WO2014114171A1 - 一种射频拉远模块的温度检测方法和装置 - Google Patents

一种射频拉远模块的温度检测方法和装置 Download PDF

Info

Publication number
WO2014114171A1
WO2014114171A1 PCT/CN2013/090903 CN2013090903W WO2014114171A1 WO 2014114171 A1 WO2014114171 A1 WO 2014114171A1 CN 2013090903 W CN2013090903 W CN 2013090903W WO 2014114171 A1 WO2014114171 A1 WO 2014114171A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
threshold
radio frequency
data
remote module
Prior art date
Application number
PCT/CN2013/090903
Other languages
English (en)
French (fr)
Inventor
雷晓玉
段滔
孙华荣
邢立强
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP13872471.1A priority Critical patent/EP2938119B1/en
Priority to US14/760,709 priority patent/US10185334B2/en
Publication of WO2014114171A1 publication Critical patent/WO2014114171A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to communication technologies, and in particular, to a temperature detection method and apparatus for a radio remote module. Background technique
  • the indoor baseband unit (BBU) and the radio remote unit (RRU) are connected by optical fibers, but the RRUs are usually Installed on a higher antenna tower end, the working environment is harsh, the heat dissipation method uses passive heat dissipation, and since the RRU is exposed to the outdoor environment, the chassis needs to be sealed.
  • the heat dissipation capability of the RRU is severely challenged.
  • Key components inside the RRU such as power amplifier, power supply, FPGA (Field - Programmable Gate Array)
  • FPGA Field - Programmable Gate Array
  • the performance and lifetime of arrays etc. will have a large impact on the temperature received.
  • the components of the RRU may be invalidated, such as power amplifier burnout, power module over-temperature protection, power-off (burnout), etc., which may cause the base station to be inoperable and affect network coverage.
  • an over-temperature alarm is configured in the RRU, that is, a temperature threshold is set.
  • a temperature threshold is set.
  • an over-temperature alarm message is reported to the primary station, and thereafter Further processing operations.
  • temperature monitoring is updated every once in a while.
  • a temperature detecting method for a radio remote module including:
  • the method further includes: a preset temperature threshold, where the temperature threshold includes: a first threshold, a second threshold, a third threshold, and a fourth threshold, where the fourth threshold is greater than the fourth threshold a third threshold, and the third threshold is greater than the second threshold, and the second threshold is greater than the first threshold; and the temperature threshold is used to construct a temperature threshold to perform hierarchical detection on the temperature data.
  • the temperature data when the temperature data is less than the temperature threshold, configuring the power data of the radio remote module according to the temperature data, including: when the temperature data is less than the first threshold, the temperature data is less than a temperature threshold; The power data of the radio remote module is an initial value.
  • the method before adjusting the power data of the radio remote module to an initial value, the method further includes: if the radio frequency channel of the radio remote module is turned off, turning on the radio frequency channel; if the radio remote module is After the radio channel is turned on, it is determined that the power data of the radio remote module is not equal to the initial value.
  • the radio remote module when the temperature data is in the temperature threshold, configuring the power data of the radio remote module according to the temperature data, including: when the temperature data is greater than or equal to a first threshold, and the temperature data When the second threshold is less than the second threshold, the temperature data is within the temperature threshold; and the radio remote module is continuously operated with the power data.
  • the temperature data when the temperature data is in the temperature threshold, configuring the power data of the radio remote module according to the temperature data, including: when the temperature data is greater than or equal to a second threshold, and the temperature data is less than The three-threshold time, the temperature data is within a temperature threshold; and the power data of the radio remote module is adjusted to be a first power value.
  • configuring the location according to the temperature data includes: when the temperature data is greater than or equal to a third threshold, and the temperature data is less than a fourth threshold, the temperature data is within a temperature threshold; adjusting power of the radio remote module The data is the second power value.
  • turning off the radio frequency channel of the radio remote module includes: when the temperature data is greater than or equal to the fourth threshold, the temperature data is greater than a temperature threshold. Then, the radio frequency channel of the radio remote module is turned off.
  • the method further includes: detecting a switch state of the radio frequency channel of the radio remote module; and determining that the radio frequency channel of the radio remote module is turned on.
  • the obtaining the temperature data of the radio remote module includes: reading a temperature transmitted by each sensor in the radio remote module, when an absolute difference between the temperatures transmitted by any two sensors is greater than a set value, Re-read the temperature transmitted by each sensor; otherwise, the temperature transmitted by each sensor constitutes the temperature data of the remote radio module.
  • the temperature of each sensor in the remote radio module is read, and when the absolute difference between the temperatures transmitted by any two sensors is greater than a set value, the temperature transmitted by each sensor is re-read; otherwise,
  • the temperature transmitted by each sensor constitutes the temperature data of the radio remote module, and includes the following steps: reading the temperature of the sensor transmission at each power amplifier of the radio remote module, when the temperature of the sensor is transmitted at any two power amplifiers When the absolute difference is greater than the first set value, the temperature of the sensor transmission at each power amplifier is re-read; when the absolute difference of the temperature transmitted by the sensor at each power amplifier is less than the first set value, the read power amplifier is read.
  • the embodiment of the present application further discloses a temperature detecting device for the radio remote module, which includes:
  • Obtaining a module configured to obtain temperature data of the remote radio module; a power adjustment module, configured to configure power data of the radio remote module according to the temperature data when the temperature data is less than a temperature threshold or within a temperature threshold;
  • the channel closing module is configured to close the radio frequency channel of the radio remote module when the temperature data is greater than a temperature threshold.
  • the device further includes: a preset module configured to preset a temperature threshold, where the temperature threshold includes: a first threshold, a second threshold, a third threshold, and a fourth threshold, where the temperature threshold is The fourth threshold is greater than the third threshold, and the third threshold is greater than the second threshold, and the second threshold is greater than the first threshold.
  • the threshold construction module is configured to perform temperature detection on the temperature data by using a temperature threshold to construct a temperature threshold.
  • the power adjustment module is configured to: when the temperature data is less than the first threshold, the temperature data is less than a temperature threshold; and the power data of the radio remote module is adjusted to be an initial value.
  • the power adjustment module is further configured to: before adjusting the power data of the radio remote module to an initial value, if the radio frequency channel of the radio remote module is turned off, turning on the radio frequency channel; The radio frequency channel of the radio remote module is turned on, and it is determined that the power data of the radio remote module is not equal to the initial value.
  • the power adjustment module is configured to: when the temperature data is greater than or equal to a first threshold, and the temperature data is less than a second threshold, where the temperature data is within a temperature threshold, the power data is Continue to run the radio remote module.
  • the power adjustment module is configured to adjust the radio frequency remote module when the temperature data is greater than or equal to a second threshold, and the temperature data is less than a third threshold, and the temperature data is within a temperature threshold.
  • the power data is the first power value.
  • the power adjustment module is configured to: when the temperature data is greater than or equal to a third threshold, and the temperature data is less than a fourth threshold, the temperature data is within a temperature threshold, and adjusting the radio remote module The power data is a second power value.
  • the channel closing module is configured to: when the temperature data is greater than or equal to the fourth threshold, the temperature data is greater than a temperature threshold, and the radio frequency channel of the radio remote module is turned off.
  • the power adjustment module is further configured as an RF channel to the radio remote module
  • the switch state is detected; determining that the radio frequency channel of the radio remote module is turned on.
  • the acquiring module is configured to read a temperature transmitted by each sensor in the remote radio module, and when the absolute difference between the temperatures of any two sensors is greater than a set value, re-read each sensor transmission. Temperature; otherwise, the temperature transmitted by each sensor constitutes the temperature data of the radio remote module.
  • the acquiring module is configured to read a temperature transmitted by a sensor at each power amplifier of the remote radio module, and when an absolute difference of temperature transmitted by the sensor at any two power amplifiers is greater than a first set value Re-reading the temperature of the sensor transmission at each power amplifier; when the absolute difference of the temperature transmitted by the sensors at each power amplifier is less than the first set value, reading the temperature of the sensor transmission in other areas except the power amplifier; When the absolute difference between the temperature of the sensor transmitted by any other area other than the power amplifier is greater than the second set value, the temperature of the sensor transmission in other areas except the power amplifier is read again; when the sensors of other areas except the power amplifier are transmitted When the absolute difference of the temperature is less than the second set value, the temperature transmitted by each sensor constitutes the temperature data of the radio remote module.
  • the present application includes the following advantages:
  • the power data of the RRU is configured. If the temperature data is greater than the temperature threshold, the RF channel of the RRU is turned off. This embodiment can perform different temperature control operations depending on the temperature in the RRU, so that the RRU is damaged due to excessive temperature.
  • the temperature data of the RRU can be hierarchically detected according to the temperature threshold, thereby determining different ranges of the temperature data, and determining the temperature control operation of the RRU according to the condition of the RF channel being closed or not, effectively
  • the temperature of the RRU is controlled by various methods in various temperature ranges to prevent the RRU from being damaged due to excessive temperature.
  • the temperature is transmitted by each sensor, and the absolute difference of the temperature transmitted by any two sensors can be used to determine whether the temperature of the transmission is abnormal, thereby eliminating abnormal temperature data and ensuring accurate temperature data, thereby Take correct and effective measures when controlling the temperature of the RRU.
  • FIG. 1 is a flowchart of a temperature detecting method of an RRU according to Embodiment 1 of the present application;
  • FIG. 2 is a flowchart of a method for detecting temperature of an RRU according to Embodiment 2 of the present application
  • FIG. 3 is a flowchart of a method for acquiring a temperature of an RRU according to Embodiment 2 of the present application;
  • FIG. 4 is a structural diagram of a temperature detecting device for an RRU according to Embodiment 3 of the present application.
  • FIG. 5 is a structural diagram of a temperature detecting device for an RRU according to Embodiment 4 of the present application. detailed description
  • the embodiment of the present application provides a temperature detection method for an RRU, which can control the temperature of the RRU by setting the power data of the RRU or turning off the RF channel of the RRU, and prevent the RRU from being burned due to excessive temperature and the failure of the base station.
  • Step 101 Obtain temperature data of the RRU.
  • one or several sensors may be disposed in the chassis of the RRU, and the sensor is a temperature sensor, so the temperature in the chassis of the RRU is measured by the sensor to obtain the temperature data of the RRU.
  • Step 102 Detect whether the temperature data is greater than a temperature threshold.
  • a temperature threshold is set, which is one of the criteria for measuring whether the temperature of the RRU is too high, and the temperature threshold is a temperature range.
  • the temperature change in the RRU is also normal to high and then too high. Therefore, in the embodiment, when the temperature data is detected according to the temperature threshold, the corresponding operation may be performed according to different positions of the temperature in the RRU, so that when the temperature in the RRU is initially found to be high, the corresponding processing operation is performed. Protect the RRU's stable, normal work.
  • step 104 is performed; if not, that is, If the temperature data is not greater than the temperature threshold, step 105 is performed.
  • the preset temperature threshold where the temperature threshold includes: a first threshold, a second threshold, a third threshold, and a fourth threshold, wherein the fourth threshold in the temperature threshold is greater than a third threshold, and the third threshold
  • the second threshold is greater than the second threshold, and the second threshold is greater than the first threshold; the temperature threshold is used to construct a temperature threshold to perform hierarchical detection on the temperature data.
  • Step 103 Configure power data of the RRU according to the temperature data.
  • the temperature data is not greater than the temperature threshold and includes two cases: one is that the temperature data is less than the temperature threshold, and the other is that the temperature data is within the temperature threshold.
  • a certain amount of power data is configured when the RRU is working.
  • the greater the power the greater the amount of heat generated during the same time. Therefore, when the temperature data is not greater than the temperature threshold, the RRU can be configured according to the temperature data.
  • the power data for example, reduces the power data of the RRU by a few decibels (db) and the like.
  • db decibels
  • the temperature data when the temperature data is less than the temperature threshold, configuring the power data of the radio remote module according to the temperature data, including: when the temperature data is less than the first threshold, the temperature data is less than a temperature threshold; The power data of the radio remote module is an initial value.
  • the method before adjusting the power data of the radio remote module to an initial value, the method further includes: if the radio frequency channel of the radio remote module is turned off, turning on the radio frequency channel; if the radio remote module is After the radio channel is turned on, it is determined that the power data of the radio remote module is not equal to the initial value.
  • configuring the power data of the radio remote module according to the temperature data including:
  • the temperature data is greater than or equal to the second threshold, and the temperature data is less than the third threshold, the temperature data is within the temperature threshold; and the power data of the radio remote module is adjusted to be the first power value.
  • the temperature data is greater than or equal to the third threshold, and the temperature data is less than the fourth threshold, the temperature data is within the temperature threshold; and the power data of the radio remote module is adjusted to be the second power value.
  • Step 104 Close the RF channel of the RRU.
  • the temperature data is greater than or equal to the fourth threshold, the temperature data is greater than a temperature threshold, and the radio frequency channel of the radio remote module is turned off.
  • the temperature in the RRU may be too high at this time, and only changing the power data may not be able to control the temperature of the RRU, so the RF channel of the RRU may be turned off to stop the operation of the RF channel. Control the temperature of the RRU to prevent the RRU from being damaged due to excessive temperature.
  • the method further includes: detecting a switch state of the radio frequency channel of the radio remote module.
  • the power data of the RRU is configured. If the temperature data is greater than the temperature threshold, the RF channel of the RRU is turned off.
  • Step 201 preset a temperature threshold.
  • the temperature threshold includes: a first threshold TL, a second threshold TH, a third threshold Tu, and a fourth threshold Toff, and TL ⁇ TH ⁇ Tu ⁇ Toff. Assume that the temperature data of the RRU is T. Specifically include:
  • TL is the temperature threshold for restoring normal power, and can also be used as a threshold for restoring the RF channel. That is, when the D ⁇ 11 ⁇ is reached, the power of the RRU can be restored to normal, that is, the initial value is restored.
  • the RF channel of the RRU is in the off state, the RF channel is enabled and the power of the RRU is restored to the initial value. If the RF channel of the RRU is turned on, the RRU should be used at this time.
  • the power data is compared with the initial value. When it is determined that the power data of the RRU is the initial value, the RRU may continue to be operated with the initial value without performing other operations; if it is determined that the power data of the RRU is not the initial value, then Restore the power of the RRU to its initial value.
  • TH is one of the temperature thresholds for lowering the RRU power and is used to control the temperature of the RRU. That is, when T>TH, the power of the RRU can be lowered.
  • Tu is another temperature threshold that down-regulates RRU power to further control the temperature of the RRU. That is, when T>Tu, the power of the RRU is further adjusted.
  • Toff is the threshold for turning off the RF channel.
  • the RRU's RF channel can be turned off to control the RRU temperature to prevent RRU damage due to excessive temperature.
  • the temperature can be classified and detected.
  • the temperature threshold when configured, the statistical data obtained in the high and low temperature test of the equipment in the development stage can be used to protect the equipment from damage under extreme conditions. Since the tolerances of different devices are different, the temperature threshold needs to be set according to the measured data of each device to ensure that the device can work within the safe temperature range.
  • the temperature threshold is set to:
  • TL 70 °C
  • TH 75 °C
  • Tu 85 °C
  • Toff 90 o C.
  • Step 202 Construct a temperature threshold using a temperature threshold.
  • the temperature threshold can be constructed by using the temperature threshold, so that the temperature data of the RRU can be hierarchically detected, and the corresponding operation is performed according to the different temperature ranges in which the temperature data is located, so as to better control the temperature of the RRU.
  • Step 203 Obtain temperature data of the RRU.
  • a plurality of sensors are configured in the RRU, and a set value is configured to detect whether the temperature transmitted by the sensor is abnormal.
  • the acquiring temperature data of the RRU includes:
  • Reading the temperature transmitted by each sensor in the RRU if the absolute difference between the temperatures transmitted by any two sensors is greater than the set value, re-reading the temperature transmitted by each sensor; otherwise, the temperature transmitted by each sensor is taken as RRU temperature data.
  • sensors are respectively disposed at each power amplifier (power amplifier) of the RRU and other areas outside the power amplifier in the RRU. Therefore, the method for measuring the temperature of the transmission is slightly different according to the different positions of the sensors. Specifically, the following steps are included:
  • FIG. 3 a flow chart of a method for acquiring temperature of an RRU according to Embodiment 2 of the present application is shown.
  • the reading the temperature transmitted by each sensor in the remote radio module if the absolute difference between the temperatures transmitted by any two sensors is greater than the set value, re-reading the temperature transmitted by each sensor;
  • the temperature transmitted by each sensor constitutes temperature data of the radio remote module, and includes the following steps:
  • Step 301 Read a temperature of a sensor transmission at each power amplifier in the RRU.
  • Step 302 Detect whether the absolute difference of the temperature transmitted by the sensors at any two power amplifiers is greater than the first set value.
  • the first set value is used to measure whether the temperature transmitted at the amplifier is accurate, such as the first set value is 10 degrees.
  • step 301 If yes, that is, if the absolute difference of the temperature transmitted by the sensor at any two power amplifiers is greater than the first set value, the transmitted temperature is inaccurate, and return to step 301 to re-read the temperature of the sensor transmission at each power amplifier.
  • step 303 is performed.
  • Step 303 Read the temperature of the sensor transmission in other areas except the power amplifier.
  • Step 304 Detect that the absolute difference between the temperatures transmitted by the sensors of any two regions other than the power amplifier is greater than the second set value.
  • the second set value is used to measure whether the temperature transmitted by the RRU in other areas except the power amplifier is accurate, such as the second set value is 15 degrees.
  • the absolute difference of the temperature transmitted by the sensors in other areas except the power amplifier is smaller than the second set value, that is, the absolute difference of the temperature transmitted by the sensors in all areas except the power amplifier is smaller than the second setting. For the value, go to step 305.
  • Step 305 The temperature transmitted by each sensor constitutes temperature data of the radio remote module. If no, that is, the absolute difference of the temperature transmitted by the sensors in other regions except the power amplifier is less than the second set value, the temperature transmitted by each sensor constitutes the temperature data of the radio remote module.
  • the accurate temperature transmitted by each sensor can be obtained, and then the temperature data of the RRU is determined according to the temperature, for example, the average value of the temperature transmitted by each sensor is calculated.
  • Step 204 Detect whether the radio channel of the RRU is turned off.
  • step 205 After the temperature data of the RRU is obtained, it can be detected whether the radio channel of the RRU is turned off. If yes, that is, the radio channel of the RRU is closed, step 205 is performed subsequently; if no, that is, the radio channel of the RRU is not closed, step 207 is performed subsequently.
  • Step 205 Detect whether the temperature data is less than a first threshold.
  • T is less than TL.
  • step 206 is performed; if not, that is, the temperature data is greater than or equal to the first threshold (T > TL), then return to step 203.
  • Step 206 Turn on the radio frequency channel.
  • the RF channel of the RRU When the RF channel of the RRU is turned off, and T ⁇ TL, the temperature data is less than the temperature threshold, the RF channel of the RRU can be turned on.
  • Step 207 Detect whether the temperature data is less than a first threshold. When the RF channel of the RRU is turned on, it can be detected whether T is smaller than TL.
  • step 208 is performed; if no, that is, the temperature data is greater than or equal to the first threshold (T > TL), step 210 is performed.
  • Step 208 Detect whether the power data of the RRU is an initial value.
  • step 211 is performed; if not, that is, the power data of the RRU is not the initial value, step 209 is performed.
  • Step 209 Adjust power data of the RRU to an initial value.
  • the power data of the RRU may be adjusted to an initial value.
  • the power data of the RRU may be adjusted to an initial value.
  • Step 210 Detect whether the temperature data is less than a second threshold.
  • step 211 If yes, that is, the temperature data is less than the second threshold (TL T ⁇ TH), step 211 is performed. If no, that is, the temperature data is greater than or equal to the second threshold (T > TH), step 212 is performed.
  • Step 211 Continue to run the RRU with the power data.
  • the RRU When the RF channel of the RRU is enabled, if the power data of the R ⁇ TL and the RRU is the initial value, the RRU may continue to be run with the initial value of the power data, and the power data of the RRU may not be adjusted. Then, returning to step 203, the temperature data is retrieved again.
  • the temperature data is within a temperature threshold, and the RRU may continue to run with the power data. Then, returning to step 203, the temperature data is reacquired.
  • Step 212 Detect whether the temperature data is less than a third threshold.
  • T When T > TH, it is further detected whether T is smaller than Tu.
  • Step 213 Adjust power data of the RRU to be a first power value.
  • the power data of the RRU may be adjusted to further control the temperature of the RRU. Specifically, the power data of the RRU may be adjusted to a first power value, where the first power is used to control the temperature of the RRU. Adjust one of the powers, such as the initial value -1.5db. You can then return to step 203 to reacquire the temperature data.
  • Step 214 Detect whether the temperature data is less than a fourth threshold.
  • step 215 is performed; if not, that is, the temperature data is greater than or equal to the fourth threshold (T > Toff ), step 216 is performed.
  • Step 215 Adjust power data of the RRU to a second power value.
  • the temperature data is within a temperature threshold, and in order to control the temperature of the RRU, the power data of the RRU may be adjusted to a second power value. Then, returning to step 203, the temperature data is retrieved again.
  • the second power value is one of an adjusted power for controlling the temperature of the RRU, and is configured as an initial value of -3 db. Then, when Tu T ⁇ Toff, the current power data of the RRU can be adjusted to an initial value of -3db.
  • Step 216 Close the RF channel of the RRU.
  • the radio frequency channel of the RRU is turned off. Then, the process returns to step 203 to reacquire the temperature data.
  • the temperature data of the RRU can be hierarchically detected according to the temperature threshold, thereby determining different ranges of the temperature data, and determining the temperature control operation of the RRU according to the condition of the RF channel being closed or not. It is effective to control the temperature of the RRU by various methods in various temperature ranges, and to prevent the RRU from being damaged due to excessive temperature.
  • the temperature is transmitted by each sensor, and then the absolute difference of the temperature transmitted by any two sensors can be used to determine whether the temperature of the transmission is abnormal, thereby eliminating abnormal temperature data and ensuring accurate temperature data, thereby Take correct and effective measures when controlling the temperature of the RRU.
  • Embodiment 3 the absolute difference of the temperature transmitted by any two sensors can be used to determine whether the temperature of the transmission is abnormal, thereby eliminating abnormal temperature data and ensuring accurate temperature data, thereby Take correct and effective measures when controlling the temperature of the RRU.
  • FIG. 4 a structural diagram of a temperature detecting device for an RRU according to Embodiment 3 of the present application is shown.
  • the embodiment of the present application further provides a temperature detecting device for the RRU, including: an obtaining module 11, a power adjusting module 12, and a channel closing module 13.
  • the obtaining module 11 is configured to obtain temperature data of the remote radio module
  • the power adjustment module 12 is configured to configure power data of the radio remote module according to the temperature data when the temperature data is less than a temperature threshold or within a temperature threshold;
  • the channel closing module 13 is configured to turn off the radio frequency channel of the radio frequency remote module when the temperature data is greater than a temperature threshold.
  • the power data of the RRU is configured. If the temperature data is greater than the temperature threshold, the control operation is turned off, so that the RRU is over temperature. High and damaged.
  • the temperature detecting device of the RRU includes:
  • the preset module 21 is configured to preset a temperature threshold.
  • the temperature threshold includes: a first threshold, a second threshold, a third threshold, and a fourth threshold, where the fourth threshold is greater than the third threshold, and the third threshold is greater than the second threshold, and the second threshold is Greater than the first threshold;
  • Threshold building block 22 is configured to perform a hierarchical detection of the temperature data using a temperature threshold to build a temperature threshold.
  • the obtaining module 23 is configured to obtain temperature data of the radio remote module.
  • the power adjustment module 24 is configured to configure the power data of the radio remote module according to the temperature data when the temperature data is less than a temperature threshold or within a temperature threshold.
  • the channel closing module 25 is configured to close the radio frequency channel of the radio remote module when the temperature data is greater than a temperature threshold.
  • the power adjustment module 24 is configured to: when the temperature data is less than the first threshold, the temperature data is less than a temperature threshold; and adjust the power data of the radio remote module to an initial value.
  • the power adjustment module 24 is further configured to: before adjusting the power data of the radio remote module to an initial value, if the radio frequency channel of the radio remote module is turned off, the radio frequency channel is turned on. If the radio frequency channel of the radio remote module is turned on, it is determined that the power data of the radio remote module is not equal to the initial value.
  • the power adjustment module 24 is configured to: when the temperature data is greater than or equal to the first threshold, and the temperature data is less than the second threshold, and the temperature data is within the temperature threshold, The power data continues to operate the radio remote module.
  • the power adjustment module 24 is configured to: when the temperature data is greater than or equal to the second threshold, and the temperature data is less than the third threshold, the temperature data is within the temperature threshold; The power data of the module is the first power value.
  • the power adjustment module 24 is configured to: when the temperature data is greater than or equal to the third threshold, and the temperature data is less than the fourth threshold, the temperature data is within the temperature threshold, and the radio frequency is adjusted The power data of the module is the second power value.
  • the channel closing module 25 is configured to close the radio frequency channel of the radio remote module when the temperature data is greater than or equal to the fourth threshold, and the temperature data is greater than the temperature threshold.
  • the power adjustment module 24 is further configured to detect a switch state of the radio frequency channel of the radio remote module; and determine that the radio frequency channel of the radio remote module is turned on.
  • the acquiring module 23 is configured to read the temperature transmitted by each sensor in the radio remote module, and if the absolute difference between the temperatures transmitted by any two sensors is greater than the set value, re-read each The temperature at which the sensor transmits; otherwise, the temperature transmitted by each sensor constitutes the temperature data of the remote radio module.
  • the acquiring module 23 is configured to read the temperature of the sensor transmitted by each of the power amplifiers in the remote radio module, and if the absolute difference of the temperature transmitted by the sensors at any two power amplifiers is greater than the first setting If the value is fixed, the temperature of the sensor transmission at each power amplifier is re-read; if the absolute difference of the temperature transmitted by the sensor at each power amplifier is less than the first set value, then other areas except the power amplifier are read.
  • the temperature transmitted by the sensor if the absolute difference of the temperature transmitted by the sensor in any other area except the power amplifier is greater than the second set value, re-read the temperature of the sensor transmission in other areas except the power amplifier; The absolute difference between the temperatures transmitted by the sensors in other regions is less than the second set value, and the temperature transmitted by each sensor constitutes the temperature data of the radio remote module.
  • the temperature data of the RRU can be hierarchically detected according to the temperature threshold, thereby determining different ranges of the temperature data, and determining the temperature control operation of the RRU according to the condition of the RF channel being closed or not. It is effective to control the temperature of the RRU by various methods in various temperature ranges, and to prevent the RRU from being damaged due to excessive temperature.
  • the temperature is transmitted by each sensor, and then the absolute difference of the temperature transmitted by any two sensors can be used to determine whether the temperature of the transmission is abnormal, thereby eliminating abnormal temperature data and ensuring accurate temperature data, thereby Take correct and effective measures when controlling the temperature of the RRU.
  • the embodiment of the present application further provides a computer readable recording medium on which a program for executing the temperature detecting method of the radio remote module is recorded.
  • the computer readable recording medium includes any mechanism for storing or transmitting information in a form readable by a computer (e.g., a computer).
  • a machine-readable medium includes a read only memory (ROM), a random access memory (RAM), a magnetic disk storage medium, an optical storage medium, a flash storage medium, an electrical, optical, acoustic, or other form of propagated signal (eg, a carrier wave) , infrared signals, digital signals, etc.).
  • the application can be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the present application can also be practiced in distributed computing environments where remote locations are connected through a communication network Device to perform tasks.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Inverter Devices (AREA)

Abstract

一种射频拉远模块的温度检测方法和装置,以解决RRU由于温度过高而损坏的问题。所述的方法包括:获取射频拉远模块的温度数据;当所述温度数据小于温度阈值,或处于温度阈值内时,依据所述温度数据配置所述射频拉远模块的功率数据;当所述温度数据大于温度阈值时,关闭所述射频拉远模块的射频通道。

Description

一种射频拉远模块的温度检测方法和装置
技术领域
本申请涉及通信技术,特别是涉及一种射频拉远模块的温度检测方法和 装置。 背景技术
目前的宽带移动通信中, 大多釆用分布式基站架构, 即室内基带处理单 元 ( Building Base band Unit, BBU )和射频拉远模块 ( Radio Remote Unit, RRU )釆用光纤连接, 但是, RRU通常都安装于较高的天线塔端, 工作环 境比较恶劣, 散热方式釆用的是无源散热, 并且由于 RRU要暴露在室外的 环境, 因此机箱需要密封。
因此, 当空气温度较高时, 尤其是在夏季的中午时段, RRU 的散热能 力受到严峻的挑战, RRU内部的关键部件, 如功放、 电源、 FPGA ( Field - Programmable Gate Array, 现场可编辑逻辑门阵列 )等的性能和寿命会较大 程度的收到温度的大影响。 情况严重时可能会导致 RRU的部件失效, 如功 放烧毁、 电源模块过温保护性断电(烧毁)等, 进而导致所在基站不能工作, 影响网络的覆盖。
由此在 RRU中配置了过温告警, 即设定一个温度门限值, 当 RRU内温 度传感器监测到的箱内温度大于该门限值时, 会向主站上报过温告警消息, 此后没有进一步的处理操作。 同时, 温度监测会每隔一段时间更新一次。
但是, 上述方法中当箱内温度超过门限值后, 虽然上报了过温告警, 但 RRU仍然继续工作且不会进行其他处理操作, RRU机箱内温度可能会继续 上升, 最终可导致功放或电源模块烧毁, 基站失效。 上述的方法仍然没有解 决 RRU温度过高的问题。 发明内容 本申请实施例提供了一种射频拉远模块的温度检测方法和装置, 以解决
RRU由于温度过高而损坏的问题。 为了解决上述问题,本申请实施例公开了一种射频拉远模块的温度检测 方法, 包括:
获取射频拉远模块的温度数据;
当所述温度数据小于温度阈值, 或处于温度阈值内时, 依据所述温度数 据配置所述射频拉远模块的功率数据;
当所述温度数据大于温度阈值时, 关闭所述射频拉远模块的射频通道。 可选的, 所述的方法还包括: 预置温度门限, 其中, 所述温度门限包括: 第一门限、 第二门限、 第三门限和第四门限, 所述温度门限中第四门限大于 第三门限, 并且第三门限大于第二门限, 并且第二门限大于第一门限; 釆用 温度门限构建温度阈值对所述温度数据进行分级检测。
可选的, 当所述温度数据小于温度阈值时, 依据所述温度数据配置所述 射频拉远模块的功率数据, 包括: 当温度数据小于第一门限时, 所述温度数 据小于温度阈值; 调整所述射频拉远模块的功率数据为初始值。
可选的, 调整所述射频拉远模块的功率数据为初始值之前, 还包括: 若 所述射频拉远模块的射频通道已关闭, 则开启所述射频通道; 若所述射频拉 远模块的射频通道已开启, 则确定所述射频拉远模块的功率数据不等于初始 值。
可选的, 当所述温度数据处于温度阈值内时, 依据所述温度数据配置所 述射频拉远模块的功率数据, 包括: 当所述温度数据大于或等于第一门限, 且所述温度数据小于第二门限时, 所述温度数据处于温度阈值内; 以所述功 率数据继续运行所述射频拉远模块。
可选的, 当所述温度数据处于温度阈值内时, 依据所述温度数据配置所 述射频拉远模块的功率数据, 包括: 当温度数据大于或等于第二门限, 且所 述温度数据小于第三门限时, 所述温度数据处于温度阈值内; 调整所述射频 拉远模块的功率数据为第一功率值。
可选的, 当所述温度数据处于温度阈值内时, 依据所述温度数据配置所 述射频拉远模块的功率数据, 包括: 当温度数据大于或等于第三门限, 且所 述温度数据小于第四门限时, 所述温度数据处于温度阈值内; 调整所述射频 拉远模块的功率数据为第二功率值。
可选的, 当所述温度数据大于温度阈值时, 关闭所述射频拉远模块的射 频通道, 包括: 当所述温度数据大于或等于所述第四门限时, 所述温度数据 大于温度阈值, 则关闭所述射频拉远模块的射频通道。
可选的, 所述获取射频拉远模块的温度数据之后, 还包括: 对所述射频 拉远模块的射频通道的开关状态进行检测; 确定所述射频拉远模块的射频通 道已开启。
可选的, 所述获取射频拉远模块的温度数据, 包括: 读取所述射频拉远 模块中各传感器传输的温度, 当任意两个传感器传输的温度的绝对差值大于 设定值时, 重新读取各传感器传输的温度; 否则, 将各传感器传输的温度构 成所述射频拉远模块的温度数据。
可选的, 所述读取所述射频拉远模块中各传感器传输的温度, 当任意两 个传感器传输的温度的绝对差值大于设定值时, 重新读取各传感器传输的温 度; 否则, 将各传感器传输的温度构成所述射频拉远模块的温度数据, 包括 以下步骤: 读取所述射频拉远模块中各功放处的传感器传输的温度, 当任意 两个功放处的传感器传输的温度的绝对差值大于第一设定值时, 重新读取各 功放处的传感器传输的温度; 当各功放处的传感器传输的温度的绝对差值均 小于第一设定值时, 读取除功放外其他区域的传感器传输的温度; 当任意两 个除功放外其他区域的传感器传输的温度的绝对差值大于第二设定值时, 重 新读取除功放外其他区域的传感器传输的温度; 当各除功放外其他区域的传 感器传输的温度的绝对差值均小于第二设定值时,将各传感器传输的温度构 成所述射频拉远模块的温度数据。 相应的, 本申请实施例还公开了一种射频拉远模块的温度检测装置, 包 括:
获取模块, 配置为获取射频拉远模块的温度数据; 功率调整模块, 配置为当所述温度数据小于温度阈值, 或处于温度阈值 内时, 依据所述温度数据配置所述射频拉远模块的功率数据;
通道关闭模块, 配置为当所述温度数据大于温度阈值时, 关闭所述射频 拉远模块的射频通道。
可选的, 所述的装置还包括: 预置模块, 配置为预置温度门限, 其中, 所述温度门限包括: 第一门限、 第二门限、 第三门限和第四门限, 所述温度 门限中第四门限大于第三门限, 并且第三门限大于第二门限, 并且第二门限 大于第一门限; 阈值构建模块, 配置为釆用温度门限构建温度阈值对所述温 度数据进行分级检测。
可选的, 所述功率调整模块, 配置为当温度数据小于第一门限时, 所述 温度数据小于温度阈值; 调整所述射频拉远模块的功率数据为初始值。
可选的, 所述功率调整模块, 还配置为在调整所述射频拉远模块的功率 数据为初始值之前, 若所述射频拉远模块的射频通道已关闭, 则开启所述射 频通道; 若所述射频拉远模块的射频通道已开启, 则确定所述射频拉远模块 的功率数据不等于初始值。
可选的, 所述功率调整模块, 配置为当所述温度数据大于或等于第一门 限, 且所述温度数据小于第二门限时, 所述温度数据处于温度阈值内, 则以 所述功率数据继续运行所述射频拉远模块。
可选的, 所述功率调整模块, 配置为当温度数据大于或等于第二门限, 且所述温度数据小于第三门限时, 所述温度数据处于温度阈值内, 则调整所 述射频拉远模块的功率数据为第一功率值。
可选的, 所述功率调整模块, 配置为当温度数据大于或等于第三门限, 且所述温度数据小于第四门限时, 所述温度数据处于温度阈值内, 调整所述 射频拉远模块的功率数据为第二功率值。
可选的, 所述通道关闭模块, 配置为当所述温度数据大于或等于所述第 四门限时, 所述温度数据大于温度阈值, 则关闭所述射频拉远模块的射频通 道。
可选的, 所述功率调整模块, 还配置为对所述射频拉远模块的射频通道 的开关状态进行检测; 确定所述射频拉远模块的射频通道已开启。
可选的, 所述获取模块, 配置为读取所述射频拉远模块中各传感器传输 的温度, 当任意两个传感器传输的温度的绝对差值大于设定值时, 重新读取 各传感器传输的温度; 否则, 将各传感器传输的温度构成所述射频拉远模块 的温度数据。
可选的, 所述获取模块, 配置为读取所述射频拉远模块中各功放处的传 感器传输的温度, 当任意两个功放处的传感器传输的温度的绝对差值大于第 一设定值时, 重新读取各功放处的传感器传输的温度; 当各功放处的传感器 传输的温度的绝对差值均小于第一设定值时,读取除功放外其他区域的传感 器传输的温度; 当任意两个除功放外其他区域的传感器传输的温度的绝对差 值大于第二设定值时, 重新读取除功放外其他区域的传感器传输的温度; 当 各除功放外其他区域的传感器传输的温度的绝对差值均小于第二设定值时, 将各传感器传输的温度构成所述射频拉远模块的温度数据。 与现有技术相比, 本申请包括以下优点:
首先, 本实施例在获取 RRU的温度数据后, 若温度数据小于或处于温 度阈值内,则配置 RRU的功率数据,若温度数据大于温度阈值,则关闭 RRU 的射频通道。 本实施例可以依据 RRU中温度的不同执行不同的温度控制操 作, 从而 RRU由于温度过高而损坏。
其次, 本实施例可以依据温度门限对 RRU的温度数据进行分级检测, 从而确定温度数据所处的不同范围, 并依据射频通道关闭与否的状况, 共同 确定对 RRU的温度控制操作, 有效地在各种温度范围内通过各种方法控制 RRU的温度, 防止 RRU由于温度过高而出现损坏的问题。
再次, 本实施例通过各传感器传输温度, 进而可以通过任意两个传感器 传输的温度的绝对差值判断传输的温度是否异常,从而可以剔除异常的温度 数据, 确保获取准确的温度数据, 从而在后续对 RRU的温度进行控制时釆 取正确而有效地措施。 附图说明
图 1是本申请实施例一所述 RRU的温度检测方法流程图;
图 2是本申请实施例二所述 RRU的温度检测方法流程图;
图 3是本申请实施例二所述 RRU的温度获取方法流程图;
图 4是本申请实施例三所述 RRU的温度检测装置结构图;
图 5是本申请实施例四所述 RRU的温度检测装置结构图。 具体实施方式
为使本申请的上述目的、 特征和优点能够更加明显易懂, 下面结合附图 和具体实施方式对本申请作进一步详细的说明。
本申请实施例提供了一种 RRU的温度检测方法,可以通过配置 RRU的 功率数据, 或关闭 RRU的射频通道来控制 RRU的温度, 防止 RRU由于温 度过高而出现零件烧毁, 基站失效的问题。
实施例一
参照图 1 , 给出了本申请实施例一所述 RRU的温度检测方法流程图。 步骤 101 , 获取 RRU的温度数据。
本实施例中, 可以在 RRU的机箱中配置一个或若干个传感器, 所述传 感器为温度传感器, 因此通过传感器测量 RRU的机箱内的温度, 从而获取 RRU的温度数据。
步骤 102, 检测所述温度数据是否大于温度阈值。
本实施例中配置了一个温度阈值, 所述温度阈值是衡量 RRU的温度是 否过高的标准之一, 所述温度阈值是一个温度范围。
由于温度的变化通常是一个连续的过程, 因此 RRU中温度的变化过程 也是由正常到较高再到过高的。 因此, 本实施例依据温度阈值对温度数据进 行检测时, 可以依据 RRU中温度所处的不同位置, 执行相应的操作, 从而 可以在最初发现 RRU中温度较高时, 就进行相应的处理操作, 保护 RRU稳 定、 正常的工作。
若是, 即所述温度数据大于温度阈值, 则执行步骤 104; 若否, 即所述 温度数据不大于温度阈值, 则执行步骤 105。
可选的, 预置温度门限, 其中, 所述温度门限包括: 第一门限、 第二门 限、 第三门限和第四门限, 所述温度门限中第四门限大于第三门限, 并且第 三门限大于第二门限, 并且第二门限大于第一门限; 釆用温度门限构建温度 阈值对所述温度数据进行分级检测。
步骤 103 , 依据所述温度数据配置所述 RRU的功率数据。
所述温度数据不大于温度阈值包括两种情况: 一种是所述温度数据小于 温度阈值, 另一种是所述温度数据处于温度阈值内。
在 RRU工作时会配置一定的功率数据, 由于相同时间内, 功率越大产 生的热量也就越大, 因此在检测到在温度数据不大于温度阈值时, 可以依据 所述温度数据配置所述 RRU的功率数据, 例如, 将 RRU的功率数据降低几 分贝 (db )等。 从而通过改变功率数据来控制散热量, 从而控制 RRU的温 度。
可选的, 当所述温度数据小于温度阈值时, 依据所述温度数据配置所述 射频拉远模块的功率数据, 包括: 当温度数据小于第一门限时, 所述温度数 据小于温度阈值; 调整所述射频拉远模块的功率数据为初始值。
可选的, 调整所述射频拉远模块的功率数据为初始值之前, 还包括: 若 所述射频拉远模块的射频通道已关闭, 则开启所述射频通道; 若所述射频拉 远模块的射频通道已开启, 则确定所述射频拉远模块的功率数据不等于初始 值。
可选的, 当所述温度数据处于温度阈值内时, 依据所述温度数据配置所 述射频拉远模块的功率数据, 包括:
1 ) 当所述温度数据大于或等于第一门限, 且所述温度数据小于第二门 限时, 所述温度数据处于温度阈值内; 以所述功率数据继续运行所述射频拉 远模块
2 )当温度数据大于或等于第二门限, 且所述温度数据小于第三门限时, 所述温度数据处于温度阈值内; 调整所述射频拉远模块的功率数据为第一功 率值。 3 )当温度数据大于或等于第三门限, 且所述温度数据小于第四门限时, 所述温度数据处于温度阈值内; 调整所述射频拉远模块的功率数据为第二功 率值。
步骤 104, 关闭所述 RRU的射频通道。
可选的, 当所述温度数据大于或等于所述第四门限时, 所述温度数据大 于温度阈值, 则关闭所述射频拉远模块的射频通道。
当所述温度数据大于温度阈值时, 此时 RRU中的温度可能已经过高, 仅改变功率数据可能已经无法控制 RRU的温度了, 因此可以关闭所述 RRU 的射频通道以停止射频通道的工作, 控制 RRU的温度, 防止 RRU由于温度 过高而损坏。
可选的, 所述获取射频拉远模块的温度数据之后, 还包括: 对所述射频 拉远模块的射频通道的开关状态进行检测。
综上所述, 本实施例在获取 RRU的温度数据后, 若温度数据小于或处 于温度阈值内, 则配置 RRU的功率数据, 若温度数据大于温度阈值, 则关 闭 RRU的射频通道。
控制操作, 从而 RRU由于温度过高而损坏( 实施例二
参照图 2, 给出了本申请实施例二所述 RRU的温度检测方法流程图。 步骤 201 , 预置温度门限。
其中, 所述温度门限包括: 第一门限 TL、 第二门限 TH、 第三门限 Tu 和第四门限 Toff, 并且, TL<TH<Tu<Toff。 假设 RRU的温度数据是 T。 具 体包括:
1 ) 第一门限 TL。
TL是恢复正常功率的温度门限, 也可以作为恢复开启射频通道的门限。 即在达到丁<11^时, 可以将 RRU的功率恢复正常, 即恢复为初始值。
其中, 若 RRU的射频通道处于关闭状态, 则开启射频通道并将 RRU的 功率恢复为初始值。若 RRU的射频通道处于开启状态,则此时还要将该 RRU 的功率数据与初始值进行比较, 在确定该 RRU的功率数据是初始值时, 可 以继续以初始值运行该 RRU, 而不执行其他操作; 此时若确定该 RRU的功 率数据不是初始值, 则将 RRU的功率恢复为初始值。
2 ) 第二门限 TH。
TH是下调 RRU功率的温度门限之一, 用于对 RRU的温度进行控制。 即在 T>TH时, 可以下调 RRU的功率。
3 ) 第三门限 Tu。
Tu是另一个下调 RRU功率的温度门限, 用于进一步对 RRU的温度进 行控制。 即在 T>Tu时, 则进一步调整该 RRU的功率。
4 ) 第四门限 Toff。
Toff是关闭射频通道的门限, 即在检测 T>Toff时, 可以关闭 RRU的射 频通道,从而对 RRU的温度进行控制,防止由于温度过高造成 RRU的损坏。
通过上述温度门限, 可以对温度进行分级检测。
其中, 在配置温度门限时, 可以依据设备在研发阶段高低温测试中得到 的统计数据, 以保护设备在极端条件下不被损坏为原则。 由于不同设备的容 限有区别, 所以温度门限值需要根据各款设备的实测数据作为设置依据, 以 保证设备能够工作在安全温度范围之内。
例如, 通过实验数据分析得知, 温度为 90°C以上会导致某 RRU中关键 部件受损或烧毁, 而在温度为 70 °C以内时设备中各器件均无损坏风险, 因 此可以将上述各温度门限设置为:
TL = 70 °C, TH = 75 °C, Tu = 85 °C, Toff= 90 oC。
步骤 202, 釆用温度门限构建温度阈值。
因而可以釆用温度门限构建温度阈值, 从而实现对 RRU的温度数据进 行分级检测, 依据温度数据所处的不同温度范围, 执行相应的操作, 更好地 控制 RRU的温度。
步骤 203 , 获取 RRU的温度数据。
现有技术在获取温度数据时, 有时可能会获取的不准确的异常数值, 但 由于没有异常数值的检测方法, 因而可能会获取异常的温度数据, 从而导致 RRU中温度获取不准确。
本实施例针对上述问题, 在 RRU中配置了若干传感器, 并配置了设定 值, 用于检测传感器传输的温度是否出现异常。
可选的, 所述获取 RRU的温度数据, 包括:
读取所述 RRU中各传感器传输的温度, 若任意两个传感器传输的温度 的绝对差值大于设定值, 则重新读取各传感器传输的温度; 否则, 将各传感 器传输的温度作为所述 RRU的温度数据。
本实施例在 RRU的各功放(功率放大器)处, 和 RRU中出功放外的其 他区域分别配置了传感器, 因此, 根据传感器所处的不同位置, 对传输的温 度的衡量方法也略有不同, 具体包括如下步骤:
参照图 3 , 给出了本申请实施例二所述 RRU的温度获取方法流程图。 可选的, 所述读取所述射频拉远模块中各传感器传输的温度, 若任意两 个传感器传输的温度的绝对差值大于设定值, 则重新读取各传感器传输的温 度; 否则, 将各传感器传输的温度构成所述射频拉远模块的温度数据, 包括 以下步骤:
步骤 301 , 读取所述 RRU中各功放处的传感器传输的温度。
步骤 302, 检测任意两个功放处的传感器传输的温度的绝对差值是否大 于第一设定值。
第一设定值用于衡量功放处传输的温度是否准确, 如第一设定值为 10 度。
若是, 即任意两个功放处的传感器传输的温度的绝对差值大于第一设定 值, 则说明传输的温度不准确, 返回步骤 301 , 重新读取各功放处的传感器 传输的温度。
若否, 即各功放处的传感器传输的温度的绝对差值均小于第一设定值, 也即所有功放处的传感器传输的温度的绝对差值均小于第一设定值, 则执行 步骤 303。
步骤 303 , 读取除功放外其他区域的传感器传输的温度。
若各功放处的传感器传输的温度的绝对差值均小于第一设定值,则读取 除功放外其他区域的传感器传输的温度。
步骤 304, 检测任意两个除功放外其他区域的传感器传输的温度的绝对 差值大于第二设定值。
其中, 第二设定值用于衡量 RRU中除功放外其他区域传输的温度是否 准确, 如第二设定值为 15度。
若是, 即任意两个除功放外其他区域的传感器传输的温度的绝对差值大 于第二设定值, 则说明 RRU除功放外其他区域传输的温度异常, 返回步骤 303 , 重新读取除功放外其他区域的传感器传输的温度;。
若否, 即各除功放外其他区域的传感器传输的温度的绝对差值均小于第 二设定值,也即所有除功放外其他区域的传感器传输的温度的绝对差值均小 于第二设定值, 则执行步骤 305。
步骤 305, 将各传感器传输的温度构成所述射频拉远模块的温度数据。 若否, 即各除功放外其他区域的传感器传输的温度的绝对差值均小于第 二设定值, 则将各传感器传输的温度构成所述射频拉远模块的温度数据。
通过上述方法可以获取到各传感器传输的准确的温度 , 再依据所述温度 确定 RRU的温度数据, 如计算各传感器传输的温度的平均值。
步骤 204, 检测所述 RRU的射频通道是否已关闭;
获取所述 RRU的温度数据后, 可以检测该 RRU的射频通道是否关闭。 若是, 即所述 RRU的射频通道已关闭, 则后续执行步骤 205; 若否, 即 所述 RRU的射频通道未关闭, 则后续执行步骤 207。
步骤 205, 检测所述温度数据是否小于第一门限。
在 RRU的射频通道已关闭时, 检测 T是否小于 TL。
若是, 即所述温度数据小于第一门限(T<TL ), 则执行步骤 206; 若否, 即所述温度数据大于或等于第一门限(T > TL ), 则返回步骤 203。
步骤 206, 开启所述射频通道。
当所述 RRU的射频通道已关闭, 且 T<TL时, 所述温度数据小于温度 阈值, 可以开启所述 RRU的射频通道。
步骤 207, 检测所述温度数据是否小于第一门限。 在 RRU的射频通道开启时, 可以检测 T是否小于 TL。
若是, 即所述温度数据小于第一门限(T<TL ), 则执行步骤 208; 若否, 即所述温度数据大于或等于第一门限(T > TL ), 则执行步骤 210。
步骤 208, 检测 RRU的功率数据是否为初始值。
在 RRU的射频通道开启时, 若 T<TL, 则检测 RRU的功率数据是否为 初始值。
若是, 即 RRU的功率数据为初始值, 则执行步骤 211 ; 若否, 即 RRU 的功率数据不为初始值, 则执行步骤 209。
步骤 209, 将所述 RRU的功率数据调整为初始值。
当所述 RRU的射频通道已关闭, 且 T<TL时, 开启所述 RRU的射频通 道后, 可以将所述 RRU的功率数据调整为初始值。
在 RRU的射频通道开启时,若 T<TL且 RRU的功率数据不为初始值时 , 可以将所述 RRU的功率数据调整为初始值。
步骤 210, 检测所述温度数据是否小于第二门限。
若所述 RRU的射频通道未关闭, 则可以检测 T是否小于 TH。
若是, 即所述温度数据小于第二门限(TL T<TH ), 则执行步骤 211 , 若否, 即所述温度数据大于或等于第二门限(T > TH ), 则执行步骤 212。
步骤 211 , 以所述功率数据继续运行所述 RRU。
在 RRU的射频通道开启时 , 若 T<TL且 RRU的功率数据为初始值时 , 可以继续以初始值为功率数据运行该 RRU , 而可以不对 RRU的功率数据进 行调整。 然后可以返回步骤 203 , 重新获取温度数据。
若所述 RRU的射频通道未关闭且 T<TH时, 所述温度数据处于温度阈 值内, 可以以所述功率数据继续运行所述 RRU。 然后可以返回步骤 203 , 重 新获取温度数据。
步骤 212, 检测所述温度数据是否小于第三门限。
当 T > TH时, 进一步检测 T是否小于 Tu。
若是, 即所述温度数据小于第三门限(TH T<Tu ), 则执行步骤 213; 若否, 即所述温度数据大于或等于第三门限(T > Tu ), 则执行步骤 214。 步骤 213 , 调整所述 RRU的功率数据为第一功率值。
若 TH T<Tu , 则可以调整 RRU的功率数据, 以进一步控制 RRU的温 度, 具体的, 可以将 RRU的功率数据调整为第一功率值, 所述第一功率是 用于控制 RRU的温度的调整功率之一, 如配置为初始值 -1.5db。 然后可以返 回步骤 203 , 重新获取温度数据。
步骤 214, 检测所述温度数据是否小于第四门限。
若 T > Tu, 则进一步检测 T是否小于 Toff。
若是, 即所述温度数据小于第四门限(Tu T<Toff), 则执行步骤 215; 若否,即所述温度数据大于或等于所述第四门限(T > Toff ),则执行步骤 216。
步骤 215, 调整所述 RRU的功率数据为第二功率值。
当 Tu T<Toff时, 所述温度数据处于温度阈值内, 为了控制 RRU的温 度,可以将所述 RRU的功率数据调整为第二功率值。然后可以返回步骤 203 , 重新获取温度数据。
其中, 所述第二功率值是用于控制 RRU的温度的调整功率之一, 如配 置为初始值 -3db。 则在 Tu T<Toff时, 可以将所述 RRU当前的功率数据调 整为初始值 -3db。
步骤 216, 关闭所述 RRU的射频通道。
当 丁>丁(^时, 所述温度数据大于温度阈值, 则关闭所述 RRU的射频 通道。 然后可以返回步骤 203 , 重新获取温度数据。
综上所述, 本实施例可以依据温度门限对 RRU的温度数据进行分级检 测, 从而确定温度数据所处的不同范围, 并依据射频通道关闭与否的状况, 共同确定对 RRU的温度控制操作, 有效地在各种温度范围内通过各种方法 控制 RRU的温度, 防止 RRU由于温度过高而出现损坏的问题。
其次, 本实施例通过各传感器传输温度, 进而可以通过任意两个传感器 传输的温度的绝对差值判断传输的温度是否异常,从而可以剔除异常的温度 数据, 确保获取准确的温度数据, 从而在后续对 RRU的温度进行控制时釆 取正确而有效地措施。 实施例三
参照图 4, 给出了本申请实施例三所述 RRU的温度检测装置结构图。 相应的, 本申请实施例还提供了一种 RRU的温度检测装置, 包括: 获 取模块 11、 功率调整模块 12和通道关闭模块 13。
获取模块 11 , 配置为获取射频拉远模块的温度数据;
功率调整模块 12,配置为当所述温度数据小于温度阈值,或处于温度阈 值内时, 依据所述温度数据配置所述射频拉远模块的功率数据;
通道关闭模块 13 , 配置为当所述温度数据大于温度阈值时, 关闭所述射 频拉远模块的射频通道。
综上所述, 本实施例在获取 RRU的温度数据后, 若温度数据小于或处 于温度阈值内, 则配置 RRU的功率数据, 若温度数据大于温度阈值, 则关 控制操作, 从而 RRU由于温度过高而损坏。 实施例四
参照图 5, 给出了本申请实施例四所述 RRU的温度检测装置结构图。 所述 RRU的温度检测装置, 包括:
预置模块 21 , 配置为预置温度门限。
其中, 所述温度门限包括: 第一门限、 第二门限、 第三门限和第四门限, 所述温度门限中第四门限大于第三门限, 并且第三门限大于第二门限, 并且 第二门限大于第一门限;
阈值构建模块 22,配置为釆用温度门限构建温度阈值对所述温度数据进 行分级检测。
获取模块 23 , 配置为获取射频拉远模块的温度数据。
功率调整模块 24,配置为当所述温度数据小于温度阈值,或处于温度阈 值内时, 依据所述温度数据配置所述射频拉远模块的功率数据。
通道关闭模块 25, 配置为当所述温度数据大于温度阈值时, 关闭所述射 频拉远模块的射频通道。 本实施例中 ,所述功率调整模块 24,配置为当温度数据小于第一门限时 , 所述温度数据小于温度阈值; 调整所述射频拉远模块的功率数据为初始值。
本实施例中,所述功率调整模块 24,还配置为在调整所述射频拉远模块 的功率数据为初始值之前, 若所述射频拉远模块的射频通道已关闭, 则开启 所述射频通道; 若所述射频拉远模块的射频通道已开启, 则确定所述射频拉 远模块的功率数据不等于初始值。
本实施例中,所述功率调整模块 24, 配置为当所述温度数据大于或等于 第一门限,且所述温度数据小于第二门限时,所述温度数据处于温度阈值内 , 则以所述功率数据继续运行所述射频拉远模块。
本实施例中,所述功率调整模块 24, 配置为当温度数据大于或等于第二 门限, 且所述温度数据小于第三门限时, 所述温度数据处于温度阈值内; 所 调整述射频拉远模块的功率数据为第一功率值。
本实施例中,所述功率调整模块 24, 配置为当温度数据大于或等于第三 门限, 且所述温度数据小于第四门限时, 所述温度数据处于温度阈值内, 调 整所述射频拉远模块的功率数据为第二功率值。
本实施例中,所述通道关闭模块 25 , 配置为当所述温度数据大于或等于 所述第四门限时, 所述温度数据大于温度阈值, 则关闭所述射频拉远模块的 射频通道。
本实施例中,所述功率调整模块 24,还配置为对所述射频拉远模块的射 频通道的开关状态进行检测; 确定所述射频拉远模块的射频通道已开启。
本实施例中,所述获取模块 23 ,配置为读取所述射频拉远模块中各传感 器传输的温度, 若任意两个传感器传输的温度的绝对差值大于设定值, 则重 新读取各传感器传输的温度; 否则, 将各传感器传输的温度构成所述射频拉 远模块的温度数据。
本实施例中, 所述获取模块 23 , 配置为读取所述射频拉远模块中各功放 处的传感器传输的温度,若任意两个功放处的传感器传输的温度的绝对差值 大于第一设定值, 则重新读取各功放处的传感器传输的温度; 若各功放处的 传感器传输的温度的绝对差值均小于第一设定值, 则读取除功放外其他区域 的传感器传输的温度; 若任意两个除功放外其他区域的传感器传输的温度的 绝对差值大于第二设定值, 则重新读取除功放外其他区域的传感器传输的温 度; 若各除功放外其他区域的传感器传输的温度的绝对差值均小于第二设定 值, 则将各传感器传输的温度构成所述射频拉远模块的温度数据。
综上所述, 本实施例可以依据温度门限对 RRU的温度数据进行分级检 测, 从而确定温度数据所处的不同范围, 并依据射频通道关闭与否的状况, 共同确定对 RRU的温度控制操作, 有效地在各种温度范围内通过各种方法 控制 RRU的温度, 防止 RRU由于温度过高而出现损坏的问题。
其次, 本实施例通过各传感器传输温度, 进而可以通过任意两个传感器 传输的温度的绝对差值判断传输的温度是否异常,从而可以剔除异常的温度 数据, 确保获取准确的温度数据, 从而在后续对 RRU的温度进行控制时釆 取正确而有效地措施。
相应的, 本申请实施例还提供了一种在其上记录有用于执行所述射频拉 远模块的温度检测方法的程序的计算机可读记录介质。
所述计算机可读记录介质包括用于以计算机 (例如计算机 )可读的形式 存储或传送信息的任何机制。 例如, 机器可读介质包括只读存储器(ROM )、 随机存取存储器( RAM )、 磁盘存储介质、 光存储介质、 闪速存储介质、 电、 光、 声或其他形式的传播信号 (例如, 载波、 红外信号、 数字信号等)等。 对于装置实施例而言, 由于其与方法实施例基本相似, 所以描述的比较 简单, 相关之处参见方法实施例的部分说明即可。
本说明书中的各个实施例均釆用递进的方式描述,每个实施例重点说明 的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见 即可。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述, 例如程序模块。 一般地, 程序模块包括执行特定任务或实现特定抽象数据类 型的例程、 程序、 对象、 组件、 数据结构等等。 也可以在分布式计算环境中 实践本申请, 在这些分布式计算环境中, 由通过通信网络而被连接的远程处 理设备来执行任务。 在分布式计算环境中, 程序模块可以位于包括存储设备 在内的本地和远程计算机存储介质中。
最后, 还需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语 仅仅用来将一个实体或者操作与另一个实体或操作区分开来, 而不一定要求 或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术 语 "包括"、 "包含" 或者其任何其他变体意在涵盖非排他性的包含, 从而使 得包括一系列要素的过程、 方法、 商品或者设备不仅包括那些要素, 而且还 包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 商品或者 设备所固有的要素。 在没有更多限制的情况下, 由语句 "包括一个 ... ... " 限 定的要素, 并不排除在包括所述要素的过程、 方法、 商品或者设备中还存在 另外的相同要素。
以上对本申请所提供的一种射频拉远模块的温度检测方法和装置, 进行 了详细介绍, 本文中应用了具体个例对本申请的原理及实施方式进行了阐 述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时, 对于本领域的一般技术人员, 依据本申请的思想, 在具体实施方式及应用范 围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims

权 利 要 求 书
1、 一种射频拉远模块的温度检测方法, 其特征在于, 包括:
获取射频拉远模块的温度数据;
当所述温度数据小于温度阈值, 或处于温度阈值内时, 依据所述温度数 据配置所述射频拉远模块的功率数据;
当所述温度数据大于温度阈值时, 关闭所述射频拉远模块的射频通道。
2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
预置温度门限, 其中, 所述温度门限包括: 第一门限、 第二门限、 第三 门限和第四门限, 所述温度门限中第四门限大于第三门限, 并且第三门限大 于第二门限, 并且第二门限大于第一门限;
釆用温度门限构建温度阈值对所述温度数据进行分级检测。
3、 根据权利要求 2所述的方法, 其特征在于, 当所述温度数据小于温 度阈值时, 依据所述温度数据配置所述射频拉远模块的功率数据, 包括: 当温度数据小于第一门限时, 所述温度数据小于温度阈值;
调整所述射频拉远模块的功率数据为初始值。
4、 根据权利要求 2所述的方法, 其特征在于, 调整所述射频拉远模块 的功率数据为初始值之前, 还包括:
若所述射频拉远模块的射频通道已关闭, 则开启所述射频通道; 若所述射频拉远模块的射频通道已开启,则确定所述射频拉远模块的功 率数据不等于初始值。
5、 根据权利要求 2所述的方法, 其特征在于, 当所述温度数据处于温 度阈值内时, 依据所述温度数据配置所述射频拉远模块的功率数据, 包括: 当所述温度数据大于或等于第一门限, 且所述温度数据小于第二门限 时, 所述温度数据处于温度阈值内;
以所述功率数据继续运行所述射频拉远模块。
6、 根据权利要求 2所述的方法, 其特征在于, 当所述温度数据处于温 度阈值内时, 依据所述温度数据配置所述射频拉远模块的功率数据, 包括: 当温度数据大于或等于第二门限, 且所述温度数据小于第三门限时, 所 述温度数据处于温度阈值内; 调整所述射频拉远模块的功率数据为第一功率值。
7、 根据权利要求 2所述的方法, 其特征在于, 当所述温度数据处于温 度阈值内时, 依据所述温度数据配置所述射频拉远模块的功率数据, 包括: 当温度数据大于或等于第三门限, 且所述温度数据小于第四门限时, 所 述温度数据处于温度阈值内;
调整所述射频拉远模块的功率数据为第二功率值。
8、 根据权利要求 2所述的方法, 其特征在于, 当所述温度数据大于温 度阈值时, 关闭所述射频拉远模块的射频通道, 包括:
当所述温度数据大于或等于所述第四门限时, 所述温度数据大于温度阈 值, 则关闭所述射频拉远模块的射频通道。
9、 根据权利要求 5至 8任一所述的方法, 其特征在于, 所述获取射频 拉远模块的温度数据之后, 还包括:
对所述射频拉远模块的射频通道的开关状态进行检测;
确定所述射频拉远模块的射频通道已开启。
10、 根据权利要求 1所述的方法, 其特征在于, 所述获取射频拉远模块 的温度数据, 包括:
读取所述射频拉远模块中各传感器传输的温度, 当任意两个传感器传输 的温度的绝对差值大于设定值时, 重新读取各传感器传输的温度; 否则, 将 各传感器传输的温度构成所述射频拉远模块的温度数据。
11、 根据权利要求 10所述的方法, 其特征在于, 所述读取所述射频拉 远模块中各传感器传输的温度, 当任意两个传感器传输的温度的绝对差值大 于设定值时, 重新读取各传感器传输的温度; 否则, 将各传感器传输的温度 构成所述射频拉远模块的温度数据, 包括以下步骤:
读取所述射频拉远模块中各功放处的传感器传输的温度, 当任意两个功 放处的传感器传输的温度的绝对差值大于第一设定值时, 重新读取各功放处 的传感器传输的温度;
当各功放处的传感器传输的温度的绝对差值均小于第一设定值时,读取 除功放外其他区域的传感器传输的温度; 当任意两个除功放外其他区域的传感器传输的温度的绝对差值大于第 二设定值时, 重新读取除功放外其他区域的传感器传输的温度;
当各除功放外其他区域的传感器传输的温度的绝对差值均小于第二设 定值时, 将各传感器传输的温度构成所述射频拉远模块的温度数据。
12、 一种射频拉远模块的温度检测装置, 其特征在于, 包括:
获取模块, 配置为获取射频拉远模块的温度数据;
功率调整模块, 配置为当所述温度数据小于温度阈值, 或处于温度阈值 内时, 依据所述温度数据配置所述射频拉远模块的功率数据;
通道关闭模块, 配置为当所述温度数据大于温度阈值时, 关闭所述射频 拉远模块的射频通道。
13、 根据权利要求 11所述的装置, 其特征在于, 还包括:
预置模块, 配置为预置温度门限, 其中, 所述温度门限包括: 第一门限、 第二门限、 第三门限和第四门限, 所述温度门限中第四门限大于第三门限, 并且第三门限大于第二门限, 并且第二门限大于第一门限;
阈值构建模块, 配置为釆用温度门限构建温度阈值对所述温度数据进行 分级检测。
14、 根据权利要求 13所述的装置, 其特征在于;
所述功率调整模块, 配置为当温度数据小于第一门限时, 所述温度数据 小于温度阈值; 调整所述射频拉远模块的功率数据为初始值。
15、 根据权利要求 14所述的装置, 其特征在于;
所述功率调整模块,还配置为在调整所述射频拉远模块的功率数据为初 始值之前, 若所述射频拉远模块的射频通道已关闭, 则开启所述射频通道; 若所述射频拉远模块的射频通道已开启, 则确定所述射频拉远模块的功率数 据不等于初始值。
16、 根据权利要求 13所述的装置, 其特征在于;
所述功率调整模块, 配置为当所述温度数据大于或等于第一门限, 且所 述温度数据小于第二门限时, 所述温度数据处于温度阈值内, 则以所述功率 数据继续运行所述射频拉远模块。
17、 根据权利要求 13所述的装置, 其特征在于;
所述功率调整模块, 配置为当温度数据大于或等于第二门限, 且所述温 度数据小于第三门限时, 所述温度数据处于温度阈值内, 则调整所述射频拉 远模块的功率数据为第一功率值。
18、 根据权利要求 13所述的装置, 其特征在于;
所述功率调整模块, 配置为当温度数据大于或等于第三门限, 且所述温 度数据小于第四门限时, 所述温度数据处于温度阈值内, 调整所述射频拉远 模块的功率数据为第二功率值。
19、 根据权利要求 13所述的装置, 其特征在于;
所述通道关闭模块, 配置为当所述温度数据大于或等于所述第四门限 时, 所述温度数据大于温度阈值, 则关闭所述射频拉远模块的射频通道。
20、 根据权利要求 16至 19任一所述的装置, 其特征在于;
所述功率调整模块,还配置为对所述射频拉远模块的射频通道的开关状 态进行检测; 确定所述射频拉远模块的射频通道已开启。
21、 根据权利要求 12所述的装置, 其特征在于;
所述获取模块, 配置为读取所述射频拉远模块中各传感器传输的温度, 当任意两个传感器传输的温度的绝对差值大于设定值时, 重新读取各传感器 传输的温度; 否则, 将各传感器传输的温度构成所述射频拉远模块的温度数 据。
22、 根据权利要求 13所述的装置, 其特征在于;
所述获取模块, 配置为读取所述射频拉远模块中各功放处的传感器传输 的温度, 当任意两个功放处的传感器传输的温度的绝对差值大于第一设定值 时, 重新读取各功放处的传感器传输的温度; 当各功放处的传感器传输的温 度的绝对差值均小于第一设定值时,读取除功放外其他区域的传感器传输的 温度; 当任意两个除功放外其他区域的传感器传输的温度的绝对差值大于第 二设定值时, 重新读取除功放外其他区域的传感器传输的温度; 当各除功放 外其他区域的传感器传输的温度的绝对差值均小于第二设定值时,将各传感 器传输的温度构成所述射频拉远模块的温度数据。
23、一种在其上记录有用于执行权利要求 1所述方法的程序的计算机可 读记录介质。
PCT/CN2013/090903 2013-01-25 2013-12-30 一种射频拉远模块的温度检测方法和装置 WO2014114171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13872471.1A EP2938119B1 (en) 2013-01-25 2013-12-30 Temperature detection method and device for radio remote unit
US14/760,709 US10185334B2 (en) 2013-01-25 2013-12-30 Method and device for detecting temperature of radio remote unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310030381.3A CN103118389B (zh) 2013-01-25 2013-01-25 一种射频拉远模块的温度检测方法和装置
CN201310030381.3 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014114171A1 true WO2014114171A1 (zh) 2014-07-31

Family

ID=48416632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090903 WO2014114171A1 (zh) 2013-01-25 2013-12-30 一种射频拉远模块的温度检测方法和装置

Country Status (4)

Country Link
US (1) US10185334B2 (zh)
EP (1) EP2938119B1 (zh)
CN (1) CN103118389B (zh)
WO (1) WO2014114171A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103118389B (zh) * 2013-01-25 2015-11-18 大唐移动通信设备有限公司 一种射频拉远模块的温度检测方法和装置
CN104165701B (zh) * 2014-08-27 2017-02-15 福建星网锐捷网络有限公司 一种电子器件散热异常的检测方法及装置
US10334520B2 (en) * 2016-09-14 2019-06-25 Google Llc Small cell thermal control
US10123248B1 (en) * 2017-05-24 2018-11-06 Sprint Communications Company L.P. Wireless access point control of power amplifiers based on an enclosure temperature
CN107807693A (zh) * 2017-12-01 2018-03-16 普联技术有限公司 射频模块的温度控制方法、装置与计算机可读存储介质
CN109283953B (zh) * 2018-09-17 2021-07-27 京信通信系统(中国)有限公司 一种射频拉远单元的加热方法及装置
CN109348310A (zh) * 2018-10-23 2019-02-15 京信通信系统(中国)有限公司 一种射频拉远单元过温保护的方法及装置
CN109634318B (zh) * 2018-12-13 2021-06-22 京信通信系统(中国)有限公司 数字室分覆盖单元及温度监控方法、装置
CN111665882B (zh) * 2019-03-05 2022-04-22 北京北方华创微电子装备有限公司 温度控制方法及系统
WO2021019280A1 (en) * 2019-07-30 2021-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Thermal management by systematic network reconfiguration
US11063851B2 (en) * 2019-10-30 2021-07-13 Verizon Patent And Licensing Inc. Systems and methods for thermal mitigation of user equipment
CN114466440A (zh) * 2021-08-31 2022-05-10 华为技术有限公司 控制发射功率的方法及通信设备
CN114499553A (zh) * 2021-12-06 2022-05-13 华为技术有限公司 一种保障射频单元运行可靠性的方法及通信装置
CN114167916B (zh) * 2022-02-11 2022-04-22 为准(北京)电子科技有限公司 一种电路板温度调节方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201118575Y (zh) * 2007-08-27 2008-09-17 深圳国人通信有限公司 移动通信直放站主机干放外挂式监控装置
CN101834644A (zh) * 2010-02-04 2010-09-15 华为终端有限公司 一种无线终端的辅天线状态控制方法及无线终端
CN101868021A (zh) * 2010-06-18 2010-10-20 华为终端有限公司 热保护方法与无线接入网络设备
CN102281357A (zh) * 2011-08-29 2011-12-14 惠州Tcl移动通信有限公司 手机及其温度调整方法
CN103118389A (zh) * 2013-01-25 2013-05-22 大唐移动通信设备有限公司 一种射频拉远模块的温度检测方法和装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463266B1 (en) * 1999-08-10 2002-10-08 Broadcom Corporation Radio frequency control for communications systems
US7148802B2 (en) * 2003-10-14 2006-12-12 Paul Abbruscato Direction finder and locator
US7539882B2 (en) * 2005-05-30 2009-05-26 Rambus Inc. Self-powered devices and methods
US7813451B2 (en) * 2006-01-11 2010-10-12 Mobileaccess Networks Ltd. Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting
CN101378262B (zh) * 2008-09-17 2012-05-09 三维通信股份有限公司 Uhf宽频带发射机的功放保护装置和方法
CN101431228B (zh) 2008-12-18 2010-10-27 华为终端有限公司 一种热保护控制方法及系统
US8831672B2 (en) * 2009-12-08 2014-09-09 Telefonaktiebolaget Lm Ericsson(Publ) Method and arrangement in a communication system
US8542768B2 (en) * 2009-12-21 2013-09-24 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
CN101833342B (zh) * 2010-03-12 2013-04-24 华为终端有限公司 终端产品及其热控制方法
US9667280B2 (en) 2010-09-24 2017-05-30 Qualcomm Incorporated Methods and apparatus for touch temperature management based on power dissipation history
US20130303150A1 (en) * 2011-02-28 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and Method for Saving Power of Base Stations
US8928404B2 (en) * 2011-05-13 2015-01-06 Intel Corporation Amplifier performance stabilization through preparatory phase
US9094845B2 (en) * 2011-10-07 2015-07-28 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a wireless communication system
WO2013070166A1 (en) * 2011-11-11 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for performing measurements in adaptive downlink power transmission
US10247577B2 (en) * 2011-12-02 2019-04-02 DaisyRS, Inc. Wireless remote sensing power meter
US9347796B1 (en) * 2011-12-02 2016-05-24 DaisyRS, Inc. Wireless remote sensing power meter
WO2013131226A1 (en) * 2012-03-05 2013-09-12 Telefonaktiebolaget L M Ericsson (Publ) Base station in a wirless communication system
US8855586B2 (en) * 2012-04-02 2014-10-07 Kathrein-Werke Kg Active antenna array and method for transmitting radio signal
US9294213B2 (en) * 2012-05-11 2016-03-22 Intel Corporation Packet data network connections for multi priority wireless devices
US9332507B2 (en) * 2012-07-16 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Thermal noise floor estimation robustness via multi-carrier combining
KR101649535B1 (ko) * 2012-10-01 2016-08-30 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 전송을 관리하는 라디오 노드, 사용자 장비, 및 방법
US9094868B2 (en) * 2012-10-15 2015-07-28 Headwater Partners Ii Llc User equipment link quality estimation based on positioning
WO2014075725A1 (en) * 2012-11-15 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for monitoring optical transmission lines
US9320116B2 (en) * 2013-11-08 2016-04-19 Abl Ip Holding Llc Multi-mode control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201118575Y (zh) * 2007-08-27 2008-09-17 深圳国人通信有限公司 移动通信直放站主机干放外挂式监控装置
CN101834644A (zh) * 2010-02-04 2010-09-15 华为终端有限公司 一种无线终端的辅天线状态控制方法及无线终端
CN101868021A (zh) * 2010-06-18 2010-10-20 华为终端有限公司 热保护方法与无线接入网络设备
CN102281357A (zh) * 2011-08-29 2011-12-14 惠州Tcl移动通信有限公司 手机及其温度调整方法
CN103118389A (zh) * 2013-01-25 2013-05-22 大唐移动通信设备有限公司 一种射频拉远模块的温度检测方法和装置

Also Published As

Publication number Publication date
US10185334B2 (en) 2019-01-22
CN103118389A (zh) 2013-05-22
CN103118389B (zh) 2015-11-18
EP2938119A1 (en) 2015-10-28
EP2938119A4 (en) 2016-09-14
US20150338859A1 (en) 2015-11-26
EP2938119B1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2014114171A1 (zh) 一种射频拉远模块的温度检测方法和装置
US8620235B2 (en) Thermal management for data modules
KR101701079B1 (ko) 측정 빈도 감소를 통한 소비전력 감소
US20190353502A1 (en) Sensor management and reliability
WO2015144016A1 (zh) 无线通信控制方法和装置
WO2011097984A1 (zh) 无线局域接入网的路由设备以及信号发射方法
US20180249394A1 (en) Handling of beam link failure
Boano et al. Mitigating the adverse effects of temperature on low-power wireless protocols
TW201513703A (zh) 無線裝置及其界面之管理方法和電腦程式製品
US20080079572A1 (en) Apparatus and method for using a wireless network as a motion detection system
JP2004282756A (ja) 無線lanシステムでの無線接続ノードの電力制御方法
KR102162003B1 (ko) 무선 네트워크 연결 제어 방법 및 장치
WO2012121303A1 (ja) 無線端末及び制御方法
CN108259101B (zh) 一种设备控制方法、装置及网络设备
JP5906763B2 (ja) 基地局および移動検出方法
CN108207021B (zh) 发射功率控制方法,设备和无线控制器
TWI533727B (zh) 受困者偵測及定位之方法與系統
US10473532B2 (en) Method and apparatus for power management
JP2013197969A (ja) ログ集計装置、ログ集計方法およびログ集計プログラム
TW202030992A (zh) 用於天線調諧的系統和方法
US11900789B1 (en) Premises security system using ultra-wideband (UWB) functionality to initiate at least one action
EP2887724A1 (en) Idle mode control for wireless communication network nodes
US20240212477A1 (en) Premises security system using ultra-wideband (uwb) functionality to initiate at least one action
JP6699866B2 (ja) 無線通信装置、方法及びプログラム
JP2022515631A (ja) 通信システムにおけるアンテナ選択のための方法、装置及びコンピュータプログラム製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14760709

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013872471

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE