S54 that the displacement is the maximum frequency, the process proceeds to step S56.
  • step S56 the RF control unit 121 determines whether or not the reception frequency of the RF unit 101 has reached the end frequency via the control bus 109. Advances to step S57.
  • step S57 the RF control unit 121 increments the reception frequency of the RF unit 101 by a predetermined value via the control bus 109, and the process returns to step S52. That is, in step S56, the processing of steps S52 to S57 is repeated until the reception frequency of the RF unit 101 reaches the end frequency, and the reception frequency received by the RF unit 101 is sequentially incremented. However, the reception frequency synchronized by the carrier frequency synchronization unit 102 is changed for the frequencies in the vicinity thereof, the power measurement value is measured, and the process stored in the spectrum storage unit 124 is repeated.
  • step S57 when it is determined that the reception frequency of the RF unit 101 has reached the end frequency, the process ends.
  • the RF control unit 121 causes the RF unit 101 to increment the frequency f1 that is the start frequency by a predetermined value, and sequentially receives the reception frequency. Is changed to frequencies f2, f3,... F12.
  • the carrier frequency control unit 122 sequentially shifts the synchronization frequency of the carrier frequency synchronization unit 102 while changing the frequency displacement by a predetermined value (a value smaller than the reception frequency incremented by the RF unit 101).
  • the power is measured, and the result is stored in the spectrum storage unit 124 as a spectrum.
  • the processing of steps S53 to S55 is repeated, and the reception frequency is changed while the frequency displacement of the carrier frequency synchronization unit 102 is changed by a predetermined value.
  • the spectrum is measured by changing between the frequencies f1 and f2 and reaches the maximum frequency displacement
  • the reception frequency of the RF unit 101 is incremented and set to the frequency f2 in step S57.
  • the processes of steps S53 to S55 are repeated, and the spectrum is measured by changing the reception frequency between the frequencies f2 to f3 while changing the frequency displacement of the carrier frequency synchronization unit 102 by a predetermined value.
  • step S57 After the reception frequency of the RF unit 101 is incremented by a predetermined value in step S57 and set to the frequency f3, the processing of steps S53 to S55 is repeated, and the frequency displacement of the carrier frequency synchronization unit 102 is a predetermined value.
  • the spectrum is measured while being displaced and the reception frequency is changed between frequencies f3 to f4.
  • the spectrum is measured while changing the frequency between frequencies f4 to f5, between f5 to f6,... F11 to f12, and the frequency f12 at which the reception frequency of the RF unit is the end frequency.
  • step S13 When the spectrum is measured by the spectrum measurement process in step S13 and stored in the spectrum storage unit 124, the process proceeds to step S14.
  • step S ⁇ b> 14 the power measurement unit 127 sets the frequency band that is the user band candidate with the highest power peak as the first candidate frequency band based on the spectrum stored in the spectrum storage unit 124. To do.
  • the power measuring unit 127 includes the user band UB in the vicinity of the reception intensity peak indicated by a dotted circle or a solid circle. It is assumed that the frequency band is B1 to B8 to be candidates, and among these, the frequency band B5 indicated by a solid circle with the highest intensity is set as a candidate.
  • step S15 the command output unit 125 transmits the ODU_UBxSignal_ON command to the switch 41 again via the control bus 109 and the RF unit 101.
  • step S16 when the switch 41 receives the ODU_UBxSignal_ON command from the receiving device 24, the switch 41 transmits the signal from the LNB 12 of the antenna 11 to be received to all the UBs assigned to all the receiving devices 24-1 to 24-N. Is converted to a sine wave signal and output via the cable 42.
  • step S17 the command output unit 125 transmits an ODU_PowerOFF command requesting the switch 41 to stop the output of the user band UB that is the first search target, via the control bus 109 and the RF unit 101. That is, the command output unit 125 stores in advance information such as the number of user bands and each of which identifies each, for example, a UB number, but there is no information about each frequency band of the user band. Therefore, the command output unit 125 sets any of unprocessed information for identifying the user band stored in advance as a search target user band.
  • step S18 when the switch 41 receives the ODU_PowerOFF command from the receiving device 24, the switch 41 is assigned to the receiving device 24 for the user band to be searched included in the ODU_PowerOFF command among the signals from the LNB 12 of the antenna 11 to be received. Stops the output of the sine wave signal to the UB in the specified band. Accordingly, at this time, a signal in a frequency band other than the signal in the frequency band whose output is stopped is continuously output.
  • step S ⁇ b> 19 the power measurement unit 127 supplies a power measurement control signal to the automatic signal power control unit 108, and indicates the strength in the frequency band that is a user band candidate among the signals output from the RF unit 101. Request the measurement of the power measurement value and obtain the measurement result.
  • step S20 the power change measurement unit 128, based on the spectrum information stored in the spectrum storage unit 124, measured before the ODU_PowerOFF command is transmitted, the power measurement value of the candidate frequency band, A difference indicating a change from a power measurement value of a candidate frequency band, which is measured after an ODU_PowerOFF command that is requested to stop the output of a user band to be searched, is measured.
  • the band specifying unit 129 has a difference indicating a change in the power measurement value measured by the power change measurement unit 128 greater than a predetermined threshold value, and the power measurement value measured after the ODU_PowerOFF command is transmitted is large. It is determined whether or not it has decreased. That is, when the ODU_PowerOFF command for stopping the signal output of the user band UB1 is transmitted as a search target and the candidate frequency band corresponding to the user band UB1 is the frequency band B5, the dotted circle in the lower part of FIG. As shown, the power measurement value indicating the intensity of the signal in the frequency band B1 corresponding to the user band UB1 greatly decreases. However, as indicated by the solid circle in the lower part of FIG.
  • the candidate frequency band is the frequency band B5, and therefore the signal level of the frequency band B5 corresponding to the user band UB5 does not decrease.
  • the power measurement value indicating the signal level of the corresponding frequency band B5 is the value before the ODU_PowerOFF command is transmitted. The amount of change, which is the difference, becomes larger than a predetermined threshold value.
  • step S21 for example, as indicated by the solid circle in the upper part of FIG. 9, the candidate frequency band B5 is a frequency band corresponding to the user band UB5 to be searched, and the ODU_PowerOFF command
  • step S24 the difference between before and after falls significantly below a predetermined threshold
  • the band specifying unit 129 specifies a candidate frequency band that has greatly changed before and after the ODU_PowerOFF command as being the user band UB of the search target UB number. Then, the band specifying unit 129 causes the UB storage unit 126 to store information indicating that the specified candidate frequency band is the user band UB of the UB number to be searched. That is, in the case of FIG. 9, since the user band to be searched is the user band UB5, it is specified that the frequency band B5 set as a candidate having a large change required as the difference is the corresponding frequency band. And stored in the UB storage unit 126.
  • step S21 for example, as shown in FIG. 8, when the candidate frequency band is the frequency band B5 and the search target is the user band UB1 supplied in the frequency band B1, before and after the ODU_PowerOFF command Since the difference, which is the change in the power measurement value at, is smaller than the predetermined threshold value, the candidate frequency band B5 is considered not to be the user band UB1 to be searched, and the process proceeds to step S22. Proceed to
  • step S22 the power measurement unit 127 determines whether there is an unprocessed user band UB that is not set as a search target among the user bands UB. If it is determined in step S22 that there is a frequency band that is not set as a search target in the user band, the process proceeds to step S23.
  • step S23 the power measurement unit 127 sets one of the user bands not set as the search target as the search target, and the process returns to step S18. If it is determined in step S22 that there is no user band that is not set as a search target among user bands, the process proceeds to step S25.
  • step S25 the power measurement unit 127 excludes the user band set as the search target from the search target. That is, if the candidate frequency band B5 is identified as the frequency band of the user band UB5 set as the search target based on the result shown in FIG. 9, the user band UB5 is subsequently searched for Excluded from.
  • the frequency band in which the candidate power measurement value reaches a peak is regarded as one of the user bands set as a search target and stored in the UB storage unit 126, or the candidate power measurement.
  • the processes in steps S18 to S25 are repeated until it is considered that the frequency band having the peak value is not one of the user bands set as the search target.
  • the frequency band in which the candidate power measurement value peaks is regarded as one of user bands set as search targets and stored in the UB storage unit 126.
  • the process proceeds to step S26.
  • step S26 the power measurement unit 127 determines whether or not a user band to be searched remains, and if it remains, the process proceeds to step S27.
  • step S27 the power measuring unit 127 determines whether or not the maximum number of tries has been reached.
  • the maximum number of tries is the frequency band that is the peak of the power measurement value that can be a candidate for the user band, which is greater than the number of user bands that actually exist, and the frequency band is not specified. This is the number of times set to abort the process because there is a possibility that not all of the user bands to be searched remain even if specified. Therefore, the maximum number of tries needs to be at least larger than the number of user bands registered in advance.
  • the maximum number of tries is set to stop the process of specifying the user band for the candidate frequency band, in which the user band cannot be specified, and can be set so that the number of processes does not increase unnecessarily. So, for example, instead of the maximum number of tries, it is possible to substantially reduce the number of trials by excluding those whose strength of the power measurement value in the frequency band that is the peak of the power measurement value that can be a candidate is smaller than a predetermined value. You may make it restrict
  • step S27 If it is determined in step S27 that the maximum number of tries has not been reached, the process proceeds to step S28.
  • step S ⁇ b> 28 the power measurement unit 127 has not identified a user band so far among the frequency bands in which the power that can be a user band candidate is based on the spectrum stored in the spectrum storage unit 124.
  • a frequency band that is a frequency band and has the highest power peak is set as a candidate, and the process returns to step S15.
  • the power measurement value corresponding to the frequency band B5 indicates a high value before the ODU_PowerOFF command for requesting the stop of the signal output of the user band UB5 is transmitted and as shown in the lower part of FIG.
  • the frequency band B5 is specified as the user band UB5.
  • unnecessary processing is omitted by preventing the frequency band B5 from being selected as a candidate for specifying the user band thereafter (detection processing for the same candidate). Can be repeated indefinitely). Further, as shown in the upper part of FIG.
  • the signal strength of the frequency bands B1 to B5 is reduced, for example, until the ODU_PowerOFF command of the frequency band B5 is transmitted. This is because the ODU_PowerOFF command has been sent. Further, when the signal change is large before and after the ODU_PowerOFF command, the user band of the candidate frequency band is specified. Therefore, as shown by the solid circle in the lower part of FIG. B8 is a frequency band to be the next candidate.
  • the frequency band that is a candidate for the user band is identified from the relationship of the signal strength with respect to the frequency, and among these candidates, by using the ODU_UBxSignal_ON command and the ODU_PowerOFF command, the change in the power measurement value indicating the reception level Can be identified as a user band that requests signal stop with the ODU_PowerOFF command.
  • the receiving device demodulation device
  • the frequency band of the user band that cannot be known in advance.
  • the frequency bands B1 to B8 indicated by the solid circle and the dotted circle Is set as a candidate frequency band, and only the ODU_PowerOFF command for stopping the signal of its own user band UB3 indicated by a solid circle is repeatedly transmitted, and each time the power measurement stored in the spectrum storage unit 124 is measured.
  • the difference between the value and the measured power value after the ODU_PowerOFF command is obtained, and the frequency band when the difference becomes larger than a predetermined threshold is specified as the frequency band B3 of the user band UB3.
  • Second Modification> ⁇ Third UB search process>
  • the ODU_PowerOFF command is sequentially transmitted to identify the frequency band of its own user band based on the difference between the power measurement values before and after that. I have explained. However, the power measurement values of all frequency bands before and after the ODU_PowerOFF command are obtained, and the difference of all frequency bands of the power measurement values is obtained, and the frequency band having the large difference among them is specified as its user band. May be.
  • the spectrum measurement process is executed twice in steps S93 and S96.
  • step S97 the power change measurement unit 128 calculates all the differences in the power measurement values for the same frequency band based on the two spectrum measurement results.
  • step S98 the band specifying unit 129 specifies a frequency band having a large difference as a user band frequency band based on all the calculation results of the power change measuring unit 128, and the UB storage unit is processed by the process in step S99. 126 is stored.
  • the spectrum measurement process is executed twice, so that the memory capacity for storing the spectrum measurement result may be doubled.
  • the difference from the first measurement result is sequentially obtained and replaced to be stored. Processing can be realized without the need for twice.
  • the usable band can be easily and quickly specified.
  • the series of processes described above can be executed by hardware, but can also be executed by software.
  • a program constituting the software may execute various functions by installing a computer incorporated in dedicated hardware or various programs. For example, it is installed from a recording medium in a general-purpose personal computer or the like.
  • FIG. 13 shows a configuration example of a general-purpose personal computer.
  • This personal computer incorporates a CPU (Central Processing Unit) 1001.
  • An input / output interface 1005 is connected to the CPU 1001 via a bus 1004.
  • a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
  • the input / output interface 1005 includes an input unit 1006 including an input device such as a keyboard and a mouse for a user to input an operation command, an output unit 1007 for outputting a processing operation screen and an image of the processing result to a display device, programs, and various types.
  • a storage unit 1008 including a hard disk drive for storing data, a LAN (Local Area Network) adapter, and the like are connected to a communication unit 1009 that executes communication processing via a network represented by the Internet.
  • magnetic disks including flexible disks
  • optical disks including CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc)), magneto-optical disks (including MD (Mini Disc)), or semiconductors
  • a drive 1010 for reading / writing data from / to a removable medium 1011 such as a memory is connected.
  • the CPU 1001 is read from a program stored in the ROM 1002 or a removable medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, installed in the storage unit 1008, and loaded from the storage unit 1008 to the RAM 1003. Various processes are executed according to the program.
  • the RAM 1003 also appropriately stores data necessary for the CPU 1001 to execute various processes.
  • the CPU 1001 loads, for example, the program stored in the storage unit 1008 to the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes the program. Is performed.
  • the program executed by the computer (CPU 1001) can be provided by being recorded on the removable medium 1011 as a package medium, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 1008 via the input / output interface 1005 by attaching the removable medium 1011 to the drive 1010. Further, the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008. In addition, the program can be installed in advance in the ROM 1002 or the storage unit 1008.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing are all systems. .
  • the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • this technique can also take the following structures.
  • a signal processing device for receiving A measurement unit for measuring the reception intensity of the signal for each band distributed and transmitted by the distribution unit;
  • a command transmission unit that transmits a stop command for stopping transmission of a signal distributed and transmitted to a band associated with a predetermined signal processing device to the distribution unit,
  • the specifying unit sends the signal to the predetermined signal processing device based on the measurement result of the measurement unit when the signal of the band corresponding to all the signal processing devices is transmitted by the distribution unit and the stop command.
  • the signal transmission device according to (1) or (2), wherein the command transmission unit transmits a transmission command when requesting transmission of a signal distributed in a band associated with all signal processing devices. .
  • the command transmitted by the command transmission unit is a command obtained by extending a command specified in the DiSEqC standard, the stop command is an ODU_UBxSignal_ON command, and the transmission command is an ODU_PowerOFF command. (1) Thru
  • a signal processing method including: (6) A signal transmitted from a distribution unit that distributes and transmits a plurality of signals transmitted from a plurality of satellites to the plurality of signal processing devices for each band associated with the plurality of signal processing devices.
  • a program for controlling a computer for controlling a signal processing device for receiving A measurement step of measuring the reception intensity of the signal for each band distributed and transmitted by the distribution unit; A measurement result by the measurement unit when signals in a band associated with all signal processing devices are transmitted by the distribution unit, and all bands associated with a signal processing device other than the predetermined signal processing device

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本技術は、受信装置自身に割り当てられているユーザバンドの周波数帯域を特定できるようにする信号処理装置および信号処理方法、並びにプログラムに関する。 コマンド出力部125は、スイッチ41に対して、ODU_UBxSignal_ONコマンドで全ての周波数帯域の信号を出力させる。スペクトル測定部123は、自動信号電力制御部108により測定されるRF部101の信号レベルを測定させて、スペクトル記憶部124に記憶させる。その後、コマンド出力部125は、所定のユーザバンドの信号出力の停止を要求するODU_PowerOFFコマンドをスイッチ41に供給する。電力測定部127は、電力測定値を計測し、電力変化測定部128は、ODU_PowerOFFコマンドの出力前の電力測定値との差分を測定する。帯域特定部129は、差分が大きな周波数帯域を所定のユーザバンドの周波数帯域に特定し、UB記憶部126に記憶させる。本技術は、受信装置に適用することができる。

Description

信号処理装置および信号処理方法、並びにプログラム
 本技術は、信号処理装置および信号処理方法、並びにプログラムに関し、特に、複数の信号処理装置(受信装置)に対応付けて設定された周波数帯域毎に配信される複数の衛星からの信号について、信号処理装置自身が、どの周波数帯域に、どの信号処理装置に割り付けられた信号が配信されているのかを特定できるようにした信号処理装置および信号処理方法、並びにプログラムに関する。
 衛星波を利用したテレビジョン放送などを受信するアプリケーションプログラムにおいては、例えば、ユーザの所持するテレビジョン受像器(受信装置)が複数の衛星を切り替えるスイッチを設け、スイッチが受信装置からのコマンドに基づいて、複数の衛星および受信プログラムのうち、コマンドにより指定されたものを選択して視聴するような利用方法がとられている。
 また、集合住宅等、または複数のユーザにより、それぞれに所持される複数の受信装置が受信側のシステムに存在する場合、各ユーザにより所持される受信装置のそれぞれにおいて、それぞれのユーザが所望とする衛星波が選択されて各々の受信装置に接続される必要がある。このため、衛星波に応じたアンテナのそれぞれから供給されてくる信号を、複数のユーザのそれぞれの受信装置に分配するスイッチが必要となる。
 しかしながら、スイッチから複数の受信装置に対して個別に配線を設けて送信する構成とすると、受信装置の数だけ配線が必要となるため、構成が複雑なものとなってしまう。そこで、スイッチは、複数の受信装置を1本のケーブルにより接続し、それぞれの受信装置毎に周波数帯域、すなわち、ユーザバンド(以下、UBとも称する)を割り当てて、各受信装置に対して、受信装置のユーザが所望とするIFバンドからなる放送波の信号を、それぞれに割り当てられたUBに割り当てて送信する。これにより複数の受信装置は、それぞれ自らに割り当てられた帯域であるUBの信号のみを選局して受信することで、各受信装置のユーザにより所望とされるチャンネルを受信することが可能となる。
 この様な方法を規定した方式に、”Satellite signal distribution over a single coaxial cable in single dwelling installations (BS EN 50494)”(以下Single Cable、またはSCと称する)がある。この方式では、最大2衛星(計8LNB)の所望の帯域を、最大8個の受信装置が共有する1本の同軸ケーブル上に多重し分配する方法が規定されている(非特許文献1参照)。
Satellite signal distribution over a single coaxial cable in single dwelling installations (BS EN 50494)
 ところで、SCでは、各受信装置が最大8個のUBのうち、利用可能な(他者が利用中でない)UBを識別するUB番号を認識すると共に、自らのUBとなる周波数帯域を特定し、特定した周波数帯域の信号を自らに割り当てられたUBの信号として受信する必要がある。
 そこで、上述したBS EN 50494においては、受信装置が自ら以外の受信装置のUB利用状況を知らなくても、受信装置が自らのUB番号とUB周波数とを探索して、受信装置自らがセットアップを行うためのコマンド群が定義されている。
 しかしながら、この受信装置自らがUB番号とUB周波数とをセットアップする方法については述べられているものの、大部分は実装者に委ねられたものとなっており、実用的なものとはなっていなかった。
 本技術は、このような状況に鑑みてなされたものであり、特に、受信装置自身が、受信装置自らにとって利用可能なUB周波数の情報が明らかになっていない場合でも利用可能なUB周波数を探索し、セットアップできるようにするものである。
 本技術の一側面の信号処理装置は、複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置であって、前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定部と、前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定部とを含む。
 前記分配部に対して、所定の信号処理装置に対応付けられた帯域に分配されて送信される信号の送信を停止させる停止コマンドを送信するコマンド送信部をさらに含ませるようにすることができ、前記特定部には、前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記停止コマンドに基づいて、前記所定の信号処理装置に対応付けられた帯域に分配される信号の送信が停止され、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定するようにさせることができる。
 前記コマンド送信部には、全ての信号処理装置に対応付けられた帯域に分配される信号の送信を要求するとき、送信コマンドを送信させるようにすることができる。
 前記コマンド送信部により送信されるコマンドは、DiSEqC規格で規定されるコマンドを拡張したコマンドとすることができ、前記停止コマンドは、ODU_UBxSignal_ONコマンドとすることができ、前記送信コマンドは、ODU_PowerOFFコマンドとすることができる。
 本技術の一側面の信号処理方法は、複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置の信号処理方法であって、前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定処理と、前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定処理とからなるステップを含む。
 本技術の一側面のプログラムは、複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置を制御するコンピュータに実行させるためのプログラムであって、前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定ステップと、前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定ステップとを含む処理をコンピュータに実行させる。
 本技術の一側面においては、分配部により複数の衛星より送信されてくる複数の信号が、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配され送信されてくる信号が受信され、前記分配部により分配されて送信されてくる帯域毎の信号の受信強度が測定され、前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の測定結果との差分が所定値よりも大きい帯域が、前記所定の信号処理装置に対応付けられた帯域として特定される。
 本技術の一側面の信号処理装置は、独立した装置であっても良いし、各処理を行うブロックであっても良い。
 本技術の一側面によれば、分配部であるスイッチにより受信される複数の衛星波の信号が、複数の受信装置のそれぞれに設定されている周波数帯域毎に割り当てられて送信されるようなとき、受信装置自身に割り当てられている、未知のUBの周波数帯域を特定することが可能となる。
従来の受信システムの構成例を示す図である。 本技術の信号処理装置を適用した受信システムの一実施の形態の構成例を示す図である。 ユーザバンドの構成を説明する図である。 受信装置の構成例を説明する図である。 DiSEqC規格で規定されるコマンドの構成例を説明する図である。 第1のUB検索処理を説明するフローチャートである。 スペクトル計測処理を説明するフローチャートである。 第1のUB検索処理を説明する図である。 第1のUB検索処理を説明する図である。 第2のUB検索処理を説明するフローチャートである。 第2のUB検索処理を説明する図である。 第3のUB検索処理を説明するフローチャートである。 汎用のパーソナルコンピュータの構成例を説明する図である。
 以下、発明を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1. 第1の実施の形態(全てのUBを検出する一例)
2. 第1の変形例(所定のUBのみを検出する一例)
3. 第2の変形例(所定のUBを高速で検出する一例)
<1. 第1の実施の形態>
<受信システムの構成例>
 まず、図1を参照して、従来の受信システムの構成について説明した後、図2を参照して、本技術の一実施の形態の構成に係る受信システムの構成例について説明する。
 図1の右上部で示されるように、1台の受信装置24により複数の衛星波により送信されてくる信号が受信される場合、アンテナ11-1乃至11-Mが、それぞれの衛星波に対応する信号を受信し、LNB(Low Noise Block Converter)12-1乃至12-Mに供給する。そして、LNB12-1乃至12-Nは、アンテナ11-1乃至11-Mにより受信された信号を増幅して、各ケーブル21-1乃至21-Mを介してスイッチ22に供給する。受信装置24は、スイッチ22に対してケーブル21-1乃至21-Mを介して供給されてくる信号のチャンネルを指定するコマンドを、ケーブル23を介して供給する。スイッチ22は、ケーブル23を介して受信装置24より供給されてくるコマンドに基づいて指定されたチャンネルの信号を受信装置24に供給する。受信装置24は、このようにしてスイッチ22より供給されてくる信号を受信して、例えば、図示せぬ表示部に表示する。尚、以降において、アンテナ11-1乃至11-M、およびケーブル21-1乃至12-Mについては、特に区別する必要が無い場合、単にアンテナ11、およびケーブル21と称するものとし、その他の構成についても同様に称するものとする。
 図1の右上部で示されるように、受信装置24が一台である場合には、スイッチ22は、一台の受信装置24からのコマンドに基づいて、指定されたチャンネルの信号を送信するのみで処理がなされることになる。
 一方、例えば、集合住宅などの場合、図1の左下部で示されるように、複数の受信装置24-1乃至24-Nが設けられることとなる。このため、スイッチ31は、複数の受信装置24-1乃至24-Nからのコマンドに応じて、アンテナ11-1乃至11-Mにより受信される信号を送信するには、ケーブル23-1乃至23-Nを介して供給されてくる受信装置24-1乃至24-Nのそれぞれのコマンドにより指定されるチャンネルの信号を、ケーブル23-1乃至23-Nを介して送信することになる。
 しかしながら、図1の左下部で示されるような構成とすると、ケーブル23が、受信装置24に対応する数だけ必要となるので、受信システム全体の構成が複雑で、かつ、コスト高となる。
 そこで、本技術の信号処理装置を適用する受信システムにおいては、図2で示されるように、複数のアンテナ11-1乃至11-Mからの信号を受信するスイッチ41が、1本のケーブル42を介して、ケーブル42に接続された複数の受信装置24-1乃至24-Nからのコマンドを受信する。そして、スイッチ41は、受信したコマンドにより指定されるIFバンド(中間周波帯域)の受信チャンネルの信号を、図3で示されるように、受信装置24-1乃至24-Nのそれぞれに割り当てられた周波数帯域であるユーザバンドUB1乃至UBNに割り当てるように周波数変換して、ケーブル42を介して送信する。受信装置24-1乃至24-Nは、それぞれに自らに割り当てられた周波数帯域の信号を受信する。このようにすることで、スイッチ41と複数の受信装置24-1乃至24-Nとを接続するケーブル42を1本のシンプルな構成とすることが可能となっている。
 尚、図3においては、横軸が周波数帯域を示し、縦軸が信号の強度を示しており、左から順番に受信装置24-1乃至24-Nに対応するユーザバンドUB1乃至UBNが割り当てられていることが示されている。従って、受信装置24-1乃至24-Nは、図3で示されるような帯域であるユーザバンドUB1乃至UBNに割り当てられた信号をそれぞれに受信して信号に基づいた処理を実行することで、例えば、画像を図示せぬ表示部に表示する。
<2. 受信装置の第1の実施の形態の構成例>
 次に、図4を参照して受信装置24の構成例について説明する。尚、図4の受信装置24の構成においては、受信装置24にける復調機能を実現するための構成のみが記載されており、実際には、この後段の図示せぬ構成により、復調されたTSクロックに基づいて、TSがデコードされて、画像、および音声が再生される。
 受信装置24は、RF(Radio Frequency)部101、搬送波周波数同期部102、クロックタイミング同期部103、整合フィルタ104、等化器105、搬送波位相同期部106、送信フレーム推定部107、自動信号電力制御部108、制御バス109、および制御部110を備えている。
 RF部101は、スイッチ41より供給されてくる信号のうち、制御バス109を介して制御部110により指定された周波数で送信されてくる信号を受信し、I成分、およびQ成分の信号として搬送波周波数同期部102、および自動信号電力制御部108に出力する。また、RF部101は、自動信号電力制御部108により供給されてくる電力制御量を示す信号に基づいてゲインコントロールされており、電力制御量を示す信号に応じて受信した信号レベルを増幅して搬送波周波数同期部102、および自動信号電力制御部108に信号を出力する。
 搬送波周波数同期部102は、RF部より供給されてくる信号を、制御バス109を介して制御部110により供給されてくる周波数変位制御信号に基づいた搬送波周波数に同期させてクロックタイミング同期部103に供給する。また、搬送波周波数同期部102は、制御バス109を介して制御部110により供給されてくる周波数変位制御信号に基づいた搬送波周波数の変位を示す周波数変位量の情報を、制御バス109を介して制御部110に送信する。
 クロックタイミング同期部103は、制御バス109を介して制御部110により制御され、搬送波周波数同期部102より出力されてくる信号のクロックを同期させて、整合フィルタ104に出力する。
 整合フィルタ104は、クロックタイミング同期部103から出力されてきた信号のシンボルに対応する信号の立ち上がり部に近い波形と、立ち下がり部に近い波形とを減衰させて、反射波による干渉を低減させて、等化器105に出力する。
 等化器105は、整合フィルタ104より出力されてきた信号に基づいて、送信されてきた信号と等化な信号に復元して搬送波位相同期部106に出力する。
 搬送波位相同期部106は、等化器105より出力されてきた信号を搬送波の位相に同期させて同期信号として出力すると共に、送信フレーム推定部107に出力する。
 送信フレーム推定部107は、搬送波位相同期部106より出力されてくる同期信号に基づいて送信フレームを推定し、推定した送信フレームの情報を制御バス109を介して制御部110に供給する。
 自動信号電力制御部108は、制御部110より供給されてくる電力測定制御信号に基づいて、RF部101より供給されてくるベースバンド信号の受信レベルを示す電力を測定し、電力測定値として制御バス109を介して制御部110に供給する。
 制御部110は、受信装置24の全体の動作を制御するものであり、RF制御部121、搬送波周波数制御部122、スペクトル測定部123、スペクトル記憶部124、コマンド出力部125、UB(ユーザバンド)記憶部126、電力測定部127、電力変化測定部128、および帯域特定部129を備えている。
 RF制御部121は、RF部101により受信される周波数帯域を指定する信号を、制御バス109を介してRF部101に供給する。RF部101は、この周波数帯域を指定する信号に基づいて特定された周波数帯域の信号を受信する。
 搬送波周波数制御部122は、搬送波周波数同期部102に対して同期すべき搬送波周波数を制御するための周波数変位制御信号を供給し、同期すべき搬送波周波数を制御する。このとき、搬送波周波数同期部102は周波数変位制御信号に基づいて設定された搬送波周波数の変位量を示す周波数変位量の情報を、制御バス109を介して制御部110に供給する。搬送波周波数制御部122は、この周波数変位量の情報に基づいて、適切な周波数変位制御信号を発生して搬送波周波数同期部102に供給する。
 電力測定部127は、自動信号電力制御部108より供給されてくるRF部101の出力信号のレベル、すなわち、受信レベルを示す電力測定値を測定する。
 スペクトル測定部123は、電力測定部127により測定された電力測定値を周波数毎に読み取り、周波数帯域に対する電力測定値のスペクトルとしてスペクトル記憶部124に記憶させる。
 コマンド出力部125は、Satellite signal distribution over a single coaxial cable in single dwelling installations (BS EN 50494)(以降においてはSingle Cable、またはSCと称する)に基づいた、DiSEqC(Digital Satellite Equipment Control)規格で規定されるコマンドを制御バス109、およびRF部101を介してスイッチ41に供給する。より具体的には、コマンド出力部125は、DiSEqC規格で規定されるコマンドとして、全てのUBの信号を送信するように要求するODU_UBxSignal_ONコマンド、および、ODU_UBxSignal_ONコマンドが要求された後に特定のUBの信号の送信の停止を要求するODU_PowerOFFコマンドをスイッチ41に供給する。
 尚、SCにおいては、最大2衛星(計8個のLNB)の所望の周波数帯域を、最大8個の受信装置24が共有する1本の同軸ケーブルからなるケーブル42上に重畳して分配する方法が規定されている。すなわち、衛星放送を送信する衛星波の信号は、IF帯域幅1200MHz(950MHz乃至2150MHz)に対して衛星帯域幅が広いため、High Band、およびLow Bandに分ける必要があり、さらに、水平偏波と垂直偏波とを独立に利用できるため、それぞれ異なる信号を送出することができるので、それらの組み合わせにより4種類の信号、すなわち、4チャンネルの信号を送信することができる。結果として、2機の衛星で送信できる信号は計8種類となるため、SCにおいては、このような条件における放送波の送信方法が規定されている。
 DiSEqC規格で規定されるコマンドの構成は、具体的には、例えば、図5の最上段で示されるようなものであり、Framingで示されるフレームを識別する情報、Addressで示されるアドレス情報、Commandで示されるコマンド情報、およびData1,Data2で示されるデータ情報より構成される。尚、図5において、Pで示される情報は、パリティ情報である。
 ODU_UBxSignal_ONコマンドは、例えば、図5の上から2段目で示されるように構成され、ここでは、フレームを示す情報としてE0hが登録され、アドレスを示す情報として00h,10h,11hが登録され、ODU_UBxSignal_ONコマンドを示す情報として5Bhが登録され、Data1,Data2を示す情報としてそれぞれ00hが登録されている。
 また、ODU_PowerOFFコマンドは、例えば、図5の上から3段目で示されるように構成され、ここでは、フレームを示す情報としてE0hが登録され、アドレスを示す情報として00h,10h,11hが登録され、ODU_PowerOFFコマンドを示す情報として5Ahが登録され、Data1には、停止が指定される受信装置24に割り当てられたUBを識別する情報が登録され、Data2には、Data2(00h)が登録されている。
 ここで、Data1の具体的な情報が、図5の最下段の情報として示されている。すなわち、図5の最下段の情報には、Bit0乃至Bit7のうち、Bit5乃至Bit7の3ビットにより、SCにおいて信号の停止が要求される、受信装置24に割り当てられた帯域を識別する情報が登録される。
 電力変化測定部128は、スペクトル記憶部124に記憶されているスペクトルにより特定されるUBのうち、ODU_UBxSignal_ONコマンドが送信された状態において電力測定部127により測定された電力測定値と、その後、ODU_PowerOFFコマンドにより、特定のUBの信号の送出が停止された状態で測定された電力測定値との差分を変化として測定する。
 帯域特定部129は、電力変化測定部128により測定された電力の差分である電力変化が所定値よりも大きな帯域が、停止を要求したUBであるものとして特定し、特定したUBの周波数帯域の情報をUB記憶部126に記憶させる。
<第1のUB検索処理>
 次に、図6のフローチャートを参照して、UB検索処理について説明する。
 ステップS11において、制御部110のコマンド出力部125は、制御バス109およびRF部101を介して、スイッチ41に対して全てのUBの信号を含む信号(全てのUBに対する正弦波信号)の出力を要求するODU_UBxSignal_ONコマンドを送信する。
 ステップS12において、スイッチ41は、受信装置24からのODU_UBxSignal_ONコマンドを受信すると、受信するアンテナ11のLNB12からの信号を、全ての受信装置24-1乃至24-Nのそれぞれに割り当てられた全てのUBに対する正弦波信号に変換して、ケーブル42を介して出力する。
 ステップS13において、スペクトル測定部123は、電力測定部127を制御して、スペクトル計測処理を実行させ、スイッチ41より供給されてくる信号のスペクトルを計測してスペクトル記憶部124に記憶させる。
<スペクトル計測処理>
 ここで、図7のフローチャートを参照して、スペクトル計測処理について説明する。
 ステップS51において、RF制御部121は、制御バス109を介して、RF部101の受信周波数を制御して、開始周波数の信号を受信するように選局する。
 ステップS52において、搬送波周波数制御部122は、搬送波周波数同期部102により同期される周波数を制御する周波数変位を最小周波数変位に設定する。
 ステップS53において、電力測定部127は、制御バス109を介して自動信号電力制御部108に対して電力測定制御信号を供給して、RF部101より出力される信号の強度を示す電力を測定させる。そして、スペクトル測定部123は、自動信号電力制御部108より供給されてくる電力測定結果である電力測定値を取得し、今現在の受信周波数に対応付けて電力測定値をスペクトル記憶部124に記憶させる。
 ステップS54において、搬送波周波数制御部122は、搬送波周波数同期部102により同期される周波数を制御する周波数変位が最大周波数変位となっているか否かを判定する。ステップS54において、周波数変位が最大周波数変位となっていない場合、処理は、ステップS55に進む。
 ステップS55において、搬送波周波数制御部122は、搬送波周波数同期部102により同期される周波数を制御する周波数変位を所定値だけインクリメントして設定し、処理は、ステップS53に戻る。すなわち、ステップS54において、最大周波数変位になるまで、ステップS53乃至S55の処理が繰り返されて、搬送波周波数同期部102により同期される周波数を変位させながら、自動信号電力制御部108により測定される信号の強度を示す電力測定値がスペクトル記憶部124に記憶される。そして、ステップS54において、最大周波数変位であると見なされた場合、処理は、ステップS56に進む。
 ステップS56において、RF制御部121は、制御バス109を介して、RF部101の受信周波数が終了周波数に到達しているか否かを判定し、終了周波数に到達していないとみなした場合、処理は、ステップS57に進む。
 ステップS57において、RF制御部121は、制御バス109を介して、RF部101の受信周波数を所定値だけインクリメントし、処理は、ステップS52に戻る。すなわち、ステップS56において、RF部101の受信周波数が終了周波数に到達しているとみなされるまで、ステップS52乃至S57の処理が繰り返されて、順次、RF部101により受信される受信周波数がインクリメントされながら、その近傍の周波数について、搬送波周波数同期部102により同期される受信周波数を変化させ、さらに、電力測定値が測定されて、スペクトル記憶部124に記憶される処理が繰り返される。
 そして、ステップS57において、RF部101の受信周波数が終了周波数に到達していると見なされた場合、処理は終了する。
 すなわち、図8の上段で示されるように、ステップS57の処理が繰り返されることにより、RF制御部121によりRF部101は、開始周波数である周波数f1から所定値毎にインクリメントして、順次受信周波数を周波数f2,f3,・・・f12と変化させる。この間、搬送波周波数制御部122により搬送波周波数同期部102の同期周波数が周波数変位を所定値(RF部101でインクリメントされる受信周波数よりも小さな値)だけ変化させながら順次変位されて、それぞれの周波数において電力が計測され、その結果がスペクトルとしてスペクトル記憶部124に記憶される。
 すなわち、ステップS51によりRF部101の受信周波数が周波数f1に設定されるとき、ステップS53乃至S55の処理が繰り返されて、搬送波周波数同期部102の周波数変位が所定値で変化しながら、受信周波数が周波数f1乃至f2の間で変化されてスペクトルが計測され、最大周波数変位になると、ステップS57において、RF部101の受信周波数がインクリメントされて周波数f2に設定される。そして、ステップS53乃至S55の処理が繰り返されて、搬送波周波数同期部102の周波数変位が所定値で変化しながら、受信周波数が周波数f2乃至f3の間で変化されてスペクトルが計測される。同様に、ステップS57によりRF部101の受信周波数が所定値だけインクリメントされて周波数f3に設定された後、ステップS53乃至S55の処理が繰り返されて、搬送波周波数同期部102の周波数変位が所定値で変位されて、受信周波数が周波数f3乃至f4の間で変化されながらスペクトルが計測される。
 以下同様に、周波数f4乃至f5の間、f5乃至f6の間、・・・f11乃至f12の間で、周波数を変化させながら、スペクトルが計測され、RF部の受信周波数が終了周波数である周波数f12まで繰り返されることにより、図8の上段で示されるような周波数と、信号の受信強度である電力測定値との関係が、スペクトルとして求められて、スペクトル記憶部124に記憶される。
 ここで、図6のフローチャートの説明に戻る。
 ステップS13のスペクトル計測処理によりスペクトルが計測されて、スペクトル記憶部124に記憶されると、処理は、ステップS14に進む。
 ステップS14において、電力計測部127は、スペクトル記憶部124に記憶されているスペクトルに基づいて、電力のピークが最も高い、ユーザバンドの候補となる周波数帯域を、最初の候補となる周波数帯域として設定する。
 すなわち、例えば、図8の上段で示されるスペクトルにおいては、電力計測部127は、点線の丸印、または実線の丸印で示される受信強度のピークを示す近傍の範囲が、ユーザバンドUBを構成する候補となる周波数帯域B1乃至B8であるものとみなし、このうち最も強度の高い実線の丸印で示された周波数帯域B5を候補に設定する。
 ステップS15において、コマンド出力部125は、再び、制御バス109およびRF部101を介して、スイッチ41に対してODU_UBxSignal_ONコマンドを送信する。
 ステップS16において、スイッチ41は、受信装置24からのODU_UBxSignal_ONコマンドを受信すると、受信するアンテナ11のLNB12からの信号を、全ての受信装置24-1乃至24-Nのそれぞれに割り当てられた全てのUBに対する正弦波信号に変換して、ケーブル42を介して出力する。
 ステップS17において、コマンド出力部125は、制御バス109およびRF部101を介して、スイッチ41に対して最初の探索対象となるユーザバンドUBの出力の停止を要求するODU_PowerOFFコマンドを送信する。すなわち、コマンド出力部125は、ユーザバンドの数と、それぞれを識別する、例えば、UB番号などの情報を予め記憶しているが、ユーザバンドのそれぞれの周波数帯域については情報がない。そこで、コマンド出力部125は、予め記憶しているユーザバンドを識別する情報のうちの未処理のいずれかを探索対象のユーザバンドに設定する。
 ステップS18において、スイッチ41は、受信装置24からのODU_PowerOFFコマンドを受信すると、受信するアンテナ11のLNB12からの信号のうち、ODU_PowerOFFコマンドに含まれている探索対象のユーザバンドに対する受信装置24に割り当てられた帯域のUBに対する正弦波信号の出力を停止する。従って、このとき出力が停止された周波数帯域の信号以外の周波数帯域の信号は出力され続けている状態となる。
 ステップS19において、電力測定部127は、自動信号電力制御部108に対して電力測定制御信号を供給し、RF部101より出力される信号のうち、ユーザバンドの候補となる周波数帯域における強度を示す電力測定値の測定を要求して測定結果を取得する。
 ステップS20において、電力変化測定部128は、スペクトル記憶部124に記憶されているスペクトルの情報に基づいて、ODU_PowerOFFコマンドが送信される前に測定された、候補となる周波数帯域の電力測定値と、探索対象となるユーザバンドの出力の停止が要求されるODU_PowerOFFコマンドが送信された後に測定された、候補となる周波数帯域の電力測定値との変化を示す差分を測定する。
 ステップS21は、帯域特定部129は、電力変化測定部128により測定された電力測定値の変化を示す差分が所定の閾値以上に大きく、ODU_PowerOFFコマンドが送信された後に測定された電力測定値が大きく低下しているか否かを判定する。すなわち、探索対象としてユーザバンドUB1の信号出力を停止させるODU_PowerOFFコマンドが送信され、ユーザバンドUB1に対応する、候補となる周波数帯域が、周波数帯域B5である場合、図8の下段の点線の丸印で示されるように、ユーザバンドUB1に対応する、周波数帯域B1の信号の強度を示す電力測定値は大きく低下する。しかしながら、図8の下段の実線の丸印で示されるように、ここでは、候補となる周波数帯域は、周波数帯域B5であるため、ユーザバンドUB5に対応する周波数帯域B5の信号レベルは低下しない。一方、図9で示されるように、ユーザバンドUB5の信号出力を停止させるODU_PowerOFFコマンドが送信されている場合、対応する周波数帯域B5の信号レベルを示す電力測定値は、ODU_PowerOFFコマンドが送信される前よりも大きく低下し、その差分である変化量は所定の閾値よりも大きくなる。
 そこで、ステップS21において、例えば、図9の上段の実線の丸印で示されるように、候補となる周波数帯域B5が、探索対象となるユーザバンドUB5に対応する周波数帯域であって、ODU_PowerOFFコマンドの前後の差分が所定の閾値よりも大きく低下するような場合、処理は、ステップS24に進む。
 ステップS24において、帯域特定部129は、ODU_PowerOFFコマンドの前後で大きく変化した、候補となる周波数帯域を、探索対象のUB番号のユーザバンドUBであるものとして特定する。そして、帯域特定部129は、特定した候補となる周波数帯域が、探索対象となるUB番号のユーザバンドUBであることを示す情報をUB記憶部126に記憶させる。すなわち、図9の場合、探索対象となるユーザバンドは、ユーザバンドUB5であったので、差分として求められる変化が大きい、候補に設定された周波数帯域B5が、対応する周波数帯域であることが特定されて、UB記憶部126に記憶される。
 一方、ステップS21において、例えば、図8で示されるように、候補となる周波数帯域が周波数帯域B5であって、探索対象が周波数帯域B1で供給されるユーザバンドUB1である場合、ODU_PowerOFFコマンドの前後での電力測定値の変化である差分が所定の閾値よりも小さいことになるため、候補となる周波数帯域B5は、探索対象となるユーザバンドUB1ではないものとみなされて、処理は、ステップS22に進む。
 ステップS22において、電力測定部127は、ユーザバンドUBのうち、探索対象に設定されていない未処理のユーザバンドUBが存在するか否かを判定する。ステップS22において、ユーザバンドのうち探索対象に設定されていない周波数帯域が存在すると判定された場合、処理は、ステップS23に進む。
 ステップS23において、電力測定部127は、探索対象として設定されていないユーザバンドのいずれかを探索対象として設定し、処理は、ステップS18に戻る。また、ステップS22において、ユーザバンドのうち、探索対象に設定されていないユーザバンドが存在しないと見なされた場合、処理は、ステップS25に進む。
 ステップS25において、電力測定部127は、探索対象として設定したユーザバンドを探索対象から除外する。すなわち、図9で示される結果に基づいて、候補となる周波数帯域B5が、探索対象として設定されたユーザバンドUB5の周波数帯域であると特定されると、ユーザバンドUB5は、以降においては探索対象から除外される。
 また、候補となる電力測定値がピークとなる周波数帯域が、探索対象として設定されるいずれかのユーザバンドであるとみなされてUB記憶部126に記憶されるか、または、候補となる電力測定値がピークとなる周波数帯域が、探索対象として設定されるユーザバンドのいずれでもないとみなされるまで、ステップS18乃至S25の処理が繰り返される。
 そして、ステップS18乃至S25の処理により、候補となる電力測定値がピークとなる周波数帯域が、探索対象として設定されるユーザバンドのいずれかであるみなされてUB記憶部126に記憶されるか、または、候補となる電力測定値がピークとなる周波数帯域が、探索対象として設定されるユーザバンドのいずれでもないとみなされると、処理は、ステップS26に進む。
 ステップS26において、電力測定部127は、探索対象となるユーザバンドが残っているか否かを判定し、残っている場合、処理は、ステップS27に進む。
 ステップS27において、電力測定部127は、最大トライ回数に到達したか否かを判定する。最大トライ回数とは、ユーザバンドの候補となり得る電力測定値のピークとなる周波数帯域が、実際に存在するユーザバンドの数よりも多く、無数に存在するような場合、周波数帯域が特定されていない探索対象となるユーザバンドが残されていても、全てを特定できない可能性があるため、処理を打ち切るために設定される回数である。従って、最大トライ回数は、少なくとも予め登録されているユーザバンドの数よりも多くの回数である必要がある。また、最大トライ回数は、ユーザバンドを特定することができない、候補となる周波数帯域に対するユーザバンドを特定する処理を打ち切るために設定されるものであり、不要に処理回数が増えないように設定できればよいので、例えば、最大トライ回数ではなく、候補となり得る電力測定値のピークとなる周波数帯域の電力測定値の強度が所定値よりも小さいものを候補から除外することで、実質的にトライ回数を制限するようにしてもよい。
 ステップS27において、最大トライ回数に到達していないと見なされた場合、処理は、ステップS28に進む。
 ステップS28において、電力計測部127は、スペクトル記憶部124に記憶されているスペクトルに基づいて、ユーザバンドの候補となり得る電力がピークとなる周波数帯域のうち、これまでにユーザバンドが特定されていない周波数帯域であって、かつ、電力のピークが最も高い周波数帯域を候補として設定し、処理は、ステップS15に戻る。
 すなわち、周波数帯域B5に対応する電力測定値が、ユーザバンドUB5の信号出力の停止を求めるODU_PowerOFFコマンドが送信される前であって、かつ、図9の下段で示されるように高い値を示し、ODU_PowerOFFコマンドが送信された後に、図9の上段で示されるように大きく低下するような場合、周波数帯域B5は、ユーザバンドUB5に特定されることになる。このような場合、周波数帯域B5は、ユーザバンドが特定されているので、以降においてユーザバンドを特定するための候補として選択されないようにすることで、不要な処理を省略する(同一候補に対する検出処理を無限に繰り返すのを防止する)ことが可能となる。また、図9の上段で示されるように、周波数帯域B1乃至B5の信号の強度が低下しているのは、例えば、周波数帯域B5のODU_PowerOFFコマンドが送出されるまでに、周波数帯域B1乃至B4のODU_PowerOFFコマンドが送出されているからである。さらに、ODU_PowerOFFコマンドの前後で信号の変化が大きいとき、候補となる周波数帯域のユーザバンドが特定されることから、図9の下段における実線の丸印で示されるように、受信強度の強い周波数帯域B8が次の候補となる周波数帯域とされる。
 以上の処理により、周波数に対する信号強度の関係から、ユーザバンドの候補となる周波数帯域が特定され、この候補のうち、ODU_UBxSignal_ONコマンドおよびODU_PowerOFFコマンドを利用することで、受信レベルを示す電力測定値の変化が大きなものを、ODU_PowerOFFコマンドで信号の停止を要求するユーザバンドとして特定することが可能となる。結果として、受信装置(復調装置)において、予め知ることができないユーザバンドの周波数帯域を特定することが可能となる。
<2. 第1の変形例>
<第2のUB検索処理>
 以上においては、全てのユーザバンドを特定することを前提とした処理について説明してきたが、各受信装置24において、特定すべきは自らのユーザバンドの周波数帯域であるので、自らのユーザバンドの周波数帯域のみを特定するようにしてもよい。
 そこで、次に、図10のフローチャートを参照して、自らのユーザバンドの周波数帯域のみを検索する例について説明する。尚、図10のフローチャートにおけるステップS71乃至S82の処理は、図6のフローチャートにおけるステップS11乃至S14,S17乃至S21,S27,S28,S24の処理と同様であるので、詳細な説明は省略するものとする。
 すなわち、図10のフローチャートにおいては、ステップS75乃至S82の処理により、電力測定値の高い順に候補となる周波数帯域のみを設定していき、繰り返し、ステップS75,S76の処理で、自らのユーザバンドの信号の出力を停止させる要求であるODU_PowerOFFコマンドが出力されて、ステップS77,S78の処理により、スペクトル記憶部124に記憶された電力測定値との差分が測定され、ステップS79の処理により所定の閾値より大きいか否かが判定され、差分が所定の閾値よりも大きいとき、ステップS82の処理により、そのときの候補となる周波数帯域が、自らのユーザバンドの周波数として特定される。
 すなわち、図11で示されるように、自らのユーザバンドが、候補となる周波数帯域B3に対応するユーザバンドUB3である場合、実線の丸印、および点線の丸印で示される周波数帯域B1乃至B8が候補となる周波数帯域に設定され、実線の丸印で示される自らのユーザバンドUB3の信号を停止するODU_PowerOFFコマンドのみを繰り返し送信して、その都度、スペクトル記憶部124に記憶されている電力測定値と、ODU_PowerOFFコマンド後の電力測定値との差分を求め、その差分が所定の閾値よりも大きくなったときの周波数帯域が自らのユーザバンドUB3の周波数帯域B3であるものとして特定される。
 このような処理により、自らのユーザバンドの周波数帯域のみを求める処理とすることができるので、処理速度を向上させることが可能となる。
<3. 第2の変形例>
<第3のUB検索処理>
 以上においては、候補となる周波数帯域を個別に設定した後、順次、ODU_PowerOFFコマンドを送信することで、その前後の電力測定値の差分に基づいて、自らのユーザバンドの周波数帯域を特定する例について説明してきた。しかしながら、ODU_PowerOFFコマンド前後の全ての周波数帯域の電力測定値を求めると共に、電力測定値の全ての周波数帯域の差分を求めて、その中で差分が大きな周波数帯域を自らのユーザバンドとして特定するようにしてもよい。
 そこで、次に、図12のフローチャートを参照して、ODU_PowerOFFコマンド前後の全ての周波数帯域の電力測定値が求めると共に、電力測定値の全ての周波数帯域の差分を求めて、その中で差分が大きな周波数帯域を自らのユーザバンドとして特定するようにしたUB検索処理について説明する。尚、図12のフローチャートにおける、ステップS91乃至S96,S99の処理は、図12のフローチャートにおけるステップS11乃至S13,S17,S18,S13,S24の処理と同様であるので説明を省略する。
 すなわち、ステップS94において、自らのユーザバンドの信号出力の停止を要求するODU_PowerOFFコマンドを送信する前後において、ステップS93,S96において、二回のスペクトル計測処理が実行される。
 そこで、ステップS97において、電力変化測定部128は、この二回のスペクトル計測結果に基づいて、それぞれ同一の周波数帯域毎の電力測定値の差分を全て算出する。
 そして、ステップS98において、帯域特定部129は、電力変化測定部128の全ての算出結果に基づいて、差分が大きな周波数帯域をユーザバンドの周波数帯域に特定し、ステップS99の処理により、UB記憶部126に記憶させる。
 以上の処理により、より高速にユーザバンドの周波数帯域を特定することが可能となる。尚、以上の処理においては、スペクトル計測処理が二回実行されることにより、スペクトル計測結果を記憶するメモリの容量が2倍求められる恐れがある。しかしながら、このような場合には、2回目の計測結果が求められた時点で、順次、1回目の計測結果との差分を求め、置換して記憶させるようにすることで、メモリの容量を2倍必要とすること無く処理を実現させることができる。
 以上の如く、本技術によれば、ユーザバンドの周波数帯域が特定されていない状態であっても、利用可能な帯域を容易で、かつ、迅速に特定することが可能となる。
<汎用のパーソナルコンピュータを用いた例>
 ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
 図13は、汎用のパーソナルコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタ-フェイス1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
 入出力インタ-フェイス1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブルメディア1011に対してデータを読み書きするドライブ1010が接続されている。
 CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブルメディア1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005およびバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、および、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 尚、本技術は、以下のような構成も取ることができる。
(1) 複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置であって、
 前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定部と、
 前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定部と
 を含む信号処理装置。
(2) 前記分配部に対して、所定の信号処理装置に対応付けられた帯域に分配されて送信される信号の送信を停止させる停止コマンドを送信するコマンド送信部をさらに含み、
 前記特定部は、前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記停止コマンドに基づいて、前記所定の信号処理装置に対応付けられた帯域に分配される信号の送信が停止され、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する
 (1)に記載の信号処理装置。
(3) 前記コマンド送信部は、全ての信号処理装置に対応付けられた帯域に分配される信号の送信を要求するとき、送信コマンドを送信する
 (1)または(2)に記載の信号処理装置。
(4) 前記コマンド送信部により送信されるコマンドは、DiSEqC規格で規定されるコマンドを拡張したコマンドであり、前記停止コマンドは、ODU_UBxSignal_ONコマンドであり、前記送信コマンドは、ODU_PowerOFFコマンドである
 (1)乃至(3)のいずれかに記載の信号処理装置。
(5) 複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置の信号処理方法であって、
 前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定処理と、
 前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定処理と
 からなるステップを含む信号処理方法。
(6) 複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置を制御するコンピュータを制御するためのプログラムであって、
 前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定ステップと、
 前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定ステップと
 を含む処理をコンピュータに実行させるためのプログラム。
 11,11-1乃至11-M アンテナ, 12,12-1乃至12-M LNB, 21,21-1乃至21-M ケーブル, 24 受信装置, 41 スイッチ, 42 ケーブル, 101 RF部, 102 搬送波周波数同期部, 103 クロックタイミング同期部, 104 整合フィルタ, 105 等化器, 106 搬送波位相同期部, 107 送信フレーム推定部, 108 自動信号電力制御部, 109 制御バス, 110 制御部, 121 RF制御部, 122 搬送波周波数制御部, 123 スペクトル測定部, 124 スペクトル記憶部, 125 コマンド出力部, 126 UB記憶部, 127 電力測定部, 128 電力変化測定部, 129 帯域特定部

Claims (6)

  1.  複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置であって、
     前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定部と、
     前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定部と
     を含む信号処理装置。
  2.  前記分配部に対して、所定の信号処理装置に対応付けられた帯域に分配されて送信される信号の送信を停止させる停止コマンドを送信するコマンド送信部をさらに含み、
     前記特定部は、前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記停止コマンドに基づいて、前記所定の信号処理装置に対応付けられた帯域に分配される信号の送信が停止され、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する
     請求項1に記載の信号処理装置。
  3.  前記コマンド送信部は、全ての信号処理装置に対応付けられた帯域に分配される信号の送信を要求するとき、送信コマンドを送信する
     請求項2に記載の信号処理装置。
  4.  前記コマンド送信部により送信されるコマンドは、DiSEqC規格で規定されるコマンドを拡張したコマンドであり、前記停止コマンドは、ODU_UBxSignal_ONコマンドであり、前記送信コマンドは、ODU_PowerOFFコマンドである
     請求項3に記載の信号処理装置。
  5.  複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置の信号処理方法であって、
     前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定処理と、
     前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定処理と
     からなるステップを含む信号処理方法。
  6.  複数の衛星より送信されてくる複数の信号を、複数の信号処理装置に対応付けられた帯域毎に、前記複数の信号処理装置に分配して送信する分配部より送信されてくる信号を受信する信号処理装置を制御するコンピュータに実行させるためのプログラムであって、
     前記分配部により分配されて送信されてくる帯域毎の信号の受信強度を測定する測定ステップと、
     前記分配部により全ての信号処理装置に対応付けられた帯域の信号が送信された場合の前記測定部による測定結果と、前記所定の信号処理装置以外の信号処理装置に対応付けられた全ての帯域に分配される信号が送信された場合の前記測定部による測定結果との差分が所定値よりも大きい帯域を、前記所定の信号処理装置に対応付けられた帯域として特定する特定ステップと
     を含む処理をコンピュータに実行させるためのプログラム。
PCT/JP2014/050497 2013-01-25 2014-01-15 信号処理装置および信号処理方法、並びにプログラム WO2014115609A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-012674 2013-01-25
JP2013012674 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115609A1 true WO2014115609A1 (ja) 2014-07-31

Family

ID=51227401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050497 WO2014115609A1 (ja) 2013-01-25 2014-01-15 信号処理装置および信号処理方法、並びにプログラム

Country Status (1)

Country Link
WO (1) WO2014115609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741296A (zh) * 2020-07-03 2020-10-02 珠海迈科智能科技股份有限公司 一种检测Unicable高频头视频通道频率的方法和机顶盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127167A (ja) * 1997-06-27 1999-01-29 Smk Corp 衛星信号受信機
WO2011114607A1 (ja) * 2010-03-16 2011-09-22 パナソニック株式会社 受信機およびそのアンテナ制御信号の衝突検出方法
JP2013123155A (ja) * 2011-12-12 2013-06-20 Sony Corp 受信装置、受信方法、およびプログラム
JP2013131955A (ja) * 2011-12-22 2013-07-04 Panasonic Corp 受信装置および受信装置による未使用周波数検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127167A (ja) * 1997-06-27 1999-01-29 Smk Corp 衛星信号受信機
WO2011114607A1 (ja) * 2010-03-16 2011-09-22 パナソニック株式会社 受信機およびそのアンテナ制御信号の衝突検出方法
JP2013123155A (ja) * 2011-12-12 2013-06-20 Sony Corp 受信装置、受信方法、およびプログラム
JP2013131955A (ja) * 2011-12-22 2013-07-04 Panasonic Corp 受信装置および受信装置による未使用周波数検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741296A (zh) * 2020-07-03 2020-10-02 珠海迈科智能科技股份有限公司 一种检测Unicable高频头视频通道频率的方法和机顶盒

Similar Documents

Publication Publication Date Title
JP5251605B2 (ja) 通信装置、および利得制御方法
US9084221B2 (en) Protocol for communication
US9270312B2 (en) Method and apparatus for controlling gain in communicaton system supporting beam forming scheme
US20180234740A1 (en) Method and system for receiver configuration based on a priori knowledge of noise
JP5814751B2 (ja) 通信装置、通信システム、制御方法、通信方法、及びプログラム
US9674820B2 (en) Adaptive beacon transmission
RU2555866C2 (ru) Устройство передачи данных, способ управления передачей данных и система передачи данных
JP2010213191A (ja) 通信装置及びその制御方法
US20180176867A1 (en) Headend device of distributed antenna system and signal processing method thereof
WO2014115609A1 (ja) 信号処理装置および信号処理方法、並びにプログラム
EP2976835B1 (en) Television receiver, television broadcast receiving method and mobile terminal
CN103168429A (zh) 用于降低干扰的波束赋形数据的调度
EP3272143B1 (en) Determining radio channel metrics
KR20110034317A (ko) 다중 주파수 대역으로 정보를 전송하는 통신 장치 및 그 방법
KR102336106B1 (ko) 코히어런트 광의 간섭현상을 이용한 아날로그 광 신호의 변조 지수 조절 장치 및 그 방법
US10555267B2 (en) Distributed antenna system and signal processing method thereof
JP2021502778A (ja) 信号処理方法、マルチレベル分散型アンテナシステム及び記録媒体
CN101262573B (zh) 接收设备和控制该设备的方法
US11870548B2 (en) Mobile terminal having integrated radio function, and integrated radio system using same
JP2013123155A (ja) 受信装置、受信方法、およびプログラム
TWI591350B (zh) 智慧型電錶及其資料分配方法
KR100667158B1 (ko) 위성수신 안테나에서의 목표 위성 식별 장치 및 방법
US10056929B2 (en) Radio receiver with local oscillator modulation
JP5798213B1 (ja) 信号伝送システム及び信号伝送方法
KR102040396B1 (ko) 고주파를 이용하는 신호 수신 시스템 및 이 시스템의 수신 신호 처리 방법, 및 이 시스템에 구비되는 해상도 비트 결정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP