WO2014112626A1 - 固視ずれを補正するためのプリズム処方値取得システム、取得方法、取得装置およびプログラム - Google Patents
固視ずれを補正するためのプリズム処方値取得システム、取得方法、取得装置およびプログラム Download PDFInfo
- Publication number
- WO2014112626A1 WO2014112626A1 PCT/JP2014/050983 JP2014050983W WO2014112626A1 WO 2014112626 A1 WO2014112626 A1 WO 2014112626A1 JP 2014050983 W JP2014050983 W JP 2014050983W WO 2014112626 A1 WO2014112626 A1 WO 2014112626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- prism
- fixation disparity
- fixation
- subject
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/08—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing binocular or stereoscopic vision, e.g. strabismus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0091—Fixation targets for viewing direction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/08—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing binocular or stereoscopic vision, e.g. strabismus
- A61B3/085—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing binocular or stereoscopic vision, e.g. strabismus for testing strabismus
Definitions
- the present invention relates to a prism prescription value acquisition system, an acquisition method, an acquisition apparatus, and a program for correcting fixation disparity, and in particular, a prism prescription value acquisition system for correcting fixation disparity of a subject with a spectacle lens,
- the present invention relates to an acquisition method, an acquisition device, and a program.
- a wearer wears a spectacle lens
- various factors such as far vision, near vision, and astigmatism are taken into consideration.
- elements of visual syndromes include functions relating to strabismus, oblique position, unequal image vision, and fixation disparity.
- fixation disparity means that when looking at an object at the same time (fixing) both eyes cannot be imaged at the position of the fovea of the retina of one or both eyes, and slightly shifted from the fovea This is a phenomenon of forming an image at a position.
- fixation disparity is a phenomenon in which when the object is fixed with both eyes, the line of sight of one or both eyes slightly looks in a direction slightly deviated from the direction of the object.
- Patent Document 1 As a method for examining the presence or absence of fixation disparity and the degree of fixation disparity, the method described in Patent Document 1 (particularly FIG. 5 (b) and 6 to 8) is known.
- the technique described in Patent Document 1 is as follows. For example, a target (fixed code 50) for fixing each line of sight with respect to both eyes is displayed on the display unit as a common target for the left and right eyes, while only the upper target (reference numeral 43) is displayed on the right eye. Only the lower visual target (symbol 45) is presented to the left eye to be presented. At this time, both visual targets (43, 45) are displayed at positions aligned in the vertical direction on the display unit.
- both visual targets (43, 45) are presented to a subject having fixation disparity
- FIG. 6 it is perceived that both visual targets (43, 45) are shifted.
- the two visual targets (43, 45) are perceived at a position where the visual targets (43, 45) are not displaced by the subject. 44, 45) are moved. By doing so, it is perceived by the subject so that both visual targets (43, 45) do not shift.
- both visual targets (43, 45) are moved by the subject on the display unit which is a real space, they are displayed at positions shifted from each other on the display unit.
- the amount of deviation between the two visual targets (43, 45) on the display unit corresponds to the amount of fixation disparity.
- the amount of fixation disparity in the left-right direction horizontal direction
- the amount of fixation disparity in the vertical direction vertical direction
- the left target reference numeral 44
- the right target reference numeral 45
- the prism amount obtained by exploring using a trial lens or the like and the base direction thereof, and the prism amount and the base direction in which fixation disparity is resolved when the spectacle lens is worn are What is defined is called an “aligning prism”.
- the aligning prism is also a prism prescription value finally provided in the spectacle lens.
- Patent Document 1 does not describe a method for obtaining an aligning prism. Therefore, even if fixation disparity measurement is performed by electrical means as in the method described in Patent Document 1, after all, the aligning prism is obtained by employing the method using the trial lens as described above. become. That is, a pair of visual targets (43, 45) or (44, 45) displayed on the display unit in the real space at the same position by causing the subject to wear a trial lens having a prism. However, the measurement is repeated until a trial lens having a prism that can be perceived at a uniform position for the subject is found.
- the fixation disparity amount is simply converted into a prism amount (hereinafter referred to as ⁇ ) that defines the base direction based on the distance between the visual target and the subject.
- ⁇ a prism amount
- the aligning prism should not be provided in the spectacle lens. This is because the relationship between the “prism amount converted from the fixation disparity amount based on the distance between the target and the subject” and the “aligning prism” varies greatly depending on individual differences. This means that an accurate aligning prism cannot be calculated from the fixation disparity amount.
- an expert system In the application that serves as the basis for the priority (German Patent Application 10201313100516.0), the following method called an expert system is used to obtain an aligning prism by utilizing the amount of fixation disparity.
- the following description is a simplified description, and details will be described later. That is, based on the fixation disparity amount, an instruction is given to the inspector from the expert system software (hereinafter, the software may refer to a program) for the trial lens of the prism amount to be used next. Then, the subject wears the trial lens and measures fixation disparity again. If the fixation disparity is still recognized, another fixation lens with a changed prism amount is used, and the fixation disparity measurement is performed again.
- a plurality of trial lenses having prisms are sequentially worn by the subject, and the visual targets displayed separately for the left and right eyes are not displaced.
- Only the method of adopting the prism prescription value of the trial lens when it comes to appear in a uniform position is known. With this method, the inspector must prepare various trial lenses. Of course, various trial lenses must be worn on the subject, which is troublesome.
- a trial lens is prepared for each prism power of 0.25 ⁇ , for example, if the subject needs a prism prescription value of 0.35 ⁇ , a spectacle lens suitable for the subject cannot be provided, and the subject The examiner's fixation disparity cannot be sufficiently corrected by the spectacle lens.
- fixation disparity is a target that should be resolved by being measured and prescribed. Nevertheless, the measuring means for obtaining an aligning prism for eliminating fixation disparity is complicated and takes time. Therefore, in reality, the measurement is only performed by some inspectors, and in general, fixation disparity is not measured.
- the main object of the present invention is to obtain a prism prescription value necessary for correcting fixation disparity with a spectacle lens in a simple, rapid and accurate manner.
- Non-Patent Document 1 the relationship between the two seems to depend greatly on individual differences.
- the present inventor continued investigation it was found that there is a certain relationship between the two.
- it is possible to calculate the amount of prism for eliminating the fixation disparity amount from the fixation disparity amount that is, calculating from the fixation disparity until now by calculation using the fixation disparity amount.
- the first aspect of the present invention is: The amount of fixation disparity (unit: angle) indicating the degree of deviation of the visual axis from the fovea on the retina when the subject is fixation with both eyes, and the amount of fixation disparity is within ⁇ 4 minutes
- the prism prescription value acquisition system includes a calculation unit that multiplies the fixation disparity amount by a coefficient and numerically converts the fixation disparity amount into a prism prescription value.
- the prism prescription value is calculated based on the following formula.
- AP hor refers to the amount of prism in the horizontal direction in the prism prescription value
- FD ver indicates the amount of fixation disparity in the vertical direction.
- FD hor indicates the amount of fixation disparity in the horizontal direction,
- each coefficient k hor and k ver satisfy the following conditions.
- the second aspect of the present invention is: A determination unit for determining whether the fixation disparity amount is within ⁇ 4 minutes;
- the prism prescription value acquisition system according to the first aspect wherein when the determination unit determines that the fixation disparity amount is within ⁇ 4 minutes, the arithmetic unit converts the fixation disparity amount into a prism prescription value. It is.
- the third aspect of the present invention is: A measurement unit for measuring the amount of fixation disparity; A transmission unit that transmits the fixation disparity amount measured by the measurement unit to the calculation unit; With In the measurement unit, After setting the direction of fixation disparity, the right eye target presented only to the right eye, the left eye subject presented only to the left eye, and the subject fixation with both eyes Display means for displaying a fixation target to be fixed; Input means capable of moving at least one of the right-eye target and the left-eye target displayed on the display means; Have When the right-eye target and the left-eye target move, the fixation target does not move and the subject continues to fixate the fixation target on the display means.
- the fourth aspect of the present invention is: The right-eye target displayed on the display means, the left-eye target presented only to the left eye, and the fixation target that the subject fixes with both eyes are one test diagram. Included in the The test chart is the prism prescription value acquisition system according to the third aspect, which can be arranged at an arbitrary position in front of a background image having a plurality of fixation targets.
- the display means is a stereoscopic image display means capable of presenting separate images to the left and right eyes, the right eye target is presented to the subject's right eye, and the left eye target is the subject's right eye. It is a prism prescription value acquisition system given in the 3rd or 4th mode presented to the left eye.
- the sixth aspect of the present invention is: The amount of fixation disparity (unit: angle) indicating the degree of deviation of the visual axis from the fovea on the retina when the subject is fixation with both eyes, and the amount of fixation disparity is within ⁇ 4 minutes
- this is a prism prescription value acquisition method of multiplying the fixation disparity amount by a coefficient and numerically converting the fixation disparity amount into a prism prescription value.
- the prism prescription value is calculated based on the following formula.
- AP hor refers to the amount of prism in the horizontal direction in the prism prescription value
- FD ver indicates the amount of fixation disparity in the vertical direction.
- FD hor indicates the amount of fixation disparity in the horizontal direction,
- each coefficient k hor and k ver satisfy the following conditions.
- the seventh aspect of the present invention is It is determined whether or not the fixation disparity amount obtained by measurement A of the fixation disparity amount is equal to or less than a predetermined angle. If it is determined that the fixation disparity amount is equal to or less than a predetermined angle, the fixation disparity amount is converted to a prism prescription value. And when it is determined that the fixation disparity amount exceeds a predetermined angle, the subject wears measurement glasses having a predetermined prism amount corresponding to the fixation disparity amount and fixes the fixation.
- the prism prescription value acquisition method according to the sixth aspect, in which the deviation amount measurement B is performed again and any one of the following steps 1 to 3 is performed.
- Step 1 When fixation disparity is no longer perceived in measurement B, the prism amount of the measurement glasses is set as the prism prescription value.
- Step 2 In measurement B, the subject still perceives fixation disparity, and shifts from inward fixation disparity to outward fixation disparity in measurement B, or from outward fixation disparity to inward fixation. When shifting to visual misalignment, one of the following (i) to (iv) is performed.
- I In measurement A, when the subject does not wear measurement glasses having a predetermined prism amount, 1 ⁇ 2 of the prism amount of the measurement glasses in measurement B is set as the prism prescription value.
- AP P2- (P2-P1) * FD2 / (FD2-FD1) AP refers to the prism amount (unit: prism diopter) in the prism prescription value.
- FD1 and FD2 are the fixation disparity amounts before and after the transition from the inward fixation disparity to the outward fixation disparity or from the outward fixation disparity to the inward fixation disparity in the measurement B. Note that the signs of FD1 and FD2 are positive when the direction of fixation disparity is outward and negative when inward.
- P1 and P2 are the amounts of prisms used before and after the transition from the inward fixation disparity to the outward fixation disparity or from the outward fixation disparity to the inward fixation disparity in the measurement B.
- Step 3 If the subject still perceives fixation disparity in measurement B and also remains inward fixation disparity or outward fixation disparity in measurement B, a predetermined prism amount Then, the subject wears measuring glasses with stronger prisms and measures the amount of fixation disparity again, and tightens the prisms of the measuring glasses while strengthening them until they reach the state of (Step 1) or (Step 2). Repeat the measurement of the amount of visual misalignment.
- the eighth aspect of the present invention is The amount of fixation disparity (unit: angle) indicating the degree of deviation of the visual axis from the fovea on the retina when the subject is fixation with both eyes, and the amount of fixation disparity is within ⁇ 4 minutes
- the prism prescription value acquisition device includes a calculation unit that multiplies the fixation disparity amount below the predetermined angle by a coefficient and numerically converts the fixation disparity amount into a prism prescription value.
- the prism prescription value is calculated based on the following formula.
- AP hor refers to the amount of prism in the horizontal direction in the prism prescription value
- FD ver indicates the amount of fixation disparity in the vertical direction.
- FD hor indicates the amount of fixation disparity in the horizontal direction,
- each coefficient k hor and k ver satisfy the following conditions.
- the ninth aspect of the present invention provides The amount of fixation disparity (unit: angle) indicating the degree of deviation of the visual axis from the fovea on the retina when the subject is fixation with both eyes, and the amount of fixation disparity is within ⁇ 4 minutes
- the prism prescription value acquisition program causes the computer to function as a calculation unit that multiplies the fixation disparity amount below the predetermined angle by a coefficient and numerically converts the fixation disparity amount into a prism prescription value.
- the prism prescription value is calculated based on the following formula.
- AP hor refers to the amount of prism in the horizontal direction in the prism prescription value
- FD ver indicates the amount of fixation disparity in the vertical direction.
- FD hor indicates the amount of fixation disparity in the horizontal direction
- each coefficient k hor and k ver satisfy the following conditions. 0.3 ⁇ k ver ⁇ 0.7 1.4 ⁇ k hor ⁇ 2.0
- the prism prescription value necessary for correcting fixation disparity with a spectacle lens can be obtained simply, quickly and with high accuracy.
- FIG. (a) is a real space in which the positions of the nonius lines 21 and 22 are adjusted so that a subject having an internal fixation disparity looks like the positions where the nonius lines 21 and 22 are aligned by the subject.
- FIG. (b) is a test drawing in real space in which a subject who does not have fixation disparity has not adjusted the Nonius lines 21 and 22. To this subject, each Nonius line appears to be in line.
- (c) is a real space in which the positions of the nonius lines 21 and 22 are adjusted so that a subject having an outward fixation disparity looks like the positions of the nonius lines 21 and 22 aligned with the subject.
- FIG. It is the schematic which shows the apparatus structure for measuring fixation disparity.
- FIG. 1 It is a figure which shows the test figure which has a Nonius line for discovering fixation disparity.
- A is a test figure for discovering a fixation disparity in the vertical direction (vertical direction)
- (b) is a test figure for discovering a fixation disparity in the horizontal direction.
- It is a schematic flowchart of the step for measuring fixation disparity. It is the schematic flowchart (the 1) of a step when an inward fixation disparity is measured. It is a schematic flowchart (the 2) of a step when an inward fixation disparity is measured.
- (a) is a figure which shows a mode that the test figure was displayed on the left side of the display means in the 1st measurement.
- (B) is a figure which shows a mode that the test figure was displayed on the right side of the display means in the 2nd measurement. It is a test figure which shows the mode of calculation of the deviation
- (a) is a figure when a subject cannot perceive a test figure (in the case of monocular observation), (a) is a test person's test figure. It is a figure when it can perceive.
- (A) It is a figure which shows the relationship between the amount of fixation disparity (horizontal axis) in the horizontal direction, and an aligning prism (vertical axis).
- (B) It is a figure which shows the relationship between the fixation disparity amount (horizontal axis) in the vertical direction, and an aligning prism (vertical axis).
- the convergence angle of the visual axis of both eyes is smaller (outside) or larger (inward) by several minutes (angle) than the geometrically optimal convergence angle. If this motor convergence adjustment error stays within a certain tolerance (Pernum area), it is compensated by sensory fusion, that is, by neurophysiological processing in the brain, and does not lead to the generation of double images. .
- Such a convergence error is traditionally called “fixation disparity” and is defined as a state where binocular monoscopy is made in a state where the fixation points of both eyes are shifted and imaged in the Panum area. Has been.
- FIG. 1 shows an eye pair in a state of outward fixation disparity.
- the fixation point 11 (the center of the cross) is decentered with respect to the center of the central pit 10 (small circle) for each eye, and images are formed as fixation points 11a and 11b.
- it is viewed by the observer as a single image 11c (ie, not as a double image) by sensory fusion.
- fixation disparity is related to various visual problems. Therefore, it is important to determine the magnitude of fixation disparity.
- a visual target presented to both eyes for causing sensory fusion is also necessary.
- the magnitude of the fixation disparity can be determined from the deviation amount of the Nonius line in a state where the index presented to both eyes is seen as one index.
- Test diagrams 20 having nonius lines 21 and 22 for detecting such fixation disparity are shown in FIGS. 2 (a), 2 (b) and 2 (c).
- the nonius lines 21 and 22 are movable in directions opposite to each other on the image plane of the test diagram 20 as shown in FIGS. 2 (a) and 2 (c).
- suitable attachments 23 for example shutter glasses (3D glasses) or polarized glasses, one eye is presented with only one of both nonius lines and the other eye is presented with the other nonius line only. Is done. 2A to 2C, a lower nonius line 22 is presented to the left eye, and an upper nonius line 21 is presented to the right eye.
- test diagrams 20 In order to measure fixation disparity, several types of test diagrams 20 in which the nonius lines 21 and 22 are moved by different amounts are placed in front of the subject. Next, the subject selects a test drawing in which the Nonius lines 21 and 22 appear to be above and below each other.
- FIG. 2 (a) shows a case of a subject (inward fixation disparity or inward FD) in which the eye fixation lines intersect in front of the surface of test FIG. 20, that is, inward fixation disparity.
- the eye fixation lines intersect in front of the surface of the test diagram 20.
- FIG. 3A shows another test diagram 30 in which the nonius lines 21 and 22 are moved correspondingly.
- FIG. 3 is another test diagram corresponding to FIG. 2, and is a diagram showing a test diagram having a Nonius line for detecting fixation disparity.
- FIG. 3A shows that the positions of the nonius lines 21 and 22 are adjusted so that a subject having an internal fixation disparity can see the nonius lines 21 and 22 at a position aligned by the subject. It is a test figure in real space.
- FIG. 3B is a test diagram in real space in which a subject who does not have fixation disparity has not adjusted the Nonius lines 21 and 22. To this subject, each Nonius line appears to be in line.
- FIG. 3C shows that the positions of the nonius lines 21 and 22 are adjusted so that a subject having an outward fixation disparity can see the nonius lines 21 and 22 in a position aligned by the subject. It is a test figure in real space.
- FIG. 2 (b) shows a case of a subject whose eye fixation lines intersect on the surface of test FIG. 20, that is, there is no fixation disparity.
- FIG. 2 (b) shows a case of a subject whose eye fixation lines intersect on the surface of test FIG. 20, that is, there is no fixation disparity.
- FIG. 2 (b) shows a case of a subject whose eye fixation lines intersect on the surface of test FIG. 20, that is, there is no fixation disparity.
- FIG. 2 (b) shows a case of a subject whose eye fixation lines intersect on the surface of test FIG. 20, that is, there is no fixation disparity.
- FIG. 2 (b) shows a case of a subject whose eye fixation lines intersect on the surface of test FIG. 20, that is, there is no fixation disparity.
- FIG. 2 (b) shows a case of a subject whose eye fixation lines intersect on the surface of test FIG. 20, that is, there is no fixation disparity.
- FIG. 2 (c) shows a case (external fixation disparity or outward FD) of a subject having eye fixation lines intersecting behind the surface of the test FIG. 20, that is, external fixation disparity.
- FIG. 2 (c) shows a case (external fixation disparity or outward FD) of a subject having eye fixation lines intersecting behind the surface of the test FIG. 20, that is, external fixation disparity.
- the eye fixation lines intersect behind the plane of test FIG.
- FIG. 3C also shows another test diagram 30 in which the nonius lines 21 and 22 have moved correspondingly.
- FIG. 5 is a diagram illustrating a test diagram having a Nonius line for detecting fixation disparity.
- A is a test figure for discovering a fixation disparity in the vertical direction (vertical direction)
- (b) is a test figure for discovering a fixation disparity in the horizontal direction.
- Gaze shift (horizontal and vertical) can occur together or alone.
- a method for determining the amount of prism for correcting fixation disparity has been used for optometry and in ophthalmological examinations. However, these methods have various drawbacks.
- the necessary content for the inspector includes at least a device for presenting the visual target, one or more test drawings, and a procedure for the inspector to obtain a correction value using the trial lens.
- the CDD fixation disparity meter In the United States, the CDD fixation disparity meter has been developed and used especially in the research field. This fixation disparity meter does not include a central fusion stimulus and is conceived as a test using devices for near vision (40 cm) and far vision (4 m). The Nonius line is presented with a predetermined deviation. The prism values at which these lines appear to coincide can be determined, or further fixation disparity analysis can be performed at various prism loads [Seedie, James E., et al. U.S. Pat. No. 4,222,639, September 16, 1980].
- FIG. 13 is a schematic block diagram of the prism prescription value acquisition system 1 in the present embodiment.
- the prism prescription value acquisition system 1 according to the present embodiment is broadly divided into an order-side computer 2 (also referred to as a measurement-side computer) installed on the spectacle lens ordering side, and an order received on the spectacle lens order-receiving side.
- a side computer 3 (also referred to as a computation side computer) is included.
- the ordering computer 2 and the order receiving computer 3 are connected by a communication line 4.
- fixation disparity amount both the degree of fixation disparity expressed in angle and the distance on the screen are uniformly referred to as “fixation disparity amount”.
- fixation disparity amount the amount of fixation disparity converted to an angle (minute) is referred to as “fixation disparity amount”.
- shift amount the distance shift amount of the target on the display means 5a is simply referred to as “shift amount”.
- ⁇ that is, prism diopter
- prism diopter which is a unit of prism amount
- the prism amount corresponds to 1 prism diopter.
- the “fixation shift amount (minute)” or “shift amount” can be simply converted into a prism diopter.
- the ordering computer 2 refers to a computer installed on the side requesting acquisition of a prism prescription value (aligning prism) necessary for manufacturing a spectacle lens.
- a specific example is a computer installed in an eyeglass store.
- a person (later subject) who is considering purchasing eyeglass lenses comes to an eyeglass store.
- information for ordering a spectacle lens that is, a fixation disparity amount
- the transmission unit 6 the fixation disparity amount is transmitted to the calculation unit 7 of the order-receiving computer 3.
- the correspondence relationship between the ordering computer 2 and the order receiving computer 3 is 1: 1 correspondence, m: 1 correspondence (m is a natural number of 2 or more), 1: n. (N is a natural number greater than or equal to 2) and m: n.
- the ordering computer 2 and the order receiving computer 3 may be installed in the same country or in different countries.
- various servers for example, a data server
- data is exchanged between the server and the ordering side computer 2 or the order receiving side computer 3 as necessary. It is good also as composition which performs.
- the ordering computer 2 has a function as a computer.
- a plurality of ordering computers 2 may exist in the system.
- the ordering computer 2 has a control unit for managing and controlling various information used for obtaining the aligning prism and for managing and controlling each unit provided in the order receiving computer 3. To do.
- a specific configuration of the control unit may be realized using a known technique, and detailed description thereof is omitted here.
- Examples of the configuration included in the measurement unit 5 of the ordering computer 2 include the following configurations.
- Display means 5a e.g. a screen
- the at least one test diagram includes components having different optical properties.
- at least one first component for example, a right eye target
- An accessory device for example, 3D glasses 5b or polarized light
- each second component for example, a left eye target
- the test diagram in the present embodiment includes a first component (a right-eye target presented only to the right eye) and a second component (a left-eye target presented only to the left eye). ) And a third component (for example, a fixation target that the subject fixes with both eyes).
- the subject is designed to input a selection signal, and the selection signal is designed to select a parameter value that satisfies a predetermined criterion when the component is presented on the screen.
- Input means 5d designed to change the presentation parameters, in particular the position, of the first component and / or the second component of the at least one test diagram based on the control signal. Specifically, the input means 5d designed to generate a control signal and be operable by the subject.
- the display means 5a includes a right-eye target that is presented only to the right eye, a left-eye target that is presented only to the left eye, and a fixation target that the subject fixes with both eyes. It has a function to be displayed. More specifically, a suitable example of the display means 5a is a screen capable of displaying a 3D image. The visual target for the right eye is presented to the subject's right eye via the 3D glasses 5b, and the visual target for the left eye is presented to the subject's right eye via the 3D glasses 5b. Of course, the fixation target that the subject fixes with both eyes can be presented to both eyes in common.
- the 3D glasses 5b including the 3D image include the left eye target and the right eye target. These images are alternately displayed on the display unit 5a at regular intervals. Is displayed.
- the 3D glasses 5b in the present embodiment have a function as an active shutter. That is, in the 3D glasses 5b, the opening and closing of the shutter are alternately switched at a constant cycle so that only the left eye can see the front and only the right eye can see the front. Then, the period of the 3D image and the period of the 3D glasses 5b are synchronized so that the timing of the display of the target for the right eye in the 3D image and the timing of the shutter open state of the right eye part in the 3D glasses 5b are matched.
- the 3D glasses may be a method using a polarizing plate or other methods.
- a display provided with a parallel filter may be used.
- 3D glasses are unnecessary.
- the case where 3D glasses are used as an accessory device will be described.
- a fixation target that the subject fixes with both eyes is presented to both eyes in common.
- the display means 5a is designed to successively present at least one test diagram in various regions (for example, the right half and the left half).
- the test diagram in the present embodiment includes the first component (a right eye target presented only to the right eye) and the second component (the left eye presented only to the left eye). And a third component (for example, a fixation target that the subject fixes with both eyes).
- the “target” in the present embodiment is necessary for grasping the fixation disparity amount of the fixation disparity as an objective numerical value.
- the shape of the target may be arbitrary, may be a bar symbol, or may be a character.
- the left eye target has a vertical line formed at the upper part of the center of the image, while the right eye target has a vertical line (Nonius) at the lower part of the image center.
- the fixation target is a shape that is easy for the subject to fixate (for example, a dot, a cross, a square, a circle, or a combination thereof), but basically any shape. It doesn't matter.
- a scale may be provided for the left eye target and the right eye target so that the subject can also recognize the amount of fixation disparity. In this case, the scale may be used instead of the fixation target for both eyes, or a scale may be provided separately from the fixation target for both eyes.
- FIG. 5 (a) shows a test diagram for vertical fixation disparity
- FIG. 5 (b) shows a test diagram for horizontal fixation disparity
- a test diagram for determining an aligning prism for correcting fixation disparity can be used.
- the forms and dimensions of these test drawings 50 and 55 have been recently developed by the present inventors. These are similar to the Mallet test and use a relatively central fusion object 53 (seen simultaneously with both eyes) in the form of the letters “OXO”. One nonius line is presented only to the right eye and the other nonius line is presented only to the left eye.
- the nonius line is separated from the center (ie, “OXO”) as seen in FIGS. 5 (a) and 5 (b).
- OXO the center
- the dimension of the outer periphery of the fusion target “OXO” 53 shown in the center corresponds to a viewing angle of 13.7 minutes in the vertical and horizontal directions in one embodiment, and the height of the entire test area is a viewing angle of 2.76 °.
- the right-eye target displayed on the display means 5a, the left-eye target presented only to the left eye, and the fixation target that the subject fixes with both eyes are one It is preferable to be included in the test drawing.
- this test drawing is preferably arranged in front of a background image having a plurality of fixation targets for both eyes. By doing so, there are many fixation targets for both eyes on the display means 5a, and the left eye target and the right eye target to be moved as will be described later. Since a large number of targets are targets for fixation of two eyes with respect to one target, it becomes possible for the subject to fix with both eyes more reliably. As a result, it is possible to accurately measure the amount of fixation disparity.
- the test drawing can be arranged at an arbitrary position in front of the background image having a plurality of fixation targets for both eyes.
- the fixation disparity amount is measured a plurality of times, it is preferable to change the location of the test drawing for each measurement in front of the background image.
- the test diagram is dynamically and alternately shown on the right half or the left half of the display means 5a (for example, a monitor) after being determined.
- the test figure When measuring at the same location on the display means 5a when measuring a plurality of times, the test figure is recognized as an afterimage for the subject, which may affect the measurement accuracy. Therefore, the position of the test figure on the background image can be changed for each measurement by adopting a configuration that can be placed anywhere in front of the background image having multiple binocular fixation targets. Is possible. In this case, the above-mentioned problem of afterimage is solved, and the line of sight moves with each measurement, so the number of blinks increases for the subject and it is possible to reduce eye dryness and fatigue during measurement. It becomes. In addition, a visual situation that achieves a stable perception of a test figure that is close to a natural visual task and has no suppression (that is, a phenomenon in which perception is faded or disappears) is achieved.
- a plurality of display means 5a may be provided.
- a plurality of display means 5a may be connected to one ordering computer 2.
- One unit is used for measuring the amount of fixation disparity in near vision, and the other unit is used for measuring the amount of fixation disparity in far vision.
- you may further provide the display means 5a for acquiring the fixation disparity amount in intermediate vision.
- the display means 5a for near vision (for short distance presentation) is designed to present at least one test drawing at a distance of preferably 20 cm to 100 cm. Separately from this, a display means 5a 'for far vision is provided.
- the display means 5a for far vision (for far distance presentation) is designed to present at least one test drawing at a distance of preferably 3 to 6 m (4 to 8 m in some cases).
- a second ordering computer 2 ′ is provided separately from the first ordering computer 2 having the display means 5a for near vision. It may be provided separately.
- a first ordering computer 2 for near vision there are three electronic devices: a first ordering computer 2 for near vision, a second ordering computer 2 ′ for far vision, and a display means 5a ′ for far vision.
- the first ordering side computer 2 for near vision is a tablet PC, for example, and may also serve as the display means 5a for near vision.
- both the far vision display means 5a 'and the near vision display means 5a are also simply referred to as "display means 5a".
- Selection means 5c First, a predetermined component (for example, a right-eye target) is selected and moved by the selection means 5c. Then, the selection means 5c inputs a selection signal and selects a movement unit to select a parameter value. As a specific example, when the left cursor of the keyboard is pressed once, the right eye target can be moved to the extent that the angle changes by 0.5 minutes. The distance between the subject and the display means 5a may be selected and set by the selection means 5c, and fixation disparity may be measured at that distance.
- a predetermined component for example, a right-eye target
- the selection means 5c inputs a selection signal and selects a movement unit to select a parameter value.
- the left cursor of the keyboard is pressed once
- the right eye target can be moved to the extent that the angle changes by 0.5 minutes.
- the distance between the subject and the display means 5a may be selected and set by the selection means 5c, and fixation disparity may be measured at that distance.
- the input means 5d in the present embodiment has a function of generating a control signal and moving the left-eye target and / or the right-eye target displayed on the display means 5a.
- the fusion target for binocular fixation is not moved.
- the fixation target may be moved.
- a configuration in which a test diagram including a left-eye target, a right-eye target, and a fixation target can be operated by a control unit at a predetermined position on the front surface of the background image. You may adopt.
- the input means 5d in the present embodiment only needs to have a configuration capable of moving the visual target on the display means 5a.
- a known configuration may be used.
- a keyboard, a mouse connected to the display means 5a, a game controller (game pad) used in a game, a joystick, a screen touch-sensitive film (touch panel), and the like can be given.
- the fixation disparity amount can be accurately acquired on the display means 5a. Further, an interactive operation in which the subject himself / herself moves the target is possible. Moreover, the fixation disparity amount can be accurately obtained by a very simple operation such as pressing a key on the keyboard or operating a game controller, and a user-friendly system can be provided.
- the input means 5d having a configuration that allows the subject himself / herself to freely move each target displayed on the display means 5a.
- the above contents do not prevent anyone other than the subject (for example, an inspector) from operating the input means 5d.
- FIG. 4 is a schematic diagram showing a device configuration for measuring fixation disparity. Although there are some contents that overlap with the configuration mentioned so far, I will re-post them.
- ⁇ Wireless network connection to control long-range and short-range presentation ⁇ Touch screen with simple menu
- Voice guidance to inform the operator of the next inspection step ⁇ Base station for fixing tablet PC. Later, as another embodiment, this allows the inspector to use both hands to adjust the trial frame and replace the trial lens.
- Commercial tablet PC display size 7-12 inches or laptop up to 15 inches display or similar suitable electronic device
- the computer for long-distance presentation is a commercially available computer with a monitor (or a monitor with a built-in PC) that presents a test drawing in 2D and 3D in a long-distance view (4 to 8 meters, preferably 4.5 to 6 meters). Used to present static and dynamic test diagrams in 2D and 3D.
- the screen 43 is controlled for the inspector by the inspector device 42 and is connected to the subject device 41 for displaying the result of the operation by the subject.
- the subject apparatus 41 is a computer for the ordering side and the subject, and includes at least an input unit and a transmission unit among the measurement units.
- the inspector device 42 is an ordering side and inspector computer, and includes at least a selection unit and a transmission unit among the measurement units.
- the screen 43 corresponds to the display means 5a.
- a configuration or function suitable for the display means 5a (screen 43) in the computer for long distance presentation is as follows.
- An electronic device for target presentation commonly used in optometry having at least a 22 to 28 inch 16 ⁇ 9 TFT / LCD / LED monitor, a resolution of at least 1980 ⁇ 1080 pixels, and a visible surface of the display of at least 50 ⁇ 29 cm ⁇
- Lightness is at least 220 cd / m 2 -3D display using, for example, polarization or shutter technology-Operation by built-in microprocessor, inspector can wirelessly control by inspector device 42, inspector device 42 is interactively connected to subject device 41 for short distance presentation ⁇ Observing distance: 4-8 meters
- the computer for short-distance presentation is a commercially available 3D performance tablet PC for presenting a test drawing in 2D and 3D in short-distance vision.
- the subject can use both measurement methods for long distance and short distance. Used for interactive use. Specifically, the subject performs an operation of moving the position of the Nonius line of the test drawing presented at a long distance or a short distance by the short distance presentation computer.
- the subject device 41 is an interactive short-range fixation disparity measuring device for presenting static and dynamic test diagrams in 2D and 3D, and at the same time, for example, a subject's device using a touch screen. It is also an operating device.
- a configuration or function suitable for the display means 5a (screen 43) in the short distance presentation computer is as follows.
- ⁇ Commercially available tablet PC with 7 to 12 inches and 3D performance display • 3D display, eg with dynamically modified cylindrical grid, shutter technology, color code or polarization • Computer controlled from inspector device 42 via wireless network connection and equipped with screen 43 for interactive determination of test diagrams And connected.
- Simple menu control with few buttons changes test diagram parameters, especially Nonius line position, and “right or left” or “up or down” and “centering (Nonius line aligned) with respect to test diagram It is determined as a selection signal of “status)”.
- the subject can also operate through the touch-sensitive touch panel surface. Using the device's acceleration sensor, the subject can show his perception to the outside by moving the sensor in the appropriate direction. -The above operation can be performed by voice control or gesture.
- the fixation disparity amount obtained by the measurement unit 5 is transmitted to the calculation unit 7 provided in the order-receiving computer 3 by the transmission unit 6.
- a public line or a dedicated line may be used.
- the calculation unit 7 may be provided in the order-receiving computer 2. Even in this case, the fixation disparity amount obtained by the measurement unit 5 is still transmitted to the calculation unit 7 by the transmission unit 6.
- the above is each part regarding the ordering computer 2.
- the order receiving computer 3 connected to the ordering computer 2 via the communication line 4 will be described below.
- Order-receiving computer 3 refers to a computer installed on the side that acquires an aligning prism necessary for manufacturing a spectacle lens.
- a specific example is a computer installed in a spectacle lens manufacturing factory.
- the calculation unit 7 of the order-receiving computer 3 calculates and acquires an aligning prism necessary for the spectacle lens worn by the subject from the fixation disparity amount.
- the order-receiving computer 3 has a function as a computer.
- a plurality of order-receiving computers 3 may exist in the system.
- the order-receiving computer 3 manages and controls various information used for acquiring the aligning prism, manages and controls each unit provided in the order-receiving computer 3, and calculates and acquires the aligning prism. In order to do so, a control unit exists. However, a specific configuration of the control unit may be realized using a known technique, and detailed description thereof is omitted here.
- the calculation unit 7 in the present embodiment has a function of converting the fixation disparity amount obtained by the measurement unit 5 and transmitted by the transmission unit 6 into an aligning prism.
- the relationship between “fixation disparity” and “aligning prism” depends on individual differences, the above-described conversion causes fixations to each subject. It is possible to calculate an aligning prism that can eliminate the deviation.
- the aligning prism is calculated based on the following equation.
- AP ver k ver * FD ver
- AP hor k hor * FD hor (Formula 1)
- AP ver refers to the amount of prism (unit: ⁇ ) in the vertical direction (vertical direction) of the aligning prism
- AP hor refers to the amount of prism in the horizontal direction in the aligning prism
- FD ver indicates the amount of fixation disparity in the vertical direction.
- FD hor indicates the amount of fixation disparity in the horizontal direction,
- each coefficient k hor and k ver satisfy the following conditions. 0.3 ⁇ k ver ⁇ 0.7 1.4 ⁇ k hor ⁇ 2.0
- the result obtained by the display means for short distance presentation may be used as the FD ver or FD hor , and conversely the result obtained by the display means for long distance presentation. May be FD ver or FD hor .
- the outline of this method is as follows. 1. In order to confirm the reliability of fixation disparity measurement itself (in some cases, the subject may have a visual problem), measurement is performed twice under the same conditions, and the amount of fixation disparity in each measurement Check if the standard deviation between is within the specified value. 2. If there is too much deviation between the fixation disparity amount at the long distance presentation and the fixation disparity amount at the short distance presentation, the subject may have a visual problem. The amount of fixation disparity cannot be measured. Therefore, it is confirmed whether or not the difference between the fixation disparity amount in the long distance presentation and the fixation disparity amount in the short distance presentation is within a specified value.
- FDFh1 measurement of the amount of fixation disparity in the horizontal direction at the time of long-distance presentation, and the amount of fixation disparity obtained by the first measurement in a plurality of measurements
- FDFh2 The amount of fixation disparity that is obtained
- FDFv1 the amount of fixation disparity in the vertical direction when presenting a long distance
- FDFv2 the amount of fixation disparity obtained by the first measurement in a plurality of measurements
- FDNh1 the amount of fixation disparity obtained by the first measurement in a plurality of measurements
- FDNv1 the amount of fixation disparity obtained by the second measurement
- FDNv2 the amount of visual misalignment
- each fixation disparity amount is determined whether each fixation disparity amount is too large. If each fixation disparity amount is too large, the subject may have a visual problem such as strabismus, and in this case, the aligning prism cannot be obtained appropriately. For example, when each fixation disparity amount exceeds 5 minutes, the value is excluded or the measurement itself is stopped.
- the average value FDFha of the two measurements is stored as “the value of the amount of fixation disparity in the horizontal direction when presenting a long distance”. This work is described in ⁇ 8. This corresponds to the first and second measurements in the prism prescription value acquisition method>.
- an average value FDFha of the fixation disparity amount FDFh3 in the third measurement and the fixation disparity amount FDFh4 in the fourth measurement is calculated in this operation (see ⁇ 8. Prism prescription value described later). It is stored as “the value of the amount of fixation disparity in the horizontal direction when presenting a long distance” in the “first operation” in the “acquisition method>”.
- the above measurement procedure is also performed in the vertical direction for long distance presentation, the horizontal direction for short distance presentation, and the vertical direction for short distance presentation.
- the standard value for SD in the horizontal direction is 1.25 minutes, and the standard value for SD in the vertical direction is 0.5 minutes.
- each fixation disparity amount is not too large. This is because if the value is too large, an accurate aligning prism cannot be obtained. In other words, when any of FDFha, FDNha, FDFva, and FDNva exceeds 5 minutes, a message telling that to the subject is displayed in view of the possibility that the subject has a visual problem. 5a.
- the final horizontal fixation disparity amount value FD hor is obtained as follows.
- the finally obtained FD hor may be considered as zero.
- Specific examples include a case where the absolute value of FDFha is less than 0.15 minutes and the absolute value of FDNha is 0.15 minutes or less.
- FD hor (FD max * 0.6) + (FD min * 0.4) (Formula 3)
- FD max * 0.6) + (FD min * 0.4) (Formula 3) In the horizontal direction, when the sign of the fixation disparity amount is positive, it indicates an outward fixation disparity, and when the sign is negative, it indicates an inward fixation disparity.
- FD hor (FDFha * 0.5) + (FDNha * 0.5) (Formula 4)
- the final horizontal fixation disparity amount value FD ver is obtained as follows.
- the finally obtained FD ver may be considered as zero.
- the absolute value of FDFva is less than 0.2 minutes and the absolute value of FDNva is 0.2 minutes or less.
- ⁇ FDva exceeds 2.0 minutes, the measurement is stopped, and a message indicating the fact to the subject is displayed on the display means 5a in consideration of the possibility that the subject has a visual problem. .
- FD hor and FD ver it is preferable to obtain FD hor and FD ver . Note that the standard deviation, the difference in fixation disparity value between the long distance presentation and the short distance presentation, determination of the fixation disparity value, and determination of the aligning prism value described later will be described later.
- the determination unit 8 may perform this.
- FIG. 12A and FIG. 12B show the relationship between the fixation disparity amount obtained by this measurement and the aligning prism.
- FIG. 12A shows the relationship between the amount of fixation disparity in the vertical direction (horizontal axis: unit is minutes) and the aligning prism in the vertical direction (vertical axis: unit is ⁇ ).
- the sign is positive, the left eye indicates a downward fixation and the right eye indicates an upward fixation disparity, and when the sign is negative, the left eye indicates an upward fixation and the right eye indicates a downward fixation disparity.
- FIG. 12A shows the relationship between the amount of fixation disparity in the vertical direction (horizontal axis: unit is minutes) and the aligning prism in the vertical direction (vertical axis: unit is ⁇ ).
- the number of subjects is 34, and the fixation disparity amount and the aligning prism are measured for each subject.
- the fixation disparity amount is measured using the right eye target, the left eye target, and the binocular fixation target as described above.
- the amount of prism of the trial lens when the fixation disparity is no longer recognized using the trial lens is adopted.
- the straight line graph shown in FIG. 12A shows the amount of vertical fixation disparity derived by statistical analysis from the relationship between the amount of vertical fixation disparity and the vertical aligning prism. It is a regression line showing the relationship of the aligning prism. This regression line was obtained using robust regression of statistical analysis.
- the correlation coefficient of the regression line representing the relationship between the fixation disparity amount in the vertical direction and the aligning prism is 0.888.
- the straight line graph shown in FIG. 12B shows the amount of horizontal fixation disparity derived by statistical analysis from the relationship between the amount of horizontal fixation disparity and the horizontal aligning prism. It is a regression line showing the relationship of the aligning prism. This regression line was obtained using robust regression of statistical analysis.
- the correlation coefficient of the regression line representing the relationship between the fixation disparity amount in the horizontal direction and the aligning prism is 0.776.
- test power in statistical analysis when the regression line representing the relationship between the amount of fixation disparity in the vertical direction and the horizontal direction and the aligning prism is obtained reaches 1.000.
- the aligning prism can be obtained from the amount of fixation disparity in the vertical and horizontal directions by the following relational expression.
- An expression in which the slope value of the regression line is applied to the above calculation expression is as follows.
- Both FD ver and FD hor are the amount of fixation disparity when measured with no trial lens equipped with a prism in the trial frame.
- what installed the trial lens provided with the prism in the trial frame is called "measuring glasses.”
- each aligning prism it is preferable to determine whether each aligning prism is too large. If each aligning prism is too large, the subject may have a visual problem such as strabismus, and the subject may have a problem before the fixation disparity is resolved. There is sex. For example, when each aligning prism exceeds 5.0 ⁇ , the measurement itself is stopped.
- the fixation disparity amount is a predetermined angle (for example, a range within at least ⁇ 4 minutes indicated by the above measurement, and thereafter absolute If the value is expressed as “four minutes or less.”)
- the aligning prism can be obtained by calculation from the fixation disparity amount measured without using a trial lens equipped with a prism and its direction. Knowledge was obtained.
- the measurement time is significantly shortened to several minutes.
- the measurement procedure does not require replacement of the prism lens with a trial frame or replacement of the trial frame with the subject, the operation becomes very simple.
- the fixation disparity amount of the subject is equal to or less than a predetermined angle. If the fixation disparity amount is too large, the reliability when accurately converting to an aligning prism is lowered.
- the “predetermined angle” is an example, but for example, 4 minutes or less.
- FIG. 12A and FIG. 12B described above show the results of the above measurement performed on a subject whose fixation disparity amount is 4 minutes or less. Of course, this predetermined angle is not limited to 4 minutes. If the absolute value is appropriately set within a range of 6 minutes or less, the fixation disparity amount can be converted into the aligning prism with sufficient accuracy. is there.
- the coefficient is in the above range. If the unit of the fixation disparity amount is expressed by a distance (for example, m), that is, if “displacement amount” is applied to the above equation, the coefficient naturally changes. However, if the unit is changed from “deviation amount (unit: m)” to “fixation deviation amount (unit: minute)”, the range of the coefficient of the equation is as described above. That is, even when a deviation amount (unit: m) is used and an equation using a coefficient that deviates from the above range is used, the deviation amount (unit: m) is changed to the fixation disparity amount (unit: minute). If the coefficient of the equation when converted is within the above range, even if a deviation amount (unit: m) is used, it belongs to the scope of the present invention.
- a method of reflecting the above AP ver and AP hor on the spectacle lens for example, a method of distributing AP ver and AP hor between the right eye lens and the left eye lens can be cited.
- the prism prescription value for the right-eye lens and the prism prescription value for the left-eye lens are each AP hor / 2.
- the sign of AP hor is positive, the base direction of the aligning prism is outward, and when the sign of AP hor is negative, the base direction of the aligning prism is inward.
- AP ver is distributed between the right-eye lens and the left-eye lens.
- the base direction of the aligning prism is below the base for the right eye lens and above the base for the left eye lens
- the sign of AP ver is When negative, the base direction of the aligning prism is above the base for a right eye lens and below the base for a left eye lens.
- the calculation unit 7 provides an encrypted aligning prism. ⁇
- the final result encrypted allows only the officially authorized eyeglass lens manufacturer to use the measurement result. As a result, only spectacle lenses that correct the fixation disparity with high accuracy are provided on the market.
- a configuration other than the above-described units may be provided in the prism prescription value acquisition system 1 in the present embodiment.
- a recording unit, a server, a communication line 4 and the like for recording various information may be separately provided.
- the aligning prism described above is not “the amount of fixation disparity converted into a prism amount based on the distance between the target and the subject”.
- the distance between the subject and the display means 5a is required along with the displacement amount.
- the calculation unit 7 of this embodiment is used (using Expressions 1 and 8), so that in the conversion work to the aligning prism, The distance between the examiner and the display means 5a becomes unnecessary. This point is completely different from simply converting the fixation disparity amount into the prism amount.
- Prism prescription value acquisition device In the above embodiment, the case where the roles of the ordering computer 2 and the order receiving computer 3 are shared in order to acquire the aligning prism has been described. On the other hand, one of the features of the present invention is to convert the fixation disparity amount into an aligning prism and acquire it. Therefore, the present invention is also reflected in a prism prescription value acquisition device that acquires an aligning prism calculated based on the fixation disparity amount, and has a great technical feature.
- the prism prescription value acquisition device referred to here may have at least the calculation unit 7.
- each unit other than the calculation unit 7 may be provided as appropriate.
- what provided all the said each part is preferable. By doing so, it becomes possible to obtain the aligning prism in the spectacle store, and the spectacle store transmits information necessary for manufacturing the spectacle lens to the spectacle lens manufacturer together with prescription values other than the aligning prism. Is possible.
- the preferable form of a prism prescription value acquisition apparatus is as having described with the preferable form in each part which comprises the prism prescription value acquisition system 1.
- FIG. The prism prescription value acquisition system 1 is provided with each of the units that are preferable in the prism prescription value acquisition system 1.
- Prism prescription value acquisition program> Furthermore, the present invention is reflected in a prism prescription value acquisition program that causes a computer to function as the arithmetic unit 7 that acquires the aligning prism calculated based on the fixation disparity amount. Have. Of course, the present invention is also reflected in the recording medium storing the prism prescription value acquisition program, which has a great technical feature.
- the prism prescription value acquisition program referred to here may be installed in each computer, and the computer may function as at least the computing unit 7 under the instruction from the control unit.
- the computer may appropriately function as each unit other than the calculation unit 7.
- the preferable form of the prism prescription value acquisition program is as described in the preferable form in each part constituting the prism prescription value acquisition system 1.
- the prism prescription value acquisition system 1 having the preferable contents is a preferred form of the prism prescription value acquisition program.
- FIG. 14 is a flowchart showing a procedure for acquiring a prism prescription value in the present embodiment.
- Another example is the application of an improved version of the so-called Lang stereo test for short distance presentation.
- the random dot test listed above can quickly distinguish whether there is global stereo and the prism decision is significant, or there can be a risk of visual deterioration due to the prism without random dot stereo Used to distinguish quickly.
- the advantage of the rung test is that, for example, a stereoscopic object presented on a test card is observed without glasses so that the test can be performed with a minimum apparatus cost.
- the disadvantage of the Lang test is that when the test card is moved or tilted, the hidden stereoscopic object can be seen. This can lead to false results.
- the base issue is that subjects who do not have stereoscopic vision must not recognize the stereoscopic vision object even if the card is tilted or moved.
- the first basis for stereoscopic perception in a random dot pattern is Developed by Yules.
- the difference from other stereoscopic tests is that the object does not have a structure that can be recognized by a single eye.
- the random dot stereo test consists of a pattern of dots arranged by chance, a so-called matrix. Within this matrix is a dot area, or sub-matrix, whose shape is defined. The dots are arranged differently in the matrix, but the dots are arranged uniformly in the sub-matrix.
- the submatrix is moved in both images. The depth impression of the sub-matrix whose shape is defined for the first time is recognized only when viewed stereoscopically. The smaller the movement of the sub-matrix, the smaller the stereoscopic effect.
- Another method is the cylindrical grid method.
- R. Invented by Hess. Patented in Germany in 1912 (GB1912130347) and used to create so-called “similar images”.
- Image separation is performed by a number of uniform planar cylinders arranged in parallel. There are two or more consecutive images under each planar cylinder. These continuous images are formed differently by a plane cylinder. Therefore, the right eye sees a continuous image different from the left eye.
- the improved version of the Lang stereoscopic test uses the same random dot sample as the original, and uses the cylindrical grid method to realize a simple stereoscopic display of the test image, resulting in improved test result reliability. .
- the dot density, the size of the target, and the stereoscopic parallel axis even when the card is lightly moved or tilted, it is considered that the target is hardly recognized by a single eye.
- a simple, generally easy-to-understand subject is built on, so that the test can be conducted independently of age and culture.
- FIG. 11 (a) shows a postcard-sized card having a test chart composed of random dot patterns.
- the object cannot be seen by monocular observation.
- a three-dimensional stereoscopic object included as a sub-matrix appears as schematically shown in FIG.
- a monocular refraction value is further determined for both eyes. In this case, it is a precondition for the subsequent steps that the monocular corrected visual acuity is at least 0.63.
- S2 target presentation step In this step, a visual target is displayed on the display means 5a.
- the visual target appears to be shifted vertically, but the state where the target is aligned on the display means 5a is defined as the initial state.
- the left eye target and the right eye target are presented to the subject wearing the 3D glasses 5b.
- each image includes a visual target.
- the synchronization of the image display between the display means 5a displaying the binocular target and the 3D glasses 5b is as described above.
- the selection means 5c provides the inspector with a selection menu of various functions on the inspector device 42. Thereby, it is possible to select a long-distance presentation on the computer having the screen 43 or a short-distance presentation on the subject apparatus 41.
- test drawing for the same test including the test drawing of the present embodiment is provided to the subject even for the short distance presentation on the device 41 for the subject.
- the result is complemented by a normally used short distance vision test.
- the inspector device 42 for example, a tablet PC or a laptop, is used as a remote operation for controlling the inspection. This enables interactive inspection step control, for example, switching from long distance presentation to short distance presentation and continuous input of various inspection procedures.
- S3 target moving step In this step, the subject operates the input means 5d to move the left-eye target and / or the right-eye target. In this embodiment, it is perceived that the target is aligned by moving the target, but an example in which the target is shifted up and down on the display means 5a is given. This operation is also called “centering”.
- the inspector device 42 is operated by an inspector, who is guided by software instructions, and obtains the information by, for example, sound output through a display or headphones.
- FIG. 6 shows an overview of the entire method for measuring the direction of the fixation line of the subject's eye using the test drawing.
- This method mainly consists of four steps 61-64.
- the prisms that are centered in the vertical direction in the long distance presentation are determined.
- the inspector puts a measurement lens whose refractive value is determined in advance into a trial frame, and attaches the trial frame to the subject.
- a test diagram 50 (FIG. 5A) for vertical fixation disparity is shown on the remote monitor.
- the inspector explains to the examinee, “Look at the remote monitor and determine the arrangement of the two horizontal lines 51 and 52 (Nonius lines)”. If the heights of these lines appear to deviate from each other, the lines are adjusted to each other using the device 41 for the patient held by the subject.
- FIG. 9 shows this shift.
- FIG. 9 is a test diagram showing how to calculate the shift amount in fixation disparity.
- the subject device 41 is provided with a suitable adjusting device, for example, a mouse, a joystick, a keyboard, a knob, an adjusting slider or a touch sensing film (touch screen) of the screen.
- a suitable adjusting device for example, a mouse, a joystick, a keyboard, a knob, an adjusting slider or a touch sensing film (touch screen) of the screen.
- the horizontal lines 51 and 52 (FIG. 5 (a)) can be continuously moved relative to each other using the adjusting device.
- the vertical lines 21 and 22 in FIG. 5B can also move continuously.
- the lines can be moved dynamically using a physical keyboard or a touch screen keyboard.
- the line moves in steps of 0.5 minutes (corner), and as the key is operated longer, it can be moved in steps of 1 to 20 minutes (corner).
- the lines 51 and 52 can also be moved automatically or continuously or stepwise.
- the horizon centering or adjustment work is completed with the subject's signal indicating that the above criteria have been met (ie the horizon is on the same line in the horizontal direction).
- the subject apparatus 41 has, for example, an area on the touch screen or an area for mouse clicks, and a signal may be transmitted from this area.
- a specific parameter that is, the deviation of lines 51 and 52, is selected by this signal.
- FIG. 8 is a diagram illustrating a state in which a test diagram is arranged in front of a background image having a plurality of fixation targets.
- (A) is a figure which shows a mode that the test figure was displayed on the left side of the display means 5a in the first measurement
- (b) is a state that the test figure was displayed on the right side of the display means 5a in the second measurement.
- the amount of fixation disparity in the vertical direction is measured using the methods S1 to S4.
- the amount of fixation disparity in the vertical direction may be measured before measuring the amount of fixation disparity in the horizontal direction. Measurements may be performed as described in 5 (b) and 6.
- the above measurement is performed for far vision and near vision. That is, the amount of fixation disparity in the horizontal direction and the amount of fixation disparity in the vertical direction in distance vision are measured, and the amount of fixation disparity in the horizontal direction and amount of fixation disparity in the vertical direction in near vision are measured.
- the calculation unit 7 calculates an aligning prism (prism prescription value) based on the fixation disparity amount.
- the specific calculation method is as described in 5-Ba) calculation unit 7.
- the aligning prism is reflected in the design data of the spectacle lens.
- a known method may be used as a method for reflecting the aligning prism in the design data.
- the design data is transmitted to a spectacle lens processing machine to process the spectacle lens.
- the degree of fixation disparity is grasped as objectively as possible, and the degree of fixation disparity is grasped in the form of a distance (fixation disparity amount) on the display means 5a. Therefore, unlike the prior art, it is possible to accurately grasp the degree of fixation disparity.
- the fixation disparity amount of the target on the display means 5a it is possible to determine whether or not there is a fixation disparity in the subject by grasping the fixation disparity amount of the target on the display means 5a after specifying the displacement direction.
- the degree of fixation disparity is converted into data as a fixation disparity amount, and this fixation disparity amount can be converted into an aligning prism in a spectacle lens.
- a spectacle lens capable of effectively correcting the fixation disparity of the subject.
- the display means 5a As a specific configuration of the display means 5a, a known 3D display may be used. Therefore, it is not necessary to purchase a new device when introducing the prism prescription value acquisition system 1 in the present embodiment. As a result, the cost for the prism prescription value acquisition system 1 can be reduced.
- the conversion work of the fixation disparity amount into the aligning prism is guided and monitored by software.
- Use of the software enables the presentation of the newly developed test chart, interactive participation in the measurement of the subject, and guidance on use of the inspector.
- the subject uses an electronic device (eg, a tablet PC) to interactively move a test drawing component, eg, a Nonius line, to be subjectively accurately centered ( For example, it can be aligned along a vertical or horizontal line, the centering of this test line being repeated many times, and the interactive movement of the components of the test diagram makes the measurement procedure significantly faster.
- a test drawing component eg, a Nonius line
- test drawing components can reduce the possibility of errors in communication with the inspector, thereby greatly avoiding false results even for less skilled inspectors. .
- the control signal is designed to continuously change the parameters. This enables a particularly accurate measurement of the direction of the fixation line of the eye (fixation deviation). This is because when the subject continuously changes the components of the test drawing, for example, the position, a point where a predetermined criterion is satisfied, for example, a point where both Nonius lines are above and below each other can be accurately defined. This is a sort of similar approach to manually adjusting the focus of the projector or camera. Further, the control signal is designed to change a parameter for each of the first step width and the second step width. With different step widths, the value of the parameter that satisfies the predetermined criteria is first roughly found. Next, a desired parameter value is found more accurately by a finer step width of both step widths.
- the aligning prism necessary for correcting fixation disparity with the spectacle lens can be obtained simply, quickly and with high accuracy.
- Determining unit 8 for determining whether the fixation disparity amount is a predetermined angle or less In the above embodiment, it has been described that the above calculation is preferably performed by the calculation unit 7 when the fixation disparity amount of the subject is equal to or less than a predetermined angle (for example, 4 minutes). In relation to this, a determination unit 8 that determines whether or not the fixation disparity amount is equal to or less than a predetermined angle may be separately provided for the present embodiment. For example, if the fixation disparity amount is 4 minutes or less, the determination unit 8 sends an instruction to the control unit so that the calculation unit 7 performs the above calculation.
- a predetermined angle for example, 4 minutes.
- the aligning prism is obtained using a system called an expert system described in [Embodiment 2]. By doing so, it is possible to obtain the aligning prism with high accuracy without being constrained by the condition that the fixation disparity amount is not more than a predetermined angle. Details will be described later in [Embodiment 2].
- the display unit 5a and the input unit 5d may not be in the ordering computer 2 installed in the spectacle store.
- the display unit 5a and the input unit 5d are arranged in an ophthalmological hospital, and the result (fixation deviation amount) is transmitted to the spectacles store.
- the fixation disparity amount may be transmitted to the order-receiving computer 3 having However, it is preferable that the subject who is the customer operates the target position at the spectacles store and transmits the result directly to the ordering computer 2 because it is not time-consuming.
- the “determination unit 8” described in the modification is used for the contents of the first embodiment.
- an aligning prism is obtained using a system called an expert system. The following description is based on the prism prescription value acquisition method of the first embodiment.
- the aligning prism can be obtained in a time required for about 10 minutes.
- (S7 judgment step) it is determined whether or not the fixation disparity amount is a predetermined angle or less. If the fixation disparity amount is 4 minutes or less, the determination unit 8 sends an instruction to the control means so that the calculation unit 7 performs the above calculation. In that case, the process proceeds to (S5 transmission step) as described in the first embodiment. On the other hand, when the fixation disparity amount exceeds 4 minutes, an aligning prism is obtained using a system called an expert system.
- the outline of the expert system is as follows.
- the software enables display of the test charts mentioned in the first embodiment, bidirectional use by the subject, and user guide to the inspector. This measuring method is guided and monitored by an inspector by an expert system using software.
- Such an overall system may include the second ordering computer 2 'in addition to the above-described apparatus for measuring the direction of the fixation line of the eye of the subject.
- the inspector operates the second ordering computer 2 'to control the entire measurement procedure.
- the software indicates how much prism value the trial lens should be installed in the trial frame for each measurement. In other words, the trial lens and trial frame do not need to be renewed just because the expert system is handled, and the trial lens and trial frame that are normally used can be used continuously.
- the test result using a random dot stereo card (for example, FIGS. 11A and 11B) obtained by improving the present embodiment and the conventional method is positive and the binocular vision ability is positive.
- the subject can three-dimensionally recognize the test pattern hidden on the card. This makes it possible to assume and confirm with high certainty that the subject has normal binocular vision ability and does not suffer from strabismus.
- FIG. 6 and FIG. 7A and FIG. 7B are schematic flowcharts of steps when measuring the inward fixation disparity described above.
- the inspector After the first work (partial step 71) in the centering (measurement of fixation disparity) twice, the inspector prepares for each eye the trial lens used in the second work as a result of the measurement.
- the prism value to be made and the upper or lower direction are instructed by display on the inspector apparatus 42 or by voice output (partial step 72).
- correction prism for example, 0.5 ⁇ in the base direction with respect to the right eye as the trial lens, and installs this prism lens in the trial frame. Then the next measurement operation continues and the prism value is again indicated. This is done until the size and base direction of the correction prism is determined according to the designation of the expert system, and is repeated until the next step is required.
- a trial frame a trial lens set for optometry having spherical refractive power and astigmatic refractive power, and a prism lens as a trial lens for some optometry.
- a prism diopter (unit: ⁇ ): 0.5 / 1.0 / 2.0 / 3.0 / 4.0 / 5.0 / 6.0 trial lens is prepared.
- the correction prism is determined in the horizontal direction in the long distance presentation.
- the test diagram 55 is used for the measurement of horizontal fixation disparity (FIG. 5 (b)) and is corrected in the prism base direction or outside the prism base depending on the prism value.
- a test diagram for horizontal fixation disparity is presented on a computer having a screen 43 at a long distance. If this test drawing appears to be displaced from the subject in the horizontal direction, the test drawing is a subject device 41 held by the subject as described in connection with the first step 61 in FIG. Adjusted by.
- the horizontal line centering or adjustment task is completed with the subject's signal indicating that the above criteria have been met (ie, the vertical lines are aligned one above the other). This signal simultaneously selects a specific parameter, that is, the deviation of the lines 51 and 52.
- This centering operation is performed twice, and a test diagram appears on the right or left side of the monitor for each centering operation.
- the measurement unit 7 performs measurement under the same conditions twice to check the reliability of the fixation disparity measurement itself, and determines the amount of fixation disparity in each measurement. It is preferable to confirm whether or not the standard deviation or the difference in the amount of fixation disparity between the long distance presentation and the short distance presentation is within a specified value.
- display means 5a when measurement is performed a plurality of times, it is preferable to change the location of the test drawing for each measurement in front of the background image. This two-time measurement is included in the first operation mentioned above.
- Partial step 76 After the first work of two centering operations, the inspector is instructed by the display or audio output on the inspector device 42 as a result of the measurement, the prism value and the base direction for each eye up or down ( Partial step 76). The inspector uses this prism value, for example, 1 ⁇ in the base direction, for the spectacles for measurement (partial step 77). The same is performed when there is an outward fixation disparity (partial steps 74 and 75). Then, the next measurement operation (corresponding to measurement B in this specification) continues, and the prism value is again indicated (partial step 78). Thereafter, it is checked how the newly determined prism value is changing relative to the previous prism value and how this method should be continued based on it (partial step 79).
- the vertical or horizontal correction prism is determined by short distance presentation.
- step 61 and 62 the same steps as the long-distance presentation (steps 61 and 62) are executed in the same test diagram, but at this time, the subject device 41 used for remote operation by the subject is presented in near-distance vision.
- aligning prisms vertical and horizontal corresponding to the long distance presentation are obtained, and separately, aligning prisms (vertical and horizontal) corresponding to the short distance presentation are obtained. That is, four aligning prisms are obtained. Therefore, finally, the long-range and short-range results are evaluated, and weighting is performed according to the principle obtained based on the actual experience using the Haase method and the research results of the Mallet and Sheedy methods.
- the result is a prism value (vertical and horizontal) to be prescribed.
- This prism value is shown encoded and can be communicated through the spectacle lens manufacturer's normal ordering system (step 65).
- four aligning prisms may be acquired by the method shown in 5-Ba) calculation unit 7, and it is preferable. *
- the correction by the correction prism leads to a very large prism value in some cases in the conventional method, and a very thick lens is required for the correction glasses, or surgery for the extraocular muscles is required.
- This method therefore limits the optometry correction of the prism value to a maximum of 6 ⁇ . If this still fails to achieve centering of the test chart, the software recognizes this and indicates that the subject is not within the predetermined correction range and that an examination by a specialist is required.
- the prism strength to be corrected is determined by using a combination of a measuring device for presenting a test chart and evaluation based on software. The inspector is informed by the software how to form an inspection procedure, and the subject responds with device input. Finally, the results are coded and can be applied to spectacle lenses by spectacle lens manufacturers.
- a correction prism outside the base direction is provided to neutralize the error.
- This system is based on the first adjustment of the subject and gives the inspector a message that in the first step of this example, a correction prism outside the 1 ⁇ base direction should be used for the measuring glasses.
- FIG. 10 The test diagram on the left side of FIG. 10 shows the adjustment of the Nonius line by the subject at the end of the first examination step.
- the test diagram on the right side of FIG. 10 shows the adjustment of the Nonius line by the subject after putting the prism into the measuring glasses at the end of the second examination step. This is comparable to the situation in vertical deviation.
- the subject wears a trial frame in which a trial lens reflecting the correction prism is installed. Then, the deviation of the line adjusted subjectively again is measured as the FD value.
- the expert system makes a decision regarding the next step. Only in very few cases is it expected that the rough prism step 0.5 ⁇ or 1 ⁇ grading corrects the FD to exactly zero. However, more frequent than this is an overcorrection with a given prism step, which is indicated by the reversal of the FD direction. This exchange of positive and negative signs is used so that the centering prism can be calculated as an average value, in comparison with the determination of the fixation disparity curve by CD.
- the following method is also possible.
- the software expert system instructs the inspector the amount of prism to be mounted on the trial frame in coarse steps of 1.00 ⁇ steps. Then, the prisms instructed by the software are obtained from the alignment amounts of the two lines before and after when the alignment direction of the two lines of the fixation pattern test pattern is reversed. It is preferable to determine the value of the correction prism at which the fixation disparity is zero by proportionally allocating the amount of fixation disparity and the values of the two prisms mounted on the front and rear optometry trial frames.
- AP P2- (P2-P1) * FD2 / (FD2-FD1) (Equation 10)
- AP refers to the prism amount (unit: ⁇ ) in the aligning prism.
- FD1 indicates a fixation disparity amount (unit: angle) immediately before the fixation disparity direction is reversed.
- FD2 indicates the amount of fixation disparity immediately after the direction of fixation disparity is reversed. Note that the signs of FD1 and FD2 are positive when the direction of fixation disparity is outward and negative when inward.
- P1 indicates the amount of prism immediately before the direction of fixation disparity is reversed.
- P2 indicates the prism amount immediately after the direction of fixation disparity is reversed.
- the fixation disparity amount is 0.7 minutes outward, and the next prism that has been mounted is
- the amount of fixation disparity when measured by changing to 2.00 ⁇ base inward is 0.4 minutes inward, and when the direction of fixation disagreement is reversed, the value of these prisms and the amount of fixation disparity is calculated.
- a trial lens having a prism used in the process until obtaining an aligning prism is used in increments of 1.00 ⁇ . Therefore, since the number of trial lens replacements until the aligning prism is obtained is reduced, the measurement time can be shortened. Further, the amount of the correction prism obtained in this way is obtained by proportional distribution. Therefore, the aligning prism can be obtained in increments of 0.01 ⁇ even in increments of 1.00 ⁇ .
- the aligning prism can be obtained with high accuracy.
- each spectacle store will then ask each spectacle lens manufacturer to manufacture spectacle lenses. If this is the case, no matter how accurately the spectacle store seeks the aligning prism, some spectacle lens manufacturers may not accurately reflect the aligning prism and may produce a low-quality spectacle lens. In this case, the purchaser of the spectacle lens who was the subject purchased the spectacle lens in which the fixation disparity is still eliminated even though the aligning prism for correcting the folding angle and fixation disparity was accurately obtained. become.
- a coded value (for example, a barcode format) is output.
- the information contained therein cannot be used without the corresponding key.
- the correction prism is coded and cannot be discriminated by any spectacle lens manufacturer. . This ensures that orders can only be made to pre-qualified eyeglass lens manufacturers, i.e. eyeglass lens manufacturers with the highest possible fixation disparity correction capability and lens technology. May be.
- an example is described in which an expert system is combined with the determination unit 8 with respect to the first embodiment in which the fixation disparity amount is converted into an aligning prism.
- the expert system is not combined with the first embodiment but is an invention that can be realized independently. Issues in that case are as follows.
- the inventor simply converted the fixation disparity amount into ⁇ (that is, prism diopter) based on the distance between the target and the subject.
- ⁇ that is, prism diopter
- the knowledge that it does not become the aligning prism which should be equipped with a spectacle lens was acquired. This is because the relationship between the “prism amount converted from the fixation disparity amount based on the distance between the target and the subject” and the “aligning prism” varies greatly depending on individual differences. This means that an accurate aligning prism cannot be calculated from the fixation disparity amount.
- a trial lens is prepared for each prism power of 0.25 ⁇ , for example, if the subject needs a prism prescription value of 0.35 ⁇ , a spectacle lens suitable for the subject cannot be provided, and the subject The examiner's fixation disparity cannot be corrected by the spectacle lens.
- the main object of the present embodiment is to obtain a prism prescription value necessary for correcting fixation disparity with a spectacle lens with high accuracy.
- ⁇ Expert system> A method for obtaining a prism prescription value from a fixation disparity amount indicating a degree of deviation of the visual axis from the fovea on the retina when the subject fixes the subject with both eyes, After performing measurement A of the fixation disparity amount on the subject, the subject wears measurement glasses having a predetermined prism amount corresponding to the fixation disparity amount, and the subject measures the fixation disparity amount.
- the prism prescription value acquisition method which performs B again and performs any of the following processes 1 thru
- Step 2 In measurement B, the subject still perceives fixation disparity, and shifts from inward fixation disparity to outward fixation disparity in measurement B, or from outward fixation disparity to inward fixation.
- one of the following (i) to (ii) is performed.
- (I) In measurement A when the subject does not wear measurement glasses having a predetermined prism amount, 1 ⁇ 2 of the prism amount of the measurement glasses in measurement B is set as the prism prescription value.
- the prism amount of the measurement glasses in measurement A and the prism amount of the measurement glasses in measurement B The average value of and is the prism prescription value.
- the average value is taken.
- the prism amount in the measurement A is considered to be zero, the prism amount of the measurement glasses in the measurement B is 1 ⁇ 2. Prism prescription value.
- Step 3 If the subject still perceives fixation disparity in measurement B and also remains inward fixation disparity or outward fixation disparity in measurement B, a predetermined prism amount Then, the subject wears measuring glasses with stronger prisms and measures the amount of fixation disparity again, and tightens the prisms of the measuring glasses while strengthening them until they reach the state of (Step 1) or (Step 2). Repeat the measurement of the amount of visual misalignment.
- ⁇ Further suitable expert system A method for obtaining a prism prescription value from a fixation disparity amount indicating a degree of deviation of the visual axis from the fovea on the retina when the subject fixes the subject with both eyes, After performing measurement A of the fixation disparity amount on the subject, the subject wears measurement glasses having a predetermined prism amount corresponding to the fixation disparity amount, and the subject measures the fixation disparity amount.
- the prism prescription value acquisition method which performs B again and performs any of the following processes 1 thru
- Step 2 In measurement B, the subject still perceives fixation disparity, and shifts from inward fixation disparity to outward fixation disparity in measurement B, or from outward fixation disparity to inward fixation.
- one of the following (iii) to (iv) is performed.
- a prism prescription value is obtained by the following equation.
- AP P2-P2 * FD2 / (FD2-FD1)
- the prism prescription value is obtained by the following equation.
- AP P2- (P2-P1) * FD2 / (FD2-FD1) AP refers to the prism amount (unit: ⁇ ) in the aligning prism.
- FD1 and FD2 are the fixation disparity amounts before and after the transition from the inward fixation disparity to the outward fixation disparity or from the outward fixation disparity to the inward fixation disparity in the measurement B. Note that the signs of FD1 and FD2 are positive when the direction of fixation disparity is outward and negative when inward.
- P1 and P2 are the amounts of prisms used before and after the transition from the inward fixation disparity to the outward fixation disparity or from the outward fixation disparity to the inward fixation disparity in the measurement B.
- a value is entered in the above equation.
- the calculation is performed assuming that the prism amount P1 in the measurement A is zero.
- Step 3 If the subject still perceives fixation disparity in measurement B and also remains inward fixation disparity or outward fixation disparity in measurement B, a predetermined prism amount Then, the subject wears measuring glasses with stronger prisms and measures the amount of fixation disparity again, and tightens the prisms of the measuring glasses while strengthening them until they reach the state of (Step 1) or (Step 2). Repeat the measurement of the amount of visual misalignment.
- the expert system is a method for obtaining an aligning prism based on the fixation disparity amount.
- the main object of the present invention is to obtain a prism prescription value (aligning prism) necessary for correcting fixation disparity with a spectacle lens in a simple, rapid and accurate manner.
- the display means 5a in the present embodiment displays a left-eye image including a target (Nonius line) and a background image, and a right-eye image including the target (Nonius line) and a background image. It has a function to make.
- the display means 5a in the present embodiment can present a left-eye image for the left eye and a right-eye image for the right eye. It is.
- the visual target (Nonius line) presented to the left and right eyes is presented only to one eye.
- a visual target (Nonius line) that is a vertical line that is presented above a horizontal line that has a horizontal scale line is presented only to the right eye, and is below the horizontal line that has a horizontal scale line.
- the visual target which is a vertical line
- a background image is defined by adding a scale line to an image as a background such as a landscape or a newspaper article. This background image is presented to each eye in the same content except for the visual target (Nonius line).
- the right eye target (Nonius line) is presented only to the right eye
- the left eye target (Nonius line) is presented only to the left eye.
- no fixation target is provided.
- the left-eye image and the right-eye image can be moved. With this configuration, it is possible to reproduce the same scene as when the subject wears the prism lens.
- each image includes a background image in addition to the target, and when the target is not shifted from each other, The background images are arranged so that the background images are not shifted from each other.
- an image for the right eye and an image for the left eye are displayed, and each image includes a background image in addition to a visual target (Nonius line).
- the “background image” in the present embodiment is an image that governs the background of the right-eye image, as the name suggests. What is displayed on the background image may be a graphic or a character.
- the present embodiment can be applied even to an image having only a target (Nonius line) without including a background image.
- an image for the right eye and The left-eye images preferably each have a background image. In this embodiment, that case will be exemplified.
- the aligning prism reflected in the spectacle lens is finally obtained without the need to obtain the fixation disparity amount.
- the outline is as follows. First, in the two states to be displayed on the display means 5a, the shift amount of the position of the target is acquired after specifying the shift direction.
- the two states are as follows.
- (State 1) A subject having fixation disparity sees an image for the right eye displayed on the display means 5a with the right eye via the 3D glasses 5b, and an image for the left eye displayed on the display means 5a. When viewed with the left eye, the subject perceives the image as being shifted from each other, while the right eye image and the left eye image are not shifted from each other on the display means 5a.
- (State 2) The same subject as in the state 1 views the right eye image displayed on the display means 5a with the right eye through the 3D glasses 5b, and the left eye image displayed on the display means 5a When viewed with the eyes, the subject perceives that the images are not shifted from each other, while the right eye image and the left eye image are shifted from each other on the display unit 5a. Status.
- the shift amount and shift direction of the target (image) on the display means 5a between the state 1 and the state 2 correspond to the aligning prism and the direction thereof.
- a spectacle lens having an aligning prism (prism prescription value) that can correct fixation disparity can be provided to the subject.
- the right eye target (Nonius line) and the background image, and the left eye target (Nonius line) and background displayed on the display unit 5a by the input unit 5d Images are brought close to or far from each other to the same extent. In other words, the entire right eye image and the entire left eye image displayed on the display means 5a are relatively moved. In the case of the present embodiment, this relative movement amount corresponds to the shift amount.
- the half value of the scale displayed on the display means 5a in FIG. 2 may be treated as the amount of deviation.
- the input means 5d allows the right eye image including the right eye target (Nonius line) and the background image, and the left eye target (Nonius line) and the background image.
- the left-eye images including are moved close to or away from each other to the same extent.
- the background image is also moved relative to the index so that the amount of displacement can be obtained with extremely high accuracy. The reason is as follows.
- the background image for the left eye and the background image for the right eye are not shifted.
- the background image appears very clearly in the field of view of the subject. Even if the subject cannot clearly determine whether or not the upper and lower targets are aligned in the vertical direction, the upper and lower targets may be considered aligned when the background image looks clear. That is, the background image for the left eye and the background image for the right eye assist in determining whether the target is shifted.
- the state 1 is a reference for the shift amount, It is necessary to accurately grasp the state 1.
- the subject can reliably determine the situation in which the target is not displaced, the state 1 can be grasped with high accuracy, and the deviation amount can be acquired with high accuracy. Then, the amount of deviation may be converted into an aligning prism by the calculation unit 7 based on the distance between the subject and the display means 5a.
- the prism prescription value acquisition system In order to satisfactorily visually recognize the target displayed on the display means 5a, it is effective to prevent anything other than the display means 5a from entering the field of view of the subject. Therefore, when the display unit 5a enters the field of view of the subject, it is preferable to provide the prism prescription value acquisition system with a configuration in which the display unit 5a looks relatively bright. Specifically, it is also preferable to newly provide a light / dark forming part for displaying the display means 5a relatively brightly for the subject with respect to the prism prescription value acquisition system in the first embodiment.
- the light / dark forming part is a part for enabling an image (and thus a visual target) to be recognized remarkably brightly in the field of view of the subject.
- specific examples of the light / dark forming portion will be shown.
- the light-dark formation part is 3D glasses 5b having a visible light shielding function.
- the 3D glasses 5b include sunglasses having an active shutter function. If the subject wears the sunglasses and uses the prism prescription value acquisition system, only the display means 5a can enter the field of view of the subject. It is also effective to increase the brightness of the backlight of the display means 5a more than before.
- the display means 5a is viewed relatively brighter than the other parts, and only the display means 5a enters the field of view of the subject.
- the subject can visually recognize the visual target displayed on the display means 5a satisfactorily, can acquire the deviation amount with high accuracy, and can acquire the prism prescription value with high accuracy.
- the above method is extremely effective in obtaining the prism prescription value for distance vision.
- the aligning prism by grasping the image shift amount on the display means 5a. That is, it is possible to obtain an aligning prism without a trial lens. Therefore, the burden on the spectacle store and the subject can be remarkably reduced. As a result, the aligning prism necessary for correcting the fixation disparity with the spectacle lens can be obtained simply, quickly and accurately.
- the method of this embodiment may be used as a means for confirming the appearance of the subject by the aligning prism obtained by the first embodiment or the second embodiment described above.
- the method of the third embodiment is used to shift the presentation position of the image of the entire visual field presented to the left eye and the right eye.
- the subject can be seen with no fixation disparity.
- a system for acquiring a prism prescription value for correcting fixation disparity of the left and right eyes of a subject with a spectacle lens The subject views the image for the right eye displayed on the display means with the right eye via the 3D glasses, And when the image for the left eye displayed on the display means is viewed with the left eye, the image is shifted from each other for the subject, while the images are not shifted from each other on the display means;
- the subject views the image for the right eye displayed on the display means with the right eye via the 3D glasses, And when the image for the left eye displayed on the display means is viewed with the left eye, the image is not shifted from each other for the subject, while the images are shifted from each other on the display means
- a prism prescription value acquisition unit that acquires a prism prescription value of a spectacle lens for a subject having a fixation disparity calculated based on the amount and direction of image shift on the display means during Prism prescription value acquisition system.
- the image includes a visual
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Description
例えば、両眼に対してそれぞれの視線を固定させるための視標(符号50)を左右眼に共通の視標として表示部に表示しつつ、右眼には上側視標(符号43)のみを呈示し左眼には下側視標(符号45)のみを呈示する。このとき、表示部においては両視標(43,45)が上下方向で揃った位置に表示される。しかしながら、固視ずれを有する被検者に両視標(43,45)が呈示されると、FIG.6に示すように両視標(43,45)がずれているように知覚される。そして、被検者が上側視標(43)を操作部にて移動させることにより、被検者にとって両視標(43,45)がずれないような位置に知覚される様に両視標(44,45)を移動させる。こうすることにより、被検者にとっては両視標(43,45)がずれないように知覚される。その一方、実空間である表示部上では両視標(43,45)は被検者によって移動させられているため、表示部上では互いにずれた位置に表示されている。上記の表示部上の両視標(43,45)のずれ量(すなわち左右方向へのずれ量)が固視ずれ量に相当する。これにより左右方向(水平方向)の固視ずれ量が把握できる。同様に、左眼のみに呈示される左側視標(符号44)および右眼のみに呈示される右側視標(符号45)を用いることで、上下方向(天地方向)の固視ずれ量も把握できる。
ちなみに、従来では、固視ずれが解消するプリズム量を見出すために、プリズムを有するトライアルレンズを被検者に装用させて、固視ずれが解消された状態となるトライアルレンズが見つかるまで、固視ずれの有無に関する測定を繰り返していた。そして、見つかったトライアルレンズのプリズム量とその基底方向とを規定したものをプリズム処方値としていた。
このように、トライアルレンズ等を用いて模索されて得られたプリズム量とその基底方向であって、眼鏡レンズを装用した際に固視ずれが解消されるようになるプリズム量とその基底方向が規定されたもののことを「アライニングプリズム」と呼ぶ。アライニングプリズムは、最終的に眼鏡レンズに備わるプリズム処方値でもある。
すなわち、固視ずれ量を基に、次に使用すべきプリズム量のトライアルレンズについて、エキスパートシステムのソフトウェア(以降、ソフトウェアはプログラムを指すこともある)から検査員に対して指示を与える。そして、そのトライアルレンズを被検者が装用し、再度固視ずれ測定を行う。固視ずれが相変わらず認識される場合は、プリズム量を変更させた別のトライアルレンズを用い、更に再度固視ずれ測定を行う。そして、固視ずれが打ち消された状態になるまでプリズムを有するトライアルレンズを変更することが記載されている。
確かに、この手法ならば、ソフトウェアの指示に従ってトライアルレンズを選択し、かつ、ソフトウェアの指示に従って測定手順を進めればよくなり、従来のアライニングプリズムを求める手法に比べて、検査員にとっては測定が簡単になる。その結果、効率的に、固視ずれを解消可能なアライニングプリズムを求めることができる。
ただ、この手法においても、アライニングプリズムを見出すためのトライアンドエラーを避けることは困難であり、トライアルレンズの使用を避けることも困難となる。
以下、上記の知見に基づき想到された具体的な態様は、以下の通りである。
被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する演算部を有する、プリズム処方値取得システムである。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0
本発明の第2の態様は、
固視ずれ量が±4分以内か否かを判定する判定部を有し、
前記判定部によって固視ずれ量が±4分以内と判定された場合に、前記演算部によって固視ずれ量をプリズム処方値へと数値変換する、第1の態様に記載のプリズム処方値取得システムである。
本発明の第3の態様は、
固視ずれ量を測定する測定部と、
前記測定部にて測定された固視ずれ量を前記演算部に送信する送信部と、
を備え、
前記測定部においては、
固視ずれにおけるずれ方向を設定した上で、右眼のみに呈示される右眼用の視標、左眼のみに呈示される左眼用の視標、および被検者が両眼で固視する固視用視標を表示する表示手段と、
前記表示手段に表示された右眼用の視標および左眼用の視標のうち少なくともいずれかを移動自在な入力手段と、
を有し、
右眼用の視標および左眼用の視標が移動する際には固視用視標は移動せず、被検者が固視用視標を固視し続ける状態において、前記表示手段上での当該両視標のずれ量から固視ずれ量を測定する、第1または第2の態様に記載のプリズム処方値取得システムである。
本発明の第4の態様は、
前記表示手段に表示される右眼用の視標、左眼のみに呈示される左眼用の視標、および被検者が両眼で固視する固視用視標は、一つの試験図に含まれており、
前記試験図は、複数の固視用視標を有する背景画像の前面の任意の場所に配置自在である、第3の態様に記載のプリズム処方値取得システムである。
本発明の第5の態様は、
前記表示手段は左右の眼に別々な画像を呈示可能な立体画像表示手段であり、右眼用の視標は被検者の右眼に呈示され、左眼用の視標は被検者の左眼に呈示される、第3または第4の態様に記載のプリズム処方値取得システムである。
本発明の第6の態様は、
被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する、プリズム処方値取得方法である。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0
本発明の第7の態様は、
固視ずれ量の測定Aによって得られた固視ずれ量が所定角度以下か否かを判定し、固視ずれ量が所定角度以下と判定された場合には固視ずれ量をプリズム処方値へと数値変換し、固視ずれ量が所定角度を超えたと判定された場合には、当該固視ずれ量に応じた所定のプリズム量を備えた測定用眼鏡を被検者が装用して固視ずれ量の測定Bを再度行い、以下の工程1ないし3のいずれかを行う、 第6の態様に記載のプリズム処方値取得方法である。
(工程1)測定Bにおいて固視ずれが知覚されなくなった場合は、測定用眼鏡のプリズム量をプリズム処方値とする。
(工程2)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した場合は、以下の(i)~(iv)のいずれかを行う。
(i)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用していない場合は、測定Bでの測定用眼鏡のプリズム量の1/2をプリズム処方値とする。
(ii)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用している場合は、測定Aでの測定用眼鏡のプリズム量と測定Bでの測定用眼鏡のプリズム量との平均値をプリズム処方値とする。
(iii)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用していない場合は、以下の式によってプリズム処方値を得る。
AP=P2-P2*FD2/(FD2-FD1)
(iv)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用している場合は、以下の式によってプリズム処方値を得る。
AP=P2-(P2-P1)*FD2/(FD2-FD1)
APは、プリズム処方値におけるプリズム量(単位:プリズムディオプター)を指す。
FD1とFD2は測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した時の移行前後の固視ずれ量である。
なお、FD1とFD2の符号は、固視ずれの方向が外方の時に正とし、内方の時に負とする。
P1とP2は測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した時の移行前後の装用したプリズム量である。
(工程3)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれのまま、または、外方固視ずれのままの場合は、所定のプリズム量よりもプリズムを強くした測定用眼鏡を被検者が装用して再度固視ずれ量を測定し、(工程1)または(工程2)の状態となるまで測定用眼鏡のプリズムを強くしつつ固視ずれ量の測定を繰り返す。
本発明の第8の態様は、
被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該所定角度以下の固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する演算部 を有する、プリズム処方値取得装置である。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0
本発明の第9の態様は、
被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該所定角度以下の固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する演算部としてコンピュータを機能させる、プリズム処方値取得プログラムである。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0
1.固視ずれについての説明
2.一般論としての固視ずれの測定メカニズム
3.従来における固視ずれの測定手法
4.本発明の課題以外の、固視ずれの測定に係る課題
5.プリズム処方値取得システム
5-A)発注側コンピュータ
5-A-a)測定部
5-A-a1)表示手段
5-A-a2)付属装置(3D眼鏡)
5-A-a3)選択手段
5-A-a4)入力手段
5-A-b)送信部
5-B)受注側コンピュータ
5-B-a)演算部
6.プリズム処方値取得装置
7.プリズム処方値取得プログラム
8.プリズム処方値取得方法
9.本実施形態の効果
10.変形例等
作業用のスクリーン等に対し、両眼視を支障なく行うためには、両眼の視軸(視線)の間の輻輳角が外眼筋によって正確に調節されなければならない。そして、スクリーン上の注視された対象点、すなわち固視点が、両眼において中心小窩の同方向の場所、すなわち中心網膜位置へと、最大限の空間解像力を発揮して結像されるようにしなければならない。その場合、対象点の細部まで知覚がおよび、両眼の網膜像が脳内で最適に重なることができる。これを「同方向性」と呼ぶ。しかしながらこの同方向性からの逸脱は、正常な両眼視(良好な融像と良好な立体視)の持ち主においても起こりうる。つまり、両眼の視軸が網膜上の固視点の0.数ミリメートル後方(外方)または前方(内方)で交わることがある。
図1は、外方固視ずれの状態にある眼対を示している。図1においては、各眼で固視点11(十字の中心)は中心小窩10(小さい円)の中心に対して偏心して固視点11a,11bとして結像している。ただ、感覚性融像により観察者には単一像11cとして(すなわち二重像としてではなく)視られる。
従来においては、固視ずれを補正するために、プリズム屈折力を備えたプリズムレンズを眼鏡レンズとして使用するのが通常である。
本発明の課題で述べた「固視ずれ量とアライニングプリズムとの関係性」に加え、上記に示した公知の方法は、様々な課題を有している。以下に、その幾つかを指摘する。
(1)トライアルレンズを用いてアライニングプリズムを決定するための従来の主観的な方法は、被検者の主観的知覚を把握するための口頭による質疑応答に基づいている。そのため誤解から誤りが生じる可能性がある。
(2)従来の方法は視線の動きがない静的な視状況を使用する。動いていない対象を長時間凝視することは自然の視状況に対応しておらず、両眼分離に(右眼と左眼それぞれ別に)呈示された試験図はしばしば抑制されることがある。抑制とは、判定される試験図が主観的知覚では薄れ、または完全に消滅し、それによって判定が非常に困難になるか、または全く不可能になることを指す。
(3)上に引用した従来の2つの方法は、時間がかかり、複雑である。シーディーとハーゼの方法は、それぞれ少なくとも20~30分かかる。そのうえ従来の方法は検査員の高度な知見を必要とし、さもないと結果は役に立たないことになりかねない。
(4)プリズムによる補正ができない微小斜視(すなわち立体視不能)を前もって発見しておき、この様な被検者には固視ずれの検査を行わないようにすべきである。そうしなければ被検者にとって無駄な測定を行うことになってしまう。
本発明の課題に加え、上記の課題を解決すべく想到されたのが、本実施形態である以下の構成である。
まず、本実施形態におけるプリズム処方値取得システムの機能構成について説明する。図13は、本実施形態におけるプリズム処方値取得システム1の概略ブロック図である。本実施形態におけるプリズム処方値取得システム1は、大きく分けて、眼鏡レンズの発注側に設置された発注側コンピュータ2(測定側コンピュータとも言う。)、および、眼鏡レンズの受注側に設置された受注側コンピュータ3(演算側コンピュータとも言う。)を有している。そして、発注側コンピュータ2と受注側コンピュータ3との間は、通信回線4により接続されている。
発注側コンピュータ2は、眼鏡レンズの製造に必要なプリズム処方値(アライニングプリズム)の取得を依頼する側に設置されたコンピュータのことを指す。具体例を挙げると、眼鏡店に設置されたコンピュータである。眼鏡店に、眼鏡レンズの購入を検討している者(後の被検者)が来る。そして、測定部5を活用することにより、眼鏡レンズを発注するための情報(すなわち固視ずれ量)を、被検者から取得する。その後、送信部6を用いることにより、受注側コンピュータ3の演算部7へと固視ずれ量を送信する。
また、発注側コンピュータ2には、アライニングプリズムを取得するために使用される種々の情報を管理および制御、並びに受注側コンピュータ3に設けられた各部を管理および制御するために、制御部が存在する。ただ、この制御部の具体的な構成は、公知技術を利用して実現すればよく、ここではその詳細な説明を省略する。
発注側コンピュータ2の測定部5に含まれる構成としては、以下の構成が挙げられる。
(1)少なくとも1個の試験図を呈示するように設計されており、少なくとも1個の試験図はその呈示が種々異なる光学的性質を有する構成要素を含む表示手段5a(例えばスクリーン)。
(2)光学的性質に基づいて少なくとも1個の第1の構成要素(例えば右眼用の視標)が被検者の第1の眼(例えば右眼)に対してのみ呈示し、少なくとも1個の第2の構成要素(例えば左眼用の視標)が被検者の第2の眼(例えば左眼)に対してのみ呈示するように設計された付属装置(例えば3D眼鏡5bや偏光眼鏡)。
なお、本実施形態における試験図は、第1の構成要素(右眼のみに呈示される右眼用の視標)、第2の構成要素(左眼のみに呈示される左眼用の視標)、および第3の構成要素(例えば被検者が両眼で固視する固視用視標)を含む。
(3)被検者が選択信号を入力するように設計されており、この選択信号は、構成要素をスクリーン上に呈示する際に所定の基準を満たすようなパラメータ値を選択するように設計されている選択手段5c。
(4)制御信号に基づいて少なくとも1個の試験図の第1の構成要素および/または第2の構成要素の呈示のパラメータ、特に位置を変化させるように設計されている入力手段5d。具体的に言うと、制御信号を生じさせ、被検者が操作可能なように設計されている入力手段5d。
5-A-a2)付属装置(3D眼鏡5b)
表示手段5aは、右眼のみに呈示される右眼用の視標、左眼のみに呈示される左眼用の視標、および被検者が両眼で固視する固視用視標が表示されるようにする機能を有する。
更に具体的に言うと、表示手段5aの好適な例としては3D画像表示可能なスクリーンである。右眼用の視標は、3D眼鏡5bを介して被検者の右眼に呈示され、左眼用の視標は、3D眼鏡5bを介して被検者の右眼に呈示される。もちろん、被検者が両眼で固視する固視用視標は両眼に対して共通して呈示可能とする。
一方、本実施形態における3D眼鏡5bは、アクティブシャッターとしての機能を有している。つまり、3D眼鏡5bにおいて左眼だけが前方を視認できる状態、および、右眼だけが前方を視認できる状態となるよう、一定周期でシャッターの開閉を交互に切り替えている。
そして、3D画像における右眼用の視標の表示と、3D眼鏡5bにおける右眼部分のシャッター開状態とのタイミングを一致させるよう、3D画像の周期と3D眼鏡5bの周期を同期させる。こうすることにより、被検者の各眼に対して各眼用の視標を呈示することが可能となる。もちろん、立体画像表示装置で良く知られる様に、この3D眼鏡は偏光板を用いる方法でも良いし、その他の方法もある。例えば、ディスプレイにparallax filterを設けたものを使用しても構わない。この場合、3D眼鏡は不要となる。ただ、本実施形態においては、付属装置として3D眼鏡を用いる場合について述べる。
一方、被検者が両眼で固視する固視用視標は両眼に対して共通して呈示する。
本実施形態における試験図は、先ほど述べたように、第1の構成要素(右眼のみに呈示される右眼用の視標)、第2の構成要素(左眼のみに呈示される左眼用の視標)、および第3の構成要素(例えば被検者が両眼で固視する固視用視標)を含む。
本実施形態における「視標」は、固視ずれの固視ずれ量を客観的な数値として把握するために必要なものである。視標の形状は任意のもので構わず、棒状の記号でも構わないし、文字でも構わない。本実施形態においては、左眼用の視標には、画像中央の上寄りに縦線が形成されている一方、右眼用の視標には、画像中央の下寄りに縦線(ノニウスライン)が形成されている場合について述べる。本実施形態においては、右眼ノニウスライン、および、左眼ノニウスラインを使用する。ただ、固視用の視標は、被検者が固視しやすい形状(例えば点状や×印や□印や○印あるいはその組み合わせ)であるのが好ましいが、基本的には任意の形状で構わない。
また、被検者にとっても固視ずれのずれ量を認識することができるように、左眼用の視標および右眼用の視標に対して目盛りを設けておいても構わない。この場合、目盛りを両眼の固視用視標の代わりとしても構わないし、両眼の固視用視標とは別に目盛りを設けても構わない。
なお、中央に示された融像対象「OXO」53の外周の寸法は、一実施形態において垂直および水平方向の視角13.7分に対応し、試験領域全体の高さは視角2.76°に対応する。
まずは、選択手段5cによって、所定の構成要素(例えば右眼用視標)を選択して移動可能とする。そして、選択手段5cによって、選択信号を入力して移動単位を選択することによりパラメータ値を選択する。具体例を挙げると、キーボードの左カーソルを一回押すと角度で言うと0.5分変化する程度に右眼用視標を移動可能となるようにする。なお、選択手段5cによって、被検者と表示手段5aとの間の距離を選択して設定し、その距離にて固視ずれの測定を行っても構わない。
本実施形態における入力手段5dは、制御信号を生じさせ、表示手段5aに表示された左眼用の視標および/または右眼用の視標を移動させる機能を有する。もちろん、左眼用の視標および/または右眼用の視標を移動させる際には、両眼固視用の融像視標は動かさない。ただ、左眼用の視標および/または右眼用の視標を移動させない際には、固視用視標を移動させても構わない。また、操作部によって、左眼用の視標、右眼用の視標および固視用視標を含む試験図を、背景画像の前面の所定の位置に配置することが操作自在とする構成を採用しても構わない。
発注側コンピュータ2に備わるのが好ましい構成または機能としては、以下のものが挙げられる。固視ずれを測定するための装置構成を示す概略図である図4を用いて説明する。これまでに挙げた構成と重複する内容もあるが、再掲する。
・遠距離および近距離呈示を制御するためのワイヤレスネットワーク接続
・シンプルなメニューによるタッチスクリーン
・操作者に次の検査ステップを告知する音声案内(例えば一方向のワイヤレスヘッドホン)
・タブレットPCを固定するためのベースステーション。後で、別の実施形態として述べるが、これにより検査員は、トライアルフレームの調整やトライアルレンズの交換のために両手を使える。
・市販のタブレットPC、ディスプレイサイズ7インチ~12インチまたはラップトップ最大15インチディスプレイまたは類似の適当な電子装置
なお、被検者用装置41は、発注側かつ被検者用のコンピュータであり、少なくとも、測定部のうち入力手段および送信部を備えている。また、検査員用装置42は発注側かつ検査員用のコンピュータであり、少なくとも、測定部のうち選択手段および送信部を備えている。スクリーン43は表示手段5aに該当する。
・少なくとも22インチ~28インチの16×9TFT/LCD/LEDモニタを有する、検眼で通常用いられる視標呈示のための電子装置
・少なくとも1980×1080ピクセルの解像度
・ディスプレイの可視面は少なくとも50×29cm
・明度は少なくとも220cd/m2
・例えば偏光またはシャッター技術による3D表示
・内蔵マイクロプロセッサによる運転、検査員は検査員用装置42によりワイヤレス制御可能、検査員用装置42は近距離呈示用の被検者用装置41とインタラクティブに接続
・観察距離4~8メートル
・7インチ~12インチかつ3D性能ディスプレイを備えた市販のタブレットPC
・例えば動的に修正された円筒グリッド、シャッター技術、カラーコードまたは偏光による3D表示
・ワイヤレスネットワーク接続により検査員用装置42から制御され、試験図のインタラクティブな判定のためにスクリーン43を備えたコンピュータと接続されている。
・少ないボタンによるシンプルなメニュー制御で試験図のパラメータ、特にノニウスラインの位置を変化させ、および試験図に対し「右または左」もしくは「上または下」および「センタリング(ノニウスラインが揃った状態)」の選択信号として判定する。
・被検者は接触感知可能なタッチパネルの表面を通しても操作可能である。装置の加速センサを使用して、被検者は相応の方向へセンサを動かすことによって、被検者は自身の知覚を外部に示すことができる。
・音声制御または身振りによって上記の操作を行うこともできる。
上記の測定部5にて得られた固視ずれ量を、送信部6によって、受注側コンピュータ3に備えられた演算部7へと送信する。送信には、先にも述べたように、公衆回線を使用しても構わないし、専用回線を使用しても構わない。なお、本実施形態においては演算部7が受注側コンピュータ3に設けられた例を述べたが、もちろん、発注側コンピュータ2に演算部7が設けられていても構わない。この場合であっても、測定部5によって求められた固視ずれ量は、送信部6により演算部7へと送信されることに変わりはない。
受注側コンピュータ3は、眼鏡レンズの製造に必要なアライニングプリズムを取得する側に設置されたコンピュータのことを指す。具体例を挙げると、眼鏡レンズ製造工場に設置されたコンピュータである。眼鏡店から眼鏡レンズの製造の受注を受け、受注側コンピュータ3の演算部7にて、固視ずれ量から、被検者が装用する眼鏡レンズに必要なアライニングプリズムを演算および取得する。
また、受注側コンピュータ3には、アライニングプリズムを取得するために使用される種々の情報を管理および制御、受注側コンピュータ3に設けられた各部を管理および制御、並びにアライニングプリズムを演算および取得するために、制御部が存在する。ただ、この制御部の具体的な構成は、公知技術を利用して実現すればよく、ここではその詳細な説明を省略する。
本実施形態における演算部7は、測定部5にて求められて送信部6により送信された固視ずれ量をアライニングプリズムへと変換する機能を有する。非特許文献1に記載されているように「固視ずれ」と「アライニングプリズム」との間の関係が個人差に依存するにもかかわらず、上記の変換により、各被検者にとって固視ずれを解消可能なアライニングプリズムを演算することが可能となる。
APver=kver*FDver
APhor=khor*FDhor ・・・(式1)
APverは、アライニングプリズムにおける垂直方向(天地方向)のプリズム量(単位:Δ)を指し、
APhorは、アライニングプリズムにおける水平方向のプリズム量を指し、
FDverは、垂直方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0
1.固視ずれ測定自体の信頼性(場合によっては被検者が視覚的な問題を有している可能性)を確認すべく、同一条件での測定を2回行い、各測定における固視ずれ量の間の標準偏差が規定値以内か否かを確認。
2.遠距離呈示の際の固視ずれ量と、近距離呈示の際の固視ずれ量との間にずれが大きすぎると、被検者が視覚的な問題を有している可能性があり正確な固視ずれ量を測定できない。そのため、遠距離呈示の際の固視ずれ量と、近距離呈示の際の固視ずれ量との間の差が規定値以内か否かを確認。
なお、個別具体的な固視ずれ量の測定方法に関しては、後述の<8.プリズム処方値取得方法>に記載の通りである。
同様に、遠距離呈示の際の垂直方向の固視ずれ量の測定であって、複数回測定における1回目の測定で得られる固視ずれ量をFDFv1と称し、2回目の測定で得られる固視ずれ量をFDFv2と称す。
また、近距離呈示の際の水平方向の固視ずれ量の測定であって、複数回測定における1回目の測定で得られる固視ずれ量をFDNh1と称し、2回目の測定で得られる固視ずれ量をFDNh2と称す。
同様に、近距離呈示の際の垂直方向の固視ずれ量の測定であって、複数回測定における1回目の測定で得られる固視ずれ量をFDNv1と称し、2回目の測定で得られる固視ずれ量をFDNv2と称す。
標準偏差(SD)(単位:分)=SQRT[{(FDFh1-M)2+(FDFh2-M)2}/2] ・・・(式2)
ただし、M=(FDFh1+FDFh2)/2
この場合においても再びSDが1.25分を超えていた場合、固視ずれ測定自体の信頼性が確保できていないため、測定を中断する。また、被検者に視覚的な問題がある可能性も鑑み、被検者に対してその旨を伝えるメッセージが表示手段5aに表示される。
一方、SDが1.25分以下の場合、3回目の測定における固視ずれ量FDFh3と4回目の測定における固視ずれ量FDFh4の平均値FDFhaを、この作業(後述の<8.プリズム処方値取得方法>で言うところの1回目の作業)における「遠距離呈示の際の水平方向の固視ずれ量の値」として保存する。
[FDFhaとFDNhaとで符号(+-)が同じ場合]
まず、FDFhaとFDNhaとで、絶対値が大きい方をFDmax、絶対値が小さい方をFDminとし、以下の式にてFDhorを決定する。ここでは重み付けが行われている。
FDhor=(FDmax*0.6)+(FDmin*0.4) ・・・(式3)
なお、水平方向において、固視ずれ量における符号が正の時は外方固視ずれを表し、符号が負の時は内方固視ずれを表す。
また、垂直方向において、固視ずれ量における符号が正の時は、左眼が下方で右眼が上方の固視ずれを表し、符号が負の時は、左眼が上方で右眼が下方の固視ずれを表す。
[FDFhaとFDNhaとで符号(+-)が異なる場合]
以下の式にてFDhorを決定する。
FDhor=(FDFha*0.5)+(FDNha*0.5) ・・・(式4)
[FDFhaとFDNhaとで符号(+-)が同じ場合]
まず、FDFhaとFDNhaとで、絶対値が大きい方をFDmax、絶対値が小さい方をFDminとし、以下の式にてFDhorを決定する。ここでは重み付けが行われている。
FDhor=(FDmax*0.6)+(FDmin*0.4) ・・・(式5)
[FDFhaとFDNhaとで符号(+-)が異なる場合であって、FDFhaが0.3分未満、かつ、FDNhaの符号が+の場合]
以下の式にてFDhorを決定する。
FDhor=FDNha*0.5 ・・・(式6)
なお、その際、加入度数が強すぎる可能性があるので、その旨の示唆を、表示手段5aに表示する。
[FDFhaとFDNhaとで符号(+-)が異なる場合であって、FDFhaが0.3分未満、かつ、FDNhaの符号が-の場合]
(式6)にてFDhorを決定する。
なお、その際、加入度数が弱すぎる可能性があるので、その旨の示唆を、表示手段5aに表示する。
[FDFhaとFDNhaとで符号(+-)が異なる場合であって、上記のいずれにも該当しない場合]
(式6)にてFDhorを決定する。
FDver=(FDFva*0.5)+(FDNva*0.5) ・・・(式7)
以上のように、FDhorおよびFDverを求めるのが好ましい。
なお、上記の標準偏差、遠距離呈示と近距離呈示との間の固視ずれ量の値の差、固視ずれ量の値の判定、さらには後述のアライニングプリズムの値の判定を、後述の判定部8が行っても構わない。
図12(a)は垂直方向の固視ずれ量(横軸:単位は分)と垂直方向のアライニングプリズム(縦軸:単位はΔ)の関係を表している。符号が正の時は、左眼が下方で右眼が上方の固視ずれを表し、符号が負の時は、左眼が上方で右眼が下方の固視ずれを表す。
一方、図12(b)は水平方向の固視ずれ量(横軸:単位は分)と水平方向のアライニングプリズム(縦軸:単位はΔ)の関係を表している。符号が正の時は外方の固視ずれを表し、符号が負の時は内方の固視ずれを表す。
また、固視ずれ量の測定は、上記のように右眼用の視標、左眼用の視標および両眼の固視用視標を用いて行っている。アライニングプリズムの測定は、トライアルレンズを用いて固視ずれが認識されなくなった際の、トライアルレンズのプリズム量を採用している。
APver=0.574*FDver
APhor=1.694*FDhor ・・・(式8)
なお、FDverもFDhorも、どちらもトライアルフレームにプリズムを備えたトライアルレンズを全く装着しない状態で測定した場合の固視ずれ量である。なお、プリズムを備えたトライアルレンズをトライアルフレームに設置したものを「測定用眼鏡」と言う。
遠距離呈示の際の水平方向の固視ずれ量(FDFha)=-1.0分
近距離呈示の際の水平方向の固視ずれ量(FDNha)=-1.8分
遠距離呈示の際の垂直方向の固視ずれ量(FDFva)= 0.9分
近距離呈示の際の垂直方向の固視ずれ量(FDNva)= 1.2分
FDhor=-1.48分
APhor=-2.51Δ
FDver= 1.05分
APver= 0.60Δ
右眼用レンズにおけるアライニングプリズム=1.25Δ(内方)&0.30Δ(下方)
左眼用レンズにおけるアライニングプリズム=1.25Δ(内方)&0.30Δ(上方)
上記の実施形態においては、アライニングプリズムを取得するために、発注側コンピュータ2と受注側コンピュータ3とで役割を分担させた場合について述べた。その一方、本発明の特徴の一つは、固視ずれ量をアライニングプリズムへと変換し、これを取得することにある。そのため、固視ずれ量に基づいて算出されたアライニングプリズムを取得するプリズム処方値取得装置にも、本発明が反映されており、大きな技術的特徴を有している。
更に言うと、固視ずれ量に基づいて算出されたアライニングプリズムを取得する演算部7として、コンピュータを機能させるプリズム処方値取得プログラムにも、本発明が反映されており、大きな技術的特徴を有している。もちろん、当該プリズム処方値取得プログラムが格納された記録媒体にも、本発明が反映されており、大きな技術的特徴を有している。
以下、プリズム処方値取得の具体的な手順について説明する。この手順の概要としては、以下の通りである。
まず、固視ずれ量の測定の事前準備として、立体視テストを実施する。被検者が、正常な立体視を有さないと、固視ずれ量の測定が無駄になってしまうためである。
発注側コンピュータ2には、表示手段5a、3D眼鏡5b、選択手段5cおよび入力手段5dが設けられている。
そして、入力手段5dが操作されることにより、固視ずれ量が測定される。
そして固視ずれ量が演算部7に送信され、アライニングプリズムへと変換される。もちろん、それ以外の情報(眼鏡レンズに関する処方値等)を同時に送信しても構わない。
以下、ステップごとに分けて、プリズム処方値取得の具体的な手順について、図14を用いて説明する。図14は、本実施形態におけるプリズム処方値取得の手順を示すフローチャートである。
固視ずれ量の測定の事前準備として、最初に立体視テスト、例えばランダム・ドット・ステレオ・テストによって、三次元視が全体的立体視として存在することを確認することが合理的である。正常の立体視を持たない(斜視あるいは微小角斜視)ためにこのテストに合格しない人を発見して、別の専門家に回すことができる。その場合、眼鏡レンズとしてのプリズムレンズは、被検者には与えられない。なお、先に述べた試験図を傾けたり動かしたりしても、測定結果は損なわれない。なぜならば試験図は、傾けたり動かしたりしても単眼ではほとんど認識できないように形成されているからである。これにより被検者を誤って立体視と判定することが防止される。
本ステップにおいては、表示手段5aに視標を表示する。本実施形態においては、固視ずれを有する被検者にとっては視標が上下でずれて見えるが、表示手段5a上では揃っている状態を初期状態とする。そして、3D眼鏡5bを装着した被検者に対し、左眼用の視標および右眼用の視標を呈示する。もちろん各画像には視標が含まれている。両眼用の視標が表示された表示手段5aと3D眼鏡5bとの画像表示の同期については上述の通りである。
本ステップにおいては、入力手段5dを被検者が操作することにより、左眼用の視標および/または右眼用の視標を移動させる。本実施形態においては、視標を移動させることにより、被検者にとっては揃っていると知覚されるが、表示手段5a上では視標が上下でずれて配置される例を挙げる。この作業のことを「センタリング」とも言う。
arctan(θ)=d/観察距離(単位:m) ・・・(式9)
なお、θは固視ずれ量(単位:分)、dはずれ量(単位:m)を表す。
入力手段5dを用いた操作により、表示手段5a上では、上下の視標がずれている様子が表示されている。このずれ量は自動算出する。そして、被検者と表示手段5aとの間の距離から、固視ずれ量(単位:角度)を算出する。算出の手法については前ステップで述べた通りである。
本ステップにおいては、固視ずれ量取得ステップ(S4)で得られた固視ずれ量が、発注側コンピュータ2から受注側コンピュータ3に設けられた演算部7へと送信される。
本ステップにおいては、演算部7にて、当該固視ずれ量に基づきアライニングプリズム(プリズム処方値)の算出を行う。具体的な演算手法については、5-B-a)演算部7にて述べた通りである。
本実施形態においては、本発明の課題、および、<4.本発明の課題以外の、固視ずれの測定に係る課題>で説明した課題を解決するという効果を奏する。それ以外にも、以下の効果を奏する。
本発明は、上述した実施形態の内容に限定されることはなく、その要旨を逸脱しない範囲で適宜変更することが可能である。また、以下の変形例を適宜組み合わせてももちろん構わない。
上記の実施形態では、被検者の固視ずれ量が所定角度(例えば4分)以下である場合に、演算部7によって上記の演算を行うのが好ましいことを述べた。これに関連して、本実施形態に対し、固視ずれ量が所定角度以下か否かを判定する判定部8を別途設けても構わない。例えば、固視ずれ量が4分以下であれば、演算部7によって上記の演算を行うように制御手段に対して判定部8が指示を送る。一方、固視ずれ量が4分を超えている場合、[実施の形態2]で説明するエキスパートシステムと称されるシステムを用いて、アライニングプリズムを求める。こうすることにより、固視ずれ量が所定角度以下という条件にとらわれることなく、精度良くアライニングプリズムを取得することが可能となる。詳細については、後の[実施の形態2]で述べる。
上記の実施形態では、発注側コンピュータ2および受注側コンピュータ3のいずれかに、上記の各部構成が設置されている場合について述べた。その一方、上記の各部構成は、必ずしも発注側コンピュータ2および受注側コンピュータ3のいずれかに存在しなくても構わない。一例を挙げると、表示手段5aおよび入力手段5dは、眼鏡店に設置された発注側コンピュータ2になくとも構わない。例えば、眼科の病院に表示手段5aおよび入力手段5dを配置し、その結果(固視ずれ量)を眼鏡店に送信し、眼鏡店に設置された端末(発注側コンピュータ2)から、演算部7を有する受注側コンピュータ3へと、固視ずれ量を送信しても構わない。ただ、顧客となる被検者が眼鏡店にて視標位置の操作を行い、その結果を直接、発注側コンピュータ2へと送信する方が、手間がかからずに好ましい。
以下、実施の形態1以外の例について述べる。なお、以下の実施の形態に対し、上記の変形例を適宜採用しても構わない。また、以下の実施の形態ではプリズム処方値取得システム1に関する例について述べるが、もちろん、プリズム処方値取得方法、プリズム処方値取得装置およびプリズム処方値取得プログラムにも応用可能である。なお、実施の形態1と重複する内容については、記載を省略する。
本実施形態では、実施の形態1の内容に対し、変形例で述べた「判定部8」を活用する。そして、固視ずれ量が所定角度を超えている場合、エキスパートシステムと称されるシステムを用いて、アライニングプリズムを求める。以下、実施の形態1のプリズム処方値取得方法を基に説明する。なお、エキスパートシステムを用いることにより、約10分の所要時間で、アライニングプリズムを求めることが可能になる。
本ステップにおいては、固視ずれ量が所定角度以下か否かを判定する。固視ずれ量が4分以下であれば、演算部7によって上記の演算を行うように制御手段に対して判定部8が指示を送る。その場合は、実施の形態1に記載のように(S5 送信ステップ)に進む。一方、固視ずれ量が4分を超えている場合、エキスパートシステムと称されるシステムを用いて、アライニングプリズムを求める。
エキスパートシステムの概要は、以下の通りである。
ソフトウェアにより、実施の形態1で挙げた試験図の表示、被検者による双方向での利用および検査員へのユーザガイドが可能となる。この測定方法は、ソフトウェアを用いたエキスパートシステムによって検査員にガイドされモニタリングされるようになっている。
その他検限における標準的検査視機能が測定され、視力は両目とも0.63(20/32)以上とする。
エキスパートシステムを用いるにあたり、本実施形態、および、従来の方法に対して改良を加えたランダムドットステレオカード(例えば図11(a)および(b))を用いた検査結果が陽性で両眼視能力を有している被検者を対象とする。すなわち、以下の例において、被検者はカードに隠れたテストパターンを立体的に認識できる。これによって、高い確実性をもって、被検者が通常の両眼視能力を有し、斜視に罹患していないことを想定かつ確認することが可能となる。
2回にわたるセンタリング(固視ずれ量の測定)における1回目の作業(部分ステップ71)の後で、検査員は測定の結果として、それぞれの眼に対し、2回目の作業において用いるトライアルレンズに備えさせるプリズム値と基底方向上または下を、検査員用装置42上の表示または音声出力によって指示される(部分ステップ72)。検査員はこのプリズム値(以降、補正プリズムと言う。)、例えば右眼に対して基底方向で上0.5Δをトライアルレンズに採用し、このプリズムレンズをトライアルフレームに設置する。それから次の測定作業が続き、再びプリズム値が指示される。これはエキスパートシステムの指定に従い、補正プリズムの大きさと基底方向が求められ、次のステップが要求されるまで繰り返される。
なお、5-B-a)演算部7にて説明したように、固視ずれ測定自体の信頼性を確認すべく、同一条件での測定を2回行い、各測定における固視ずれ量の間の標準偏差や遠距離呈示と近距離呈示との間の固視ずれ量の値の差が規定値以内か否かを確認するのが好ましい。なお、その際、5-A-a1)表示手段5aにて説明したように、複数回測定される場合、背景画像の前面において、測定毎に試験図の場所を変更するのが好ましい。この2回測定は、上記で言うところの1回目の作業に含まれる。
前記の検眼用トライアルフレームに反映されたプリズムによって2本の垂直方向の線が左右にずれが無く真っ直ぐに上下に並んで見える様になった時に、検眼用のトライアルフレームに反映されているプリズムが、遠距離呈示時および近距離呈示時の垂直方向および水平方向の固視ずれの補正プリズムの値として求められる。しかし、これは実物のトライアルレンズをトライアルフレームに装着した測定用眼鏡を被検者が装用することにより固視ずれが解消された際のプリズム値である。そのため、用意されたトライアルレンズのプリズム値がどれだけ細かいステップで用意して行ったかによって、求められる補正プリズムの値は変わってくる。通常、検眼用のプリズムレンズは0.25Δのステップで作成されているため、0.25Δよりも細かい値での補正プリズムを求めることはできない。
ソフトウェアのエキスパートシステムは、トライアルフレームに装着するプリズムの量を1.00Δステップの粗いステップで検査員に指示を出すようにする。そして、ソフトウェアによって指示されたプリズムによって、固視ずれ用のテストパターンの2本の線の位置合わせの方向が逆転した時の前と後に、前後の2本の線の位置合わせ量から求められるそれぞれの固視ずれ量と、前後の検眼用トライアルフレームに装着した二つのプリズムの値とから比例配分することによって固視ずれがゼロとなる補正プリズムの値を求めるのが好ましい。
AP=P2-(P2-P1)*FD2/(FD2-FD1) ・・・(式10)
APは、アライニングプリズムにおけるプリズム量(単位:Δ)を指す。
FD1は、固視ずれの方向が逆転する直前の固視ずれ量(単位:角度)を指す。
FD2は、固視ずれの方向が逆転した直後の固視ずれ量を指す。
なお、FD1とFD2の符号は、固視ずれの方向が外方の時に正とし、内方の時に負とする。
P1は、固視ずれの方向が逆転する直前のプリズム量を指す。
P2は、固視ずれの方向が逆転した直後のプリズム量を指す。
AP=2.00+(2.00-1.00)*(-0.40)/((-0.4)-0.70)=1.64 ・・・(式11)
このようにして、0.01Δの刻みでアライニングプリズムを求めることができる。
被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量からプリズム処方値を取得する方法であって、
被検者に対して固視ずれ量の測定Aを行った後、当該固視ずれ量に応じた所定のプリズム量を備えた測定用眼鏡を被検者が装用して固視ずれ量の測定Bを再度行い、以下の工程1ないし3のいずれかを行う、プリズム処方値取得方法。
(工程1)測定Bにおいて固視ずれが知覚されなくなった場合は、測定用眼鏡のプリズム量をプリズム処方値とする。
(工程2)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した場合は、以下の(i)~(ii)のいずれかを行う。
(i)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用していない場合は、測定Bでの測定用眼鏡のプリズム量の1/2をプリズム処方値とする。
(ii)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用している場合は、測定Aでの測定用眼鏡のプリズム量と測定Bでの測定用眼鏡のプリズム量との平均値をプリズム処方値とする 。
なお、(ii)において平均値をとるところ、(i)においては、測定Aでのプリズム量をゼロとみなして計算しているため、測定Bでの測定用眼鏡のプリズム量の1/2をプリズム処方値としている。
(工程3)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれのまま、または、外方固視ずれのままの場合は、所定のプリズム量よりもプリズムを強くした測定用眼鏡を被検者が装用して再度固視ずれ量を測定し、(工程1)または(工程2)の状態となるまで測定用眼鏡のプリズムを強くしつつ固視ずれ量の測定を繰り返す。
被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量からプリズム処方値を取得する方法であって、
被検者に対して固視ずれ量の測定Aを行った後、当該固視ずれ量に応じた所定のプリズム量を備えた測定用眼鏡を被検者が装用して固視ずれ量の測定Bを再度行い、以下の工程1ないし3のいずれかを行う、プリズム処方値取得方法。
(工程1)測定Bにおいて固視ずれが知覚されなくなった場合は、測定用眼鏡のプリズム量をプリズム処方値とする。
(工程2)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した場合は、以下の(iii)~(iv)のいずれかを行う。
(iii)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用していない場合は、以下の式によってプリズム処方値を得る。
AP=P2-P2*FD2/(FD2-FD1)
(iv)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用している場合は、以下の式によってプリズム処方値を得る。
AP=P2-(P2-P1)*FD2/(FD2-FD1)
APは、アライニングプリズムにおけるプリズム量(単位:Δ)を指す。
FD1とFD2は測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した時の移行前後の固視ずれ量である。
なお、FD1とFD2の符号は、固視ずれの方向が外方の時に正とし、内方の時に負とする。
P1とP2は測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した時の移行前後の装用したプリズム量である。
なお、(iv)においては上記の式に値を入れるところ、(iii)においては、測定Aでのプリズム量であるP1をゼロとみなして計算している。
(工程3)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれのまま、または、外方固視ずれのままの場合は、所定のプリズム量よりもプリズムを強くした測定用眼鏡を被検者が装用して再度固視ずれ量を測定し、(工程1)または(工程2)の状態となるまで測定用眼鏡のプリズムを強くしつつ固視ずれ量の測定を繰り返す。
なお、エキスパートシステムは、固視ずれ量に基づいてアライニングプリズムを得るための手法である。
上記の実施形態においては、「固視ずれ量」に基づいてアライニングプリズムを取得する例について述べた。本実施形態においては、固視ずれ量に基づいてアライニングプリズムを取得するのではなく、固視ずれ量の測定を行うまでもなくダイレクトに「アライニングプリズム」を簡便に求める手法について述べる。なお、実施の形態1および2と重複する内容については、記載を省略する。
本実施形態における課題は、以下の通りである。
なお、上記の場合、固視用視標は設けていない。また、左眼用の画像と右眼用の画像を各々移動可能としている。この構成により、被検者がプリズムレンズを装用した状態と同じ場面を再現できる。つまり、被検者がプリズムレンズを装用すると、例えば右眼においては右眼で知覚される視野全体が内方または外方にシフトする。これと同じ状況を、表示手段5a上で再現するのである。そのため、表示手段5aには少なくとも右眼用の画像及び左眼用の画像が表示され、各々の画像には視標に加え背景画像が含まれており、当該視標が互いにずれていないときには当該背景画像も互いにずれないように各々の背景画像は配置されている。
もちろん、本実施形態は背景画像を含まずに視標(ノニウスライン)のみを有する画像であっても適用可能であるが、特許文献1に記載の内容を鑑みると、右眼用の画像および左眼用の画像には、各々背景画像を有するのが好ましい。本実施形態においては、その場合について例示する。
固視ずれを有する被検者が、3D眼鏡5bを介し、表示手段5aに表示された右眼用の画像を右眼にて見、且つ、表示手段5aに表示された左眼用の画像を左眼にて見た際に被検者にとっては当該画像が互いにずれて知覚される一方、表示手段5a上では当該右眼用の画像と当該左眼用の画像とは互いにずれていない状態。
状態1と同じ被検者が、3D眼鏡5bを介し、表示手段5aに表示された右眼用の画像を右眼にて見、且つ、表示手段5aに表示された左眼用の画像を左眼にて見た際に被検者にとっては当該画像が互いにずれていないように知覚される一方、表示手段5a上では当該右眼用の画像と当該左眼用の画像とは互いにずれている状態。
る。本実施形態の場合だと、上下の視標が天地方向で揃うと、被検者の視界には背景画像
が極めて鮮明に映る。仮に、上下の視標が天地方向で揃っているか否かを被検者がはっき
りと判別できない場合でも、背景画像が鮮明に見えたときには上下の視標が揃っていると
みなしても構わない。つまり、左眼用の背景画像と右眼用の背景画像は、視標がずれてい
るか否かの判別を補助する。本実施形態においては、状態1がずれ量の基準となるため、
状態1を正確に把握する必要がある。そこで、背景画像を採用することにより、視標がズ
レていない状況を被検者が確実に判別可能となり、状態1を精度良く把握することが可能
になり、ひいては精度良くずれ量を取得できる。そして、このずれ量を、被検者と表示手段5aとの間の距離に基づいて演算部7にてアライニングプリズムに換算すればよい。
実施の形態1や実施の形態2で得られたアライニングプリズムの量に応じて、本実施形態3の方法によって、左眼と右眼に呈示する視野全体の画像の呈示位置をずらして呈示して、被検者が固視ずれの無い状態で見えていることを確認することができる。この方法では、プリズムレンズを用いることなく、簡便に被検者の固視ずれがアライニングプリズムによって補正されて固視ずれの無い状態で見えているかどうかが確認できる。
被検者の左右眼の固視ずれを眼鏡レンズにより矯正するためのプリズム処方値を取得するシステムであって、
被検者が、3D眼鏡を介し、表示手段に表示された右眼用の画像を右眼にて見、
且つ、表示手段に表示された左眼用の画像を左眼にて見た際に被検者にとっては当該画像が互いにずれている一方、表示手段上では当該画像は互いにずれていない状態と、
被検者が、3D眼鏡を介し、表示手段に表示された右眼用の画像を右眼にて見、
且つ、表示手段に表示された左眼用の画像を左眼にて見た際に被検者にとっては当該画像が互いにずれていない一方、表示手段上では当該画像は互いにずれている状態と、
の間の、表示手段上での画像のずれ量及びずれ方向に基づいて演算された、固視ずれを有する被検者のための眼鏡レンズのプリズム処方値を取得するプリズム処方値取得部を有するプリズム処方値取得システム。
但し、前記画像は、視標および背景画像を含む。
なお、実施の形態1および実施の形態2に対して、本実施形態の構成の一部を適用しても構わない。
2……発注側コンピュータ
3……受注側コンピュータ
4……通信回線
5……測定部
5a…表示手段
5b…付属装置(3D眼鏡)
5c…選択手段
5d…入力手段
6……送信部
7……演算部
8……判定部
Claims (9)
- 被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する演算部を有する、プリズム処方値取得システム。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0 - 固視ずれ量が±4分以内か否かを判定する判定部を有し、
前記判定部によって固視ずれ量が±4分以内と判定された場合に、前記演算部によって固視ずれ量をプリズム処方値へと数値変換する、請求項1に記載のプリズム処方値取得システム。 - 固視ずれ量を測定する測定部と、
前記測定部にて測定された固視ずれ量を前記演算部に送信する送信部と、
を備え、
前記測定部においては、
固視ずれにおけるずれ方向を設定した上で、右眼のみに呈示される右眼用の視標、左眼のみに呈示される左眼用の視標、および被検者が両眼で固視する固視用視標を表示する表示手段と、
前記表示手段に表示された右眼用の視標および左眼用の視標のうち少なくともいずれかを移動自在な入力手段と、
を有し、
右眼用の視標および左眼用の視標が移動する際には固視用視標は移動せず、被検者が固視用視標を固視し続ける状態において、前記表示手段上での当該両視標のずれ量から固視ずれ量を測定する、請求項1または2に記載のプリズム処方値取得システム。 - 前記表示手段に表示される右眼用の視標、左眼のみに呈示される左眼用の視標、および被検者が両眼で固視する固視用視標は、一つの試験図に含まれており、
前記試験図は、複数の固視用視標を有する背景画像の前面の任意の場所に配置自在である、請求項3に記載のプリズム処方値取得システム。 - 前記表示手段は左右の眼に別々な画像を呈示可能な立体画像表示手段であり、右眼用の視標は被検者の右眼に呈示され、左眼用の視標は被検者の左眼に呈示される、請求項3または4に記載のプリズム処方値取得システム。
- 被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する、プリズム処方値取得方法。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0 - 固視ずれ量の測定Aによって得られた固視ずれ量が所定角度以下か否かを判定し、固視ずれ量が所定角度以下と判定された場合には固視ずれ量をプリズム処方値へと数値変換し、固視ずれ量が所定角度を超えたと判定された場合には、当該固視ずれ量に応じた所定のプリズム量を備えた測定用眼鏡を被検者が装用して固視ずれ量の測定Bを再度行い、以下の工程1ないし3のいずれかを行う、請求項6に記載のプリズム処方値取得方法。
(工程1)測定Bにおいて固視ずれが知覚されなくなった場合は、測定用眼鏡のプリズム量をプリズム処方値とする。
(工程2)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した場合は、以下の(i)~(iv)のいずれかを行う。
(i)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用していない場合は、測定Bでの測定用眼鏡のプリズム量の1/2をプリズム処方値とする。
(ii)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用している場合は、測定Aでの測定用眼鏡のプリズム量と測定Bでの測定用眼鏡のプリズム量との平均値をプリズム処方値とする 。
(iii)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用していない場合は、以下の式によってプリズム処方値を得る。
AP=P2-P2*FD2/(FD2-FD1)
(iv)測定Aにおいて、所定のプリズム量を備えた測定用眼鏡を被検者が装用している場合は、以下の式によってプリズム処方値を得る。
AP=P2-(P2-P1)*FD2/(FD2-FD1)
APは、プリズム処方値におけるプリズム量(単位:プリズムディオプター)を指す。
FD1とFD2は測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した時の移行前後の固視ずれ量である。
なお、FD1とFD2の符号は、固視ずれの方向が外方の時に正とし、内方の時に負とする。
P1とP2は測定Bにおいて内方固視ずれから外方固視ずれへ移行、または、外方固視ずれから内方固視ずれへ移行した時の移行前後の装用したプリズム量である。
(工程3)測定Bにおいても被検者が未だに固視ずれを知覚し、かつ、測定Bにおいて内方固視ずれのまま、または、外方固視ずれのままの場合は、所定のプリズム量よりもプリズムを強くした測定用眼鏡を被検者が装用して再度固視ずれ量を測定し、(工程1)または(工程2)の状態となるまで測定用眼鏡のプリズムを強くしつつ固視ずれ量の測定を繰り返す。 - 被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する演算部を有する、プリズム処方値取得装置。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0 - 被検者が対象を両眼で固視した際の視軸が網膜上の中心窩からずれる度合いを示す固視ずれ量(単位:角度)であって、当該固視ずれ量が±4分以内の場合に、当該固視ずれ量に係数を乗じ、当該固視ずれ量をプリズム処方値へと数値変換する演算部としてコンピュータを機能させる、プリズム処方値取得プログラム。
なお、プリズム処方値は以下の式に基づいて演算する。
APver=kver*FDver
APhor=khor*FDhor
APverは、プリズム処方値における天地方向のプリズム量(単位:プリズムディオプター)を指し、
APhorは、プリズム処方値における水平方向のプリズム量を指し、
FDverは、天地方向における固視ずれ量を指す。
FDhorは、水平方向における固視ずれ量を指し、
ただし、各係数khorおよびkverは、以下の条件を満たす。
0.3≦kver≦0.7
1.4≦khor≦2.0
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/761,668 US9492075B2 (en) | 2013-01-18 | 2014-01-20 | Prism prescription value acquisition system, acquisition method, acquisition apparatus and program for correcting fixation disparity |
ES14741004T ES2963724T3 (es) | 2013-01-18 | 2014-01-20 | Sistema de adquisición del valor de prescripción del prisma, procedimiento de adquisición, dispositivo de adquisición y programa para corregir la disparidad de fijación |
EP14741004.7A EP2946719B1 (en) | 2013-01-18 | 2014-01-20 | Prism prescription value acquisition system, acquisition method, acquisition device, and program for correcting fixation disparity |
JP2014557532A JP5937235B2 (ja) | 2013-01-18 | 2014-01-20 | 固視ずれを補正するためのプリズム処方値取得システム、取得方法、取得装置およびプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013100516 | 2013-01-18 | ||
DE102013100516.0 | 2013-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014112626A1 true WO2014112626A1 (ja) | 2014-07-24 |
Family
ID=51209711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050983 WO2014112626A1 (ja) | 2013-01-18 | 2014-01-20 | 固視ずれを補正するためのプリズム処方値取得システム、取得方法、取得装置およびプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9492075B2 (ja) |
EP (1) | EP2946719B1 (ja) |
JP (1) | JP5937235B2 (ja) |
ES (1) | ES2963724T3 (ja) |
WO (1) | WO2014112626A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125847A1 (ja) * | 2014-02-19 | 2015-08-27 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズ供給システム、そのプログラム、プリズム量決定装置、プリズム量決定方法および眼鏡レンズの製造方法 |
WO2017042223A1 (de) * | 2015-09-09 | 2017-03-16 | Optik Hecht E.K. Inhaber: Gerhard Hecht | System zur prüfung der sehleistung und zum erkennen und korrigieren von sehfehlern |
JP2020039848A (ja) * | 2018-09-07 | 2020-03-19 | 株式会社トプコン | 眼科装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018050297A1 (en) * | 2016-09-14 | 2018-03-22 | Essilor International | Systems and methods for vision testing |
EP3295864B1 (en) * | 2016-09-15 | 2019-05-15 | Carl Zeiss Vision International GmbH | Apparatus for assisting in establishing a correction for correcting heterotropia or heterophoria and method of operating a computer for assisting in establishing a correction for correcting heterotropia or heterophoria |
US10354427B2 (en) * | 2016-10-19 | 2019-07-16 | Samsung Display Co., Ltd. | Method of driving head mounted display and head mounted display performing the same |
CN113425243B (zh) * | 2021-03-17 | 2022-08-23 | 河海大学常州校区 | 一种基于随机点立体图的立体视觉测试方法 |
KR20240112268A (ko) * | 2021-11-25 | 2024-07-18 | 에씰로 앙터나시오날 | 대상자의 안구 운동성을 평가하기 위한 장치, 시스템 및 컴퓨터 구현 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4222639A (en) | 1978-10-31 | 1980-09-16 | Sheedy James E | Apparatus and system for analyzing fixation disparity |
US5026151A (en) | 1989-06-23 | 1991-06-25 | Mentor O & O, Inc. | Visual function tester with binocular vision testing |
US5331358A (en) | 1991-05-08 | 1994-07-19 | Carl-Zeiss-Stiftung | Vision testing system for testing the sight function of a patient |
JPH08164112A (ja) * | 1994-12-14 | 1996-06-25 | Nikon Corp | 自覚式検眼装置 |
JPH11155813A (ja) * | 1997-11-28 | 1999-06-15 | Nidek Co Ltd | 視機能検査装置 |
JP2007268157A (ja) * | 2006-03-31 | 2007-10-18 | Topcon Corp | 検眼プログラム,これを有する記録媒体及び自覚式検眼装置 |
JP4302525B2 (ja) * | 2001-11-13 | 2009-07-29 | 株式会社トプコン | 検眼装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6644811B2 (en) * | 2001-04-11 | 2003-11-11 | Ferris State University | Oculomotor balance tester |
-
2014
- 2014-01-20 JP JP2014557532A patent/JP5937235B2/ja active Active
- 2014-01-20 ES ES14741004T patent/ES2963724T3/es active Active
- 2014-01-20 US US14/761,668 patent/US9492075B2/en active Active
- 2014-01-20 WO PCT/JP2014/050983 patent/WO2014112626A1/ja active Application Filing
- 2014-01-20 EP EP14741004.7A patent/EP2946719B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4222639A (en) | 1978-10-31 | 1980-09-16 | Sheedy James E | Apparatus and system for analyzing fixation disparity |
US5026151A (en) | 1989-06-23 | 1991-06-25 | Mentor O & O, Inc. | Visual function tester with binocular vision testing |
US5331358A (en) | 1991-05-08 | 1994-07-19 | Carl-Zeiss-Stiftung | Vision testing system for testing the sight function of a patient |
EP0512443B1 (de) | 1991-05-08 | 1996-01-10 | Firma Carl Zeiss | Sehprüfsystem |
JPH08164112A (ja) * | 1994-12-14 | 1996-06-25 | Nikon Corp | 自覚式検眼装置 |
JPH11155813A (ja) * | 1997-11-28 | 1999-06-15 | Nidek Co Ltd | 視機能検査装置 |
JP4302525B2 (ja) * | 2001-11-13 | 2009-07-29 | 株式会社トプコン | 検眼装置 |
JP2007268157A (ja) * | 2006-03-31 | 2007-10-18 | Topcon Corp | 検眼プログラム,これを有する記録媒体及び自覚式検眼装置 |
US7597445B2 (en) | 2006-03-31 | 2009-10-06 | Kabushiki Kaisha Topcon | Program for optometry, recording medium and subjective optometric apparatus having the optometric program, and optometric method |
Non-Patent Citations (3)
Title |
---|
"Fixation disparity analysis: Sensory and motor approaches", OPTOMETRY, vol. 77, no. 12, December 2006 (2006-12-01), pages 590 - 608 |
"Potential strabismus correction guidelines", June 2005, IVBV |
R. LONDON ET AL.: "Fixation disparity analysis: Sensory and motor approaches", OPTOMETRY, vol. 77, no. 12, December 2006 (2006-12-01), XP028082292 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125847A1 (ja) * | 2014-02-19 | 2015-08-27 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズ供給システム、そのプログラム、プリズム量決定装置、プリズム量決定方法および眼鏡レンズの製造方法 |
US9921418B2 (en) | 2014-02-19 | 2018-03-20 | Hoy A Lens Thailand Ltd. | Spectacle lens supply system, program therefor, prism amount determination device, prism amount determination method, and method for producing spectacle lens |
WO2017042223A1 (de) * | 2015-09-09 | 2017-03-16 | Optik Hecht E.K. Inhaber: Gerhard Hecht | System zur prüfung der sehleistung und zum erkennen und korrigieren von sehfehlern |
CN108135464A (zh) * | 2015-09-09 | 2018-06-08 | 赫克特光学, 注冊商人, 老板: 格哈德·赫克特 | 用于检查视觉功能并识别和矫正视觉缺陷的系统 |
JP2020039848A (ja) * | 2018-09-07 | 2020-03-19 | 株式会社トプコン | 眼科装置 |
JP2023024700A (ja) * | 2018-09-07 | 2023-02-16 | 株式会社トプコン | 眼科装置 |
JP7265897B2 (ja) | 2018-09-07 | 2023-04-27 | 株式会社トプコン | 眼科装置 |
JP7391178B2 (ja) | 2018-09-07 | 2023-12-04 | 株式会社トプコン | 眼科装置 |
Also Published As
Publication number | Publication date |
---|---|
US9492075B2 (en) | 2016-11-15 |
ES2963724T3 (es) | 2024-04-01 |
EP2946719B1 (en) | 2023-09-27 |
EP2946719A4 (en) | 2016-10-05 |
JP5937235B2 (ja) | 2016-06-22 |
EP2946719A1 (en) | 2015-11-25 |
JPWO2014112626A1 (ja) | 2017-01-19 |
US20150351625A1 (en) | 2015-12-10 |
EP2946719C0 (en) | 2023-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5937235B2 (ja) | 固視ずれを補正するためのプリズム処方値取得システム、取得方法、取得装置およびプログラム | |
US9259146B2 (en) | Binocular visual performance measuring method, binocular visual performance measuring program, eyeglass lens design method and eyeglass lens manufacturing method | |
EP4076139B1 (en) | System and method for determining refraction features of both first and second eyes of a subject | |
CN102905609B (zh) | 视觉功能检查装置 | |
CN105455774B (zh) | 基于两眼间对比度调控下物像不等的心理物理学测量方法 | |
CN108371538B (zh) | 一种人眼视觉监测系统及方法 | |
KR101474021B1 (ko) | 검안 장치 | |
US20160157716A1 (en) | Methods and Apparatus for Eye Relaxation | |
CN115040069A (zh) | 一种订购眼镜的系统 | |
CN107249433A (zh) | 用于测量眼能动性的系统和方法 | |
WO2013151171A1 (ja) | 眼科測定装置、及び眼科測定装置を備える眼科測定システム | |
ES2932157T3 (es) | Determinación de un error de refracción de un ojo | |
JP5631157B2 (ja) | 両眼視機能測定方法、両眼視機能測定プログラム、眼鏡レンズの設計方法、及び眼鏡レンズの製造方法 | |
JP5715797B2 (ja) | 両眼視機能測定方法、両眼視機能測定プログラム、眼鏡レンズの設計方法、及び眼鏡レンズの製造方法 | |
EP4040219A1 (en) | Binocular function measuring method, binocular function measuring program, design method for spectacle lens, manufacturing method for spectacle lens, and binocular function measuring system | |
CN116725473B (zh) | 一种动态立体视觉检测装置和方法 | |
JPWO2019009034A1 (ja) | 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ、眼鏡レンズ発注装置、眼鏡レンズ受注装置および眼鏡レンズ受発注システム | |
EP3109692B1 (en) | Spectacle lens supply system, program therefor, prism amount determination device, prism amount determination method, and method for producing spectacle lens | |
Järvenpää et al. | Optical characterization and ergonomical factors of near‐to‐eye displays | |
KR101506818B1 (ko) | 안경렌즈제작을 위한 안 검사 시스템과 검사 방법 | |
KR20100104330A (ko) | 3차원 아드볼 패러다임을 이용하여 객관적으로 3차원 디스플레이 유발 피로감을 측정할 수 있는 방법 및 장치 | |
EP3730032B1 (en) | Method for quantifying ocular dominance of a subject and apparatus for implementing a method for quantifying ocular dominance of a subject | |
US20240197169A1 (en) | Method for determining accurate values of refractive features of an eye of a subject in near andor intermediary vision conditions and associated method | |
KR20240112268A (ko) | 대상자의 안구 운동성을 평가하기 위한 장치, 시스템 및 컴퓨터 구현 방법 | |
CN117042590A (zh) | 测量和分类眼球偏斜的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14741004 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014557532 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014741004 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14761668 Country of ref document: US |