WO2014112442A1 - 中継装置、中継衛星および衛星通信システム - Google Patents

中継装置、中継衛星および衛星通信システム Download PDF

Info

Publication number
WO2014112442A1
WO2014112442A1 PCT/JP2014/050359 JP2014050359W WO2014112442A1 WO 2014112442 A1 WO2014112442 A1 WO 2014112442A1 JP 2014050359 W JP2014050359 W JP 2014050359W WO 2014112442 A1 WO2014112442 A1 WO 2014112442A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reception
unit
transmission
local
Prior art date
Application number
PCT/JP2014/050359
Other languages
English (en)
French (fr)
Inventor
藤村 明憲
佐々木 剛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CA2898183A priority Critical patent/CA2898183C/en
Priority to US14/440,794 priority patent/US9473236B2/en
Priority to EP14740628.4A priority patent/EP2947788B1/en
Priority to JP2014557443A priority patent/JP5836508B2/ja
Publication of WO2014112442A1 publication Critical patent/WO2014112442A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/40Monitoring; Testing of relay systems

Definitions

  • the present invention relates to a relay device, a relay satellite, and a satellite communication system.
  • space devices with excellent radiation resistance generally have a lower sampling rate and processing speed than consumer devices used on the ground. There was a problem that it was difficult due to the performance limit of the device.
  • one set of processing units processes one wideband signal. For this reason, if any one of the A / D converter, D / A converter, and digital demultiplexer / multiplexer is out of the set of processing units, or an input signal due to unexpected interference wave input, etc. There was a problem that communication would become impossible if the network became saturated.
  • the present invention has been made in view of the above, and is capable of relaying a broadband signal even when the performance of the device is limited, and can reduce deterioration in communication quality due to failure or interference.
  • An object is to obtain a relay device, a relay satellite, and a satellite communication system.
  • the present invention outputs a plurality of reception processing units, a plurality of transmission processing units, and signals processed by the reception processing unit to the transmission processing unit.
  • a local generation unit that generates two or more local signals having different frequencies from the connection unit, and supplies the local signals to the reception processing unit; and calculates a phase difference between the local signals, and sends the local signal to the reception processing unit
  • a local phase calculation unit that inputs the phase difference
  • the reception processing unit includes a reception-side phase correction unit that performs phase correction based on the phase difference
  • the transmission processing unit receives from the connection unit A signal is transmitted, and the reception processing unit processes the reception signal by one or more of the reception processing units when a wideband received signal whose bandwidth is wider than a processable bandwidth is input.
  • the relay satellite, the relay apparatus, and the satellite communication system according to the present invention can relay a wideband signal even when the device performance is limited, and can reduce deterioration in communication quality due to failure or interference. There is an effect.
  • FIG. 1 is a diagram illustrating a configuration example of a relay satellite according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a receiving unit in the relay satellite illustrated in FIG.
  • FIG. 3 is a diagram illustrating a configuration example of a transmission unit in the relay satellite illustrated in FIG.
  • FIG. 4 is a diagram illustrating a configuration example of the local generation unit.
  • FIG. 5 is a diagram illustrating a configuration example of the local phase difference calculation unit.
  • FIG. 6 is a diagram illustrating an outline of a signal relay operation by the relay satellite according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a signal relay operation procedure by the relay satellite according to the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a relay satellite according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a receiving unit in the relay satellite illustrated in FIG.
  • FIG. 3 is a diagram illustrating a configuration example of
  • FIG. 8 is a diagram illustrating an example of a spectrum relationship of signals processed by the demultiplexing unit.
  • FIG. 9 is a diagram illustrating an example of a signal received at the reception port.
  • FIG. 10 is a diagram illustrating an example of the signal relay operation (transmission side).
  • FIG. 11 is a diagram illustrating an example of a wideband signal transmitted from the relay satellite to the receiving station.
  • FIG. 12 is a diagram illustrating another configuration example of the local generation unit.
  • FIG. 13 is a diagram illustrating a flow of frequency conversion processing on the reception side.
  • FIG. 14 is a diagram illustrating an example of the phase change of the signal after passing through the limiter.
  • FIG. 15 is a diagram showing an example of the flow of frequency conversion on the transmission side.
  • FIG. 16 is a diagram illustrating a configuration example of a local phase difference calculation unit according to the second embodiment.
  • FIG. 17 is a diagram illustrating a configuration example of a local phase difference calculation unit according to the third embodiment.
  • FIG. 18 is a diagram illustrating an example of sampling processing in the third embodiment.
  • FIG. 19 is a diagram illustrating a configuration example of a relay satellite according to the fourth embodiment.
  • FIG. 20 is a diagram illustrating a configuration example of a relay satellite according to the fourth embodiment.
  • FIG. 21 is a diagram illustrating an example of a complex unmodulated signal waveform.
  • FIG. 22 is a diagram showing the flow of processing for a complex unmodulated signal for reception side correction.
  • FIG. 23 is a diagram illustrating a configuration example of a reception-side phase time difference detection unit according to the fourth embodiment.
  • FIG. 24 is a diagram illustrating a waveform example of each non-modulated signal in the fourth embodiment.
  • FIG. 25 is a diagram illustrating a flow of processing for the transmission-side correction CW signal according to the fourth embodiment.
  • FIG. 26 is a diagram illustrating a configuration example of a transmission-side phase time difference detection unit according to the fourth embodiment.
  • FIG. 27 is a diagram showing a state of the same frequency interference when the beam areas are brought close to each other.
  • FIG. 28 is a diagram illustrating an example of a reception DBF process according to the fifth embodiment.
  • FIG. 29 is a diagram illustrating a configuration example of a relay apparatus having a reception DBF function and a transmission DBF function.
  • FIG. 30 is a diagram illustrating a transmission DBF processing example and effects.
  • FIG. 31 is a diagram illustrating a configuration example of the relay device according to the sixth embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a relay satellite according to a first embodiment of the present invention.
  • the relay satellite 200 of this embodiment includes receiving antennas 21-1 to 21-N (N is an integer of 2 or more), a receiving unit 201, a connecting unit 31, a transmitting unit 202, and a transmitting antenna 40. -1 to 40-N.
  • FIG. 1 shows the configuration of a relay device mounted on the relay satellite among the entire configuration of the relay satellite.
  • the number of reception antennas and the number of transmission antennas are the same, but the number of reception antennas and the number of transmission antennas may be different.
  • the relay satellite performs signal processing to be described later on the signals received by the receiving antennas 21-1 to 21-N, and transmits the signals by transmitting from the transmitting antennas 40-1 to 40-N. Relay.
  • a relay satellite and a satellite communication system capable of relaying a broadband signal using a device having a low sampling speed and a processing speed will be described.
  • FIG. 2 is a diagram illustrating a configuration example of a receiving unit in the relay satellite 200 illustrated in FIG.
  • a connection unit 31 transmission stations 101, 103, 104, and 105 that are transmission source devices of signals to be relayed, and a control station that is a ground station that transmits a command signal to a relay satellite 110 is also described.
  • the reception antennas 21-1 to 21-N receive signals from the beam areas of the reception beams.
  • FIG. 2 shows an example in which there are two beam areas, a wideband beam area 100 and a narrowband beam area 102.
  • the wideband beam area 100 includes a transmission station 101 that transmits a wideband signal
  • the narrowband beam area 102 includes transmission stations 103, 104, and 105 that transmit a narrowband signal.
  • the broadband signal indicates a signal having a bandwidth exceeding the bandwidth that can be processed by the AD converter, the demultiplexing unit, the multiplexing unit, and the DA converter, as will be described later.
  • the reception unit 201 of the relay satellite 200 includes an uplink / downlink frequency conversion unit 10, a reception analog switch matrix (first switch unit) 22, and a bandpass filter (BPF) 23- 1 to 23-N, mixers 24-1 to 24-N, local generator 25, source oscillation 26, bandpass filters 27-1 to 27-N, and AD converter (A / D) 28- 1 to 28-N, reception phase correction units (RPC) 29-1 to 29-N, demultiplexing units 30-1 to 30-N, and connection units (digital switch matrix) 31 are provided.
  • a reception analog switch matrix first switch unit 22
  • BPF bandpass filter
  • the uplink / downlink frequency converter 10 also includes band-pass filters (BPF) 12-1 to 12-N on the input side, mixers 13-1 to 13-N, a local oscillator 11, and a band on the output side. Pass filters (BPF) 14-1 to 14-N.
  • BPF band-pass filters
  • FIG. 3 is a diagram showing a configuration example of a transmission unit in the relay satellite shown in FIG.
  • FIG. 3 also shows the beam areas 400 and 402 and the receiving stations 401 and 403 which are receiving apparatuses for signals to be relayed.
  • FIG. 3 shows an example in which the receiving station 401 exists in the beam area 400 and the receiving station 403 exists in the beam area 402.
  • the transmission unit 202 of the relay satellite 200 includes multiplexing units 32-1 to 32-N, transmission phase correction units 33-1 to 33-N, and a DA converter (D / A).
  • 34-1 to 34-N low-pass filters 35-1 to 35-N, mixers 36-1 to 36-N, a transmission analog switch matrix (second switch unit) 37, and a band-pass filter 38-1 To 38-N.
  • the relay satellite transmits four uplink signals transmitted from the transmitting stations in the two beam areas (broadband beam area 100 and narrowband beam area 102) to two beam areas (beam area 400). 402), the number of beams and the number of uplink signals to be relayed are not limited to the examples of FIGS.
  • connection unit 31 is, for example, a digital switch matrix, and receives the signals output from the demultiplexing units 30-1 to 30-N as inputs, and inputs the input signals to the subsequent multiplexing units 32-1 to 32-N. Sort out.
  • FIG. 4 is a diagram illustrating a configuration example of the local generation unit 25 included in the reception unit 201 of the relay satellite 200 according to the present embodiment.
  • the local generation unit 25 of the present embodiment includes frequency synthesizers 501 and 502.
  • FIG. 5 is a diagram illustrating a configuration example of the local phase difference calculation unit 41.
  • the local phase difference calculation unit 41 of the present embodiment includes a mixer 507, a bandpass filter 508, an AD converter (A / D) 509, a quadrature detection unit 510, and (digital ) A local generation unit 511, a (digital) low-pass filter 512, a limiter 513, selectors 514, 515 and 516, and a clock generator 517.
  • FIG. 6 is a diagram showing an outline of the signal relay operation by the relay satellite according to the present embodiment.
  • relay satellite 200 simultaneously receives signals A, B, C, and D received from transmitting stations 101, 103, 104, and 105 at the frequency arrangement shown in FIG.
  • a signal A that is a broadband signal from the transmitting station 101 in the broadband beam area 100 is transmitted to the receiving station 401 in the beam area 400.
  • a signal B that is a narrowband signal from the transmitting station 103 in the narrowband beam area 102 is transmitted to the receiving station 403 in the beam area 402.
  • a signal C that is a narrowband signal from the transmitting station 104 in the narrowband beam area 102 is transmitted to the receiving station 401 in the beam area 400.
  • a signal D that is a narrowband signal from the transmitting station 105 in the narrowband beam area 102 is transmitted to the receiving station 401 in the beam area 400.
  • the uplink frequencies of the signals B, C, and D are the same as the left half of the signal A.
  • the upper limit of the signal bandwidth that can be processed by a set of AD converters, demultiplexing units, multiplexing units, and DA converters in the relay satellite 200 is 1.
  • the bandwidth of the signal A is 1.5 and each bandwidth of the signals B, C, and D is 0.25
  • the bandwidth of the signal A is 1 Since it is larger, the conventional technique cannot digitally demultiplex, multiplex, or switch the signal A.
  • the details will be described later, but each of the signals (A, B, C, D) can be relayed.
  • FIG. 7 is a diagram illustrating an example of a signal relay operation procedure by the relay satellite according to the present embodiment.
  • the specific frequency bandwidth values described in the text are values normalized with the upper limit of the signal bandwidth that can be processed by a set of AD converter, demultiplexer, multiplexer, and DA converter as 1.
  • the signal A which is a broadband signal, is received by the receiving antenna 21-1, and is input to the input bandpass filter 12-1 of the uplink / downlink frequency converter 10.
  • the signals B, C, and D which are narrowband signals, are received by the receiving antenna 21-2 and input to the input bandpass filter 12-2 of the uplink / downlink frequency converter 10.
  • an uplink radio frequency and a downlink radio frequency are different, but the uplink / downlink frequency conversion unit 10 performs frequency conversion from an uplink radio frequency to a downlink radio frequency.
  • the input bandpass filter 12-1 performs signal A so that the signal band is not lost and signals of other adjacent communication systems are removed. To extract.
  • the mixer 13-1 outputs the frequency A output from the local oscillator 11 to the signal A that has passed through the input bandpass filter 12-1. Multiply the local signal with fr-ft).
  • the band pass filter 14-1 removes the component of the unnecessary wave 2fr-ft from the two frequency components ft and 2fr-ft generated by the multiplication in the mixer 13-1.
  • the frequency of the narrowband signal ⁇ B, C, D ⁇ is increased by the input bandpass filter 12-2, the mixer 13-2, and the output bandpass filter 14-2.
  • the radio frequency fr of the signal is converted to the radio frequency ft of the downlink signal.
  • the signal A and the signals B, C, and D are input to the reception analog switch matrix 22.
  • the reception analog switch matrix 22 is controlled by a command signal from the ground control station 110.
  • the command signal is transmitted from the control station 110 to the relay satellite 200 via a separate line.
  • the reception analog switch matrix 22 converts the signal A from the bandpass filter 14-1 into the reception port 15-1 (BPF 23-1) and the reception port 15-2 (BPF 23-2) according to the command signal from the control station 110. And input simultaneously.
  • the signal A input to the reception port 15-1 passes through the BPF 23-1, the mixer 24-1, and the BPF 27-1, and is frequency-converted from the radio frequency band to the intermediate frequency band or the baseband band.
  • the analog filter (pass bandwidth 1.0) in the BPF 23-1 and the BPF 27-1 causes the signal A to be cut in half of the higher band from the center frequency, as shown in FIG. Bandwidth is reduced from 1.5 to 0.75 + ⁇ .
  • a local signal LO 1 (frequency: f 1 ) from the local generator 25 is supplied to the mixer 24-1.
  • the signal A input to the reception port 15-2 passes through the BPF 23-2, the mixer 24-2, and the BPF 27-2 in the subsequent stage, so that the frequency is changed from the radio frequency band to the intermediate frequency band or the baseband band. Converted.
  • a local signal LO 2 (frequency: f 2 ) is supplied from the local generator 25 to the mixer 24-2.
  • the analog filter (pass bandwidth 1.0) in the BPF 27-2 cuts the signal A near half of the lower band from the center frequency, and the bandwidth is 1 Reduced from .5 to 0.75 + ⁇ .
  • the analog BPFs 27-1 to 27-N are two analog low-pass filters of I and Q. Changed to
  • the signal A is processed by half of the bandwidth.
  • the signal A may not be half. Any ratio (for example, 0.9 + ⁇ : 0.6 + ⁇ ) may be used as long as the signal bandwidth input to the AD converters 28-1 and 28-2 at the subsequent stage is 1 or less (up to the upper limit of the processing speed). Absent.
  • the signal A is output to two reception ports. However, when the signal bandwidth is two or more, the signal A may be output to three or more reception ports.
  • the frequency interval (f 1 -f 2 ) between the local signal LO 1 (frequency f 1 ) input to the mixer 24-1 and the local signal LO 2 (frequency f 2 ) input to the mixer 24-2 is 1. And that is, by setting the frequency interval of the local signals LO 1 and LO 2 to the same value as the upper limit value 1 of the signal bandwidth that can be processed by a set of AD converter, demultiplexer, multiplexer, and DA converter, The relay satellite 200 can implement a relay process for a wideband signal having a maximum bandwidth of 2 by inputting the received signal to both of the reception ports 15-1 and 15-2 shown in FIG.
  • the local generation unit 25 When the relay processing of the wideband signal having the maximum bandwidth 2 is realized, the local generation unit 25 has a function of supplying one of the two types of local signals (f 1 , f 2 ) to the mixers 24-1 to 24-N. Prepare. Similarly, when the relay processing of the wideband signal having the maximum bandwidth 3 is realized, the local generation unit 25 uses any one of the three types of local signals (f 1 , f 2 , f 3 ) whose frequency interval is 1 for each mixer. A function of supplying to 24-1 to 24-N is provided. Here, since each local signal generated from the local generation unit 25 is generated based on the original oscillation 26, the frequency relationship of each local signal is stable and no frequency shift occurs.
  • the digital switch matrix 31 switches the demultiplexed signal and inputs it to the transmission processing unit.
  • the transmission analog switch matrix 37 includes transmission antennas 40-1 to 40-N in which signals output from two or more transmission processing units to which demultiplexed signals corresponding to the same reception signal are input constitute the same transmission beam. To enter. For this reason, it is possible to realize relay processing of a wideband signal having a maximum bandwidth exceeding 1.
  • the configuration of the local generation unit 25 will be described later.
  • the AD converter 28-1 samples the IF signal.
  • the AD converter 28-1 samples the baseband signal with two types of in-phase (I) and quadrature (Q).
  • phase of the signal in FIG. 7A sampled by the AD converter 28-1 is corrected by the reception phase correction unit (RPC) 29-1.
  • RPC reception phase correction unit
  • a correction signal related to phase correction is input from a local phase difference calculation unit 41 described later. The contents of phase correction will also be described later.
  • the reception phase correction unit 29-1 performs phase correction while converting the intermediate frequency to the baseband frequency by digital quadrature detection. This conversion process will be described later using equations.
  • the output signal of the BPF 27-1 shown in FIG. 7A is sampled by the AD converter 28-1, phase-corrected by the reception phase correction unit 29-1, and then includes signals outside the band.
  • the signal is decomposed into four signals by the wave unit 30-1.
  • the number of demultiplexing is four, but the number of demultiplexing is not limited to this, and any value may be used as long as it is an integer of 2 or more. .
  • each of the four filters used in the demultiplexing unit 30-1 are indicated by dotted lines in FIG.
  • the demultiplexing unit 30-1 deletes ⁇ from the signal of the bandwidth 0.75 + ⁇ in FIG. 7A, and the band shown in FIG. 7B.
  • the signal (X) having a width of 0.75 is decomposed into three signals (1), (2), and (3) having a bandwidth of 0.25 as shown in FIG.
  • the demultiplexing unit 30-1 demultiplexes signals including out-of-band signals.
  • the signal (bandwidth 0.75 + ⁇ ) of FIG. 7D sampled by the AD converter 28-2 is subjected to phase correction by the reception phase correction unit 29-2.
  • the signal shown in FIG. 7D includes signals out of band as shown in FIG. 7F by the demultiplexing unit 30-2 by the four filter characteristics indicated by the dotted lines in FIG. 7E.
  • the demultiplexing unit 30-2 deletes ⁇ from the signal having the bandwidth 0.75 + ⁇ shown in FIG. 7D, and the signal (Y) having the bandwidth 0.75 shown in FIG.
  • the signal is decomposed into three signals (4), (5), and (6) having a bandwidth of 0.25.
  • FIG. 8 is a diagram illustrating an example of a spectrum relationship of signals processed by the demultiplexing unit.
  • FIG. 8 is used to show the relationship between the frequency vs. amplitude characteristics of the demultiplexing units corresponding to different reception ports.
  • two reception ports from which one signal (signal A in the example of FIG. 6) is output are designated as reception ports 15-i and 15- (i + 1).
  • the four frequency-amplitude characteristics indicated by the solid lines indicate the characteristics of the four filters included in the demultiplexing unit 30-i corresponding to the reception port 15-i, and are indicated by the dotted lines 4
  • the two frequency versus amplitude characteristics are the characteristics of the four filters included in the demultiplexing unit 30- (i + 1) corresponding to the reception port 15- (i + 1).
  • the characteristics of the filter used in each demultiplexing unit are over-exposed between adjacent filters, including between the reception port 15-i and the reception port 15- (i + 1). It is assumed that the design is a wrapping design, the amplitude at which the characteristics of each filter intersect is 0.5, and the sum of the frequency vs. amplitude characteristics of each filter is 1.
  • each filter shown in FIG. 8A is designed to be a straight line without discontinuity, for example, the signal A once becomes signals (1), (2), (3), (4 ), (5), and (6) (see FIGS. 7C and 7F), the signal ( X) and signal (Y) are restored (FIG. 8 (b)), and the original signal A is restored by signal synthesis processing in the transmission analog switch matrix 37 (FIG. 8 (c)).
  • the frequency vs. phase characteristic of each filter shown in FIG. 8A is a straight line within the reception port (reception port 15-i, reception port 15- (i + 1)). This is possible because ⁇ 30-N is composed of digital circuits.
  • making the frequency vs. phase characteristic of each filter a straight line including between the reception port 15-i and the reception port 15- (i + 1) generally means that each reception local signal is not synchronized to the phase. This is difficult because the phase of the local signal changes dynamically under the influence of phase noise and the like. In the present embodiment, this local phase fluctuation is suppressed by digital processing in the relay satellite. Details of suppression of local phase fluctuation will be described later.
  • the uplink / downlink frequency conversion unit 10 converts the frequencies of the signals B, C, and D input from the reception antenna 21-2 into downlink frequencies.
  • FIG. 9 is a diagram illustrating an example of a signal received by the reception port 15-3.
  • the signals B, C, and D input to the BPF 23-3 are frequency-converted from the radio frequency band to the intermediate frequency band or the baseband band via the mixer 24-3 and the BPF 27-3.
  • the analog filters in the BPFs 23-3 and 27-3 extract the signals B, C, and D, and when unnecessary waves exist in adjacent frequency bands, the unnecessary waves are removed (FIG. 9A, FIG. 9). 9 (b)).
  • a local signal LO 3 (frequency: f 1 ) from the local generator 25 is supplied to the mixer 24-3.
  • the signals B, C, and D in FIG. 9B sampled by the AD converter 28-3 do not share some of these signal components with other reception ports and are independent. . For this reason, it is not necessary to give the phase correction by the reception phase correction unit 29-3, and the demultiplexing unit 30-3 includes the out-of-band signal by the four filter characteristics indicated by the dotted lines in FIG. As shown in FIG. 9D, the signal is decomposed into four signals. In this way, the demultiplexing unit 30-3 decomposes (demultiplexes) the signals B, C, and D shown in FIG. 9C into three signals B, C, and D.
  • FIG. 10 is a diagram illustrating an example of the signal relay operation (transmission side).
  • the digital switch matrix 31 receives the signals output from the preceding demultiplexing units and distributes the input signals to the subsequent combining units 32-1 to 32-N.
  • the signals B, C, and D output from the demultiplexing unit 30-3 are input, and the switch process shown in FIG. 10A is performed.
  • the signal (1) is the first to m-th (m is an integer of 1 or more) corresponding to the terminal # 1-1, that is, the transmission port 39-1. It is output to the first terminal among the terminals.
  • Signal (2) is at terminal # 1-2 (second terminal corresponding to transmission port 39-1)
  • signal (3) is at terminal # 1-3 (third terminal corresponding to transmission port 39-1)
  • Signal (4) is output to terminal # 1-4 (fourth terminal corresponding to transmission port 39-1), respectively.
  • Signal (5) is at terminal # 2-1 (first terminal corresponding to transmission port 39-2), signal (6) is at terminal # 2-2 (second terminal corresponding to transmission port 39-2), Signal B is at terminal # 3-1 (first terminal corresponding to transmission port 39-3), signal C is at terminal # 2-3 (third terminal corresponding to transmission port 39-2), and signal D is terminal It is output to # 2-4 (fourth terminal corresponding to transmission port 39-2).
  • These switch connections are controlled by command signals from the ground control station 110.
  • m 4
  • four terminals first terminal to fourth terminal
  • Each multiplexing unit (multiplexing units 32-1 to 32-N) synthesizes four input signals by arranging them at a frequency interval of 0.25.
  • each multiplexing unit has a circuit design in which the frequency-to-phase characteristic of the combined signal is a straight line like the demultiplexing units 30-1 to 30-N.
  • the multiplexing unit 32-1 multiplexes the signals (1), (2), (3), and (4) input from the digital switch matrix 31 to generate FIG. ) Is generated.
  • the multiplexing unit 32-2 combines the signals (5), (6), C, and D to generate signals (V), C, and D having the frequency arrangement shown in FIG.
  • the multiplexing unit 32-3 generates the signal B having the frequency arrangement shown in FIG. 10D by the process of multiplexing the signal B and three empty channels.
  • the combined signal (Z) is converted into a radio frequency band by a transmission phase correction unit (TPC) 33-1, a DA converter 34-1, an LPF 35-1, a mixer 36-1, and a BPF 38-1.
  • TPC transmission phase correction unit
  • the combined signals (V), C, and D are transmitted to the radio frequency band by the transmission phase correction unit 33-2, the DA converter 34-2, the LPF 35-2, the mixer 36-2, and the BPF 38-2.
  • the combined signal B is converted into a radio frequency band by the transmission phase correction unit 33-3, the DA converter 34-3, the LPF 35-3, the mixer 36-3, and the BPF 38-3.
  • the number of multiplexing is four is shown.
  • the number of multiplexing is not limited to this, and any value can be used as long as it is an integer of 2 or more. It doesn't matter.
  • each DA converter 34-1 to 34-N may be signals in either the intermediate frequency band or the baseband band.
  • each DA converter 34-1 to 34-N and each LPF 35-1 to 35-N are composed of two sets (I, Q).
  • the correction signal input to the transmission phase correction unit 33-1 is the same as the correction signal input to the reception phase correction unit 29-1, and is input from the local phase difference calculation unit 41 described later. .
  • the correction signal input to the transmission phase correction unit 33-2 is the same as the correction signal input to the reception phase correction unit 29-2, and the correction signal input to the transmission phase correction unit 33-N is The correction signal is the same as the correction signal input to the reception phase correction unit 29-N, and is input from the local phase difference calculation unit 41 described later.
  • Each correction signal is a complex number, and each transmission phase correction unit treats this correction signal as a complex conjugate. Details will be described later using equations.
  • conversion of each transmission signal into a radio frequency band is realized by supplying each transmission local signal generated by the local generation unit 25 to each of the mixers 36-1 to 36-N.
  • the mixer 36-1 has the same local signal LO 1 (frequency f 1 ) as the reception-side mixer 24-1, and the mixer 36-2 has the same local signal as the reception-side mixer 24-2.
  • the signal LO 2 (frequency f 2 ) is supplied to the mixer 36-3 with the same local signal LO 3 (frequency f 1 ) as the receiving side mixer 24-3.
  • the upstream radio frequency fr is converted into the downstream radio frequency ft in advance, and then the local signal for converting from the radio frequency ft to the intermediate frequency f IF (or baseband frequency) and the intermediate frequency f IF (or base).
  • the local signal for converting from the radio frequency ft to the intermediate frequency f IF (or baseband frequency) and the intermediate frequency f IF (or base).
  • the phase synchronization between ports on the receiving side is performed by one local generation unit 25 and local phase difference calculation unit 41.
  • phase synchronization between ports on the transmission side can also be realized.
  • the circuit scale is slightly increased, but the local generation unit 25, the local phase difference calculation unit 41 used on the reception side, the local generation unit 25 used on the transmission side, the local level A similar effect can be obtained by providing the phase difference calculation unit 41 separately.
  • the uplink / downlink frequency converter 10 that converts the uplink radio frequency fr to the downlink radio frequency ft is provided between the reception antennas 21-1 to 21-N and the reception analog switch matrix 22.
  • this position is not necessarily required, and it may be moved between the transmission unit, that is, the transmission analog switch matrix 37 of FIG. 3 and the transmission antennas 40-1 to 40-N.
  • a local signal for converting the uplink radio frequency fr to the intermediate frequency f IF (or baseband frequency) and a local signal for converting the intermediate frequency f IF (or baseband frequency) to the radio frequency fr After performing a series of processes in common, the uplink radio frequency fr is converted to the downlink radio frequency ft.
  • the connection of the transmission analog switch matrix 37 is controlled by a command signal from the control station 110 on the ground.
  • the signal (Z) from the transmission port 39-1 (BPF 38-1) and the signals (V), C, and D from the transmission port 39-2 (BPF 38-2) are simultaneously transmitted to the antenna 40.
  • the signal spectrum output from the antenna 40-1 has a form in which the signal (Z) and the signal (V) partially overlap as shown in FIG.
  • the frequency interval of each transmission local signal is 1 and the characteristics of each demultiplexing filter shown in FIG. 7
  • the combined signal A ′ combining the signal (Z) and the signal (V) is As shown in (g), the signal spectrum shape is the same as the signal A from the original transmitting station 101 and is transmitted to the receiving station 401 in the beam area 400.
  • the transmission analog switch matrix 37 outputs the signal B (FIG. 10 (f)) converted to the radio frequency band output from the transmission port 39-3 (BPF 38-3) to the transmission antenna 40-2, Signal B is transmitted to the receiving station 403 in the beam area 402.
  • the ground receiving station 401 After receiving the signals A ', C, and D, the ground receiving station 401 demodulates each.
  • the ground receiving station 403 receives the signal B and demodulates it.
  • the receiving station 401 receives a wideband signal composed of signals A ′, C, and D having a total bandwidth of 2, but generally, the operation speed of a consumer digital device used on the ground is: Since the operating speed of the space digital device is several times higher, the receiving station 401 can demodulate the signals A ′, C, and D without the upper limit of the performance of the digital device.
  • the beam area requiring a wide bandwidth exceeding 1 is described as the beam area 100 for the uplink and the beam area 400 for the downlink.
  • a wide bandwidth exceeding 1 is required for the uplink.
  • the relay satellite of the present invention can easily cope with the problem by simply changing the connection of the reception analog switch matrix. That is, the beam area 100 within the bandwidth 1 is controlled by connecting the output of the BPF 14-1 only to the reception port 15-1 and connecting the output of the BPF 14-2 to both the reception port 15-2 and the reception port 15-3. , And signals from the beam area 102 exceeding the bandwidth 1 can be processed.
  • the output of the BPF 38-1 (transmission port 39-1) is connected only to the transmission antenna 40-1, the output of the BPF 38-2 (transmission port 39-2), and the output of the BPF 38-3 (transmission port 39-3).
  • the transmission antenna 40-2 By controlling both of them to the transmission antenna 40-2, it is possible to realize signal transmission to the beam area 400 within the bandwidth 1 and signal transmission to the beam area 402 beyond the bandwidth 1.
  • a broadband signal relay service is not required for all beam areas, but the beam area that requires a broadband signal relay service changes with time due to traffic fluctuations.
  • the effect that the circuit scale can be reduced is obtained.
  • each beam prepares up to two ports in one beam area in preparation for broadband signal relay generation. A total of 4 ports are required.
  • port # 1 is shared by two beams, so that it can be realized with three ports.
  • realizing a broadband signal relay service using two ports at any time such a configuration using a transmission analog switch matrix or a reception analog switch matrix is unnecessary, and two ports are fixed for each beam.
  • the configuration assigned to is sufficient.
  • FIG. 11 is a diagram illustrating an example of a wideband signal transmitted from the relay satellite to the receiving station.
  • the frequency-to-phase characteristics of the combined signal A ′ output from the transmission antenna 40-1 are Discontinuity occurs at two points ⁇ (R), (T) ⁇ in the downward arrows shown in FIG.
  • a downward arrow (R) shown in FIG. 11 indicates a discontinuous position generated between the reception port 15-i and the port 15- (i + 1) (in the example of FIG.
  • a downward arrow (T) shown in FIG. 11 indicates a discontinuous position generated between the transmission side port 15-i and the port 15- (i + 1) (the transmission port 39-1 and the transmission port 39-2 in the example of FIG. 10). Is shown.
  • the local phase difference calculation unit 41, the reception phase correction units 29-1 to 29-N, the transmission phase correction Control by the units 33-1 to 33-N realizes reception sensitivity characteristics equivalent to the case of receiving the original signal A without deterioration in communication quality.
  • the phase discontinuity shown in FIG. 11 is mainly caused by a local phase difference generated by down-converting or up-converting the frequency with different local signals (frequencies f 1 and f 2 ). Therefore, in this embodiment, the local phase difference that changes from moment to moment, which is the dominant factor of phase discontinuity, is detected and corrected by digital processing, so that the local phase difference between each port is canceled by digital processing. , All are synchronized to one local signal.
  • the frequency synthesizer 501 In the local generation unit 25, the frequency synthesizer 501 generates the local signal Lf1 having the frequency f 1 based on the original vibration signal output from the original vibration 26. Similarly, the frequency synthesizer 502 generates a local signal Lf2 frequency f 2. The frequency difference (f 2 ⁇ f 1 ) between the two is “1” as described above.
  • the local signal Lf1 is referred to as LO 1 and is supplied to the receiving-side mixer 24-1 and the transmitting-side mixer 36-1. Further, the local signal Lf1 is referred to as LO 3 and is supplied to the reception-side mixer 24-3 and the transmission-side mixer 36-3. That is, LO 1 and LO 3 are the same as the local signal Lf1 having the frequency f1.
  • the local signal Lf2 is referred to as LO 2 and is supplied to the reception-side mixer 24-2 and the transmission-side mixer 36-2.
  • the local generation unit 25 supplies either the local signal Lf1 or the local signal Lf2 to the mixer 24-N on the reception side and the mixer 36-N on the transmission side.
  • the local generation unit 25 uses the local signal Lf2 at the frequency f2 when the reception port 15-N and the transmission port 39-N handle the higher frequency band, and the frequency f when the lower port is used. 1 local signal Lf1 is supplied to the mixer 24-N on the reception side and the mixer 36-N on the transmission side.
  • FIG. 4 shows the connection when the frequency handled by each port is fixed, but it may be configured to output an arbitrary frequency instead of being fixed.
  • a selector is additionally provided for each of LO 1 , LO 2 , LO 3 ,..., And the selector selects either the output of the frequency synthesizer 501 (Lf1) or the output of the frequency synthesizer 502 (Lf2).
  • Lf1 the output of the frequency synthesizer 501
  • Lf2 the output of the frequency synthesizer 502
  • the command signal for switching the frequencies f 1 and f 2 is performed by a command signal transmitted from the control station 110 to the relay satellite 200 via a separate line.
  • FIG. 12 is a diagram illustrating another configuration example of the local generation unit 25.
  • the local generation unit 25 includes frequency synthesizers 504-1, 504-2,..., 504-N, and selectors 505, 506.
  • Each frequency synthesizer 504-1, 504-2,..., 504-N can select and output one of a plurality of local frequencies.
  • each frequency synthesizer 504-1, 504-2,..., 504-N can select one of the local signals of frequencies f 1 and f 2 . Therefore, even in this configuration, LO 1 , LO 2 , LO 3 ,...
  • the selectors 505 and 506 select and output local signals having different frequencies.
  • the selector 505 selects the local signal having the frequency f 1
  • the selector 506 selects the local signal having the frequency f 2 and outputs them as Lf 1 and Lf 2 , respectively.
  • the command signal for switching the frequencies f 1 and f 2 and the signal for controlling the selector are performed by a command signal transmitted from the control station 110 to the relay satellite 200 via another line.
  • Each port of the relay satellite can process a signal in an arbitrary frequency band. For this reason, it is possible to flexibly cope with fluctuations in the use frequency band accompanying changes in traffic in each beam area on the ground.
  • Local phase difference calculating section 41 receives as input a local signal Lf1 and the local signal Lf2 from the local generation unit 25, by detecting the phase of the local signal Lf2 local signal Lf1, extracting both of the phase difference signal [Delta] [theta] 21 Based on the extracted phase difference signal, each received signal is corrected and each transmitted signal is inversely corrected.
  • processing contents will be described using equations.
  • the addition theorem of trigonometric function, sum-product formula, product-sum formula, etc. are used.
  • FIG. 13 is a diagram illustrating a flow of frequency conversion processing on the reception side.
  • the local signal Lf1 is represented by the following equation (1)
  • the local signal Lf2 is represented by the following equation (2).
  • ⁇ (t) is a phase fluctuation component caused by phase noise or the like observed with the local signal Lf2 when the local signal Lf1 is used as a reference.
  • Lf1 cos (2 ⁇ f 1 t)
  • Lf2 cos (2 ⁇ f 2 t + ⁇ (t)) (2)
  • the mixer 507 multiplies the local signal Lf1 and the local signal Lf2, to obtain a multiplication result M 21 shown in the following equation (3). As shown in the following equation (3), a frequency component of f 1 + f 2 and a frequency component of f 1 ⁇ f 2 are generated.
  • the BPF 508 extracts the frequency component of f 1 -f 2 from the output of the mixer 507.
  • Expression (4) is the result of removing the first half term (frequency component of f 1 + f 2 ) of the above expression (3) by the BPF 508.
  • f C f 2 ⁇ f 1 and f 2 ⁇ f 1 is converted into f C.
  • ⁇ C is a fixed phase difference based on the frequency component f C extracted by the BPF 508 and is determined according to the operation start timing of the local signal C.
  • Note clock being supplied to the digital part, because it is generated from the original oscillation 26, the frequency f C of the frequency f C and formula generated by the complex local signal C (4) are frequency synchronization.
  • C exp [ ⁇ j (2 ⁇ f C t + ⁇ C )] (5)
  • the quadrature detection unit 510 multiplies the output B 21 of the BPF 508 by the quadrature detection complex local signal C.
  • cos ⁇ * exp [ ⁇ j ( ⁇ )] can be expanded as in the following equation (6).
  • FIG. 14 is a diagram showing an example of a phase change example of the signal after passing through the limiter 513.
  • ⁇ 21 exp [j ( ⁇ (t) ⁇ C )] (10)
  • the received signal is expressed by an equation.
  • the received signal after passing through the BPF 14-1 is an unmodulated carrier (CW) arranged at the boundary frequency f 1 + f IF + 0.5f C between the two ports.
  • CW unmodulated carrier
  • the frequency relationship between the two must be +0.5 f C and ⁇ 0.5 f C and the initial phase must be aligned. If the initial phases are not aligned, energy loss occurs and deteriorates when up-converting again and combining and transmitting both signals. If the initial phases are aligned, the phases of both signals are aligned again at the time of up-conversion, so that the original signal can be transmitted without energy loss when both signals are combined.
  • Equation (11) the received signal R is shown in Equation (11).
  • R cos (2 ⁇ (f 1 + f IF + 0.5f C ) t + ⁇ r ) (11)
  • the multiplied signal is M n1 and is shown in the following equation (12).
  • the BPF 27-1 removes the harmonic component of M n1 shown in the above equation (12). Therefore, the signal B n1 after passing through the BPF 27-1 is expressed by Expression (13). Further, FIG. 13B shows the spectrum of the signal output from the BPF 27-1.
  • B n1 (1/2) ⁇ cos (2 ⁇ (f IF + 0.5f C ) t + ⁇ r ) ⁇ (13)
  • the signal output from the BPF 27-1 is sampled by the A / D converter 28-1 and input to the reception phase correction unit 29-1.
  • the reception phase correction unit 29-1 converts the input signal from the intermediate frequency f IF to the baseband using the internal local signal exp [ ⁇ j (2 ⁇ f IF t)].
  • the reception phase correction unit 29-1 digitally generates an input signal B n1 inside the reception phase correction unit 29-1.
  • the local signal Lf1 is used as a reference, and the signal of each port is synchronized with Lf1 by digital correction.
  • FIG. 13D shows the spectrum of the signal output from the reception phase correction unit 29-1.
  • Lf2 cos (2 ⁇ f 2 t + ⁇ (t)
  • the BPF 27-2 removes the harmonic component of the signal M n2 represented by the above equation (15). Therefore, the signal B n2 after passing through the BPF 27-2 is expressed by the following equation (16).
  • FIG. 13C shows the spectrum of the signal output from the BPF 27-2.
  • B n2 (1/2) ⁇ cos (2 ⁇ (f IF ⁇ 0.5f C ) t + ⁇ r ⁇ (t)) ⁇ ... (16)
  • the local phase difference calculation unit 41 gives the baseband phase difference signal ⁇ 21 obtained by the above equation (10) for the reception port 15-2 to the reception phase correction unit 29-2.
  • the reception phase correction unit 29-2 converts the input signal from the intermediate frequency f IF to the baseband using the internal local signal exp [ ⁇ j (2 ⁇ f IF t)]. Correct the phase difference.
  • the signal QL n2 after being converted to the baseband frequency is expressed by the following equation (17).
  • the intermediate frequency component f IF may be the same as the intermediate frequency component f IF used in the processing related to the signal input to the reception port 15-1.
  • Reception phase correction unit 29-2 multiplies the baseband phase difference signal [Delta] [theta] 21 to the signal QL n2 which is converted from the intermediate frequency signal into a baseband signal, performs phase correction.
  • the signal after the phase correction is shown in formula (18) below as S n2.
  • ⁇ (t) which is a dynamic phase fluctuation component
  • the reception signal R remains at the reception port 15-2 while leaving the phase offset ⁇ r ⁇ C.
  • the negative frequency component is converted to -0.5f C.
  • the spectrum of the signal output from the reception phase correction unit 29-2 is shown in FIG.
  • the reception signal R is converted into a positive frequency component + 0.5f C while leaving the phase offset ⁇ r at the reception port 15-1. Therefore, as shown in FIGS. 13D and 13E, the frequency relationship between the phase-corrected signal of the reception port 15-1 and the signal after the phase correction of the reception port 15-2 is + 0.5f C , ⁇ 0.5 f C.
  • ⁇ r in equation (14) and ⁇ r ⁇ C in equation (18) the signal after phase correction of reception port 15-1 and the phase correction of reception port 15-2 There remains a deviation of ⁇ C from the signal.
  • the dynamic phase fluctuation component ⁇ (t) is canceled by the series of processes described above. If a phase shift of - ⁇ C remains between the two, the phase shift (- ⁇ C ) is again performed when up-converting and synthesizing both frequencies in the transmission process as shown in the following equation (19). As a result, the amplitude decreases. For this reason, it is desirable to separately correct ⁇ C. Any method may be used to correct the fixed value - ⁇ C. Further, for example, ⁇ C may be automatically canceled by a method described later in the fourth embodiment.
  • FIG. 15 is a diagram showing an example of the flow of frequency conversion on the transmission side. If the spectrum of S ′ n1 shown in Expression (20) is expressed in a diagram, FIG. 15 (f) is obtained, and if the spectrum of S ′ n2 shown in Expression (21) is expressed in a diagram, FIG. 15 (g) is obtained. .
  • S ′ n1 and S ′ n2 have a frequency relationship of +0.5 f C and ⁇ 0.5 f C and the same initial phase. For this reason, when frequency conversion to an ideal radio frequency having no local phase difference variation is performed at each transmission port and synthesized by the transmission analog switch matrix 37, the center frequency f 1 + f shown in FIG. An unmodulated wave with an amplitude of 1 is output at IF + 0.5f C. Actually, however, local phase difference fluctuations occur between the transmission ports, so that the phase and amplitude of the combined transmission signal will fluctuate unless the following processing is performed.
  • the transmission phase correction unit 33-1 converts the input signal S ′ n1 from the baseband to the intermediate frequency f IF using the internal local signal exp [ ⁇ j (2 ⁇ f IF t + ⁇ U )].
  • ⁇ U is an initial phase offset. Since the transmission phase correction unit 33-1 is a system using the local signal Lf1, it is not necessary to give phase correction, and in this case, exp [j (0)] is given.
  • the input signal U 1 converted to the intermediate frequency f IF by the transmission phase correction unit 33-1 is expressed by the following equation (22).
  • Re [x] represents the real part of the complex number x.
  • the spectrum of U 1 is shown in FIG.
  • U 2 that is the input signal converted to the intermediate frequency f IF is expressed by the following equation (23).
  • the spectrum of U 2 at this time is shown in FIG.
  • the signal U 1 converted to the intermediate frequency f IF is multiplied by the local signal cos (2 ⁇ f 1 t) expressed by Expression (1) by the mixer 36-1.
  • the multiplied signal is represented by the following equation (24), where W 1 is W 1 .
  • Equation (1) the multiplied signal is represented by the following equation (24), where W 1 is W 1 .
  • the signal U 2 converted to the intermediate frequency f IF is multiplied by the local signal cos (2 ⁇ f 2 t + ⁇ (t)) expressed by the equation (2) by the mixer 36-2.
  • Two frequency components are generated as W 2 .
  • this ⁇ C may be automatically canceled using, for example, the method of Embodiment 4 described later.
  • the band pass filter 508 shown in FIG. 5 is changed to a low pass filter, the frequency component of f 2 + f 1 can be removed in the same manner, and therefore the band pass filter 508 may be changed to a low pass filter.
  • a clock for driving the AD converter 509 and the subsequent quadrature detection unit 510, LPF 512, and limiter 513 is supplied from the clock generator 517. This clock is supplied from the source oscillation 26 in the clock generation unit 517. Generated based on the signal.
  • a baseband phase difference signal [Delta] [theta] 21 which is obtained by the formula (10) is input to a selector 514, 515, 516 shown in FIG.
  • the output of the selector 516 is connected to the reception phase correction unit 29-1 and the transmission phase correction unit 33-1.
  • the output of the selector 515 is connected to the reception phase correction unit 29-2 and the transmission phase correction unit 33-2.
  • the output of the Nth selector 514 is connected to the reception phase correction unit 29-N and the transmission phase correction unit 33-N.
  • the receiving phase compensation section of the destination port of the transmission phase correction unit if the port local signal Lf2 is supplied, the selector selects the baseband phase difference signal [Delta] [theta] 21.
  • the third port relays signals within the bandwidth 1 on both the reception side and the transmission side, so that the local port with other ports Phase synchronization is unnecessary, and there is no need to give dynamic control to the reception phase correction unit 29-3 and the transmission phase correction unit 33-3 of the third port.
  • the receiving side uses the receiving port 15-1 and the receiving port 15-2.
  • a wideband signal is relayed by switching from the combination to the combination of the reception port 15-2 and the reception port 15-3.
  • the transmission side uses the combination of the transmission port 39-1 and the transmission port 39-2.
  • the broadband signal is relayed by switching to the combination of the transmission port 39-2 and the transmission port 39-3.
  • the phase is synchronized with the local signal Lf1 by the digital correction described above.
  • the low phase noise characteristic equivalent to that of the local signal Lf1 can be realized. That is, even if the local signals Lf2, Lf3,..., LfN other than the local signal Lf1 are used with low frequency stability, low phase noise characteristics similar to those of the local signal Lf1 with good stability can be realized. Therefore, the cost of the frequency synthesizer used for the local signals Lf2, Lf3,..., LfN can be reduced.
  • the clock supplied to the digital unit of the relay apparatus is generated from the original oscillation used by the local signal Lf1 or the local signal Lf1 itself.
  • the original oscillation used by the frequency synthesizer used for the local signals Lf2, Lf3,..., LfN may not be shared with the original oscillation of the local signal Lf1.
  • the frequency interval of each local signal is not f C and a frequency offset ⁇ f is added.
  • the frequency offset amount is not so large, this case
  • the signal of each port can be synchronized with the local signal Lf1 with good stability.
  • the configuration of the relay device is simplified, and the cost of the frequency synthesizer used for the local signals Lf2, Lf3,..., LfN can be reduced.
  • the clock supplied to the digital unit of the relay device of the present embodiment is generated from the original oscillation used by the local signal Lf1 or the local signal Lf1 itself.
  • the first port (reception port 15-1, transmission port 39-1) and the third port (reception port 15-3, transmission port 39-3) are connected to the low band side (f 1 )
  • the first port (reception port 15-2, transmission port 39-2) has been described as a system that processes the high frequency side (f 2 ), but for each port, the low frequency side (f 1 ), or may be designed to allow selection of either the high frequency side (f 2).
  • the local frequency supplied from the local generator 25 to each of the mixers 24-1 to 24-N and 36-1 to 36-N is configured so that f 1 or f 2 can be selected. Good.
  • each port can be freely assigned to either the low frequency side (f 1 ) or the high frequency side (f 2 ). It becomes possible to reduce.
  • each local signal not only the f 1 and f 2, the frequency f 1, f 2 up to the maximum number m synthesizable, ..., f m may be a selectable configuration.
  • the local phase difference calculation unit 41 obtains a phase difference between the ports, and based on this phase difference.
  • the phase difference between ports was corrected. For this reason, it is possible to relay a broadband signal even when the device performance is limited, and it is possible to reduce the deterioration of communication quality due to failure or interference.
  • the signal relay based on the flow of the reception unit 201 ⁇ the connection unit 31 ⁇ the transmission unit 202 has been described.
  • the signal relay is not necessarily specialized for a repeater.
  • the signal may be stopped by the flow of the reception unit 201 ⁇ the connection unit 31 ⁇ the multiplexing unit 32, and the combined signal may be demodulated / decoded in the apparatus.
  • the multiplexing unit 32 needs to be designed to double the processing speed, but a receiver that realizes demodulation / decoding of a wideband signal that exceeds the upper limit of the sampling rate of space devices such as A / D. Obtainable.
  • the observation data obtained in the present apparatus may be encoded and modulated, and then flowed in the order of the demultiplexing unit 30 ⁇ the connection unit 31 ⁇ the transmission unit 202.
  • the demultiplexing unit 30 needs to be designed to double the processing speed, but a modulator that realizes encoding / modulation of a wideband signal exceeding the upper limit of the sampling speed of a space device such as D / A Can be obtained.
  • FIG. FIG. 16 is a diagram illustrating a configuration example of the local phase difference calculation unit 41a according to the second embodiment of the present invention.
  • the configuration of the relay satellite according to the present embodiment is the same as that of the relay satellite according to the first embodiment, except that the local phase difference calculating unit 41 according to the first embodiment is replaced with a local phase difference calculating unit 41a.
  • constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • the local phase difference calculation unit 41a includes mixers (multipliers) 507, 530, and 536, bandpass filters (BPF) 508, 531, and 537, and AD converters (A / D) 509, 532, and so on. 538, quadrature detection units 510, 533, 539, low-pass filters (LPF) 512, 534, 540, limiters 513, 535, 541, and adders 542, 543.
  • mixers multipliers
  • BPF bandpass filters
  • AD converters A / D
  • the local generator 25, the frequency f 1, f 2 to the frequency interval between f C, ..., a local signal Lf1, Lf2 corresponding to f K, ..., generates LFK, corresponding to each port BPF23- 1 to 23-N and BPFs 38-1 to 38-N may be designed with frequency characteristics corresponding to the frequencies f 1 , f 2 ,..., F K.
  • a K 4 the case of realizing the bandwidth of up to 4 using 1 to 4 th ports, BPF23-1 ⁇ 23-4, respectively frequencies f 1, f 2, ..., either f K Extract different bands corresponding to.
  • the local generation unit 25 generates the local signals Lf1, Lf2,..., Lfk.
  • the local phase difference calculation unit 41a of the present embodiment extracts phase difference signals between four local signals respectively corresponding to f 1 , f 2 , f 3 , and f 4 .
  • Expression (30) is similar to Expression (10), but the expression is changed so that it can be distinguished from other phase difference signals.
  • Expression (31) is a phase difference signal when Lf3 is phase-detected with Lf2
  • the local generation unit 25 in the present embodiment performs the following addition processing after extracting the phase difference signals shown in the above equations (30) to (32).
  • Expression (33) is equivalent to the phase difference signal when Lf3 is phase-detected with the local signal Lf1
  • Expression (34) is equivalent to the phase difference signal when Lf4 is phase-detected with the local signal Lf1.
  • the phase difference signal ⁇ 21 is extracted from the limiter 513 by the same processing as in the first embodiment.
  • the phase difference signal ⁇ 32 is extracted by the mixer 530, the BPF 531, the AD converter 532, the quadrature detection unit 533, the low-pass filter 534, and the limiter 535
  • the phase difference signal ⁇ 43 is extracted by the mixer 536, the BPF 537, and the AD converter. 538, quadrature detection unit 539, low-pass filter 540, and limiter 541.
  • the adder 542 adds the limiter 513 output and the limiter 535 output, to generate a phase difference signal [Delta] [theta] 31 represented by the formula (33). Further, the adder 543 adds the output of the limiter 541 and the output of the adder 542, and generates a phase difference signal ⁇ 41 represented by Expression (34).
  • the local phase difference calculation unit 41a receives / replaces the phase difference signal ⁇ 41 obtained by Expression (34) using the local signal Lf4. Supplied to the phase correction unit.
  • the reception phase correction unit / transmission phase correction unit to which the local signal Lf4 is input performs phase correction / inverse correction based on the input local signal Lf4.
  • the local phase difference calculation unit 41a of the present embodiment receives the phase difference signal ⁇ 31 obtained by the equation (33) using the local signal Lf3, and a reception phase correction unit for a port that performs down-conversion / up-conversion. / Supply to the transmission phase correction unit.
  • the reception phase correction unit / transmission phase correction unit to which the local signal Lf3 is input performs phase correction / inverse correction based on the input local signal Lf3.
  • the local phase-difference calculating unit 41a of the present embodiment the phase difference signal [Delta] [theta] 21 obtained by equation (30), receiving the phase correction section of the port to implement the down-converting / up-conversion using a local signal Lf2 / Supply to the transmission phase correction unit.
  • the reception phase correction unit / transmission phase correction unit to which the local signal Lf2 is input performs phase correction / inverse correction based on the input local signal Lf2.
  • each port can synchronize the phase with the local signal Lf1.
  • ⁇ K ⁇ K ⁇ 1 may be generated and supplied to the corresponding reception phase correction unit / transmission phase correction unit.
  • a wideband signal is processed by dividing a band by three or more ports. For this reason, it is possible to relay a signal having a wider band than that of the first embodiment without deterioration in communication performance.
  • FIG. 17 is a diagram illustrating a configuration example of the local phase difference calculation unit 41b according to the third embodiment of the present invention.
  • the configuration of the relay satellite according to the present embodiment is the same as that of the relay satellite according to the first embodiment except that the local phase difference calculating unit 41 according to the first embodiment is replaced with the local phase difference calculating unit 41b.
  • constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • the local phase difference calculation unit 41a of the second embodiment three types of mixers, bandpass filters, and AD converters are required, and the analog circuit scale increases as K increases. For this reason, in this embodiment, a signal obtained by adding the local signals other than Lf1 is changed to a configuration in which the signals are collectively detected by Lf1, and the number of mixers, bandpass filters, and AD converters is reduced.
  • the local phase difference calculation unit 41b includes a mixer 507, a BPF 508, an AD converter (A / D) 509, adders 544 and 545, an orthogonal detection unit 546, and the like. 547, 548, low pass filters (LPF) 549, 550, 551, and limiters 552, 553, 554.
  • LPF low pass filters
  • the local phase difference calculation unit 41b of the present embodiment adds the local signal Lf2, the local signal Lf3, and the local signal Lf4 by the adders 544 and 545.
  • This addition result is input to the mixer 507.
  • the mixer 507 multiplies the input addition result by the local signal Lf1.
  • the BPF 508 removes the high frequency component of the multiplied signal and extracts the low frequency component.
  • the BPF 508 may be a low pass filter.
  • the frequency components f 2 , f 3 , and f 4 included in the signal obtained by adding the three local signals are frequency shifted to the DC (Direct Current) side by f 1 .
  • FIG. 18 is a diagram illustrating an example of sampling processing in the present embodiment.
  • FIG. 18A shows an example of a signal spectrum after passing through the BPF 508.
  • the frequency of Lf2 frequency of f C, Lf3 frequency of 2f C, Lf4 is converted to 3f C
  • one side bandwidth of the signal after passing through BPF508 is 3f C.
  • the AD converter 509 samples the signal in FIG. 18A at a sampling rate that is at least twice that of the one-side band 3f C.
  • FIG. 18B shows an example of a spectrum when sampling is performed at a sampling speed of 7 f C. Each dotted arrow is a folded component of each signal.
  • the quadrature detection unit 546 multiplies Lf2 of the center frequency f C by an internally generated complex local signal exp [ ⁇ j (2 ⁇ f C t)] and extracts a low frequency component, thereby extracting the center frequency f C.
  • Lf2 is converted into a signal having a baseband frequency.
  • the quadrature detection unit 547 multiplies Lf3 of the center frequency 2f C by the internally generated complex local signal exp [ ⁇ j (2 ⁇ 2f C t)], and extracts the low frequency component, thereby extracting the center frequency.
  • 2f C Lf3 is converted into a signal of a baseband frequency.
  • the quadrature detection unit 548 multiplies Lf4 of the center frequency 3f C by the internally generated complex local signal exp [ ⁇ j (2 ⁇ 3f C t)], and extracts the low frequency component, thereby Lf4 having a frequency of 3f C is converted into a signal having a baseband frequency.
  • the local signals converted into the baseband by the local signal Lf1 are converted into constant amplitudes by the limiters 552, 553, and 554, and then output as phase difference signals ⁇ 21 , ⁇ 31 , and ⁇ 41 .
  • the operations of the present embodiment other than those described above are the same as those of the second embodiment.
  • the local phase difference calculation unit 41b of the present embodiment needs to set the sampling rate of the AD converter higher than that of the first embodiment, but the mixer, the bandpass filter (BPF), and the AD converter are set to 1. Therefore, the analog circuit scale can be reduced. If an AD converter that can also handle undersampling is used, the sampling speed of the AD converter can be lowered from 7 f C to 3.5 f C as shown in FIG. As shown in FIG. 18C, undersampling may be performed at a frequency such that the folded components of the signals indicated by the dotted arrows do not overlap with the main signal components Lf2, Lf3, and Lf4.
  • FIG. 19 and 20 are diagrams showing a configuration example of the relay satellite according to the fourth embodiment of the present invention.
  • the relay satellite according to the present embodiment includes delay units 60-1, 60-2, 65-1, 65-2, a reception-side phase time difference detection unit (reception-side phase difference detection unit) 61, an unmodulated signal generation unit (CW Generation units) 62-1 and 62-2, an adder 63 (in the transmission analog switch matrix 37), and a transmission-side phase time difference detection unit (transmission-side phase difference detection unit) 64 are added.
  • delay units 60-1, 60-2, 65-1, 65-2 a reception-side phase time difference detection unit (reception-side phase difference detection unit) 61, an unmodulated signal generation unit (CW Generation units) 62-1 and 62-2, an adder 63 (in the transmission analog switch matrix 37), and a transmission-side phase time difference detection unit (transmission-side phase difference detection unit) 64 are added.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as
  • the configuration for compensating for the dynamic carrier phase fluctuation ⁇ (t) due to phase noise or the like has been described.
  • the present embodiment not only the dynamic carrier phase fluctuation due to phase noise and the like, but also the fixed time difference caused by the phase offset ⁇ C shown in the first embodiment, the path length difference between each port, delay characteristics, etc. Automatically corrects up to.
  • this fixed time difference may be corrected manually, but it will take time to correct, and once corrected, the phase and time deviation will gradually reappear in units of hours, months, and years due to aging and temperature fluctuations. If it occurs (if it is semi-fixed), it is also possible. Therefore, in this embodiment, after correcting the dynamic phase fluctuation component ⁇ (t) shown in the first embodiment, this phase / time shift is automatically corrected.
  • this automatic correction a non-modulation (CW) wave for correction is generated and used in the relay device. Therefore, this automatic correction is performed after the relay signal input / output to the corresponding port is stopped and in the standby state. carry out.
  • the relay satellite does not secure only the number of ports necessary for actual operation, and has a plurality of spare ports in preparation for failure. Therefore, when each port is sequentially set to the standby state and correction is performed, the following procedure is performed to avoid a situation where signal relay is temporarily interrupted by this correction.
  • a standby port that has already been corrected by the correction processing of the present embodiment described later is started, and the same relay signal as that of the correction target port is also applied to the standby port by switch control of the reception analog switch matrix 22. input.
  • the transmission analog switch matrix 37 combines the signal of the correction target port and the signal of the standby port and outputs the resultant signal to the antenna. However, control is performed so that the two signals are not combined by stopping the output of the backup data at some point in the digital unit (for example, the transmission phase correction units 33-1 to 33-N).
  • the standby signal is stored at a predetermined timing in any of the digital units (for example, the transmission phase correction units 33-1 to 33-N).
  • the data of the system port is output, and the output of the correction target port data is stopped.
  • the signal is transferred from the correction target port to the standby port and relayed without any signal disconnection.
  • reception analog switch matrix 22 selects only the standby port and switches to a connection that does not input a signal to the correction target port.
  • transmission analog switch matrix 37 switches to a connection that selects only the standby port.
  • the same relay signal is sent not only to the standby port but also to the correction target port by the switch control of the reception analog switch matrix 22.
  • the transmission analog switch matrix 37 is a connection that combines the signal of the correction target port and the signal of the standby system port and outputs the synthesized signal to the antenna, but somewhere in the digital unit (for example, the transmission phase correction unit 33-1).
  • step 33-N the output of the corrected port data is stopped so that the two signals are not combined.
  • the data of the corrected port is output at a certain timing in the digital (for example, transmission phase correction units 33-1 to 33-N). Then, stop the data of the standby system port. By this digital switching, the signal is transferred from the standby port to the corrected port and relayed without causing a signal disconnection.
  • the reception analog switch matrix 22 selects only the corrected port and switches to a connection in which no signal is input to the standby port. Similarly, the transmission analog switch matrix 37 switches to a connection that selects only corrected ports.
  • the relay signal is temporarily transferred from the correction target port to the standby port and then returned after correction.
  • the correction of the standby port is performed. It can be performed at any time regardless of the above procedure.
  • phase difference and time difference between ports occur at the following two locations.
  • the phase difference between the reception ports 15-1 and 15-2 (or transmission ports 39-1 and 39-2) shown in FIGS. ⁇ C and time delay differences ⁇ 21 and ⁇ 43 are generated.
  • the phase difference and the time delay difference are large, the signal phase difference causes a decrease in S / N (Signal to Noise ratio) when the two signals are combined. .
  • phase shift ( ⁇ C ) generated between the receiving-side branching units 30-1 and 30-2 after correcting the dynamic phase fluctuation ⁇ (t), and the receiving analog switch matrix 22
  • correction method (A) will be described first, and then the correction method (B) will be described, taking the correction between the first port and the second port as an example.
  • the non-modulated signal generation unit 62-2 After the reception ports 15-1 and 15-2 are switched to the standby state in the above-described steps (1) to (3), the non-modulated signal generation unit 62-2 generates a complex non-modulated signal of ⁇ 0.5f C. exp [j (2 ⁇ ( ⁇ 0.5f C ) t)] is generated.
  • the complex unmodulated signal of ⁇ 0.5 f C is a burst signal that periodically stops signal output in order to detect a time difference described later.
  • FIG. 21 is a diagram showing an example of this complex unmodulated signal waveform.
  • the solid line is the real number component (cosine component), and the dotted line is the imaginary number component (sine component).
  • the generation of signal harmonics may be suppressed by gradually increasing / decreasing the signal amplitude to some extent when the signal is stopped or generated.
  • the complex unmodulated signal waveform is not limited to the example of FIG.
  • FIG. 22 is a diagram showing the flow of processing for a complex unmodulated signal for reception side correction.
  • the signal spectrum at the input point of the AD converter 28-1 at this time is shown in FIG.
  • the other passes the path of BPF 23-2 ⁇ mixer 24-2 ⁇ BPF 27-2 ⁇ AD converter 28-2.
  • the signal spectrum at the AD input point at this time is shown in FIG.
  • the two unmodulated signals passing through the above two paths are subjected to phase fluctuation correction by the reception phase correction units 29-1 and 29-2, respectively, and then input to the reception-side phase time difference detection unit 61.
  • the delay units 60-1 and 60-2 adjust the time delay of the signal that cancels the time difference between the ports based on the time difference ⁇ 21 information obtained by the reception-side phase time difference detection unit 61.
  • the phase difference ⁇ C obtained by the reception-side phase time difference detection unit 61 is given to the reception phase correction units 29-1 and 29-2 as a correction value for canceling this. Since the time delay process can be performed by digital signal processing, it can be easily and accurately realized.
  • the correction of the time delay can be realized by a digital filter such as an interpolation filter that interpolates sampled data M times or a polyphase filter that further thins out the interpolated data at the original sampling rate.
  • FIG. 23 is a diagram illustrating a configuration example of the reception-side phase time difference detection unit 61 according to the present embodiment.
  • the reception-side phase time difference detector 61 includes a complex multiplier 601, a low-pass filter 602, a polar coordinate converter (I, Q ⁇ phase ⁇ ) 603, a power converter 604, and a rising difference detector 605. .
  • the complex unmodulated signal input from the reception phase correction unit 29-1 (reception port 15-1) to the reception-side phase time difference detection unit 61 is defined as CW (+ 0.5f C ), and RPC 29-2 (reception port 15-
  • the complex unmodulated signal input to the receiving-side phase time difference detector 61 from 2) is assumed to be CW ( ⁇ 0.5 f C ).
  • FIG. 24 is a diagram illustrating a waveform example of each non-modulated signal in the present embodiment.
  • the phase offset ⁇ C on the receiving side shown in the first embodiment corresponds to this ⁇ ′ 21 .
  • the reception-side phase time difference detection unit 61 obtains the signal vector angle ⁇ ′ 21 after averaging by the low-pass filter 602, and outputs it to the reception phase correction unit 29-1. Since each unmodulated signal arrives in bursts, the above calculation may be performed when the amplitude of each unmodulated signal is sufficiently large, and an error may occur when there is no signal, so that the above calculation is not performed.
  • the reception side phase time difference detection unit 61 obtains the power of each complex unmodulated signal CW (+0.5 f C ) and CW ( ⁇ 0.5 f C ) in bursts, so that there is each power data.
  • the power data obtained at the clock sampling period is digitally interpolated to tens of times the clock speed, for example, and the sampling speed is increased, and then the edge detection of the power data is performed to detect the edge. You may raise the precision of time.
  • the relay apparatus compensates for the local phase fluctuation described in the first to third embodiments, and has a common non-modulation at the frequency position of the boundary that simultaneously passes through the two ports on the receiving side.
  • a wave is input, and the digital unit detects and corrects the phase difference and the time delay difference between the ports on the receiving side. Therefore, automatic correction of the time delay difference between the ports on the receiving side can be realized with accurate and fine phase and time resolution by digital processing while minimizing the addition of analog elements.
  • the signal before the input of the delay devices 60-1 and 60-2 is connected to the reception-side phase time difference detection unit 61 to obtain ⁇ 21 , but the outputs of the delay devices 60-1 and 60-2 are used. May be connected to the reception-side phase time difference detection unit 61, and the time difference detected by the reception-side phase time difference detection unit 61 may be gradually corrected by feedback (loop) control. Also in this case, time correction for finally canceling ⁇ 21 is realized.
  • FIG. 25 is a diagram showing a flow of processing for the transmission-side correction CW signal in the present embodiment.
  • the non-modulated signal generation unit 62-1 After the transmission port 39-1 and the transmission port 39-2 are switched to the standby state in the procedures (1) to (3), the non-modulated signal generation unit 62-1 generates a complex non-modulated signal of + 0.5f C exp [j (2 ⁇ (+ 0.5f C ) t)] is generated.
  • FIG. 25 (a) shows the spectrum of this complex unmodulated signal. At this time, no signal is output from the other non-modulated signal generator 62-2.
  • the complex unmodulated signal of +0.5 f C is also a burst signal that periodically stops signal output in order to detect a time difference described later.
  • This complex unmodulated signal is up-converted by the mixer 36-1 using the local signal Lf1, and is input to the adder 63.
  • the signal output from the adder 63 inside the transmission analog switch matrix 37 is used as the input terminal (BPF 14-1 output terminal) of the reception analog switch matrix 22 during correction on the transmission side. To enter.
  • the unmodulated signal having the center frequency f 1 + 0.5f C inputted to the input end (BPF 14-1 output end) of the reception analog switch matrix 22 is connected to the BPF 23-1 by the reception analog switch matrix 22. Therefore, this non-modulated signal passes through the path of BPF 23-1 ⁇ mixer 24-1 ⁇ BPF 27-1 ⁇ AD converter 28-1 and is input to the reception phase correction unit 29-1.
  • FIG. 25D shows a signal spectrum before input to the AD converter 28-1. As shown in FIG. 25 (d), this signal is a signal having a center frequency of +0.5 f C. Further, the non-modulated signal is input to the transmission side time difference detection unit 64 after the phase fluctuation correction is performed by the reception phase correction unit 29-1.
  • the transmission side time difference detection unit 64 generates a complex unmodulated signal (free-running complex unmodulated signal) exp [j (2 ⁇ ( ⁇ ) with a frequency of ⁇ 0.5 f C generated in the transmission side time difference detection unit 64 from the input signal. 0.5f C ) t)] and complex multiplication.
  • FIG. 26 is a diagram illustrating a configuration example of the transmission-side phase time difference detection unit 64 according to the present embodiment.
  • the transmission-side phase time difference detector 64 of this embodiment includes a complex multiplier 611, a low-pass filter 612, a polar coordinate converter (I, Q ⁇ phase ⁇ ) 613, a power converter 614, a rising difference detector 615, a free-running complex.
  • An unmodulated signal generation unit 616 is provided.
  • the complex multiplication unit 611 multiplies the signal input from the reception phase correction unit 29-1 by the free-running complex unmodulated signal generated by the free-running complex unmodulated signal generation unit 616.
  • the low pass filter 612 averages the signal after the multiplication by the complex multiplier 611.
  • the vector angle of the averaged signal is the phase of the free-running complex unmodulated signal and the phase of the unmodulated signal input to the transmission-side phase time difference detector 64 via the transmission port 39-1 ⁇ the reception port 15-1. It corresponds to the difference.
  • the polar coordinate conversion unit 613 obtains this vector angle and holds it as phase difference information ⁇ 1 . Since each complex unmodulated signal arrives in bursts, the above calculation is performed when the amplitude of each complex unmodulated signal is sufficiently large, and an error occurs when there is no signal, so that the above calculation is not performed. .
  • the power conversion unit 614 performs power conversion on the output signal of the complex multiplication unit 611, and the rising difference detection unit 615 determines the time when the power data exceeds a certain threshold as the rising edge time t. Record as 1 .
  • the rising edge difference detection unit 615 also records the time t 0 when the reception of the complex unmodulated signal from the unmodulated signal generation unit 62-1 is started, and obtains the difference (t 1 -t 0 ) between the times. Record the result as ⁇ 1 .
  • non-modulation signal generation unit 62-1 stops sending complex unmodulated signal, the other unmodulated signal generator 62-2, -0.5F C complex unmodulated signal exp [j (2 ⁇ ( ⁇ 0.5f C ) t)].
  • FIG. 25B shows the spectrum of this signal.
  • This complex unmodulated signal is up-converted by the mixer 36-2 using the local signal LF2, and at the output terminal of the adder 63, as shown in FIG. 25 (c), the center frequency f 2 -0.5f C is obtained. Frequency converted.
  • the signal spectrum before input to the AD converter 28-1 is the center frequency + 0.5f C as shown in FIG.
  • the unmodulated signal is input to the transmission-side phase time difference detection unit 64 after the phase fluctuation is corrected by the RPC 29-1. Transmitting-side phase time difference detector 64, the input signals, complex unmodulated signal frequency -0.5F C generated inside (self complex unmodulated signal) exp [j (2 ⁇ (-0.5f C) t)] and complex multiplication.
  • the vector angle of the signal obtained by averaging the multiplication results by the low-pass filter 612 is the phase of the free-running complex unmodulated signal and the transmission-side phase time difference detection unit 64 via the transmission port 39-2 ⁇ the reception port 15-1. This corresponds to the difference from the non-modulated signal phase input to.
  • the transmission-side phase time difference detection unit 64 holds this phase difference information as ⁇ 2 . Since each complex unmodulated signal arrives in bursts, the above calculation is performed when the amplitude of each complex unmodulated signal is sufficiently large, and an error occurs when there is no signal, so that the above calculation is not performed. .
  • the power conversion unit 614 performs power conversion on the output signal of the complex multiplication unit 611, and the rising difference detection unit 615 determines the time when the power data exceeds a certain threshold as the rising edge time t. Record as 3 .
  • the rising difference detector 615 also records the time t 2 when reception of the complex unmodulated signal from the unmodulated signal generator 62-2 is started, obtains the difference (t 3 -t 2 ) between the times, Record the result as ⁇ 2 .
  • the phase difference between 39-1 and the transmission port 39-2 can be obtained. That is, the transmission-side phase time difference detection unit 64 can obtain the result of subtracting ⁇ 2 and ⁇ 1 as the phase difference information ⁇ 21 .
  • the phase offset ⁇ C on the transmission side shown in the first embodiment corresponds to this ⁇ 21 .
  • the transmission-side phase time difference detection unit 64 gives a value that cancels out the phase difference information ⁇ 21 to the transmission phase correction unit 33-2.
  • the delay units 65-1 and 65-2 adjust the time delay of the signal that cancels the time difference between the ports based on the time difference information ⁇ 21 obtained by the transmission-side phase time difference detection unit 64. Since the time delay can be performed by digital signal processing, it can be easily and accurately realized.
  • the delay units 65-1 and 65-2 are composed of an interpolation filter and a polyphase filter, like the delay units 60-1 and 60-2 described above.
  • the local phase fluctuation compensation described in the first to third embodiments is performed, and the frequency located at the boundary that can pass through any of the two ports on the transmission side is An unmodulated wave is alternately input, and the digital section detects and corrects the phase difference and time delay difference between the ports on the transmission side. Therefore, automatic correction of the time delay difference between the ports on the transmission side can be realized with accurate and fine time resolution by digital processing while minimizing the addition of analog elements.
  • the phase offset ⁇ C has a different sign on the reception side and transmission side ( ⁇ C , + ⁇ C ), but since the absolute values thereof are the same, the reception side phase time difference detection unit 61 or the transmission side phase time difference detection
  • the phase offset may be obtained by any of the units 64, and may be shared between the transmission side and the reception side while inverting only the sign. In this case, the circuit scale for obtaining the phase offset can be reduced.
  • the unmodulated signal generation unit 62-1 and the unmodulated signal generation unit 62-2 do not generate signals simultaneously, the unmodulated signal generation unit may be combined into one.
  • the unmodulated signal generation unit sets the frequency to +0.5 f C when flowing a complex unmodulated signal to the transmission port 39-1, and sets the frequency to ⁇ when flowing the complex unmodulated signal to the transmission port 39-2. It should be extended to the function to be switched to 0.5f C.
  • the frequency is inverted from positive to negative simply by inverting the sign of the orthogonal component of the complex unmodulated signal, this function can be easily expanded.
  • the time difference correction on the reception side and the time difference correction on the transmission side have been described for correcting the time delay difference between the first port and the second port.
  • Port 15-2, transmission port 39-2) and 3rd port (reception port 15-3, transmission port 39-3), 3rd port and 4th port etc. can do.
  • a delay device is required for each port, but the unmodulated signal generation units 62-1 and 62-2 and the reception-side phase time difference detection unit 61 can be used in common.
  • a time difference with each port based on a certain port (for example, reception port 15-1) can be obtained. It can also be controlled to zero.
  • the example in which the digital unit detects and corrects the phase difference and the time delay difference between the ports on the reception side or the transmission side has been described.
  • both the phase difference and the time delay difference are necessarily detected and corrected. If the time delay difference is sufficiently small, it is only necessary to correct the phase. In this case, since the circuit for obtaining the time delay difference and each delay unit can be reduced, the circuit scale can be further reduced.
  • Embodiments 1 to 4 the application example to the relay satellite has been described.
  • the relay apparatus of the present embodiment is similarly applied to a terrestrial radio relay, a radio base station, and a radio terminal. By doing so, it is possible to realize a wide band of the radio.
  • connection unit 31 is described as a digital switch matrix.
  • DBF reception digital beam forming
  • transmission DBF transmission DBF
  • FIG. 27 is a diagram illustrating a state of the same frequency interference when the two beam areas 100 and 102 (broadband beam area 100 and narrowband beam area 102) illustrated in the second embodiment are brought close to each other.
  • the wideband signal A from the beam area 100 shown in (a) and the narrowband signal ⁇ B, C, D ⁇ from the beam area 102 shown in (b) use the same frequency band. Therefore, when the distance between the beam area 100 and the beam area 102 is shortened, the antenna 21-1 of the relay satellite 200 has not only the wideband signal A but also the narrow area from the beam area 102 as shown in (c) of FIG. Band signals ⁇ B, C, D ⁇ are also received at a small level.
  • Signals 702, 703, and 704 shown in (c) of FIG. 27 are components of the narrowband signal ⁇ B, C, D ⁇ from the beam area 102 received at a small level by the antenna 21-1, respectively. It becomes an interference component with respect to the signal A and brings about deterioration of communication quality.
  • the antenna 21-2 of the relay satellite 200 receives a narrowband signal ⁇ B, In addition to C, D ⁇ , the broadband signal A from the beam area 100 is also received at a small level.
  • a signal 701 shown in (d) of FIG. 27 is a component of the wideband signal A from the beam area 100 received at a small level by the antenna 21-2, and for the narrowband signal ⁇ B, C, D ⁇ . It becomes an interference component and brings about deterioration of communication quality.
  • FIG. 28 is a diagram illustrating an example of the reception DBF process according to the present embodiment.
  • the beam number input to the reception DBF function is k ( ⁇ ⁇ 0, 1, 2,..., K ⁇ 1 ⁇ ), and the number of each subchannel signal demultiplexed by each demultiplexing unit is j ( ⁇ ⁇ 0, 1, 2,..., J-1 ⁇ ), the beam number of the output destination is i ( ⁇ ⁇ 0, 1, 2,..., I-1 ⁇ ), and the baseband input signal is D (j, k)
  • the reception complex DBF coefficient is r (i, j, k)
  • the baseband signal R (i, j) after the reception DBF processing is expressed by the following equation (35).
  • the signal after the reception DBF processing is expressed by the following equations (36) and (37).
  • R (0,1) D (1,0) ⁇ r (0,1,0) + D (1,1) ⁇ r (0,1,1) (36)
  • R (1,1) D (1,0) ⁇ r (1,1,0) + D (1,1) ⁇ r (1,1,1) (37)
  • D (1,0) corresponds to the signal (1) ′
  • D (1,1) corresponds to the signal B ′
  • R (0,1) is the value after DBF processing indicated by 705a in FIG. It corresponds to the signal (1)
  • R (1,1) corresponds to the signal B after DBF processing shown by 103a in FIG.
  • FIG. 28 shows an example in which the signal 702 that is a small component of the signal B mixed in the signal (1) ′ is canceled using the signal B included in the signal B ′.
  • the signal (1) ′ and the signal B ′ are respectively multiplied by the reception DBF coefficients by the complex multipliers 720 and 722, and the multiplied signals are vector-synthesized by the adder 724.
  • the signal 702, which is a small component of the signal B is removed from the signal (1) 'as indicated by the signal 705a in FIG.
  • the reception DBF coefficient is set so that the signal (1) of 705a has the same amplitude and the same phase as the signal 705 included in the signal 710.
  • FIG. 28 shows an example in which the signal 701a which is a small component of the signal (1) mixed in the signal B ′ is canceled using the signal (1) included in the signal (1) ′.
  • the received DBF coefficients are multiplied by the complex multipliers 721 and 723 respectively to the signal (1) ′ and the signal B ′, and then the vector synthesis is performed by the adder 725.
  • the signal 701a which is a small component of the signal (1), is removed from the signal B as indicated by the signal 103a in FIG.
  • the reception DBF coefficient is set so that the signal B of the signal 103a has the same amplitude and phase as the signal 103 included in the signal 711 in the process of removing the interference.
  • These received DBF coefficients r (i, j, k) are calculated by the ground control station 110 that knows the position of each ground station and the position of the relay satellite, and are given to the relay satellite 200 via another line. It is also good. At that time, the control station 110 may partially collect input data before DBF processing from the relay satellite 200 via a separate line and use it for calculating the coefficient of the received DBF.
  • the relay DB 200 may perform the reception DBF coefficient calculation by itself instead of the control station 110.
  • the calculation amount of the relay satellite 200 is increased, real-time (rapid) interference removal can be realized as compared with the case where the control is performed by the ground control station 110.
  • FIG. 29 is a diagram illustrating a configuration example of a relay apparatus having a reception DBF function and a transmission DBF function.
  • FIG. 29 shows an example of four-beam input and four-beam output, and illustrations other than the reception DBF function, the connection unit 31, and the transmission DBF function are omitted. Configurations other than the reception DBF function, connection unit 31, and transmission DBF function are the same as those in the first embodiment.
  • the reception DBF unit 801 performs the processing of the above equation (35).
  • the subchannel data after demultiplexing from No. 0 to No. J-1 is time-division multiplexed.
  • the number of each input signal D (j, k) becomes one structure for every beam.
  • the number of output signals R (j, k) is also one for each beam.
  • the subchannel data after demultiplexing does not have to be time-division multiplexed.
  • the set of subchannels multiplexed in time-division multiplexing is not limited to the example of FIG.
  • Each reception DBF coefficient multiplication section 802, 803, 804, 805 receives the reception DBF coefficient r (i ) in units of the input beam number k ⁇ ⁇ 0, 1, 2, 3 ⁇ with respect to the beam signal D (j, k) . , j, k) is complex multiplied.
  • Each of the reception DBF addition units 806, 807, 808, and 809 performs vector addition on all the subchannel signals multiplied by the reception DBF coefficients in units of output beam numbers i ⁇ ⁇ 0, 1, 2, 3 ⁇ .
  • the sub-channel signal of each beam from which interference components have been removed by this series of reception DBF processing is distributed to the transmission-side multiplexing unit by the connection unit 31 that performs the same operation as in the first embodiment.
  • the transmission side can mitigate the same frequency interference at the ground reception station that occurs when the downlink beam areas (for example, the beam areas 400 and 402) are brought closer by the transmission DBF processing. That is, in the transmission DBF process, the main satellite signal is mixed with the signal from the adjacent beam and transmitted on the relay satellite side in advance so as to cancel the same frequency interference signal from the adjacent beam.
  • FIG. 30 is a diagram illustrating a transmission DBF processing example and effects.
  • the transmission DBF unit 811 converts the signal 901 for removing interference using the signal B to the transmission spectrum of the transmission antenna 40-1 in FIG. Add to the interference part. Note that when performing interference cancellation of the wideband signal A, a reception DBF coefficient calculated so that the frequency-to-amplitude characteristics and frequency-to-phase characteristics of the wideband signal A after canceling the signal B is not destroyed is set.
  • the transmission DBF unit 811 generates a signal 902 for removing interference using a partial band of the signal A with respect to the transmission spectrum of the transmission antenna 40-2 in FIG. Add to the spectrum.
  • the signal B from the antenna 40-2 is canceled by the signal 901 from the antenna 40-1, and the broadband signal A that is almost the same as the original signal is received. can do.
  • the signal A from the antenna 40-1 is canceled by the signal 902 from the antenna 40-2, and a narrowband signal B that is almost the same as the original signal is not generated. Can be received.
  • the beam number input to the transmission DBF unit 811 is k ( ⁇ ⁇ 0, 1, 2,..., K ⁇ 1 ⁇ ), and the number of each subchannel signal is j ( ⁇ ⁇ 0, 1, 2,... J ⁇ 1 ⁇ ), the beam number of the output destination is i ( ⁇ ⁇ 0, 1, 2,..., I ⁇ 1 ⁇ ), the baseband input signal is M (j, k) , and the received complex DBF coefficient is w ( If i, j, k) , the baseband signal T (i, j) after the transmission DBF processing is expressed by the following equation (38).
  • FIG. 29 also shows a configuration example of the transmission DBF unit 811 with four inputs and four outputs.
  • the transmission DBF unit 811 performs the processing of the above equation (38).
  • the subchannel data from No. 0 to J-1 is time-division multiplexed and each data is input from the connection unit 31 in the previous stage.
  • the number of each input signal (baseband input signal) M (j, k) becomes one structure for every beam.
  • the number of output signals T (j, k) is also one for each beam.
  • Each transmission DBF coefficient multiplier 812, 813, 814, 815 is configured to transmit DBF coefficient w (i in units of input beam number k ⁇ ⁇ 0, 1, 2, 3 ⁇ with respect to input signal M (j, k) . , j, k) is complex multiplied. Also, each transmission DBF addition section 816, 817, 818, 819 performs vector addition on all subchannel signals multiplied by the transmission DBF coefficient in units of output beam numbers i ⁇ ⁇ 0, 1, 2, 3 ⁇ .
  • These coefficients of transmission DBF w (i, j, k ) is the coefficient r of the receiving DBF (i, j, k) and similar, the position and the respective ground station, the control station on the ground to know the position of the satellite relay A system calculated by 110 and given to the relay satellite 200 via another line may be used.
  • each ground station may calculate the transmission DBF coefficient w (i, j, k) and give the calculation result to the relay satellite 200 via another line.
  • interference from adjacent beam areas is removed by reception DBF processing and transmission DBF processing. Therefore, in addition to the effect of relaying a broadband signal, it is possible to realize high antenna directivity in which signals of the same frequency do not interfere even when the beam areas are brought close to each other. As a result, the repetition rate of the same frequency is improved, and combined with the effect of relaying a broadband signal, it is possible to realize a further increase in capacity of the satellite system.
  • the relay apparatus according to the present embodiment is similarly applied to a radio repeater having a plurality of ground directional antennas, a radio base station, or a radio terminal. By applying it, it is possible to realize high antenna directivity as well as broadening the bandwidth of the radio.
  • Embodiment 6 FIG. Next, a relay device according to the sixth embodiment will be described.
  • the relay signal input / output to the corresponding port is temporarily stopped and the standby An example of implementation after the state has been shown.
  • the adjustment is limited to the adjustment between the ports on the reception side, but the phase offset ⁇ C and the fixed time difference are corrected using CW while the relay signal is being input / output without entering the standby state. This saves the trouble of switching to the standby state and facilitates system operation.
  • this embodiment is effective when adjusting the reception-side port, and can be applied to, for example, demodulating a wideband signal on a relay satellite or demodulating a wideband signal on a ground station. it can.
  • FIG. 31 is a diagram illustrating a configuration example of the relay device according to the present embodiment.
  • the basic configuration of the relay apparatus according to the present embodiment is the same as that of FIG. 19, and a CW replica generation unit 71 and CW removal units 70-1 and 70-2 are added to the configuration example of FIG.
  • a CW replica generation unit 71 and CW removal units 70-1 and 70-2 are added to the configuration example of FIG.
  • the component concerning a part to add is shown, and illustration of components other than these is abbreviate
  • the unmodulated signal generation unit 62-2 generates an unmodulated signal as in the fourth embodiment.
  • the reception ports 15-1 and 15-2 are not switched to the standby state but remain in a state in which the relay signal is input / output.
  • the unmodulated signal generated by the unmodulated signal generation unit 62-2 is up-converted by 36-2 and input to the reception ports 15-1 and 15-2 via the adder 63.
  • the reception-side phase time difference detection unit 61 detects the phase difference and time difference between unmodulated signals (CW waves) input to the two reception ports.
  • an unmodulated signal that is input to the reception port 15-1 and input from the RPC 29-1 to the reception-side phase time difference detector 61 is defined as a first unmodulated signal, and is input to the reception port 15-2 and is input to the RPC 29- 2 is a second unmodulated signal input to the receiving-side phase time difference detecting unit 61, the receiving-side phase time difference detecting unit 61 receives the receiving port based on the first unmodulated signal and the second unmodulated signal.
  • the phase difference ( ⁇ C ) and time difference between 15-1 and 15-2 are detected. Further, the reception-side phase time difference detection unit 61 calculates a delay correction value ⁇ 21 based on the detected time difference.
  • the received signal is also included in each signal input to the reception-side phase time difference detection unit 61.
  • the first unmodulated signal and the second unmodulated signal are detected using the characteristics of the component (rise or the like).
  • the power (power information) of two CWs is also detected in each detection process.
  • the CW replica generation unit (replica generation unit) 71 is 180 degrees out of phase with the CW wave mixed in the reception signal based on the phase difference, power information, and delay correction value ⁇ 21 detected by the reception-side phase time difference detection unit 61. And an equal-power CW replica.
  • Each generated CW replica is input to CW removal units (unmodulated signal removal units) 70-1 and 70-2, and a reception baseband in which CW waves output from delay units 60-1 and 60-2 are mixed.
  • the signal and vector are added.
  • the CW replica generation unit 71 uses the delay correction value ⁇ 21 so that the correction CW mixed in the signal and the timing of the CW replica are aligned, and each CW replica generation unit 71 performs the delay correction by the delay unit. Also adjust the replica timing.
  • phase difference between the reception ports 15-1 and 15-2 in which the input signal is branched into two is described.
  • 2 can be used similarly to the transmission side in the fourth embodiment, two unmodulated signal generation units 62-1 and 62-2 can be used.
  • the correction CW wave is canceled by the CW replica, and only the received signal necessary for the original signal relay is input to the demultiplexing unit. Therefore, it is possible to correct a phase difference (phase offset ⁇ C ) or a fixed time difference using CW while inputting / outputting a relay signal.
  • the reception-side phase time difference detection unit 61 needs to detect each CW in a state where the original relay signal is mixed, so that the relay signal may cause an increase in detection error as an interference component. Therefore, if there is a concern about an increase in errors, a narrowband digital filter that extracts only the CW component is provided in the previous stage, and after removing the relay signal component, the time difference and phase difference shown in the fourth embodiment are obtained. Signal processing may be performed.
  • the relay device, the relay satellite, and the satellite communication system according to the present invention are useful for a relay system that relays a broadband signal, and are particularly suitable for a satellite relay system.
  • uplink / downlink frequency converter 21-1 to 21-N receiving antenna, 22 receiving analog switch matrix, 12-1 to 12-N, 14-1 to 14-N, 23-1 to 23-N, 27-1 to 27-N, 38-1 to 38-N, 508, 531, 537 Band pass filter, 13-1 to 13-N, 36-1 to 36-N, 507, 530, 536 mixer, 25 local Generation unit, 26 original oscillation, 28-1 to 28-N, 509, 532, 538 AD converter, 29-1 to 29-N reception phase correction unit, 30-1 to 30-N demultiplexing unit, 31 connection unit , 32-1 to 32-N multiplexing unit, 33-1 to 33-N transmission phase correction unit, 34-1 to 34-N DA converter, 35-1 to 35-N, 512, 534, 540, 549 , 550, 55 , 602, 612 low-pass filter, 37 transmission analog switch matrix, 40-1 to 40-N transmission antenna, 41, 41a, 41b local phase difference calculation unit, 60-1, 60-2, 65-1, 65-2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Relay Systems (AREA)

Abstract

 受信ポート15-1~15-Nごとの受信処理部で処理が可能な帯域幅よりも広帯域の広帯域受信信号を2つ以上の受信処理部に出力する受信アナログスイッチマトリックス22と、受信処理部により分波された分波信号を送信処理部へ出力する接続部31と、同一の受信信号に対応する分波信号が入力された1つ以上の送信処理部によって送信処理が施された信号を同一の送信アンテナに出力する送信アナログスイッチマトリックスと、周波数の異なる2つ以上のローカル信号を生成して受信処理部へ供給するローカル生成部25と、ローカル信号間の位相差を算出し、受信処理部へ入力するローカル位相差算出部41と、位相差に基づいて位相補正を行う受信位相補正部29-1~29-N、を備え、受信処理部は、広帯域受信信号に対してローカル信号に基づいて入力信号の一部の帯域を抽出した分割信号に対して受信処理を行う。

Description

中継装置、中継衛星および衛星通信システム
 本発明は、中継装置、中継衛星および衛星通信システムに関する。
 複数のビームから複数のビームにデータを中継するデジタルチャネライザ搭載の中継衛星では、AD(Analog to Digital)変換器(A/D),DA(Digital to Analog)変換器(D/A),デジタル信号処理部の各サンプリング速度を上げることで、各ビームからの広帯域な信号のデータ中継が可能である。このような、デジタルチャネライザ搭載の中継衛星に関する技術が、下記特許文献1において開示されている。
特表2006-516867号公報
 しかしながら、上記従来の技術によれば、広帯域信号を処理する場合には、例えば1.4Gspsの高速サンプリングが必要である。このため、A/D、D/Aのサンプリング速度や、分波部、合波部およびスイッチ部で構成されるデジタル信号処理部の処理速度の高速化に伴い、衛星の消費電力が増大する、という問題があった。
 また、耐放射線に優れた宇宙用デバイスは、一般に地上で使われている民生用デバイスと比較してサンプリング速度、処理速度が低いため、中継衛星の更なる広帯域化を実現することは、宇宙用デバイスの性能限界上、困難であるという問題があった。
 更に、上記従来の技術によれば、一式の処理部(A/D変換器、D/A変換器、デジタル分波器/合波器)で1つの広帯域信号を処理する。このため、仮に一式の処理部のうちA/D変換器、D/A変換器、デジタル分波器/合波器のいずれか1つでも故障する、または予期せぬ干渉波入力等により入力信号が飽和すると、通信が不能となる、という問題があった。
 本発明は、上記に鑑みてなされたものであって、デバイスの性能に制約がある場合でも広帯域な信号を中継することが可能で、かつ故障や干渉による通信品質の劣化を低減することができる中継装置、中継衛星および衛星通信システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数の受信処理部と、複数の送信処理部と、前記受信処理部で処理された信号を、前記送信処理部へ出力する接続部と、周波数の異なる2つ以上のローカル信号を生成し、前記ローカル信号をそれぞれ前記受信処理部へ供給するローカル生成部と、前記ローカル信号間の位相差を算出し、前記受信処理部へ前記位相差を入力するローカル位相算出部と、を備え、前記受信処理部は前記位相差に基づいて位相補正を行う受信側位相補正部、を備え、前記送信処理部は、前記接続部からの信号を送信処理し、前記受信処理部は、処理可能な帯域幅よりも広帯域な広帯域受信信号が入力された場合、受信信号を1つ以上の前記受信処理部で処理することを特徴とする。
 本発明にかかる中継衛星、中継装置および衛星通信システムは、デバイスの性能に制約がある場合でも広帯域な信号を中継することが可能で、かつ故障や干渉による通信品質の劣化を低減することができるという効果を奏する。
図1は、実施の形態1の中継衛星の構成例を示す図である。 図2は、図1に示した中継衛星における受信部の構成例を示す図である。 図3は、図1に示した中継衛星における送信部の構成例を示す図である。 図4は、ローカル生成部の構成例を示す図である。 図5は、ローカル位相差算出部の構成例を示す図である。 図6は、実施の形態1の中継衛星による信号中継動作の概要を示す図である。 図7は、実施の形態1の中継衛星による信号中継動作手順の一例を示す図である。 図8は、分波部が処理する信号のスペクトラムの関係の一例を示す図である。 図9は、受信ポートで受信する信号の一例を示す図である。 図10は、信号中継動作(送信側)の一例を示す図である。 図11は、中継衛星から受信局へ送信する広帯域信号の一例を示す図である。 図12は、ローカル生成部の別の構成例を示す図である。 図13は、受信側の周波数変換処理の流れを示す図である。 図14は、リミタ通過後の信号の位相変化例の一例を示す図である。 図15は、送信側の周波数変換の流れの一例を示す図である。 図16は、実施の形態2のローカル位相差算出部の構成例を示す図である。 図17は、実施の形態3のローカル位相差算出部の構成例を示す図である。 図18は、実施の形態3におけるサンプリング処理例を示す図である。 図19は、実施の形態4の中継衛星の構成例を示す図である。 図20は、実施の形態4の中継衛星の構成例を示す図である。 図21は、複素無変調信号波形の一例を示す図である。 図22は、受信側補正用の複素無変調信号に対する処理の流れを示す図である。 図23は、実施の形態4の受信側位相時間差検出部の構成例を示す図である。 図24は、実施の形態4における各無変調信号の波形例を示す図である。 図25は、実施の形態4における送信側補正用CW信号に対する処理の流れを示す図である。 図26は、実施の形態4の送信側位相時間差検出部の構成例を示す図である。 図27は、ビームエリアを近づけた場合の同一周波数干渉の様子を示す図である。 図28は、実施の形態5の受信DBF処理の一例を示す図である。 図29は、受信DBF機能および送信DBF機能を有する中継装置の構成例を示す図である。 図30は、送信DBF処理例と効果を示す図である。 図31は、実施の形態6の中継装置の構成例を示す図である。
 以下に、本発明にかかる中継装置、中継衛星および衛星通信システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる中継衛星の実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の中継衛星200は、受信アンテナ21-1~21-N(Nは2以上の整数)、受信部201、接続部31、送信部202および送信アンテナ40-1~40-Nを備える。図1では、中継衛星の全体構成のうち、中継衛星に搭載される中継装置の構成を示している。また、本実施の形態では、受信アンテナの数と送信アンテナの数を同じとしているが、受信アンテナの数と送信アンテナの数は異なっていてもよい。
 本実施の形態の中継衛星は、受信アンテナ21-1~21-Nで受信した信号に対して、後述する信号処理を実施し、送信アンテナ40-1~40-Nから送信することにより信号を中継する。
 本実施の形態では、広帯域信号を、低いサンプリング速度、処理速度のデバイスを用いて中継することが可能な中継衛星および衛星通信システムについて説明する。
 図2は、図1に示した中継衛星200における受信部の構成例を示す図である。説明の都合上、図2では、接続部31と、中継対象とする信号の送信元装置である送信局101,103,104,105と、中継衛星にコマンド信号を送信する地上局である制御局110と、についても記載している。受信アンテナ21-1~21-Nは、各受信ビームのビームエリアからの信号を受信する。図2では、広帯域ビームエリア100と、狭帯域ビームエリア102の2つのビームエリアが存在する例を示している。広帯域ビームエリア100には、広帯域信号を送信する送信局101が存在し、狭帯域ビームエリア102には、狭帯域信号を送信する送信局103,104,105が存在する。なお、本実施の形態では、広帯域信号とは、後述するようにAD変換器、分波部、合波部およびDA変換器で処理可能な帯域幅を超える帯域幅を有する信号を示す。
 図2に示したように、中継衛星200の受信部201は、アップリンク/ダウンリンク周波数変換部10と、受信アナログスイッチマトリックス(第1のスイッチ部)22と、バンドパスフィルタ(BPF)23-1~23-Nと、ミキサ24-1~24-Nと、ローカル生成部25と、原振26と、バンドパスフィルタ27-1~27-Nと、AD変換器(A/D)28-1~28-Nと、受信位相補正部(RPC)29-1~29-Nと、分波部30-1~30-Nと、接続部(デジタルスイッチマトリックス)31と、を備える。
 また、アップリンク/ダウンリンク周波数変換部10は、入力側のバンドパスフィルタ(BPF)12-1~12-Nと、ミキサ13-1~13-Nと、ローカル発振器11と、出力側のバンドパスフィルタ(BPF)14-1~14-Nと、を備える。
 図3は、図1に示した中継衛星における送信部の構成例を示す図である。説明の都合上、図3では、ビームエリア400,402と、中継対象とする信号の受信装置である受信局401,403、についても記載している。図3では、ビームエリア400に受信局401が存在し、ビームエリア402に受信局403が存在する例を示している。
 図3に示したように、中継衛星200の送信部202は、合波部32-1~32-Nと、送信位相補正部33-1~33-Nと、DA変換器(D/A)34-1~34-Nと、ローパスフィルタ35-1~35-Nと、ミキサ36-1~36-Nと、送信アナログスイッチマトリックス(第2のスイッチ部)37と、バンドパスフィルタ38-1~38-Nと、を備える。
 なお、図2、3では、中継衛星が、2つのビームエリア(広帯域ビームエリア100,狭帯域ビームエリア102)内の各送信局から送信された4つの上り信号を2つのビームエリア(ビームエリア400,402)に中継する例を示しているが、ビーム数および中継する上り信号の数は、図2、3の例に限定されない。
 接続部31は、例えばデジタルスイッチマトリックスであり、各分波部30-1~30-Nから出力された信号を入力とし、入力された各信号を後段の合波部32-1~32-Nへ振り分ける。
 図4は、本実施の形態の中継衛星200の受信部201が備えるローカル生成部25の構成例を示す図である。図4に示したように、本実施の形態のローカル生成部25は、周波数シンセサイザ501,502を備える。
 図5は、ローカル位相差算出部41の構成例を示す図である。図5に示したように、本実施の形態のローカル位相差算出部41は、ミキサ507と、バンドパスフィルタ508と、AD変換器(A/D)509と、直交検波部510と、(デジタル)ローカル生成部511と、(デジタル)ローパスフィルタ512と、リミタ513と、セレクタ514,515,516と、クロック生成器517とを備える。
 次に、本実施の形態の中継衛星による信号中継処理について具体的に説明する。図6は、本実施の形態の中継衛星による信号中継動作の概要を示す図である。
 本実施の形態では、中継衛星200が、送信局101,103,104,105からそれぞれ受信した信号A,B,C,Dを、それぞれ以下に示す中継先へ図6に示す周波数配置にて同時中継する場合について説明を行う。
<1>広帯域ビームエリア100内の送信局101からの広帯域信号である信号Aを、ビームエリア400内の受信局401へ送信する。
<2>狭帯域ビームエリア102内の送信局103からの狭帯域信号である信号Bを、ビームエリア402内の受信局403へ送信する。
<3>狭帯域ビームエリア102内の送信局104からの狭帯域信号である信号Cを、ビームエリア400内の受信局401へ送信する。
<4>狭帯域ビームエリア102内の送信局105からの狭帯域信号である信号Dを、ビームエリア400内の受信局401へ送信する。
 図6に示すとおり、信号B,C,Dのアップリンク周波数は、信号Aの左半分と同じ周波数である。
 ここで、中継衛星200内の一式のAD変換器、分波部、合波部およびDA変換器で処理可能な信号帯域幅の上限を1とする。これに対して、図6に示すように、信号Aの帯域幅は1.5、信号B,C,Dの各帯域幅は0.25である場合を想定すると、信号Aの帯域幅は1より大きいため、従来技術では、信号Aをデジタル分波、合波、スイッチングすることができない。これに対して、本実施の形態では、詳細については後述するが、このような帯域幅は1より大きい広帯域信号も含めて、通信の品質劣化を防止しつつ各信号(A,B,C,D)を中継することができる。
 以降、図2、図7を用いて中継衛星200の受信処理を説明する。図7は、本実施の形態の中継衛星による信号中継動作手順の一例を示す図である。なお以降、文中で表記する具体的な周波数帯域幅の数値は、一式のAD変換器、分波部、合波部およびDA変換器で処理可能な信号帯域幅の上限を1として正規化した値とする。
 広帯域信号である信号Aは、図2に示すように、受信アンテナ21-1で受信され、アップリンク/ダウンリンク周波数変換部10の入力バンドパスフィルタ12-1に入力される。
 また狭帯域信号である信号B,C,Dは、受信アンテナ21-2で受信され、アップリンク/ダウンリンク周波数変換部10の入力バンドパスフィルタ12-2に入力される。
 一般に、衛星通信システムでは、上りの無線周波数と下りの無線周波数が異なるが、アップリンク/ダウンリンク周波数変換部10は、上りの無線周波数から下りの無線周波数への周波数変換を実施する。
 具体的には、アップリンク/ダウンリンク周波数変換部10では、はじめに、入力バンドパスフィルタ12-1が信号Aを、その信号帯域が欠けることなくかつ隣接する他通信システムの信号を除去するよう信号を抽出する。
 次に、上り信号の無線周波数をfr、下り信号の無線周波数をftとすると、ミキサ13-1が、入力バンドパスフィルタ12-1を通過した信号Aに、ローカル発振器11から出力される周波数(fr-ft)を有するローカル信号を乗算する。バンドパスフィルタ14-1は、ミキサ13-1での乗算により生成される2つの周波数成分ft,2fr-ftのうち、不要波2fr-ftの成分を除去する。以上の一連の処理により、広帯域信号Aの無線周波数が上り周波数から下り周波数に変換される。
 同様にアップリンク/ダウンリンク周波数変換部10では、狭帯域信号{B,C,D}の周波数を、入力バンドパスフィルタ12-2、ミキサ13-2および出力バンドパスフィルタ14-2により、上り信号の無線周波数frから下り信号の無線周波数ftに変換する。
 次に、信号Aと信号B,C,Dは受信アナログスイッチマトリックス22に入力される。受信アナログスイッチマトリックス22は、地上の制御局110からのコマンド信号によって制御される。コマンド信号は、別回線で、制御局110から中継衛星200に送信される。
 受信アナログスイッチマトリックス22は、制御局110からのコマンド信号に従い、バンドパスフィルタ14-1からの信号Aを、受信ポート15-1(BPF23-1)と、受信ポート15-2(BPF23-2)とに同時に入力する。
 受信ポート15-1に入力される信号Aは、BPF23-1、ミキサ24-1およびBPF27-1を通過することにより、無線周波数帯から中間周波数帯、またはベースバンド帯に周波数変換される。この際、BPF23-1、BPF27-1におけるアナログフィルタ(通過帯域幅1.0)により、信号Aは、図7(a)に示すように、中心周波数から高い方の帯域半分近くが削られ、帯域幅は1.5から0.75+αまで削減される。ミキサ24-1には、別途ローカル生成部25からのローカル信号LO1(周波数:f1)が供給される。
 同様に、受信ポート15-2に入力される信号Aは、後段のBPF23-2、ミキサ24-2およびBPF27-2を通過することにより、無線周波数帯から中間周波数帯、またはベースバンド帯に周波数変換される。ローカル生成部25からミキサ24-2には、ローカル信号LO2(周波数:f2)が供給される。この際、BPF27-2におけるアナログフィルタ(通過帯域幅1.0)により、信号Aは、図7(d)に示すように、中心周波数から低い方の帯域半分近くが削られ、帯域幅は1.5から0.75+αまで削減される。
 なお、受信ポート15-1に入力される無線周波数を中間周波数ではなく、ベースバンド周波数に変換する場合は、上記アナログのBPF27-1~27-NはI,Qの2系統のアナログのローパスフィルタに変更される。
 以上のアナログフィルタ処理により、後段のAD変換器28-1,28-2にそれぞれ入力される信号帯域幅は1以下(=0.75+α)となるので、デジタルデバイス(AD変換器,DA変換器,デジタル回路)の処理速度の上限以下での動作が実現できる。なお、ここでは、信号Aを帯域幅の半分ずつ処理する場合の例としたが、半分でなくてもよい。後段のAD変換器28-1,28-2に入力される信号帯域幅が1以下(処理速度の上限以下)であれば、どのような比(例えば、0.9+α:0.6+α)でも構わない。また、ここでは、信号Aを2つの受信ポートに出力したが、信号帯域幅は2以上の場合等には、3つ以上の受信ポートに出力するようにしてもよい。
 また、ミキサ24-1に入力されるローカル信号LO1(周波数f1)と、ミキサ24-2に入力されるローカル信号LO2(周波数f2)の周波数間隔(f1-f2)は1とする。即ち、ローカル信号LO1,LO2の周波数間隔を、一式のAD変換器、分波部、合波部およびDA変換器で処理可能な信号帯域幅の上限値1と同じ値とすることで、中継衛星200は、図2に示す受信ポート15-1,15-2の両方に受信信号を入力することで、最大帯域幅2の広帯域信号の中継処理を実現することができる。
 最大帯域幅2の広帯域信号の中継処理を実現する場合、ローカル生成部25は2種類のローカル信号(f1,f2)のいずれかを各ミキサ24-1~24-Nに供給する機能を備える。同様に最大帯域幅3の広帯域信号の中継処理を実現する場合、ローカル生成部25は周波数間隔が1である3種類のローカル信号(f1,f2,f3)のいずれかを、各ミキサ24-1~24-Nに供給する機能を備える。ここでローカル生成部25から生成される各ローカル信号は、原振26を基準に生成されるため、各ローカル信号の周波数関係は安定しており、周波数偏移は生じない。
 このように、本実施の形態では、受信ポート15-i(i=1,2,…,N)にそれぞれ接続する受信処理部(BPF23-i、ミキサ24-i、BPF27-i、AD変換器28-i、分波部30-i)を備え、また、送信ポート39-i(i=1,2,…,N)にそれぞれ接続する送信処理部(合波部32-i、DA変換器34-i、LPF35-i、ミキサ36-i、BPF38-i)を備える。そして、同一の受信信号を複数の受信処理部に入力し、同一受信信号が入力された受信処理部は、入力された受信信号をそれぞれ異なる帯域で抽出することにより、帯域の異なる分割信号を生成し、分割信号に対して、AD変換および分波処理を実施する。デジタルスイッチマトリックス31は、分波信号をスイッチングして送信処理部へ入力する。送信アナログスイッチマトリックス37は、同一の受信信号に対応する分波信号が入力された2つ以上の送信処理部から出力される信号が同一の送信ビームを構成する送信アンテナ40-1~40-Nに入力するようにしている。このため、最大帯域幅が1を超える広帯域信号の中継処理を実現することができる。
 また図2では割愛しているが、本中継衛星のデジタル部(デジタル信号処理を行う各構成要素)に入力する各クロックも、原振26から生成される。したがって、例えばローカル周波数間隔(ローカル生成部25が生成する複数のローカル信号の周波数の差)周波数をfc=f1-f2とすると、ローカル周波数間隔fcとデジタル内部で生成するfcは周波数同期する。なお、ローカル生成部25の構成等については後述する。
 AD変換器28-1に入力される信号が中間周波数(IF)信号の場合、AD変換器28-1はIF信号をサンプリングする。AD変換器28-1に入力される信号がベースバンド信号の場合、AD変換器28-1は同相(I),直交(Q)の2式でベースバンド信号をサンプリングする。
 次に、AD変換器28-1でサンプリングされた図7(a)の信号は、受信位相補正部(RPC)29-1で位相補正される。位相補正に関する補正信号は、後述するローカル位相差算出部41から入力される。位相補正の内容に関しても後述する。
 受信位相補正部29-1は、入力される信号が中間周波数(IF)信号の場合、RPC29-1はデジタル直交検波により、中間周波数をベースバンド周波数に変換しながら、位相補正を行う。本変換処理に関しては式を用いて後述する。
 図7(a)に示したBPF27-1の出力信号は、AD変換器28-1でサンプリングされ、受信位相補正部29-1により位相補正が与えられた後、帯域外の信号も含め、分波部30-1で4つの信号に分解される。
 なお、本実施の形態においては、説明の都合上、分波の数を4つとしているが、分波の数はこれに限らず、2以上の整数であれば、どのような値でも構わない。
 分波部30-1で使用される4つのフィルタのそれぞれの特性を図7(b)の点線で示す。分波部30-1の4つのフィルタによるフィルタリングにより、分波部30-1は、図7(a)の帯域幅0.75+αの信号中、αを削除し、図7(b)に示す帯域幅0.75の信号(X)を、図7(c)に示すように3つの帯域幅0.25の信号(1),(2),(3)に分解する。なお、分波部30-1は、図7(c)に示すように、帯域外の信号も含めて分波する。
 同様に、AD変換器28-2でサンプリングされた図7(d)の信号(帯域幅0.75+α)は、受信位相補正部29-2で位相補正が与えられる。その後、図7(d)の信号は、分波部30-2にて、図7(e)の点線で示す4つのフィルタ特性により、帯域外の信号も含め、図7(f)に示すように4つの信号に分解される。すなわち、分波部30-2は、図7(d)の帯域幅0.75+αの信号中、αを削除し、図7(e)に示す帯域幅0.75分の信号(Y)を、図7(f)に示すように、3つの帯域幅0.25の信号(4),(5),(6)に分解する。
 図8は、分波部が処理する信号のスペクトラムの関係の一例を示す図である。図8を用いて、異なる受信ポートに対応する分波部の各周波数対振幅特性の関係を示す。図8は、1つの信号(図6の例では信号A)が出力される2つの受信ポートを受信ポート15-i,15-(i+1)としている。図8(a)において、実線で示した4つの周波数対振幅特性は、受信ポート15-iに対応する分波部30-iが備えている4つのフィルタの特性を示し、点線で示した4つの周波数対振幅特性は、受信ポート15-(i+1)に対応する分波部30-(i+1)が備えている4つのフィルタの特性である。
 図8(a)で示すように、各分波部で使用されるフィルタの特性は、受信ポート15-iと受信ポート15-(i+1)の間も含めて、隣接するフィルタ間で特性がオーバーラップする設計とし、かつ各フィルタの特性が交差する振幅は0.5、また各フィルタの周波数対振幅特性の総和が1となるものとする。
 更に、図8(a)記載の各フィルタの周波数対位相特性も不連続なく、直線となる設計とすれば、例えば信号Aが一旦、信号(1),(2),(3),(4),(5),(6)の6つに分解されても(図7(c),(f)参照)、後段の合波部32-1~32-Nによる合波処理により、信号(X),信号(Y)が復元され(図8(b))、更に送信アナログスイッチマトリックス37における信号合成処理により、元の信号Aが復元される(図8(c))。
 ここで、図8(a)記載の各フィルタの周波数対位相特性を、受信ポート内(受信ポート15-i,受信ポート15-(i+1))で直線とすることは、分波部30-1~30-Nがデジタル回路で構成されるため可能である。一方、各フィルタの周波数対位相特性を、受信ポート15-iと受信ポート15-(i+1)の間も含めて直線とすることは、一般には、各受信ローカル信号が位相まで同期しておらず、位相雑音等の影響を受けて、ローカル信号の位相が動的に変動するため難しい。本実施の形態では、このローカル位相変動を中継衛星内のデジタル処理で抑制する。ローカル位相変動の抑制の詳細は後述する。
 次に、狭帯域ビームエリア102からの上り信号である狭帯域信号(信号B,C,D)に関する中継衛星200の処理について説明する。アップリンク/ダウンリンク周波数変換部10は、受信アンテナ21-2から入力される信号B,C,Dの周波数をダウンリンク周波数に変換する。
 続いて、受信アナログスイッチマトリックス22は、制御局110からのコマンド信号に従い、受信ポート15-3に対応するBPF23-3に、周波数変換後の信号B,C,Dを入力する。図9は、受信ポート15-3で受信する信号の一例を示す図である。
 BPF23-3に入力された信号B,C,Dは、ミキサ24-3、BPF27-3を経由して、無線周波数帯から中間周波数帯、またはベースバンド帯に周波数変換される。この際、BPF23-3、27-3におけるアナログフィルタは、信号B,C,Dを抽出し、隣接周波数帯に不要波が存在する場合は、不要波を除去する(図9(a),図9(b)参照)。ミキサ24-3には、別途ローカル生成部25からのローカル信号LO3(周波数:f1)が供給される。
 AD変換器28-3でサンプリングされた図9(b)の信号B,C,Dは、他の受信ポートとの間でこれらの信号成分の一部を共有しておらず、独立している。このため、受信位相補正部29-3で位相補正は与える必要がなく、そのまま分波部30-3は、図9(c)の点線で示す4つのフィルタ特性により、帯域外の信号も含め、図9(d)に示すように4つの信号に分解する。このようにして分波部30-3は、図9(c)に示す信号B,C,Dを3つ信号B,C,Dに分解(分波)する。
 次に図3および図10を用いて、中継衛星200が信号を送信する際の動作例について説明する。図10は、信号中継動作(送信側)の一例を示す図である。
 デジタルスイッチマトリックス31は、前段の各分波部から出力された信号を入力とし、入力された各信号を後段の合波部32-1~32-Nへ振り分ける。本実施の形態では、分波部30-1から出力された信号(1),(2),(3)、分波部30-2から出力された信号(4),(5),(6)、分波部30-3から出力された信号B,C,Dを入力とし、図10(a)に示すスイッチ処理を行う。
 図10に図示した例では、具体的には、信号(1)は端子#1-1、すなわち送信ポート39-1に対応する第1~第m(mは1以上の整数)のm個の端子のうちの第1端子に出力される。信号(2)は端子#1-2(送信ポート39-1に対応する第2端子)に、信号(3)は端子#1-3(送信ポート39-1に対応する第3端子)に、信号(4)は端子#1-4(送信ポート39-1に対応する第4端子)に、それぞれ出力される。信号(5)は端子#2-1(送信ポート39-2に対応する第1端子)に、信号(6)は端子#2-2(送信ポート39-2に対応する第2端子)に、信号Bは端子#3-1(送信ポート39-3に対応する第1端子)に、信号Cは端子#2-3(送信ポート39-2に対応する第3端子)に、信号Dは端子#2-4(送信ポート39-2に対応する第4端子)に、それぞれ出力される。これらのスイッチ接続は、地上の制御局110からのコマンド信号によって制御される。なお、図10の例では、上記のmが4の場合、すなわち、1つの送信ポートに4つの端子(第1端子~第4端子)が対応付けられているものとしているが、mは4でなくてもよい。
 各合波部(合波部32-1~32-N)は、それぞれ4つの入力信号を、0.25の周波数間隔に並べて合成する。また各合波部は、合波後の信号の周波数対位相特性が、分波部30-1~30-Nと同様、直線となる回路設計とする。
 図10に図示した例では、合波部32-1は、デジタルスイッチマトリックス31から入力された信号(1),(2),(3),(4)を合波して、図10(b)に示す信号(Z)を生成する。合波部32-2は、信号(5),(6),C,Dを合波して、図10(c)に示す周波数配置の信号(V),C,Dを生成する。合波部32-3は、信号Bと空きチャネル3つ分を合波する処理により、図10(d)に示す周波数配置の信号Bを生成する。
 次に合波後の信号(Z)は、送信位相補正部(TPC)33-1、DA変換器34-1、LPF35-1、ミキサ36-1、BPF38-1により、無線周波数帯に変換される。同様に、合波後の信号(V),C,Dは、送信位相補正部33-2、DA変換器34-2、LPF35-2、ミキサ36-2およびBPF38-2により、無線周波数帯に変換される。合波後の信号Bは、送信位相補正部33-3、DA変換器34-3、LPF35-3、ミキサ36-3およびBPF38-3により、無線周波数帯に変換される。
 なお、本実施の形態では説明の都合上、合波の数が4つの場合の例について示しているが、合波の数はこれに限らず、2以上の整数であれば、どのような値でも構わない。
 また、各DA変換器34-1~34-Nの出力は中間周波数帯、またはベースバンド帯のいずれかの信号であればよい。ベースバンド帯とした場合、各DA変換器34-1~34-N、各LPF35-1~35-Nは(I,Q)の2組で構成される。
 ここで、送信位相補正部33-1に入力される補正信号は、前述した受信位相補正部29-1に入力される補正信号と同じであり、後述するローカル位相差算出部41から入力される。
 同様に、送信位相補正部33-2に入力される補正信号は、前述した受信位相補正部29-2に入力される補正信号と同じ、送信位相補正部33-Nに入力される補正信号は、前記した受信位相補正部29-Nに入力される補正信号と同じであり、いずれも後述するローカル位相差算出部41から入力される。なお各補正信号は複素数であり、各送信位相補正部は本補正信号を複素共役として扱う。詳細は式を用いて後述する。
 ここで各送信信号の無線周波数帯への変換は、ローカル生成部25が生成する各送信ローカル信号を、各ミキサ36-1~36-Nに供給することで実現される。
 本実施の形態では、ミキサ36-1には、受信側のミキサ24-1と同じローカル信号LO1(周波数f1)が、ミキサ36-2には、受信側のミキサ24-2と同じローカル信号LO2(周波数f2)が、ミキサ36-3には、受信側のミキサ24-3と同じローカル信号LO3(周波数f1)が供給される。
<ローカル共通化の効果>
 このように、予め上りの無線周波数frを下りの無線周波数ftに変換後、無線周波数ftから中間周波数fIF(またはベースバンド周波数)に変換するためのローカル信号と、中間周波数fIF(またはベースバンド周波数)から無線周波数ftに変換するためのローカル信号を共通化する(同じものとする)ことで、1つのローカル生成部25、ローカル位相差算出部41で、受信側のポート間位相同期だけでなく、送信側のポート間位相同期も実現することが出来る。
 もちろん構造上の問題等でローカルを共通化できない場合は、回路規模は若干増えるが、受信側に用いるローカル生成部25、ローカル位相差算出部41と、送信側に用いるローカル生成部25、ローカル位相差算出部41を個別に設ける構成とすることで、同様の効果が得られる。
 なお本実施の形態では、上りの無線周波数frを下りの無線周波数ftに変換するアップリンク/ダウンリンク周波数変換部10を、受信アンテナ21-1~21-Nと、受信アナログスイッチマトリックス22の間に位置させたが、必ずしもこの位置である必要はなく、送信部、すなわち図3の送信アナログスイッチマトリックス37と、送信アンテナ40-1~40-Nの間に移動させてもよい。この場合、上りの無線周波数frから中間周波数fIF(またはベースバンド周波数)に変換するためのローカル信号と、中間周波数fIF(またはベースバンド周波数)から無線周波数frに変換するためのローカル信号を共通化して一連の処理を行った後、上りの無線周波数frが下りの無線周波数ftに変換されることとなる。
 一般に、送信信号はアンプなどを介して大電力となるため、その成分が受信側に回り込み、受信信号に干渉を与えるケースがあるが、このようにアップリンク/ダウンリンク周波数変換部10を、図3の送信アナログスイッチマトリックス37と、送信アンテナ40-1~40-Nの間に移動させることで、受信側に回り込む大電力信号の周波数ftと、受信アナログスイッチマトリックス22に入力される周波数(=fr)をずらすことができるため、回り込みによる干渉の影響を抑えることが出来る。
 送信アナログスイッチマトリックス37は、地上の制御局110からのコマンド信号によって接続を制御される。図10に示す例では、送信ポート39-1(BPF38-1)からの信号(Z)と、送信ポート39-2(BPF38-2)からの信号(V),C,Dを、同時にアンテナ40-1に出力する。アンテナ40-1から出力される信号スペクトラムは、図10(e)に示すように信号(Z)と信号(V)が一部オーバーラップする形となる。ここで、各送信ローカル信号の周波数間隔が1であることと、図7に示す各分波フィルタの特性とにより、信号(Z)と信号(V)を合わせた合成信号A’は、図10(g)に示すように、元の送信局101からの信号Aと同様の信号スペクトラム形状となって、ビームエリア400内の受信局401へ送信される。
 また、送信アナログスイッチマトリックス37は、送信ポート39-3(BPF38-3)から出力される無線周波数帯に変換された信号B(図10(f))を、送信アンテナ40-2に出力し、信号Bをビームエリア402内の受信局403に送信する。
 地上の受信局401は信号A’,C,Dを受信後、それぞれを復調する。また、地上の受信局403は信号Bを受信後、復調する。
 なお、受信局401は、総帯域幅2の信号A’,C,Dで構成される広帯域信号を受信することになるが、一般に、地上で使用される民生品のデジタルデバイスの動作速度は、宇宙用デジタルデバイスの動作速度より数倍高いため、受信局401はデジタルデバイスの性能上限の問題はなく、信号A’,C,Dを復調することができる。
<アナログスイッチマトリックスの効果>
 本実施の形態では、1を超える広い帯域幅が必要なビームエリアは、アップリンクはビームエリア100、ダウンリンクはビームエリア400として説明したが、例えば、アップリンクで1を超える広い帯域幅が必要なビームエリアが、ビームエリア100から、ビームエリア102に変化した場合でも、本発明の中継衛星では、受信アナログスイッチマトリックスの接続を変更するだけで、容易に対応できる。即ち、BPF14-1の出力を受信ポート15-1のみ接続し、BPF14-2の出力を受信ポート15-2と受信ポート15-3の両方に接続する制御により、帯域幅1以内のビームエリア100からの各信号と、帯域幅1を超えるビームエリア102からの各信号を処理することができる。
 また、同様にダウンリンクで1を超える広い帯域幅が必要なビームエリアが、ビームエリア400から、ビームエリア402に変化した場合は、送信アナログスイッチマトリックスの接続を変更するだけで、容易に対応できる。即ち、BPF38-1(送信ポート39-1)の出力を送信アンテナ40-1のみ接続し、BPF38-2(送信ポート39-2)の出力と、BPF38-3(送信ポート39-3)の出力の両方を送信アンテナ40-2に接続する制御により、帯域幅1以内でビームエリア400への各信号送信と、帯域幅1を超えてビームエリア402への各信号送信を実現することができる。
 このような構成とすることで、例えば、各ビームエリア全てに対して広帯域な信号中継サービスが必要ではないが、トラフィック変動によって、広帯域な信号中継サービスが必要となるビームエリアが時刻で変化する場合、回路規模を低減できる効果が得られる。例えば、2つのビームエリアのいずれかで広帯域信号中継が発生し得る場合、アナログスイッチマトリックスを用いない構成では、各ビームで広帯域信号中継発生に備えて1ビームエリアで最大2ポートを準備するため、計4ポート必要となる。一方、アナログスイッチマトリックスを用いる構成では、本実施の形態に記載の通りポート♯1が2つのビームで兼用して使われるため、3ポートで実現できる。なお、どのビームでも常時2ポートを用いて広帯域な信号中継サービスを実現する場合は、このような送信アナログスイッチマトリックスや受信アナログスイッチマトリックスを用いる構成は不要であり、各ビームあたり2ポートを固定的に割り当てた構成にすれば良い。
 以降、本実施の形態の特長であるローカル位相差算出部41と、受信位相補正部(RPC)29-1~29-N、送信位相補正部33-1~33-Nの動作を説明する。
 はじめに、上記受信位相補正部29-1~29-N、送信位相補正部33-1~33-Nで補正を行わない場合の問題点について述べる。図11は、中継衛星から受信局へ送信する広帯域信号の一例を示す図である。受信位相補正部29-1~29-N、送信位相補正部33-1~33-Nで補正を行わない場合、送信アンテナ40-1から出力される合成信号A’の周波数対位相特性は、図11に示す下向き矢印2箇所{(R),(T)}において不連続が発生する。図11に示す下向き矢印(R)は、受信ポート15-i、ポート15-(i+1)(図10の例では受信ポート15-1と受信ポート15-2)間で生じる不連続位置を示す。図11に示す下向き矢印(T)は、同様に送信側ポート15-i、ポート15-(i+1)(図10の例では送信ポート39-1と送信ポート39-2)間で生じる不連続位置を示している。
 このように、合成信号A’の帯域内で位相不連続が発生する場合でも、本実施の形態では、ローカル位相差算出部41と、受信位相補正部29-1~29-N、送信位相補正部33-1~33-Nによる制御により、通信品質の劣化無く、元の信号Aを受信する場合と同等な受信感度特性を実現する。
 図11に示す位相不連続は、主に異なるローカル信号(周波数f1,f2)で周波数をダウンコンバート、またはアップコンバートすることで発生するローカル位相差によって発生する。そこで、本実施の形態では、位相不連続の支配要因である、時々刻々と変化するローカル位相差を検出し、デジタル処理で補正することで、各ポート間のローカル位相差をデジタル処理によってキャンセルし、全て1つのローカル信号に同期させる。
 はじめに、ローカル生成部25において、原振26から出力される原振信号を元に、周波数シンセサイザ501は、周波数f1のローカル信号Lf1を生成する。同様に、周波数シンセサイザ502は、周波数f2のローカル信号Lf2を生成する。両者の周波数差(f2-f1)は前述したとおり“1”である。
 ローカル信号Lf1は、LO1と称して受信側のミキサ24-1と送信側のミキサ36-1に供給される。またローカル信号Lf1は、LO3と称して受信側のミキサ24-3と送信側のミキサ36-3に供給される。即ち、LO1とLO3は、周波数f1のローカル信号Lf1と同じである。ローカル信号Lf2は、LO2と称して受信側のミキサ24-2と送信側のミキサ36-2に供給される。
 同様に、ローカル生成部25は、受信側のミキサ24-Nと送信側のミキサ36-Nにローカル信号Lf1、またはローカル信号Lf2のいずれかを供給する。
 即ちローカル生成部25は、受信ポート15-Nと送信ポート39-Nが、高い方の周波数帯を扱う場合は、周波数f2のローカル信号Lf2を、低い方の周波数帯を扱う場合は、周波数f1のローカル信号Lf1を、受信側のミキサ24-Nと送信側のミキサ36-Nに供給する。
 なお図4は各ポートで扱う周波数を固定とする場合の接続を示しているが、固定ではなく任意な周波数を出力する構成にしても良い。例えば、図4においてLO1,LO2,LO3,…のそれぞれについて、セレクタを追加で設けて、セレクタが周波数シンセサイザ501の出力(Lf1)、または周波数シンセサイザ502の出力(Lf2)のいずれかを選択できる構成とすることで、ポートごとに周波数f1、または周波数f2のいずれかを選択することができる。この周波数f1,f2を切り替える指令信号は、別回線で制御局110から中継衛星200に送信されるコマンド信号によって行われる。
 また周波数シンセサイザの性質を利用して、ローカル生成部25を図12に示す構成としても良い。図12は、ローカル生成部25の別の構成例を示す図である。図12に示す構成例では、ローカル生成部25は、周波数シンセサイザ504-1,504-2,…,504-Nと、セレクタ505,506とを備える。各周波数シンセサイザ504-1,504-2,…,504-Nは、複数のローカル周波数のうち1つを選択し出力することが可能である。本実施の形態では、各周波数シンセサイザ504-1,504-2,…,504-Nは周波数f1,f2のいずれかのローカル信号が選択可能である。したがって、この構成でもLO1,LO2,LO3,…は、それぞれ周波数f1,f2のいずれかを選択可能である。セレクタ505、506はLO1,LO2,LO3,…の周波数が異なる場合、それぞれ異なる周波数のローカル信号を選択し、出力する。例えば、セレクタ505は周波数f1のローカル信号を、セレクタ506は周波数f2のローカル信号を選択して、それぞれLf1、Lf2として出力する。この周波数f1,f2を切り替える指令信号やセレクタを制御する信号は、別回線で制御局110から中継衛星200に送信されるコマンド信号によって行われる。
 このように、LO1,LO2,LO3,…として任意のローカル周波数を選んで出力するようにすることで、本中継衛星の各ポートは任意の周波数帯の信号を処理することができる。このため、地上の各ビームエリアのトラフィック変化に伴う、利用周波数帯域の変動等に柔軟に対応することができる。
 ローカル位相差算出部41は、ローカル生成部25からのローカル信号Lf1とローカル信号Lf2を入力とし、ローカル信号Lf1でローカル信号Lf2の位相を検波することで、両者の位相差信号Δθ21を抽出し、抽出した位相差信号を基に、各受信信号を補正、各送信信号を逆補正する。以降、式を用いて処理内容を説明する。なお、式を展開していく過程において、三角関数の加法定理、和積公式、積和公式などを用いている。
[受信側の処理]
 図13は、受信側の周波数変換処理の流れを示す図である。ローカル信号Lf1を以下の式(1)に示し、ローカル信号Lf2を以下の式(2)で示す。ここでθ(t)はローカル信号Lf1を基準とした場合のローカル信号Lf2で観測される、位相雑音等に起因する位相変動成分とする。
 Lf1=cos(2πf1t)             …(1)
 Lf2=cos(2πf2t+θ(t))        …(2)
 はじめに、ローカル位相差算出部41で抽出する動的な位相差信号Δθ21を抽出するまでの処理過程を式で示す。ミキサ507は、ローカル信号Lf1とローカル信号Lf2を乗算し、以下の式(3)に示す乗算結果M21を得る。以下の式(3)で示されるようにf1+f2の周波数成分と、f1-f2の周波数成分が生じる。
 M21=cos(2πf1t)*cos(2πf2t+θ(t))
  =(1/2){cos[2π(f1+f2)t+
   +cos[2π(f1-f2)t-θ(t)]}     …(3)
 BPF508は、ミキサ507の出力からf1-f2の周波数成分を抽出する。BPF508による抽出結果をB21として以下の式(4)に示す。上記式(3)の前半の項(f1+f2の周波数成分)をBPF508で除去した結果が式(4)である。式(4)では、fC=f2-f1とし、f2-f1をfCに変換して示している。
 B21=(1/2){cos[2π(f1-f2)t-θ(t)]}
   =(1/2){cos[2π(-fC)t-θ(t)]}
   =(1/2){cos[2πfCt+θ(t)]}    …(4)
 次にデジタルローカル生成部511で生成される直交検波用複素ローカル信号Cを以下の式(5)に示す。ここでθCは、上記BPF508で抽出した周波数成分fCを基準とした固定的な位相差であり、ローカル信号Cの動作開始タイミングに応じて決定される。なおデジタル部に与えているクロックは、原振26から生成されているため、複素ローカル信号Cで生成される周波数fCと式(4)の周波数fCは周波数同期している。
  C=exp[-j(2πfCt+θC)]        …(5)
 直交検波部510は、BPF508の出力B21と直交検波用複素ローカル信号Cとを乗算する。ここで、cosα*exp[-j(β)]は以下の式(6)のように展開できる。
 cosα*exp[-j(β)]=cosα*(cosβ-jsinβ)
 =cosα*cosβ-jcosαsinβ
 =(1/2){cos(α+β)+cos(α-β)}
       -j((1/2){sin(α+β)+sin(-α+β)})
 =(1/2){cos(α+β)+cos(α-β)}
       -j((1/2){sin(α+β)-sin(α-β)}
                            …(6)
 ここでα+βの高域周波数成分Hは、
  H=(1/2){cos(α+β)}-j((1/2){sin(α+β)})
   =(1/2)exp[-j(α+β)]      …(7)
 α-βの低域周波数成分Lは、
  L=(1/2){cos(α-β)}}-j((1/2){-sin(α-β)})
   =(1/2)exp[j(α-β)]      …(8)
 上記式(8)を用いると、直交検波部510の出力(D21=B21*c)を、LPF512で抽出した成分F21は式(9)で示される。
  F21=(1/4){exp[j(2πfCt+θ(t)-(2πfCt+θC))]}
   =(1/4){exp[j(2πfCt+θ(t)-2πfCt-θC)]}
   =(1/4){exp[j(θ(t)-θC)]}     …(9)
 最後にリミタ513通過後の位相差信号Δθ21は、以下の式(10)で示す通り、振幅が一定化される。図14は、上記リミタ513通過後の信号の位相変化例の一例を示す図である。
  Δθ21=exp[j(θ(t)-θC)]       …(10)
 次に、受信信号を式で示していく。BPF14-1通過後の受信信号は図13で示すように、2つのポート間の境界周波数f1+fIF+0.5fCに配置した無変調キャリア(CW)とする。このCW信号は、各ポートでベースバンド帯にダウンコンバートした際に、両者の周波数関係が+0.5fC,-0.5fCであり、かつ初期位相が揃っている必要がある。仮に初期位相が揃っていないと、再度アップコンバートして、両者の信号を合成して送信する際に、エネルギー損失が生じて劣化してしまう。初期位相が揃っていれば、再度アップコンバート時に両信号の位相が揃うので、両信号の合成時に元信号をエネルギー損失なく送信することができる。
 ここで、上記受信信号Rを式(11)に示す。但しθrは、ローカル信号Lf1(=cos(2πf1t))を基準とした場合の位相オフセット値である。
  R=cos(2π(f1+fIF+0.5fC)t+θr)      …(11)
 はじめに、受信ポート15-1の処理を示す。受信ポート15-1において式(11)で示す受信信号Rは、ミキサ24-1でローカル信号Lf1(=cos(2πf1t))と乗算される。乗算後の信号をMn1として、以下の式(12)に示す。
 Mn1=cos(2π(f1+fIF+0.5fC)t+θr)*cos2π(f1t)
  =(1/2){cos(2π(f1+fIF+0.5fC)t+θr
        +cos(2π(fIF+0.5fC)t+θr)}  …(12)
 BPF27-1は、上記式(12)に示したMn1の高調波成分を除去する。したがって、BPF27-1通過後の信号Bn1は式(13)で示される。また、BPF27-1から出力される信号のスペクトラムを図13(b)に示す。
 Bn1=(1/2){cos(2π(fIF+0.5fC)t+θr)} …(13)
 BPF27-1から出力される信号は、A/D変換器28-1によりサンプリングされて、受信位相補正部29-1に入力される。受信位相補正部29-1は、内部ローカル信号exp[-j(2πfIFt)]を用いて、入力信号を中間周波数fIFからベースバンドに変換する。
 はじめに受信位相補正部29-1は、入力される信号Bn1を、受信位相補正部29-1内部でデジタル的に生成した中間周波数成分fIF(=exp[-j(2πfIFt)])との乗算により、ベースバンド周波数に変換する。この変換は、乗算した信号成分の低域周波数を抽出する前記式(8)に則り行われる。即ち、ベースバンド周波数に変換された後の信号QLn1は次式(14)で表現される。
 QLn1=(1/4){exp[j(2π(fIF+0.5fC)t
                 +θr-(2πfIFt))]}
   =(1/4){exp[j(2π(0.5fC)t+θr)]}…(14)
 なお、本実施の形態では、ローカル信号Lf1を基準とし、Lf1に各ポートの信号をデジタル補正により同期させるが、信号QLn1はローカル信号Lf1によって中間周波数の信号からベースバンド信号に変換された信号であるため、受信位相補正部29-1は位相補正を与える必要が無い。したがって、受信位相補正部29-1には、初期位相値Ln1=exp[j(0)]が与えられ、受信位相補正部29-1では位相補正は行われない。即ち位相補正後の信号Sn1は、上記式(14)と同様である(Sn1=QLn1)。受信位相補正部29-1から出力される信号のスペクトラムを図13(d)に示す。
 次に、受信ポート15-2の処理を示す。受信ポート15-2に入力された式(11)で示す受信信号Rは、ミキサ24-2でローカル信号Lf2(=cos(2πf2t+θ(t)))と乗算される。乗算後の信号をMn2として、式(15)に示す。なお、f2=f1+fCの関係を用いて式の変形を行っている。
 Mn2=cos(2π(f1+fIF+0.5fC)t+θr
                *cos2π(2πf2t+θ(t))
   =(1/2){cos(2π(f1+fIF+0.5fC)t+θr
                  +2π(f1+fC)t+θ(t))
     +cos(2π(f1+fIF+0.5fC)t+θr
                  -2π(f1+fC)t-θ(t))}
   =(1/2){cos(2π(2f1+fIF+1.5fC)t+θr+θ(t))
     +cos(2π(fIF-0.5fC)t+θr-θ(t))}…(15)
 BPF27-2は、上記式(15)で示される信号Mn2の高調波成分を除去する。したがって、BPF27-2通過後の信号Bn2は以下の式(16)で示される。また、BPF27-2から出力される信号のスペクトラムを図13(c)に示す。
  Bn2=(1/2){cos(2π(fIF-0.5fC)t+θr-θ(t))}
                             …(16)
 次に、ローカル位相差算出部41は、受信ポート15-2用に上記式(10)で求めたベースバンド位相差信号Δθ21を、受信位相補正部29-2に与える。受信位相補正部29-2は、内部ローカル信号exp[-j(2πfIFt)]を用いて入力信号を中間周波数fIFからベースバンドに変換するが、この際に受信ポート15-1との位相差を補正する。
 はじめに、受信位相補正部29-2は、受信位相補正部29-1と同様に入力される信号Bn2を、受信位相補正部29-2内部でデジタル的に生成した中間周波数成分fIF(=exp[-j(2πfIFt)])と乗算することによって、ベースバンド周波数に変換する。ベースバンド周波数に変換された後の信号QLn2は次式(17)表現される。なお、この中間周波数成分fIFは、前述した受信ポート15-1に入力された信号に関する処理で用いた中間周波数成分fIFと同一のものを使っても良い。
 QLn2=(1/4){exp[j(2π(fIF-0.5fC)t
               +θr-θ(t)-(2πfIFt))]}
   =(1/4){exp[j(2π(-0.5fC)t+θr-θ(t))]}
                             …(17)
 受信位相補正部29-2は、中間周波数の信号からベースバンド信号に変換された信号QLn2に対してベースバンド位相差信号Δθ21を乗算し、位相補正を行う。位相補正後の信号をSn2として以下の式(18)に示す。
 Sn2=(1/4){exp[j(2π(-0.5fC)t+θr-θ(t))]}
              *exp[j(θ(t)-θC)]
   =(1/4){exp[j(2π(-0.5fC)t+θr-θC)]}
                             …(18)
 上記式(18)で示されるように、動的な位相変動成分であるθ(t)が打ち消され、受信信号Rは、受信ポート15-2において、位相オフセットθr-θCを残しながら、負の周波数成分-0.5fCに変換される。受信位相補正部29-2から出力される信号のスペクトラムを図13(e)に示す。
 上記式(14)に示されるように、受信信号Rは、受信ポート15-1において、位相オフセットθrを残しながら、正の周波数成分+0.5fCに変換される。したがって、図13(d),(e)に示すように、受信ポート15-1の位相補正後の信号と受信ポート15-2の位相補正後の信号の両者の周波数関係は、+0.5fC,-0.5fCとなる。一方、初期位相に関しては、式(14)ではθr、式(18)ではθr-θCであり、受信ポート15-1の位相補正後の信号と受信ポート15-2の位相補正後の信号との間には-θCのずれが残っている。
 -θCのずれは残るが、以上示した一連の処理によって、動的な位相変動成分であるθ(t)は打ち消される。なお、両者の間に-θCの位相ずれが残ると、再度、送信過程で両者の周波数を次式(19)で示すようにアップコンバートして合成する際に、位相ずれ(-θC)に伴い振幅低下を招く。このため、-θCは別途補正することが望ましい。固定値である-θCの補正方法は、どのような方法を用いてもよい。また、例えば、実施の形態4で後述する方法等により自動的に-θCを打ち消すようにしてもよい。
 QLn1*exp[j(2πf1t)]+Sn2*exp[j(2π(f1+fC)t)]
 =(1/4){exp[j(2π(0.5fC)t+θr)]}
                    *exp[j(2πf1t)]
  +(1/4){exp[j(2π(-0.5fC)t+θr-θC)]}
                    *exp[j(2π(f1+fC)t)]
 =(1/4){exp[j(2π(f1+0.5fC)t+θr)]}
  +(1/4){exp[j(2π(f1+0.5fC)t+θr-θC)]}
 =(1/2)*cos(-θC/2)*exp[j(2π(f1+0.5fC)t+θr)]
                             …(19)
[送信側の処理]
 次に送信側の処理を式で表現する。送信側では、受信側と逆の処理が行われる。式(20)に送信ポート39-1に対応する合波部32-1から出力される送信信号を示し、式(21)に送信ポート39-2に対応する合波部32-2から出力される送信信号を示す。
 S' n1={exp[j(2π(+0.5fC)t)]}      …(20)
 S' n2={exp[j(2π(-0.5fC)t)]}      …(21)
 図15は、送信側の周波数変換の流れの一例を示す図である。式(20)に示したS'n1のスペクトラムを図で表現すると、図15(f)となり、式(21)に示したS'n2のスペクトラムを図で表現すると、図15(g)となる。
 S'n1とS'n2は、両者の周波数関係が+0.5fC,-0.5fCで、かつ初期位相が揃っている。このため、各送信ポートでローカル位相差変動が無い理想的な無線周波数への周波数変換が行われ、送信アナログスイッチマトリックス37で合成される場合は、図13(a)に示す中心周波数f1+fIF+0.5fCに振幅1の無変調波が出力されることになる。ところが実際は、送信ポート間でローカル位相差変動が生じるため、以下に示す処理を施さない限り、合成後の送信信号の位相や振幅は変動してしまう。
 はじめに、送信位相補正部33-1は、内部ローカル信号exp[-j(2πfIFt+θU)]を用いて、入力信号S' n1をベースバンドから中間周波数fIFに変換する。ここでθUは初期位相オフセットである。送信位相補正部33-1は、ローカル信号Lf1を用いる系であるため、位相補正は与える必要はなく、この場合exp[j(0)]を与える。
 送信位相補正部33-1により、中間周波数fIFに変換された入力信号U1は以下の式(22)で示される。なおRe[x]は、複素数xの実数部を示す。このU1のスペクトラムを図15(h)に示す。
 U1=Re[S' n1*exp[j(0)]*exp[j(2πfIFt+θU)]]
  =Re[exp[j(2π(+0.5fC)t)]
        *exp[j(0)]*exp[j(2πfIFt+θU)]]
  =Re[exp[j(2π(fIF+0.5fC)t+θU)]]
  =cos(2π(fIF+0.5fC)t+θU)         …(22)
 同様に、送信位相補正部33-2は、同じ内部ローカル信号exp[-j(2πfIFt+θU)]を用いて、入力信号S' n2をベースバンドから中間周波数fIFに変換する。この際に、送信位相補正部33-2は、上記式(10)で得られた値Δθ21(=exp[j(θ(t)-θC)])を用いて入力信号S'n2に対して逆補正値(=exp[j(-θ(t)+θC)])を与えることで逆補正を行う。この逆補正は、単に補正値の複素共役を次式(23)に示すように入力信号S' n2に乗算することで実現される。中間周波数fIFに変換された入力信号であるU2は以下の式(23)で示される。この時のU2のスペクトラムを図15(i)に示す。
 U2=Re[S' n2*exp[j((-θ(t)+θC))]
             *exp[j(2πfIFt+θU)]]
  =Re[exp[j(2π(-0.5fC)t)]
        *exp exp[j((-θ(t)+θC))]
        *exp[j(2πfIFt+θU)]]
  =Re[exp[j(2π(fIF-0.5fC)t-θ(t)+θC+θU)]]
  =cos(2π(fIF-0.5fC)t-θ(t)+θC+θU) …(23)
 次に、中間周波数fIFに変換された信号U1はミキサ36-1で、式(1)で示されるローカル信号cos(2πf1t)と乗算される。乗算後の信号をW1として以下の式(24)に示す。
 W1=cos(2π(fIF+0.5fC)t+θU)*cos(2πf1t)
  =(1/2){cos(2π(f1+fIF+0.5fC)t+θU
      +cos(2π(fIF-f1+0.5fC)t+θU)} …(24)
 式(24)に示すように、W1として2つの周波数成分が生成される。BPF38-1はこの内高域成分のみ通過させる。したがって、BPF38-1通過後の信号成分Y1は、次式(25)で示される。
 Y1=(1/2){cos(2π(fIF-f1+0.5fC)t+θU)}…(25)
 同様に、中間周波数fIFに変換された信号U2はミキサ36-2で、式(2)で示されるローカル信号cos(2πf2t+θ(t))と乗算される。乗算後の信号をW2として式(26)に示す。W2として2つの周波数成分が生成される。
 W2=cos(2π(fIF-0.5fC)t-θ(t)+θC+θU
                 *cos(2πf2t+θ(t))
  =(1/2){cos(2π(fIF-0.5fC)t-θ(t)+θC+θU
                      +2πf2t+θ(t))
   +cos(2π(2π(fIF-0.5fC)t-θ(t)+θC+θU
                      -2πf2t-θ(t))}
  =(1/2){cos(2π(fIF+f1+0.5fC)t+θC+θU
   +cos(2π(fIF-f1-1.5fC)t+θC+θU-2θ(t))}
                             …(26)
 式(26)により、W2の高周波成分では、位相変動信号θ(t)が打ち消されることが明らかである。BPF38-2は、W2のうち高周波成分のみ通過させる。したがって、BPF38-2通過後の信号成分Y2は、次式(27)で示される。
 Y2=(1/2){cos(2π(fIF+f1+0.5fC)t+θC+θU)}
                             …(27)
 式(25)で表されるY1と式(27)で表されるY2とを比較すると、+θCの固定的なずれのみが残留し、動的な位相変動成分θ(t)は残らないことが判る。したがって、このθCを別途補正して両信号の位相を揃えれば、これらを送信アナログスイッチマトリックス37で加算した後の信号Tは次式(28)で示す通り、振幅が2倍となる。また、信号Tは式(11)に示される受信信号Rに対して単に位相がθUオフセットした関係となる。この時の信号Tのスペクトラムを図15(i)に示す。
 T=cos(2π(fIF+f1+0.5fC)t+θr+θU)     …(28)
 なお、このθCに関しては例えば後述する実施の形態4の方法を用いて自動的に打ち消してしまっても良い。
 また、図5に示すバンドパスフィルタ508は、ローパスフィルタに変更しても同様にf2+f1の周波数成分を除去できるため、バンドパスフィルタ508をローパスフィルタに変更しても良い。
 以上のように、本実施の形態では、2つのポートの境界に無変調波を入力した場合に、図13に示すように受信側の処理で2つに分波後、図15に示す送信側の流れにより再び1つに合波する過程を一例で示した。この過程において、ポート間の位相変動であるローカル位相変動θ(t)が生じても、受信側は受信位相補正部29-1~29-Nによりθ(t)を打ち消し、送信側はミキサ36-1~36-Nでθ(t)を打ち消す。これにより、中継衛星から出力される無変調波は2つのポートの境界の周波数であっても振幅低下が発生することなく、復元される。なお、説明の簡素化のため、無変調波の中継例を示したが、同様の補正処理で変調波も同様に復元できる。
 実際には、デジタル処理で実現するため、AD変換器509は、バンドパスフィルタ508の出力信号(周波数:Δf=f2-f1)を例えば4Δfのサンプリング速度で、アナログデジタル変換する。AD変換器509と、以降の直交検波部510、LPF512、リミタ513を駆動するクロックは、クロック生成器517から供給されるが、このクロックはクロック生成部517内で、原振26からの原振信号を元に生成される。
 また実際の回路構成では、式(10)で求まるベースバンド位相差信号Δθ21は、図5に示すセレクタ514、515、516に入力される。各セレクタは、外部からの選択信号(S1,S2,…SN)によって、ベースバンド位相差信号Δθ21、または固定位相値Δθ11=exp[j(0)]のいずれかを選択して出力する。
 本実施の形態では、セレクタ516の出力は、受信位相補正部29-1と送信位相補正部33-1に接続される。同様に、セレクタ515の出力は受信位相補正部29-2と送信位相補正部33-2に接続される。同様に、N番目のセレクタ514の出力は、受信位相補正部29-Nと送信位相補正部33-Nに接続される。
 各セレクタは、接続先の受信位相補正部、送信位相補正部のポートが、ローカル信号Lf1が供給されるポートであれば、固定位相値Δθ11=exp[j(0)]を選択する。一方、接続先の受信位相補正部、送信位相補正部のポートが、ローカル信号Lf2が供給されるポートであれば、各セレクタはベースバンド位相差信号Δθ21を選択する。
 なお、本実施の形態において、3番目のポート(受信ポート15-3、送信ポート39-3)は、受信側も送信側も帯域幅1以内の信号を中継するため、他のポートとのローカル位相同期は不要であり、3番目のポートの受信位相補正部29-3と送信位相補正部33-3に動的な制御を与える必要は無い。このようにあるポートが帯域幅1以内を処理する場合、上記セレクタは、該当ポートの受信位相補正部、送信位相補正部に固定位相値Δθ11=exp[j(0)]を与える。
 一方、前述の通り、アップリンクで1を超える広い帯域幅が必要なビームエリアが、ビームエリア100から、ビームエリア102に変化した場合、受信側は受信ポート15-1と受信ポート15-2の組合せから、受信ポート15-2と受信ポート15-3の組合せに切り替えて広帯域信号を中継することになる。この場合、周波数f2のローカル信号が供給されるポートの受信位相補正部にベースバンド位相差信号Δθ21を与え、それ以外は固定位相値Δθ11=exp[j(0)]を与える。
 また、同様にダウンリンクで1を超える広い帯域幅が必要なビームエリアが、ビームエリア400からビームエリア402に変化した場合も、送信側は送信ポート39-1と送信ポート39-2の組合せから、送信ポート39-2と送信ポート39-3の組合せに切り替えて広帯域信号を中継することになる。この場合も、周波数f2のローカル信号が供給されるポートの送信位相補正部にベースバンド位相差信号Δθ21を与え、それ以外は固定位相値Δθ11=exp[j(0)]を与える。
 なお、ローカル信号Lf1のみ位相雑音の少ない信号とすれば、ローカル信号Lf2の位相雑音特性が悪くても、上述のデジタル補正によりローカル信号Lf1に位相同期するため、ローカル信号Lf2で中継される信号も、ローカル信号Lf1並の低位相雑音特性を実現できる。すなわち、ローカル信号Lf1以外のローカル信号Lf2,Lf3,…,LfNを周波数安定度が悪いものを用いても、安定度の良いローカル信号Lf1並みの低位相雑音特性を実現できる。このため、ローカル信号Lf2,Lf3,…,LfNに用いる周波数シンセサイザのコストを下げることができる。この場合、中継装置のデジタル部に供給するクロックは、ローカル信号Lf1が用いる原振、あるいはローカル信号Lf1そのものから生成する構成とする。
 更には、ローカル信号Lf2,Lf3,…,LfNに用いる周波数シンセサイザが用いる原振は、ローカル信号Lf1の原振と共通化されていなくてもよい。この場合、各ローカル信号の原振が非共通化されるため、各ローカル信号の周波数間隔がfCとならず周波数オフセットΔfが加わることになるが、周波数オフセット量がそれ程大きくなければ、この場合も安定度の良いローカル信号Lf1に各ポートの信号を同期させることができる。この場合は、原振を非共通化できるため、中継装置構成が簡単になり、更にローカル信号Lf2,Lf3,…,LfNに用いる周波数シンセサイザのコストを下げることができる。なお、この場合も、本実施の形態の中継装置のデジタル部に供給するクロックは、ローカル信号Lf1が用いる原振、またはローカル信号Lf1そのものから生成する構成とする。
 また、本実施の形態では、1番目のポート(受信ポート15-1,送信ポート39-1)と3番目のポート(受信ポート15-3,送信ポート39-3)が低域側(f1)を処理し、1番目のポート(受信ポート15-2,送信ポート39-2)が高域側(f2)を処理する系として説明したが、ポートごとに低域側(f1)、または高域側(f2)のいずれかを選択可能なように設計しても良い。
 これを実現するためには、ローカル生成部25から各ミキサ24-1~24-N,36-1~36-Nに供給するローカル周波数を、f1またはf2を選択可能な構成とすればよい。このような回路変更を行えば、各ポートを低域側(f1)、高域側(f2)のいずれかに自由に割り当てられるため、トラフィック変動へ柔軟性が更に高まり、更に回路リソースを減らすことが可能となる。
 なお、本実施の形態では、2つのポートの合成を例に説明したが、合成するポートは2つ以上であれば幾つでも良い。この場合、各ローカル信号は、f1とf2だけでなく、合成可能な最大数mまでの周波数f1,f2,…,fmが選択可能な構成とすれば良い。
 以上のように、本実施の形態では、広帯域信号を2つ以上のポートで帯域を分割して処理する場合に、ローカル位相差算出部41がポート間の位相差を求め、この位相差に基づいてポート間の位相差を補正するようにした。このため、デバイスの性能に制約がある場合でも広帯域な信号を中継することが可能で、かつ故障や干渉による通信品質の劣化を低減することができる。
 なお、本実施の形態では、図1に示すように、受信部201→接続部31→送信部202の流れに基づく信号中継について説明したが、必ずしも中継器に特化したものである必要はなく、例えば受信部201→接続部31→合波部32の流れで止め、合波した信号を本装置内で復調・復号しても良い。この場合、合波部32のみ処理速度を2倍に上げる設計とする必要があるが、A/D等の宇宙用デバイスのサンプリング速度上限を超えた広帯域信号の復調・復号を実現する受信機を得ることができる。
 同様に、受信部201を除き、本装置内で得られた観測データ等を符号化・変調後、分波部30→接続部31→送信部202と流しても良い。この場合、分波部30のみ処理速度を2倍に上げる設計とする必要があるが、D/A等の宇宙用デバイスのサンプリング速度上限を超えた広帯域信号の符号化・変調を実現する変調機を得ることができる。
実施の形態2.
 図16は、本発明にかかる実施の形態2のローカル位相差算出部41aの構成例を示す図である。本実施の形態の中継衛星の構成は、実施の形態1のローカル位相差算出部41をローカル位相差算出部41aに替える以外は、実施の形態1の中継衛星と同様である。以下、実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。
 本実施の形態のローカル位相差算出部41aは、ミキサ(乗算器)507,530,536と、バンドパスフィルタ(BPF)508,531,537と、AD変換器(A/D)509,532,538と、直交検波部510,533,539と、ローパスフィルタ(LPF)512,534,540と、リミタ513,535,541と、加算器542,543とを備える。
 実施の形態1では、2つのポートを用いて最大帯域幅2の広帯域信号中継を実現する例を示したが、同様にK(Kは3以上N以下の整数)個のポートを用いて最大Kの帯域幅の広帯域信号を中継することもできる。
 この場合、ローカル生成部25は、周波数間隔をfCとする周波数f1,f2,…,fKに対応するローカル信号Lf1,Lf2,…,Lfkを生成し、各ポートに対応するBPF23-1~23-N、BPF38-1~38-Nは、周波数f1,f2,…,fKに対応した周波数特性で設計すれば良い。例えば、K=4とし、1~4番目のポートを用いて最大4の帯域幅を実現する場合、BPF23-1~23-4は、それぞれ周波数f1,f2,…,fKのいずれかに対応した異なる帯域を抽出する。
 実施の形態では、上述のようにローカル生成部25は、ローカル信号Lf1,Lf2,…,Lfkを生成する。ローカル位相差算出部41aは、Lf1,Lf2,…,Lfkに基づいて、各ローカル信号間の位相差信号Δθi・i-1(i=1,2,…,k)を、実施の形態1と同様に抽出する。
 以降、一例としてN=K=4の場合を例に説明する。図16の構成例もK=4の例を示している。この場合、本実施の形態のローカル位相差算出部41aは、f1,f2,f3,f4にそれぞれ対応する4つのローカル信号間の位相差信号を抽出する。ここでローカル信号Lf1を用いて直接Lf3を位相検波すると、f3-f1=2fCの周波数が発生するため、AD変換の所要サンプリングクロック速度が実施の形態1の2倍に増加する。同様に、ローカル信号Lf1を用いて直接Lf4を位相検波すると、f4-f1=3fCの周波数が発生するため、AD変換の所要サンプリングクロック速度が実施の形態1の3倍に増加する。このようなADサンプルクロック周波数の増加を防ぐため、本実施の形態のローカル位相差算出部41aは、次式(30)~(32)で記載される、隣り合う周波数のローカル信号の位相差を検出する。
  Δθ21=exp[j(θ21(t))]      …(30)
  Δθ32=exp[j(θ32(t))]      …(31)
  Δθ43=exp[j(θ43(t))]      …(32)
 式(30)は式(10)と同様であるが、他の位相差信号と区別できるよう表現を変更している。式(31)はLf2でLf3を位相検波した場合の位相差信号、式(32)はLf3でLf4を位相検波した場合の位相差信号であり、いずれもLf1でLf2を位相検波した場合の位相差信号の抽出処理と同じ過程で得られる。f4-f3=fC、f3-f2=fCであるため、いずれの場合も、AD変換の所要サンプリングクロック速度は実施の形態1と変わらない。
 本実施の形態におけるローカル生成部25は、上記式(30)~(32)に示した各位相差信号を抽出後、以下の加算処理を行う。式(33)はローカル信号Lf1でLf3を位相検波した場合の位相差信号と同等、式(34)はローカル信号Lf1でLf4を位相検波した場合の位相差信号と同等となる。
  Δθ31=Δθ21+Δθ32
    =exp[j(θ32(t)+θ21(t))]      …(33)
  Δθ41=Δθ21+Δθ32+Δθ43
    =exp[j(θ32(t)+θ21(t)+θ43(t))] …(34)
 図16の構成例では、位相差信号Δθ21は、実施の形態1と同様の処理によってリミタ513から抽出される。同様に、位相差信号Δθ32は、ミキサ530、BPF531、AD変換器532、直交検波部533、ローパスフィルタ534、リミタ535により抽出され、位相差信号Δθ43は、ミキサ536、BPF537、AD変換器538、直交検波部539、ローパスフィルタ540、リミタ541により抽出される。
 加算器542は、リミタ513出力とリミタ535出力を加算し、式(33)で示す位相差信号Δθ31を生成する。更に加算器543は、リミタ541出力と加算器542出力を加算し、式(34)で示す位相差信号Δθ41を生成する。
 本実施の形態のローカル位相差算出部41aは、式(34)で得られた位相差信号Δθ41を、ローカル信号Lf4を用いてダウンコンバート/アップコンバートを実施するポートの受信位相補正部/送信位相補正部に供給する。ローカル信号Lf4が入力される受信位相補正部/送信位相補正部は、入力されたローカル信号Lf4に基づいて位相補正/逆補正を行う。
 同様に本実施の形態のローカル位相差算出部41aは、式(33)で得られた位相差信号Δθ31を、ローカル信号Lf3を用いてダウンコンバート/アップコンバートを実施するポートの受信位相補正部/送信位相補正部に供給する。ローカル信号Lf3が入力される受信位相補正部/送信位相補正部は、入力されたローカル信号Lf3に基づいて位相補正/逆補正を行う。
 同様に本実施の形態のローカル位相差算出部41aは、式(30)で得られた位相差信号Δθ21を、ローカル信号Lf2を用いてダウンコンバート/アップコンバートを実施するポートの受信位相補正部/送信位相補正部に供給する。ローカル信号Lf2が入力される受信位相補正部/送信位相補正部は、入力されたローカル信号Lf2に基づいて位相補正/逆補正を行う。
 各位相差信号を用いた位相補正/逆補正の方法は、実施の形態1と同様である。以上示した各処理により、各ポートはローカル信号Lf1に全て位相を同期することができる。なお本実施の形態では、K=4の場合を例に説明したが、Kは2以上であれば幾つでもよく、K=4以外の場合も同様にしてK-1個の位相差信号Δθ21~ΔθK・K-1を生成し、対応する受信位相補正部/送信位相補正部に供給すればよい。
 以上のように、本実施の形態では、3つ以上のポートで広帯域信号を、帯域を分割して処理する。このため、実施の形態1よりさらに広帯域の信号を通信性能の劣化無く中継することができる。
実施の形態3.
 図17は、本発明にかかる実施の形態3のローカル位相差算出部41bの構成例を示す図である。本実施の形態の中継衛星の構成は、実施の形態1のローカル位相差算出部41をローカル位相差算出部41bに替える以外は、実施の形態1の中継衛星と同様である。以下、実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。
 実施の形態2のローカル位相差算出部41aでは、3式のミキサ、バンドパスフィルタ、AD変換器が必要となり、アナログ回路規模がKの増加に伴い増える。このため、本実施の形態では、Lf1以外の各ローカル信号を加算した信号を、まとめてLf1で検波する構成に変更し、これらミキサ、バンドパスフィルタ、AD変換器を減らしている。
 図17に示すように、本実施の形態のローカル位相差算出部41bは、ミキサ507と、BPF508と、AD変換器(A/D)509と、加算器544,545と、直交検波部546,547,548と、ローパスフィルタ(LPF)549,550,551と、リミタ552,553,554と、を備える。
 本実施の形態のローカル位相差算出部41bは、はじめに加算器544、545によりローカル信号Lf2と、ローカル信号Lf3と、ローカル信号Lf4とを加算する。この加算結果は、ミキサ507に入力される。ミキサ507は、入力された加算結果とローカル信号Lf1とを乗算する。BPF508は、乗算した信号の高域周波数成分を除去して低域周波数成分を抽出する。なおBPF508はローパスフィルタでも良い。本処理は、3つのローカル信号を加算した信号に含まれる周波数成分f2,f3,f4を、f1分DC(Direct Current)側に周波数シフトしたことになる。
 図18は、本実施の形態におけるサンプリング処理例を示す図である。図18(a)は、BPF508通過後の信号スペクトラムの一例を示している。図18(a)に示す通り、Lf2の周波数はfC、Lf3の周波数は2fC、Lf4の周波数は3fCに変換され、BPF508通過後の信号の片側帯域幅が3fCとなる。AD変換器509は、図18(a)の信号を片側帯域3fCの2倍以上のサンプリング速度でサンプリングする。図18(b)は、サンプリング速度7fCでサンプリングした場合のスペクトラムの一例を示す。点線の各矢印は、各信号の折り返し成分である。
 直交検波部546は、中心周波数fCのLf2に、内部で生成した複素ローカル信号exp[-j(2πfCt)]を乗算し、低域周波数成分を抽出することで、中心周波数fCのLf2をベースバンド周波数の信号に変換する。
 同様に、直交検波部547は、中心周波数2fCのLf3に、内部で生成した複素ローカル信号exp[-j(2π2fCt)]を乗算し、低域周波数成分を抽出することで、中心周波数2fCのLf3をベースバンド周波数の信号に変換する。
 また同様に、直交検波部548は、中心周波数3fCのLf4に、内部で生成した複素ローカル信号exp[-j(2π3fCt)]を乗算し、低域周波数成分を抽出することで、中心周波数3fCのLf4をベースバンド周波数の信号に変換する。
 ローカル信号Lf1でベースバンドに変換された各ローカル信号は、リミタ552,553,554で定振幅化された後、位相差信号Δθ21,Δθ31,Δθ41として出力される。以上述べた以外の本実施の形態の動作は実施の形態2と同様である。
 このように、本実施の形態のローカル位相差算出部41bは、AD変換器のサンプリング速度は実施の形態1より高くする必要があるが、ミキサ、バンドパスフィルタ(BPF)、AD変換器を1つで構成できるため、アナログ回路規模を低減することができる。なお、アンダーサンプリングにも対応可能なAD変換器を用いれば、AD変換器のサンプリング速度を7fCから、図18(c)に示すように3.5fCまで下げることも可能である。図18(c)に示すように、点線の各矢印で示される各信号の折り返し成分が、主信号成分Lf2、Lf3、Lf4と重ならないような周波数でアンダーサンプリングすれば良い。
実施の形態4.
 図19,20は、本発明にかかる中継衛星の実施の形態4の構成例を示す図である。図19では、受信側の補正に関連する部分を抜き出して示している。図20では、送信側の補正に関連する部分を抜き出して示している。本実施の形態の中継衛星は、遅延器60-1,60-2,65-1,65-2、受信側位相時間差検出部(受信側位相差検出部)61、無変調信号生成部(CW生成部)62-1,62-2、加算器63(送信アナログスイッチマトリックス37内)、送信側位相時間差検出部(送信側位相差検出部)64を追加している。実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。
 実施の形態1~実施の形態3では、位相雑音等に動的なキャリア位相変動θ(t)を補償する構成について説明した。本実施の形態では、位相雑音等に動的なキャリア位相変動だけでなく、実施の形態1で示した位相オフセットθCや、各ポート間の経路長差、遅延特性等によって生じる固定的な時間差まで自動的に補正する。
 この固定的な時間差は、もちろん手動で補正してもよいが、補正に時間がかかること、一旦補正後も経年変化や温度変動により時間、月、年の単位で緩やかに位相・時間ずれが再度生じる場合(半固定である場合)も考えられる。そこで本実施の形態では、実施の形態1で示した動的な位相変動成分θ(t)を補正後、この位相・時間ずれを自動補正する。
 またこの自動補正では、中継装置内部で補正用の無変調(CW)波を生成して用いるため、この自動補正は、該当のポートへの中継信号入出力を停止し、スタンバイ状態にした上で実施する。一般に中継衛星は実際の運用に必要なポート数だけを確保することはなく、故障に備えて予備のポートも複数備えている。したがって、各ポートを順次スタンバイ状態にして補正する際は、以下の手順で実施することで、本補正によって一旦信号中継が中断されてしまう事態を回避する。
 (1)後述する本実施の形態の補正処理によって既に補正済みの予備系のポートを立ち上げ、受信アナログスイッチマトリックス22のスイッチ制御により、予備系のポートにも補正対象のポートと同じ中継信号を入力する。送信アナログスイッチマトリックス37は、補正対象のポートの信号と予備系のポートの信号とを合成してアンテナに出力する接続とする。ただし、デジタル部の内のどこか(例えば送信位相補正部33-1~33-N)で予備系のデータの出力を停止することで、2つの信号が合成されないように制御する。
 (2)予備系のポートと補正対象のポートの両方に同じ信号が流れ始めたら、デジタル部の内のどこか(例えば送信位相補正部33-1~33-N)で、所定のタイミングで予備系のポートのデータを出力するようにし、補正対象のポートのデータの出力を停止する。このデジタル的な切り替えにより、信号断線が発生することなく、信号が補正対象のポートから、予備系のポートに移って中継される。
 (3)その後、受信アナログスイッチマトリックス22は、予備系のポートだけを選択し、補正対象のポートには信号を入力しない接続に切り替える。同様に、送信アナログスイッチマトリックス37は、予備系のポートのみ選択する接続に切り替える。
 (4)信号が入力されなくなった補正対象のポートに対して、実施の形態1で示した動的な位相変動θ(t)の補正を実施する。
 (5)後述する方法で、補正対象のポートの位相ずれや時間ずれの自動補正を受信側と送信側それぞれで実施する。
 (6)上記の自動補正後、受信アナログスイッチマトリックス22のスイッチ制御により、予備系のポートだけでなく、補正対象のポートにも同じ中継信号を流す。送信アナログスイッチマトリックス37は、補正対象のポートの信号と予備系のポートの信号とを合成してアンテナに出力する接続とするが、デジタル部の内のどこか(例えば送信位相補正部33-1~33-N)で補正済みポートのデータの出力を停止することで、2つの信号が合成されないように制御する。
 (7)補正対象のポートと予備系のポートの両方に同じ信号が流れ始めたら、デジタル内部(例えば送信位相補正部33-1~33-N)で、あるタイミングで補正済みポートのデータを出力し、予備系のポートのデータを停止する。このデジタル的な切り替えにより、信号断線が発生することなく、信号が予備系のポートから、補正済みのポートに移って中継される。
 (8)前述の(7)の後、受信アナログスイッチマトリックス22は、補正済みのポートだけを選択し、予備系のポートには信号を入力しない接続に切り替える。同様に、送信アナログスイッチマトリックス37は、補正済みのポートのみ選択する接続に切り替える。
 上記手順に則って各ポート間の位相・時間差を順次自動補正していくことで、中継する信号が途切れることを回避することができる。また上記の例では、一旦補正対象のポートから予備系ポートに中継信号を移し、補正後戻す場合の手順としたが、予備系ポートは既に信号が中継されていないため、予備系ポートの補正は上記の手順とは関係なく、いつでも実施できる。
 なお、運用システム側で、中継する信号を別の周波数帯に割り当てる、または停止させ、補正対象のポートが扱う信号帯域に信号を無くしてから、予備系のポートに切り替え、再度信号を中継させていく方法もある。この場合、中継する信号を一旦止めるため運用制約は生じるが、中継器の切り替え手順は簡単化できる。更に主系のポートが故障し、常に予備系のポートも動作させる必要が生じた場合も、一旦中継する信号を止めて本自動補正を行う。
 以降、本実施の形態の自動補正の詳細について説明する。
 ポート間の位相差・時間差は以下の2箇所で発生する。
(P1)受信アナログスイッチマトリックス22入力端からAD変換器28-1~28-Nまでの区間
(P2)DA変換器34-1~34-Nから送信アナログスイッチマトリックス37出力端までの区間
 例えば図2、図3に示した受信ポート15-1,15-2(または送信ポート39-1,39-2)の間で、以下の(A),(B)に示すように、位相差θC,時間遅延差Δτ21,Δτ43が生じるが、この位相差、時間遅延差が大きい場合、信号の位相差として、両者の信号合成時にS/N(Signal to Noise ratio)の低下を引き起こす。
 (A)動的な位相変動θ(t)を補正した後の、受信側の分波部30-1、30-2の間で発生する位相ずれ(-θC)、及び受信アナログスイッチマトリックス22入力端(=BPF14-1)からAD変換器28-1の伝播時間τ1と、受信アナログスイッチマトリックス22入力端(=BPF14-1)からAD変換器28-2までの伝播時間τ2との差である時間遅延差Δτ21(=τ1-τ2)。
 (B)動的な位相変動θ(t)を補正した後の、送信側のBPF38-1、38-2の間で発生する位相ずれ(+θC)、及びDA変換器34-1から送信アナログスイッチマトリックス37出力端(=送信アンテナ40-1入力端)までの伝播時間τ3と、DA変換器34-2から送信アナログスイッチマトリックス37出力端(=送信アンテナ40-1入力端)までの伝播時間τ4との差である時間遅延差Δτ43(=τ3-τ4)。
 以降、1番目のポートと2番目のポートの間の補正を例に、はじめに上記(A)の補正方法について説明後、上記(B)の補正方法について説明する。
[受信ポート間の時間遅延差補正(上記(A)の補正方法)]
 上述した(1)~(3)の手順で、受信ポート15-1,15-2をスタンバイ状態に切り替えた後、無変調信号生成部62-2は、-0.5fCの複素無変調信号exp[j(2π(-0.5fC)t)]を生成する。この-0.5fCの複素無変調信号は、後述する時間差を検出するため、周期的に信号出力を停止させるバースト的な信号とする。
 図21は、この複素無変調信号波形の一例を示す図である。実線が実数成分(コサイン成分)、点線が虚数成分(サイン成分)である。図21に示すように、信号停止、信号発生時に、ある程度緩やかに信号振幅の立上げ/立ち下げを行うことで、信号の高調波発生を抑制しても良い。複素無変調信号波形は、図21の例に限定されない。図22は、受信側補正用の複素無変調信号に対する処理の流れを示す図である。
 無変調信号生成部62-2により生成された複素無変調信号は、ミキサ36-2においてローカル信号Lf2を用いてアップコンバートされ、加算器63の出力端で、図22(a)に示すスペクトラムのように、中心周波数f2-0.5fC(=f1+0.5fC)に周波数変換される。
 この送信アナログスイッチマトリックス37の内部の加算器63から出力される信号は、受信アナログスイッチマトリックス22の入力端(=BPF14-1出力端)に入力される。
 受信アナログスイッチマトリックス22の入力端(=BPF14-1出力端)に入力された中心周波数f2-0.5fCの無変調信号は、受信アナログスイッチマトリックス22内で2分岐され、一方はBPF23-1→ミキサ24-1→BPF27-1→AD変換器28-1のパスを通過する。この時のAD変換器28-1の入力点での信号スペクトラムを図22(b)に示す。もう一方は、BPF23-2→ミキサ24-2→BPF27-2→AD変換器28-2のパスを通過する。この時のAD入力点での信号スペクトラムを図22(c)に示す。
 上記の2つパスを経由した2つの無変調信号は、それぞれ受信位相補正部29-1,29-2で位相変動補正が行われた後、受信側位相時間差検出部61に入力される。受信側位相時間差検出部61は、2つの無変調信号の位相差θCと、受信ポート15-1と受信ポート15-2間の時間差Δτ21(=τ1-τ2)を求める。
 遅延器60-1,60-2は、受信側位相時間差検出部61で得られた時間差Δτ21情報を基に各ポートの時間差を打ち消す信号の時間遅延調整を行う。受信側位相時間差検出部61で得られた位相差θCは、受信位相補正部29-1,29-2にこれを打ち消す補正値として与えられる。なお、時間遅延処理は、デジタル信号処理で行うことができるため、容易でかつ正確に実現することができる。時間遅延の補正は、例えばサンプリングしたデータをM倍に補間する補間フィルタや、更に補間したデータを、もとのサンプリング速度で間引く多相フィルタなどのディジタルフィルタで実現することができる。
 図23は、本実施の形態の受信側位相時間差検出部61の構成例を示す図である。図23に示すように、受信側位相時間差検出部61は、複素乗算部601、ローパスフィルタ602、極座標変換部(I,Q→位相θ)603、電力変換部604、立ち上り差検出部605を備える。
 ここで受信位相補正部29-1(受信ポート15-1)から受信側位相時間差検出部61に入力される複素無変調信号をCW(+0.5fC)とし、RPC29-2(受信ポート15-2)から受信側位相時間差検出部61に入力される複素無変調信号をCW(-0.5fC)とする。
 ポート間で位相差が無い場合、CW(+0.5fC)の位相θ1(t)と、CW(-0.5fC)の位相θ2(t)との関係はθ1(t)=-θ2(t)となる。この場合、両者を複素乗算部601で乗算し、ローパスフィルタ602で平均化した後の信号ベクトル角は0(ゼロ)を示す。
 一方、ポート間で位相差が発生し、CW(+0.5fC)の位相θ1と、CW(-0.5fC)の位相θ2との関係が、図24に示すようにθ1(t)=-θ2(t)+Δθ’21となる場合、受信側位相時間差検出部61で得られる信号のベクトル角はΔθ’21を示す。図24は、本実施の形態における各無変調信号の波形例を示す図である。実施の形態1で示した受信側の位相オフセットθCは、このΔθ’21に相当する。
 このように受信側位相時間差検出部61は、ローパスフィルタ602で平均化した後の信号ベクトル角Δθ’21を求め、受信位相補正部29-1に出力する。なお各無変調信号はバースト的に到来するため、各無変調信号の振幅が十分大きい時間で上記演算を行い、信号が存在しない時間では誤差が生じるため上記演算は行わない制御としても良い。
 また受信側位相時間差検出部61は、各複素無変調信号CW(+0.5fC)とCW(-0.5fC)がバースト的に到来するため、これらの電力を求め、各電力データがあるしきい値を越える時刻(t1,t2)を、立ち上りエッジ時間として求めることで、両者の時間差情報Δτ21(=t2-t1)を検出する。
 なお立ち上りエッジの検出において、クロックのサンプリング周期で得られる電力データを、例えばクロック速度の数十倍にデジタル補間してサンプリング速度を上げた上で、電力データのエッジ検出を行うことで、エッジ検出時刻の精度を上げてもよい。
 このように本実施の形態の中継装置では、実施の形態1~3で述べたローカル位相変動の補償を行い、かつ受信側の2つのポートを同時に通過する境界の周波数位置に、共通の無変調波を入力し、デジタル部で受信側のポート間における位相差と時間遅延差を検出・補正する構成としている。このため、アナログ素子の追加を最低限に抑えながら、デジタル処理による正確できめ細かい位相・時間分解能で、受信側のポート間における時間遅延差の自動補正を実現することができる。
 また上記の例では、遅延器60-1,60-2入力前の信号を受信側位相時間差検出部61に接続してΔτ21を求める構成としたが、遅延器60-1,60-2出力の信号を受信側位相時間差検出部61に接続し、受信側位相時間差検出部61が検出した時間差を、フィードバック(ループ)制御によって徐々に補正しても良い。この場合も、最終的にはΔτ21を打ち消す時間補正が実現される。
[送信ポート間の時間遅延差補正(上記(B)の補正方法)]
 図25は、本実施の形態における送信側補正用CW信号に対する処理の流れを示す図である。上記(1)~(3)の手順で、送信ポート39-1と送信ポート39-2をスタンバイ状態に切り替えた後、無変調信号生成部62-1は、+0.5fCの複素無変調信号exp[j(2π(+0.5fC)t)]を生成する。図25(a)は、この複素無変調信号のスペクトラムを示している。この際、もう一方の無変調信号生成部62-2からは信号を出力しない。
 この+0.5fCの複素無変調信号も、後述する時間差を検出するため、周期的に信号出力を停止させるバースト的な信号とする。この複素無変調信号は、ミキサ36-1においてローカル信号Lf1を用いてアップコンバートされて加算器63に入力される。加算器63の出力端におけるアップコンバート後の複素無変調信号のスペクトラムを図25(c)に示す。図25(c)に示すように、この複素無変調信号は中心周波数f1+0.5fC(=f2-0.5fC)に周波数変換される。
 本実施の形態における中継装置では、送信側の補正の際、この送信アナログスイッチマトリックス37の内部の加算器63から出力される信号を、受信アナログスイッチマトリックス22の入力端(BPF14-1出力端)に入力する。
 受信アナログスイッチマトリックス22の入力端(BPF14-1出力端)に入力された中心周波数f1+0.5fCの無変調信号は、受信アナログスイッチマトリックス22によってBPF23-1に接続される。したがって、本無変調信号は、BPF23-1→ミキサ24-1→BPF27-1→AD変換器28-1のパスを通過し、受信位相補正部29-1に入力される。AD変換器28-1への入力前の信号スペクトラムを図25(d)に示す。図25(d)に示す通り、この信号は中心周波数+0.5fCの信号となる。更に本無変調信号は、受信位相補正部29-1で位相変動補正が行われた後、送信側時間差検出部64に入力される。送信側時間差検出部64は、入力された信号を、送信側時間差検出部64内で生成した周波数-0.5fCの複素無変調信号(自走複素無変調信号)exp[j(2π(-0.5fC)t)]と複素乗算する。
 図26は、本実施の形態の送信側位相時間差検出部64の構成例を示す図である。本実施の形態の送信側位相時間差検出部64は、複素乗算部611、ローパスフィルタ612、極座標変換部(I,Q→位相θ)613、電力変換部614、立ち上り差検出部615、自走複素無変調信号生成部616を備える。
 複素乗算部611は、受信位相補正部29-1から入力される信号と自走複素無変調信号生成部616により生成された自走複素無変調信号とを乗算する。ローパスフィルタ612は、複素乗算部611による乗算後の信号を平均化する。この平均化された信号のベクトル角は、自走複素無変調信号の位相と、送信ポート39-1→受信ポート15-1を経て送信側位相時間差検出部64に入力される無変調信号位相との差に相当する。送信側位相時間差検出部64は、極座標変換部613がこのベクトル角を求め位相差情報Δθ1として保持する。なお各複素無変調信号はバースト的に到来するため、各複素無変調信号の振幅が十分大きい時間で上記演算を行い、信号が存在しない時間では誤差が生じるため上記演算は行わない制御としても良い。
 また、送信側位相時間差検出部64では、電力変換部614は、複素乗算部611の出力信号を電力変換し、立ち上り差検出部615は電力データがあるしきい値を越える時刻を立ち上りエッジ時刻t1として記録する。この時、立ち上り差検出部615は、無変調信号生成部62-1から複素無変調信号を受信開始した時刻t0も記録し、各時刻の差(t1-t0)を求めて、その結果をΔτ1として記録する。
 次に、無変調信号生成部62-1は複素無変調信号の送信を停止し、もう一方の無変調信号生成部62-2が、-0.5fCの複素無変調信号exp[j(2π(-0.5fC)t)]を生成する。図25(b)にこの信号のスペクトラムを示す。この複素無変調信号は、ミキサ36-2によりローカル信号LF2を用いてアップコンバートされ、加算器63の出力端で、図25(c)に示すように、中心周波数f2-0.5fCに周波数変換される。
 送信アナログスイッチマトリックス37の内部の加算器63から出力される信号は、受信アナログスイッチマトリックス22の入力端(=BPF14-1の出力端)に入力される。
 本実施の形態の中継装置は、送信側の補正の際、受信アナログスイッチマトリックス22の入力端(=BPF14-1の出力端)に入力された中心周波数f2-0.5fC(=f1+0.5fC)の無変調信号を、受信アナログスイッチマトリックス22によってBPF23-1に接続する。したがって、この無変調信号も、BPF23-1→ミキサ24-1→BPF27-1→AD変換器28-1のパスを通過し、RPC29-1に入力される。AD変換器28-1への入力前の信号スペクトラムは図25(d)に示す通り、中心周波数+0.5fCとなる。また、この無変調信号は、RPC29-1で位相変動補正が行われた後、送信側位相時間差検出部64に入力される。送信側位相時間差検出部64は、入力された信号を、内部で発生した周波数-0.5fCの複素無変調信号(自走複素無変調信号)exp[j(2π(-0.5fC)t)]と複素乗算する。この乗算結果をローパスフィルタ612で平均化して得られた信号のベクトル角は、自走複素無変調信号の位相と、送信ポート39-2→受信ポート15-1を経て送信側位相時間差検出部64に入力される無変調信号位相との差に相当する。送信側位相時間差検出部64は、この位相差情報をΔθ2として保持する。なお各複素無変調信号はバースト的に到来するため、各複素無変調信号の振幅が十分大きい時間で上記演算を行い、信号が存在しない時間では誤差が生じるため上記演算は行わない制御としても良い。
 また、送信側位相時間差検出部64では、電力変換部614は、複素乗算部611の出力信号を電力変換し、立ち上り差検出部615は電力データがあるしきい値を越える時刻を立ち上りエッジ時刻t3として記録する。この時、立ち上り差検出部615は、無変調信号生成部62-2から複素無変調信号を受信開始した時刻t2も記録し、各時刻の差(t3-t2)を求めて、その結果をΔτ2として記録する。
 以上のようにして送信ポート39-1→受信ポート15-1を経て得られたΔθ1と、送信ポート39-2→受信ポート15-1を経て得られたΔθ2との差から、送信ポート39-1と送信ポート39-2の間の位相差を得ることが出来る。即ち、送信側位相時間差検出部64はΔθ2とΔθ1を減算した結果を位相差情報Δθ21として得ることができる。
 実施の形態1で示した送信側の位相オフセットθCは、このΔθ21に相当する。送信側位相時間差検出部64は、この位相差情報Δθ21を打ち消す値を送信位相補正部33-2に与える。
 また送信側位相時間差検出部64は、送信側のポート39-1とポート39-2間の時間差Δτ21(=Δτ2-Δτ1)を求める。遅延器65-1,65-2は、送信側位相時間差検出部64で得られた時間差情報Δτ21を基に各ポートの時間差を打ち消す信号の時間遅延調整を行う。時間遅延は、デジタル信号処理で行うことが出来るため、容易でかつ正確に実現することができる。なお、遅延器65-1,65-2は、前述した遅延器60-1,60-2と同様、補間フィルタや多相フィルタで構成される。
 このように本実施の形態の中継装置では、実施の形態1~3で前述したローカル位相変動の補償を行い、かつ送信側の2つのポートのいずれも通過可能な、境界に位置する周波数に、無変調波を交互に入力し、デジタル部で送信側のポート間における位相差と時間遅延差を検出・補正する構成とした。このため、アナログ素子の追加を最低限に抑えながら、デジタル処理による正確できめ細かい時間分解能で、送信側のポート間における時間遅延差の自動補正を実現することができる。
 なお、位相オフセットθCは、受信側と送信側で符号は異なるが(-θC,+θC)、その絶対値は同じであるため、受信側位相時間差検出部61、または送信側位相時間差検出部64のいずれかでこの位相オフセットを求め、符号だけ反転させながら送信側と受信側で共有して用いても良い。この場合、位相オフセットを求める回路規模を削減することができる。
 また、無変調信号生成部62-1と無変調信号生成部62-2とは同時に信号を生成することはないため、無変調信号生成部を1つにまとめてもよい。この場合、無変調信号生成部は、送信ポート39-1に複素無変調信号を流す際は、周波数を+0.5fC、送信ポート39-2に複素無変調信号を流す際は、周波数を-0.5fCに切り替えられる機能に拡張すれば良い。なお、複素無変調信号の直交成分の符号を反転するだけで、周波数は正から負に反転するため、本機能の拡張は容易である。
 なお本例では受信側の時間差補正も、送信側の時間差補正も、1番目のポートと2番目のポートの間の時間遅延差を補正する場合について説明したが、同様に2番目のポート(受信ポート15-2,送信ポート39-2)と3番目のポート(受信ポート15-3,送信ポート39-3)、3番目のポートと4番目のポート等、各ポート間の時間遅延差を補正することができる。この場合、遅延器はポート毎に必要となるが、無変調信号生成部62-1,62-2や受信側位相時間差検出部61は共用して使用することができる。
 また各時間差情報Δτ21,Δτ32,Δτ43,…を基に、あるポート(例えば受信ポート15-1)を基準にした各ポートとの時間差を求めることもできるため、全てのポートの時間差をゼロに制御することも出来る。
 なお、実施の形態では、デジタル部で受信側、あるいは送信側のポート間における位相差と時間遅延差を検出・補正する例を説明したが、必ずしも位相差と時間遅延差の両方を検出・補正する必要はなく、時間遅延差が十分小さい場合は、位相の補正だけで良い。この場合、時間遅延差を求める回路と各遅延器が削減できるため、回路規模を更に減らすことができる。
 また実施の形態1~実施の形態4では、中継衛星への適用例で説明したが、本実施の形態の中継装置は、地上の無線中継機、あるいは無線基地局、無線端末にも同様に適用することで、無線機の広帯域化を実現することができる。
実施の形態5.
 次に、実施の形態5の中継装置について説明する。以上の実施の形態では、接続部31がデジタルスイッチマトリックスであるとして説明したが、接続部31の前後に受信デジタルビームフォーミング(DBF:Digital Beam Forming)機能と送信DBF機能を有する構成としても良い。本構成とすることで、広帯域な信号を中継する効果に加え、各ビームエリアを近づけても同一周波数の信号が干渉しない、高いアンテナ指向性も実現することができる。
 図27は、実施の形態2で示した2つのビームエリア100,102(広帯域ビームエリア100、狭帯域ビームエリア102)を近づけた場合の同一周波数干渉の様子を示す図である。図27中、(a)で示すビームエリア100からの広帯域信号Aと、(b)で示すビームエリア102からの狭帯域信号{B,C,D}とは同一周波数帯を使用している。よって、ビームエリア100とビームエリア102の距離を近づけると、中継衛星200のアンテナ21-1では、図27中の(c)に示すように、広帯域信号Aだけでなく、ビームエリア102からの狭帯域信号{B,C,D}も小さなレベルで受信される。
 図27中の(c)に示す信号702,703,704は、アンテナ21-1においてそれぞれ小さなレベルで受信されるビームエリア102からの狭帯域信号{B,C,D}の成分であり、広帯域信号Aに対して干渉成分となり、通信品質の劣化をもたらす。
 同様に、ビームエリア100とビームエリア102の距離を近づけると、中継衛星200のアンテナ21-2には、図27中の(d)に示すように、ビームエリア102からの狭帯域信号{B,C,D}だけでなく、ビームエリア100からの広帯域信号Aも小さなレベルで受信される。
 図27中の(d)に示す信号701は、アンテナ21-2において小さなレベルで受信されるビームエリア100からの広帯域信号Aの成分であり、狭帯域信号{B,C,D}に対して干渉成分となり通信品質の劣化をもたらす。
 上記の課題は、前述した受信DBF機能を備えることにより解決される。受信DBF機能による受信DBF処理は、分波部30-1~30-Nで分解された各信号に対して行われる。図28は、本実施の形態の受信DBF処理の一例を示す図である。
 図28中、入力信号(1)'(=図28中の信号710)は、分波部30-1から受信DBF機能に入力される信号であり、実施の形態1の図7で示した信号(1)(=広帯域信号Aの一部)に小さなレベルの信号B(信号702)が加わった信号である。
 また、入力信号B'(=図28中の信号711)は分波部30-3から受信DBF機能に入力される信号であり、狭帯域信号Bに小さなレベルの信号(1)(=広帯域信号Aの一部)(信号701a)が加わった信号である。
 ここで受信DBF機能に入力されるビーム番号をk(∈{0,1,2,…,K-1})、各分波部で分波された各サブチャネル信号の番号をj(∈{0,1,2,…,J-1})、出力先のビーム番号をi(∈{0,1,2,…,I-1})とし、ベースバンド入力信号をD(j,k)、受信複素DBF係数をr(i,j,k)とすると、受信DBF処理後のベースバンド信号R(i,j)は以下の式(35)で示される。
Figure JPOXMLDOC01-appb-M000001
 図28の例では、ビームエリア100からのサブチャネル番号j=1に相当する信号(1)’と、ビームエリア102からのサブチャネル番号j=1に相当する信号B’との受信DBF処理(2入力、2出力)を示している。
 ビームエリア100の番号をk=0、ビームエリア102の番号をk=1とすると、受信DBF処理後の信号は、以下の式(36)、(37)で示される。
  R(0,1)=D(1,0)×r(0,1,0)+D(1,1)×r(0,1,1) …(36)
  R(1,1)=D(1,0)×r(1,1,0)+D(1,1)×r(1,1,1) …(37)
 ここでD(1,0)が信号(1)’に相当し、D(1,1)が信号B’に相当し、R(0,1)が図28の705aに示されるDBF処理後の信号(1)に相当し、R(1,1)が図28の103aに示されるDBF処理後の信号Bに相当する。
 図28の例を用いて本実施の形態の受信DBF処理の動作原理を説明する。図28では、信号(1)’に混在する信号Bの小さな成分である信号702を、信号B’に含まれる信号Bを用いて打ち消す例を示している。具体的には、信号(1)’、信号B’に、それぞれ受信DBF係数を複素乗算器720、722により乗算し、乗算後の信号を加算器724によりベクトル合成する。これによって、図28の信号705aに示すように、信号Bの小さな成分である信号702が信号(1)’から除去される。なお、この干渉除去の過程において、705aの信号(1)が信号710に含まれる信号705と同振幅、同位相となるように、受信DBF係数が設定される。
 同様に、図28では、信号B’に混在する信号(1)の小さな成分である信号701aを、信号(1)’に含まれる信号(1)を用いて打ち消す例を示している。具体的には、信号(1)’、信号B’に、それぞれ受信DBF係数を複素乗算器721、723により乗算した上で、加算器725によりベクトル合成する。これによって、図28の信号103aに示すように、信号(1)の小さな成分である信号701aが信号Bから除去される。なお、なお、この干渉除去の過程において、信号103aの信号Bが信号711に含まれる信号103と同振幅、同位相となるように、受信DBF係数が設定される。
 これら受信DBF係数r(i,j,k)は、各地上局の位置や、中継衛星の位置を把握している地上の制御局110によって計算されて、別回線で中継衛星200に与えられるシステムとしても良い。その際、制御局110は、DBF処理前の入力データを部分的に別回線で中継衛星200から収集し、受信DBFの係数算出に役立てても良い。
 あるいは、受信DBFの係数算出を、制御局110ではなく中継衛星200が自ら実施してもよい。この場合、中継衛星200の演算量は増加するが、地上の制御局110で制御される場合と比較して、リアルタイム(迅速)な干渉除去を実現することができる。
 図29は、受信DBF機能および送信DBF機能を有する中継装置の構成例を示す図である。図29では、4ビーム入力、4ビーム出力時の例を示し、受信DBF機能、接続部31、送信DBF機能以外の図示は省略している。受信DBF機能、接続部31、送信DBF機能以外の構成は実施の形態1と同様である。
 受信DBF部801は、前記の式(35)の処理を行う。なお図29では、接続する信号線の数を減らすため、0番からJ-1番までの分波後のサブチャネルデータを時分割多重している。これにより、各入力信号D(j,k)の数は、ビーム毎に1本の構成となる。同様に出力信号R(j,k)の数も、ビーム毎に1本の構成となる。なお、分波後のサブチャネルデータを時分割多重しなくてもよいし、また、時分割多重する場合にも時分割多重の際に多重するサブチャネルの組は図29の例に限定されない。
 各受信DBF用係数乗算部802,803,804,805は、ビーム信号D(j,k)に対して入力ビーム番号k∈{0,1,2,3}単位で、受信DBF係数r(i,j,k)を複素乗算する。また各受信DBF用加算部806,807,808,809は、出力ビーム番号i∈{0,1,2,3}単位で、受信DBF係数が乗算された各サブチャネル信号を全てベクトル加算する。
 この一連の受信DBF処理によって、干渉成分が除去された各ビームのサブチャネル信号は、実施の形態1と同じ動作を行う接続部31によって、送信側の合波部に振分けられる。
 送信側も受信側と同様に、送信DBF処理によって下りのビームエリア(例えばビームエリア400、402)を近づける際に生じる、地上受信局における同一周波数干渉を緩和することができる。即ち、送信DBF処理では、隣接ビームからの同一周波数干渉信号を打ち消すように、予め中継衛星側で、主信号に隣接ビームからの信号を混ぜて送信する。
 図30は、送信DBF処理例と効果を示す図である。図30(a)に示すように、送信DBF部811は、図3の送信アンテナ40-1の送信スペクトラムに対して、信号Bを用いた干渉除去用の信号901を、信号Aのスペクトラムの周波数干渉部分に加える。なお広帯域信号Aの干渉除去を行う場合は、更に、信号Bを打ち消した後の広帯域信号Aの周波数対振幅特性や周波数対位相特性が崩れないように計算された受信DBF係数が設定される。
 また送信DBF部811は、図30(b)に示すように、図3の送信アンテナ40-2の送信スペクトラムに対して、信号Aの部分帯域を用いた干渉除去用の信号902を、信号Bのスペクトラムに加える。
 これにより、図30(c)に示すように、受信局401ではアンテナ40-2からの信号Bがアンテナ40-1からの信号901によって打ち消され、ほぼ元の信号と変わらない広帯域信号Aを受信することができる。同様に、図30(d)に示すように、受信局403ではアンテナ40-1からの信号Aがアンテナ40-2からの信号902によって打ち消され、ほぼ元の信号と変わらない狭帯域信号Bを受信することができる。
 ここで送信DBF部811に入力されるビーム番号をk(∈{0,1,2,…,K-1})、各サブチャネル信号の番号をj(∈{0,1,2,…,J-1})、出力先のビーム番号をi(∈{0,1,2,…,I-1})とし、ベースバンド入力信号をM(j,k)、受信複素DBF係数をw(i,j,k)とすると、送信DBF処理後のベースバンド信号T(i,j)は次の式(38)で示される。
Figure JPOXMLDOC01-appb-M000002
 図29に、4入力4出力における送信DBF部811の構成例についても示している。送信DBF部811は、前記の式(38)の処理を行う。なお接続する信号線の数を減らすため、0番からJ-1番までのサブチャネルデータを時分割多重して、前段の接続部31から各データを入力している。これにより、各入力信号(ベースバンド入力信号)M(j,k)の数は、ビームごとに1本の構成となる。同様に出力信号T(j,k)の数も、ビームごとに1本の構成となる。
 各送信DBF用係数乗算部812,813,814,815は、入力信号M(j,k)に対して入力ビーム番号k∈{0,1,2,3}単位で、送信DBF係数w(i,j,k)を複素乗算する。また各送信DBF用加算部816,817,818,819は、出力ビーム番号i∈{0,1,2,3}単位で、送信DBF係数が乗算された各サブチャネル信号を全てベクトル加算する。
 これら送信DBFの係数w(i,j,k)は、受信DBFの係数r(i,j,k)と同様、各地上局の位置や、中継衛星の位置を把握している地上の制御局110によって計算されて、別回線で中継衛星200に与えられるシステムとしても良い。または、各地上局で送信DBFの係数w(i,j,k)を計算して、計算結果を別回線で、中継衛星200に与えられるシステムとしても良い。
 なお、以上の例では、受信DBFと送信DBFの両方を行う例を示したが、いずれか一方のみを行うようにしてもよい。また、本実施の形態では、隣接する1つのビームエリアからの干渉成分を除去する例を説明したが、同様に2つ以上のビームエリアからの干渉成分を除去するようにしてもよい。
 以上のように、本実施の形態では、受信DBF処理、送信DBF処理により、近接するビームエリアからの干渉を除去するようにした。このため広帯域な信号を中継する効果に加え、各ビームエリアを近づけても同一周波数の信号が干渉しない、高いアンテナ指向性も実現することができる。これにより、同一周波数の繰返し利用率が向上し、広帯域な信号を中継する効果と合わさって、衛星システムの更なる大容量化を実現することができる。
 なお、本実施の形態では中継衛星への適用例で説明したが、本実施の形態の中継装置は、地上の指向性アンテナを複数有する無線中継機、または無線基地局、無線端末にも同様に適用することで、無線機の広帯域化とともに高いアンテナ指向性を実現することができる。
実施の形態6.
 次に、実施の形態6の中継装置について説明する。実施の形態4では、位相オフセットθCや、各ポート間の経路長差、遅延特性等によって生じる固定的な時間差を補正するために、一旦該当のポートへの中継信号入出力を停止し、スタンバイ状態にした上で実施する例を示した。
 本実施の形態では、受信側のポート間調整に限定されるが、スタンバイ状態とせずに、中継信号を入出力したまま、CWを用いて位相オフセットθCや、固定的な時間差を補正する。これにより、スタンバイ状態に切り替える手間が省けるため、システム運営が容易となる。
 なお、本実施の形態は、受信側のポート間調整の際に有効であるため、例えば、中継衛星上で広帯域信号を復調する場合や、地上局で広帯域信号を復調する場合に適用することができる。
 図31は、本実施の形態の中継装置の構成例を示す図である。本実施の形態の中継装置の基本的な構成は、図19と同様であり、図19の構成例に対して、CWレプリカ生成部71とCW除去部70-1,70-2を追加する。なお、図31では、追加する部分にかかる構成要素を示しており、これら以外の構成要素は図示を省略している。
 無変調信号生成部62-2は実施の形態4と同様に、無変調信号を生成する。受信ポート15-1,15-2をスタンバイ状態に切り替えずに中継信号が入出力する状態のままとする。無変調信号生成部62-2により生成された無変調信号は、36-2によりアップコンバートされ、加算器63を経由して受信ポート15-1,15-2へ入力される。受信側位相時間差検出部61は、実施の形態4と同様に、2つの受信ポートに入力される無変調信号(CW波)の位相差や時間差を検出する。具体的には、受信ポート15-1に入力されRPC29-1から受信側位相時間差検出部61に入力される無変調信号を第1の無変調信号とし、受信ポート15-2に入力されRPC29-2から受信側位相時間差検出部61に入力される第2の無変調信号とすると、受信側位相時間差検出部61は、第1の無変調信号と第2の無変調信号に基づいて、受信ポート15-1,15-2間の位相差(θC)、時間差を検出する。さらに、受信側位相時間差検出部61は、検出した時間差に基づいて遅延補正値Δτ21を算出する。なお、実際には、受信側位相時間差検出部61に入力される各信号に受信信号も含まれているが、実施の形態4と同様に、第1の無変調信号と第2の無変調信号の成分の特性(立ち上がり等)を用いて位相差や時間差を検出する。また各検出過程で2つのCWの電力(電力情報)も検出する。CWレプリカ生成部(レプリカ生成部)71は、受信側位相時間差検出部61で検出した位相差、電力情報および遅延補正値Δτ21に基づいて、受信信号に混在するCW波と位相が180度異なり、かつ等電力のCWレプリカを生成する。
 生成された各CWレプリカは、CW除去部(無変調信号除去部)70-1,70-2に入力され、遅延器60-1,60-2から出力されるCW波が混在した受信ベースバンド信号とベクトル加算される。この際に、CWレプリカ生成部71は、信号に混在する補正用CWと、CWレプリカのタイミングが揃うように、遅延補正値Δτ21を用いて、遅延器で遅延補正された時間だけ、各CWレプリカのタイミング調整も行う。
 なお、ここでは、入力される信号が2分岐される受信ポート15-1,15-2間の位相差等を求める例を説明したが、入力される信号が分岐されない受信ポート間の位相差等を求める場合には、実施の形態4の送信側と同様に2つの無変調信号生成部62-1,62-2を用いることができる。
 この一連の処理によって、補正用のCW波は、CWレプリカによって打ち消され、本来の信号中継に必要な受信信号だけが分波部に入力される。したがって、中継信号を入出力したまま、CWを用いて位相差(位相オフセットθC)や、固定的な時間差を補正することができる。
 なお、受信側位相時間差検出部61は、本来の中継信号が混在した状態で、各CWを検出する必要があるため、中継信号が干渉成分として、検出誤差の増加を招く可能性がある。したがって、誤差の増加が懸念される場合は、CW成分だけを抽出する狭帯域ディジタルフィルタを前段に設けて、中継信号成分を除去してから、実施の形態4で示した時間差、位相差を求める信号処理を実施してもよい。
 以上のように、本発明にかかる中継装置、中継衛星および衛星通信システムは、広帯域信号を中継する中継システムに有用であり、特に、衛星中継システムに適している。
 10 アップリンク/ダウンリンク周波数変換部、21-1~21-N 受信アンテナ、22 受信アナログスイッチマトリックス、12-1~12-N,14-1~14-N,23-1~23-N,27-1~27-N,38-1~38-N,508,531,537 バンドパスフィルタ、13-1~13-N,36-1~36-N,507,530,536 ミキサ、25 ローカル生成部、26 原振、28-1~28-N,509,532,538 AD変換器、29-1~29-N 受信位相補正部、30-1~30-N 分波部、31 接続部、32-1~32-N 合波部、33-1~33-N 送信位相補正部、34-1~34-N DA変換器、35-1~35-N,512,534,540,549,550,551,602,612 ローパスフィルタ、37 送信アナログスイッチマトリックス、40-1~40-N 送信アンテナ、41,41a,41b ローカル位相差算出部、60-1,60-2,65-1,65-2 遅延器、61 受信側位相時間差検出部、62-1,62-2 無変調信号生成部(CW生成部)、63,542,543,544,545 加算器、64 送信側位相時間差検出部、100 広帯域ビームエリア、102 狭帯域ビームエリア、101,103,104,105 送信局、110 制御局、200 中継衛星、201 受信部、202 送信部、400,402 ビームエリア、401,403 受信局、510,533,539,546,547,548 直交検波部、511 ローカル生成部、513,535,541,552,553,554 リミタ、514,515,516,505,506 セレクタ、517 クロック生成器、504-1~504-N 周波数シンセサイザ、601,611 複素乗算部、603,613 極座標変換部、604,614 電力変換部、605,615 立ち上り差検出部、616 自走複素無変調信号生成部、720~723 複素乗算器、724,725 加算器、802~805 受信DBF用加算部、806~809 受信DBF用加算部、811 送信DBF部、812~815 送信DBF用係数乗算部、816~819 送信DBF用加算部。

Claims (17)

  1.  複数の受信処理部と、
     複数の送信処理部と、
     前記受信処理部で処理された信号を、前記送信処理部へ出力する接続部と、
     周波数の異なる2つ以上のローカル信号を生成し、前記ローカル信号をそれぞれ前記受信処理部へ供給するローカル生成部と、
     前記ローカル信号間の位相差を算出し、前記受信処理部へ前記位相差を入力するローカル位相算出部と、
     を備え、
     前記受信処理部は前記位相差に基づいて位相補正を行う受信側位相補正部、を備え、
     前記送信処理部は、前記接続部からの信号を送信処理し、
     前記受信処理部は、処理可能な帯域幅よりも広帯域な広帯域受信信号が入力された場合、受信信号を1つ以上の前記受信処理部で処理することを特徴とする中継装置。
  2.  複数の受信アンテナと、
     複数の送信アンテナと、
     前記受信アンテナで受信した受信信号を1つ以上の前記受信処理部に出力し、前記広帯域受信信号が入力された場合、当該広帯域受信信号を2つ以上の受信処理部に出力する第1のスイッチ部と、
     同一の受信信号に対応する前記分波信号が入力された1つ以上の前記送信処理部によって送信処理が施された信号を同一の前記送信アンテナに出力する第2のスイッチ部と、
     を備え、
     前記接続部は、前記受信処理部により分波された分波信号を前記送信処理部へ出力し、
     前記受信処理部は、前記広帯域受信信号が入力された場合、前記ローカル信号に基づいて入力信号の一部の帯域を抽出し、抽出した分割信号に対して前記受信処理を行うことを特徴とする請求項1に記載の中継装置。
  3.  無変調信号を生成する無変調信号生成部と、
     前記無変調信号が入力された2つの前記受信処理部を通過した信号に基づいて前記受信処理部間の準固定的な位相差を求める受信側位相差検出部と、
     を備え、
     前記受信側位相補正部は、前記受信側位相時間差検出部により算出された前記位相差に基づいて位相補正を実施することを特徴とする請求項1または2に記載の中継装置。
  4.  前記受信側位相時間差検出部は、さらに、前記無変調信号が入力された2つの前記受信処理部を通過した信号に基づいて前記受信処理部間の時間差を求め、
     前記受信処理部は、前記時間差に基づいて時間遅延を補正することを特徴とする請求項3に記載の中継装置。
  5.  前記送信処理部は、前記位相差に基づいて位相補正を行う送信側位相補正部、を備え、
     前記送信処理部は、前記広帯域受信信号が分波された分波信号が入力された場合、前記送信処理後の入力信号を前記ローカル信号に基づいて周波数変換することを特徴とする請求項1から4のいずれか1つに記載の中継装置。
  6.  複数の受信処理部と、
     複数の送信処理部と、
     前記受信処理部で処理された信号を、前記送信処理部へ出力する接続部と、
     周波数の異なる2つ以上のローカル信号を生成し、前記ローカル信号をそれぞれ前記受信処理部へ供給するローカル生成部と、
     前記ローカル信号間の位相差を算出し、前記送信処理部へ前記位相差を入力するローカル位相算出部と、
     を備え、
     前記送信処理部は、前記位相差に基づいて位相補正を行う送信側位相補正部、を備え、
     前記送信処理部は、処理可能な帯域幅よりも広帯域な信号送信が求められた場合、送信信号を1つ以上の前記送信処理部で処理後、前記ローカル信号に基づいて周波数変換する送信することを特徴とする中継装置。
  7.  複数の受信アンテナと、
     複数の送信アンテナと、
     前記受信アンテナで受信した受信信号を1つ以上の前記受信処理部に出力し、前記受信処理部で処理が可能な帯域幅よりも広帯域の広帯域受信信号が入力された場合、当該広帯域受信信号を2つ以上の受信処理部に出力する第1のスイッチ部と、
     同一の受信信号に対応する前記分波信号が入力された1つ以上の前記送信処理部によって送信処理が施された信号を同一の前記送信アンテナに出力する第2のスイッチ部と、
     を備え、
     前記接続部は、前記受信処理部により分波された分波信号を前記送信処理部へ出力することを特徴とする請求項6に記載の中継装置。
  8.  第1の無変調信号を生成する第1の無変調信号生成部と、
     第2の無変調信号を生成する第2の無変調信号生成部と、
     前記第1の無変調信号が入力された前記送信処理部を通過した信号と前記第2の無変調信号が入力された前記送信処理部を通過した信号とが加算された信号が前記受信処理部を通過した信号に基づいて前記送信処理部間の準固定的な位相差を求める送信位相差検出部と、
     を備え、
     前記送信側位相補正部は、前記送信側位相時間差検出部により算出された前記位相差に基づいて位相補正を実施することを特徴とする請求項5、6または7に記載の中継装置。
  9.  前記送信側位相時間差検出部は、さらに、前記第1の無変調信号が入力された前記送信処理部を通過した信号と前記第2の無変調信号が入力された前記送信処理部を通過した信号とが加算された信号が前記受信処理部を通過した信号に基づいて前記送信処理部間の時間差を求め、
     前記送信処理部は、前記時間差に基づいて時間遅延を補正することを特徴とする請求項8に記載の中継装置。
  10.  前記受信アンテナは、ビームフォーミングにより受信ビームを形成し、
     前記受信アンテナは、ビームフォーミングにより送信ビームを形成し、
     前記受信信号を、同一の受信ビームにより受信した受信信号とし、
     前記第2のスイッチ部は、同一の受信信号に対応する前記分波信号が入力された1つ以上の前記送信処理部によって送信処理が施された信号を同一の送信ビームを形成する前記送信アンテナに出力することを特徴とする請求項1から9のいずれか1つに記載の中継装置。
  11.  前記ローカル位相算出部は、周波数の異なる3つ以上の前記ローカル信号を生成し、
     前記ローカル位相算出部は、
     周波数の隣接する前記ローカル信号間の位相差を隣接位相差として求め、周波数の隣接しない前記ローカル信号間の位相差を前記隣接位相差を加算することにより算出することを特徴とする請求項1から10のいずれか1つに記載の中継装置。
  12.  前記ローカル位相算出部は、周波数の異なる2つ以上の前記ローカル信号のうちの1つの基準ローカル信号とし、
     前記基準ローカル信号以外の前記ローカル信号を加算する加算器と、
     前記加算器による加算結果と前記基準ローカル信号とを乗算する乗算器と、
     前記乗算器による乗算結果から前記基準ローカル信号以外の前記ローカル信号に対応する帯域の信号をそれぞれ抽出する直交検波部と、
     を備えることを特徴とする請求項11に記載の中継装置。
  13.  複数の前記受信処理部から出力される信号にそれぞれ係数を乗算し、係数乗算後の信号のうちの2つ以上を加算する受信デジタルビームフォーミング部、
     をさらに備え、
     前記中継部は、前記受信デジタルビームフォーミング部による処理後の信号を前記送信処理部へ出力し、
     前記係数は、主信号を受信したビームエリア以外のビームエリアからの信号を打ち消すように設定されることを特徴とする請求項1から12のいずれか1つに記載の中継装置。
  14.  複数の前記送信処理部へ出力する信号にそれぞれ係数を乗算し、係数乗算後の信号のうちの2つ以上を加算する送信デジタルビームフォーミング部、
     をさらに備え、
     前記中継部は、入力された信号を、前記送信デジタルビームフォーミング部を介して前記送信処理部へ出力し、
     前記係数は、主信号に対応するビーム以外のビームの送信信号が受信局において打ち消されるように設定されることを特徴とする請求項1から13のいずれか1つに記載の中継装置。
  15.  無変調信号を生成する無変調信号生成部と、
     前記受信処理部の1つである第1の受信処理部を通過した前記無変調信号である第1の無変調信号と、前記受信処理部の1つである第2の受信処理部を通過した前記無変調信号である第2の無変調信号とに基づいて、前記第1の無変調信号および前記第2の無変調信号の電力と、前記第1の受信処理部と前記第2の受信処理部との間の位相差および時間差とを求める受信側位相差検出部と、
     前記位相差、前記電力および前記時間差に基づいて、前記第1の無変調信号と電力が等しく位相が180度異なる第1のレプリカ信号と、前記第2の無変調信号と電力が等しく位相が180度異なる第2のレプリカ信号とを生成するレプリカ生成部と、
     前記第1の受信処理部に入力された受信信号と前記第1のレプリカ信号とに基づいて該受信信号から前記第1の無変調信号を除去する第1の無変調信号除去部と、
     前記第2の受信処理部に入力された受信信号と前記第2のレプリカ信号とに基づいて該受信信号から前記第2の無変調信号を除去する第2の無変調信号除去部と、
     を備え、
     前記受信側位相補正部は、前記受信側位相時間差検出部により算出された前記位相差に基づいて位相補正を実施することを特徴とする請求項1または2に記載の中継装置。
  16.  請求項1から15のいずれか1つに記載の中継装置を備えることを特徴とする中継衛星。
  17.  請求項16に記載の中継衛星と、
     前記中継衛星で中継された信号を受信する受信局と、
     を備えることを特徴とする衛星通信システム。
PCT/JP2014/050359 2013-01-15 2014-01-10 中継装置、中継衛星および衛星通信システム WO2014112442A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2898183A CA2898183C (en) 2013-01-15 2014-01-10 Relay apparatus, relay satellite, and satellite communication system
US14/440,794 US9473236B2 (en) 2013-01-15 2014-01-10 Relay apparatus, relay satellite, and satellite communication system
EP14740628.4A EP2947788B1 (en) 2013-01-15 2014-01-10 Relay device, relay satellite, and satellite communication system
JP2014557443A JP5836508B2 (ja) 2013-01-15 2014-01-10 中継装置、中継衛星および衛星通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/050581 WO2014112040A1 (ja) 2013-01-15 2013-01-15 中継衛星、中継装置および衛星通信システム
JPPCT/JP2013/050581 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112442A1 true WO2014112442A1 (ja) 2014-07-24

Family

ID=51209166

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/050581 WO2014112040A1 (ja) 2013-01-15 2013-01-15 中継衛星、中継装置および衛星通信システム
PCT/JP2014/050359 WO2014112442A1 (ja) 2013-01-15 2014-01-10 中継装置、中継衛星および衛星通信システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050581 WO2014112040A1 (ja) 2013-01-15 2013-01-15 中継衛星、中継装置および衛星通信システム

Country Status (4)

Country Link
US (1) US9473236B2 (ja)
EP (1) EP2947788B1 (ja)
CA (1) CA2898183C (ja)
WO (2) WO2014112040A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109955A1 (ja) * 2015-12-25 2017-06-29 三菱電機株式会社 通信衛星、回線制御装置および衛星通信システム
WO2017150624A1 (ja) * 2016-03-02 2017-09-08 三菱電機株式会社 マルチビーム衛星通信システム、中継装置及び管制装置
WO2018146750A1 (ja) * 2017-02-08 2018-08-16 三菱電機株式会社 衛星中継装置
KR20210084575A (ko) * 2019-07-04 2021-07-07 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 동기 제어 회로 및 그것을 구비한 무정전 전원 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2884728C (en) 2012-09-14 2016-09-13 Mitsubishi Electric Corporation Relay device, satellite relay device, and satellite relay method
JP5851645B2 (ja) * 2013-02-14 2016-02-03 三菱電機株式会社 分波装置、合波装置および中継装置
WO2014170927A1 (ja) 2013-04-18 2014-10-23 三菱電機株式会社 分波装置、合波装置および中継装置
CN107210758B (zh) * 2015-03-20 2020-03-03 安德鲁无线系统有限公司 频率组合器中能够调节的调谐元件的调节
FR3055493B1 (fr) * 2016-08-23 2018-09-21 Thales Sa Dispositif de conversion de frequences a double oscillateur local et charge utile de satellite comprenant un tel dispositif
US10263648B2 (en) * 2017-03-13 2019-04-16 The Boeing Company Low cost millimeter wave receiver and method for operating same
US10999654B2 (en) * 2019-07-10 2021-05-04 Cisco Technology, Inc. Multiple port network device with differential ports for reduced electromagnetic interference at optical modules
CN112787968B (zh) * 2020-12-30 2022-07-05 中国工程物理研究院电子工程研究所 一种基于射频转发的低延时多节点实时无线网络传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516867A (ja) 2003-01-28 2006-07-06 ザ・ボーイング・カンパニー 衛星通信データのデジタル処理のためのシステムおよび方法
JP2009290763A (ja) * 2008-05-30 2009-12-10 Nippon Hoso Kyokai <Nhk> Ofdm信号合成用受信装置および中継装置
JP2011205449A (ja) * 2010-03-26 2011-10-13 Anritsu Corp 周波数変換装置及び周波数変換方法
WO2012147753A1 (ja) * 2011-04-28 2012-11-01 三菱電機株式会社 中継衛星および衛星通信システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004073229A (ja) 2002-08-09 2004-03-11 Aisin Seiki Co Ltd 刺繍機
JP5049305B2 (ja) 2008-03-10 2012-10-17 アンリツ株式会社 周波数変換装置
EP2224611A1 (en) 2009-02-27 2010-09-01 Astrium Limited Compensation apparatus
CN102362453B (zh) 2009-04-01 2014-07-16 日本电信电话株式会社 无线传输方法、无线传输系统以及无线传输系统的发送和接收装置
US8755425B2 (en) * 2010-06-30 2014-06-17 Comtech Ef Data Corp. Method and system for transmission of identification via metadata for repeating relays using spread-spectrum technology
EP2920892A4 (en) * 2012-11-15 2016-07-20 Novelsat Ltd ECHO CANCELLATION IN COMMUNICATION TRANSMITTER-RECEIVER APPARATUS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516867A (ja) 2003-01-28 2006-07-06 ザ・ボーイング・カンパニー 衛星通信データのデジタル処理のためのシステムおよび方法
JP2009290763A (ja) * 2008-05-30 2009-12-10 Nippon Hoso Kyokai <Nhk> Ofdm信号合成用受信装置および中継装置
JP2011205449A (ja) * 2010-03-26 2011-10-13 Anritsu Corp 周波数変換装置及び周波数変換方法
WO2012147753A1 (ja) * 2011-04-28 2012-11-01 三菱電機株式会社 中継衛星および衛星通信システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109955A1 (ja) * 2015-12-25 2017-06-29 三菱電機株式会社 通信衛星、回線制御装置および衛星通信システム
JP6239219B2 (ja) * 2015-12-25 2017-11-29 三菱電機株式会社 通信衛星、回線制御装置および衛星通信システム
WO2017150624A1 (ja) * 2016-03-02 2017-09-08 三菱電機株式会社 マルチビーム衛星通信システム、中継装置及び管制装置
JPWO2017150624A1 (ja) * 2016-03-02 2018-08-09 三菱電機株式会社 マルチビーム衛星通信システム
US10454567B2 (en) 2016-03-02 2019-10-22 Mitsubishi Electric Corporation Multi-beam satellite communication system
WO2018146750A1 (ja) * 2017-02-08 2018-08-16 三菱電機株式会社 衛星中継装置
KR20210084575A (ko) * 2019-07-04 2021-07-07 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 동기 제어 회로 및 그것을 구비한 무정전 전원 장치
KR102553986B1 (ko) * 2019-07-04 2023-07-10 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 동기 제어 회로 및 그것을 구비한 무정전 전원 장치

Also Published As

Publication number Publication date
CA2898183C (en) 2018-05-01
WO2014112040A1 (ja) 2014-07-24
US20150295636A1 (en) 2015-10-15
EP2947788A4 (en) 2016-09-07
EP2947788B1 (en) 2021-07-28
US9473236B2 (en) 2016-10-18
EP2947788A1 (en) 2015-11-25
CA2898183A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2014112442A1 (ja) 中継装置、中継衛星および衛星通信システム
EP2704337B1 (en) Relay satellite and satellite communication system
US9231715B2 (en) I/Q mismatch compensation method and apparatus
US7769358B2 (en) Radio system, radio transmitter, and radio receiver
US20080039024A1 (en) Amplifying Circuit, Radio Communication Circuit, Radio Base Station Device and Radio Terminal Device
JP2004532551A (ja) 送受信装置
US9917634B2 (en) Demultiplexing apparatus, multiplexing apparatus, and relay apparatus
US20040127179A1 (en) Dual polarization transmission receiving system and local oscillator phase noise reduction method
CA2564044A1 (en) Apparatus and method for corresponding frequency synchronization in on-channel repeater
KR20120071116A (ko) 다중입출력 증폭기 및 다중입출력 증폭방법
CN105745851A (zh) 用于相位噪声抵消的方法、系统和装置
US8027411B2 (en) Wireless receiver
JP5836508B2 (ja) 中継装置、中継衛星および衛星通信システム
US11777589B2 (en) Satellite receiver and satellite communication system
JP4236545B2 (ja) ダイバーシティ受信用回り込みキャンセラ及び中継装置
JP2013128224A (ja) 追尾アンテナ装置および受信系rf特性変動補償方法
JP5474892B2 (ja) 追尾アンテナ装置およびrf特性変動補償方法
EP3005573B1 (en) Distortion suppression for wireless transmission
US20140038539A1 (en) Imbalance correction in a demodulator with full band sampling
JP6334451B2 (ja) 無線装置、折り返し試験装置、折り返し試験方法
CA2621797C (en) Satellite communications system having transmitting station diversity
JP6509460B2 (ja) 送受信機
JP2006148734A (ja) 信号処理回路
JP2004032625A (ja) 送信装置,受信装置、多重無線伝送システムおよび加入者系無線アクセスシステム
JP2005244729A (ja) 信号伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557443

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440794

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014740628

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2898183

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE