WO2014113905A1 - 光刻照明系统 - Google Patents

光刻照明系统 Download PDF

Info

Publication number
WO2014113905A1
WO2014113905A1 PCT/CN2013/000493 CN2013000493W WO2014113905A1 WO 2014113905 A1 WO2014113905 A1 WO 2014113905A1 CN 2013000493 W CN2013000493 W CN 2013000493W WO 2014113905 A1 WO2014113905 A1 WO 2014113905A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
micro
microlens
calculus
scanning
Prior art date
Application number
PCT/CN2013/000493
Other languages
English (en)
French (fr)
Inventor
曾爱军
朱玲琳
方瑞芳
黄惠杰
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Priority to EP13872643.5A priority Critical patent/EP2950145B1/en
Publication of WO2014113905A1 publication Critical patent/WO2014113905A1/zh
Priority to US14/745,361 priority patent/US9400433B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection

Definitions

  • the present invention relates to the field of lithography, and more particularly to a lithographic illumination system. Background technique
  • the illumination system is an important part of the lithography machine by providing high uniformity illumination for the lithography machine, controlling the amount of exposure and achieving off-axis illumination, thereby increasing lithography resolution and increasing depth of focus. Therefore, the performance of the lighting system directly affects the performance of the lithography machine.
  • a general lithographic illumination system includes a laser light source 1, a collimating beam expanding unit 2, a pupil shaping unit 3, a first microlens array 4, a second microlens array 5, a condensing mirror group 6, and a scanning narrow
  • the slit 7, the illumination mirror set 8 and the mask 9 are several main parts.
  • the first microlens array 4 and the second microlens array 5 constitute a light homogenizing unit of the lithographic illumination system. After the laser beam passes through the collimating beam expanding unit 2 and the pupil shaping unit 3, a desired illumination mode is formed, and then the laser beam is homogenized by the homogenizing unit and the focusing group 6 is focused to form a uniform surface on the back focal plane of the collecting mirror group 6.
  • the light field passes through the scanning slit 7 and is imaged by the illumination mirror group 8 onto the mask 9, and the scanning slit 7 scans the uniform light field at the back focal plane of the concentrating mirror group 6, and the light on the mask
  • the field is also scanned accordingly.
  • the scanning slit scan speed is very fast, can reach several hundred millimeters per second, and a certain vibration will affect the mask, which will affect the performance of the lithography system. Therefore, it is necessary to introduce a lighting mirror to separate the mask from the scanning slit. .
  • the diameter of the illumination mirror group is generally large (nearly 300mm), and the number of lenses is generally large (about 10 pieces), which reduces the beam transmittance of the system, reduces the energy utilization rate, and makes the system structure more complicated. Summary of the invention
  • a lithographic illumination system which reduces the scanning stroke and speed of the scanning slit, reduces the influence of the scanning slit vibration, and improves the system transmission. Rate, can achieve non-polarized illumination, and has a simple structure.
  • a lithographic illumination system comprising a laser source, a collimating beam expanding unit, a pupil shaping unit, a first microlens array, a second microlens array, a concentrating mirror, a mask, and a micro-scanning slit array , the motion control unit and the calculus array, the positional relationship of the components is: the laser beam emitted by the laser source sequentially passes through the collimating beam expanding unit, the pupil shaping unit, the first microlens array, and the calculus array The micro-scanning slit array, the second microlens array, and the concentrating mirror group are irradiated onto the mask; the motion control unit is connected to the micro-scanning slit array to control the movement of the micro-scanning slit array Speed and stroke, scanning a corresponding light field; the first microlens array is at an exit pupil plane of the pupil shaping unit; the incident end surface of the oscillating rod array is located at a back focus of the first microlens array The
  • the first microlens array is composed of a plurality of identical first microlenses, and the first microlenses are closely connected, and the first microlenses are cylindrical mirrors or spherical mirrors.
  • the second microlens array is composed of a plurality of identical second microlenses, the second microlens is a cylindrical mirror or a spherical mirror, and the field of view of the second microlens is The field of view of the first microlens is different.
  • the oscillating rod array is composed of a plurality of identical calculus rods, wherein the calculus rods are rectangular parallelepiped, and both ends of the calculus rods respectively utilize a first support frame and a second support frame
  • the two-dimensional matrix arrangement is fixed at equal intervals, and the size of the interval is greater than or equal to the dimension of the end face of the calculus rod.
  • the micro-scanning slit array is composed of a plurality of micro-scanning slits, and the micro-scanning slit is located at an exit end surface of the calculus rod, and is interposed between the calculus rods and the two In the space between the spaces.
  • the motion control unit controls the array of calculus rods to perform one-dimensional or two-dimensional scanning movement.
  • the technical effects of the present invention are as follows:
  • the lithographic illumination system utilizes a dynode array as a light-diffusing unit to achieve both non-polarized illumination and subtly combine the shimming unit and the scanning slit, and then separate the scanning slit from the mask by using a concentrating mirror group. Open, this eliminates the use of large mirrors (nearly 300mm) and a large number of lenses (about 10 pieces), which reduces the absorption loss of the system, increases the transmittance, and improves energy utilization. Rate, and simplify the system Structure.
  • the lithographic illumination system replaces the conventional scanning slit with a micro-scanning slit array, so that the scanning stroke and the moving speed of the micro-scanning slit are greatly reduced, thereby reducing the influence of the vibration of the scanning slit array and its vibration. , improve the performance of the system.
  • FIG. 1 is a schematic structural view of a conventional lithographic illumination system
  • FIG. 2 is a schematic structural view of a lithographic illumination system of the present invention
  • Figure 4 shows an implementation of a micro-scan slit array
  • Figure 5 shows an implementation of another micro-scan slit array.
  • Figure 6 is a schematic diagram of the integration rod homogenization
  • FIG. 7 is a schematic diagram of the principle of illuminating and scanning imaging of a lithographic illumination system.
  • FIG. 2 is a schematic structural view of a lithographic illumination system of the present invention.
  • the lithographic illumination system of the present invention comprises a laser light source 1, a collimating beam expanding unit 2, a pupil shaping unit 3, a first microlens array 4, a second microlens array 5, a condensing mirror group 6, and a micro-scanning narrow.
  • the motion control unit 10 is connected to the micro-scanning slit array 7 to control the micro-scanning
  • the moving speed and the stroke of the slit array 7 scan the corresponding light field;
  • the first microlens array 4 is located at the exit pupil plane of the pupil shaping unit 3; the incident end surface of the calculus rod array 11 is located behind the first microlens array 4.
  • an exit end face of the dynode array 11 is at a front focal plane of the second microlens array 5; a position of the back focal plane of the second microlens array 5 and the mask 9 is a pair of conjugates of the concentrating mirror group 6 position.
  • the first microlens array 4 is composed of a plurality of identical first microlenses 41, each of which is closely connected, and the first microlens 41 is a cylindrical mirror or a spherical mirror.
  • the second microlens array 5 is composed of a plurality of identical second microlenses 51, each of which is a second microlens 51 is closely connected, the second microlens 51 is a cylindrical mirror or a spherical mirror, and the field of view of the second microlens 51 is different from the field of view of the first microlens 41.
  • the oscillating rod array 11 is composed of a plurality of identical oscillating rods 111, which are rectangular parallelepipeds, and the oscillating rods 111 are in one-to-one correspondence with the first microlens 41 and the second microlens 51.
  • Fig. 3 shows an implementation of a calculus array
  • Fig. 3(a) and Fig. 3(b) show a front view and a side view, respectively, of the oscillating rod array 11.
  • the two ends of all the calculus bars 111 are respectively fixed by the first support frame 112 and the second support frame 113 in an equidistant two-dimensional matrix, and the interval is equal to or larger than the calculus rod 111. End face size.
  • the micro-scan slit array 7 is composed of a plurality of micro-scan slits 71 located at the exit end faces of the calculus bars 111 and interspersed in the space interval between the two dynodes 111.
  • Figures 4 and 5 show two implementations of the micro-scan slit array, respectively.
  • the 4 is to superimpose two micro-scan slit arrays having different light transmission directions, and the light transmission direction of the first micro-scan slit array is along the y direction when it is controlled by the motion control unit 10
  • the X-direction light field can be scanned one-dimensionally while moving in the X direction, and the light transmission direction of the second micro-scanning slit array is along the X direction, when it is controlled by the motion control unit 10 to move in the y direction
  • the one-dimensional scanning of the light field in the y direction can be performed.
  • the two micro scanning slit arrays are simultaneously moved along the X direction and the y direction, the light field can be scanned two-dimensionally.
  • the light field is scanned in one dimension.
  • the light field in the y direction can be scanned one-dimensionally, and when the angle bisector of X and y is moved, the light field can be scanned two-dimensionally.
  • the motion control unit 10 controls the micro-scan slit array 7 to perform one-dimensional or two-dimensional scanning movement.
  • each virtual point source has a corresponding image point corresponding to the image side of the lens 2 (such as Po, Pi, etc. in FIG. 6), and the corresponding beamlet is projected onto the lens 2
  • the superposition of these beamlets causes the image on the surface Mingguangqiang is basically equal everywhere.
  • Figure 7 is a schematic diagram of the uniformization and scanning imaging of the lithographic illumination system.
  • the laser beam emitted by the pupil shaping unit 3 is divided by the first microlens array 4 and is coupled into the oscillating rod array 11, and each of the divided sub-beams is in the corresponding calculus 111.
  • the secondary reflection turns, and then a uniform light field is formed at the exit end face of the calculus rod 111.
  • the end face of the calculus rod 111 corresponds to a plurality of identical sub-light sources which are located on the front focal plane of the second microlens 51, so that the light beams emitted from the second microlens 51 are parallel light, and the parallel light passes through
  • the concentrating mirror group 6 is focused on the mask 9 after being focused.
  • the light beam emitted from the point source of the same position of each calculus rod 111 passes through the second microlens 51 and the condensing mirror group 6 and converges to the same point on the mask 9, that is, each point on the mask 9 is determined by different calculus
  • the light beams of different numerical apertures emitted by the point light sources at the same position of the rod 111 are superposed.
  • the light field on the mask 9 is a repeat of the uniform light field at the exit end face of each of the calculus rods 111. Plus, a uniform light field is formed on the mask 9. Then, if the micro-scanning slit 71 scans the uniform light field at the exit end face of the calculus rod 111, the light field on the mask 9 is also scanned accordingly. In this way, we skillfully combine the leveling unit with the scanning slit, eliminating the need for a lighting mirror. At the same time, the light field emitted from the dynode array 11 is depolarized due to the multiple reflections of the micro-integral rod 111, which realizes non-biased illumination.
  • the lithographic illumination system of the invention realizes the shimming and scanning by using the oscillating rod array and the micro-scanning slit array, so that the scanning stroke and the speed of the scanning slit can be greatly reduced, the influence of the vibration is reduced, and the elimination is omitted.
  • the use of the illumination mirror group greatly enhances the transmittance of the system, greatly simplifies the structure, and realizes non-polarized illumination.

Abstract

一种光刻照明系统,包括激光光源(1),沿激光光源(1)的激光前进方向依次是准直扩束单元(2)、光瞳整形单元(3)、第一微透镜阵列(4)、微积分棒阵列(11)、微扫描狭缝阵列(7)、第二微透镜阵列(5)、聚光镜组(6)和掩膜(9)。运动控制单元(10)控制微扫描狭缝阵列(7)的运动。这种光刻照明系统减小了扫描狭缝的扫描行程和速度,降低了扫描狭缝振动带来的影响,提高了系统透过率,且具有结构简单的特点。

Description

光刻照明系统 技术领域
本发明涉及光刻技术领域, 特别是一种光刻照明系统。 背景技术
随着微电子产业的迅猛发展, 极大规模集成电路的加工设备——高端扫描光刻 机的研制成为迫切的需求。 照明系统可以为光刻机提供高均匀性照明、 控制曝光剂 量和实现离轴照明, 从而提高光刻分辨率和增大焦深, 是光刻机的重要组成部分。 因此照明系统的性能直接影响着光刻机的性能。
先技术 [1] (参见 Mark Oskotsky, Lev Ryzhikov等. Advanced illumination system for use in microlithography, US Patent 7187430 B2, 2007)和先技术 [2] (参见 Jorg Zimmermann, Paul Graupner等. Generation of arbitrary freeforai source shapes using advanced illumination systems in high-NA immersion scanners, Proc. of SPIE Vol. 7640, 764005, 2010)都对一般光刻照明系统进行了描述。如图 1所示, 一般的光刻照明系 统包括激光光源 1、 准直扩束单元 2、 光瞳整形单元 3、 第一微透镜阵列 4、 第二微 透镜阵列 5、 聚光镜组 6、 扫描狭缝 7、 照明镜组 8和掩膜 9几个主要部分。 其中, 第一微透镜阵列 4和第二微透镜阵列 5构成了光刻照明系统的匀光单元。 激光束经 过准直扩束单元 2、 光瞳整形单元 3后形成需求的照明模式, 然后激光束再由匀光 单元均匀化和聚光镜组 6聚焦后在聚光镜组 6的后焦面上形成均匀的光场, 均匀光 场经过扫描狭缝 7后由照明镜组 8成像到掩膜 9上, 扫描狭缝 7在聚光镜组 6后焦 平面处对均匀光场进行了扫描, 则掩膜上的光场也被相应地扫描。 扫描狭缝的扫描 速度非常快, 可达到几百毫米每秒, 会产生一定的振动影响掩膜, 进而影响光刻系 统的性能, 故需要引入照明镜组将掩膜和扫描狭缝分隔开。 照明镜组的口径一般较 大(近 300mm)、且镜片数目一般较多(10片左右), 这样就会减小系统的光束透过 率, 降低能量利用率, 且使得系统结构更加复杂。 发明内容
为了克服上述现有技术的不足, 提出一种光刻照明系统, 该光刻照明系统减小 了扫描狭缝的扫描行程和速度, 降低了扫描狭缝振动带来的影响, 提高了系统透过 率, 能够实现非偏振照明, 且具有结构简单的特点。
本发明的技术解决方案如下:
一种光刻照明系统, 包括激光光源、 准直扩束单元、 光瞳整形单元、 第一微透 镜阵列、 第二微透镜阵列、 聚光镜组、 掩膜、 其特点在于还有微扫描狭缝阵列、 运 动控制单元和微积分棒阵列, 上述元部件的位置关系是: 激光光源出射的激光束依 次经过所述的准直扩束单元、 光瞳整形单元、 第一微透镜阵列、 微积分棒阵列、 微 扫描狭缝阵列、 第二微透镜阵列、 聚光镜组后照射到掩膜上; 所述的运动控制单元 与所述的微扫描狭缝阵列相连, 控制所述的微扫描狭缝阵列的移动速度与行程, 扫 描相应的光场; 所述的第一微透镜阵列处于所述的光瞳整形单元的出瞳面; 所述的 微积分棒阵列的入射端面位于第一微透镜阵列的后焦面; 微积分棒阵列的出射端面 处于第二微透镜阵列的前焦面; 第二微透镜阵列的后焦面与掩膜的位置相对于所述 的聚光镜组共轭, 所述的第一微透镜阵列由多个完全相同的第一微透镜组成, 所述 的第二微透镜阵列由多个完全相同的第二微透镜组成, 所述的微积分棒阵列由多个 完全相同的微积分棒组成, 所述的第一微透镜、 所述的微积分棒和所述的第二微透 镜一一对应。
所述的第一微透镜阵列是由多个完全相同的第一微透镜组成的, 所述的第一微 透镜之间需紧密相连, 所述的第一微透镜为柱面镜或球面镜。
所述的第二微透镜阵列是由多个完全相同的第二微透镜组成的, 所述的第二微 透镜为柱面镜或球面镜,所述的第二微透镜的视场与所述的第一微透镜的视场不同。
所述的微积分棒阵列是由多个完全相同的微积分棒组成的, 所述的微积分棒为 长方体, 所有所述的微积分棒的两端分别利用第一支撑架和第二支撑架固定呈等间 隔的二维矩阵排列, 所述的间隔的尺寸要大于等于所述的微积分棒的端面尺寸。
所述的微扫描狭缝阵列是由多个微扫描狭缝组成的, 所述的微扫描狭缝位于所 述的微积分棒的出射端面处, 且穿插在所述的微积分棒两两之间的空间间隔里。
所述的运动控制单元是控制所述的微积分棒阵列进行一维或二维扫描移动的。 与先技术相比, 本发明的技术效果如下:
该光刻照明系统利用微积分棒阵列作为匀光单元, 既可实现非偏振照明, 也巧 妙地将匀光单元和扫描狭缝结合了起来, 然后利用聚光镜组将扫描狭缝和掩膜分隔 开, 这样就省去了口径较大 (近 300mm)、 镜片数目较多 (10片左右) 的照明镜组 的使用, 减小了系统的吸收损耗, 增大了透过率, 提高了能量利用率, 且简化了系 统结构。
该光刻照明系统用微扫描狭缝阵列代替传统的扫描狭缝, 使得微扫描狭缝的扫 描行程和运动速度都大大降低, 这样就减小了扫描狭缝阵列的振动与其振动带来的 影响, 提高了系统的性能。 附图说明
图 1为现有光刻照明系统的结构示意图
图 2为本发明光刻照明系统的结构示意图
图 3为本发明一种微积分棒阵列的实现方式
图 4为一种微扫描狭缝阵列的实现方式
图 5为另一种微扫描狭缝阵列的实现方式
图 6为积分棒匀光的原理图
图 7为光刻照明系统匀光与扫描成像的原理简图 具体实施方式
下面结合实施例和附图对本发明作进一步说明, 但不应以此限制本发明的保护 范围。
先请参阅图 2, 图 2是本发明光刻照明系统的结构示意图。 由图 2可知, 本发 明光刻照明系统包括激光光源 1、 准直扩束单元 2、 光瞳整形单元 3、 第一微透镜阵 列 4、 第二微透镜阵列 5、 聚光镜组 6、 微扫描狭缝阵列 7、 掩膜 9、 运动控制单元 10和微积分棒阵列 11 ; 其位置关系是:激光光源 1出射的激光束依次经过准直扩束 单元 2、光瞳整形单元 3、第一微透镜阵列 4、微积分棒阵列 11、微扫描狭缝阵列 7、 第二微透镜阵列 5、 聚光镜组 6后照射到掩膜 9上; 运动控制单元 10与微扫描狭缝 阵列 7相连, 控制微扫描狭缝阵列 7的移动速度与行程, 扫描相应的光场; 第一微 透镜阵列 4处于光瞳整形单元 3的出瞳面;微积分棒阵列 11的入射端面位于第一微 透镜阵列 4的后焦面;微积分棒阵列 11的出射端面处于第二微透镜阵列 5的前焦面; 第二微透镜阵列 5的后焦面与掩膜 9所处的位置是聚光镜组 6的一对共轭位置。
第一微透镜阵列 4是由多个完全相同的第一微透镜 41组成的,每个第一微透镜 41之间需紧密相连, 第一微透镜 41为柱面镜或球面镜。
第二微透镜阵列 5是由多个完全相同的第二微透镜 51组成的,每个第二微透镜 51之间紧密相连, 第二微透镜 51为柱面镜或球面镜, 第二微透镜 51的视场与第一 微透镜 41的视场不同。
微积分棒阵列 11是由多个完全相同的微积分棒 111组成的, 微积分棒 111为长 方体, 微积分棒 111与第一微透镜 41和第二微透镜 51都是一一对应的。
请参阅图 3, 图 3为一种微积分棒阵列的实现方式, 图 3 (a) 和图 3 (b)分别 表示微积分棒阵列 11的正视图和侧视图。 由图 3知, 所有的微积分棒 111的两端分 别利用第一支撑架 112和第二支撑架 113固定呈等间隔的二维矩阵排列, 所述的间 隔的尺寸要大于等于微积分棒 111的端面尺寸。
微扫描狭缝阵列 7是由多个微扫描狭缝 71组成的, 微扫描狭缝 71位于微积分 棒 111的出射端面处, 且穿插在两两微积分棒 111之间的空间间隔里。
请参阅图 4和图 5 (黑色部分表示不透光部分, 白色部分表示透光部分, 即微 扫描狭缝 71 ), 图 4和图 5分别表示微扫描狭缝阵列的两种实现方式。 图 4所示的 实现方式是将两块透光方向不同的微扫描狭缝阵列叠加使用, 第一块微扫描狭缝阵 列的透光方向沿着 y方向,当其被运动控制单元 10控制沿着 X方向移动时就可以对 X方向的光场进行一维扫描, 而第二块微扫描狭缝阵列的透光方向沿着 X方向, 当 其被运动控制单元 10控制沿着 y方向移动时就可以对 y方向的光场进行一维扫描, 当两块微扫描狭缝阵列分别同时沿着 X方向和 y方向移动时就可以对光场进行二维 扫描。 图 5所示的实现方式是将图 4所示的两块微扫描狭缝阵列整合成一块为扫描 狭缝阵列,当其被运动控制单元 10控制沿着 X方向移动时就可以对 X方向的光场进 行一维扫描, 沿着 y方向移动时就可以对 y方向的光场进行一维扫描, 而沿着 X和 y的角平分线移动时就可以对光场进行二维扫描。
运动控制单元 10是控制微扫描狭缝阵列 7进行一维或二维扫描移动的。
下面对本发明的主要部分——匀光与扫描成像的原理进行详细的说明。
我们先对光刻照明系统采用的积分棒匀光的原理作简要的说明。 在文章 (郭立 萍, 黄惠杰, 王向朝. 积分棒在步进扫描投影光刻系统中的应用, 光子学报, Vol.35(7), 981-984, 2005) 中指出, 一束平行光经过透镜 1聚焦耦合进积分棒里, 光 束在积分棒里多次反射转折, 形成了位于积分棒入射端面的若干虚点光源(如图 6 中的 SQ、 Si等),每一个虚点光源均代表入射光束的一个小孔径的细光束,而每个虚 点光源在透镜 2的像方对应位置有一个相应的像点(如图 6中的 Po、 Pi等),则相应 的细光束投射到了透镜 2的像面上的相同区域, 这些细光束的迭加导致像面上的照 明光强基本上处处相等。
基于积分棒匀光的原理, 我们先参阅图 7, 图 7是光刻照明系统的匀光与扫描 成像的原理简图。 由图 7可知, 经过光瞳整形单元 3出射的激光束被第一微透镜阵 列 4分割且聚焦耦合进微积分棒阵列 11中,每一个被分割的子光束在对应的微积分 棒 111中多次反射转折, 然后在微积分棒 111的出射端面形成均匀光场。 此时微积 分棒 111的端面相当于若干个相同的子光源,这些子光源位于第二微透镜 51的前焦 面上, 故从第二微透镜 51出射的光束为平行光,这些平行光经过聚光镜组 6聚焦后 成像在掩膜 9上。 每个微积分棒 111的相同位置的点光源发出的光束经过第二微透 镜 51和聚光镜组 6后会聚到掩膜 9上的同一点,即掩膜 9上的每一点都是由不同微 积分棒 111的相同位置的点光源发出的不同数值孔径的细光束迭加而成的, 换句话 说, 掩膜 9上的光场是每个微积分棒 111出射端面处的均匀光场的再次迭加, 这样 掩膜 9上就形成了均匀的光场。那么, 如果微扫描狭缝 71对微积分棒 111的出射端 面处的均匀光场进行了扫描, 则掩膜 9上的光场也会相应地被扫描。 这样我们就巧 妙地将匀光单元和扫描狭缝结合了起来, 省去了照明镜组的使用。 同时, 由于微积 分棒 111的多次反射使得从微积分棒阵列 11出射的光场是退偏的,这就实现了非偏 振照明。 值得注意的是, 在微积分棒 111端面一定的情况下, 微积分棒 111越长, 其匀光效果也会越好, 但同时光的吸收损耗也会越大, 因而在追求高均匀性光场的 同时也要兼顾系统透过率的需求。
本发明光刻照明系统利用微积分棒阵列和微扫描狭缝阵列实现了匀光和扫描, 使得扫描狭缝的扫描行程和速度可大大降低, 减小了其振动带来的影响, 并省去了 照明镜组的使用, 使系统的透过率大大增强、 结构大大简化, 同时实现了非偏振照 明。

Claims

权 利 要 求
1、 一种光刻照明系统, 包括激光光源(1)、 准直扩束单元(2)、 光瞳整形单元 (3)、 第一微透镜阵列(4)、 第二微透镜阵列(5)、 聚光镜组(6)、、 掩膜(9)、 其 特征在于还有微扫描狭缝阵列(7)、 运动控制单元(10)和微积分棒阵列 (11), 上 述元部件的位置关系是: 激光光源 (1)出射的激光束依次经过所述的准直扩束单元 (2)、光瞳整形单元 (3)、第一微透镜阵列 (4)、微积分棒阵列 (11)、微扫描狭缝阵列 (7)、 第二微透镜阵列 (5)、 聚光镜组 (6)后照射到掩膜 9上; 所述的运动控制单元(10)与 所述的微扫描狭缝阵列 (7)相连, 控制所述的微扫描狭缝阵列 (7) 的移动速度与 行程, 扫描相应的光场; 所述的第一微透镜阵列(4)处于所述的光瞳整形单元(3) 的出瞳面; 所述的微积分棒阵列(11) 的入射端面位于第一微透镜阵列(4) 的后焦 面; 微积分棒阵列(11)的出射端面处于第二微透镜阵列(5) 的前焦面; 第二微透 镜阵列(5) 的后焦面与掩膜(9) 的位置相对于所述的聚光镜组(6)共轭, 所述的 第一微透镜阵列(4) 由多个完全相同的第一微透镜(41)组成, 所述的第二微透镜 阵列(5) 由多个完全相同的第二微透镜(51)组成, 所述的微积分棒阵列(11) 由 多个完全相同的微积分棒 (111) 组成, 所述的第一微透镜 (41)、 所述的微积分棒 (111)和所述的第二微透镜(51) —一对应。
2、根据权利要求 1所述的光刻照明系统,其特征在于所述的第一微透镜阵列(4) 的第一微透镜(41)之间紧密相连, 所述的第一微透镜为柱面镜或球面镜。
3、 根据权利要求 1所述的光刻照明系统, 其特征在于所述的第二微透镜(51) 之间需紧密相连, 第二微透镜 (51) 为柱面镜或球面镜。
4、 根据权利要求 1所述的光刻照明系统, 其特征在于所述的第二微透镜(51) 的视场与第一微透镜(41) 的视场不同。
5、 根据权利要求 1所述的光刻照明系统, 其特征在于所述的微积分棒(111) 为长方体, 所有的微积分棒(111) 的两端分别利用第一支撑架 (112) 和第二支撑 架 (113) 固定呈等间隔的二维矩阵排列, 所述的间隔的尺寸要大于等于微积分棒
(111) 的端面尺寸。
6、根据权利要求 1所述的光刻照明系统,其特征在于所述的微扫描狭缝阵列(7) 由多个微扫描狭缝(71)组成, 每个微扫描狭缝 (71)位于所述的微积分棒(111) 的出射端面处并穿插在两两微积分棒 (111 ) 之间的空间间隔里。
7、根据权利要求 1所述的光刻照明系统,其特征在于所述的微扫描狭缝阵列(7) 是由透光方向沿 y方向排列的第一块微扫描狭缝阵列和透光方向沿 X方向排列的第 二块微扫描狭缝阵列的叠加构成, 当所述的运动控制单元 (10)控制所述的第一块 微扫描狭缝阵列沿着 X方向移动时就可以对 X方向的光场进行一维扫描, 当运动控 制单元(10)控制第二块微扫描狭缝阵列的透光方向沿着 y方向移动时就可以对 y 方向的光场进行一维扫描, 当两块微扫描狭缝阵列分别同时沿着 X方向和 y方向移 动时就可以对光场进行二维扫描。
8、根据权利要求 1所述的光刻照明系统,其特征在于所述的微扫描狭缝阵列(7) 是一块由多个小方块扫描狭缝呈二维阵列分布的微扫描狭缝阵列, 当其被运动控制 单元(10)控制沿着 X方向移动时就可以对 X方向的光场进行一维扫描, 沿着 y方 向移动时就可以对 y方向的光场进行一维扫描, 而沿着 X和 y的角平分线移动时就 可以对光场进行二维扫描。
PCT/CN2013/000493 2013-01-25 2013-04-28 光刻照明系统 WO2014113905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13872643.5A EP2950145B1 (en) 2013-01-25 2013-04-28 Illumination system for lithography
US14/745,361 US9400433B2 (en) 2013-01-25 2015-06-19 Lithography illumination system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310030574.9A CN103092006B (zh) 2013-01-25 2013-01-25 光刻照明系统
CN201310030574.9 2013-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/745,361 Continuation-In-Part US9400433B2 (en) 2013-01-25 2015-06-19 Lithography illumination system

Publications (1)

Publication Number Publication Date
WO2014113905A1 true WO2014113905A1 (zh) 2014-07-31

Family

ID=48204748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000493 WO2014113905A1 (zh) 2013-01-25 2013-04-28 光刻照明系统

Country Status (4)

Country Link
US (1) US9400433B2 (zh)
EP (1) EP2950145B1 (zh)
CN (1) CN103092006B (zh)
WO (1) WO2014113905A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542679A (zh) * 2022-09-05 2022-12-30 上海镭望光学科技有限公司 调制板透过率分布生成方法、调制板及光刻机照明系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309175B (zh) * 2013-06-07 2015-06-17 中国科学院上海光学精密机械研究所 光刻机照明系统的级联微透镜阵列的对准装置和对准方法
CN103412465B (zh) * 2013-07-01 2015-04-15 中国科学院上海光学精密机械研究所 步进扫描投影光刻机的照明系统
CN103399463B (zh) * 2013-07-19 2015-07-29 中国科学院上海光学精密机械研究所 投影光刻机照明装置和使用方法
CN105805609B (zh) * 2014-12-31 2019-03-12 上海微电子装备(集团)股份有限公司 一种led光源照明系统
CN104865801B (zh) * 2015-06-01 2017-03-01 京东方科技集团股份有限公司 曝光装置
JP6540331B2 (ja) * 2015-07-29 2019-07-10 シーシーエス株式会社 ライン光照射装置
CN105093848B (zh) * 2015-08-06 2018-01-16 武汉华星光电技术有限公司 一种曝光设备
CN105589300A (zh) * 2016-01-07 2016-05-18 中国科学院上海光学精密机械研究所 一种光刻照明系统
CN105842847B (zh) * 2016-06-02 2018-08-31 湖北三江航天万峰科技发展有限公司 一种利用微透镜阵列进行扫描的激光成像光学系统
US10451890B2 (en) 2017-01-16 2019-10-22 Cymer, Llc Reducing speckle in an excimer light source
CN110967930B (zh) * 2018-09-30 2021-06-11 上海微电子装备(集团)股份有限公司 光源衰减装置及光刻机
CN111650745B (zh) * 2020-07-24 2022-07-19 中国科学院光电技术研究所 一种基于微透镜阵列组和自适应光纤准直器的扫描系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217085A (ja) * 2001-01-15 2002-08-02 Canon Inc 照明装置及びこれを用いる投影露光装置
US7187430B2 (en) 2002-06-11 2007-03-06 Asml Holding N.V. Advanced illumination system for use in microlithography
US20070146853A1 (en) * 2005-11-10 2007-06-28 Carl Zeiss Smt Ag Optical device with raster elements, and illumination system with the optical device
CN101174093A (zh) * 2006-11-03 2008-05-07 上海微电子装备有限公司 一种光刻照明系统
CN101916047A (zh) * 2010-07-27 2010-12-15 浙江大学 一种采用自由曲面透镜实现离轴照明的光刻曝光装置
CN102566294A (zh) * 2010-12-28 2012-07-11 上海微电子装备有限公司 一种光刻照明光学系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7656504B1 (en) * 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
CN1717777A (zh) * 2002-12-03 2006-01-04 株式会社尼康 光学照明装置、曝光装置以及曝光方法
US7187399B2 (en) * 2003-07-31 2007-03-06 Fuji Photo Film Co., Ltd. Exposure head with spatial light modulator
JP4717813B2 (ja) * 2003-09-12 2011-07-06 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光設備のための照明系
WO2005083512A2 (de) * 2004-02-26 2005-09-09 Carl Zeiss Smt Ag Beleuchtungssystem für eine mikrolithographie-projektionsbelichtungsanlage
JP2008533728A (ja) * 2005-03-15 2008-08-21 カール・ツァイス・エスエムティー・アーゲー 投影露光方法及びそのための投影露光システム
CN101587302B (zh) * 2006-11-03 2011-10-12 上海微电子装备有限公司 一种光刻照明系统
EP2253997A3 (en) * 2009-05-18 2010-12-08 Süss MicroTec Lithography GmbH Illumination system for a microlithographic contact and proximity exposure apparatus
JP2011216863A (ja) * 2010-03-17 2011-10-27 Hitachi Via Mechanics Ltd ビームサイズ可変照明光学装置及びビームサイズ変更方法
CN102053372B (zh) * 2011-01-27 2012-05-30 清华大学 一种改进的光束匀化装置的研制
CN103412465B (zh) * 2013-07-01 2015-04-15 中国科学院上海光学精密机械研究所 步进扫描投影光刻机的照明系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217085A (ja) * 2001-01-15 2002-08-02 Canon Inc 照明装置及びこれを用いる投影露光装置
US7187430B2 (en) 2002-06-11 2007-03-06 Asml Holding N.V. Advanced illumination system for use in microlithography
US20070146853A1 (en) * 2005-11-10 2007-06-28 Carl Zeiss Smt Ag Optical device with raster elements, and illumination system with the optical device
CN101174093A (zh) * 2006-11-03 2008-05-07 上海微电子装备有限公司 一种光刻照明系统
CN101916047A (zh) * 2010-07-27 2010-12-15 浙江大学 一种采用自由曲面透镜实现离轴照明的光刻曝光装置
CN102566294A (zh) * 2010-12-28 2012-07-11 上海微电子装备有限公司 一种光刻照明光学系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUO, LIPING ET AL.: "Study of Integrator Rod in Step-and-scan Lithography.", ACTA PHOTONICA SINICA, vol. 35, no. 7, July 2006 (2006-07-01), pages 981 - 985, XP008179948 *
HAN, JINGFU: "Optical Parts in the MD Projector (IV)-Micro Lens Array and Rod Integrator", ADVANCED DISPLAY, April 2010 (2010-04-01), pages 5 - 7, 12, XP055266284 *
JORG ZIMMERMANN ET AL.: "Generation of arbitrary freeform source shapes using advanced illumination systems in high-NA immersion scanners", PROC. OF SPIE, vol. 7640, 2010, pages 764005, XP055111715, DOI: doi:10.1117/12.847282
LIPING GUO ET AL.: "Study of integrator rod in step-and-scan lithography", ACTA PHOTONICA SINICA, vol. 35, no. 7, 2005, pages 981 - 984
See also references of EP2950145A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542679A (zh) * 2022-09-05 2022-12-30 上海镭望光学科技有限公司 调制板透过率分布生成方法、调制板及光刻机照明系统
CN115542679B (zh) * 2022-09-05 2024-04-26 上海镭望光学科技有限公司 调制板透过率分布生成方法、调制板及光刻机照明系统

Also Published As

Publication number Publication date
CN103092006A (zh) 2013-05-08
EP2950145A1 (en) 2015-12-02
US9400433B2 (en) 2016-07-26
EP2950145A4 (en) 2017-01-25
CN103092006B (zh) 2015-02-18
EP2950145B1 (en) 2017-09-20
US20150286144A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
WO2014113905A1 (zh) 光刻照明系统
KR101708943B1 (ko) 제어 장치, 노광 방법 및 노광 장치
US4974919A (en) Illuminating device
CN108803244B (zh) 照明装置及照明方法和一种光刻机
JP2002514007A (ja) 特にeuv(極紫外線)リソグラフィーに用いる照射機構
JP4775842B2 (ja) パターン描画装置
US9709896B2 (en) Illumination system for lithographic projection exposure step-and-scan apparatus
JP6253163B2 (ja) 投影リソグラフィのための照明光学ユニット
US10795169B2 (en) Laser homogenizing and beam shaping illumination optical system and method
CN103399463B (zh) 投影光刻机照明装置和使用方法
CN104460242B (zh) 一种基于自由曲面式光阑复眼的极紫外光刻照明系统
CN110456612A (zh) 一种高效率投影光刻成像系统及曝光方法
KR20140051226A (ko) 조명 광학계, 노광 장치, 및 디바이스 제조 방법
TWI627509B (zh) 用於投影曝光設備以產生合用的輸出光束的euv光源
CN110133843A (zh) 一种激光扫描单元以及激光打印机
KR101388406B1 (ko) Euv 투영 리소그래피용 조명 광학 유닛에 대한 조명 기하구조 설정 방법
TWI649632B (zh) Exposure device and exposure method
JPH1062173A (ja) レーザー十字スリット発生装置
JPH1197340A (ja) 露光光学系、光加工装置、露光装置及び光結合装置
CN116414010B (zh) 一种自由光瞳产生装置及其产生自由光瞳照明的方法
CN218547250U (zh) 晶圆对准装置及光刻装置
JPH10125585A (ja) 半導体製造装置の照明光学系
JP2000321524A (ja) 照明装置及びそれを用いた光加工機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872643

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013872643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013872643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE