WO2014112429A1 - Heat-resistant decorating coloring composition, method for producing electrostatic capacitance type input device, and electrostatic capacitance type input device, as well as image display device provided with same - Google Patents

Heat-resistant decorating coloring composition, method for producing electrostatic capacitance type input device, and electrostatic capacitance type input device, as well as image display device provided with same Download PDF

Info

Publication number
WO2014112429A1
WO2014112429A1 PCT/JP2014/050276 JP2014050276W WO2014112429A1 WO 2014112429 A1 WO2014112429 A1 WO 2014112429A1 JP 2014050276 W JP2014050276 W JP 2014050276W WO 2014112429 A1 WO2014112429 A1 WO 2014112429A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode pattern
transparent electrode
input device
layer
front plate
Prior art date
Application number
PCT/JP2014/050276
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 英範
隆志 有冨
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480004092.9A priority Critical patent/CN104903409B/en
Publication of WO2014112429A1 publication Critical patent/WO2014112429A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present invention relates to a heat-resistant decorative coloring composition for producing a capacitance-type input device capable of detecting a contact position of a finger as a change in capacitance, a method for producing a capacitance-type input device, and
  • the present invention relates to a capacitance-type input device obtained by a manufacturing method, and an image display device including the capacitance-type input device as a component.
  • a tablet-type input device is disposed on the surface of a liquid crystal device or the like, and an instruction image displayed in the image display area of the liquid crystal device
  • an instruction image displayed in the image display area of the liquid crystal device
  • Such an input device includes a resistive film type, a capacitance type, and the like.
  • the resistive film type input device has a drawback that it has a narrow operating temperature range and is weak to change with time because it has a two-sheet structure of film and glass and presses the film to make it short.
  • the capacitance-type input device has an advantage that it is sufficient to form the translucent conductive film on only one substrate.
  • an electrode pattern is extended in a direction crossing each other, and when a finger or the like comes in contact, a change in electrostatic capacitance between the electrodes is detected to detect an input position.
  • a capacitive input device of the type described below for example, see Patent Document 1 below.
  • an electrostatic capacitance type input device an alternating current of the same phase and the same potential is applied to both ends of the translucent conductive film, and a weak current flowing when a finger is in contact or in proximity is formed.
  • a capacitive input device of a type that detects an input position.
  • an electrostatic capacitance type input device a plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction through the connection portion and the first transparent electrode pattern
  • Capacitance type comprising a plurality of second transparent electrode patterns comprising a plurality of pad portions electrically insulated from each other via an interlayer insulating layer and extending in a direction intersecting the first direction
  • Patent Document 2 An input device is disclosed (see, for example, Patent Document 2 below).
  • the capacitive input device has a problem that the capacitive input device becomes thick and heavy because the front plate is stacked on the manufactured capacitive input device.
  • a capacitive touch panel in which a mask layer, a sense circuit, and an interlayer insulating layer are integrally formed on the surface on one side of the front plate is disclosed (for example, see Patent Document 3 below).
  • Patent Document 3 since the front plate is integrated with the capacitive input device, thinning and weight reduction become possible, and furthermore, the mask circuit hides the sense circuit. Improves the appearance of the device.
  • Patent Document 3 only described that the mask layer may be formed by a black resin or other opaque coating material, but if necessary, various color tones (between the mask layer and the front plate)
  • a decorative layer of black, white, pastel color, metallic, etc.) can be provided, and in recent years, it is required to increase the lightness and whiteness of the white decorative layer particularly among them.
  • As a method of providing this decoration layer the thing by liquid resist application, screen printing, etc. is the mainstream conventionally.
  • a white thermosetting resin composition containing at least (A) thermosetting resin substantially not containing silicon in the molecule, and (B) white coloring agent
  • a multilayer film which is characterized in that the following layer is provided on at least one side of a polyimide film (see, for example, Patent Document 4).
  • the multilayer film described in Patent Document 4 also has a problem in that whiteness decreases when it is heated to a high temperature in the process of producing a circuit such as a transparent conductive layer.
  • a white polyimide film obtained by imidizing a polyimide precursor film in which a white pigment is mixed with a polyamic acid obtained by reacting a diamine and an aromatic tetracarboxylic acid as a film having high heat resistance is proposed.
  • a white polyimide film described in Patent Document 5 similarly has a problem that whiteness is lowered when heated at a high temperature in the process of producing a circuit such as a transparent conductive layer.
  • the problem to be solved by the present invention is to provide a heat resistant decorative coloring composition which can obtain a white decorative layer having good lightness, whiteness, reticulation and adhesion at a high yield. It is.
  • a capacitive input device capable of thinning and reducing the weight using the coloring composition for heat-resistant decoration satisfying the above characteristics can be manufactured in high quality in a simple process.
  • a manufacturing method of a capacitance type input device, a capacitance type input device obtained by the manufacturing method, and an image display device using the capacitance type input device can be manufactured in high quality in a simple process.
  • a coloring composition for heat resistant decoration characterized by comprising at least (A) a white inorganic pigment and (B) a silicone resin.
  • the coloring composition for heat-resistant decoration as described in [1] further contains (C) antioxidant.
  • the silicone resin is represented by at least the following general formula (1) in a modified silicone resin or in a molecule: It is preferable to include a straight silicone resin containing a siloxane structure.
  • R 1 independently represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched chain having 1 to 20 carbon atoms Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, an aryl having 6 to 20 carbon atoms Represents a group or an aralkyl group having 7 to 20 carbon atoms.
  • the coloring composition for heat-resistant decoration as described in [3] is, in the general formula (1), R 1 independently represents a hydrogen atom, a linear, branched or cyclic C 1 to C 20 carbon atom. It is preferable to represent the following alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 9 carbon atoms. [5] In the coloring composition for heat-resistant decoration as described in [3] or [4], in general formula (1), in general formula (1), R 1 preferably independently represents a hydrogen atom, a methyl group or a tolyl group .
  • the white inorganic pigment is preferably rutile type titanium oxide surface-treated with an inorganic substance.
  • the heat-resistant decorative coloring composition according to [7] is that the rutile-type titanium oxide surface-treated with an inorganic substance is rutile-type titanium oxide surface-treated with at least one of alumina and zirconia. Is preferred.
  • the capacitance-type input device further includes (6) a first transparent electrode pattern and a second It is preferable to electrically connect to at least one of the electrode patterns and to have a conductive element different from the first transparent electrode pattern and the second electrode pattern.
  • the second electrode pattern is preferably a transparent electrode pattern.
  • the thickness of the decorative layer is preferably 1 to 40 ⁇ m.
  • the heating is preferably performed in an air environment.
  • the method for producing a capacitance-type input device according to any one of [10] to [15] the application of the coloring composition for heat-resistant decoration to one surface of a front plate Preferably, the heat resistant decorative coloring composition is printed.
  • the method of manufacturing a capacitance-type input device includes at least one of (3) a first transparent electrode pattern and (4) a second electrode pattern, one surface of a front plate and (2)
  • the mask layer is disposed across the two areas of the surface opposite to the surface facing the front plate among the surfaces of the mask layer.
  • the capacitance-type input device further includes: (6) the first transparent electrode pattern and the second electrode The first transparent electrode pattern and the second electrode pattern are electrically connected to at least one of the patterns, and (2) on the surface of the mask layer on the side opposite to the surface facing the front plate. It is preferred to have at least (6) another conductive element.
  • the method of manufacturing a capacitance-type input device according to any one of [10] to [19] further includes all or part of the elements of (1) and (3) to (5). It is preferable to form a transparent protective layer so as to cover it.
  • the transparent protective layer is preferably formed using a curable resin composition.
  • the capacitive input device further includes (6) a first transparent electrode pattern and a second transparent electrode pattern.
  • the capacitive input device further comprises (6) a first transparent electrode pattern and a second transparent electrode pattern.
  • the second electrode pattern is a transparent electrode pattern
  • at least one of (3) the first transparent electrode pattern, the second transparent electrode pattern, and (6) the conductive element is formed using a conductive curable resin composition.
  • the front plate has an opening at least in part.
  • An image display apparatus comprising the capacitive input device according to [27] as a component.
  • a heat resistant decorative coloring composition capable of obtaining a white decorative layer having good lightness, whiteness, reticulation and adhesion at a high yield.
  • a capacitive input device capable of thinning and reducing weight using the coloring composition for heat-resistant decoration satisfying the above-mentioned characteristics is manufactured with high quality in a simple process.
  • a manufacturing method of a capacitance type input device that can be made possible, a capacitance type input device obtained by the manufacturing method, and an image display device using the capacitance type input device.
  • the heat resistant decorative coloring composition the method for producing a capacitance type input device, the capacitance type input device, and the image display device according to the present invention will be described below. Although the description of the configuration requirements described below may be made based on the representative embodiments of the present invention, the present invention is not limited to such embodiments. In the present specification, “to” is used in the meaning including the numerical values described before and after it as the lower limit value and the upper limit value.
  • the coloring composition for heat-resistant decoration of the present invention is characterized by containing at least (A) a white inorganic pigment and (B) a silicone resin.
  • (A) white inorganic pigment white pigments described in paragraph 0019 of JP-A-2009-191118 and paragraph 0109 of JP-A-2000-175718 can be used.
  • the white inorganic pigment titanium oxide (rutile type), titanium oxide (anatase type), zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, barium sulfate, etc.
  • titanium oxide (rutile type), titanium oxide (anatase type) and zinc oxide are more preferable, titanium oxide (rutile type) and titanium oxide (anatase type) are more preferable, and rutile type titanium oxide is still more preferable.
  • titanium dioxide examples include JR, JRNC, JR-301, 403, 405, 600A, 605, 600E, 603, 701, 800, 805, 806, JA-1, C, 3, 4, 5, MT- 01, 02, 03, 04, 05, 100 AQ, 100 SAK, 100 SAS, 100 TV, 100 TV, 100 ZR, 150 W, 500 W, 500 H, 500 SA, 500 SAK, 500 SAS, 500 S, SMT-100 SAM, 100 SAS, 500 SAM, 500 SAS (Taika Corporation) Made, CR-50, 50-2, 57, 58, 58-2, 60, 60-2, 63, 67, 80, 85, 90, 90-2, 93, 95, 97, 953, Super 70, PC -3, PF-690, 691, 711, 736, 737, 739, 740, 42, R-550, 580, 630, 670, 680, 780, 780-2, 820, 830, 850, 855, 930, 980, S-305,
  • the surface of the white inorganic pigment (especially titanium oxide) can be treated with silica, alumina, titania, zirconia, organic matter, and the like in combination.
  • the catalytic activity of the white inorganic pigment (particularly titanium oxide) can be suppressed, and the heat resistance, the fluorescence and the like can be improved.
  • the white pigment is preferably rutile titanium oxide surface-treated with an inorganic substance, and surface-treated with at least one of alumina treatment and zirconia treatment It is more preferable that it is rutile type titanium oxide, and it is especially preferable that it is rutile type titanium oxide surface-treated by combined treatment with alumina and zirconia.
  • the content of the white inorganic pigment is 20 to 75% by mass with respect to the total solid content of the heat-resistant decorative coloring composition has good brightness and whiteness, and simultaneously satisfies other required characteristics It is preferable from the viewpoint of forming a decoration layer.
  • the coloring composition for heat-resistant decoration of this invention for the manufacturing method of the electrostatic capacitance type input device of this invention mentioned later, also from a viewpoint of fully reducing development time, the total solid of the said decoration layer It is preferable that the content ratio of the above-mentioned white inorganic pigment to 20 minutes is 20 to 75% by mass.
  • the content ratio of the white inorganic pigment to the total solid content of the heat-resistant decorative coloring composition is more preferably 25 to 60% by mass, and still more preferably 30 to 50% by mass.
  • the total solid content as used in this specification means the total mass of the non-volatile component which remove
  • the dispersion can be prepared by adding and dispersing a composition obtained by mixing the white inorganic pigment and the pigment dispersant in advance to an organic solvent (or vehicle) described later.
  • the above-mentioned vehicle refers to the part of the medium in which the pigment is dispersed when the paint is in a liquid state, and it is liquid and dissolves and dilutes a component (binder) which combines with the pigment to form a coating film. And a component (organic solvent).
  • the disperser used to disperse the white inorganic pigment is not particularly limited, and is described, for example, in "Encyclopedia of Pigments", First Edition, Asakura Shoten, 2000, p.
  • Well-known dispersers such as a kneader, a roll mill, an atlider, a super mill, a dissolver, a homomixer, a sand mill etc. are mentioned.
  • the mechanical grinding described on page 310 of the document may be used to pulverize using frictional force.
  • the white inorganic pigment as the white inorganic pigment used in the present invention is preferably a white inorganic pigment having an average particle diameter of primary particles of 0.16 ⁇ m to 0.3 ⁇ m, and further preferably 0.18 ⁇ m.
  • White inorganic pigments of ⁇ 0.27 ⁇ m are preferred.
  • white inorganic pigments of 0.19 ⁇ m to 0.25 ⁇ m are particularly preferred. If the average particle size of the primary particles is smaller than 0.16 ⁇ m, the hiding power may be rapidly reduced to make the base of the mask layer more visible or to cause an increase in viscosity.
  • average particle size of primary particles refers to the diameter when the electron micrograph image of the particles is a circle of the same area
  • number average particle size refers to the above-mentioned particles for a large number of particles. The diameter is determined, and the average value of 100 arbitrarily selected particle sizes among them is said.
  • laser scattering HORIBA H made by Horiba advanced techno company
  • silicone resin- A well-known thing can be used as said silicone resin.
  • a silicone resin is obtained by partially denatured resin with the following silane compound, dehydrating condensation of a modified silicone resin to which various properties are given, and a silane compound having an alkoxy group or silanol group, and utilizing the intrinsic property of silicone It can be classified as straight silicone.
  • the silicone-based resin contains a modified silicone resin or a straight silicone resin containing at least a siloxane structure represented by the following general formula (1) in the molecule. Is preferred.
  • Acrylic resin modified silicone resin obtained by polymerizing or copolymerizing monomers obtained by reacting a silane compound with acrylic monomers such as acrylic acid (KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) as modified silicone resin
  • a modified silicone resin, a rubber silicone resin which directly forms a covalent bond with a resin using an oxime initiator, and the like can be used.
  • the straight silicone one having at least a siloxane structure represented by the following general formula (1) in a molecule can be used.
  • R 1 independently represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched chain having 1 to 20 carbon atoms Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, an aryl having 6 to 20 carbon atoms It is a group or an aralkyl group having 7 to 20 carbon atoms, and a plurality of R 1 s may be the same or different. That is, the straight silicone having a siloxane structure represented by the general formula (1) may be a condensate of the same siloxane structure or a co-condensate of different combinations.
  • the halogen atom represented by R 1, a fluorine atom include chlorine atom.
  • Examples of the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms represented by R 1 include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group and an i-butoxy group. And sec-butoxy, t-butoxy, n-pentyloxy, n-hexyloxy, cyclopentyloxy, cyclohexyloxy and the like.
  • the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 is, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group Groups, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like.
  • an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 examples thereof include an arylalkyl group, a fluoroalkyl group, a chloroalkyl group, a hydroxyalkyl group, and (meth) acryloxyalkyl Groups and mercaptoalkyl groups can be mentioned.
  • phenylmethyl (benzyl) group diphenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-n-propyl group, 2-phenyl-2-propyl (cumyl ), 3-phenyl-n-propyl, 1-phenylbutyl, 2-phenylbutyl, 3-phenylbutyl, 4-phenylbutyl, 1-phenylpentyl, 2-phenylpentyl, 3-) Phenylpentyl, 4-phenylpentyl, 5-phenylpentyl, 1-phenylhexyl, 2-phenylhexyl, 3-phenylhexyl, 4-phenylhexyl, 5-phenylhexyl, 6-phenylhexyl Group, 1-phenylcyclohexyl group, 2-phenylcyclohexyl group, 3-phenylcyclohexyl group 1-phenylcyclohexyl group
  • linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms represented by R 1 for example, a vinyl group, 1-methylvinyl group, 1-propenyl group, allyl group (2-propenyl group) And 2-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-cyclopentenyl group, 3-cyclohexenyl group and the like.
  • an arylalkyl group is preferable, and a cumyl group is more preferable.
  • aryl groups having 6 to 20 carbon atoms represented by R 1 from the viewpoint of hardly generating benzene upon heating, other than unsubstituted phenyl group, that is, o-tolyl group, m-tolyl group, p-tolyl group, 2 , 3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group is preferred, o- Tolyl group, m-tolyl group and p-tolyl group are more preferable.
  • examples of the aralkyl group having 7 to 20 carbon atoms represented by R 1 include a benzyl group, a phenethyl group and the like.
  • R 1 independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms Is preferably a substituted alkyl group of the above or an aryl group having 6 to 9 carbon atoms (of the aryl groups, those other than unsubstituted phenyl groups are preferred from the viewpoint of hardly generating benzene upon heating); It is more preferable to represent a group or a tolyl group.
  • Siloxane structure represented by the general formula (1) may include a methyl group as R 1, from the viewpoint of capable of improving particularly the L value of the decorative layer.
  • the straight silicone is also preferably a copolymer of a siloxane structure represented by the general formula (1) in which R 1 is different from one another.
  • the siloxane structure represented by the above general formula (1) wherein R 1 is an alkyl group and the siloxane structure represented by the above general formula (1) wherein R 1 is a hydrogen atom, a substituted alkyl group or an aryl group And copolymers thereof are preferably mentioned.
  • the copolymerization ratio is not particularly limited, but the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group is 50 to 50 among all the siloxane structures represented by the general formula (1). It is preferably 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%.
  • numerator the siloxane structure represented by following General formula (2)
  • Straight silicones containing a siloxane structure consisting of cocondensation with can also be preferably used.
  • R 2 can use the same substituents as R 1 in formula (1), is the same as R 1 preferably ranges.
  • straight silicones include alkyl straight silicones (such as methyl straight silicones), alkyl aryl straight silicones such as methylphenyl, prepared from the condensation of a silane compound having an alkyl group having 1 to 20 carbon atoms and an alkoxy group.
  • alkyl straight silicones such as methyl straight silicones
  • alkyl aryl straight silicones such as methylphenyl, prepared from the condensation of a silane compound having an alkyl group having 1 to 20 carbon atoms and an alkoxy group.
  • aryl based straight silicones such as phenyl and hydrogen based straight silicones such as methyl hydrogen can be used. More preferred are methyl-based straight silicone resin, methyl-tolyl-based straight silicone resin, methylphenyl-based straight silicone resin, acrylic resin-modified silicone resin, methyl-hydrogen-based straight silicone resin, and hydrodenyl-based straight silicone resin.
  • methyl-based straight silicone resin Particularly preferred are methyl-based straight silicone resin, methyl-tolyl-based straight silicone resin, methyl-hydrogen-based straight silicone resin, and hydro-denyl-based straight silicone resin from the viewpoint of preventing benzene from being generated and suppressing the decrease in lightness.
  • These silicone resins may be used alone or in combination of two or more, and the film physical properties can be controlled by mixing them at an arbitrary ratio.
  • the generation of benzene can be quantified by gas chromatography mass spectrometry (GC-MS).
  • GC-MS gas chromatography mass spectrometry
  • the decorative layer formed by the method for producing a capacitance-type input device according to the present invention, or the decorative layer obtained by applying the coloring composition for heat resistance decoration according to the present invention is benzene as a decomposition product when heated.
  • the content of benzene as a decomposition product when heating the decorative layer is preferably less than 29 mg per 100 cm 2 of the decorative layer, more preferably less than 19 mg, particularly preferably less than 9.2 mg Preferably, less than 0.01 mg is more particularly preferred.
  • the weight average molecular weight of the straight silicone is preferably 1,000 to 1,000,000, more preferably 2,000 to 800,000, and particularly preferably 2,500 to 500,000.
  • a commercially available thing can be used as said silicone resin, such as a modified silicone resin and straight silicone resin.
  • a modified silicone resin and straight silicone resin such as a modified silicone resin and straight silicone resin.
  • the heat-resistant decorative coloring composition according to the present invention is formed by applying (1) the decorative layer, the heat-resistant decorative coloring composition comprising a photocurable resin and a photopolymerization initiator is irradiated with light. It may not be cured and formed, and the coloring composition for heat-resistant decoration of the present invention may or may not contain a photocurable resin and a photopolymerization initiator.
  • the coloring composition for heat-resistant decoration contains an antioxidant described later, the fact that it does not contain a photopolymerization initiator can be obtained by the radical generated when exposed to a photopolymerization initiator. It is preferable from the viewpoint of sufficiently enhancing the whiteness after baking without inhibiting the function. Therefore, it is preferable that the (B) silicone resin be thermosetting.
  • the heat-resistant decorative coloring composition of the present invention contains an antioxidant, and the heat-resistant decorative coloring composition of the present invention is applied to one surface of a front plate of a capacitive input device described later. It is preferable from the viewpoint of raising the whiteness after baking about the obtained decorative layer after forming into a film and baking it.
  • An antioxidant known as the antioxidant can be used.
  • hindered phenol type antioxidants for example, hindered phenol type antioxidants, semi-hindered phenol type antioxidants, phosphoric acid type antioxidants, hybrid type antioxidants having phosphoric acid and hindered phenol in the molecule (phosphoric acid / hindered phenol type antioxidants Can be used.
  • a phosphoric acid type antioxidant a combination of a phosphoric acid type antioxidant and a hindered phenol type antioxidant or a semi hindered phenol type antioxidant; or a hybrid type antioxidant having phosphoric acid and a hindered phenol in the molecule It is.
  • a commercially available antioxidant can also be used as said antioxidant.
  • IRGAFOS168 and IRGAFOS38 all are BASF Japan make
  • Examples of phosphoric acid / hindered phenolic antioxidants include IRGAMOD 295 (manufactured by BASF Japan Ltd.), and as a hybrid antioxidant having phosphoric acid and hindered phenol in the molecule, Sumilyzer GP (Sumitomo Chemical Co., Ltd.) Can be mentioned.
  • the antioxidant is more preferably a phosphoric acid-based antioxidant from the viewpoint of preventing a decrease in whiteness, and IRGAFOS 168 is particularly preferable.
  • the addition amount of the antioxidant relative to the total solid content of the heat-resistant decorative coloring composition is not particularly limited, but is preferably 0.001 to 10% by mass, and preferably 0.01 to 1 The content is more preferably in the range of 0.05% to 0.2% by mass.
  • the solvent for producing the coloring composition for heat-resistant decoration of the present invention the solvents described in paragraphs 0043 to 0044 of JP-A-2011-95716 can be used.
  • the heat-resistant and decorative coloring composition of the present invention contains a catalyst from the viewpoint of improving the brittleness of the decorative layer obtained by curing the heat-resistant and decorative coloring composition containing the silicone resin.
  • a catalyst from the viewpoint of improving the brittleness of the decorative layer obtained by curing the heat-resistant and decorative coloring composition containing the silicone resin.
  • two or more silicone resins are used, they are preferably used to accelerate crosslinking by causing dehydration / dealcoholization condensation reaction.
  • a well-known thing can be used as said catalyst.
  • Preferred examples of the catalyst include tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y) and aluminum (metal components).
  • organometallic compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B) and gallium (Ga).
  • Sn, Ti, Zn, Zr, Hf, and Ga are preferable in that they have high reaction activity
  • Zn or Ti is more preferable from the viewpoint of preventing cracking at the time of baking
  • Zn is particularly preferable from the viewpoint of pot life improvement.
  • the organic metal compound catalyst containing zinc (Zn) include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate) and the like.
  • the catalyst described in JP 2012-238636 A can be used. It can be used preferably.
  • a commercially available catalyst can also be used as said catalyst.
  • a zinc-based condensation catalyst D-15 manufactured by Shin-Etsu Chemical Co., Ltd.
  • one type of the catalyst may be used alone, or two or more types may be used in any combination and ratio.
  • the content of the catalyst is preferably 0.01 to 10% by mass based on the silicone resin from the viewpoint of preventing cracking at the time of baking and improving the pot life, and more preferably 0.03 to 5.0. It is mass%.
  • additives may be used in the heat-resistant decorative coloring composition.
  • the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP2009-237362A, and thermal polymerization prevention described in paragraph 0018 of Japanese Patent No. 4502784.
  • the heat resistant decorative coloring composition in the present invention is mainly described as a non-photosensitive material, but the heat resistant decorative coloring composition may be a negative-working material or a positive-working material as needed. It may be
  • the thickness when the heat resistant decorative coloring composition is applied is 1 to 40 ⁇ m It is preferable from the viewpoint of increasing the hiding power of the decorative layer.
  • the thickness of the decorative layer is more preferably 1.5 to 38 ⁇ m, particularly preferably 1.8 to 36 ⁇ m.
  • the method for manufacturing a capacitance-type input device according to the present invention comprises a front plate and at least one of the following (1) and (3) to (5) A method of manufacturing a capacitance-type input device having an element according to claim 1, wherein the heat-resistant and decorative coloring composition of the present invention is applied to one side of the front plate to form at least the (1) decorative layer.
  • Decorative layer (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction through connection portions (4)
  • the first transparent electrode pattern A plurality of second electrode patterns (5) comprising a plurality of pad portions which are electrically insulated and extend in a direction crossing the first direction (5) the first transparent electrode pattern and the second
  • An insulating layer which electrically insulates from the electrode pattern of the electrode pattern according to the present invention may further have the following (6).
  • (6) A conductive element which is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and is different from the first transparent electrode pattern and the second electrode pattern.
  • the second electrode pattern may be a transparent electrode pattern.
  • the second transparent electrode pattern may be described instead of the second electrode pattern in the present specification, the preferred embodiment of the second electrode pattern is the same as the preferred embodiment of the second transparent electrode pattern. is there. Further, in the method of manufacturing a capacitance-type input device according to the present invention, on the surface opposite to the surface facing the front plate of the (1) decorative layer disposed on one side of the front plate, Furthermore, it is preferable to form (2) a mask layer.
  • FIG. 1 is a cross-sectional view showing a preferable configuration among the capacitance type input device of the present invention.
  • the capacitive input device 10 includes a front plate 1, a decoration layer 2 a, a mask layer 2 b, a first transparent electrode pattern 3, a second transparent electrode pattern 4, and an insulating layer 5. , The conductive element 6 and the transparent protective layer 7.
  • the front plate 1 is made of a translucent substrate such as a glass substrate, and for example, tempered glass represented by Gorilla glass of Corning Co., Ltd. can be used.
  • tempered glass represented by Gorilla glass of Corning Co., Ltd.
  • the front plate 1 constituting the capacitance-type input device 10 of the present invention, the surface on which an input is performed by bringing a finger or the like into contact is referred to as a contact surface.
  • the surface on the opposite side is called non-contact surface 1a.
  • the front plate may be referred to as a "substrate".
  • a mask layer 2 b is provided on one surface of the front plate 1 via the decorative layer 2 a.
  • the mask layer 2 b is a frame-like pattern around the display area formed on one surface side of the touch panel front plate, and is formed so as not to be visible in the routing wiring and the like.
  • the decorative layer 2a is formed on the mask layer 2b, that is, between the one surface side of the touch panel front plate and the mask layer 2b for the purpose of decoration.
  • a decorative layer 2a and a mask layer are provided to cover a partial region (a region other than the input surface in FIG. 2) of the front plate 1.
  • Preferably 2b is provided. Furthermore, as shown in FIG.
  • the front plate 1 can be provided with an opening 8 in a part of the front plate.
  • a push-type mechanical switch can be installed. Since the tempered glass used as a base material is high in strength and difficult to process, in order to form the opening 8, it is general to form the opening 8 before the strengthening treatment and then to perform the strengthening treatment . However, if it is attempted to form the decorative layer 2a at one time using a liquid resist for forming a decorative layer or screen printing ink on the substrate after the strengthening treatment having the opening 8, leakage of the resist component from the opening may occur.
  • a resist component may be exfoliated (glare) from the glass edge to contaminate the back side of the front plate. Problems can occur. When forming the decorative layer 2a by dividing the coloring composition for heat resistant decoration into several times on the base material which has the opening part 8, such a problem can also be solved.
  • a plurality of first transparent electrode patterns 3 formed by extending a plurality of pad portions in a first direction through connection portions on one surface of the front plate 1, and a first transparent electrode pattern 3 And a plurality of second transparent electrode patterns 4 formed of a plurality of pad portions formed to extend in a direction intersecting the first direction, a first transparent electrode pattern 3 and a second And an insulating layer 5 that electrically insulates the transparent electrode pattern 4.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 to be described later are, for example, translucent conductive materials such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). Metal oxide film.
  • Such a metal film examples include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, Mo and the like; metal oxide films such as SiO 2 and the like.
  • the film thickness of each element can be 10 to 200 nm.
  • the amorphous ITO film is converted to a polycrystalline ITO film by firing, the electrical resistance can also be reduced.
  • the said 1st transparent electrode pattern 3, the 2nd transparent electrode pattern 4, and the electroconductive element 6 mentioned later are manufactured using the electroconductive curable resin composition using the below-mentioned electroconductive fiber. It can also be done.
  • paragraphs 0014 to 0016 etc. of Japanese Patent No. 4506785 can be referred to.
  • the first transparent electrode pattern 3 and the second transparent electrode pattern 4 is both on one side of the front plate 1 and on the opposite side of the surface of the mask layer 2 opposite to the front plate 1. It can be installed across the area.
  • the second transparent electrode pattern is disposed across the two regions of one surface of the front plate 1 and the surface of the mask layer 2 opposite to the surface facing the front plate 1. It is shown.
  • the coloring composition for heat-resistant decoration of the present invention is divided into several times and printed or applied. The process enables continuous film formation on the mask partial boundaries.
  • FIG. 3 is an explanatory view showing an example of a first transparent electrode pattern and a second transparent electrode pattern in the present invention.
  • the pad portion 3a is formed to extend in the first direction via the connection portion 3b.
  • the second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction (second direction in FIG. 3) intersecting the first direction. It is comprised by the some pad part formed by existence.
  • the pad portion 3a and the connection portion 3b may be manufactured integrally, or only the connection portion 3b is manufactured to form the pad portion 3a and the second portion.
  • the transparent electrode pattern 4 may be integrally manufactured (patterned).
  • the pad portion 3a and the second transparent electrode pattern 4 are integrally manufactured (patterned), as shown in FIG. 3, a portion of the connection portion 3b and a portion of the pad portion 3a are connected, and an insulating layer Each layer is formed such that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by the reference numeral 5.
  • a conductive element 6 is provided on the surface of the mask layer 2 opposite to the surface facing the front plate 1.
  • the conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and the first transparent electrode pattern 3 and the second transparent electrode pattern 4 Another conductive element.
  • FIG. 1 a view is shown in which another conductive element 6 is connected to the second transparent electrode pattern 4.
  • the transparent protective layer 7 is provided so that all of each component may be covered.
  • the transparent protective layer 7 may be configured to cover only a part of each component.
  • the insulating layer 5 and the transparent protective layer 7 may be the same material or different materials.
  • a material which comprises the insulating layer 5 and the transparent protective layer 7 a thing with high surface hardness and heat resistance is preferable, and a well-known photosensitive siloxane resin material, an acrylic resin material, etc. are used.
  • FIG. 4 is a top view showing an example of the tempered glass 11 in which the opening 8 is formed.
  • FIG. 5 is a top view showing an example of a front plate on which the decorative layer 2a and the mask layer 2b are formed.
  • FIG. 6 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 is formed.
  • FIG. 7 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed.
  • FIG. 8 is a top view showing an example of a front plate on which a conductive element 6 different from the first and second transparent electrode patterns is formed.
  • the manufacturing method of the present invention is characterized in that at least the (1) decorative layer (hereinafter also referred to as "colored layer”) is formed using the heat resistant decorative coloring composition of the present invention.
  • the transfer film having the photocurable resin composition or the photocurable resin layer of the present invention there is no leakage of the resist component from the opening even in the substrate having the opening (front plate).
  • the decorative layer and mask layer where it is necessary to form a light shielding pattern there is no protrusion of coloring components from the glass edge (moisture), so there is no contamination on the back of the front plate, and thinning and weight reduction in a simple process. It is possible to manufacture an integrated touch panel.
  • the method to form the said decoration layer using the coloring composition for heat resistant decoration of this invention is demonstrated.
  • a heat-resistant decorative coloring composition when used, it can be formed by a conventional photolithography method as long as it contains a photocurable resin.
  • the coloring composition for heat-resistant decoration of the present invention may or may not contain a photocurable resin, and in any case, it is applied (for example, printed or coated) on a substrate.
  • a decorative layer can be formed using the heat-resistant and decorative coloring composition of the present invention. It is preferable that printing of the coloring composition for heat-resistant decoration is performed by applying the coloring composition for heat-resistant decoration to one surface side of the front plate, and it is more preferable that it is screen printing. If necessary, known developing equipment such as a brush and a high pressure jet may be combined. After development, post-exposure and post-baking may be carried out if necessary, and post-baking is preferred.
  • the coloring composition for heat resistance decoration of this invention after applying (for example, printing or application) the coloring composition for heat resistance decoration of this invention, in order to improve the adhesiveness of the decoration layer in a drying process, one side of a base material (front plate) beforehand Surface treatment.
  • a base material front plate
  • Surface treatment it is preferable to carry out surface treatment (silane coupling treatment) using a silane compound (silane coupling agent).
  • silane coupling agent what has a functional group which interacts with photosensitive resin is preferable.
  • a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3 wt% aqueous solution, trade name: KBM 603, Shin-Etsu Chemical Co., Ltd.
  • KBM 603, Shin-Etsu Chemical Co., Ltd. a silane coupling solution
  • a heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.
  • the manufacturing method of the present invention is the environment of 0.08 to 1.2 atm after applying the coloring composition for heat-resistant decoration of the present invention to one side of the front plate of the (1) decorative layer. It is preferable to form by heating to 180 to 300 ° C. below from the viewpoint of achieving both whiteness and productivity.
  • the post-baking heating is more preferably performed under an environment of 0.5 atm or more. On the other hand, it is more preferable to carry out under an environment of 1.1 atm or less, and it is particularly preferable to carry out under an environment of 1.0 atm or less.
  • the above-mentioned (1) decorative layer is cured by heating and formed, it is performed under a reduced pressure environment with very low pressure, and the whiteness after baking is maintained by lowering the oxygen concentration.
  • the temperature of the post-baking is more preferably 200 to 280 ° C., and particularly preferably 220 to 260 ° C.
  • the post-baking time is more preferably 20 to 150 minutes, and particularly preferably 30 to 100 minutes.
  • the post-baking may be performed in an air environment or in a nitrogen-substituted environment, but it is particularly preferable to perform in an air environment from the viewpoint of reducing the manufacturing cost without using a special pressure reducing device.
  • the manufacturing method of the present invention may have other steps such as a post-exposure step.
  • a post-exposure step When the heat-resistant decorative coloring composition has a photocurable resin layer, it is preferable to include a post-exposure step when forming the decorative layer.
  • the surface of the decorative layer In the post-exposure step, the surface of the decorative layer may be exposed from the side facing the front plate, or the side opposite to the side facing the front plate may be exposed. Alternatively, the exposure may be performed from both sides of the decorative layer.
  • the mask layer 2b, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and the transparent protective layer 7 as needed. It is preferable to form at least one of the components by using a curable resin composition. Further, by transferring a transfer film having a curable resin layer formed using a curable resin composition, the mask layer 2b, the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the insulation It is also preferable to include the step of forming at least one element of the layer 5, the conductive element 6, and, if necessary, the transparent protective layer 7.
  • the "photocurable resin layer” which consists of a layer (decorative layer) obtained by forming into a film the coloring composition for heat resistance decoration of this invention, and a photocurable resin composition.
  • Layer is included. At least one of the mask layer 2b, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and, if necessary, the transparent protective layer 7 is light. It is more preferable to form by forming a curable resin layer, and it is particularly preferable to form using a photocurable resin composition.
  • the surface of the front plate 1 may be formed using a black coloring composition as the decorative layer or a photocurable resin composition having a black photocurable resin layer.
  • the black decorative layer can be formed on
  • the photocurable resin composition for forming the mask layer 2b which needs light shielding property, it is possible to form a high quality mask layer 2b and the like without light leakage due to unevenness, repelling, air bubbles and the like.
  • a coloring agent can be used when using the coloring layer which consists of a coloring composition, and the photocurable resin layer which consists of said photocurable resin composition as a mask layer.
  • a coloring agent used for this invention a well-known coloring agent (an organic pigment, an inorganic pigment, dye etc.) can be used suitably.
  • a mixture of pigments such as white, black, red, blue and green can be used.
  • black colorants include carbon black, titanium carbon, iron oxide, titanium oxide, graphite and the like, among which carbon black is preferred.
  • the pigment described in paragraphs 0183 to 0185 of Japanese Patent No. 4546276, or a dye may be mixed and used. Specifically, pigments and dyes described in paragraphs 0038 to 0054 of JP 2005-17716 A, pigments described in paragraphs 0068 to 0072 of JP 2004-361447 A, paragraphs of JP 2005-17521 A.
  • the colorants described in 0080 to 0088 can be suitably used.
  • the colorant used in the present invention other than the decorative layer preferably has a number average particle diameter of 0.001 ⁇ m to 0.1 ⁇ m, and more preferably 0.01 ⁇ m to 0.08 ⁇ m. .
  • particle size refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and “number average particle size” refers to the above-described particle size of a large number of particles, This 100-piece average value is said.
  • a photocurable resin layer is the following structures.
  • the monomer used for the photocurable resin layer is not particularly limited as long as it does not depart from the spirit of the present invention, and a known polymerizable compound can be used.
  • a known polymerizable compound can be used as the polymerizable compound.
  • the polymerizable compound those described in paragraphs 0023 to 0024 of Patent No. 4098550 can be used.
  • the binder used in the photocurable resin layer is not particularly limited as long as it does not depart from the spirit of the present invention, and a known polymerizable compound can be used.
  • the photocurable resin composition preferably contains an alkali-soluble resin, a polymerizable compound, and a polymerization initiator. Further, colorants, additives, etc. may be used, but not limited thereto.
  • the alkali-soluble resin the polymers described in paragraph 0025 of JP-A-2011-95716 and paragraphs 0033 to 0052 of JP-A-2010-237589 can be used.
  • the photocurable resin composition is a positive type material, for example, a material described in JP-A-2005-221726 or the like is used for the photocurable resin layer, but it is not limited thereto.
  • the photopolymerization initiator used in the photocurable resin layer the polymerizable compounds described in paragraphs 0031 to 0042 of JP-A-2011-95716 can be used.
  • the photocurable resin layer may use an additive.
  • the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP2009-237362A, and thermal polymerization prevention described in paragraph 0018 of Japanese Patent No. 4502784. And further, other additives described in paragraphs [0058] to [0071] of JP-A-2000-310706.
  • the solvent of the photocurable resin composition the solvents described in paragraphs 0043 to 0044 of JP-A-2011-95716 can be used.
  • the photocurable resin composition may be a positive type material.
  • At least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element is formed of a photocurable resin composition. It is preferable to form by etching-processing a transparent conductive material using an etching pattern.
  • a conductive curable resin layer is formed on at least one of the first transparent electrode pattern, the second electrode pattern, and the conductive element. It is preferable that it is made, and it is more preferable to form using electroconductive curable resin composition. That is, it is preferable to form the said 1st transparent electrode pattern 3 using an etching process or electroconductive curable resin composition.
  • the front plate Before forming a film of a composition having a photocurable resin for etching on the transparent electrode layer, the front plate is inserted into the antifouling plate 13 shown in FIG. 10, and the substrate is opened as shown in FIG. If it has, it is preferable to insert the antifouling plug 14 shown in FIG. 11 into the opening.
  • the stain preventing plate and the stain preventing plug are preferably made of silicone. Also when using the transfer film which has the said photocurable resin layer as an etching resist (etching pattern), it can carry out similarly to the said method, and can obtain a resist pattern. As the etching, etching and resist peeling can be applied by a known method described in, for example, paragraphs 0048 to 0054 of JP-A-2010-152155.
  • etching a commonly performed wet etching method in which the substrate is immersed in an etching solution can be mentioned.
  • an etching solution used for wet etching an acid type or alkaline type etching solution may be appropriately selected in accordance with the object of etching.
  • the acid type etching solution include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid and phosphoric acid alone, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate and the like. Be done.
  • the acidic component may be a combination of a plurality of acidic components.
  • an alkaline type etching solution an aqueous solution of an alkali component alone such as sodium hydroxide, potassium hydroxide, ammonia, an organic amine, a salt of an organic amine such as tetramethyl ammonium hydroxide, an alkali component and potassium permanganate And the like.
  • an alkali component a combination of a plurality of alkali components may be used.
  • the temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or less.
  • the resin pattern used as an etching mask (etching pattern) in the present invention is formed using the above-mentioned coating liquid for photo-curable resin layer for etching, whereby acidic and alkaline etching in such a temperature range is carried out. Exhibits particularly good resistance to fluids. Therefore, peeling of the resin pattern during the etching process is prevented, and the portion where the resin pattern does not exist is selectively etched.
  • a washing step and a drying step may be performed as necessary to prevent line contamination.
  • the cleaning process for example, the substrate is washed with pure water at normal temperature for 10 to 300 seconds, and for the drying process, the air blow pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow. You should do it.
  • the method of peeling the resin pattern is not particularly limited, and for example, a method of immersing the base material in the peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes may be mentioned.
  • the resin pattern used as an etching mask in the present invention exhibits excellent chemical solution resistance at 45 ° C. or lower as described above, but exhibits a property of being swelled by an alkaline peeling solution at a chemical solution temperature of 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution at 50 to 80 ° C., the process time is shortened and there is an advantage that the peeling residue of the resin pattern is reduced.
  • the resin pattern used as an etching mask in the present invention exhibits good chemical liquid resistance in the etching process, while the resin pattern in the peeling process It will exhibit good releasability, and both conflicting properties of chemical resistance and releasability can be satisfied.
  • the peeling solution for example, inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these And a stripping solution dissolved in a mixed solution of It may be peeled off by a spray method, a shower method, a paddle method or the like using the above-mentioned stripping solution.
  • inorganic alkali components such as sodium hydroxide and potassium hydroxide
  • organic alkali components such as tertiary amine and quaternary ammonium salt
  • water dimethyl sulfoxide
  • N-methylpyrrolidone N-methylpyrrolidone
  • a 1st transparent electrode layer, a 2nd transparent electrode layer, and another electroconductive member can also be formed, using a curable resin layer as a lift-off material.
  • a curable resin layer is formed using application of a photocurable resin composition or transfer of a photocurable resin on a temporary support, and after patterning, a transparent conductive layer is formed on the entire surface of the substrate, A desired transparent conductive layer pattern can be obtained by dissolving and removing the deposited transparent conductive layer and the photocurable resin layer (lift-off method).
  • the conductive curable resin layer contains conductive fibers and the like.
  • fibers of solid structure may be referred to as “wires” and fibers of hollow structures may be referred to as “tubes”.
  • conductive fibers having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 ⁇ m to 100 ⁇ m may be referred to as “nanowires”.
  • conductive fibers having a hollow structure and having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 0.1 ⁇ m to 1,000 ⁇ m may be referred to as “nanotubes”.
  • the material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose, but at least one of metal and carbon is preferable, and among them, the above
  • the conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes and carbon nanotubes.
  • the material of the metal nanowire is not particularly limited, and is preferably, for example, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long period table (IUPAC 1991), At least one metal selected from Groups 2 to 14 is more preferable, and Groups 2, 8, 9, 9, 10, 11, 12, 12, 13, and 14 are preferable. Further preferred is at least one metal selected from the group consisting of at least one metal, particularly preferably as a main component.
  • the metal examples include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, antimony, lead , These alloys and the like. Among these, from the point of being excellent in conductivity, one containing silver mainly or one containing an alloy of silver and a metal other than silver is preferable. Mainly containing silver means that the metal nanowires contain 50% by mass or more, preferably 90% by mass or more of silver. Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
  • the shape of the metal nanowire is not particularly limited and may be appropriately selected according to the purpose.
  • it may have an arbitrary shape such as a cylindrical shape, a rectangular solid shape, or a columnar shape whose cross section is a polygon.
  • a cylindrical shape, and a cross-sectional shape in which the corners of the cross-sectional polygon are rounded are preferable.
  • the cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the corner of the cross section of the metal nanowire refers to the periphery of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side.
  • each side of the cross section is a straight line connecting the adjacent corners and the corners.
  • the ratio of the “peripheral length of the cross section” to the total length of the “sides of the cross section” is defined as the sharpness.
  • the sharpness can be represented by the ratio of the outer peripheral length of the cross section shown by the solid line and the outer peripheral length of the pentagon shown by the dotted line.
  • a cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape with rounded corners.
  • the degree of sharpness is preferably 60% or less, more preferably 50% or less. If the degree of sharpness exceeds 75%, electrons may be localized at the corners, and plasmon absorption may increase, or yellowness may remain, resulting in deterioration of transparency. In addition, the linearity of the edge portion of the pattern may be reduced to cause rattling.
  • the lower limit of the sharpness is preferably 30%, and more preferably 40%.
  • the average minor axis length (sometimes referred to as “average minor axis diameter” or “average diameter”) of the metal nanowires is preferably 150 nm or less, more preferably 1 nm to 40 nm, and still more preferably 10 nm to 40 nm. 15 nm to 35 nm is particularly preferred. If the average minor axis length is less than 1 nm, oxidation resistance may deteriorate and durability may deteriorate. If it exceeds 150 nm, scattering due to metal nanowires may occur to obtain sufficient transparency. There are things I can not do.
  • the average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; JEM-2000FX, manufactured by Nippon Denshi Co., Ltd.), and based on the average value, the metal nanowires The average minor axis length of was determined. In the case where the minor axis of the metal nanowire is not circular, the longest minor axis is defined as the minor axis length.
  • the average major axis length (sometimes referred to as “average length”) of the metal nanowires is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and still more preferably 5 ⁇ m to 30 ⁇ m. If the average major axis length is less than 1 ⁇ m, it may be difficult to form a dense network, and sufficient conductivity may not be obtained, and if it exceeds 40 ⁇ m, the metal nanowire is too long to be produced. Occasionally, entanglement may occur during the manufacturing process.
  • the average major axis length of the metal nanowires can be determined, for example, by observing 300 metal nanowires using a transmission electron microscope (TEM; JEM-2000FX, manufactured by Nippon Denshi Co., Ltd.), and based on the average value, metal nano The average major axis length of the wire was determined. In addition, when the said metal nanowire is bent, the circle
  • TEM transmission electron microscope
  • the layer thickness of the conductive curable resin layer is preferably 0.1 to 20 ⁇ m from the viewpoint of the stability of the coating solution and process suitability such as drying time at the time of application and development at the time of patterning and drying, and 0.5 to 18 ⁇ m Preferably, 1 to 15 ⁇ m is particularly preferred.
  • the content of the conductive fiber relative to the total solid content of the conductive curable resin layer is preferably 0.01 to 50% by mass, and more preferably 0.05 to 30% by mass, from the viewpoint of the conductivity and the stability of the coating liquid. Is more preferable, and 0.1 to 20% by mass is particularly preferable.
  • a plurality of second electrode patterns comprising a plurality of pad portions electrically insulated from the first transparent electrode pattern and extending in a direction intersecting the first direction>
  • the second electrode pattern is preferably a transparent electrode pattern.
  • the second transparent electrode pattern 4 can be formed using the etching process or a transfer film having the conductive curable resin layer. A preferable mode at that time is the same as the method of forming the first transparent electrode pattern 3.
  • the insulating layer 5 When forming the insulating layer 5, it has a transfer film having an insulating colored layer as the colored layer, an insulating colored composition, and an insulating photocurable resin layer as the photocurable resin layer.
  • the insulating colored layer or the photocurable resin layer on the surface of the front plate 1 on which the first transparent electrode pattern is formed by using the transfer film or the photocurable resin composition having the photocurable resin layer Can be formed.
  • the thickness of the insulating layer is preferably 0.1 to 5 ⁇ m, more preferably 0.3 to 3 ⁇ m, and particularly preferably 0.5 to 2 ⁇ m, from the viewpoint of maintaining insulation.
  • the said another conductive element 6 can be formed using the transfer film or the conductive curable resin composition which has the said etching process or the said conductive curable resin layer.
  • each element is formed using a transfer film or a photocurable resin composition having the photocurable resin layer having a transparent photocurable resin layer as the photocurable resin layer. It forms by transferring the said transparent colored layer or a transparent photocurable resin layer on the surface of the said front plate 1 in which this was formed.
  • the layer thickness of the transparent protective layer is preferably 0.5 to 10 ⁇ m, more preferably 0.8 to 5 ⁇ m, from the viewpoint of exhibiting sufficient surface protective ability. ⁇ 3 ⁇ m is particularly preferred.
  • Capacitance-type input device and image display device provided with capacitance-type input device as components An electrostatic capacitance type input device obtained by the manufacturing method of the present invention and an image display device provided with the electrostatic capacitance type input device as a component are the "latest touch panel technology” (July 6, 2009 issue) Techno Times), supervised by Yuji Mitani, “Touch panel technology and development”, CMC Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292 etc. It can apply.
  • the organic phase was washed with dilute aqueous acetic acid solution, and after draining the aqueous phase, the organic phase was washed four times with water. Thereafter, the organic phase was filtered with a 0.5 ⁇ m PTFE filter and concentrated to prepare a 50 mass% toluene solution to obtain a toluene solution of tolyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate.
  • Synthesis Example 2 ⁇ Synthesis of benzyltrimethoxysilane> Benzyltrimethoxysilane was prepared in the same manner as in Synthesis Example 1 except that, in Synthesis Example 1, equimolar amounts of benzyl chloride were used instead of tolyl chloride.
  • Synthesis Example 3 ⁇ Synthesis of cumyltrimethoxysilane> Cumyltrimethoxysilane was prepared in the same manner as in Synthesis Example 1 except that, in Synthesis Example 1, equimolar amounts of cumyl chloride were used instead of tolyl chloride.
  • Synthesis Example 4 (Synthesis of tolyltrimethoxysilane / ethyltrimethoxysilane 30 mol% / 70 mol% condensate) In the same manner as in Synthesis Example 1 except that ethyltrimethoxysilane was used in place of methyltrimethoxysilane in Synthesis Example 1 in the same manner as in Synthesis Example 1, a toluene solution of tolyltrimethoxysilane / ethyltrimethoxysilane 30 mol% / 70 mol% condensate I got
  • Synthesis Example 5 (Synthesis of tolyltrimethoxysilane / propyltrimethoxysilane 30 mol% / 70 mol% condensate) Tolyltrimethoxysilane / propyltrimethoxysilane 30 mol% / 70 mol% in the same manner as in Synthesis Example 1 except that instead of methyltrimethoxysilane in Synthesis Example 1 an equimolar amount of propyltrimethoxysilane (Synthesis example 5) was used. A toluene solution of the condensate was obtained.
  • Synthesis Example 6 (Synthesis of methyltrimethoxysilane / methyldimethoxysilane 90 mol% / 10 mol% condensate)
  • the total number of moles of tolyltrimethoxysilane / methyltrimethoxysilane added is kept constant while maintaining the total number of moles of tolyltrimethoxysilane / methyltrimethoxysilane constant.
  • Example 1 Preparation of the heat resistant decorative coloring composition of the present invention
  • the heat resistant decorative coloring composition of the following formulation L1 was prepared and used as the heat resistant decorative coloring composition of Example 1.
  • Silicone resin KR-311 Silicone resin KR-311 (Shin-Etsu Chemical Co., Ltd. product; straight silicone in xylene solution (solid content: 50% by mass): 209 parts by mass
  • White pigment dispersion 1 (the following composition): 123 parts by mass Agent (Phosphoric acid / Hindered phenolic antioxidant, Sumilizer GP, Sumitomo Chemical Co., Ltd.) : 0.195 parts by mass, surfactant (trade name: Megafac F-780F, manufactured by DIC Corporation) : 0.78 parts by mass
  • a printing ink is printed using a screen printing machine (made by Mishima Co., Ltd .; UDF-5L, mesh size 250 ⁇ m) It screen-printed in the frame pattern shape, and obtained the tack-free white colored layer by drying at 100 degreeC for 10 minutes.
  • the thickness of the white colored layer after ink drying was 6 ⁇ m.
  • printing ink was screen-printed in the form of a frame pattern on the white colored layer, and the steps of drying at 100 ° C. for 10 minutes were repeated, and printing and drying steps were performed six times in total. Furthermore, it dried at 150 degreeC for 30 minutes, and obtained the white colored layer L1.
  • the decorative layer is formed by the following method
  • the front plate in which the decoration layer with a film thickness of 36 micrometers was formed was obtained.
  • the L value was 84.6.
  • the whiteness degree of the decoration layer of a front plate was judged visually with the following method, there was no problem.
  • the benzene generation amount at the time of post-baking treatment by the following method was a practical level at 19.1 mg per 100 cm 2 of the decorative layer.
  • the heat resistant decorative coloring composition (formulation L1) was applied onto the tempered glass. Next, it was dried in an oven at 105 ° C. for 30 minutes to obtain a tempered layer-containing tempered glass. After a fixed area of the decorative layer is scraped from the tempered glass, placed in a sample tube, and heated directly under He gas at 280 ° C. for 15 minutes (including the temperature rising time from room temperature) using a heating / desorber, GC-MS measurements were performed. For the calibration curve, commercially available benzene (reagent) was used, and after being collected in the TENAX adsorption tube by the existing method, the thermal desorption measurement similar to the sample was performed. The GC column was maintained at 40 ° C.
  • B The benzene generation amount was normal at 9.2 mg / 100 cm 2 or more and less than 19 mg / 100 cm 2 .
  • C Benzene generation amount is 19 mg / 100 cm 2 or more, less than 29 mg / 100 cm 2 , practically usable and practical.
  • D The benzene generation amount is not good at 29 mg / 100 cm 2 or more.
  • Table 1 The evaluation results of the front plate are listed in Table 1 below.
  • K pigment dispersion 1 (the following composition): 31.2 parts by mass
  • Composition of -R Pigment Dispersion 1- -Pigment (CI pigment red 177): 18% by mass ⁇ Binder 1 (benzyl methacrylate / random copolymer of methacrylic acid 72/28 molar ratio, weight average molecular weight 37,000): 12% by mass Propylene glycol monomethyl ether acetate: 70% by mass
  • the front plate on which the decorative layer was formed was cleaned in the same manner as the cleaning of the tempered glass substrate in the formation of the decorative layer.
  • the above coating solution for forming a mask layer The printing ink is screen-printed in a frame pattern with a screen printer (made by Mishima Co., Ltd .; UDF-5L, mesh size 250 ⁇ m) using a prescription K1, and dried at 100 ° C. for 10 minutes Thus, a tack-free mask layer was obtained.
  • the thickness of the mask layer after ink drying was 2.2 ⁇ m.
  • first transparent electrode pattern >> ⁇ Formation of transparent electrode layer>
  • An ITO thin film having a thickness of 40 nm was formed by magnetron sputtering (conditions: base temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa) to obtain a front plate on which a transparent electrode layer was formed.
  • the surface resistance of the ITO thin film was 80 ⁇ / ⁇ .
  • Coating fluid for photo-curable resin layer for etching prescription E1 Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, weight average molecular weight 60000, Acid value: 163 mg KOH / g: 16 parts by mass Monomer 1 (trade name: BPE-500, Shin-Nakamura Chemical Co., Ltd.
  • the front plate on which the decorative layer, the mask layer, and the transparent electrode layer were formed was washed and dried in the same manner as the formation of the mask layer.
  • the front plate was inserted into the silicone resin stain prevention plate 13 shown in FIG. 10, and the silicone resin stain prevention plug 14 shown in FIG. 11 was inserted into the opening (15 mm ⁇ ) of the front plate.
  • the front plate edge and the stain prevention plate, and the opening edge and the inside of the prevention plug were not soiled. Further, the adjustment was performed so that the surface of the front plate, the surface of the antifouling plate 13 and the surface of the antifouling plug 14 become flat.
  • Coating solution for photo-curable resin layer for the above etching with a coater for glass substrate having slit-like nozzles product name: MH-1600, manufactured by FF Japan, Ltd.
  • Substrate Substrate
  • VCD vacuum drying device, manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • EBR edge bead remover
  • the distance between the photocurable resin layers was set to 200 ⁇ m, and pattern exposure was performed with an exposure amount of 200 mJ / cm 2 from the side of the photocurable resin layer for etching.
  • the front plate was removed from the antifouling plate 13 and the antifouling plug 14 made of silicone resin was removed from the opening (15 mm diameter) of the substrate.
  • a triethanolamine-based developer containing 30% by mass of triethanolamine, trade name: T-PD2 (Fujifilm Co., Ltd.
  • the front plate on which the decorative layer, the mask layer, the transparent electrode layer and the photocurable resin layer pattern for etching are formed is immersed in an etching bath containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.) Process (etching process) for 100 seconds, dissolve and remove the transparent electrode layer in the exposed area not covered with the photo-curable resin layer for etching, and attach the decorative layer, mask layer, photo-curable resin layer pattern for etching A front plate with a transparent electrode layer pattern was obtained.
  • ITO etchant hydroochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.
  • the front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching was exposed to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, surfactant (trade name: SURFYNOL 465) ), Dipped in a resist stripping bath containing 45 ° C. of air products, treated (peeling treatment) for 200 seconds, the photocurable resin layer for etching is removed, a decorative layer, a mask layer, A first transparent electrode pattern disposed as shown in FIG. 1 is formed across both areas of one surface of the front plate and a surface opposite to the surface of the mask layer opposite to the front plate. I got the front plate.
  • a resist stripping solution N-methyl-2-pyrrolidone, monoethanolamine, surfactant (trade name: SURFYNOL 465)
  • peeling treatment for 200 seconds
  • a first transparent electrode pattern disposed as shown in FIG. 1 is formed across both areas of one surface of the front plate and a surface opposite to the surface of the mask layer
  • DPHA dipentaerythritol hexaacrylate
  • a photocurable resin layer for an insulating layer having a thickness of 1.4 ⁇ m was formed on the front plate. Subsequently, the distance between the exposure mask (quartz exposure mask having a pattern for insulating layer) surface and the insulating layer was set to 100 ⁇ m, and pattern exposure was performed with an exposure amount of 150 mJ / cm 2 (i line).
  • the front plate on which the decorative layer, the mask layer, the first transparent electrode pattern, and the insulating layer pattern are formed is subjected to DC magnetron sputtering treatment (conditions: temperature of substrate)
  • An ITO thin film with a thickness of 80 nm was formed at 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a decorative layer, a mask layer, a first transparent electrode pattern, an insulating layer pattern, and a transparent electrode layer were formed.
  • the surface resistance of the ITO thin film was 110 ⁇ / ⁇ .
  • a front plate having a layer and a photocurable resin layer pattern for etching formed thereon was obtained (post-baking treatment; 130 ° C., 30 minutes).
  • the etching layer (30 ° C., 50 seconds) is removed to remove the photocurable resin layer for etching (45 ° C., 200 seconds), thereby forming a decorative layer,
  • the front plate which formed the 2nd transparent electrode pattern installed in was obtained.
  • a front plate on which a decorative layer, a mask layer, a first transparent electrode pattern, an insulating layer pattern, and a second transparent electrode pattern are formed is used as a DC magnetron Sputtering was performed to obtain a front plate on which a 200 nm-thick aluminum (Al) thin film was formed.
  • Coating liquid for photocurable resin layer using the prescription E1 in the same manner as the formation of the first and second transparent electrode patterns: a decorative layer, a mask layer, a first transparent electrode pattern, and an insulating layer pattern A front plate on which a second transparent electrode pattern, an aluminum thin film, and a photocurable resin layer pattern for etching were formed was obtained (post-baking treatment; 130 ° C., 30 minutes).
  • the etching layer (30 ° C., 50 seconds) is removed to remove the photocurable resin layer for etching (45 ° C., 200 seconds), thereby forming a decorative layer
  • a front plate on which a conductive element different from the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns was formed was obtained.
  • the coating liquid for forming the insulating layer Formulation W1 is applied to the front plate on which the conductive elements other than the first and second transparent electrode patterns are formed, dried, and exposed The entire surface is exposed with an exposure dose of 200 mJ / cm 2 (i-line) without a mask, developed, post-exposed (1000 mJ / cm 2 ), post-baked, and then the decorative layer, mask layer, first transparent electrode
  • An insulating layer (transparent protective layer) was laminated as shown in FIG. 1 so as to cover all of the conductive elements other than the pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns.
  • the front plate 1 was obtained.
  • the obtained front plate 1 was used as a capacitive input device of Example 1.
  • the front plate 1 (the capacitance-type input device of Example 1) had no dirt on the opening and the back surface, was easy to clean, and had no problem of contamination of other members. Moreover, there were no pinholes in the decorative layer, and there were no problems with whiteness and unevenness. Similarly, the mask layer had no pinholes and was excellent in light shielding properties.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 2 ⁇ Preparation of Coating Liquid for Forming Conductive Decorative Layer> (Preparation of Silver Nanowire Dispersion (1))
  • a silver nitrate solution was prepared by dissolving 0.51 g of silver nitrate powder in 50 mL of pure water. Thereafter, 1N ammonia water was added to the silver nitrate solution until it became transparent, and pure water was added so that the total amount would be 100 mL, to prepare an additive solution A. Further, 0.5 g of glucose powder was dissolved in 140 mL of pure water to prepare an additive solution G. Further, 0.5 g of HTAB (hexadecyl-trimethyl ammonium bromide) powder was dissolved in 27.5 mL of pure water to prepare an additive solution H.
  • HTAB hexadecyl-trimethyl ammonium bromide
  • silver nanowire dispersion (1) silver nanowire dispersion (1)
  • a coating solution for a photocurable resin layer for etching instead of prescription E1, a coating for forming a conductive decorative layer Using the liquid C1, the conductive decorative layer was laminated in the following procedure to form a first transparent electrode pattern.
  • the front plate on which the decorative layer and the mask layer are formed is washed, and a coating solution C1 for forming a conductive decorative layer is applied to a coater for glass substrate having a slit-like nozzle on the mask layer side of the front plate.
  • a surfactant-containing washing solution (trade name: T-SD3 (manufactured by Fujifilm Corporation) diluted 10-fold with pure water)
  • washing was performed at 33 ° C. for 20 seconds.
  • the front plate was rubbed with a rotating brush, and the residue was removed by injecting pure water from an extra-high pressure cleaning nozzle.
  • post-baking treatment was performed at 230 ° C. for 60 minutes to obtain a front plate on which a mask layer and a first transparent electrode pattern were formed.
  • Example 2 After Example 1, an insulating layer was formed. Subsequently, the conductive decorative layer was laminated in the same manner as in the formation of the first transparent electrode pattern in the second embodiment to form a second transparent electrode pattern. Furthermore, in the same manner as in Example 1, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer were formed to obtain a front plate 2. This was used as a capacitive input device of Example 2. Further, in the same manner as in Example 1, an image display apparatus 2 of Example 2 was produced.
  • a conductive element different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns is formed
  • the front plate 2 had no dirt on the opening and the back, was easy to clean, and had no problem of contamination of other members.
  • the mask layer had no pinholes and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Silicone resin KR-300 (Example 3), Silicone resin KR-282 (Example 4) in place of silicone resin KR-311 in preparation of the coloring composition for heat resistance decoration (formulation L1) of Example 1 Mixture of silicone resin KR-300 and silicone resin KR-282 (Example 5), silicone resin KR-271 (Example 6), silicone resin KR-255 (Example 7), silicone resin KR- The heat resistant decorative coloring composition (formulation L1) of Example 1 except that 212 (Example 8), silicone resin KR-9706 (Example 9), and silicone resin KR-5230 (Example 10) were used.
  • the heat resistant decorative coloring compositions of Examples 3 to 10 were prepared .
  • the heat resistant decorative coloring composition of Examples 3 to 10 was used instead of the heat resistant decorative coloring composition used in Example 1, that is, Example 1 except using the binder shown in Table 1 below.
  • a front plate having a decorative layer formed was produced. The evaluation results of the obtained front plate are shown in Table 1 below.
  • the front plates 3 to 10 which are the capacitance type input devices of Examples 3 to 10 in which the transparent protective layer is formed, and the image display devices 3 to 10 each having the capacitance type input device as a component.
  • the front plates 3 to 10 the brightness, the whiteness, the reticulation, the yield, the adhesion of the decorative layer, the contamination of the opening, and the omission of the opening were at practical levels.
  • the mask layer had no pinholes and was excellent in light shielding properties.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Titanium oxide CR-97 (alumina / zirconia-treated rutile type, primary particle diameter 0) manufactured by Ishihara Sangyo Co., Ltd. used in the preparation of the white pigment dispersion 1 used for the heat resistant decorative coloring composition (formulation L5) of Example 5
  • Ishihara Sangyo CR-60 alumina treated rutile type, primary particle diameter 0.21 ⁇ m, Example 11
  • Ishihara Sangyo CR-50 alumina treated rutile type, primary particle diameter 0.
  • the front plates 11 to 13 which are the capacitance type input devices of Examples 11 to 13 in which the transparent protective layer is formed, and the image display devices 11 to 13 each having the capacitance type input device as a component are manufactured.
  • the front plates 11 to 13 had no problem in the contamination of the opening and the back surface, were easy to clean, and had no problem of contamination of other members.
  • the mask layer had no pinholes and was excellent in light shielding properties.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 14 to 19 The titanium oxide content relative to 44 parts by mass of the total solid content by mass of the heat-resistant decorative coloring composition (formulation L5) of Example 5 is replaced with 20 parts by mass (Example 14) and 26 respectively. Example except changing into mass part (Example 15), 32 mass parts (Example 16), 36 mass parts (Example 17), 60 mass parts (Example 18), 75 mass parts (Example 19) In the same manner as in the preparation of the heat resistant decorative coloring composition of No. 5, the heat resistant decorative coloring compositions of Examples 14 to 19 (respectively referred to as Formulations L14 to L19) were prepared.
  • a decorative layer is formed in the same manner as in Example 5 except that the heat resistant decorative coloring composition of Examples 14 to 19 is used instead of the heat resistant decorative coloring composition used in Example 5.
  • the front plate was made. The evaluation results of the obtained front plate are shown in Table 1 below.
  • a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Examples 14 to 19 in which a transparent protective layer was formed The front plates 14 to 19 which are capacitance type input devices, and the image display devices 14 to 19 including the capacitance type input devices as components were manufactured. From the results of Table 1 below, all evaluations were at practical levels within the range of 20 parts by mass to 75 parts by mass.
  • the yield, the adhesion to the decorative layer, and the missing part of the opening slightly decrease, but it is a practical level, and the whiteness and reticulation And the dirt at the opening tended to improve.
  • the lightness of 38 parts by mass to 60 parts by mass was the most favorable region.
  • the mask layer had no pinholes and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 20 In the preparation of the heat-resistant decorative coloring composition (formulation L5) of Example 5, the phosphoric acid-based antioxidant IRGAFOS 168 (manufactured by BASF Japan Ltd., Example) is used in place of the phosphoric acid / hindered phenol-based antioxidant Antimulsifier GP. 20) The heat resistance of Example 5 except that phosphoric acid based antioxidant IRGAFOS 38 (manufactured by BASF Japan Ltd., Example 21) and phosphoric acid / hindered phenolic antioxidant IRGAMOD 295 (manufactured by BASF Japan Ltd., Example 22) were used.
  • phosphoric acid based antioxidant IRGAFOS 38 manufactured by BASF Japan Ltd., Example 21
  • phosphoric acid / hindered phenolic antioxidant IRGAMOD 295 manufactured by BASF Japan Ltd., Example 22
  • the coloring composition for heat-resistant decoration of Examples 20 to 22 (respectively referred to as formulation L20 to L22) was prepared.
  • a decorative layer is formed in the same manner as in Example 5 except that the heat resistant decorative coloring composition of Examples 20 to 22 is used instead of the heat resistant decorative coloring composition used in Example 5.
  • the front plate was made. The evaluation results of the obtained front plate are listed in Table 2 below.
  • the front plates 20 to 22 which are the capacitance type input devices of Examples 20 to 22 in which the transparent protective layer is formed, and the image display devices 20 to 22 each having the capacitance type input device as a component are manufactured.
  • the front plates 20 and 21 slightly improved the whiteness with respect to the front plate 5, and the others were equal and practical.
  • the evaluation results of the front plate 22 were the same as those of the front plate 5 and were at the same practical level.
  • Example 5 instead of setting the thickness of the formed decorative layer to 36 ⁇ m (Example 5; 6 times printing application), 18 ⁇ m (Example 23; 3 times printing application) or 42 ⁇ m (Example 24; 7) A front plate on which a decorative layer was formed was produced in the same manner as in Example 5 except that the decorative layers of Examples 23 and 24 were formed as the single-step printing application). The evaluation results of the obtained front plate are listed in Table 2 below.
  • the front plates 23 and 24 which are the capacitance type input devices of Examples 23 and 24 in which the transparent protective layer is formed, and the image display device 23 provided with the capacitance type input device as a component.
  • the front plates 23 and 24 had practical levels of brightness, whiteness, yield, reticulation, decorative layer adhesion, opening contamination and opening loss.
  • the front plates 23 and 24 had no problem in the contamination of the opening and the back surface, were easy to clean, and did not have the problem of contamination of other members.
  • the mask layer had no pinholes and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns. Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 25 In the preparation of the coloring composition for heat resistance decoration (formulation L20) of Example 20, it replaces with a solid equivalent mixture of silicone resin KR-300 and silicone resin KR-282, and adds total solid content of silicone resin
  • the heat-resistant and decorative coloring composition of Example 20 (Formulation L 20) except that a 1: 1 equivalent mixture of silicone resin KR-300 and silicone resin KR-311 (Example 25) was used without change.
  • a heat-resistant decorative coloring composition (referred to as formulation L25) was prepared, and it was used as the heat-resistant decorative coloring composition of Example 25.
  • a front plate on which a decorative layer was formed was produced in the same manner as in Example 20 except that the coloring composition for heat resistance decoration (Formulation L 25) of Example 25 was used, that is, it was changed to the binder shown in Table 2 below. .
  • the evaluation results of the obtained front plate are listed in Table 2 below.
  • a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Also, a front plate 25 which is a capacitance type input device of Example 25 in which a transparent protective layer is formed, and an image display device 25 provided with the capacitance type input device as a component are manufactured.
  • the front plate 25 has reduced whiteness, adhesion to the decorative layer, stains on the opening, and loss of the opening relative to the front plate 20, it is at a practical level, and the evaluation results of lightness and yield reticulation It was equal and practical.
  • the front plate 25 had no problem in the contamination of the opening and the back surface, was easy to clean, and had no problem of contamination of other members.
  • the mask layer had no pinholes and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 26 In the preparation of the coloring composition for heat resistance decoration (formulation L25) of Example 25, a zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.) is added to the coloring composition for heat resistance decoration (formulation L25) 4% by mass of the total solid content addition amount of the resin was added to prepare a heat-resistant and decorative colored composition of Example 26 (referred to as Formulation L26).
  • a decorative layer is prepared in the same manner as in Example 25 except that the heat resistant decorative coloring composition of Example 26 is used instead of the heat resistant decorative coloring composition (Formulation L 25) used in Example 25.
  • a front plate was formed. The evaluation results of the obtained front plate are listed in Table 2 below.
  • a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Also, a front plate 26 which is a capacitance-type input device of Example 26 in which a transparent protective layer is formed, and an image display device 26 provided with the capacitance-type input device as a component are manufactured.
  • the front plate 26 has reduced whiteness, adhesion to the decorative layer, stains on the opening, and missing openings with respect to the front plate 25, it is at a practical level, and evaluation results of lightness and yield reticulation It was equal and practical.
  • the mask layer had no pinholes and was excellent in light shielding properties.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 27 and 28 In the preparation of the heat-resistant and decorative coloring composition (formulation L26) of Example 26, the solid content ratio of silicone resin KR-300 to silicone resin KR-311 is changed to 1/1 (Example 26). (Silicone resin) in the same manner as in the preparation of the coloring composition for heat-resistant decoration (formulation L26) of Example 26 except that 3/7 (Example 27) and 7/3 (Example 28), respectively.
  • the heat-resistant and decorative coloring compositions of Examples 27 and 28 (the formulations L27 and L28, respectively) were prepared.
  • a decorative layer is formed in the same manner as in Example 26 except that the heat resistant decorative coloring composition of Examples 27 and 28 is used instead of the heat resistant decorative coloring composition used in Example 26.
  • the front plate was made.
  • front panels 27 and 28 which are the capacitance type input devices of Examples 27 and 28 in which the transparent protective layer is formed, and image display devices 27 and 28 each including the capacitance type input device as a component, are manufactured.
  • the front plates 27 and 28 had practical levels of lightness, whiteness, reticulation, yield, adhesion of the decorative layer, contamination of the opening, and missing of the opening.
  • the mask layer had no pinholes and was excellent in light shielding properties.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 29 In the preparation of the coloring composition for heat resistance decoration (formulation L26) of Example 26, the silicone resin KR is replaced with an equivalent mixture of solid content 1/1 of silicone resin KR-300 and silicone resin KR-311, respectively.
  • -400 Example 29
  • silicone resin KR-500 Example 30
  • solid ratio of silicone resin KR-400 and silicone resin KR-500 3/7
  • solid ratio of silicone resin KR-400, silicone resin KR-500, and silicone alkoxy oligomer X-40-9225 70/30/2.
  • Example 26 was carried out in the same manner as Example 26 except that 5 (Example 33) was used.
  • Flip. Heat resistance decorative coloring composition for Examples 29 to 33 (respectively identified as Formulation L29 ⁇ L33) was prepared.
  • a decorative layer is prepared in the same manner as in Example 26 except that the heat resistant decorative coloring compositions of Examples 29 to 33 are used instead of the heat resistant decorative coloring composition used in Example 26.
  • the formed front plate was produced. The evaluation results of the obtained front plate are listed in Table 2 below.
  • the front plates 29 to 33 which are the capacitance type input devices of Examples 29 to 33 in which the transparent protective layer is formed, and the image display devices 29 to 33 provided with the capacitance type input device as components are manufactured.
  • the front plates 29 to 33 the brightness, the whiteness, the reticulation, the yield, the adhesion of the decorative layer, the contamination of the opening, and the omission of the opening were at practical levels.
  • the mask layer had no pinholes and was excellent in light shielding properties.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 34 In the preparation of the coloring composition for heat resistance decoration (formulation L26) of Example 26, replacing with an equivalent mixture of solid content 1/1 of silicone resin KR-300 and silicone resin KR-311, respectively, silicone resin
  • silicone resin For the type, a toluene solution of the condensate of Synthesis Example 1 (Example 34; methyl tolyl type silicone resin), a toluene solution of the condensate of Synthesis Example 2 (Example 35; methyl benzyl type silicone resin), Synthesis Example 3 Solution of the condensate of the present invention (Example 36; methyl cumyl type silicone resin), toluene solution of the condensate of the synthesis example 4 (Example 37; ethyl tolyl type silicone resin), toluene solution of the condensate of the synthesis example 5 (Example 38; propyl / tolyl type silicone resin), a toluene solution of the condensation product of Synthesis Example 6 (Example 39
  • a decorative layer is prepared in the same manner as in Example 26 except that the heat resistant decorative coloring composition of Examples 34 to 39 is used instead of the heat resistant decorative coloring composition used in Example 26.
  • the formed front plate was produced. The evaluation results of the obtained front plate are listed in Table 2 below.
  • a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And the front plates 34 to 39 which are the capacitance type input devices of Examples 34 to 39 in which the transparent protective layer is formed, and the image display devices 34 to 39 having the capacitance type input device as a component.
  • the mask layer had no pinholes and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns. Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Example 40 In preparation of the coloring composition for heat resistance decoration (formulation L1) of Example 1, solid content 9/1 of silicone resin KR-251 (Example 40) and silicone resin KR-251 and X-40-9246, respectively. (The silicone resin was prepared in the same manner as in Example 1 except that the heat resistant decorative coloring composition (Formulations L40 and L41) was changed to the mixture of Examples (Example 41), that is, it was changed to the binder shown in Table 2 below. The total solid content addition amount was the same.), And the heat resistant and decorative coloring composition of Examples 40 and 41 (respectively formulated as L40 and L41) were prepared.
  • a decorative layer was formed in the same manner as in Example 1 except that the heat resistant decorative coloring compositions of Examples 40 and 41 were used in place of the heat resistant decorative coloring composition of Example 1, respectively.
  • a front plate was produced. The evaluation results of the obtained front plate are listed in Table 2 below.
  • a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And the front plates 40 and 41 which are the capacitance-type input devices of Examples 40 and 41 which formed the transparent protective layer,
  • the image display devices 40 and 41 provided with the capacitance-type input device as a component were produced.
  • the front plates 40 and 41 have significantly improved lightness, and the whiteness, reticulation, yield, adhesion of the decorative layer, the contamination of the opening, and the omission of the opening were at practical levels.
  • the mask layer had no pinholes and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
  • the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • Comparative Example 1 In preparation of the coloring composition for heat resistance decoration (formulation L1) of Example 1, it replaces with silicone resin KR-311 and adds the same solid content of the following polyamic acid (it describes as a polyimide in following Table 2). A heat resistant decorative coloring composition (Formulation L51) was prepared in the same manner as in the preparation of the heat resistant decorative coloring composition of Example 1 except for the use. The obtained heat resistant decorative coloring composition was used as the heat resistant decorative coloring composition of Comparative Example 1.
  • a tempered glass is prepared in the same manner as in Example 1 except that the coloring composition for heat resistance decoration (Formulation L51) of Comparative Example 1 is used instead of the coloring composition for heat resistance decoration used in Example 1.
  • a front plate 51 having a decorative layer formed thereon was formed. After post-baking the front plate 51 on which the decorative layer is formed, the temperature is raised to 350 ° C. for about 20 seconds, and heat treatment is performed at 350 ° C. for 7 minutes to complete imidization of the polyamic acid.
  • the front plate 51 which is an electrostatic capacitance type input device of the comparative example 1 which formed the transparent protective layer, and the image display apparatus 51 provided with the electrostatic capacitance type input device as a component were produced.
  • the evaluation results of the obtained front plate 51 of Comparative Example 1 are shown in Table 2 below.
  • the front plate 51 had the whiteness, the adhesion to the decorative layer, the missing opening portion, and the yield significantly lowered with respect to the front plate 1, and became an NG level.
  • the front plate 51 had no pinholes in the mask layer and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns. Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • the heat resistant decorative coloring composition (formulation L52) was prepared.
  • a decorative layer is prepared in the same manner as in Example 1, except that the heat resistant decorative coloring composition (Formulation L52) of Comparative Example 2 is used instead of the heat resistant decorative coloring composition used in Example 1.
  • a front plate 52 which is a capacitive input device, and an image display device 52 provided with a capacitive input device as components were manufactured.
  • the evaluation results of the front plate 52 of Comparative Example 2 obtained are shown in Table 2 below.
  • the front plate 52 had the whiteness, the adhesion to the decorative layer, the missing opening portion, and the yield significantly lower than that of the front plate 1 and became an NG level. There was no problem in the contamination of the opening and the back surface, it was easy to clean, and there was no problem of contamination of other members.
  • the front plate 52 had no pinholes in the mask layer and was excellent in light shielding properties. There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns. Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
  • the resist is protruded (moist) or the front plate back side (non-contact surface side) It turned out that there is little pollution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Position Input By Displaying (AREA)
  • Materials For Photolithography (AREA)

Abstract

A heat-resistant decorating coloring composition is characterized in containing at least a white inorganic pigment (A) and silicone-based resin (B). A method for producing an electrostatic capacitance type input device is a method for producing an electrostatic capacitance type input device that includes a front plate and at least the following elements provided on one of surfaces of the front plate: (1) a decorating layer; (3) a plurality of first transparent electrode patterns formed with a plurality of pad portions extending in a first direction via connection portions; (4) a plurality of second electrode patterns that are electrically insulated from the first transparent electrode patterns and that are composed of a plurality of pad portions that extend in a direction crossing the first direction; (5) an insulating layer that electrically insulates the first transparent electrode patterns and the second electrode patterns from one another, the method being characterized in including the step of forming at least (1) the decorating layer by applying the heat-resistant decorating coloring composition to the one of surfaces of the front plate.

Description

耐熱性加飾用着色組成物、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置Heat resistant decorative coloring composition, method of manufacturing capacitance type input device, capacitance type input device, and image display device provided with the same
 本発明は、指の接触位置を静電容量の変化として検出可能な静電容量型入力装置の製造するための耐熱性加飾用着色組成物、静電容量型入力装置の製造方法および、当該製造方法によって得られる静電容量型入力装置、並びに、当該静電容量型入力装置を構成要素として備えた画像表示装置に関するものである。 The present invention relates to a heat-resistant decorative coloring composition for producing a capacitance-type input device capable of detecting a contact position of a finger as a change in capacitance, a method for producing a capacitance-type input device, and The present invention relates to a capacitance-type input device obtained by a manufacturing method, and an image display device including the capacitance-type input device as a component.
 携帯電話、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末などの電子機器では、近年、液晶装置などの表面にタブレット型の入力装置が配置され、液晶装置の画像表示領域に表示された指示画像を参照しながら、この指示画像が表示されている箇所に指またはタッチペンなどを触れることで、指示画像に対応する情報の入力が行えるものがある。 In recent years, in electronic devices such as mobile phones, car navigation systems, personal computers, ticket vending machines, and terminals of banks, a tablet-type input device is disposed on the surface of a liquid crystal device or the like, and an instruction image displayed in the image display area of the liquid crystal device There are some which can input information corresponding to an instruction image by touching a finger, a touch pen or the like to a portion where the instruction image is displayed while referring to FIG.
 このような入力装置(タッチパネル)には、抵抗膜型、静電容量型などがある。しかし、抵抗膜型の入力装置は、フィルムとガラスとの2枚構造でフィルムを押下してショートさせる構造のため、動作温度範囲の狭さや、経時変化に弱いという欠点を有している。 Such an input device (touch panel) includes a resistive film type, a capacitance type, and the like. However, the resistive film type input device has a drawback that it has a narrow operating temperature range and is weak to change with time because it has a two-sheet structure of film and glass and presses the film to make it short.
 これに対して、静電容量型の入力装置は、単に一枚の基板に透光性導電膜を形成すればよいという利点がある。かかる静電容量型の入力装置では、例えば、互いに交差する方向に電極パターンを延在させて、指などが接触した際、電極間の静電容量が変化することを検知して入力位置を検出するタイプの静電容量型の入力装置がある(例えば、下記特許文献1参照)。 On the other hand, the capacitance-type input device has an advantage that it is sufficient to form the translucent conductive film on only one substrate. In such an electrostatic capacitance type input device, for example, an electrode pattern is extended in a direction crossing each other, and when a finger or the like comes in contact, a change in electrostatic capacitance between the electrodes is detected to detect an input position. There is a capacitive input device of the type described below (for example, see Patent Document 1 below).
 また、静電容量型の入力装置としては、透光性導電膜の両端に同相、同電位の交流を印加し、指が接触あるいは近接してキャパシタが形成される際に流れる微弱電流を検知して入力位置を検出するタイプの静電容量型の入力装置もある。このような静電容量型入力装置として、複数のパッド部分を、接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターンと前記第一の透明電極パターンと層間絶縁層を介して電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターンを備えた静電容量型入力装置が開示されている(例えば、下記特許文献2参照)。しかしながら、当該静電容量型入力装置は作製した静電容量型入力装置に前面板を積層するため、静電容量型入力装置が厚く、また重くなる、という問題がある。 In addition, as an electrostatic capacitance type input device, an alternating current of the same phase and the same potential is applied to both ends of the translucent conductive film, and a weak current flowing when a finger is in contact or in proximity is formed. There is also a capacitive input device of a type that detects an input position. As such an electrostatic capacitance type input device, a plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction through the connection portion and the first transparent electrode pattern Capacitance type comprising a plurality of second transparent electrode patterns comprising a plurality of pad portions electrically insulated from each other via an interlayer insulating layer and extending in a direction intersecting the first direction An input device is disclosed (see, for example, Patent Document 2 below). However, the capacitive input device has a problem that the capacitive input device becomes thick and heavy because the front plate is stacked on the manufactured capacitive input device.
 さらに、前面板の一方の面側の表面にマスク層、センス回路、層間絶縁層が一体に形成されている静電容量型タッチパネルが開示されている(例えば、下記特許文献3参照)。当該特許文献3に記載の静電容量型タッチパネルは、前面板が静電容量型入力装置と一体化しているため、薄層化および軽量化が可能となり、さらにマスク層によってセンス回路を覆い隠すことによって装置外観が改善されている。 Furthermore, a capacitive touch panel in which a mask layer, a sense circuit, and an interlayer insulating layer are integrally formed on the surface on one side of the front plate is disclosed (for example, see Patent Document 3 below). In the capacitive touch panel described in Patent Document 3, since the front plate is integrated with the capacitive input device, thinning and weight reduction become possible, and furthermore, the mask circuit hides the sense circuit. Improves the appearance of the device.
特開2007-122326号公報Unexamined-Japanese-Patent No. 2007-122326 特許第4506785号公報Patent No. 4506785 特開2009-193587号公報JP, 2009-193587, A 特開2011-218561号公報JP 2011-218561 A 特開2008-169237号公報JP 2008-169237 A
 特許文献3には、マスク層をブラックの樹脂または他の不透明なコーティング材によって形成してよいと記載があるのみであったが、必要に応じて前記マスク層と前面板の間に、様々な色調(黒、白、パステルカラー、メタリック等)の加飾層を設けることでき、近年ではその中でも特に白色加飾層の明度と白色度を高めることが求められている。
 この加飾層を設ける方法としては従来、液体レジスト塗布やスクリーン印刷等によるものが主流である。
Patent Document 3 only described that the mask layer may be formed by a black resin or other opaque coating material, but if necessary, various color tones (between the mask layer and the front plate) A decorative layer of black, white, pastel color, metallic, etc.) can be provided, and in recent years, it is required to increase the lightness and whiteness of the white decorative layer particularly among them.
As a method of providing this decoration layer, the thing by liquid resist application, screen printing, etc. is the mainstream conventionally.
 一方、静電容量型タッチパネルを液晶や有機ELディスプレイ上に備えたスマートフォンやタブレットPCでは前面板(直接指で接触する面)にコーニング社のゴリラガラスに代表される強化ガラスを用いたものが開発、発表されている。
 本発明者らが検討したところ、この強化ガラス基板に、加飾層形成用液体レジストやスクリーン印刷インクを用いて白色加飾層を形成しようとすると、隠蔽力の小さい液体レジストやスクリーン印刷インクを用いて白色加飾層を形成するには数回に分けて液体レジスト塗布及びスクリーン印刷を行う必要があり、これによる泡、ムラが発生し、工程数の多いことに起因する得率の減少などコスト低減が容易でない、という問題があることがわかった。さらに、強化ガラス上に、加飾層を形成した後、透明導電層等回路を作製する工程で加熱されると、白色度が低下するという問題点があった。
On the other hand, smartphones and tablet PCs equipped with a capacitive touch panel on a liquid crystal or organic EL display have been developed using tempered glass represented by Goringa glass of Corning as the front plate (surface directly in contact with a finger) , Has been announced.
As a result of investigations by the present inventors, when a white decorative layer is to be formed on this reinforced glass substrate using a liquid resist for forming a decorative layer or a screen printing ink, a liquid resist having a small hiding power or a screen printing ink is used. In order to form a white decorative layer by using it, it is necessary to perform liquid resist application and screen printing in several times, and due to this, bubbles, unevenness occur and the yield is reduced due to a large number of processes, etc. It turned out that there is a problem that cost reduction is not easy. Furthermore, after forming a decoration layer on tempered glass, when heated at the process of producing circuits, such as a transparent conductive layer, there existed a problem that whiteness falls.
 これに対し、耐熱性が高い白色フィルムとして、少なくとも、(A)分子内にケイ素を実質的に含有しない熱硬化性樹脂、及び(B)白色着色剤を含有する白色熱硬化性樹脂組成物からなる層がポリイミドフィルムの少なくとも片面に設けられていることを特徴とする多層フィルムが提案されている(例えば、特許文献4参照)。しかしながら、特許文献4に記載の多層フィルムも同様に、透明導電層等回路を作製する工程で高温に加熱されると、白色度が低下するという問題点があった。 On the other hand, as a white film having high heat resistance, a white thermosetting resin composition containing at least (A) thermosetting resin substantially not containing silicon in the molecule, and (B) white coloring agent A multilayer film is proposed which is characterized in that the following layer is provided on at least one side of a polyimide film (see, for example, Patent Document 4). However, the multilayer film described in Patent Document 4 also has a problem in that whiteness decreases when it is heated to a high temperature in the process of producing a circuit such as a transparent conductive layer.
 同様に耐熱性の高いフィルムとして、ジアミンと芳香族テトラカルボン酸とを反応させて得られるポリアミド酸に白色顔料を混合したポリイミド前駆体フィルムをイミド化させて得られる白色ポリイミドフィルムが提案されている(例えば、特許文献5参照)。しかしながら、特許文献5に記載の白色ポリイミドフィルムも同様に、透明導電層等回路を作製する工程で高温加熱されると、白色度が低下するという問題点があった。 Similarly, a white polyimide film obtained by imidizing a polyimide precursor film in which a white pigment is mixed with a polyamic acid obtained by reacting a diamine and an aromatic tetracarboxylic acid as a film having high heat resistance is proposed. (See, for example, Patent Document 5). However, the white polyimide film described in Patent Document 5 similarly has a problem that whiteness is lowered when heated at a high temperature in the process of producing a circuit such as a transparent conductive layer.
 以上のとおり、本発明者らが検討したところ、これらの文献に記載の方法で白色加飾層を形成した場合、転写後の明度、白色度、レチキュレーションおよび密着性のすべての特性を満足する性能のものを得ることができないことがわかった。また、上記特性を満足する白色加飾層を高い得率で得ることも困難であることがわかった。
 本発明が解決しようとする課題は、明度、白色度、レチキュレーションおよび密着性が良好である白色加飾層を、高い得率で得ることができる耐熱性加飾用着色組成物を提供することにある。
 それと共に、上記特性を満たす耐熱性加飾用着色組成物を用いた、薄層化および軽量化が可能な静電容量型入力装置を、簡便な工程で高品位に製造可能にすることができる静電容量型入力装置の製造方法、および、当該製造方法によって得られる静電容量型入力装置、並びに、当該静電容量型入力装置を用いた画像表示装置を提供することにある。
As mentioned above, when the present inventors examined and a white decorative layer was formed by the method as described in these documents, all the characteristics of the lightness after transfer, whiteness, reticulation, and adhesiveness were satisfied. It turned out that the thing of the performance which can not be obtained can not be obtained. Moreover, it turned out that it is also difficult to obtain a white decorative layer satisfying the above characteristics at a high yield.
The problem to be solved by the present invention is to provide a heat resistant decorative coloring composition which can obtain a white decorative layer having good lightness, whiteness, reticulation and adhesion at a high yield. It is.
At the same time, a capacitive input device capable of thinning and reducing the weight using the coloring composition for heat-resistant decoration satisfying the above characteristics can be manufactured in high quality in a simple process. A manufacturing method of a capacitance type input device, a capacitance type input device obtained by the manufacturing method, and an image display device using the capacitance type input device.
 これに対し、本発明者らが白色加飾層の白色度についてさらなる検討を重ねた結果、白色加飾層を形成した後に、ITOなどからなる透明電極パターンを形成する際に高温での加熱が必要となるところ、高温加熱の際に白色加飾層の白色度の低下が著しいことを見出すに至った。そこで、シリコーン系レジンを耐熱性加飾用着色組成物に用いることで、明度、白色度、レチキュレーションおよび密着性が良好である白色加飾層を、高い得率で得ることができることを見出し、本発明に至った。 On the other hand, as a result of repeating examination further about the whiteness of a white decorative layer as a result of the present inventors, after forming a white decorative layer, when forming a transparent electrode pattern which consists of ITO etc., heating at high temperature As necessary, it has been found that the decrease in whiteness of the white decorative layer is remarkable during high temperature heating. Therefore, it has been found that a white decorative layer having good lightness, whiteness, reticulation and adhesion can be obtained at a high yield by using a silicone-based resin as a coloring composition for heat-resistant decoration. The present invention has been achieved.
 上記課題を解決するための具体的な手段である本発明は以下のとおりである。
[1] 少なくとも(A)白色無機顔料および(B)シリコーン系レジンを含むことを特徴とする耐熱性加飾用着色組成物。
[2] [1]に記載の耐熱性加飾用着色組成物がさらに、(C)酸化防止剤を含むことが好ましい。
[3] [1]または[2]に記載の耐熱性加飾用着色組成物は、(B)シリコーン系レジンが、変性シリコーンレジン、または、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、Rは独立して、水素原子、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基を表す。
[4] [3]に記載の耐熱性加飾用着色組成物は、一般式(1)中、Rは独立して、水素原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~6の直鎖状、分岐状もしくは環状の置換アルキル基または炭素数6~9のアリール基を表すことが好ましい。
[5] [3]または[4]に記載の耐熱性加飾用着色組成物は、一般式(1)中、Rは独立して、水素原子、メチル基またはトリル基を表すことが好ましい。
[6] [1]~[5]のいずれか一つに記載の耐熱性加飾用着色組成物は、耐熱性加飾用着色組成物の全固形分に対する白色無機顔料の含有率が20~75質量%であることが好ましい。
[7] [1]~[6]のいずれか一つに記載の耐熱性加飾用着色組成物は、白色無機顔料が、無機物で表面処理されたルチル型酸化チタンであることが好ましい。
[8] [7]に記載の耐熱性加飾用着色組成物は、無機物で表面処理されたルチル型酸化チタンが、少なくともアルミナ、ジルコニアのいずれかで表面処理されたルチル型酸化チタンであることが好ましい。
[9] [1]~[8]のいずれか一つに記載の耐熱性加飾用着色組成物は、耐熱性加飾用着色組成物が、静電容量型入力装置前面板加飾用であることが好ましい。
[10] 前面板と、前面板の表面のうち一方の面側に少なくとも下記(1)および(3)~(5)の要素を有する静電容量型入力装置の製造方法であって、[1]~[9]のいずれか一つに記載の耐熱性加飾用着色組成物を前面板の一方の面側に適用して少なくとも(1)加飾層を形成する工程を含むことを特徴とする静電容量型入力装置の製造方法。
(1)加飾層
(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(4)第一の透明電極パターンと電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(5)第一の透明電極パターンと第二の電極パターンとを電気的に絶縁する絶縁層
[11] [10]に記載の静電容量型入力装置の製造方法は、静電容量型入力装置がさらに、(6)第一の透明電極パターンおよび第二の電極パターンの少なくとも一方に電気的に接続され、第一の透明電極パターンおよび第二の電極パターンとは別の導電性要素を有することが好ましい。
[12] [10]または[11]に記載の静電容量型入力装置の製造方法は、第二の電極パターンが透明電極パターンであることが好ましい。
[13] [10]~[12]のいずれか一つに記載の静電容量型入力装置の製造方法は、(1)加飾層の厚みが1~40μmであることが好ましい。
[14] [10]~[13]のいずれか一つに記載の静電容量型入力装置の製造方法は、前面板の表面のうち一方の面側に耐熱性加飾用着色組成物を適用した後に、0.08~1.2atmの環境下で、180~300℃に加熱して、(1)加飾層を形成することが好ましい。
[15] [14]に記載の静電容量型入力装置の製造方法は、加熱を、空気環境下で行うことが好ましい。
[16] [10]~[15]のいずれか一つに記載の静電容量型入力装置の製造方法は、前面板の一方の面側への前記耐熱性加飾用着色組成物の適用を、耐熱性加飾用着色組成物を印刷して行うことが好ましい。
[17] [10]~[16]のいずれか一つに記載の静電容量型入力装置の製造方法は、(1)加飾層の表面のうち前面板と対向する面とは逆側の面上に、さらに(2)マスク層を形成することが好ましい。
[18] [17]に記載の静電容量型入力装置の製造方法は、(3)第一の透明電極パターンおよび(4)第二の電極パターンの少なくとも一方を、前面板の一方の面および(2)マスク層の表面のうち前面板と対向する面とは逆側の面の両方の領域にまたがって設置することが好ましい。
[19] [17]または[18]に記載の静電容量型入力装置の製造方法は、前記静電容量型入力装置がさらに、(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは(2)マスク層の表面のうち前面板と対向する面とは逆側の面側に少なくとも(6)別の導電性要素を有することが好ましい。
[20] [10]~[19]のいずれか一つに記載の静電容量型入力装置の製造方法は、さらに、(1)および(3)~(5)の要素の全てまたは一部を覆うように透明保護層を形成することが好ましい。
[21] [20]に記載の静電容量型入力装置の製造方法は、透明保護層を、硬化性樹脂組成物を用いて形成することが好ましい。
[22] [10]~[21]のいずれか一つに記載の静電容量型入力装置の製造方法は、静電容量型入力装置がさらに、(6)第一の透明電極パターンおよび第二の電極パターンの少なくとも一方に電気的に接続され、第一の透明電極パターンおよび第二の電極パターンとは別の導電性要素を有し、(4)第二の電極パターンが透明電極パターンであり、(3)第一の透明電極パターン、(4)第二の電極パターンおよび(6)別の導電性要素を、硬化性樹脂組成物によって形成されたエッチングパターンを用いて透明導電材料をエッチング処理することによって形成することが好ましい。
[23] [10]~[21]のいずれか一つに記載の静電容量型入力装置の製造方法は、静電容量型入力装置がさらに、(6)第一の透明電極パターンおよび第二の電極パターンの少なくとも一方に電気的に接続され、第一の透明電極パターンおよび第二の電極パターンとは別の導電性要素を有し、(4)第二の電極パターンが透明電極パターンであり、(3)第一の透明電極パターン、第二の透明電極パターンおよび(6)導電性要素の少なくとも一つを、導電性硬化性樹脂組成物を用いて形成することが好ましい。
[24] [10]~[23]のいずれか一つに記載の静電容量型入力装置の製造方法は、前面板の一方の面に表面処理を行い、前面板の表面処理を施した一方の面上に硬化性樹脂組成物を適用することが好ましい。
[25] [24]に記載の静電容量型入力装置の製造方法は、前面板の表面処理に、シラン化合物を用いることが好ましい。
[26] [10]~[25]のいずれか一つに記載の静電容量型入力装置の製造方法は、前面板が、少なくとも一部に開口部を有することが好ましい。
[27] [10]~[26]のいずれか一つに記載の静電容量型入力装置の製造方法で製造されたことを特徴とする静電容量型入力装置。
[28] [27]に記載の静電容量型入力装置を構成要素として備えたことを特徴とする画像表示装置。
The present invention, which is a specific means for solving the above problems, is as follows.
[1] A coloring composition for heat resistant decoration, characterized by comprising at least (A) a white inorganic pigment and (B) a silicone resin.
[2] It is preferable that the coloring composition for heat-resistant decoration as described in [1] further contains (C) antioxidant.
[3] In the coloring composition for heat-resistant decoration as described in [1] or [2], (B) the silicone resin is represented by at least the following general formula (1) in a modified silicone resin or in a molecule: It is preferable to include a straight silicone resin containing a siloxane structure.
Figure JPOXMLDOC01-appb-C000002
In the general formula (1), R 1 independently represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched chain having 1 to 20 carbon atoms Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, an aryl having 6 to 20 carbon atoms Represents a group or an aralkyl group having 7 to 20 carbon atoms.
[4] The coloring composition for heat-resistant decoration as described in [3] is, in the general formula (1), R 1 independently represents a hydrogen atom, a linear, branched or cyclic C 1 to C 20 carbon atom. It is preferable to represent the following alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 9 carbon atoms.
[5] In the coloring composition for heat-resistant decoration as described in [3] or [4], in general formula (1), R 1 preferably independently represents a hydrogen atom, a methyl group or a tolyl group .
[6] The heat-resistant and decorative colored composition according to any one of [1] to [5], wherein the content ratio of the white inorganic pigment to the total solid content of the heat-resistant and decorative colored composition is from 20 to It is preferable that it is 75 mass%.
[7] In the heat-resistant and decorative coloring composition according to any one of the above [1] to [6], the white inorganic pigment is preferably rutile type titanium oxide surface-treated with an inorganic substance.
[8] The heat-resistant decorative coloring composition according to [7] is that the rutile-type titanium oxide surface-treated with an inorganic substance is rutile-type titanium oxide surface-treated with at least one of alumina and zirconia. Is preferred.
[9] The heat-resistant and decorative coloring composition according to any one of [1] to [8], wherein the heat-resistant and decorative coloring composition is used to decorate a capacitive input device front plate. Is preferred.
[10] A method of manufacturing a capacitive input device having a front plate and at least one of the following elements (1) and (3) to (5) on one of the surfaces of the front plate, And [9] to form at least (1) a decorative layer by applying the coloring composition for heat-resistant decoration according to any one of the above [9] to one side of a front plate. Of manufacturing a capacitive input device.
(1) Decorative layer (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction through connection portions (4) A first transparent electrode pattern and electricity And a plurality of second electrode patterns (5) consisting of a plurality of pad portions formed to extend in a direction intersecting the first direction, and the first transparent electrode pattern and the second electrode pattern In the method of manufacturing the capacitance-type input device according to the insulating layer [11] [10] for electrically insulating the electrodes, the capacitance-type input device further includes (6) a first transparent electrode pattern and a second It is preferable to electrically connect to at least one of the electrode patterns and to have a conductive element different from the first transparent electrode pattern and the second electrode pattern.
[12] In the method of manufacturing a capacitance-type input device according to [10] or [11], the second electrode pattern is preferably a transparent electrode pattern.
[13] In the method of manufacturing a capacitance-type input device according to any one of [10] to [12], (1) the thickness of the decorative layer is preferably 1 to 40 μm.
[14] The method for producing a capacitance-type input device according to any one of [10] to [13], wherein the heat resistant decorative coloring composition is applied to one side of the surface of the front plate After that, it is preferable to heat at 180 to 300 ° C. under an environment of 0.08 to 1.2 atm to form (1) a decorative layer.
[15] In the method of manufacturing a capacitance-type input device according to [14], the heating is preferably performed in an air environment.
[16] The method for producing a capacitance-type input device according to any one of [10] to [15], the application of the coloring composition for heat-resistant decoration to one surface of a front plate Preferably, the heat resistant decorative coloring composition is printed.
[17] The method of manufacturing a capacitance-type input device according to any one of [10] to [16], (1) of the surface of the decorative layer on the side opposite to the surface facing the front plate It is preferable to further form (2) a mask layer on the surface.
[18] [17] The method of manufacturing a capacitance-type input device according to [18] includes at least one of (3) a first transparent electrode pattern and (4) a second electrode pattern, one surface of a front plate and (2) Preferably, the mask layer is disposed across the two areas of the surface opposite to the surface facing the front plate among the surfaces of the mask layer.
[19] In the method of manufacturing a capacitance-type input device according to [17] or [18], the capacitance-type input device further includes: (6) the first transparent electrode pattern and the second electrode The first transparent electrode pattern and the second electrode pattern are electrically connected to at least one of the patterns, and (2) on the surface of the mask layer on the side opposite to the surface facing the front plate. It is preferred to have at least (6) another conductive element.
[20] The method of manufacturing a capacitance-type input device according to any one of [10] to [19] further includes all or part of the elements of (1) and (3) to (5). It is preferable to form a transparent protective layer so as to cover it.
[21] In the method of manufacturing a capacitance-type input device according to [20], the transparent protective layer is preferably formed using a curable resin composition.
[22] In the method of manufacturing a capacitive input device according to any one of [10] to [21], the capacitive input device further includes (6) a first transparent electrode pattern and a second transparent electrode pattern. Electrically connected to at least one of the first electrode pattern and having a conductive element different from the first transparent electrode pattern and the second electrode pattern, and (4) the second electrode pattern is a transparent electrode pattern , (3) the first transparent electrode pattern, (4) the second electrode pattern and (6) another conductive element, the transparent conductive material is etched using the etching pattern formed by the curable resin composition It is preferable to form by doing.
[23] In the method of manufacturing a capacitive input device according to any one of [10] to [21], the capacitive input device further comprises (6) a first transparent electrode pattern and a second transparent electrode pattern. Electrically connected to at least one of the first electrode pattern and having a conductive element different from the first transparent electrode pattern and the second electrode pattern, and (4) the second electrode pattern is a transparent electrode pattern Preferably, at least one of (3) the first transparent electrode pattern, the second transparent electrode pattern, and (6) the conductive element is formed using a conductive curable resin composition.
[24] In the method of manufacturing a capacitance-type input device according to any one of [10] to [23], one surface of the front plate is subjected to surface treatment to perform surface treatment on the front plate It is preferable to apply the curable resin composition on the surface of
[25] In the method of manufacturing a capacitive input device according to [24], it is preferable to use a silane compound for the surface treatment of the front plate.
[26] In the method of manufacturing a capacitive input device according to any one of [10] to [25], it is preferable that the front plate has an opening at least in part.
[27] A capacitance type input device manufactured by the method of manufacturing a capacitance type input device according to any one of [10] to [26].
[28] An image display apparatus comprising the capacitive input device according to [27] as a component.
 本発明によれば、明度、白色度、レチキュレーションおよび密着性が良好である白色加飾層を、高い得率で得ることができる耐熱性加飾用着色組成物を提供できる。
 本発明によれば、それと共に、上記特性を満たす耐熱性加飾用着色組成物を用いた、薄層化および軽量化が可能な静電容量型入力装置を、簡便な工程で高品位に製造可能にすることができる静電容量型入力装置の製造方法、および、当該製造方法によって得られる静電容量型入力装置、並びに、当該静電容量型入力装置を用いた画像表示装置を提供することができる。
According to the present invention, it is possible to provide a heat resistant decorative coloring composition capable of obtaining a white decorative layer having good lightness, whiteness, reticulation and adhesion at a high yield.
According to the present invention, in addition to this, a capacitive input device capable of thinning and reducing weight using the coloring composition for heat-resistant decoration satisfying the above-mentioned characteristics is manufactured with high quality in a simple process. Provided are a manufacturing method of a capacitance type input device that can be made possible, a capacitance type input device obtained by the manufacturing method, and an image display device using the capacitance type input device. Can.
本発明の静電容量型入力装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electrostatic capacitance type input device of this invention. 本発明における前面板の一例を示す説明図である。It is an explanatory view showing an example of a front board in the present invention. 本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。It is explanatory drawing which shows an example of the 1st transparent electrode pattern in this invention, and a 2nd transparent electrode pattern. 開口部が形成された強化処理ガラスの一例を示す上面図である。It is a top view which shows an example of the tempered processing glass in which the opening part was formed. 加飾層、マスク層が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the decoration layer and the mask layer were formed. 第一の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st transparent electrode pattern was formed. 第一および第二の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st and 2nd transparent electrode pattern was formed. 第一および第二の透明電極パターンとは別の導電性要素が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the electroconductive element different from the 1st and 2nd transparent electrode pattern was formed. 金属ナノワイヤー断面を示す説明図である。It is explanatory drawing which shows a metal nanowire cross section. 汚れ防止板の概略図である。It is the schematic of a dirt prevention board. 汚れ防止栓の概略図である。It is the schematic of the antifouling plug.
 以下、本発明の耐熱性加飾用着色組成物、静電容量型入力装置の製造方法、静電容量型入力装置および画像表示装置について説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。尚、本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
The heat resistant decorative coloring composition, the method for producing a capacitance type input device, the capacitance type input device, and the image display device according to the present invention will be described below.
Although the description of the configuration requirements described below may be made based on the representative embodiments of the present invention, the present invention is not limited to such embodiments. In the present specification, “to” is used in the meaning including the numerical values described before and after it as the lower limit value and the upper limit value.
[耐熱性加飾用着色組成物]
 本発明の耐熱性加飾用着色組成物は少なくとも(A)白色無機顔料および(B)シリコーン系レジンを含むことを特徴とする。
[Coloring composition for heat resistant decoration]
The coloring composition for heat-resistant decoration of the present invention is characterized by containing at least (A) a white inorganic pigment and (B) a silicone resin.
-(A)白色無機顔料-
 前記(A)白色無機顔料としては、特開2009-191118号公報の段落0019や、特開2000-175718号公報の段落0109に記載の白色顔料を用いることができる。
 具体的には、本発明では前記白色無機顔料として、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、硫酸バリウムが好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛がより好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)がさらに好ましく、ルチル型酸化チタンがよりさらに好ましい。
-(A) White inorganic pigment-
As the (A) white inorganic pigment, white pigments described in paragraph 0019 of JP-A-2009-191118 and paragraph 0109 of JP-A-2000-175718 can be used.
Specifically, in the present invention, as the white inorganic pigment, titanium oxide (rutile type), titanium oxide (anatase type), zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, barium sulfate, etc. Preferably, titanium oxide (rutile type), titanium oxide (anatase type) and zinc oxide are more preferable, titanium oxide (rutile type) and titanium oxide (anatase type) are more preferable, and rutile type titanium oxide is still more preferable.
 二酸化チタンの具体例としては、JR、JRNC、JR-301、403、405、600A、605、600E、603、701、800、805、806、JA-1、C、3、4、5、MT-01、02、03、04、05、100AQ、100SA、100SAK、100SAS、100TV、100Z、100ZR、150W、500B、500H、500SA、500SAK、500SAS、500T、SMT-100SAM、100SAS、500SAM、500SAS(テイカ社製)、CR-50、50-2、57、58、58-2、60、60-2、63、67、80、85、90、90-2、93、95、97、953、Super70、PC-3、PF-690、691、711、736、737、739、740、742、R-550、580、630、670、680、780、780-2、820、830、850、855、930、980、S-305、UT771、TTO-51(A)、51(C)、55(A)、55(B)、55(C)、55(D)、S-1、S-2、S-3、S-4、V-3、V-4、MPT-136、FTL-100、110、200、300(石原産業社製)、KA-10、15、20、30、KR-310、380、KV-200、STT-30EHJ、65C-S、455、485SA15、495M、495MC(チタン工業社製)、TA-100、200、300、400、500、TR-600、700、750、840、900(富士チタン工業社製)などが挙げられ、これらを単独、もしくは混合して用いてもよい。 Specific examples of titanium dioxide include JR, JRNC, JR-301, 403, 405, 600A, 605, 600E, 603, 701, 800, 805, 806, JA-1, C, 3, 4, 5, MT- 01, 02, 03, 04, 05, 100 AQ, 100 SAK, 100 SAS, 100 TV, 100 TV, 100 ZR, 150 W, 500 W, 500 H, 500 SA, 500 SAK, 500 SAS, 500 S, SMT-100 SAM, 100 SAS, 500 SAM, 500 SAS (Taika Corporation) Made, CR-50, 50-2, 57, 58, 58-2, 60, 60-2, 63, 67, 80, 85, 90, 90-2, 93, 95, 97, 953, Super 70, PC -3, PF-690, 691, 711, 736, 737, 739, 740, 42, R-550, 580, 630, 670, 680, 780, 780-2, 820, 830, 850, 855, 930, 980, S-305, UT 771, TTO-51 (A), 51 (C), 55 (A), 55 (B), 55 (C), 55 (D), S-1, S-2, S-3, S-4, V-3, V-4, MPT-136, FTL- 100, 110, 200, 300 (manufactured by Ishihara Sangyo Co., Ltd.), KA-10, 15, 20, 30, KR-310, 380, KV-200, STT-30EHJ, 65C-S, 455, 485SA15, 495M, 495MC ( Titanium industry, TA-100, 200, 300, 400, 500, TR-600, 700, 750, 840, 900 (manufactured by Fuji titanium industry) and the like, and these may be used alone or in combination. It may be.
 本発明では前記白色無機顔料(特に酸化チタン)の表面はシリカ処理、アルミナ処理、チタニア処理、ジルコニア処理、有機物処理及びそれらを併用することができる。
 これにより前記白色無機顔料(特に酸化チタン)の触媒活性を抑制でき、耐熱性、褪光性等を改善することができる。
 加熱後の加飾層の白色度の観点から、本発明では前記白色顔料が無機物で表面処理されたルチル型酸化チタンであることが好ましく、アルミナ処理およびジルコニア処理のうち少なくとも一方で表面処理されたルチル型酸化チタンであることがより好ましく、アルミナおよびジルコニア併用処理で表面処理されたルチル型酸化チタンであることが特に好ましい。
In the present invention, the surface of the white inorganic pigment (especially titanium oxide) can be treated with silica, alumina, titania, zirconia, organic matter, and the like in combination.
As a result, the catalytic activity of the white inorganic pigment (particularly titanium oxide) can be suppressed, and the heat resistance, the fluorescence and the like can be improved.
From the viewpoint of the whiteness of the decorative layer after heating, in the present invention, the white pigment is preferably rutile titanium oxide surface-treated with an inorganic substance, and surface-treated with at least one of alumina treatment and zirconia treatment It is more preferable that it is rutile type titanium oxide, and it is especially preferable that it is rutile type titanium oxide surface-treated by combined treatment with alumina and zirconia.
 前記耐熱性加飾用着色組成物の全固形分に対する前記白色無機顔料の含有率が20~75質量%であることが、良好な明度および白色度を有し、その他の求められる特性を同時に満たす加飾層を形成する観点から好ましい。また、本発明の耐熱性加飾用着色組成物を後述の本発明の静電容量型入力装置の製造方法に用いるときに、十分に現像時間を短縮する観点からも前記加飾層の全固形分に対する前記白色無機顔料の含有率が20~75質量%であることが好ましい。
 前記耐熱性加飾用着色組成物の全固形分に対する前記白色無機顔料の含有率は、25~60質量%であることがより好ましく、30~50質量%であることが更に好ましい。
 本明細書でいう全固形分とは前記耐熱性加飾用着色組成物から溶剤等を除いた不揮発成分の総質量を意味する。
That the content of the white inorganic pigment is 20 to 75% by mass with respect to the total solid content of the heat-resistant decorative coloring composition has good brightness and whiteness, and simultaneously satisfies other required characteristics It is preferable from the viewpoint of forming a decoration layer. Moreover, when using the coloring composition for heat-resistant decoration of this invention for the manufacturing method of the electrostatic capacitance type input device of this invention mentioned later, also from a viewpoint of fully reducing development time, the total solid of the said decoration layer It is preferable that the content ratio of the above-mentioned white inorganic pigment to 20 minutes is 20 to 75% by mass.
The content ratio of the white inorganic pigment to the total solid content of the heat-resistant decorative coloring composition is more preferably 25 to 60% by mass, and still more preferably 30 to 50% by mass.
The total solid content as used in this specification means the total mass of the non-volatile component which remove | eliminated the solvent etc. from the said coloring composition for heat-resistant decoration.
 前記白色無機顔料(なお、後述するマスク層に用いられるその他の着色剤についても同様である)は、分散液として使用することが望ましい。この分散液は、前記白色無機顔料と顔料分散剤とを予め混合して得られる組成物を、後述する有機溶媒(またはビヒクル)に添加して分散させることによって調製することができる。前記ビビクルとは、塗料が液体状態にある時に顔料を分散させている媒質の部分をいい、液状であって前記顔料と結合して塗膜を形成する成分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。 It is desirable to use the white inorganic pigment (note that the same applies to other colorants used in the mask layer described later) as a dispersion. The dispersion can be prepared by adding and dispersing a composition obtained by mixing the white inorganic pigment and the pigment dispersant in advance to an organic solvent (or vehicle) described later. The above-mentioned vehicle refers to the part of the medium in which the pigment is dispersed when the paint is in a liquid state, and it is liquid and dissolves and dilutes a component (binder) which combines with the pigment to form a coating film. And a component (organic solvent).
 前記白色無機顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438頁に記載されているニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の公知の分散機が挙げられる。更に該文献310頁記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。 The disperser used to disperse the white inorganic pigment is not particularly limited, and is described, for example, in "Encyclopedia of Pigments", First Edition, Asakura Shoten, 2000, p. Well-known dispersers, such as a kneader, a roll mill, an atlider, a super mill, a dissolver, a homomixer, a sand mill etc. are mentioned. Furthermore, the mechanical grinding described on page 310 of the document may be used to pulverize using frictional force.
 本発明で用いる前記白色無機顔料としての白色無機顔料は、分散安定性及び隠ぺい力の観点から、一次粒子の平均粒径が0.16μm~0.3μmの白色無機顔料が好ましく、更に0.18μm~0.27μmの白色無機顔料が好ましい。さらに0.19μm~0.25μmの白色無機顔料が特に好ましい。一次粒子の平均粒径が0.16μmよりも小さいと、急激に隠ぺい力が低下してマスク層の下地が見えやすくなったり、粘度上昇を起こしたりすることがある。一方、0.3μmを超えると白色度が低下すると同時に急激に隠ぺい力が低下し、また塗布した際の面状が悪化する場合がある。
 尚、ここで言う「一次粒子の平均粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について前記の粒径を求め、このうち、任意に選択する100個の粒径の平均値をいう。
 一方、分散液、塗布液中の平均粒径で測定する場合には、レーザー散乱HORIBA H(株式会社堀場アドバンスドテクノ社製)を用いることができる。
From the viewpoint of dispersion stability and hiding power, the white inorganic pigment as the white inorganic pigment used in the present invention is preferably a white inorganic pigment having an average particle diameter of primary particles of 0.16 μm to 0.3 μm, and further preferably 0.18 μm. White inorganic pigments of ̃0.27 μm are preferred. Furthermore, white inorganic pigments of 0.19 μm to 0.25 μm are particularly preferred. If the average particle size of the primary particles is smaller than 0.16 μm, the hiding power may be rapidly reduced to make the base of the mask layer more visible or to cause an increase in viscosity. On the other hand, if it exceeds 0.3 μm, the whiteness may be reduced and the hiding power may be rapidly reduced, and the surface condition may be deteriorated upon application.
The term "average particle size of primary particles" as used herein refers to the diameter when the electron micrograph image of the particles is a circle of the same area, and "number average particle size" refers to the above-mentioned particles for a large number of particles. The diameter is determined, and the average value of 100 arbitrarily selected particle sizes among them is said.
On the other hand, when measuring by the average particle diameter in a dispersion liquid and a coating liquid, laser scattering HORIBA H (made by Horiba advanced techno company) can be used.
-(B)シリコーン系レジン-
 前記シリコーン系レジンとして公知のものが使用できる。
 シリコーン系レジンは、樹脂を下記シラン化合物で一部変性し、多様な特性が付与されたた変性シリコーンレジンと、アルコキシ基又はシラノール基を有するシラン化合物を脱水縮合させ、シリコーン本来の性質を利用したストレートシリコーンとに分類できる。本発明の耐熱性加飾用着色組成物は、前記シリコーン系レジンが、変性シリコーンレジン、または、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンを含むことが好ましい。
 変性シリコーンレジンとしては、アクリル酸などのアクリルモノマーにシラン化合物を反応させたモノマーを重合又は他のアクリルモノマーに共重合させたアクリル樹脂変性シリコーンレジン(信越化学工業株式会社製KR-9706)、ポリエステルの水酸基等にシラン化合物を反応させたポリエステル樹脂変性シリコーンレジン、樹脂のアミノ基残基等にエポキシ含有シラン化合物を反応させたエポキシ樹脂変性シリコーンレジン、アルキッド樹脂を反応性シラン化合物で変性したアルキッド樹脂変性シリコーンレジン、オキシム系開始剤を用いて樹脂と直接共有結合を形成させるゴム系のシリコーンレジン等が使用できる。
-(B) Silicone resin-
A well-known thing can be used as said silicone resin.
A silicone resin is obtained by partially denatured resin with the following silane compound, dehydrating condensation of a modified silicone resin to which various properties are given, and a silane compound having an alkoxy group or silanol group, and utilizing the intrinsic property of silicone It can be classified as straight silicone. In the coloring composition for heat-resistant decoration of the present invention, the silicone-based resin contains a modified silicone resin or a straight silicone resin containing at least a siloxane structure represented by the following general formula (1) in the molecule. Is preferred.
Acrylic resin modified silicone resin (KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by polymerizing or copolymerizing monomers obtained by reacting a silane compound with acrylic monomers such as acrylic acid (KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) as modified silicone resin Polyester resin-modified silicone resin in which a silane compound is reacted with hydroxyl group of epoxy resin, epoxy resin-modified silicone resin in which epoxy-containing silane compound is reacted with amino group residue of resin, alkyd resin in which alkyd resin is modified with reactive silane compound A modified silicone resin, a rubber silicone resin which directly forms a covalent bond with a resin using an oxime initiator, and the like can be used.
 ストレートシリコーンとしては、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するものが使用できる。
Figure JPOXMLDOC01-appb-C000003
As the straight silicone, one having at least a siloxane structure represented by the following general formula (1) in a molecule can be used.
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Rは独立して、水素原子、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基であり、複数のRは同一であっても異なっていてもよい。すなわち前記一般式(1)で表されるシロキサン構造を有するストレートシリコーンは、同一シロキサン構造の縮合体でも良いし、異なる組合せの共縮合体でも良い。 In the general formula (1), R 1 independently represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched chain having 1 to 20 carbon atoms Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, an aryl having 6 to 20 carbon atoms It is a group or an aralkyl group having 7 to 20 carbon atoms, and a plurality of R 1 s may be the same or different. That is, the straight silicone having a siloxane structure represented by the general formula (1) may be a condensate of the same siloxane structure or a co-condensate of different combinations.
 Rの表すハロゲン原子としては、フッ素原子、塩素原子等を挙げることができる。
 Rの表す炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等を挙げることができる。
 Rの表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。
 Rの表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基の中では、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 また、Rの表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基としては、例えばアリールアルキル基、フルオロアルキル基、クロロアルキル基、ヒドロキシアルキル基、(メタ)アクリロキシアルキル基およびメルカプトアルキル基を挙げることができる。これらの具体例としては、例えば、フェニルメチル(ベンジル)基、ジフェニルメチル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニル-n-プロピル基、2-フェニル-2-プロピル(クミル)基、3-フェニル-n-プロピル基、1-フェニルブチル基、2-フェニルブチル基、3-フェニルブチル基、4-フェニルブチル基、1-フェニルペンチル基、2-フェニルペンチル基、3-フェニルペンチル基、4-フェニルペンチル基、5-フェニルペンチル基、1-フェニルヘキシル基、2-フェニルヘキシル基、3-フェニルヘキシル基、4-フェニルヘキシル基、5-フェニルヘキシル基、6-フェニルヘキシル基、1-フェニルシクロヘキシル基、2-フェニルシクロヘキシル基、3-フェニルシクロヘキシル基、1-フェニルヘプチル基、2-フェニルヘプチル基、3-フェニルヘプチル基、4-フェニルヘプチル基、5-フェニルヘプチル基、6-フェニルヘプチル基、1-フェニルオクチル基、2-フェニルオクチル基、3-フェニルオクチル基、4-フェニルオクチル基、5-フェニルオクチル基、6-フェニルオクチル基、1-ナフチルエチル基、2-ナフチルエチル基、1-ナフチル-n-プロピル基、2-ナフチル-2-プロピル基、3-ナフチル-n-プロピル基、1-ナフチルブチル基、2-ナフチルブチル基、3-ナフチルブチル基、4-ナフチルブチル基、1-ナフチルペンチル基、2-ナフチルペンチル基、3-ナフチルペンチル基、4-ナフチルペンチル基、5-ナフチルペンチル基、1-ナフチルヘキシル基、2-ナフチルヘキシル基、3-ナフチルヘキシル基、4-ナフチルヘキシル基、5-ナフチルヘキシル基、6-ナフチルヘキシル基、1-ナフチルシクロヘキシル基、2-ナフチルシクロヘキシル基、3-ナフチルシクロヘキシル基、1-ナフチルヘプチル基、2-ナフチルヘプチル基、3-ナフチルヘプチル基、4-ナフチルヘプチル基、5-ナフチルヘプチル基、6-ナフチルヘプチル基、1-ナフチルオクチル基、2-ナフチルオクチル基、3-ナフチルオクチル基、4-ナフチルオクチル基、5-ナフチルオクチル基、6-ナフチルオクチル基、などのアリールアルキル基;フルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、(トリフルオロメチル)メチル基、ペンタフルオロエチル基、3-フルオロ-n-プロピル基、2-(トリフルオロメチル)エチル基、(ペンタフルオロエチル)メチル基、ヘプタフルオロ-n-プロピル基、4-フルオロ-n-ブチル基、3-(トリフルオロメチル)-n-プロピル基、2-(ペンタフルオロエチル)エチル基、(ヘプタフルオロ-n-プロピル)メチル基、ノナフルオロ-n-ブチル基、5-フルオロ-n-ペンチル基、4-(トリフルオロメチル)-n-ブチル基、3-(ペンタフルオロエチル)-n-プロピル基、2-(ヘプタフルオロ-n-プロピル)エチル基、(ノナフルオロ-n-ブチル)メチル基、パーフルオロ-n-ペンチル基、6-フルオロ-n-ヘキシル基、5-(トリフルオロメチル)-n-ペンチル基、4-(ペンタフルオロエチル)-n-ブチル基、3-(ヘプタフルオロ-n-プロピル)-n-プロピル基、2-(ノナフルオロ-n-ブチル)エチル基、(パーフルオロ-n-ペンチル)メチル基、パーフルオロ-n-ヘキシル基、7-(トリフルオロメチル)-n-ヘプチル基、6-(ペンタフルオロエチル)-n-ヘキシル基、5-(ヘプタフルオロ-n-プロピル)-n-ペンチル基、4-(ノナフルオロ-n-ブチル)-n-ブチル基、3-(パーフルオロ-n-ペンチル)-n-プロピル基、2-(パーフルオロ-n-ヘキシル)エチル基、(パーフルオロ-n-ヘプチル)メチル基、パーフルオロ-n-オクチル基、9-(トリフルオロメチル)-n-ノニル基、8-(ペンタフルオロエチル)-n-オクチル基、7-(ヘプタフルオロ-n-プロピル)-n-ヘプチル基、6-(ノナフルオロ-n-ブチル)-n-ヘキシル基、5-(パーフルオロ-n-ペンチル)-n-ペンチル基、4-(パーフルオロ-n-ヘキシル)-n-ブチル基、3-(パーフルオロ-n-ヘプチル)-n-プロピル基、2-(パーフルオロ-n-オクチル)エチル基、(パーフルオロ-n-ノニル)メチル基、パーフルオロ-n-デシル基、4-フルオロシクロペンチル基、4-フルオロシクロヘキシル基等のフルオロアルキル基;ならびにクロロメチル基、2-クロロエチル基、3-クロロ-n-プロピル基、4-クロロ-n-ブチル基、3-クロロシクロペンチル基、4-クロロシクロヘキシル基、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシシクロペンチル基、4-ヒドロキシシクロヘキシル基、3-(メタ)アクリロキシプロピル基、3-メルカプトプロピル基等を挙げることができる。
 また、Rの表す炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基としては、例えば、ビニル基、1-メチルビニル基、1-プロペニル基、アリル基(2-プロペニル基)、2-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-シクロペンテニル基、3-シクロヘキセニル基等を挙げることができる。Rの表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基の中では、アリールアルキル基が好ましく、クミル基がより好ましい。
 また、Rの表す炭素数6~20のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基等を挙げることができる。Rの表す炭素数6~20のアリール基のなかでは、加熱時にベンゼンを発生しにくい観点から無置換のフェニル基以外、すなわち、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基が好ましく、o-トリル基、m-トリル基、p-トリル基がより好ましい。
 また、Rの表す炭素数7~20のアラルキル基としては、例えば、ベンジル基、フェネチル基等を挙げることができる。
The halogen atom represented by R 1, a fluorine atom include chlorine atom.
Examples of the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms represented by R 1 include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group and an i-butoxy group. And sec-butoxy, t-butoxy, n-pentyloxy, n-hexyloxy, cyclopentyloxy, cyclohexyloxy and the like.
The linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 is, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group Groups, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like.
Among the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 , an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
In addition, as the linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 , examples thereof include an arylalkyl group, a fluoroalkyl group, a chloroalkyl group, a hydroxyalkyl group, and (meth) acryloxyalkyl Groups and mercaptoalkyl groups can be mentioned. Specific examples thereof include, for example, phenylmethyl (benzyl) group, diphenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-n-propyl group, 2-phenyl-2-propyl (cumyl ), 3-phenyl-n-propyl, 1-phenylbutyl, 2-phenylbutyl, 3-phenylbutyl, 4-phenylbutyl, 1-phenylpentyl, 2-phenylpentyl, 3-) Phenylpentyl, 4-phenylpentyl, 5-phenylpentyl, 1-phenylhexyl, 2-phenylhexyl, 3-phenylhexyl, 4-phenylhexyl, 5-phenylhexyl, 6-phenylhexyl Group, 1-phenylcyclohexyl group, 2-phenylcyclohexyl group, 3-phenylcyclohexyl group 1-phenylheptyl group, 2-phenylheptyl group, 3-phenylheptyl group, 4-phenylheptyl group, 5-phenylheptyl group, 6-phenylheptyl group, 1-phenyloctyl group, 2-phenyloctyl group, 3- Phenyloctyl group, 4-phenyloctyl group, 5-phenyloctyl group, 6-phenyloctyl group, 1-naphthylethyl group, 2-naphthylethyl group, 1-naphthyl-n-propyl group, 2-naphthyl-2-propyl group Group, 3-naphthyl-n-propyl group, 1-naphthylbutyl group, 2-naphthylbutyl group, 3-naphthylbutyl group, 4-naphthylbutyl group, 1-naphthylpentyl group, 2-naphthylpentyl group, 3-naphthyl group Pentyl group, 4-naphthylpentyl group, 5-naphthylpentyl group, 1-naphthylhexyl group, 2-naphthy Hexyl group, 3-naphthylhexyl group, 4-naphthylhexyl group, 5-naphthylhexyl group, 6-naphthylhexyl group, 1-naphthylcyclohexyl group, 2-naphthylcyclohexyl group, 3-naphthylcyclohexyl group, 1-naphthylheptyl group , 2-naphthylheptyl group, 3-naphthylheptyl group, 4-naphthylheptyl group, 5-naphthylheptyl group, 6-naphthylheptyl group, 1-naphthyloctyl group, 2-naphthyloctyl group, 3-naphthyloctyl group, 4 Arylalkyl groups such as -naphthyloctyl group, 5-naphthyloctyl group, 6-naphthyloctyl group, etc .; fluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, (trifluoromethyl) methyl group, pentafluoroethyl group , 3-fluoro-n-propyl, 2- ( Trifluoromethyl) ethyl group, (pentafluoroethyl) methyl group, heptafluoro-n-propyl group, 4-fluoro-n-butyl group, 3- (trifluoromethyl) -n-propyl group, 2- (pentafluoro) Ethyl) Ethyl group, (Heptafluoro-n-propyl) methyl group, nonafluoro-n-butyl group, 5-fluoro-n-pentyl group, 4- (trifluoromethyl) -n-butyl group, 3- (pentafluoro) Ethyl) -n-propyl group, 2- (heptafluoro-n-propyl) ethyl group, (nonafluoro-n-butyl) methyl group, perfluoro-n-pentyl group, 6-fluoro-n-hexyl group, 5- (Trifluoromethyl) -n-pentyl group, 4- (pentafluoroethyl) -n-butyl group, 3- (heptafluoro-n-propyl) -n Propyl group, 2- (nonafluoro-n-butyl) ethyl group, (perfluoro-n-pentyl) methyl group, perfluoro-n-hexyl group, 7- (trifluoromethyl) -n-heptyl group, 6- ( Pentafluoroethyl) -n-hexyl group, 5- (heptafluoro-n-propyl) -n-pentyl group, 4- (nonafluoro-n-butyl) -n-butyl group, 3- (perfluoro-n-pentyl group) ) -N-propyl group, 2- (perfluoro-n-hexyl) ethyl group, (perfluoro-n-heptyl) methyl group, perfluoro-n-octyl group, 9- (trifluoromethyl) -n-nonyl group Group, 8- (pentafluoroethyl) -n-octyl group, 7- (heptafluoro-n-propyl) -n-heptyl group, 6- (nonafluoro-n-butyl) -n-phenyl group Sil group, 5- (perfluoro-n-pentyl) -n-pentyl group, 4- (perfluoro-n-hexyl) -n-butyl group, 3- (perfluoro-n-heptyl) -n-propyl group Fluoroalkyl groups such as 2- (perfluoro-n-octyl) ethyl group, (perfluoro-n-nonyl) methyl group, perfluoro-n-decyl group, 4-fluorocyclopentyl group, 4-fluorocyclohexyl group and the like; And chloromethyl group, 2-chloroethyl group, 3-chloro-n-propyl group, 4-chloro-n-butyl group, 3-chlorocyclopentyl group, 4-chlorocyclohexyl group, hydroxymethyl group, 2-hydroxyethyl group, 3-hydroxycyclopentyl group, 4-hydroxycyclohexyl group, 3- (meth) acryloxypropyl group, 3-mercapto A propyl group etc. can be mentioned.
Further, as the linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms represented by R 1 , for example, a vinyl group, 1-methylvinyl group, 1-propenyl group, allyl group (2-propenyl group) And 2-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-cyclopentenyl group, 3-cyclohexenyl group and the like. Among the linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 , an arylalkyl group is preferable, and a cumyl group is more preferable.
The aryl group having 6 to 20 carbon atoms represented by R 1, for example, a phenyl group, o- tolyl group, m- tolyl group, p- tolyl group, 2,3-xylyl, 2,4-xylyl group And 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, 1-naphthyl and the like. Among the aryl groups having 6 to 20 carbon atoms represented by R 1 , from the viewpoint of hardly generating benzene upon heating, other than unsubstituted phenyl group, that is, o-tolyl group, m-tolyl group, p-tolyl group, 2 , 3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group is preferred, o- Tolyl group, m-tolyl group and p-tolyl group are more preferable.
Further, examples of the aralkyl group having 7 to 20 carbon atoms represented by R 1 include a benzyl group, a phenethyl group and the like.
 前記一般式(1)中、Rは独立して、水素原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~6の直鎖状、分岐状もしくは環状の置換アルキル基または炭素数6~9のアリール基(アリール基のなかでは加熱時にベンゼンを発生しにくい観点から無置換のフェニル基以外であることが好ましい)であることが好ましく、水素原子、メチル基またはトリル基を表すことがより好ましい。
 前記一般式(1)で表されるシロキサン構造は、Rとしてメチル基を含むことが、加飾層のL値を特に高めることができる観点から好ましい。
In the general formula (1), R 1 independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms Is preferably a substituted alkyl group of the above or an aryl group having 6 to 9 carbon atoms (of the aryl groups, those other than unsubstituted phenyl groups are preferred from the viewpoint of hardly generating benzene upon heating); It is more preferable to represent a group or a tolyl group.
Siloxane structure represented by the general formula (1) may include a methyl group as R 1, from the viewpoint of capable of improving particularly the L value of the decorative layer.
 前記ストレートシリコーンは、Rが互いに異なる2種以上の前記一般式(1)で表されるシロキサン構造の共重合体であることも好ましい。この場合、Rがアルキル基である前記一般式(1)で表されるシロキサン構造と、Rが水素原子、置換アルキル基またはアリール基である前記一般式(1)で表されるシロキサン構造との共重合体を好ましく挙げることができる。共重合比としては特に制限はないが、Rがアルキル基である前記一般式(1)で表されるシロキサン構造が、全ての前記一般式(1)で表されるシロキサン構造中、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。 The straight silicone is also preferably a copolymer of a siloxane structure represented by the general formula (1) in which R 1 is different from one another. In this case, the siloxane structure represented by the above general formula (1) wherein R 1 is an alkyl group, and the siloxane structure represented by the above general formula (1) wherein R 1 is a hydrogen atom, a substituted alkyl group or an aryl group And copolymers thereof are preferably mentioned. The copolymerization ratio is not particularly limited, but the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group is 50 to 50 among all the siloxane structures represented by the general formula (1). It is preferably 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%.
 本発明の耐熱性加飾用着色組成物に用いられるストレートシリコーンとしては、分子内に前記一般式(1)で表されるシロキサン構造に加えて、下記一般式(2)で表されるシロキサン構造との共縮合からなるシロキサン構造を含有するストレートシリコーンも好ましく使用できる。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、Rは上記一般式(1)のRと同様の置換基が使用でき、好ましい範囲もRと同様である。
As a straight silicone used for the coloring composition for heat resistant decoration of the present invention, in addition to the siloxane structure represented by the said General formula (1) in a molecule | numerator, the siloxane structure represented by following General formula (2) Straight silicones containing a siloxane structure consisting of cocondensation with can also be preferably used.
Figure JPOXMLDOC01-appb-C000004
In the general formula (2), R 2 can use the same substituents as R 1 in formula (1), is the same as R 1 preferably ranges.
 ストレートシリコーンの具体例としては、炭素数1~20のアルキル基とアルコキシ基を有するシラン化合物の縮合から調製されるアルキル系ストレートシリコーン(メチル系ストレートシリコーン等)、メチルフェニル等のアルキルアリール系ストレートシリコーン、フェニル等のアリール系ストレートシリコーン、メチルハイドロジェン等のハイドロジェン系ストレートシリコーンが使用できる。
 より好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルフェニル系ストレートシリコーンレジン、アクリル樹脂変性シリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンであり、加熱時にベンゼンを発生せず、明度の低下抑制の観点から、特に好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンである。
 これらのシリコーン系レジンは単独で使用しても2種以上を併用してもよく、これらを任意の比率で混合することにより膜物性を制御できる。
 ベンゼンの発生はガスクロマトグラフ質量分析(GC-MS)で定量できる。本発明の静電容量型入力装置の製造方法で形成される加飾層、または本発明の耐熱性加飾用着色組成物を塗布して得られる加飾層は、加熱時に分解生成物としてベンゼンの含有量が少ないことが好ましく、ベンゼンを含有しないことがより好ましい。前記加飾層の加熱時の分解生成物としてベンゼンの含有量は、加飾層100cmあたり29mg未満であることが好ましく、19mg未満であることがより好ましく、9.2mg未満であることが特に好ましく、0.01mg未満であることがより特に好ましい。
Specific examples of straight silicones include alkyl straight silicones (such as methyl straight silicones), alkyl aryl straight silicones such as methylphenyl, prepared from the condensation of a silane compound having an alkyl group having 1 to 20 carbon atoms and an alkoxy group. And aryl based straight silicones such as phenyl and hydrogen based straight silicones such as methyl hydrogen can be used.
More preferred are methyl-based straight silicone resin, methyl-tolyl-based straight silicone resin, methylphenyl-based straight silicone resin, acrylic resin-modified silicone resin, methyl-hydrogen-based straight silicone resin, and hydrodenyl-based straight silicone resin. Particularly preferred are methyl-based straight silicone resin, methyl-tolyl-based straight silicone resin, methyl-hydrogen-based straight silicone resin, and hydro-denyl-based straight silicone resin from the viewpoint of preventing benzene from being generated and suppressing the decrease in lightness.
These silicone resins may be used alone or in combination of two or more, and the film physical properties can be controlled by mixing them at an arbitrary ratio.
The generation of benzene can be quantified by gas chromatography mass spectrometry (GC-MS). The decorative layer formed by the method for producing a capacitance-type input device according to the present invention, or the decorative layer obtained by applying the coloring composition for heat resistance decoration according to the present invention is benzene as a decomposition product when heated. Is preferable, and it is more preferable not to contain benzene. The content of benzene as a decomposition product when heating the decorative layer is preferably less than 29 mg per 100 cm 2 of the decorative layer, more preferably less than 19 mg, particularly preferably less than 9.2 mg Preferably, less than 0.01 mg is more particularly preferred.
 ストレートシリコーンの重量平均分子量は1000~1000000であることが好ましく、2000~800000であることがより好ましく、2500~500000であることが特に好ましい。 The weight average molecular weight of the straight silicone is preferably 1,000 to 1,000,000, more preferably 2,000 to 800,000, and particularly preferably 2,500 to 500,000.
 変性シリコーンレジン及びストレートシリコーンレジンを調製するために使用するシラン化合物としては、
 テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトライソブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、クミルトリメトキシシラン、トリルトリメトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、メチルトリフェノキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシエトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシランなどのトリアルコキシ、トリアシルオキシまたはトリフェノキシシラン類、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメチルジメトキシシラン、γ-メルカプトプロピルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジプロポキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、γ-グリシドキシプロピルフェニルジメトキシシラン、γ-グリシドキシプロピルフェニルジエトキシシランなどのアルコキシシランまたはジアシルオキシシラン類、ジメトキシメチルシラン、トリメトキシシラン、ジメチルエトキシシラン、ジアセトキシメチルシラン、ジエトキシメチルシラン、ジエチルメチルシラン、トリエチルシラン、ブチルジメチルシラン、ジメチルフェニルシラン、メチルフェニルビニルシラン、ジフェニルメチルシラン、トリプロピルシラン、トリペンチルオキシシラン、トリフェニルシラン、トリヘキシルシラン、ジエチルシラン、アリルジメチルシラン、メチルフェニルシラン、ジフェニルシラン、フェニルシラン、オクチルシラン、1,4-ビス(ジメチルシリル)ベンゼン、および1,1,3,3-テトラメチルジシロキサン、ジメチルトリルシラン、メチルトリルビニルシラン、ジトリルメチルシラン、トリトリルシラン、ジメチルベンジルシラン、メチルベンジルビニルシラン、ジベンジルメチルシラン、トリベンジルシラン、ジフェニルシラン、2-クロロエチルシラン、ビス[(p-ジメチルシリル)フェニル]エーテル、1,4-ジメチルジシリルエタン、1,3,5-トリス(ジメチルシリル)ベンゼン、1,3,5-トリメチル-1,3,5-トリシラン、ポリ(メチルシリレン)フェニレン、及びポリ(メチルシリレン)メチレン、テトラクロロシラン、トリクロロシラン、トリエトキシシラン、トリ-n-プロポキシシラン、トリ-i-プロポキシシラン、トリ-n-ブトキシシラン、トリ-sec-ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ-n-プロポキシシラン、フルオロトリ-i-プロポキシシラン、フルオロトリ-n-ブトキシシラン、フルオロトリ-sec-ブトキシシラン、メチルトリクロロシラン、メチルトリ-n-プロポキシシラン、メチルトリ-i-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、2-(トリフルオロメチル)エチルトリクロロシシラン、2-(トリフルオロメチル)エチルトリメトキシシラン、2-(トリフルオロメチル)エチルトリエトキシシラン、2-(トリフルオロメチル)エチルトリ-n-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-i-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-n-ブトキシシラン、2-(トリフルオロメチル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリクロロシラン、2-(パーフルオロ-n-ヘキシル)エチルトリメトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリエトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリクロロシラン、2-(パーフルオロ-n-オクチル)エチルトリメトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリエトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-sec-ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ-n-プロポキシシラン、ヒドロキシメチルトリ-i-プロポキシシラン、ヒドロキシメチルトリ-n-ブトキシシラン、ヒドロキシメチルトリ-sec-ブトキシシラン、3-(メタ)アクリロキシプロピルトリクロロシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリ-n-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-i-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-n-ブトキシシラン、3-(メタ)アクリロキシプロピルトリ-sec-ブトキシシラン、3-メルカプトプロピルトリクロロシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリ-n-プロポキシシラン、3-メルカプトプロピルトリ-i-プロポキシシラン、3-メルカプトプロピルトリ-n-ブトキシシラン、3-メルカプトプロピルトリ-sec-ブトキシシラン、ビニルトリクロロシラン、ビニルトリ-n-プロポキシシラン、ビニルトリ-i-プロポキシシラン、ビニルトリ-n-ブトキシシラン、ビニルトリ-sec-ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ-n-プロポキシシラン、アリルトリ-i-プロポキシシラン、アリルトリ-n-ブトキシシラン、アリルトリ-sec-ブトキシシラン、フェニルトリクロロシラン、フェニルトリ-n-プロポキシシラン、フェニルトリ-i-プロポキシシラン、フェニルトリ-n-ブトキシシラン、フェニルトリ-sec-ブトキシシラン、メチルジクロロシラン、メチルジエトキシシラン、メチルジ-n-プロポキシシラン、メチルジ-i-プロポキシシラン、メチルジ-n-ブトキシシラン、メチルジ-sec-ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-プロポキシシラン、ジメチルジ-i-プロポキシシラン、ジメチルジ-n-ブトキシシラン、ジメチルジ-sec-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジクロロシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジエメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-i-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-sec-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジクロロシラン、(メチル)(γ-グリシドキシプロピル)ジメトキシシラン、(メチル)(γ-グリシドキシプロピル)ジエトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-i-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-sec-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジクロロシラン、(メチル)(3-メルカプトプロピル)ジ
メトキシシラン、(メチル)(3-メルカプトプロピル)ジエトキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-i-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジ-sec-ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ-n-プロポキシシラン、(メチル)(ビニル)ジ-i-プロポキシシラン、(メチル)(ビニル)ジ-n-ブトキシシラン、(メチル)(ビニル)ジ-sec-ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ-n-プロポキシシラン、ジビニルジ-i-プロポキシシラン、ジビニルジ-n-ブトキシシラン、ジビニルジ-sec-ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ-n-プロポキシシラン、ジフェニルジ-i-プロポキシシラン、ジフェニルジ-n-ブトキシシラン、ジフェニルジ-sec-ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n-プロポキシトリメチルシラン、i-プロポキシトリメチルシラン、n-ブトキシトリメチルシラン、sec-ブトキシトリメチルシラン、t-ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等をそれぞれ挙げることができる。但し、本発明はこれらの具体例により限定されない。
As a silane compound used to prepare modified silicone resin and straight silicone resin,
Tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraisobutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, Ethyltrimethoxysilane, Ethyltriethoxysilane, Isobutyltrimethoxysilane, Propyltrimethoxysilane, Vinyltrimethoxysilane, Vinyltriethoxysilane, Vinyltriethoxysilane, Vinyltrimethoxyethoxysilane, Phenyltrimethoxysilane, Phenyltriethoxysilane, Phenyltriacetoxysilane , Cumyltrimethoxysilane, tolyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropyl Trimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxy Silane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, β-cyanoethyltriethoxysilane, methyltriphenoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycide Xylethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyl Pirtriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxy Propyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltrimethoxyethoxysilane, γ-glycidoxypropyltriphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidone X-butyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycid X-butyl trimethoxysilane , Δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriol Methoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3,4-epoxycyclohexyl) ethyltributoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4- Epoxycyclohexyl) propyl tri Trialkoxy such as toxilsilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, triacyloxy or triphenoxysilanes, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropyl Methyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethyldimethoxysilane, γ-mercaptopropyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, vinylmethyl Dimethoxysilane, vinylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethyldiethoxysilane, α-glycidoxyethyl ester Rudimethoxysilane, α-glycidoxyethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxy Propylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ- Glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyl Methoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylethyldipropoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, γ-glycid Alkoxysilanes or diacyloxysilanes such as xylpropyl phenyldimethoxysilane, γ-glycidoxypropylphenyldiethoxysilane, dimethoxymethylsilane, trimethoxysilane, dimethylethoxysilane, diacetoxymethylsilane, diethoxymethylsilane, diethylmethylsilane Silane, triethylsilane, butyldimethylsilane, dimethylphenylsilane, methylphenylvinylsilane, diphenylmethylsilane, tripropylsilane, tripentyloxysilane, toffee Nylsilane, Trihexylsilane, Diethylsilane, Allyldimethylsilane, Methylphenylsilane, Diphenylsilane, Phenylsilane, Octylsilane, 1,4-Bis (dimethylsilyl) benzene, and 1,1,3,3-Tetramethyldisiloxane , Dimethyltolylsilane, methyltolylvinylsilane, ditolylmethylsilane, tolylylsilane, dimethylbenzylsilane, methylbenzylvinylsilane, dibenzylmethylsilane, tribenzylsilane, diphenylsilane, 2-chloroethylsilane, bis [(p-dimethyl), Silyl) phenyl] ether, 1,4-dimethyldisilylethane, 1,3,5-tris (dimethylsilyl) benzene, 1,3,5-trimethyl-1,3,5-trisilane, poly (methylsilylene) phenylene , Poly (methylsilylene) methylene, tetrachlorosilane, trichlorosilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluorotrichlorosilane Trimethoxysilane, fluorotriethoxysilane, fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methyltrichlorosilane, methyltri-n-propoxysilane Silane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, 2- (trifluoromethyl) ethyl trichlorosilane, 2- (trifluoromethyl) Ethyltrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (trifluoro) Methyl) ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltrimethoxy Silane, 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane , 2- (perfluoro-n-hexyl) Ethyl tri-n-butoxysilane, 2- (perfluoro-n-hexyl) ethyl tri-sec-butoxysilane, 2- (perfluoro-n-octyl) ethyltrichlorosilane, 2- (perfluoro-n-octyl) ethyl tri Methoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-i-propoxy Silane, 2- (perfluoro-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-octyl) ethyltri-sec-butoxysilane, hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltrithiol Methoxysilane, hydroxide Methyltri-n-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri-n-butoxysilane, hydroxymethyltri-sec-butoxysilane, 3- (meth) acryloxypropyltrichlorosilane, 3- (meth) Acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propoxysilane, 3 -(Meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxypropyltri-sec-butoxysilane, 3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl Liethoxysilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, 3-mercaptopropyltri-n-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane, vinyltrichloride Chlorosilane, vinyltri-n-propoxysilane, vinyltri-i-propoxysilane, vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane Allyltri-i-propoxysilane, allyltri-n-butoxysilane, allyltri-sec-butoxysilane, phenyltrichlorosilane, phenyltri-n-propoxysilane, phenyltri- i-propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec-butoxysilane, methyldichlorosilane, methyldiethoxysilane, methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxysilane Methyldi-sec-butoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane, ( Methyl) [2- (perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) Ethyl] diemethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i-propoxy Silane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane, (methyl ) (Γ-glycidoxypropyl) dichlorosilane, (methyl) (γ-glycidoxypropyl) dimethoxysilane, (methyl) (γ-glycidoxypropyl) diethoxysilane, (methyl) (γ-glycidoxy) Propyl) di-n-propoxysilane, (methyl) (γ-glycidoxypropyl) di-i-propoxysilane, (methyl) (γ-glycidoxy) Propyl) di-n-butoxysilane, (methyl) (γ-glycidoxypropyl) di-sec-butoxysilane, (methyl) (3-mercaptopropyl) dichlorosilane, (methyl) (3-mercaptopropyl) dimethoxysilane (Methyl) (3-mercaptopropyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n-propoxysilane, (methyl) (3-mercaptopropyl) di-i-propoxysilane, (methyl) ( 3-Mercaptopropyl) di-n-butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane, (methyl) (vinyl) dichlorosilane, (methyl) (vinyl) dimethoxysilane, (methyl) (methyl) ( Vinyl) diethoxysilane, (methyl) (vinyl) di-n-propoxysilane, Methyl) (vinyl) di-i-propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane, divinyldichlorosilane, divinyldimethoxysilane, divinyldiethoxysilane , Divinyldi-n-propoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane, diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi-n-propoxysilane, Diphenyldi-i-propoxysilane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane, chlorotrimethylsila Bromotrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane, (chloro ) (Vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane, (chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane, (ethoxy) (methyl) diphenyl A silane etc. can be mentioned, respectively. However, the present invention is not limited by these specific examples.
 変性シリコーンレジン及びストレートシリコーンレジンなどの前記シリコーン系レジンとしては、市販のものを用いることができる。商品名では、例えば、
 KC-89、KC-89S、X-21-3153、X-21-5841、X-21-5842、X-21-5843、X-21-5844、X-21-5845、X-21-5846、X-21-5847、X-21-5848、X-22-160AS、X-22-170B、X-22-170BX、X-22-170D、X-22-170DX、X-22-176B、X-22-176D、X-22-176DX、X-22-176F、X-40-2308、X-40-2651、X-40-2655A、X-40-2671、X-40-2672、X-40-9220、X-40-9225、X-40-9226、X-40-9227、X-40-9246、X-40-9247、X-40-9250、X-40-9323、X-40-2460M、X-41-1053、X-41-1056、X-41-1805、X-41-1810、KF6001、KF6002、KF6003、KR-212、KR-213、KR-217、KR-220L、KR-242A、KR-271、KR-282、KR-300、KR-311、KR-400、KR-251、KR-255、KR-401N、KR-500、KR-510、KR-5206、KR-5230、KR-5235、KR-9218、KR-9706、KR-165(以上、信越化学工業社);
 SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング社);
 FZ3711、FZ3722(以上、日本ユニカー社);
 DMS-S12、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S38、DMS-S42、DMS-S45、DMS-S51、DMS-227、PSD-0332、PDS-1615、PDS-9931、XMS-5025(以上、チッソ社);
 メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学社);
 エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート社);
 グラスレジンGR100、GR650、GR908、GR950(以上、昭和電工社)等の部分縮合物が挙げられる。但し、本発明はこれらの具体例により限定されない。
 ここで、本発明の耐熱性加飾用着色組成物を適用して形成する(1)加飾層は、光硬化性樹脂と光重合開始剤とを含む耐熱性加飾用着色組成物を光硬化させて形成されなくともよく、本発明の耐熱性加飾用着色組成物は、光硬化性樹脂や光重合開始剤を含んでいても含んでいなくてもよい。その中でも、前記耐熱性加飾用着色組成物が後述する酸化防止剤を含む場合、光重合開始剤を含まないことが、光重合開始剤に露光したときに生成するラジカルによって前記酸化防止剤の機能が阻害されず、十分にベーク後の白色度を高められる観点から好ましい。そのため、前記(B)シリコーン系レジンは熱硬化性であることが好ましい。
A commercially available thing can be used as said silicone resin, such as a modified silicone resin and straight silicone resin. For example,
KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5843, X-21-5844, X-21-5845, X-21-5846, X-21-5847, X-21-5848, X-22-160 AS, X-22-170 B, X-22-170 BX, X-22-170 D, X-22-170 DX, X-22-176 B, X- 22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40-2672, X-40- 9220, X-40-9225, X-40-9226, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-40- 460M, X-41-1053, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR-212, KR-213, KR-217, KR-220L, KR- 242A, KR-271, KR-282, KR-300, KR-400, KR-251, KR-255, KR-401N, KR-500, KR-510, KR-5206, KR-5230, KR-5235, KR-9218, KR-9706, KR-165 (above, Shin-Etsu Chemical Co., Ltd.);
SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (all available from Toray Dow Corning);
FZ3711, FZ3722 (above, Nippon Unicar Corporation);
DMS-S12, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS- 227, PSD-0332, PDS-1615, PDS-9931, XMS-5025 (above, Chisso);
Methyl silicate MS51, Methyl silicate MS56 (above, Mitsubishi Chemical Corporation);
Ethyl Silicate 28, Ethyl Silicate 40, Ethyl Silicate 48 (all available from Colcoat);
Partial condensation products, such as glass resin GR100, GR650, GR908, GR950 (above, Showa Denko KK) etc. are mentioned. However, the present invention is not limited by these specific examples.
Here, the heat-resistant decorative coloring composition according to the present invention is formed by applying (1) the decorative layer, the heat-resistant decorative coloring composition comprising a photocurable resin and a photopolymerization initiator is irradiated with light. It may not be cured and formed, and the coloring composition for heat-resistant decoration of the present invention may or may not contain a photocurable resin and a photopolymerization initiator. Among them, when the coloring composition for heat-resistant decoration contains an antioxidant described later, the fact that it does not contain a photopolymerization initiator can be obtained by the radical generated when exposed to a photopolymerization initiator. It is preferable from the viewpoint of sufficiently enhancing the whiteness after baking without inhibiting the function. Therefore, it is preferable that the (B) silicone resin be thermosetting.
-(C)酸化防止剤-
 本発明の耐熱性加飾用着色組成物は酸化防止剤を含むことが、本発明の耐熱性加飾用着色組成物を後述の静電容量型入力装置の前面板の一方の面側に適用して製膜し、ベークした後、得られる加飾層について、ベーク後の白色度を高める観点から好ましい。ここで、静電容量型入力装置にITOなどの透明電極パターンを形成する場合、高温でベークすることが必要となるが、酸化防止剤を添加することにより、ベーク後の白色度を高めることができる。
 前記酸化防止剤として公知の酸化防止剤が使用できる。例えば、ヒンダードフェノール系酸化防止剤、セミヒンダードフェノール系酸化防止剤、燐酸系酸化防止剤、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤(燐酸/ヒンダードフェノール系酸化防止剤)が使用できる。
 好ましくは燐酸系酸化防止剤;燐酸系酸化防止剤と、ヒンダードフェノール系酸化防止剤若しくはセミヒンダードフェノール系酸化防止剤の併用;または分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤である。
 前記酸化防止剤としては市販の酸化防止剤を用いることもできる。例えば、燐酸系酸化防止剤としてはIRGAFOS168、IRGAFOS38(いずれもBASFジャパン社製)を挙げることができる。燐酸/ヒンダードフェノール系酸化防止剤としてはIRGAMOD295(BASFジャパン社製)を挙げることができ、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤としてはスミライザーGP(住友化学(株)社製)を挙げることができる。
 前記酸化防止剤は、白色度低下防止の観点から燐酸系酸化防止剤であることがより好ましく、IRGAFOS168が特に好ましい。
 前記耐熱性加飾用着色組成物の全固形分に対する前記に対する前記酸化防止剤の添加量としては、特に制限はないが、0.001~10質量%であることが好ましく、0.01~1質量%であることがより好ましく、0.05~0.2質量%であることが特に好ましい。
-(C) Antioxidant-
The heat-resistant decorative coloring composition of the present invention contains an antioxidant, and the heat-resistant decorative coloring composition of the present invention is applied to one surface of a front plate of a capacitive input device described later. It is preferable from the viewpoint of raising the whiteness after baking about the obtained decorative layer after forming into a film and baking it. Here, when forming a transparent electrode pattern such as ITO in a capacitance type input device, it is necessary to bake at a high temperature, but by adding an antioxidant, the whiteness after baking may be increased. it can.
An antioxidant known as the antioxidant can be used. For example, hindered phenol type antioxidants, semi-hindered phenol type antioxidants, phosphoric acid type antioxidants, hybrid type antioxidants having phosphoric acid and hindered phenol in the molecule (phosphoric acid / hindered phenol type antioxidants Can be used.
Preferably, a phosphoric acid type antioxidant; a combination of a phosphoric acid type antioxidant and a hindered phenol type antioxidant or a semi hindered phenol type antioxidant; or a hybrid type antioxidant having phosphoric acid and a hindered phenol in the molecule It is.
A commercially available antioxidant can also be used as said antioxidant. For example, as a phosphoric acid type antioxidant, IRGAFOS168 and IRGAFOS38 (all are BASF Japan make) can be mentioned. Examples of phosphoric acid / hindered phenolic antioxidants include IRGAMOD 295 (manufactured by BASF Japan Ltd.), and as a hybrid antioxidant having phosphoric acid and hindered phenol in the molecule, Sumilyzer GP (Sumitomo Chemical Co., Ltd.) Can be mentioned.
The antioxidant is more preferably a phosphoric acid-based antioxidant from the viewpoint of preventing a decrease in whiteness, and IRGAFOS 168 is particularly preferable.
The addition amount of the antioxidant relative to the total solid content of the heat-resistant decorative coloring composition is not particularly limited, but is preferably 0.001 to 10% by mass, and preferably 0.01 to 1 The content is more preferably in the range of 0.05% to 0.2% by mass.
-溶剤-
 また、本発明の耐熱性加飾用着色組成物を製造する際の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。
-solvent-
In addition, as the solvent for producing the coloring composition for heat-resistant decoration of the present invention, the solvents described in paragraphs 0043 to 0044 of JP-A-2011-95716 can be used.
-触媒-
 本発明の耐熱性加飾用着色組成物は、触媒を含むことが、前記シリコーン系レジンを含む前記耐熱性加飾用着色組成物を硬化して得られる加飾層の脆性を改善する観点から好ましい。特に、シリコーン系レジンを2種以上用いる場合、脱水・脱アルコール縮合反応させることによる架橋促進のために好ましく用いられる。
 前記触媒として公知のものが使用できる。
 好ましい触媒としては、金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選ばれる少なくとも一種の金属の有機錯体又は有機酸塩のような有機金属化合物触媒が挙げられる。
 これらの中でもSn、Ti、Zn、Zr、Hf、Gaは、反応活性が高い点で好ましく、ベーク時のひび割れ防止の観点からZnまたはTiがより好ましく、ポットライフ向上の観点からZnが特に好ましい。
 亜鉛(Zn)を含有する有機金属化合物触媒としては、亜鉛トリアセチルアセトネート、ステアリン酸亜鉛、ビス(アセチルアセトナト)亜鉛(II)(一水和物)等が挙げられる。
 スズ(Sn)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ガリウム(Ga)を含有する有機金属化合物触媒の例としては、例えば、特開2012-238636号公報に記載の触媒を好ましく用いることができる。
 前記触媒としては市販の触媒を用いることもできる。例えば、亜鉛系縮合触媒D-15(信越化学工業式会社製)などを挙げることができる。
 本発明において前記触媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ及び比率で用いてもよい。また反応促進剤や反応抑制剤と併用してもよい。
 前記触媒の含有量は、前記シリコーン系レジンに対して、0.01~10質量%であることがベーク時のひび割れ防止およびポットライフ向上の観点から好ましく、より好ましくは0.03~5.0質量%である。
-catalyst-
The heat-resistant and decorative coloring composition of the present invention contains a catalyst from the viewpoint of improving the brittleness of the decorative layer obtained by curing the heat-resistant and decorative coloring composition containing the silicone resin. preferable. In particular, when two or more silicone resins are used, they are preferably used to accelerate crosslinking by causing dehydration / dealcoholization condensation reaction.
A well-known thing can be used as said catalyst.
Preferred examples of the catalyst include tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y) and aluminum (metal components). And organometallic compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B) and gallium (Ga).
Among these, Sn, Ti, Zn, Zr, Hf, and Ga are preferable in that they have high reaction activity, Zn or Ti is more preferable from the viewpoint of preventing cracking at the time of baking, and Zn is particularly preferable from the viewpoint of pot life improvement.
Examples of the organic metal compound catalyst containing zinc (Zn) include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate) and the like.
As an example of the organometallic compound catalyst containing tin (Sn), titanium (Ti), zirconium (Zr), hafnium (Hf) and gallium (Ga), for example, the catalyst described in JP 2012-238636 A can be used. It can be used preferably.
A commercially available catalyst can also be used as said catalyst. For example, a zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned.
In the present invention, one type of the catalyst may be used alone, or two or more types may be used in any combination and ratio. Moreover, you may use together with a reaction promoter or reaction inhibitor.
The content of the catalyst is preferably 0.01 to 10% by mass based on the silicone resin from the viewpoint of preventing cracking at the time of baking and improving the pot life, and more preferably 0.03 to 5.0. It is mass%.
-添加剤-
 さらに、前記耐熱性加飾用着色組成物には、その他の添加剤を用いてもよい。前記添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。
-Additive-
Furthermore, other additives may be used in the heat-resistant decorative coloring composition. Examples of the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP2009-237362A, and thermal polymerization prevention described in paragraph 0018 of Japanese Patent No. 4502784. And further, other additives described in paragraphs [0058] to [0071] of JP-A-2000-310706.
 以上、本発明における耐熱性加飾用着色組成物が非感光性材料である場合を中心に説明したが、前記耐熱性加飾用着色組成物は、必要に応じてネガ型材料又はポジ型材料であってもよい。 As described above, the heat resistant decorative coloring composition in the present invention is mainly described as a non-photosensitive material, but the heat resistant decorative coloring composition may be a negative-working material or a positive-working material as needed. It may be
(厚み)
 前記耐熱性加飾用着色組成物を適用したときの厚みが1~40μmであることが、本発明の耐熱性加飾用着色組成物を静電容量型入力装置の加飾層として用いたときの加飾層の隠蔽力を高めるための観点から、好ましい。
 前記加飾層の厚みは1.5~38μmが更に好ましく、1.8~36μmが特に好ましい。
(Thickness)
When the heat resistant decorative coloring composition of the present invention is used as a decorative layer of a capacitive input device, the thickness when the heat resistant decorative coloring composition is applied is 1 to 40 μm It is preferable from the viewpoint of increasing the hiding power of the decorative layer.
The thickness of the decorative layer is more preferably 1.5 to 38 μm, particularly preferably 1.8 to 36 μm.
[静電容量型入力装置の製造方法]
 本発明の静電容量型入力装置の製造方法(以下、本発明の製造方法とも言う)は、前面板と、前記前面板の一方の面側に少なくとも下記(1)および(3)~(5)の要素を有する静電容量型入力装置の製造方法であって、本発明の耐熱性加飾用着色組成物を前記前面板の一方の面側に適用して少なくとも前記(1)加飾層を形成する工程を含むことを特徴とする。
(1)加飾層
(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(5)前記第一の透明電極パターンと前記第二の電極パターンとを電気的に絶縁する絶縁層
 さらに、本発明の静電容量型入力装置は、さらに下記(6)を有していてもよい。
(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素
 また、本発明の静電容量型入力装置は、第二の電極パターンが透明電極パターンであってもよい。なお、本明細書中において第二の電極パターンの代わりに第二の透明電極パターンについて説明することがあるが、第二の電極パターンの好ましい態様も第二の透明電極パターンの好ましい態様と同様である。
 さらに本発明の静電容量型入力装置の製造方法は、前記前面板の一方の面側に配された前記(1)加飾層の前面板と対向する面とは逆側の面上に、さらに(2)マスク層を形成することが好ましい。
[Method of Manufacturing Capacitance Type Input Device]
The method for manufacturing a capacitance-type input device according to the present invention (hereinafter also referred to as the manufacturing method according to the present invention) comprises a front plate and at least one of the following (1) and (3) to (5) A method of manufacturing a capacitance-type input device having an element according to claim 1, wherein the heat-resistant and decorative coloring composition of the present invention is applied to one side of the front plate to form at least the (1) decorative layer. And the step of forming
(1) Decorative layer (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction through connection portions (4) The first transparent electrode pattern A plurality of second electrode patterns (5) comprising a plurality of pad portions which are electrically insulated and extend in a direction crossing the first direction (5) the first transparent electrode pattern and the second An insulating layer which electrically insulates from the electrode pattern of the electrode pattern according to the present invention may further have the following (6).
(6) A conductive element which is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and is different from the first transparent electrode pattern and the second electrode pattern. In the capacitance type input device of the present invention, the second electrode pattern may be a transparent electrode pattern. Although the second transparent electrode pattern may be described instead of the second electrode pattern in the present specification, the preferred embodiment of the second electrode pattern is the same as the preferred embodiment of the second transparent electrode pattern. is there.
Further, in the method of manufacturing a capacitance-type input device according to the present invention, on the surface opposite to the surface facing the front plate of the (1) decorative layer disposed on one side of the front plate, Furthermore, it is preferable to form (2) a mask layer.
<静電容量型入力装置の構成>
 まず、本発明の製造方法によって形成される静電容量型入力装置の構成について説明する。図1は、本発明の静電容量型入力装置の中でも好ましい構成を示す断面図である。図1において静電容量型入力装置10は、前面板1と、加飾層2aと、マスク層2bと、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、透明保護層7と、から構成されている。
<Configuration of Capacitance Type Input Device>
First, the configuration of a capacitive input device formed by the manufacturing method of the present invention will be described. FIG. 1 is a cross-sectional view showing a preferable configuration among the capacitance type input device of the present invention. In FIG. 1, the capacitive input device 10 includes a front plate 1, a decoration layer 2 a, a mask layer 2 b, a first transparent electrode pattern 3, a second transparent electrode pattern 4, and an insulating layer 5. , The conductive element 6 and the transparent protective layer 7.
 前面板1は、ガラス基板等の透光性基板で構成されており、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。本明細書において、本発明の静電容量型入力装置10を構成する前面板1の表面のうち、指などを接触などさせて入力が行われる面を接触面といい、前面板1の接触面とは反対側の面を非接触面1aという。以下、前面板を、「基材」と称する場合がある。 The front plate 1 is made of a translucent substrate such as a glass substrate, and for example, tempered glass represented by Gorilla glass of Corning Co., Ltd. can be used. In the present specification, of the surfaces of the front plate 1 constituting the capacitance-type input device 10 of the present invention, the surface on which an input is performed by bringing a finger or the like into contact is referred to as a contact surface. The surface on the opposite side is called non-contact surface 1a. Hereinafter, the front plate may be referred to as a "substrate".
 また、前面板1の一方の面上には加飾層2aを介して、マスク層2bが設けられている。マスク層2bは、タッチパネル前面板の一方の面側に形成された表示領域周囲の額縁状のパターンであり、引回し配線等が見えないようにするために形成される。
 加飾層2aは、マスク層2b上、すなわち、タッチパネル前面板の一方の面側とマスク層2bの間に加飾を目的に形成される。
 本発明の静電容量型入力装置10には、図2に示すように、前面板1の一部の領域(図2においては入力面以外の領域)を覆うように加飾層2a、マスク層2bが設けられていることが好ましい。更に、前面板1には、図2に示すように前記前面板の一部に開口部8を設けることができる。開口部8には、押圧式のメカニカルなスイッチを設置することができる。基材として用いられる強化ガラスは強度が高く、加工が困難であるため、前記開口部8を形成するには強化処理前に開口部8を形成したのち、強化処理を行うのが一般的である。しかしながら、この開口部8を有した強化処理後の基板に、加飾層形成用液体レジストやスクリーン印刷インクを用いて一度に加飾層2aを形成しようとすると、開口部からのレジスト成分のモレや、前面板の境界線直上まで遮光パターンを形成する必要のあるマスク層と前面板の間に設けられる加飾層において、ガラス端からのレジスト成分のはみ出し(モレ)を生じ、前面板裏側を汚染してしまうという問題が起こることがある。開口部8を有する基材上に耐熱性加飾用着色組成物を数回に分けて加飾層2aを形成する場合、このような問題も解決することができる。
Further, a mask layer 2 b is provided on one surface of the front plate 1 via the decorative layer 2 a. The mask layer 2 b is a frame-like pattern around the display area formed on one surface side of the touch panel front plate, and is formed so as not to be visible in the routing wiring and the like.
The decorative layer 2a is formed on the mask layer 2b, that is, between the one surface side of the touch panel front plate and the mask layer 2b for the purpose of decoration.
In the capacitance-type input device 10 of the present invention, as shown in FIG. 2, a decorative layer 2a and a mask layer are provided to cover a partial region (a region other than the input surface in FIG. 2) of the front plate 1. Preferably 2b is provided. Furthermore, as shown in FIG. 2, the front plate 1 can be provided with an opening 8 in a part of the front plate. In the opening 8, a push-type mechanical switch can be installed. Since the tempered glass used as a base material is high in strength and difficult to process, in order to form the opening 8, it is general to form the opening 8 before the strengthening treatment and then to perform the strengthening treatment . However, if it is attempted to form the decorative layer 2a at one time using a liquid resist for forming a decorative layer or screen printing ink on the substrate after the strengthening treatment having the opening 8, leakage of the resist component from the opening may occur. Also, in the decorative layer provided between the mask layer and the front plate, which needs to form a light shielding pattern just above the boundary of the front plate, a resist component may be exfoliated (glare) from the glass edge to contaminate the back side of the front plate. Problems can occur. When forming the decorative layer 2a by dividing the coloring composition for heat resistant decoration into several times on the base material which has the opening part 8, such a problem can also be solved.
 前面板1の一方の面には、複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン3と、第一の透明電極パターン3と電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン4と、第一の透明電極パターン3と第二の透明電極パターン4を電気的に絶縁する絶縁層5とが形成されている。前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透光性の導電性金属酸化膜で作製することができる。このような金属膜としては、ITO膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;SiO等の金属酸化膜などが挙げられる。この際、各要素の、膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜とするため、電気的抵抗を低減することもできる。また、前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、後述の導電性繊維を用いた導電性硬化性樹脂組成物を用いて製造することもできる。その他、ITO等によって第一の透明電極パターン等を形成する場合には、特許第4506785号公報の段落0014~0016等を参考にすることができる。 A plurality of first transparent electrode patterns 3 formed by extending a plurality of pad portions in a first direction through connection portions on one surface of the front plate 1, and a first transparent electrode pattern 3 And a plurality of second transparent electrode patterns 4 formed of a plurality of pad portions formed to extend in a direction intersecting the first direction, a first transparent electrode pattern 3 and a second And an insulating layer 5 that electrically insulates the transparent electrode pattern 4. The first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 to be described later are, for example, translucent conductive materials such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). Metal oxide film. Examples of such a metal film include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, Mo and the like; metal oxide films such as SiO 2 and the like. At this time, the film thickness of each element can be 10 to 200 nm. In addition, since the amorphous ITO film is converted to a polycrystalline ITO film by firing, the electrical resistance can also be reduced. Moreover, the said 1st transparent electrode pattern 3, the 2nd transparent electrode pattern 4, and the electroconductive element 6 mentioned later are manufactured using the electroconductive curable resin composition using the below-mentioned electroconductive fiber. It can also be done. In addition, when forming the first transparent electrode pattern etc. by ITO etc., paragraphs 0014 to 0016 etc. of Japanese Patent No. 4506785 can be referred to.
 また、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方は、前面板1の一方の面およびマスク層2の前面板1と対向する面とは逆側の面の両方の領域にまたがって設置することができる。図1においては、第二の透明電極パターンが、前面板1の一方の面およびマスク層2の前面板1と対向する面とは逆側の面の両方の領域にまたがって設置されている図が示されている。このように、一定の厚みが必要なマスク層と前面板裏面とにまたがっている場合でも、本発明の耐熱性加飾用着色組成物を数回に分けて印刷または塗布することで、簡単な工程でマスク部分境界に連続した膜形成が可能になる。 Further, at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4 is both on one side of the front plate 1 and on the opposite side of the surface of the mask layer 2 opposite to the front plate 1. It can be installed across the area. In FIG. 1, the second transparent electrode pattern is disposed across the two regions of one surface of the front plate 1 and the surface of the mask layer 2 opposite to the surface facing the front plate 1. It is shown. As described above, even in the case of covering the mask layer requiring a certain thickness and the back surface of the front plate, the coloring composition for heat-resistant decoration of the present invention is divided into several times and printed or applied. The process enables continuous film formation on the mask partial boundaries.
 図3を用いて第一の透明電極パターン3および第二の透明電極パターン4について説明する。図3は、本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。図3に示すように、第一の透明電極パターン3は、パッド部分3aが接続部分3bを介して第一の方向に延在して形成されている。また、第二の透明電極パターン4は、第一の透明電極パターン3と絶縁層5によって電気的に絶縁されており、第一の方向に交差する方向(図3における第二の方向)に延在して形成された複数のパッド部分によって構成されている。ここで、第一の透明電極パターン3を形成する場合、前記パッド部分3aと接続部分3bとを一体として作製してもよいし、接続部分3bのみを作製して、パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)してもよい。パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)する場合、図3に示すように接続部分3bの一部とパッド部分3aの一部とが連結され、且つ、絶縁層5によって第一の透明電極パターン3と第二の透明電極パターン4とが電気的に絶縁されるように各層が形成される。 The first transparent electrode pattern 3 and the second transparent electrode pattern 4 will be described with reference to FIG. FIG. 3 is an explanatory view showing an example of a first transparent electrode pattern and a second transparent electrode pattern in the present invention. As shown in FIG. 3, in the first transparent electrode pattern 3, the pad portion 3a is formed to extend in the first direction via the connection portion 3b. The second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction (second direction in FIG. 3) intersecting the first direction. It is comprised by the some pad part formed by existence. Here, when the first transparent electrode pattern 3 is formed, the pad portion 3a and the connection portion 3b may be manufactured integrally, or only the connection portion 3b is manufactured to form the pad portion 3a and the second portion. The transparent electrode pattern 4 may be integrally manufactured (patterned). When the pad portion 3a and the second transparent electrode pattern 4 are integrally manufactured (patterned), as shown in FIG. 3, a portion of the connection portion 3b and a portion of the pad portion 3a are connected, and an insulating layer Each layer is formed such that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by the reference numeral 5.
 図1において、マスク層2の前面板1と対向する面とは逆側の面側には導電性要素6が設置されている。導電性要素6は、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方に電気的に接続され、且つ、第一の透明電極パターン3および第二の透明電極パターン4とは別の導電性要素である。図1においては、別の導電性要素6が第二の透明電極パターン4に接続されている図が示されている。 In FIG. 1, a conductive element 6 is provided on the surface of the mask layer 2 opposite to the surface facing the front plate 1. The conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and the first transparent electrode pattern 3 and the second transparent electrode pattern 4 Another conductive element. In FIG. 1, a view is shown in which another conductive element 6 is connected to the second transparent electrode pattern 4.
 また、図1においては、各構成要素の全てを覆うように透明保護層7が設置されている。透明保護層7は、各構成要素の一部のみを覆うように構成されていてもよい。絶縁層5と透明保護層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5と透明保護層7とを構成する材料としては、表面硬度、耐熱性が高いものが好ましく、公知の感光性シロキサン樹脂材料、アクリル樹脂材料などが用いられる。 Moreover, in FIG. 1, the transparent protective layer 7 is provided so that all of each component may be covered. The transparent protective layer 7 may be configured to cover only a part of each component. The insulating layer 5 and the transparent protective layer 7 may be the same material or different materials. As a material which comprises the insulating layer 5 and the transparent protective layer 7, a thing with high surface hardness and heat resistance is preferable, and a well-known photosensitive siloxane resin material, an acrylic resin material, etc. are used.
 以下、本発明の製造方法について、各層の詳細を説明する。
 本発明の製造方法の過程で形成される態様例として、図4~8の態様を挙げることができる。図4は、開口部8が形成された強化処理ガラス11の一例を示す上面図である。図5は、加飾層2a、マスク層2bが形成された前面板の一例を示す上面図である。図6は、第一の透明電極パターン3が形成された前面板の一例を示す上面図である。図7は、第一の透明電極パターン3と第二の透明電極パターン4が形成された前面板の一例を示す上面図である。図8は、第一および第二の透明電極パターンとは別の導電性要素6が形成された前面板の一例を示す上面図である。これらは、上記説明を具体化した例を示すものであり、本発明の範囲はこれらの図面により限定的に解釈されることはない。
The details of each layer will be described below for the production method of the present invention.
Examples of embodiments formed in the process of the production method of the present invention include the embodiments of FIGS. FIG. 4 is a top view showing an example of the tempered glass 11 in which the opening 8 is formed. FIG. 5 is a top view showing an example of a front plate on which the decorative layer 2a and the mask layer 2b are formed. FIG. 6 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 is formed. FIG. 7 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed. FIG. 8 is a top view showing an example of a front plate on which a conductive element 6 different from the first and second transparent electrode patterns is formed. These show examples that embody the above description, and the scope of the present invention is not limitedly interpreted by these drawings.
<(1)加飾層>
 本発明の製造方法は、少なくとも前記(1)加飾層(以下、「着色層」とも言う。)を、本発明の耐熱性加飾用着色組成物を用いて形成することを特徴とする。
<(1) Decorative layer>
The manufacturing method of the present invention is characterized in that at least the (1) decorative layer (hereinafter also referred to as "colored layer") is formed using the heat resistant decorative coloring composition of the present invention.
 図2の構成の開口部8を有する静電容量型入力装置において、図1に記載される前記加飾層2aや後述のマスク層等を、本発明の耐熱性加飾用着色組成物や後述の光硬化性樹脂組成物若しくは光硬化性樹脂層を有する転写フィルムを用いて形成すると、開口部を有する基板(前面板)でも開口部分からレジスト成分のモレがなく、特に前面板の境界線直上まで遮光パターンを形成する必要のある加飾層やマスク層において、ガラス端からの着色成分のはみ出し(モレ)がないため前面板裏側を汚染することなく、簡略な工程で、薄層化および軽量化されたタッチパネルを製造することができる。 In the capacitance type input device having the opening 8 of the configuration of FIG. 2, the decorative layer 2a described in FIG. 1, the mask layer described later, etc. When the transfer film having the photocurable resin composition or the photocurable resin layer of the present invention is used, there is no leakage of the resist component from the opening even in the substrate having the opening (front plate). In the decorative layer and mask layer where it is necessary to form a light shielding pattern, there is no protrusion of coloring components from the glass edge (moisture), so there is no contamination on the back of the front plate, and thinning and weight reduction in a simple process. It is possible to manufacture an integrated touch panel.
 前記加飾層を、本発明の耐熱性加飾用着色組成物を用いて形成する方法について説明する。一般に耐熱性加飾用着色組成物を用いる場合、光硬化性樹脂を含んでいれば通常のフォトリソグラフィーの方法によって形成することができる。ここで、本発明の耐熱性加飾用着色組成物は光硬化性樹脂を含んでいても含んでいなくてもよく、いずれの場合でも基板上に適用(例えば、印刷または塗布)する方法によって、本発明の耐熱性加飾用着色組成物を用いて加飾層を形成することができる。前記前面板の一方の面側への前記耐熱性加飾用着色組成物の適用を、前記耐熱性加飾用着色組成物を印刷して行うことが好ましく、スクリーン印刷であることがより好ましい。
 必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、ポストベークを行ってもよく、ポストベークを行うことが好ましい。
The method to form the said decoration layer using the coloring composition for heat resistant decoration of this invention is demonstrated. In general, when a heat-resistant decorative coloring composition is used, it can be formed by a conventional photolithography method as long as it contains a photocurable resin. Here, the coloring composition for heat-resistant decoration of the present invention may or may not contain a photocurable resin, and in any case, it is applied (for example, printed or coated) on a substrate. A decorative layer can be formed using the heat-resistant and decorative coloring composition of the present invention. It is preferable that printing of the coloring composition for heat-resistant decoration is performed by applying the coloring composition for heat-resistant decoration to one surface side of the front plate, and it is more preferable that it is screen printing.
If necessary, known developing equipment such as a brush and a high pressure jet may be combined. After development, post-exposure and post-baking may be carried out if necessary, and post-baking is preferred.
 また、本発明の耐熱性加飾用着色組成物を適用(例えば、印刷または塗布)した後、乾燥工程における加飾層の密着性を高めるために、予め基材(前面板)の一方の面に表面処理を施すことができる。前記表面処理としては、シラン化合物(シランカップリング剤)を用いた表面処理(シランカップリング処理)を実施することが好ましい。シランカップリング剤としては、感光性樹脂と相互作用する官能基を有するものが好ましい。例えばシランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄する。この後、加熱により反応させる。加熱槽を用いてもよく、ラミネータの基板予備加熱でも反応を促進できる。 Moreover, after applying (for example, printing or application) the coloring composition for heat resistance decoration of this invention, in order to improve the adhesiveness of the decoration layer in a drying process, one side of a base material (front plate) beforehand Surface treatment. As the surface treatment, it is preferable to carry out surface treatment (silane coupling treatment) using a silane compound (silane coupling agent). As a silane coupling agent, what has a functional group which interacts with photosensitive resin is preferable. For example, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3 wt% aqueous solution, trade name: KBM 603, Shin-Etsu Chemical Co., Ltd.) is sprayed for 20 seconds with a shower to wash the pure water shower Do. After this, the reaction is carried out by heating. A heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.
(ポストベーク工程)
 前記耐熱性加飾用着色組成物を前記前面板の一方の面側に適用(例えば、印刷または塗布)した後、乾燥工程後にポストベーク工程を含むことが好ましい。
 本発明の製造方法は、前記(1)加飾層を、本発明の耐熱性加飾用着色組成物を前記前面板の一方の面側に適用した後に、0.08~1.2atmの環境下で180~300℃に加熱して形成することが白色度と生産性の両立の観点から好ましい。
 前記ポストベークの加熱は0.5atm以上の環境下で行うことがより好ましい。一方、1.1atm以下の環境下で行うことがより好ましく、1.0atm以下の環境下で行うことが特に好ましい。さらに、約1atm(大気圧)環境下で行うことが特別な減圧装置を用いることなく製造コストを低減できる観点からより特に好ましい。ここで、従来は前記(1)加飾層を加熱により硬化して形成する場合、非常に低い圧力の減圧環境下で行い、酸素濃度を低くすることでベーク後の白色度を維持していたが、本発明の耐熱性加飾用着色組成物を用いることにより、上記圧力の範囲でベークした後も加飾層の白色度を高めることができる。
 前記ポストベークの温度は、200~280℃であることがより好ましく、220~260℃であることが特に好ましい。
 前記ポストベークの時間は、20~150分であることがより好ましく、30~100分であることが特に好ましい。
 前記ポストベークは、空気環境下で行っても、窒素置換環境下で行ってもよいが、空気環境下で行うことが、特別な減圧装置を用いることなく製造コストを低減できる観点から特に好ましい。
(Post-bake process)
It is preferable to include a post-baking step after the drying step after applying (for example, printing or coating) the heat-resistant decorative coloring composition to one surface side of the front plate.
The manufacturing method of the present invention is the environment of 0.08 to 1.2 atm after applying the coloring composition for heat-resistant decoration of the present invention to one side of the front plate of the (1) decorative layer. It is preferable to form by heating to 180 to 300 ° C. below from the viewpoint of achieving both whiteness and productivity.
The post-baking heating is more preferably performed under an environment of 0.5 atm or more. On the other hand, it is more preferable to carry out under an environment of 1.1 atm or less, and it is particularly preferable to carry out under an environment of 1.0 atm or less. Furthermore, it is particularly preferable to carry out under about 1 atm (atmospheric pressure) environment from the viewpoint of reducing the manufacturing cost without using a special pressure reducing device. Here, conventionally, when the above-mentioned (1) decorative layer is cured by heating and formed, it is performed under a reduced pressure environment with very low pressure, and the whiteness after baking is maintained by lowering the oxygen concentration. However, by using the heat-resistant and decorative coloring composition of the present invention, the whiteness of the decorative layer can be enhanced even after baking in the above pressure range.
The temperature of the post-baking is more preferably 200 to 280 ° C., and particularly preferably 220 to 260 ° C.
The post-baking time is more preferably 20 to 150 minutes, and particularly preferably 30 to 100 minutes.
The post-baking may be performed in an air environment or in a nitrogen-substituted environment, but it is particularly preferable to perform in an air environment from the viewpoint of reducing the manufacturing cost without using a special pressure reducing device.
(その他の工程)
 本発明の製造方法は、ポスト露光工程等、その他の工程を有していてもよい。
 前記耐熱性加飾用着色組成物が光硬化性樹脂層を有する場合に前記加飾層を形成するときは、ポスト露光工程を含むことが好ましい。前記ポスト露光工程は、前記加飾層の表面のうち前記前面板と対向する面側から露光してもよく、また、前記前面板と対向する面とは逆側の面側から露光してもよく、さらに、前記加飾層の両面側から露光してもよい。
(Other process)
The manufacturing method of the present invention may have other steps such as a post-exposure step.
When the heat-resistant decorative coloring composition has a photocurable resin layer, it is preferable to include a post-exposure step when forming the decorative layer. In the post-exposure step, the surface of the decorative layer may be exposed from the side facing the front plate, or the side opposite to the side facing the front plate may be exposed. Alternatively, the exposure may be performed from both sides of the decorative layer.
<(2)マスク層>
 本発明の製造方法においては、マスク層2bと、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、必要に応じて透明保護層7との少なくとも一要素を、硬化性樹脂組成物を用いて形成することが好ましい。また、硬化性樹脂組成物を用いて形成した硬化性樹脂層を有する転写フィルムを転写することにより、マスク層2bと、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、必要に応じて透明保護層7との少なくとも一要素を形成する工程を含むことも好ましい。なお、「硬化性樹脂層」とは、本発明の耐熱性加飾用着色組成物を製膜して得られる層(加飾層)や、光硬化性樹脂組成物からなる「光硬化性樹脂層」を含む。
 マスク層2bと、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、必要に応じて透明保護層7との少なくとも一要素は、光硬化性樹脂層を形成して作製されることがより好ましく、光硬化性樹脂組成物を用いて形成されることが特に好ましい。
 例えば、黒色のマスク層2を形成する場合には、前記加飾層として黒色着色組成物や、黒色の光硬化性樹脂層を有する光硬化性樹脂組成物を用いて、前記前面板1の表面に前記黒色加飾層を形成することができる。
<(2) Mask layer>
In the manufacturing method of the present invention, the mask layer 2b, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and the transparent protective layer 7 as needed. It is preferable to form at least one of the components by using a curable resin composition. Further, by transferring a transfer film having a curable resin layer formed using a curable resin composition, the mask layer 2b, the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the insulation It is also preferable to include the step of forming at least one element of the layer 5, the conductive element 6, and, if necessary, the transparent protective layer 7. In addition, with "curable resin layer", the "photocurable resin which consists of a layer (decorative layer) obtained by forming into a film the coloring composition for heat resistance decoration of this invention, and a photocurable resin composition. "Layer" is included.
At least one of the mask layer 2b, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and, if necessary, the transparent protective layer 7 is light. It is more preferable to form by forming a curable resin layer, and it is particularly preferable to form using a photocurable resin composition.
For example, in the case of forming a black mask layer 2, the surface of the front plate 1 may be formed using a black coloring composition as the decorative layer or a photocurable resin composition having a black photocurable resin layer. The black decorative layer can be formed on
 さらに、遮光性が必要なマスク層2bの形成に、光硬化性樹脂組成物を用いることにより、ムラ、ハジキ、気泡などによる光モレのない高品位なマスク層2b等を形成することができる。 Further, by using the photocurable resin composition for forming the mask layer 2b which needs light shielding property, it is possible to form a high quality mask layer 2b and the like without light leakage due to unevenness, repelling, air bubbles and the like.
 着色組成物からなる着色層や、前記光硬化性樹脂組成物からなる光硬化性樹脂層をマスク層として用いる場合には着色剤を用いることができる。本発明に用いる着色剤としては、公知の着色剤(有機顔料、無機顔料、染料等)を好適に用いることができる。尚、本発明においては、白、黒、赤、青、緑色等の顔料の混合物等を用いることができる。
 特に前記マスク層を黒色のマスク層として用いる場合には、光学濃度の観点から、黒色着色剤を用いることが好ましい。黒色着色剤としては、例えば、カーボンブラック、チタンカーボン、酸化鉄、酸化チタン、黒鉛などが挙げられ、中でも、カーボンブラックが好ましい。
 その他の色のマスク層として用いるためには、特許第4546276号公報の段落0183~0185などに記載の顔料、あるいは染料を混合して用いてもよい。具体的には、特開2005-17716号公報の段落0038~0054に記載の顔料および染料、特開2004-361447号公報の段落0068~0072に記載の顔料、特開2005-17521号公報の段落0080~0088に記載の着色剤等を好適に用いることができる。
 本発明で用いる加飾層以外に用いられる着色剤は、分散安定性の観点から、数平均粒径0.001μm~0.1μmのものが好ましく、更に0.01μm~0.08μmのものが好ましい。尚、ここで言う「粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について前記の粒径を求め、この100個平均値をいう。
A coloring agent can be used when using the coloring layer which consists of a coloring composition, and the photocurable resin layer which consists of said photocurable resin composition as a mask layer. As a coloring agent used for this invention, a well-known coloring agent (an organic pigment, an inorganic pigment, dye etc.) can be used suitably. In the present invention, a mixture of pigments such as white, black, red, blue and green can be used.
In particular, when the mask layer is used as a black mask layer, it is preferable to use a black colorant from the viewpoint of optical density. Examples of black colorants include carbon black, titanium carbon, iron oxide, titanium oxide, graphite and the like, among which carbon black is preferred.
In order to use as a mask layer of other colors, the pigment described in paragraphs 0183 to 0185 of Japanese Patent No. 4546276, or a dye may be mixed and used. Specifically, pigments and dyes described in paragraphs 0038 to 0054 of JP 2005-17716 A, pigments described in paragraphs 0068 to 0072 of JP 2004-361447 A, paragraphs of JP 2005-17521 A. The colorants described in 0080 to 0088 can be suitably used.
From the viewpoint of dispersion stability, the colorant used in the present invention other than the decorative layer preferably has a number average particle diameter of 0.001 μm to 0.1 μm, and more preferably 0.01 μm to 0.08 μm. . The term "particle size" as used herein refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and "number average particle size" refers to the above-described particle size of a large number of particles, This 100-piece average value is said.
 光硬化性樹脂層は、以下の構成であることが好ましい。 It is preferable that a photocurable resin layer is the following structures.
 前記光硬化性樹脂層に用いられる前記モノマーとしては本発明の趣旨に反しない限りにおいて特に制限はなく、公知の重合性化合物を用いることができる。
 前記重合性化合物としては、特許第4098550号の段落0023~0024に記載の重合性化合物を用いることができる。
The monomer used for the photocurable resin layer is not particularly limited as long as it does not depart from the spirit of the present invention, and a known polymerizable compound can be used.
As the polymerizable compound, those described in paragraphs 0023 to 0024 of Patent No. 4098550 can be used.
 前記光硬化性樹脂層に用いられる前記バインダーとしては本発明の趣旨に反しない限りにおいて特に制限はなく、公知の重合性化合物を用いることができる。
 光硬化性樹脂組成物がネガ型材料である場合、光硬化性樹脂組成物には、アルカリ可溶性樹脂、重合性化合物、重合開始剤、を含むことが好ましい。さらに、着色剤、添加剤、などが用いられるがこれに限られたものではない。
 アルカリ可溶性樹脂としては、特開2011-95716号公報の段落0025、特開2010-237589号公報の段落0033~0052に記載のポリマーを用いることができる。
 光硬化性樹脂組成物がポジ型材料である場合、光硬化性樹脂層に、例えば特開2005-221726記載の材料などが用いられるが、これに限られたものではない。
The binder used in the photocurable resin layer is not particularly limited as long as it does not depart from the spirit of the present invention, and a known polymerizable compound can be used.
When the photocurable resin composition is a negative-working material, the photocurable resin composition preferably contains an alkali-soluble resin, a polymerizable compound, and a polymerization initiator. Further, colorants, additives, etc. may be used, but not limited thereto.
As the alkali-soluble resin, the polymers described in paragraph 0025 of JP-A-2011-95716 and paragraphs 0033 to 0052 of JP-A-2010-237589 can be used.
When the photocurable resin composition is a positive type material, for example, a material described in JP-A-2005-221726 or the like is used for the photocurable resin layer, but it is not limited thereto.
 前記光硬化性樹脂層に用いられる前記光重合開始剤としては、特開2011-95716号公報の段落0031~0042に記載の重合性化合物を用いることができる。 As the photopolymerization initiator used in the photocurable resin layer, the polymerizable compounds described in paragraphs 0031 to 0042 of JP-A-2011-95716 can be used.
-添加剤-
 さらに、前記光硬化性樹脂層は、添加剤を用いてもよい。前記添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。
-Additive-
Furthermore, the photocurable resin layer may use an additive. Examples of the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP2009-237362A, and thermal polymerization prevention described in paragraph 0018 of Japanese Patent No. 4502784. And further, other additives described in paragraphs [0058] to [0071] of JP-A-2000-310706.
-溶剤-
 また、光硬化性樹脂組成物の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。
-solvent-
Further, as the solvent of the photocurable resin composition, the solvents described in paragraphs 0043 to 0044 of JP-A-2011-95716 can be used.
 以上、光硬化性樹脂組成物がネガ型材料である場合を中心に説明したが、前記光硬化性樹脂組成物は、ポジ型材料であってもよい。 As mentioned above, although the case where the photocurable resin composition was a negative type material was mainly demonstrated, the said photocurable resin composition may be a positive type material.
<(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン> <(3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction through a connection portion>
 本発明の静電容量型入力装置の製造方法は、前記第一の透明電極パターン、前記第二の透明電極パターンおよび前記導電性要素の少なくとも一つを、光硬化性樹脂組成物によって形成されたエッチングパターンを用いて透明導電材料をエッチング処理することによって形成することが好ましい。
 一方、本発明の静電容量型入力装置の製造方法は、前記第一の透明電極パターン、前記第二の電極パターンおよび前記導電性要素の少なくとも一つを、導電性硬化性樹脂層を形成して作製されることが好ましく、導電性硬化性樹脂組成物を用いて形成することがより好ましい。
 すなわち、前記第一の透明電極パターン3は、エッチング処理または導電性硬化性樹脂組成物を用いて形成することが好ましい。
In the method of manufacturing a capacitive input device according to the present invention, at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element is formed of a photocurable resin composition. It is preferable to form by etching-processing a transparent conductive material using an etching pattern.
On the other hand, in the method of manufacturing a capacitive input device according to the present invention, a conductive curable resin layer is formed on at least one of the first transparent electrode pattern, the second electrode pattern, and the conductive element. It is preferable that it is made, and it is more preferable to form using electroconductive curable resin composition.
That is, it is preferable to form the said 1st transparent electrode pattern 3 using an etching process or electroconductive curable resin composition.
(エッチング処理)
 エッチング処理によって、前記第一の透明電極パターン3を形成する場合、特にエッチング処理の方法に制限はないが、例えばまずマスク層2b等が形成された前面板1の一方の面上にITO等の透明電極層をスパッタリングによって形成し、次いで、前記透明電極層上にエッチング用光硬化性樹脂を有する組成物を用いて製膜した後、マスク露光・現像によってエッチングパターンを形成し、その後、透明電極層をエッチングして透明電極をパターニングし、エッチングパターンを除去することで、第一の透明電極パターン3等を形成する方法を挙げることができる。
 前記透明電極層上にエッチング用光硬化性樹脂を有する組成物を製膜する前に、図10に記載の汚れ防止板13に前面板を挿入し、基板が図2のように開口部8を有する場合はその開口部に図11に記載の汚れ防止栓14を挿入することが好ましい。前記汚れ防止板や前記汚れ防止栓は、シリコーン製であることが好ましい。
 前記光硬化性樹脂層を有する転写フィルムをエッチングレジスト(エッチングパターン)として用いる場合にも、前記方法と同様にして、レジストパターンを得ることができる。前記エッチングは、特開2010-152155公報の段落0048~0054等に記載の公知の方法でエッチング、レジスト剥離を適用することができる。
(Etching process)
When forming the said 1st transparent electrode pattern 3 by an etching process, there is no restriction | limiting in particular in the method of an etching process, For example, on one side of the front plate 1 in which the mask layer 2b etc. were formed first A transparent electrode layer is formed by sputtering, and then a film is formed using the composition having a photocurable resin for etching on the transparent electrode layer, and then an etching pattern is formed by mask exposure and development, and then the transparent electrode is formed. A method of forming the first transparent electrode pattern 3 or the like can be mentioned by etching the layer to pattern the transparent electrode and removing the etching pattern.
Before forming a film of a composition having a photocurable resin for etching on the transparent electrode layer, the front plate is inserted into the antifouling plate 13 shown in FIG. 10, and the substrate is opened as shown in FIG. If it has, it is preferable to insert the antifouling plug 14 shown in FIG. 11 into the opening. The stain preventing plate and the stain preventing plug are preferably made of silicone.
Also when using the transfer film which has the said photocurable resin layer as an etching resist (etching pattern), it can carry out similarly to the said method, and can obtain a resist pattern. As the etching, etching and resist peeling can be applied by a known method described in, for example, paragraphs 0048 to 0054 of JP-A-2010-152155.
 例えば、エッチングの方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプまたはアルカリ性タイプのエッチング液を適宜選択すればよい。酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第2鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩の混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせたものを使用してもよい。また、アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩の混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせたものを使用してもよい。 For example, as a method of etching, a commonly performed wet etching method in which the substrate is immersed in an etching solution can be mentioned. As an etching solution used for wet etching, an acid type or alkaline type etching solution may be appropriately selected in accordance with the object of etching. Examples of the acid type etching solution include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid and phosphoric acid alone, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate and the like. Be done. The acidic component may be a combination of a plurality of acidic components. In addition, as an alkaline type etching solution, an aqueous solution of an alkali component alone such as sodium hydroxide, potassium hydroxide, ammonia, an organic amine, a salt of an organic amine such as tetramethyl ammonium hydroxide, an alkali component and potassium permanganate And the like. As the alkali component, a combination of a plurality of alkali components may be used.
 エッチング液の温度は特に限定されないが、45℃以下であることが好ましい。本発明でエッチングマスク(エッチングパターン)として使用される樹脂パターンは、上述したエッチング用光硬化性樹脂層用塗布液を使用して形成されることにより、このような温度域における酸性およびアルカリ性のエッチング液に対して特に優れた耐性を発揮する。したがって、エッチング工程中に樹脂パターンが剥離することが防止され、樹脂パターンの存在しない部分が選択的にエッチングされることになる。
 前記エッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程・乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10~300秒間基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1~5kg/cm程度)を適宜調整し行えばよい。
The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or less. The resin pattern used as an etching mask (etching pattern) in the present invention is formed using the above-mentioned coating liquid for photo-curable resin layer for etching, whereby acidic and alkaline etching in such a temperature range is carried out. Exhibits particularly good resistance to fluids. Therefore, peeling of the resin pattern during the etching process is prevented, and the portion where the resin pattern does not exist is selectively etched.
After the etching, a washing step and a drying step may be performed as necessary to prevent line contamination. For the cleaning process, for example, the substrate is washed with pure water at normal temperature for 10 to 300 seconds, and for the drying process, the air blow pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow. You should do it.
 次いで、樹脂パターンの剥離方法としては、特に限定されないが、例えば、30~80℃、好ましくは50~80℃にて攪拌中の剥離液に基材を5~30分間浸漬する方法が挙げられる。本発明でエッチングマスクとして使用される樹脂パターンは、上述のように45℃以下において優れた薬液耐性を示すものであるが、薬液温度が50℃以上になるとアルカリ性の剥離液により膨潤する性質を示す。このような性質により、50~80℃の剥離液を使用して剥離工程を行うと工程時間が短縮され、樹脂パターンの剥離残渣が少なくなるという利点がある。すなわち、前記エッチング工程と剥離工程との間で薬液温度に差を設けることにより、本発明でエッチングマスクとして使用される樹脂パターンは、エッチング工程において良好な薬液耐性を発揮する一方で、剥離工程において良好な剥離性を示すことになり、薬液耐性と剥離性という、相反する特性を両方とも満足することができる。 Next, the method of peeling the resin pattern is not particularly limited, and for example, a method of immersing the base material in the peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes may be mentioned. The resin pattern used as an etching mask in the present invention exhibits excellent chemical solution resistance at 45 ° C. or lower as described above, but exhibits a property of being swelled by an alkaline peeling solution at a chemical solution temperature of 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution at 50 to 80 ° C., the process time is shortened and there is an advantage that the peeling residue of the resin pattern is reduced. That is, by providing a difference in chemical solution temperature between the etching process and the peeling process, the resin pattern used as an etching mask in the present invention exhibits good chemical liquid resistance in the etching process, while the resin pattern in the peeling process It will exhibit good releasability, and both conflicting properties of chemical resistance and releasability can be satisfied.
 剥離液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分や、第3級アミン、第4級アンモニウム塩等の有機アルカリ成分を、水、ジメチルスルホキシド、N-メチルピロリドン、またはこれらの混合溶液に溶解させた剥離液が挙げられる。前記の剥離液を使用し、スプレー法、シャワー法、パドル法等により剥離してもよい。 As the peeling solution, for example, inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these And a stripping solution dissolved in a mixed solution of It may be peeled off by a spray method, a shower method, a paddle method or the like using the above-mentioned stripping solution.
(導電性硬化性樹脂層を用いる方法)
 また、硬化性樹脂層をリフトオフ材として用いて、第一の透明電極層、第二の透明電極層およびその他の導電性部材を形成することもできる。この場合、光硬化性樹脂組成物の塗布もしくは仮支持体上の光硬化性樹脂の転写を用いて硬化性樹脂層を形成し、パターニングした後に、基材全面に透明導電層を形成した後、堆積した透明導電層ごと該光硬化性樹脂層の溶解除去を行うことにより所望の透明導電層パターンを得ることができる(リフトオフ法)。
(Method using conductive curable resin layer)
Moreover, a 1st transparent electrode layer, a 2nd transparent electrode layer, and another electroconductive member can also be formed, using a curable resin layer as a lift-off material. In this case, after a curable resin layer is formed using application of a photocurable resin composition or transfer of a photocurable resin on a temporary support, and after patterning, a transparent conductive layer is formed on the entire surface of the substrate, A desired transparent conductive layer pattern can be obtained by dissolving and removing the deposited transparent conductive layer and the photocurable resin layer (lift-off method).
 前記導電性硬化性樹脂層に導電性繊維等が含有される。 The conductive curable resin layer contains conductive fibers and the like.
~導電性硬化性樹脂層(導電性繊維)~
 前記導電性硬化性樹脂層を積層した転写フィルムを透明電極パターン、あるいは別の導電性要素の形成に用いる場合には、以下の導電性繊維などを導電性硬化性樹脂層に用いることができる。
-Conductive curable resin layer (conductive fiber)-
When the transfer film in which the conductive curable resin layer is laminated is used for forming a transparent electrode pattern or another conductive element, the following conductive fibers can be used for the conductive curable resin layer.
 導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造および中空構造のいずれかが好ましい。
 ここで、中実構造の繊維を「ワイヤー」と称することがあり、中空構造の繊維を「チューブ」と称することがある。また、平均短軸長さが1nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と称することがある。
 また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と称することがある。
 前記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属およびカーボンの少なくともいずれかが好ましく、これらの中でも、前記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、およびカーボンナノチューブの少なくともいずれかが特に好ましい。
There is no restriction | limiting in particular as a structure of a conductive fiber, Although it can select suitably according to the objective, Either a solid structure and a hollow structure are preferable.
Here, fibers of solid structure may be referred to as "wires" and fibers of hollow structures may be referred to as "tubes". In addition, conductive fibers having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 μm to 100 μm may be referred to as “nanowires”.
In addition, conductive fibers having a hollow structure and having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 0.1 μm to 1,000 μm may be referred to as “nanotubes”.
The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose, but at least one of metal and carbon is preferable, and among them, the above The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes and carbon nanotubes.
-金属ナノワイヤー-
--金属--
 前記金属ナノワイヤーの材料としては、特に制限はなく、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。
-Metal nanowires-
--metal--
The material of the metal nanowire is not particularly limited, and is preferably, for example, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long period table (IUPAC 1991), At least one metal selected from Groups 2 to 14 is more preferable, and Groups 2, 8, 9, 9, 10, 11, 12, 12, 13, and 14 are preferable. Further preferred is at least one metal selected from the group consisting of at least one metal, particularly preferably as a main component.
 前記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、これらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀を主に含有するもの、または銀と銀以外の金属との合金を含有するものが好ましい。
 前記銀を主に含有するとは、金属ナノワイヤー中に銀を50質量%以上、好ましくは90質量%以上含有することを意味する。
 前記銀との合金で使用する金属としては、白金、オスミウム、パラジウムおよびイリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, antimony, lead , These alloys and the like. Among these, from the point of being excellent in conductivity, one containing silver mainly or one containing an alloy of silver and a metal other than silver is preferable.
Mainly containing silver means that the metal nanowires contain 50% by mass or more, preferably 90% by mass or more of silver.
Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
--形状--
 前記金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状、断面の多角形の角が丸まっている断面形状が好ましい。
 前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
 前記金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、前記「断面の各辺」の合計長さに対する前記「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図9に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。前記鋭利度は60%以下が好ましく、50%以下がより好ましい。前記鋭利度が75%を超えると、該角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。また、パターンのエッジ部の直線性が低下し、ガタツキが生じてしまうことがある。前記鋭利度の下限は、30%が好ましく、40%がより好ましい。
--shape--
The shape of the metal nanowire is not particularly limited and may be appropriately selected according to the purpose. For example, it may have an arbitrary shape such as a cylindrical shape, a rectangular solid shape, or a columnar shape whose cross section is a polygon. In applications where high transparency is required, a cylindrical shape, and a cross-sectional shape in which the corners of the cross-sectional polygon are rounded are preferable.
The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross section with a transmission electron microscope (TEM).
The corner of the cross section of the metal nanowire refers to the periphery of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting the adjacent corners and the corners. In this case, the ratio of the “peripheral length of the cross section” to the total length of the “sides of the cross section” is defined as the sharpness. For example, in the metal nanowire cross section as shown in FIG. 9, the sharpness can be represented by the ratio of the outer peripheral length of the cross section shown by the solid line and the outer peripheral length of the pentagon shown by the dotted line. A cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape with rounded corners. The degree of sharpness is preferably 60% or less, more preferably 50% or less. If the degree of sharpness exceeds 75%, electrons may be localized at the corners, and plasmon absorption may increase, or yellowness may remain, resulting in deterioration of transparency. In addition, the linearity of the edge portion of the pattern may be reduced to cause rattling. The lower limit of the sharpness is preferably 30%, and more preferably 40%.
--平均短軸長さおよび平均長軸長さ--
 前記金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、150nm以下が好ましく、1nm~40nmがより好ましく、10nm~40nmが更に好ましく、15nm~35nmが特に好ましい。
 前記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、150nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。
 前記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、前記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。
-Average minor axis length and average major axis length-
The average minor axis length (sometimes referred to as “average minor axis diameter” or “average diameter”) of the metal nanowires is preferably 150 nm or less, more preferably 1 nm to 40 nm, and still more preferably 10 nm to 40 nm. 15 nm to 35 nm is particularly preferred.
If the average minor axis length is less than 1 nm, oxidation resistance may deteriorate and durability may deteriorate. If it exceeds 150 nm, scattering due to metal nanowires may occur to obtain sufficient transparency. There are things I can not do.
The average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; JEM-2000FX, manufactured by Nippon Denshi Co., Ltd.), and based on the average value, the metal nanowires The average minor axis length of was determined. In the case where the minor axis of the metal nanowire is not circular, the longest minor axis is defined as the minor axis length.
 前記金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm~40μmが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。
 前記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
 前記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、前記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長さとした。
The average major axis length (sometimes referred to as “average length”) of the metal nanowires is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and still more preferably 5 μm to 30 μm.
If the average major axis length is less than 1 μm, it may be difficult to form a dense network, and sufficient conductivity may not be obtained, and if it exceeds 40 μm, the metal nanowire is too long to be produced. Occasionally, entanglement may occur during the manufacturing process.
The average major axis length of the metal nanowires can be determined, for example, by observing 300 metal nanowires using a transmission electron microscope (TEM; JEM-2000FX, manufactured by Nippon Denshi Co., Ltd.), and based on the average value, metal nano The average major axis length of the wire was determined. In addition, when the said metal nanowire is bent, the circle | round | yen which makes it an arc is considered and the value calculated from the radius and curvature was made into long-axis length.
 導電性硬化性樹脂層の層厚は、塗布液の安定性や塗布時の乾燥やパターニング時の現像時間などのプロセス適性の観点から、0.1~20μmが好ましく、0.5~18μmが更に好ましく、1~15μmが特に好ましい。前記導電性硬化性樹脂層の全固形分に対する前記導電性繊維の含有量は、導電性と塗布液の安定性の観点から、0.01~50質量%が好ましく、0.05~30質量%が更に好ましく、0.1~20質量%が特に好ましい。 The layer thickness of the conductive curable resin layer is preferably 0.1 to 20 μm from the viewpoint of the stability of the coating solution and process suitability such as drying time at the time of application and development at the time of patterning and drying, and 0.5 to 18 μm Preferably, 1 to 15 μm is particularly preferred. The content of the conductive fiber relative to the total solid content of the conductive curable resin layer is preferably 0.01 to 50% by mass, and more preferably 0.05 to 30% by mass, from the viewpoint of the conductivity and the stability of the coating liquid. Is more preferable, and 0.1 to 20% by mass is particularly preferable.
<(4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン> <(4) A plurality of second electrode patterns comprising a plurality of pad portions electrically insulated from the first transparent electrode pattern and extending in a direction intersecting the first direction>
 第二の電極パターンは、透明電極パターンであることが好ましい。前記第二の透明電極パターン4は、前記エッチング処理または前記導電性硬化性樹脂層を有する転写フィルムを用いて形成することができる。そのときの好ましい態様は、前記第一の透明電極パターン3の形成方法と同様である。 The second electrode pattern is preferably a transparent electrode pattern. The second transparent electrode pattern 4 can be formed using the etching process or a transfer film having the conductive curable resin layer. A preferable mode at that time is the same as the method of forming the first transparent electrode pattern 3.
<(5)前記第一の透明電極パターンと前記第二の透明電極パターンとを電気的に絶縁する絶縁層>
 絶縁層5を形成する場合には、前記着色層として絶縁性の着色層を有する転写フィルムまたは、絶縁性の着色組成物や、前記光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する前記光硬化性樹脂層を有する転写フィルムまたは光硬化性樹脂組成物を用いて、第一の透明電極パターンが形成された前記前面板1の表面に前記絶縁性の着色層または光硬化性樹脂層を形成することができる。
 尚、絶縁層を形成する場合、絶縁層の層厚は、絶縁性の維持の観点から、0.1~5μmが好ましく、0.3~3μmが更に好ましく、0.5~2μmが特に好ましい。
<(5) Insulating Layer for Electrically Insulating the First Transparent Electrode Pattern and the Second Transparent Electrode Pattern>
When forming the insulating layer 5, it has a transfer film having an insulating colored layer as the colored layer, an insulating colored composition, and an insulating photocurable resin layer as the photocurable resin layer. The insulating colored layer or the photocurable resin layer on the surface of the front plate 1 on which the first transparent electrode pattern is formed by using the transfer film or the photocurable resin composition having the photocurable resin layer Can be formed.
When the insulating layer is formed, the thickness of the insulating layer is preferably 0.1 to 5 μm, more preferably 0.3 to 3 μm, and particularly preferably 0.5 to 2 μm, from the viewpoint of maintaining insulation.
<(6)前記第一の透明電極パターンおよび前記第二の透明電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の透明電極パターンとは別の導電性要素>
 前記別の導電性要素6は、前記エッチング処理または前記導電性硬化性樹脂層を有する転写フィルムまたは導電性硬化性樹脂組成物を用いて形成することができる。
<(6) electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern, and a conductivity different from the first transparent electrode pattern and the second transparent electrode pattern Element>
The said another conductive element 6 can be formed using the transfer film or the conductive curable resin composition which has the said etching process or the said conductive curable resin layer.
<(7)透明保護層>
 透明保護層7を形成する場合には、前記光硬化性樹脂層として透明の光硬化性樹脂層を有する前記光硬化性樹脂層を有する転写フィルムまたは光硬化性樹脂組成物を用いて、各要素が形成された前記前面板1の表面に前記透明の着色層または透明の光硬化性樹脂層を転写することで形成することができる。
 転写フィルムを用いて透明保護層を形成する場合、透明保護層の層厚は、十分な表面保護能を発揮させる観点から、0.5~10μmが好ましく、0.8~5μmが更に好ましく、1~3μmが特に好ましい。
<(7) Transparent Protective Layer>
When forming the transparent protective layer 7, each element is formed using a transfer film or a photocurable resin composition having the photocurable resin layer having a transparent photocurable resin layer as the photocurable resin layer. It forms by transferring the said transparent colored layer or a transparent photocurable resin layer on the surface of the said front plate 1 in which this was formed.
When forming a transparent protective layer using a transfer film, the layer thickness of the transparent protective layer is preferably 0.5 to 10 μm, more preferably 0.8 to 5 μm, from the viewpoint of exhibiting sufficient surface protective ability. ~ 3 μm is particularly preferred.
《静電容量型入力装置、および静電容量型入力装置を構成要素として備えた画像表示装置》
 本発明の製造方法によって得られる静電容量型入力装置、および当該静電容量型入力装置を構成要素として備えた画像表示装置は、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
<< Capacitance-type input device and image display device provided with capacitance-type input device as components >>
An electrostatic capacitance type input device obtained by the manufacturing method of the present invention and an image display device provided with the electrostatic capacitance type input device as a component are the "latest touch panel technology" (July 6, 2009 issue) Techno Times), supervised by Yuji Mitani, “Touch panel technology and development”, CMC Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292 etc. It can apply.
 以下、本発明を実施例により更に具体的に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。
Hereinafter, the present invention will be more specifically described by way of examples.
The materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below. In addition, unless there is particular notice, "%" and "part" are mass references.
[合成例1]
<トリルトリメトキシシラン((4-メチルフェニル)トリメトキシシラン)の合成>
 撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mLの4つ口フラスコに、マグネシウム19.0g(0.784モル)とテトラヒドロフラン300mLを加え、次いで、そこへヨウ素片を加えた。そこに少量のトリルクロライドを滴下し反応を開始させた後、トリルクロライド合計94.4g(0.746モル)を5~10℃で滴下してグリニャール試薬を調製した。
Synthesis Example 1
<Synthesis of Tolyltrimethoxysilane ((4-methylphenyl) trimethoxysilane)>
In a 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 19.0 g (0.784 mol) of magnesium and 300 mL of tetrahydrofuran were added, and then an iodine piece was added thereto. After a small amount of tolyl chloride was added dropwise to initiate the reaction, a total of 94.4 g (0.746 mol) of tolyl chloride was added dropwise at 5-10 ° C. to prepare a Grignard reagent.
 次に撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた1000mLの4つ口フラスコに、正珪酸メチル568g(3.73モル)を加え、60~70℃の温度で先に調製したグリニャール試薬を2時間かけて滴下した。その後冷却し、析出したマグネシウム塩をろ過した。次いで、溶媒を留去し、さらに精留して、回収した。得られた留分のGC分析結果、GC純度は98.8%であり、NMR分析とIR分析の結果、トリルトリメトキシシラン(b.p.74~75℃)が得られたことを確認した。 Next, to a 1000 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 568 g (3.73 mol) of methyl orthosilicate was added and prepared at a temperature of 60 to 70 ° C. The Grignard reagent was added dropwise over 2 hours. After cooling, the precipitated magnesium salt was filtered. Then, the solvent was distilled off and further rectified and recovered. As a result of GC analysis of the obtained fraction, GC purity was 98.8%, and as a result of NMR analysis and IR analysis, it was confirmed that tolyltrimethoxysilane (bp 74 to 75 ° C.) was obtained. .
(トリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成)
 撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mLの4つ口フラスコに、25%テトラメチルアンモニウムヒドロキシド水溶液2.1gと水7.5gを加え、次いで2-プロパノール60mLとトルエン30mLを加えた。そこにメチルトリメトキシシラン26.6g(0.195モル)とトリルトリメトキシシラン17.8g(0.084モル)のトルエン溶液30mLを滴下ロートに入れ、撹拌しながら35~45℃の温度で滴下した。滴下終了後2時間熟成し、室温に冷却後、冷却後の溶液にトルエン90mLと水90mLを加え生成物を抽出した。分液ロートに入れ水相を排出後、有機相を希酢酸水溶液で洗浄し、水相を排出後続けて水で有機相を4回洗浄した。その後有機相を0.5μmのPTFEフィルターでろ過後濃縮してトルエン50質量%の溶液に調製し、トリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物のトルエン溶液を得た。
(Synthesis of tolyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate)
To a 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, add 2.1 g of 25% aqueous tetramethylammonium hydroxide solution and 7.5 g of water, and then 60 mL of 2-propanol and toluene Added 30 mL. Thereto, 30 mL of a toluene solution of 26.6 g (0.195 mol) of methyltrimethoxysilane and 17.8 g (0.084 mol) of tolyltrimethoxysilane is placed in a dropping funnel and added dropwise at a temperature of 35 to 45 ° C. while stirring. did. After completion of the dropwise addition, aging was performed for 2 hours, and after cooling to room temperature, 90 mL of toluene and 90 mL of water were added to the solution after cooling to extract a product. After pouring into a separatory funnel and draining the aqueous phase, the organic phase was washed with dilute aqueous acetic acid solution, and after draining the aqueous phase, the organic phase was washed four times with water. Thereafter, the organic phase was filtered with a 0.5 μm PTFE filter and concentrated to prepare a 50 mass% toluene solution to obtain a toluene solution of tolyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate.
[合成例2]
<ベンジルトリメトキシシランの合成>
 合成例1において、トリルクロライドに代えて、ベンジルクロライドを等モル用いた以外は合成例1と同様にしてベンジルトリメトキシシランを調製した。
Synthesis Example 2
<Synthesis of benzyltrimethoxysilane>
Benzyltrimethoxysilane was prepared in the same manner as in Synthesis Example 1 except that, in Synthesis Example 1, equimolar amounts of benzyl chloride were used instead of tolyl chloride.
(ベンジルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成)
 合成例1の前記トリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成において、トリルトリメトキシシランに代えて、ベンジルトリメトキシシランを等モル使用した以外はトリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成と同様にして、ベンジルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物のトルエン溶液を得た。
(Synthesis of benzyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate)
Tolyltrimethoxysilane / methyl except for using equimolar amounts of benzyltrimethoxysilane instead of tolyltrimethoxysilane in the synthesis of the 30 mol% / 70 mol% condensate of the aforementioned tolyltrimethoxysilane / methyltrimethoxysilane of Synthesis Example 1 In the same manner as in the synthesis of trimethoxysilane 30 mol% / 70 mol% condensate, a toluene solution of benzyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate was obtained.
[合成例3]
<クミルトリメトキシシランの合成>
 合成例1において、トリルクロライドに代えて、クミルクロライドを等モル用いた以外は合成例1と同様にしてクミルトリメトキシシランを調製した。
Synthesis Example 3
<Synthesis of cumyltrimethoxysilane>
Cumyltrimethoxysilane was prepared in the same manner as in Synthesis Example 1 except that, in Synthesis Example 1, equimolar amounts of cumyl chloride were used instead of tolyl chloride.
(クミルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成)
 合成例1の前記トリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成において、トリルトリメトキシシランに代えて、クミルトリメトキシシランを等モル使用した以外はトリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成と同様にして、クミルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物のトルエン溶液を得た。
(Synthesis of cumyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate)
In the synthesis of the 30 mol% / 70 mol% condensate of the above-mentioned tolyltrimethoxysilane / methyltrimethoxysilane of Synthesis Example 1, tolyltrimethoxysilane / methyl except for using equimolar amount of cumyltrimethoxysilane instead of tolyltrimethoxysilane In the same manner as in the synthesis of the trimethoxysilane 30 mol% / 70 mol% condensate, a toluene solution of cumyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate was obtained.
[合成例4]
(トリルトリメトキシシラン/エチルトリメトキシシラン 30mol%/70mol%縮合物の合成)
 合成例1において、メチルトリメトキシシランに代えて、エチルトリメトキシシランを等モル用いた以外は合成例1と同様にしてトリルトリメトキシシラン/エチルトリメトキシシラン 30mol%/70mol%縮合物のトルエン溶液を得た。
Synthesis Example 4
(Synthesis of tolyltrimethoxysilane / ethyltrimethoxysilane 30 mol% / 70 mol% condensate)
In the same manner as in Synthesis Example 1 except that ethyltrimethoxysilane was used in place of methyltrimethoxysilane in Synthesis Example 1 in the same manner as in Synthesis Example 1, a toluene solution of tolyltrimethoxysilane / ethyltrimethoxysilane 30 mol% / 70 mol% condensate I got
[合成例5]
(トリルトリメトキシシラン/プロピルトリメトキシシラン 30mol%/70mol%縮合物の合成)
 合成例1において、メチルトリメトキシシランに代えて、プロピルトリメトキシシラン(合成例5)を等モル用いた以外は合成例1と同様にしてトリルトリメトキシシラン/プロピルトリメトキシシラン 30mol%/70mol%縮合物のトルエン溶液を得た。
Synthesis Example 5
(Synthesis of tolyltrimethoxysilane / propyltrimethoxysilane 30 mol% / 70 mol% condensate)
Tolyltrimethoxysilane / propyltrimethoxysilane 30 mol% / 70 mol% in the same manner as in Synthesis Example 1 except that instead of methyltrimethoxysilane in Synthesis Example 1 an equimolar amount of propyltrimethoxysilane (Synthesis example 5) was used. A toluene solution of the condensate was obtained.
[合成例6]
(メチルトリメトキシシラン/メチルジメトキシシラン 90mol%/10mol%縮合物の合成)
 合成例1の前記トリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成において、トリルトリメトキシシラン/メチルトリメトキシシランの添加量の合計モル数を一定のまま、メチルトリメトキシシランとメチルジメトキシシランのモル比が90mol%/10mol%になるように添加した以外はトリルトリメトキシシラン/メチルトリメトキシシラン 30mol%/70mol%縮合物の合成と同様にして、トメチルトリメトキシシラン/メチルジメトキシシラン 90mol%/10mol%縮合物(メチル・ハドロジェン型シリコーンレジン)のトルエン溶液を得た。
Synthesis Example 6
(Synthesis of methyltrimethoxysilane / methyldimethoxysilane 90 mol% / 10 mol% condensate)
In the synthesis of the tolyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate of the synthesis example 1, the total number of moles of tolyltrimethoxysilane / methyltrimethoxysilane added is kept constant while maintaining the total number of moles of tolyltrimethoxysilane / methyltrimethoxysilane constant. The same as in the synthesis of the tolyltrimethoxysilane / methyltrimethoxysilane 30 mol% / 70 mol% condensate except that the molar ratio of the acid to the methyldimethoxysilane is 90 mol% / 10 mol% is the same as the synthesis of the tomethyltrimethoxysilane / A toluene solution of methyldimethoxysilane 90 mol% / 10 mol% condensation product (methyl hadorogen type silicone resin) was obtained.
[実施例1]
~本発明の耐熱性加飾用着色組成物の調製~
 以下の処方L1の耐熱性加飾用着色組成物を調製し、実施例1の耐熱性加飾用着色組成物とした。
(耐熱性加飾用着色組成物:処方L1)
・シリコーンレジンKR-311(信越化学工業(株)製;ストレートシリコーンのキシレン溶液(固形分50質量%)):209質量部
・白色顔料分散物1(下記の組成)          :123質量部
・酸化防止剤(燐酸/ヒンダードフェノール系酸化防止剤、スミライザーGP、住友化学(株)製)
                        :0.195質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製)
                         :0.78質量部
Example 1
Preparation of the heat resistant decorative coloring composition of the present invention
The heat resistant decorative coloring composition of the following formulation L1 was prepared and used as the heat resistant decorative coloring composition of Example 1.
(Colorable composition for heat resistant decoration: prescription L1)
Silicone resin KR-311 (Shin-Etsu Chemical Co., Ltd. product; straight silicone in xylene solution (solid content: 50% by mass): 209 parts by mass White pigment dispersion 1 (the following composition): 123 parts by mass Agent (Phosphoric acid / Hindered phenolic antioxidant, Sumilizer GP, Sumitomo Chemical Co., Ltd.)
: 0.195 parts by mass, surfactant (trade name: Megafac F-780F, manufactured by DIC Corporation)
: 0.78 parts by mass
-白色顔料分散物1の組成-
・酸化チタン(石原産業製CR-97;アルミナ/ジルコニア処理ルチル型、
 一次粒子径0.25μm)            :70.0質量%
・ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)    :3.5質量%
・メチルエチルケトン(東燃化学(株)製)     :26.5質量%
-Composition of White Pigment Dispersion 1-
· Titanium oxide (CR-97 manufactured by Ishihara Sangyo; alumina / zirconia-treated rutile type,
Primary particle size 0.25 μm): 70.0 mass%
-Random copolymer of benzyl methacrylate / methacrylic acid = 72/28 molar ratio, weight average molecular weight 37,000): 3.5 mass%
-Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 26.5 mass%
《加飾層の形成》
 開口部(15mmΦ)が形成された強化処理ガラス(ガラス基材:300mm×400mm×0.7mm)に、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。このガラス基材を基材予備加熱装置で110℃10分間加熱した後、室温になるまで放冷した。得られたシランカップリング処理ガラス基材に、上記耐熱性加飾用着色組成物(処方L1)を用いて印刷用インキをスクリーン印刷機(ミシマ株式会社製;UDF-5L、メッシュサイズ250μm)で額縁パターン状にスクリーン印刷し、100℃で、10分間乾燥することによりでタックフリーの白色着色層を得た。インク乾燥後の白色着色層の厚みは6μmであった。さらに上記と同様にして、白色着色層上に、印刷用インキを額縁パターン状にスクリーン印刷し、100℃で、10分間乾燥する工程を繰り返し、印刷および乾燥工程を計6回行った。さらに、150℃で30分間乾燥して、白色着色層L1を得た。
<< Formation of Decorative Layers >>
With a rotating brush with nylon hair while spraying a glass detergent solution adjusted to 25 ° C with a shower for 20 seconds on a tempered glass (glass substrate: 300 mm x 400 mm x 0.7 mm) in which an opening (15 mm 形成) was formed After washing and showering with pure water, a shower of silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by weight aqueous solution, trade name: KBM 603, Shin-Etsu Chemical Co., Ltd.) is performed. The spray was performed for 20 seconds, and the pure water shower was washed. The glass substrate was heated at 110 ° C. for 10 minutes with a substrate preheating device and then allowed to cool to room temperature. Using the color composition for heat resistance decoration (formulation L1) on the obtained silane coupling treated glass substrate, a printing ink is printed using a screen printing machine (made by Mishima Co., Ltd .; UDF-5L, mesh size 250 μm) It screen-printed in the frame pattern shape, and obtained the tack-free white colored layer by drying at 100 degreeC for 10 minutes. The thickness of the white colored layer after ink drying was 6 μm. Furthermore, in the same manner as described above, printing ink was screen-printed in the form of a frame pattern on the white colored layer, and the steps of drying at 100 ° C. for 10 minutes were repeated, and printing and drying steps were performed six times in total. Furthermore, it dried at 150 degreeC for 30 minutes, and obtained the white colored layer L1.
 その後、排気設備を備えたオーブンを用い、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行って白色着色層L1を加飾層とし、以下の方法で加飾層の膜厚を測定したところ、膜厚36μmの加飾層が形成された前面板が得られていた。
 前面板の加飾層を形成していない面から明度を以下の方法で測定したところ、L値は84.6であった。また、以下の方法により目視で前面板の加飾層の白色度を判断したところ、問題はなかった。さらに下記方法でポストベーク処理した際のベンゼン発生量は、加飾層100cmあたり19.1mgで実用レベルであった。
Then, using an oven equipped with an exhaust system, post bake processing is performed at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm) to make the white colored layer L1 a decorative layer, and the decorative layer is formed by the following method When the film thickness was measured, the front plate in which the decoration layer with a film thickness of 36 micrometers was formed was obtained.
When the lightness was measured by the following method from the surface of the front plate on which the decorative layer was not formed, the L value was 84.6. Moreover, when the whiteness degree of the decoration layer of a front plate was judged visually with the following method, there was no problem. Furthermore, the benzene generation amount at the time of post-baking treatment by the following method was a practical level at 19.1 mg per 100 cm 2 of the decorative layer.
(膜厚測定)
 強化処理ガラス上に加飾層を形成した前面板における、加飾層の膜厚は表面粗さ測定装置P-10(TENCOR社製)を用いて測定した。その結果を下記表1に記載した。なお、下記表1中、「μ」は「μm」を意味する。
(Film thickness measurement)
The film thickness of the decorative layer in the front plate having the decorative layer formed on the tempered glass was measured using a surface roughness measuring device P-10 (manufactured by TENCOR). The results are shown in Table 1 below. In Table 1 below, "μ" means "μm".
《加飾層を形成した前面板の評価》
(明度の評価)
 強化処理ガラス上に加飾層を形成した前面板において、加飾層を形成した面と反対側の面から黒紙を下敷きとして、X-Rite社製938 Spectrodensitometerを用いてL値を測定し、下記評価基準にしたがって明度を評価した。実用レベルはD以上であり、C以上であることが好ましい。
  〈評価基準〉
AA:L値が87以上である。
A:L値が85以上87未満である。
B:L値が83以上85未満である。
C:L値が81以上83未満である。
D:L値が77以上81未満である。
E:L値が77未満である。
 評価した結果を下記表1に記載した。
<< Evaluation of the front board which formed the decoration layer >>
(Evaluation of lightness)
In the front plate in which a decorative layer is formed on a tempered glass, the L value is measured using a 938 Spectrodensitometer manufactured by X-Rite with a black paper as a base from the surface opposite to the surface on which the decorative layer is formed. The lightness was evaluated according to the following evaluation criteria. The practical level is D or more, preferably C or more.
<Evaluation criteria>
AA: L value is 87 or more.
A: L value is 85 or more and less than 87.
B: L value is 83 or more and less than 85.
C: L value is 81 or more and less than 83.
D: L value is 77 or more and less than 81.
E: L value is less than 77.
The evaluated results are shown in Table 1 below.
(白色度の評価)
 強化処理ガラス上に加飾層を、上記のとおり形成した後に、大気圧(1atm)下、空気中で240℃、60分間ポストベーク処理して形成した前面板について、60人が表裏から観察し、下記評価基準に従い白色度を評価した。実用レベルはC以上である。
  〈評価基準〉
A:黄色味を帯びていると認識した人数  0~1人
B:黄色味を帯びていると認識した人数  2~3人
C:黄色味を帯びていると認識した人数  4~5人
D:黄色味を帯びていると認識した人数  6~10人
E:黄色味を帯びていると認識した人数  11人以上
 白色着色層L1の評価結果を下記表1に記載した。
(Evaluation of whiteness)
After forming the decorative layer on the tempered glass as described above, 60 persons observed the front plate formed by post-baking treatment at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm) from both sides The whiteness was evaluated according to the following evaluation criteria. The practical level is C or higher.
<Evaluation criteria>
A: Number of people who recognized yellowishness 0 to 1 B: Number of people who recognized yellowishness 2 to 3 C: Number of people who recognized yellowishness 4 to 5 D: Number of people who recognized yellowishness: 6 to 10 E: Number of people who recognized yellowishness: 11 or more The evaluation results of the white colored layer L1 are shown in Table 1 below.
(レチキュレーション評価)
 強化処理ガラス上に加飾層を形成した前面板を、23℃、相対湿度50%環境下で24時間放置した後、前面板の加飾層の表面、及び加飾層を形成した面の反対面を、反射光及び透過光を用いて顕微鏡にて観察し、下記基準にしたがってレチキュレーション評価を行った。C以上が実用レベルである。
  〈評価基準〉
A:細かい「しわ」および極めて弱い「しわ」の発生が、前面板の加飾層パターン表面に全く認められず、極めて良好。
B:極めて弱い「しわ」の発生が、前面板の加飾層パターン表面の中央部(幅方向の中央部)の一部のみに認められたが、加飾層を形成した面の反対面からは認識できず、良好。
C:細かい「しわ」等の発生が、前面板の加飾層パターン表面に少し認められたが、前面板の加飾層を形成した面の反対面からは認識できず、実用上問題ないレベルで、普通。
D:細かい「しわ」等の発生が、前面板の加飾層パターン表面にかなり認められ、前面板の加飾層を形成した面の反対面からも弱いムラが観察され、悪いレベル。
E:細かい「しわ」等の発生が、前面板の加飾層パターン表面の全面に認められ、前面板の加飾層を形成した面の反対面からもムラが観察され極めて悪いレベル。
 前面板の評価結果を下記表1に記載した。
(Reticulation evaluation)
After leaving the front plate having the decorative layer formed on the tempered glass to stand for 24 hours under an environment of 23 ° C. and a relative humidity of 50%, the surface of the decorative layer of the front plate and the opposite side of the surface having the decorative layer formed The surface was observed with a microscope using reflected light and transmitted light, and reticulation evaluation was performed according to the following criteria. C or more is a practical level.
<Evaluation criteria>
A: The occurrence of fine "wrinkles" and extremely weak "wrinkles" was not observed at all on the surface of the decorative layer pattern of the front plate, which is extremely good.
B: The occurrence of extremely weak "wrinkles" was observed only in a part of the central part (central part in the width direction) of the decorative layer pattern surface of the front panel, but from the opposite surface of the surface on which the decorative layer was formed Is unrecognizable and good.
C: Generation of fine "wrinkles" was slightly recognized on the surface of the decorative layer pattern surface of the front panel, but it can not be recognized from the opposite surface of the surface of the front panel on which the decorative layer was formed. Well, normal.
D: The occurrence of fine "wrinkles" was considerably observed on the surface of the decorative layer pattern of the front panel, and weak unevenness was also observed from the opposite surface of the surface of the front panel on which the decorative layer was formed.
E: The occurrence of fine “wrinkles” etc. is observed on the entire surface of the decorative layer pattern surface of the front panel, and unevenness is observed also from the opposite surface of the surface on which the decorative layer of the front panel is formed.
The evaluation results of the front plate are listed in Table 1 below.
(得率の評価)
 強化処理ガラス上に加飾層を形成した前面板を500枚作製し、使用可能なものの得率を調べた。
  〈評価基準〉
A:得率が94%を超えており、非常に良いレベルであった。
B:得率が91%以上94未満であり、良いレベルであった。
C:得率が88%以上91%未満であり、普通レベルであった。
D:得率が83%以上88%未満であり、悪いレベルであった。
E:得率が83%未満であり、非常に悪いレベルであった。
 前面板の評価結果を下記表1に記載した。
(Evaluation of the rate of return)
Five hundred front plates having a decorative layer formed on a tempered glass were prepared, and the yield of usable ones was examined.
<Evaluation criteria>
A: The yield was over 94%, which was a very good level.
B: The yield was 91% or more and less than 94, which was a good level.
C: The yield was 88% or more and less than 91%, which was a normal level.
D: The yield was 83% or more and less than 88%, which was a bad level.
E: The yield was less than 83%, which was a very bad level.
The evaluation results of the front plate are listed in Table 1 below.
(加飾層密着性の評価)
 JIS K 5600-5-6:ISO2409(クロスカット法)にしたがって強化処理ガラス上に加飾層を形成した前面板の加飾層に、1mm幅で、切り込みを入れ、枡目を形成した。セロハンテープ(セロテープ植物系CT-18、ニチバン(株)製)を用いて加飾層の剥離テストを行って、加飾層表面の剥がれ及びピンホールが存在するかを観察した。C以上が実用レベルである。
  〈評価基準〉
A:加飾層成分が全く剥がれず、密着性が非常に良いレベルであった。
B:切り込みのエッジ部分にのみ微かな加飾層成分の剥がれがあるが、枡目の部分には加飾層成分の剥がれが全くなく、密着性が良いレベルであった。
C:枡目の部分に加飾層成分の剥がれが、0%以上2%未満認められ、密着性が普通レベルであった。
D:枡目の部分に加飾層成分の剥がれが、2%以上5%未満認められ、密着性が悪いレベルであった。
E:枡目の部分に加飾層成分の剥がれが、5%以上認められ、密着性が非常に悪いレベルであった。
 前面板の評価結果を下記表1に記載した。
(Evaluation of decorative layer adhesion)
In a decorative layer of a front plate having a decorative layer formed on a tempered glass in accordance with JIS K 5600-5-6: ISO 2409 (cross-cut method), a cut was made with a width of 1 mm to form a grid. The peeling test of the decorative layer was performed using cellophane tape (Cellotape plant CT-18, manufactured by Nichiban Co., Ltd.) to observe whether the surface of the decorative layer had peeled off or pinholes were present. C or more is a practical level.
<Evaluation criteria>
A: The decorative layer component did not peel at all, and the adhesion was at a very good level.
B: There was slight peeling of the decorative layer component only at the edge portion of the incision, but there was no peeling of the decorative layer component at all at the mesh portion, and the adhesion was at a good level.
C: Peeling off of the decorative layer component was observed in the area of squares and 0% or more and less than 2%, and the adhesion was at a normal level.
D: Peeling off of the decorative layer component was observed in the area of 2 or more and less than 5%, and the adhesion was at a poor level.
E: Peeling off of the decorative layer component was observed at 5% or more at the portion of the grid, and the adhesion was at a very poor level.
The evaluation results of the front plate are listed in Table 1 below.
(開口部汚れの評価)
 強化処理ガラス上に加飾層が形成された前面板の開口部エッジ周辺を顕微鏡で観察し、加飾層成分が汚れとして存在するか観察した。C以上が実用レベルである。
  〈評価基準〉
A:開口部エッジには加飾層成分の汚れが全くついておらず、極めて良好。
B:開口部エッジにのみ加飾層成分の微かな汚れが認められたが、使用可能な程度で良好。
C:開口部エッジからガラスの厚み方向に数μm程度まで、加飾層成分の汚れが認められたが、実用上使用可能で普通。
D:開口部エッジからガラスの厚みの中程まで、加飾層成分の汚れが認められ、悪い。
E:開口部エッジからガラスの裏側まで、加飾層成分の汚れが認められ、非常に悪い。
 前面板の評価結果を下記表1に記載した。
(Evaluation of opening dirt)
The periphery of the opening edge of the front plate in which the decorative layer was formed on the tempered glass was observed with a microscope, and it was observed whether or not the decorative layer component was present as dirt. C or more is a practical level.
<Evaluation criteria>
A: The edge of the opening is not stained at all by the component of the decorative layer and is extremely good.
B: A slight stain of the component of the decorative layer was observed only at the edge of the opening, but it was good at a usable level.
C: Staining of the component of the decorative layer was observed from the edge of the opening to several micrometers in the thickness direction of the glass, but it is practically usable and practical.
D: Staining of the component of the decorative layer is observed from the edge of the opening to the middle of the thickness of the glass, which is bad.
E: From the edge of the opening to the back side of the glass, contamination of the components of the decorative layer is observed, which is very bad.
The evaluation results of the front plate are listed in Table 1 below.
(開口部欠落の評価)
 強化処理ガラス上に加飾層が形成された前面板の開口部エッジ周辺を顕微鏡で観察し、加飾層成分の剥がれ及びピンホールが存在するか観察した。
  〈評価基準〉
A:開口部近傍の基板の加飾層成分の剥がれは全くなく、非常に良いレベルであった。
B:開口部エッジにのみ加飾層成分の微かな剥がれがあるが、その他の部分は全くなく、良いレベルであった。
C:開口部エッジ周辺の数μm幅の範囲に加飾層成分の剥がれが認められたが、実用上使用可能で普通。
D:開口部エッジ周辺の数mm幅の範囲に加飾層成分の剥がれが認められ、悪い。
E:開口部エッジ周辺の数cm幅の範囲に加飾層成分の剥がれが認められ、非常に悪い。
 前面板の評価結果を下記表1に記載した。
(Evaluation of missing opening)
The periphery of the opening edge of the front plate in which the decorative layer was formed on the tempered glass was observed with a microscope, and the peeling of the decorative layer component and the presence of pinholes were observed.
<Evaluation criteria>
A: There was no peeling of the decorative layer component of the substrate in the vicinity of the opening, which was a very good level.
B: There was slight peeling off of the decorative layer component only at the opening edge, but there was no other part at all, and it was at a good level.
C: Peeling of the decoration layer component was observed in the range of several μm width around the opening edge, but it can be practically used and is common.
D: Peeling of the decorative layer component is observed in the range of several mm width around the opening edge, which is bad.
E: Peeling of the decorative layer component is observed in the range of several cm width around the opening edge, which is very bad.
The evaluation results of the front plate are listed in Table 1 below.
(ベンゼン発生量)
 強化処理ガラス上に耐熱性加飾用着色組成物(処方L1)を塗布した。次に、105℃のオーブンで30分間乾燥し、加飾層付き強化処理ガラスを得た。一定面積の加飾層を強化処理ガラスから削り取り、サンプル管に入れ、加熱脱着装置を用い、Heガス下280℃15分間の加熱条件(室温からの昇温時間含む)で、直接加熱した後、GC-MS測定を行った。
 検量線には、市販のベンゼン(試薬)を用い、既存の方法でTENAX吸着管に捕集した後、サンプル同様の加熱脱着測定を行った。
 GCカラムはアジレント製DB-5MSを用い、40℃で3分間保持した後、昇温測定を行った。MS検出はEIイオン化で行い、定量にはベンゼンのクロマトピーク面積を用いた。
・加熱脱着装置
 会社名   日本分析工業製
 装置名   加熱脱着装置
 型式    JTD-505III
・GC-MS
 会社名   島津製作所製
 装置名   ガスクロマトグラフ質量分析計
 型式    QP2010Ultra
  〈評価基準〉
AA:ベンゼン発生量が0.01mg/100cm未満で、極めて良好であった。
A:ベンゼン発生量が0.01mg/100cm以上、9.2mg/100cm未満で、良好であった。
B:ベンゼン発生量が9.2mg/100cm以上、19mg/100cm未満で、普通であった。
C:ベンゼン発生量が19mg/100cm以上、29mg/100cm未満で、実用上使用可能で普通。
D:ベンゼン発生量が29mg/100cm以上で、悪い。
 前面板の評価結果を下記表1に記載した。
(Benzene generation amount)
The heat resistant decorative coloring composition (formulation L1) was applied onto the tempered glass. Next, it was dried in an oven at 105 ° C. for 30 minutes to obtain a tempered layer-containing tempered glass. After a fixed area of the decorative layer is scraped from the tempered glass, placed in a sample tube, and heated directly under He gas at 280 ° C. for 15 minutes (including the temperature rising time from room temperature) using a heating / desorber, GC-MS measurements were performed.
For the calibration curve, commercially available benzene (reagent) was used, and after being collected in the TENAX adsorption tube by the existing method, the thermal desorption measurement similar to the sample was performed.
The GC column was maintained at 40 ° C. for 3 minutes using DB-5MS manufactured by Agilent, and then the temperature was measured. MS detection was performed by EI ionization, and for quantification, the chromatographic peak area of benzene was used.
・ Heat desorber Company name Japan analysis industrial equipment name Heat desorber Model JTD-505III
GC-MS
Company Name Shimadzu Equipment Name Gas Chromatograph Mass Spectrometer Model QP2010 Ultra
<Evaluation criteria>
AA: The generation of benzene was very good at less than 0.01 mg / 100 cm 2 .
A: The benzene generation amount was as good as 0.01 mg / 100 cm 2 or more and less than 9.2 mg / 100 cm 2 .
B: The benzene generation amount was normal at 9.2 mg / 100 cm 2 or more and less than 19 mg / 100 cm 2 .
C: Benzene generation amount is 19 mg / 100 cm 2 or more, less than 29 mg / 100 cm 2 , practically usable and practical.
D: The benzene generation amount is not good at 29 mg / 100 cm 2 or more.
The evaluation results of the front plate are listed in Table 1 below.
《マスク層の形成》
<マスク層形成用塗布液の調製>
 下記に示すマスク層形成用塗布液:処方K1を調製した。
<< Formation of Mask Layer >>
Preparation of Coating Liquid for Forming Mask Layer
Coating solution for forming a mask layer shown below: Formulation K1 was prepared.
(マスク層形成用塗布液:処方K1)
・K顔料分散物1(下記の組成)          :31.2質量部
・R顔料分散物1(下記の組成)           :3.3質量部
・MMPGAc(プロピレングリコールモノメチルエーテルアセテート、ダイセル化学(株)製)       :6.2質量部
・メチルエチルケトン(東燃化学(株)製)     :34.0質量部
・シクロヘキサノン(関東電化工業(株)製)     :8.5質量部
・バインダー2(ベンジルメタクリレート/メタクリル酸=78/22モル比のランダム共重合物、重量平均分子量3.8万) :10.8質量部
・フェノチアジン(東京化成(株)製)       :0.01質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、 日本化薬(株)製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%)
                          :5.5質量部
・2,4-ビス(トリクロロメチル)-6-[4’-(N,N-ビス(エトキシカルボニルメチル)アミノ-3’-ブロモフェニル]-s-トリアジン
                          :0.4質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製)
                          :0.1質量部
(Coating liquid for mask layer formation: prescription K1)
K pigment dispersion 1 (the following composition): 31.2 parts by mass R pigment dispersion 1 (the following composition): 3.3 parts by mass MMPGAc (propylene glycol monomethyl ether acetate, manufactured by Daicel Chemical Industries, Ltd.) 6.2 parts by mass Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 34.0 parts by mass Cyclohexanone (manufactured by Kanto Denka Kogyo Co., Ltd.): 8.5 parts by mass Binder 2 (benzyl methacrylate / methacrylic acid = 78 Random copolymer at a ratio of 22/22, weight average molecular weight 38,000: 10.8 parts by mass Phenothiazine (manufactured by Tokyo Kasei Kogyo Co., Ltd.): 0.01 parts by mass DPHA (dipentaerythritol hexaacrylate, Japan Propylene glycol monomethyl ether acetate solution (76 mass%) of Kayaku Co., Ltd. product
5.5 parts by mass 2,4-bis (trichloromethyl) -6- [4 '-(N, N-bis (ethoxycarbonylmethyl) amino-3'-bromophenyl] -s-triazine: 0.4 Mass part, surfactant (trade name: Megafac F-780F, manufactured by Dainippon Ink Co., Ltd.)
: 0.1 parts by mass
-K顔料分散物1の組成-
・カーボンブラック(商品名:Nipex35、デグッサ社製) :13.1質量%
・下記分散剤1                  :0.65質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)   :6.72質量%
・プロピレングリコールモノメチルエーテルアセテート    :79.53質量%
-Composition of pigment dispersion 1-K-
Carbon black (trade name: Nipex 35, manufactured by Degussa): 13.1% by mass
· The following dispersant 1: 0.65% by mass
Binder 1 (benzyl methacrylate / random copolymer of methacrylic acid = 72/28 molar ratio, weight average molecular weight 37,000): 6.72 mass%
Propylene glycol monomethyl ether acetate: 79.53% by mass
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
-R顔料分散物1の組成-
・顔料(C.I.ピグメントレッド177)       :18質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)     :12質量%
・プロピレングリコールモノメチルエーテルアセテート  :70質量%
Composition of -R Pigment Dispersion 1-
-Pigment (CI pigment red 177): 18% by mass
· Binder 1 (benzyl methacrylate / random copolymer of methacrylic acid = 72/28 molar ratio, weight average molecular weight 37,000): 12% by mass
Propylene glycol monomethyl ether acetate: 70% by mass
<マスク層の形成>
 加飾層の形成における強化処理ガラス基板の洗浄と同様にして、加飾層を形成した前面板を洗浄した。
 上記マスク層形成用塗布液:処方K1を用いて印刷用インキをスクリーン印刷機(ミシマ株式会社製;UDF-5L、メッシュサイズ250μm)で額縁パターン状にスクリーン印刷し、100℃で10分間乾燥することによりタックフリーのマスク層を得た。インク乾燥後のマスク層の厚みは2.2μmであった。その後、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)で、露光マスクを介さずに、露光量1000mJ/cm(i線)で露光した。
 さらに240℃80分間のポストベーク処理を行って、光学濃度4.0、膜厚2.0μmのマスク層と、加飾層が、前面板、加飾層およびマスク層の順で形成された前面板を得た。
<Formation of mask layer>
The front plate on which the decorative layer was formed was cleaned in the same manner as the cleaning of the tempered glass substrate in the formation of the decorative layer.
The above coating solution for forming a mask layer: The printing ink is screen-printed in a frame pattern with a screen printer (made by Mishima Co., Ltd .; UDF-5L, mesh size 250 μm) using a prescription K1, and dried at 100 ° C. for 10 minutes Thus, a tack-free mask layer was obtained. The thickness of the mask layer after ink drying was 2.2 μm. Then, it was exposed with an exposure dose of 1000 mJ / cm 2 (i-line) without using an exposure mask with a proximity type exposure apparatus (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp.
Further, a post-baking treatment is performed at 240 ° C. for 80 minutes, and before a mask layer having an optical density of 4.0 and a film thickness of 2.0 μm and a decoration layer are formed in the order of the front plate, the decoration layer and the mask layer I got a face plate.
《第一の透明電極パターンの形成》
<透明電極層の形成>
 加飾層およびマスク層が形成された前面板を、真空チャンバー内に導入し、SnO含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。
<< Formation of first transparent electrode pattern >>
<Formation of transparent electrode layer>
The front plate on which the decorative layer and the mask layer are formed is introduced into a vacuum chamber, and an ITO target (indium: tin = 95: 5 (molar ratio)) having a SnO 2 content of 10% by mass is used. An ITO thin film having a thickness of 40 nm was formed by magnetron sputtering (conditions: base temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa) to obtain a front plate on which a transparent electrode layer was formed. The surface resistance of the ITO thin film was 80 Ω / □.
<エッチング用光硬化性樹脂層用塗布液の調製>
 下記に示すエッチング用光硬化性樹脂層用塗布液:処方E1を調製した。
<Preparation of Coating Liquid for Photocurable Resin Layer for Etching>
A coating solution for a photocurable resin layer for etching shown below: Formulation E1 was prepared.
(エッチング用光硬化性樹脂層用塗布液:処方E1)
・メチルメタクリレート/スチレン/メタクリル酸共重合体
(共重合体組成(質量%):31/40/29、質量平均分子量60000、
酸価163mgKOH/g)              :16質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製) :5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノメタクリレート0.5モル付加物             :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジメタノールモノアクリレート             :2.8質量部
・2-クロロ-N-ブチルアクリドン         :0.42質量部
・2,2-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール                  :2.17質量部
・ロイコクリスタルバイオレット           :0.26質量部
・フェノチアジン                 :0.013質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製)
                          :0.03質量部
・メチルエチルケトン                  :40質量部
・1-メトキシ-2-プロパノール            :20質量部
(Coating fluid for photo-curable resin layer for etching: prescription E1)
Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, weight average molecular weight 60000,
Acid value: 163 mg KOH / g: 16 parts by mass Monomer 1 (trade name: BPE-500, Shin-Nakamura Chemical Co., Ltd. product): 5.6 parts by mass 0.5 mol of tetraethylene oxide monomethacrylate of hexamethylene diisocyanate added Substance: 7 parts by mass · Cyclohexanedimethanol monoacrylate as a compound having one polymerizable group in the molecule: 2.8 parts by mass · 2-chloro-N-butylacridone: 0.42 parts by mass · 2, 2 -Bis (o-chlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole: 2.17 parts by mass, leuco crystal violet: 0.26 parts by mass, phenothiazine: 0.013 parts by mass, surfactant (Product name: Megafuck F-780F, Dainippon Inn Co., Ltd.)
: 0.03 parts by mass · methyl ethyl ketone: 40 parts by mass · 1-methoxy-2-propanol: 20 parts by mass
<第一の透明電極パターンの形成>
 マスク層の形成と同様にして、加飾層、マスク層、透明電極層を形成した前面板を洗浄し、乾燥した。図10に記載のシリコーン樹脂製汚れ防止板13に前面板を挿入し、前面板の開口部(15mmΦ)に、図11に記載のシリコーン樹脂製の汚れ防止栓14を挿入した。次に、前面板エッジと汚れ防止板、及び開口部エッジと防止栓内部を汚さないようにした。また、前面板の表面と、汚れ防止板13の表面および汚れ防止栓14の表面とがフラットになるように、調整を行った。
 スリット状ノズルを有するガラス基材用コーター(エフ・エー・エス・ジャパン社製、商品名:MH-1600)にて、上記エッチング用光硬化性樹脂層用塗布液:処方E1を強化処理ガラス(基材)上に塗布した。引き続きVCD(真空乾燥装置、東京応化工業(株)製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、EBR(エッジ・ビード・リムーバー)にて基材周囲の不要な塗布液を除去し、120℃、3分間プリベークして、前記強化処理ガラス上に膜厚2.0μmのエッチング用光硬化性樹脂層を得た(液体レジスト法)。
 超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)で、基材と露光マスク(額縁パターンを有する石英露光マスク)とを垂直に立てた状態で、露光マスク面とエッチング用光硬化性樹脂層の間の距離を200μmに設定し、エッチング用光硬化性樹脂層側から露光量200mJ/cmでパターン露光した。
 汚れ防止板13から前面板をはずし、基板の開口部(15mmΦ)からシリコーン樹脂製の汚れ防止栓14を取り除いた。
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、25℃で100秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理した。次いで、回転ブラシで前面板を擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに130℃、30分間のポストベーク処理を行って、加飾層、マスク層、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を得た。
<Formation of first transparent electrode pattern>
The front plate on which the decorative layer, the mask layer, and the transparent electrode layer were formed was washed and dried in the same manner as the formation of the mask layer. The front plate was inserted into the silicone resin stain prevention plate 13 shown in FIG. 10, and the silicone resin stain prevention plug 14 shown in FIG. 11 was inserted into the opening (15 mm Φ) of the front plate. Next, the front plate edge and the stain prevention plate, and the opening edge and the inside of the prevention plug were not soiled. Further, the adjustment was performed so that the surface of the front plate, the surface of the antifouling plate 13 and the surface of the antifouling plug 14 become flat.
Coating solution for photo-curable resin layer for the above etching with a coater for glass substrate having slit-like nozzles (product name: MH-1600, manufactured by FF Japan, Ltd.): Substrate). Subsequently, after partially drying the solvent with a VCD (vacuum drying device, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to remove the fluidity of the coating layer, the periphery of the substrate is treated with EBR (edge bead remover) The unnecessary coating solution was removed and prebaked at 120 ° C. for 3 minutes to obtain a photocurable resin layer for etching having a film thickness of 2.0 μm on the tempered glass (liquid resist method).
Exposure mask surface and etching with the substrate and exposure mask (quartz exposure mask with frame pattern) vertically standing by a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp The distance between the photocurable resin layers was set to 200 μm, and pattern exposure was performed with an exposure amount of 200 mJ / cm 2 from the side of the photocurable resin layer for etching.
The front plate was removed from the antifouling plate 13 and the antifouling plug 14 made of silicone resin was removed from the opening (15 mm diameter) of the substrate.
Next, using a triethanolamine-based developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (Fujifilm Co., Ltd. product) diluted 10-fold with pure water) at 25 ° C. Development was carried out for 100 seconds, and washing was carried out at 33 ° C. for 20 seconds using a surfactant-containing washing solution (trade name: T-SD3 (manufactured by Fujifilm Corporation) diluted 10-fold with pure water). Next, the front plate was rubbed with a rotating brush, and the residue was removed by injecting pure water from an extra-high pressure cleaning nozzle. Furthermore, the post-baking process for 30 minutes and 130 degreeC was performed, and the front plate in which the decoration layer, the mask layer, the transparent electrode layer, and the photocurable resin layer pattern for etching were formed was obtained.
 加飾層、マスク層、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒間処理(エッチング処理)し、エッチング用光硬化性樹脂層で覆われていない露出した領域の透明電極層を溶解除去し、加飾層、マスク層、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を得た。 The front plate on which the decorative layer, the mask layer, the transparent electrode layer and the photocurable resin layer pattern for etching are formed is immersed in an etching bath containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.) Process (etching process) for 100 seconds, dissolve and remove the transparent electrode layer in the exposed area not covered with the photo-curable resin layer for etching, and attach the decorative layer, mask layer, photo-curable resin layer pattern for etching A front plate with a transparent electrode layer pattern was obtained.
 次に、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を、レジスト剥離液(N-メチル-2-ピロリドン、モノエタノールアミン、界面活性剤(商品名:サーフィノール465、エアープロダクツ製)、液温45℃)を入れたレジスト剥離槽に浸漬し、200秒間処理(剥離処理)し、エッチング用光硬化性樹脂層を除去し、加飾層と、マスク層と、前記前面板の一方の面および前記マスク層の前記前面板と対向する面とは逆側の面の両方の領域にまたがって図1のように設置された第一の透明電極パターンとを形成した前面板を得た。 Next, the front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching was exposed to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, surfactant (trade name: SURFYNOL 465) ), Dipped in a resist stripping bath containing 45 ° C. of air products, treated (peeling treatment) for 200 seconds, the photocurable resin layer for etching is removed, a decorative layer, a mask layer, A first transparent electrode pattern disposed as shown in FIG. 1 is formed across both areas of one surface of the front plate and a surface opposite to the surface of the mask layer opposite to the front plate. I got the front plate.
《絶縁層の形成》
<絶縁層形成用塗布液の調製>
 下記に示す絶縁層形成用塗布液:処方W1を調製した。
<< Formation of insulating layer >>
Preparation of Coating Solution for Forming Insulating Layer
Coating solution for forming an insulating layer shown below: Formulation W1 was prepared.
(絶縁層形成用塗布液:処方W1)
・バインダー3(シクロヘキシルメタクリレート(a)/メチルメタクリレート(b)/メタクリル酸共重合体(c)のグリシジルメタクリレート付加物(d)(組成(質量%):a/b/c/d=46/1/10/43、重量平均分子量:36000、酸価66mgKOH/g)の1-メトキシ-2-プロパノール、メチルエチルケトン溶液(固形分:45%)):12.5質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%)
                          :1.4質量部
・ウレタン系モノマー(商品名:NKオリゴUA-32P、新中村化学(株)製:不揮発分75%、プロピレングリコールモノメチルエーテルアセテート:25%):0.68質量部
・トリペンタエリスリトールオクタアクリレート(商品名:V#802、
 大阪有機化学工業(株)製)            :1.8質量部
・ジエチルチオキサントン             :0.17質量部
・2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-
 [4-(4-モルホリニル)フェニル]-1-ブタノン
 (商品名:Irgacure379、BASF製) :0.17質量部
・分散剤(商品名:ソルスパース20000、アビシア製)   :0.19質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ製)
                         :0.05質量部
・メチルエチルケトン               :23.3質量部
・MMPGAc(プロピレングリコールモノメチルエーテルアセテート、ダイセル化学(株)製)      :59.8質量部
 なお、絶縁層形成用塗布液:処方W1の溶剤除去後の100℃の粘度は4000Pa・secであった。
(Coating liquid for insulating layer formation: prescription W1)
· Binder 3 (glycidyl methacrylate adduct of cyclohexyl methacrylate (a) / methyl methacrylate (b) / methacrylic acid copolymer (c) (d) (composition (% by mass): a / b / c / d = 46/1 / 10/43, weight average molecular weight: 36000, acid value 66 mg KOH / g) 1-methoxy-2-propanol, methyl ethyl ketone solution (solid content: 45%)): 12.5 parts by mass · DPHA (dipentaerythritol hexaacrylate) Propylene glycol monomethyl ether acetate solution (76% by mass) manufactured by Nippon Kayaku Co., Ltd.
1.4 parts by mass Urethane-based monomer (trade name: NK oligo UA-32P, Shin-Nakamura Chemical Co., Ltd. product: non-volatile matter 75%, propylene glycol monomethyl ether acetate: 25%): 0.68 parts by mass tri Pentaerythritol octaacrylate (trade name: V # 802,
Osaka Organic Chemical Industry Co., Ltd .: 1.8 parts by mass Diethylthioxanthone: 0.17 parts by mass 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1-
[4- (4-morpholinyl) phenyl] -1-butanone (trade name: Irgacure 379, manufactured by BASF): 0.17 parts by mass, dispersant (trade name: Solsperse 20000, manufactured by Avicia): 0.19 parts by mass, interface Activator (trade name: Megafuck F-780F, made by Dainippon Ink)
: 0.05 parts by mass · methyl ethyl ketone: 23.3 parts by mass · MMPGAc (propylene glycol monomethyl ether acetate, manufactured by Daicel Chemical Industries, Ltd.): 59.8 parts by mass In addition, coating liquid for forming an insulating layer: solvent removal of formulation W1 The subsequent viscosity at 100 ° C. was 4000 Pa · sec.
 エッチング用光硬化性樹脂層の形成と同様にして、前面板上に1.4μm厚の絶縁層用光硬化性樹脂層を形成した。
 引き続き、露光マスク(絶縁層用パターンを有す石英露光マスク)面と絶縁層との間の距離を100μmに設定し、露光量150mJ/cm(i線)でパターン露光した。
In the same manner as the formation of the photocurable resin layer for etching, a photocurable resin layer for an insulating layer having a thickness of 1.4 μm was formed on the front plate.
Subsequently, the distance between the exposure mask (quartz exposure mask having a pattern for insulating layer) surface and the insulating layer was set to 100 μm, and pattern exposure was performed with an exposure amount of 150 mJ / cm 2 (i line).
 次に、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて、25℃で50秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理した。次いで、回転ブラシで前面板を擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに230℃、60分間のポストベーク処理を行って、加飾層、マスク層、第一の透明電極パターン、絶縁層パターンを形成した前面板を得た。 Next, using a sodium carbonate / sodium hydrogencarbonate developer (trade name: T-CD1 (Fujifilm Co., Ltd.) diluted 5 times with pure water), development was carried out at 25 ° C. for 50 seconds. Using a surfactant-containing washing solution (trade name: T-SD3 (manufactured by Fujifilm Corporation) diluted 10-fold with pure water), washing was performed at 33 ° C. for 20 seconds. Next, the front plate was rubbed with a rotating brush, and the residue was removed by injecting pure water from an extra-high pressure cleaning nozzle. Further, post-baking treatment was carried out at 230 ° C. for 60 minutes to obtain a front plate on which a decorative layer, a mask layer, a first transparent electrode pattern, and an insulating layer pattern were formed.
《第二の透明電極パターンの形成》
<透明電極層の形成>
 前記第一の透明電極パターンの形成と同様にして、加飾層、マスク層、第一の透明電極パターン、絶縁層パターンを形成した前面板を、DCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は110Ω/□であった。
<< Formation of Second Transparent Electrode Pattern >>
<Formation of transparent electrode layer>
Similar to the formation of the first transparent electrode pattern, the front plate on which the decorative layer, the mask layer, the first transparent electrode pattern, and the insulating layer pattern are formed is subjected to DC magnetron sputtering treatment (conditions: temperature of substrate) An ITO thin film with a thickness of 80 nm was formed at 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a decorative layer, a mask layer, a first transparent electrode pattern, an insulating layer pattern, and a transparent electrode layer were formed. I got the front plate. The surface resistance of the ITO thin film was 110 Ω / □.
 第一の透明電極パターンの形成と同様にして、エッチング用光硬化性樹脂層用塗布液:処方E1を用いて、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、透明電極層、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃、30分間)。
 さらに、第一の透明電極パターンの形成と同様にして、エッチング(30℃、50秒間)して、エッチング用光硬化性樹脂層を除去(45℃、200秒間)することにより、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、前記前面板の一方の面および前記マスク層の前記前面板と対向する面とは逆側の面の両方の領域にまたがって図1のように設置された第二の透明電極パターンを形成した前面板を得た。
A coating solution for a photocurable resin layer for etching in the same manner as the formation of the first transparent electrode pattern: using a prescription E1, a decorative layer, a mask layer, a first transparent electrode pattern, an insulating layer pattern, a transparent electrode A front plate having a layer and a photocurable resin layer pattern for etching formed thereon was obtained (post-baking treatment; 130 ° C., 30 minutes).
Furthermore, in the same manner as the formation of the first transparent electrode pattern, the etching layer (30 ° C., 50 seconds) is removed to remove the photocurable resin layer for etching (45 ° C., 200 seconds), thereby forming a decorative layer, The mask layer, the first transparent electrode pattern, the insulating layer pattern, one surface of the front plate and the opposite surface of the surface of the mask layer opposite to the front plate as shown in FIG. The front plate which formed the 2nd transparent electrode pattern installed in was obtained.
《第一および第二の透明電極パターンとは別の導電性要素の形成》
 前記第一、および第二の透明電極パターンの形成と同様にして、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板をDCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。
<< Formation of conductive element different from the first and second transparent electrode patterns >>
Similarly to the formation of the first and second transparent electrode patterns, a front plate on which a decorative layer, a mask layer, a first transparent electrode pattern, an insulating layer pattern, and a second transparent electrode pattern are formed is used as a DC magnetron Sputtering was performed to obtain a front plate on which a 200 nm-thick aluminum (Al) thin film was formed.
 前記第一、および第二の透明電極パターンの形成と同様にして、光硬化性樹脂層用塗布液:処方E1を用いて、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、アルミニウム薄膜、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃、30分間)。
 さらに、第一の透明電極パターンの形成と同様にして、エッチング(30℃、50秒間)して、エッチング用光硬化性樹脂層を除去(45℃、200秒間)することにより、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。
Coating liquid for photocurable resin layer: using the prescription E1 in the same manner as the formation of the first and second transparent electrode patterns: a decorative layer, a mask layer, a first transparent electrode pattern, and an insulating layer pattern A front plate on which a second transparent electrode pattern, an aluminum thin film, and a photocurable resin layer pattern for etching were formed was obtained (post-baking treatment; 130 ° C., 30 minutes).
Furthermore, in the same manner as the formation of the first transparent electrode pattern, the etching layer (30 ° C., 50 seconds) is removed to remove the photocurable resin layer for etching (45 ° C., 200 seconds), thereby forming a decorative layer, A front plate on which a conductive element different from the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns was formed was obtained.
《透明保護層の形成》
 絶縁層の形成と同様にして、前記第一および第二の透明電極パターンとは別の導電性要素まで形成した前面板に、絶縁層形成用塗布液:処方W1を塗布して乾燥し、露光マスクを介さずに露光量200mJ/cm(i線)で全面露光し、現像、ポスト露光(1000mJ/cm)、ポストベーク処理を行って、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素の全てを覆うように絶縁層(透明保護層)を図1のように積層した前面板1を得た。得られた前面板1を実施例1の静電容量型入力装置とした。
<< Formation of transparent protective layer >>
In the same manner as in the formation of the insulating layer, the coating liquid for forming the insulating layer: Formulation W1 is applied to the front plate on which the conductive elements other than the first and second transparent electrode patterns are formed, dried, and exposed The entire surface is exposed with an exposure dose of 200 mJ / cm 2 (i-line) without a mask, developed, post-exposed (1000 mJ / cm 2 ), post-baked, and then the decorative layer, mask layer, first transparent electrode An insulating layer (transparent protective layer) was laminated as shown in FIG. 1 so as to cover all of the conductive elements other than the pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns. The front plate 1 was obtained. The obtained front plate 1 was used as a capacitive input device of Example 1.
《画像表示装置(タッチパネル)の作製》
 特開2009-47936公報に記載の方法で製造した液晶表示素子に、先に製造した前面板1(実施例1の静電容量型入力装置)を貼り合せ、公知の方法で静電容量型入力装置を構成要素として備えた実施例1の画像表示装置1を作製した。
<< Production of Image Display Device (Touch Panel) >>
The liquid crystal display device manufactured by the method described in JP-A-2009-47936 is bonded to the front plate 1 (electrostatic capacitance type input device of Example 1) manufactured earlier, and the electrostatic capacitance type input is performed by a known method. The image display apparatus 1 of Example 1 provided with an apparatus as a component was produced.
《前面板1、および画像表示装置1の全体評価》
 上述の各工程において、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板1(実施例1の静電容量型入力装置)は、開口部、および裏面に汚れがなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、加飾層にはピンホールがなく、白色度、ムラも問題なかった。マスク層には同様にピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれらとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
<< Overall Evaluation of Front Plate 1 and Image Display Device 1 >>
In each of the above-described steps, a conductive element different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns is formed The front plate 1 (the capacitance-type input device of Example 1) had no dirt on the opening and the back surface, was easy to clean, and had no problem of contamination of other members.
Moreover, there were no pinholes in the decorative layer, and there were no problems with whiteness and unevenness. Similarly, the mask layer had no pinholes and was excellent in light shielding properties.
And there is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element different from them, while the first transparent electrode pattern and the second transparent electrode pattern It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例2]
<導電性加飾層形成用塗布液の調製>
(銀ナノワイヤー分散物(1)の調製)
 硝酸銀粉末0.51gを純水50mLに溶解した硝酸銀溶液を調製した。その後、前記硝酸銀溶液に1Nのアンモニア水を透明になるまで添加し、全量が100mLになるように、純水を添加して、添加液Aを調製した。
 また、グルコース粉末0.5gを140mLの純水で溶解して、添加液Gを調製した。
 更に、HTAB(ヘキサデシル-トリメチルアンモニウムブロミド)粉末0.5gを27.5mLの純水で溶解して、添加液Hを調製した。
Example 2
<Preparation of Coating Liquid for Forming Conductive Decorative Layer>
(Preparation of Silver Nanowire Dispersion (1))
A silver nitrate solution was prepared by dissolving 0.51 g of silver nitrate powder in 50 mL of pure water. Thereafter, 1N ammonia water was added to the silver nitrate solution until it became transparent, and pure water was added so that the total amount would be 100 mL, to prepare an additive solution A.
Further, 0.5 g of glucose powder was dissolved in 140 mL of pure water to prepare an additive solution G.
Further, 0.5 g of HTAB (hexadecyl-trimethyl ammonium bromide) powder was dissolved in 27.5 mL of pure water to prepare an additive solution H.
 次いで、前記添加液A20.6mLを三口フラスコ内に入れ、室温にて攪拌した。この液に純水41mL、添加液H20.6mL、および添加液G16.5mLの順でロートにて添加し、90℃で5時間、200rpmで攪拌しながら加熱することで、銀ナノワイヤー水分散物(1)を得た。
 得られた銀ナノワイヤー水分散物(1)を冷却した後、撹拌しながら、ポリビニルピロリドン(商品名:K-30、和光純薬工業(株)製)を銀の質量1に対し0.05となるように添加した。その後、得られた溶液を遠心分離し、伝導度が50μS/cm以下になるまで精製した。更に、プロピレングリコールモノメチルエーテルを添加して遠心分離を行った。次いで、水を除去し、最終的にプロピレングリコールモノメチルエーテルを添加し、銀ナノワイヤー溶剤分散物(1)(銀ナノワイヤー分散物(1))を調製した。
Next, 20.6 mL of the additive solution A was placed in a three-necked flask and stirred at room temperature. Add 41 mL of pure water, 20.6 mL of Additive Solution H, and 16.5 mL of Additive Solution G to this solution in the order of a funnel, and heat at 90 ° C for 5 hours with stirring at 200 rpm for 5 hours. I got (1).
After cooling the obtained silver nanowire water dispersion (1), while stirring, polyvinyl pyrrolidone (trade name: K-30, manufactured by Wako Pure Chemical Industries, Ltd.) was used in an amount of 0.05 to 1 mass of silver. It added so that it might become. The resulting solution was then centrifuged and purified to a conductivity of 50 μS / cm or less. Furthermore, propylene glycol monomethyl ether was added and centrifugation was performed. Next, water was removed, and finally propylene glycol monomethyl ether was added to prepare silver nanowire solvent dispersion (1) (silver nanowire dispersion (1)).
(導電性加飾層形成用塗布液の調製)
 下記組成を攪拌し、最終銀濃度が1.0質量%となるように銀ナノワイヤー分散物(1)と混合し、導電性加飾層形成用塗布液C1を調製した。
(Preparation of Coating Solution for Forming Conductive Decorative Layer)
The following composition was stirred, and mixed with the silver nanowire dispersion (1) such that the final silver concentration was 1.0% by mass, to prepare a coating liquid C1 for forming a conductive decorative layer.
-導電性加飾層形成用塗布液C1の組成-
・前記バインダー3(固形分:45%)        :3.80質量部
・KAYARAD DPHA(日本化薬(株)製)   :1.59質量部
・2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:Irgacure379、BASF製):0.159質量部
・EHPE-3150(ダイセル化学(株)製)   :0.150質量部
・界面活性剤(商品名:メガファックF-781F、大日本インキ製)
                         :0.002質量部
・MMPGAc(プロピレングリコールモノメチルエーテルアセテート、ダイセル化学(株)製):19.3質量部
-Composition of Coating Solution C1 for Forming Conductive Decorative Layer-
The binder 3 (solid content: 45%): 3.80 parts by mass KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.): 1.59 parts by mass 2- (dimethylamino) -2-[(4-methyl) Phenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: Irgacure 379, manufactured by BASF): 0.159 parts by mass EHPE-3150 (manufactured by Daicel Chemical Industries, Ltd.): 0 .150 parts by weight of surfactant (trade name: Megafac F-781F, manufactured by Dainippon Ink)
0.002 parts by mass MMPGAc (propylene glycol monomethyl ether acetate, manufactured by Daicel Chemical Industries, Ltd.): 19.3 parts by mass
《透明電極パターンおよび絶縁層等の形成》
 実施例1と同様にして、加飾層およびマスク層が形成された前面板を得た後、エッチング用光硬化性樹脂層用塗布液:処方E1に代えて、導電性加飾層形成用塗布液C1を用い、以下の手順で導電性加飾層を積層し、第一の透明電極パターンの形成を行った。
 まず、加飾層およびマスク層が形成された前面板を洗浄し、導電性加飾層形成用塗布液C1を前面板のマスク層側にスリット状ノズルを有するガラス基材用コーター(エフ・エー・エス・ジャパン社製、商品名:MH-1600)にて、塗布し、乾燥して膜厚2.0μmの導電性加飾層を得た。露光マスク(透明電極パターンを有す石英露光マスク)面と該導電性加飾層との間の距離を100μmに設定し、露光量100mJ/cm(i線)でパターン露光した。
 次に、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて、25℃で60秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理した。次いで、前面板を回転ブラシで擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに、230℃60分間のポストベーク処理を行って、マスク層、第一の透明電極パターンを形成した前面板を得た。
<< Formation of Transparent Electrode Pattern, Insulating Layer, etc. >>
After obtaining a front plate on which a decorative layer and a mask layer are formed in the same manner as in Example 1, a coating solution for a photocurable resin layer for etching: instead of prescription E1, a coating for forming a conductive decorative layer Using the liquid C1, the conductive decorative layer was laminated in the following procedure to form a first transparent electrode pattern.
First, the front plate on which the decorative layer and the mask layer are formed is washed, and a coating solution C1 for forming a conductive decorative layer is applied to a coater for glass substrate having a slit-like nozzle on the mask layer side of the front plate. -It applied by S Japan company make and brand name: MH-1600), and it dried, and obtained the conductive decoration layer with a film thickness of 2.0 micrometers. The distance between an exposure mask (a quartz exposure mask having a transparent electrode pattern) surface and the conductive decorative layer was set to 100 μm, and pattern exposure was performed with an exposure dose of 100 mJ / cm 2 (i line).
Next, using a sodium carbonate / sodium hydrogencarbonate developer (trade name: T-CD1 (Fujifilm Co., Ltd.) diluted 5 times with pure water), development was carried out at 25 ° C. for 60 seconds. Using a surfactant-containing washing solution (trade name: T-SD3 (manufactured by Fujifilm Corporation) diluted 10-fold with pure water), washing was performed at 33 ° C. for 20 seconds. Next, the front plate was rubbed with a rotating brush, and the residue was removed by injecting pure water from an extra-high pressure cleaning nozzle. Further, post-baking treatment was performed at 230 ° C. for 60 minutes to obtain a front plate on which a mask layer and a first transparent electrode pattern were formed.
 続いて、実施例1と同様にして絶縁層を形成した。次いで、本実施例2中の前記第一の透明電極パターンの形成と同様に導電性加飾層を積層し、第二の透明電極パターンの形成を行った。さらに、実施例1と同様にして、第一および第二の透明電極パターンとは別の導電性要素、および透明保護層の形成を行い、前面板2を得た。これを実施例2の静電容量型入力装置とした。
 また、実施例1と同様にして、実施例2の画像表示装置2を作製した。
Subsequently, in the same manner as in Example 1, an insulating layer was formed. Subsequently, the conductive decorative layer was laminated in the same manner as in the formation of the first transparent electrode pattern in the second embodiment to form a second transparent electrode pattern. Furthermore, in the same manner as in Example 1, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer were formed to obtain a front plate 2. This was used as a capacitive input device of Example 2.
Further, in the same manner as in Example 1, an image display apparatus 2 of Example 2 was produced.
《前面板2、および画像表示装置2の評価》
 上述の各工程において、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板2は、開口部、および裏面に汚れがなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
<< Evaluation of front panel 2 and image display device 2 >>
In each of the above-described steps, a conductive element different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns is formed The front plate 2 had no dirt on the opening and the back, was easy to clean, and had no problem of contamination of other members.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例3~10]
 実施例1の耐熱性加飾用着色組成物(処方L1)の調製において、シリコーンレジンKR-311に代えて、シリコーンレジンKR-300(実施例3)、シリコーンレジンKR-282(実施例4)、シリコーンレジンKR-300とシリコーンレジンKR-282の固形分等量混合物(実施例5)、シリコーンレジンKR-271(実施例6)、シリコーンレジンKR-255(実施例7)、シリコーンレジンKR-212(実施例8)、シリコーンレジンKR-9706(実施例9)、シリコーンレジンKR-5230(実施例10)を用いた以外は実施例1の耐熱性加飾用着色組成物(処方L1)の調製と同様にして(固形分添加量は同じ。)実施例3~10の耐熱性加飾用着色組成物(それぞれ処方L3~L10とする)を調製した。
 実施例1で用いた耐熱性加飾用着色組成物に代えて、実施例3~10の耐熱性加飾用着色組成物を用い、すなわち下記表1に示すバインダーを用いた以外は実施例1と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表1に記載した。その後、実施例1と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例3~10の静電容量型入力装置である前面板3~10、静電容量型入力装置を構成要素として備えた画像表示装置3~10を作製した。
 前面板3~10は明度、白色度、レチキュレーション、得率、加飾層密着性、開口部汚れ、開口部欠落は実用レベルであった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 3 to 10]
Silicone resin KR-300 (Example 3), Silicone resin KR-282 (Example 4) in place of silicone resin KR-311 in preparation of the coloring composition for heat resistance decoration (formulation L1) of Example 1 Mixture of silicone resin KR-300 and silicone resin KR-282 (Example 5), silicone resin KR-271 (Example 6), silicone resin KR-255 (Example 7), silicone resin KR- The heat resistant decorative coloring composition (formulation L1) of Example 1 except that 212 (Example 8), silicone resin KR-9706 (Example 9), and silicone resin KR-5230 (Example 10) were used. In the same manner as in the preparation (the solid content addition amount is the same), the heat resistant decorative coloring compositions of Examples 3 to 10 (respectively formulated as L3 to L10) were prepared .
The heat resistant decorative coloring composition of Examples 3 to 10 was used instead of the heat resistant decorative coloring composition used in Example 1, that is, Example 1 except using the binder shown in Table 1 below. In the same manner as in the above, a front plate having a decorative layer formed was produced. The evaluation results of the obtained front plate are shown in Table 1 below. Thereafter, in the same manner as in Example 1, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And the front plates 3 to 10 which are the capacitance type input devices of Examples 3 to 10 in which the transparent protective layer is formed, and the image display devices 3 to 10 each having the capacitance type input device as a component.
For the front plates 3 to 10, the brightness, the whiteness, the reticulation, the yield, the adhesion of the decorative layer, the contamination of the opening, and the omission of the opening were at practical levels.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例11~13]
 実施例5の耐熱性加飾用着色組成物(処方L5)に用いる白色顔料分散物1の調製の際に用いた酸化チタン石原産業製CR-97(アルミナ/ジルコニア処理ルチル型、一次粒子径0.25μm)に代えて、それぞれ、石原産業製CR-60(アルミナ処理ルチル型、一次粒子径0.21μm、実施例11)、石原産業製CR-50(アルミナ処理ルチル型、一次粒子径0.25μm、実施例12)、石原産業製CR-58(アルミナ処理ルチル型、一次粒子径0.28μm、実施例13)を用いた以外は実施例5の耐熱性加飾用着色組成物の調製と同様にして、実施例11~13の耐熱性加飾用着色組成物(それぞれ処方L11~L13とする)を調製した。
 実施例5で用いた耐熱性加飾用着色組成物に代えて、実施例11~13の耐熱性加飾用着色組成物を用いた以外は実施例5と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表1に記載した。その後、実施例5と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例11~13の静電容量型入力装置である前面板11~13、静電容量型入力装置を構成要素として備えた画像表示装置11~13を作製した。
 前面板11~13は、開口部及び裏面の汚れに問題がなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 11 to 13]
Titanium oxide CR-97 (alumina / zirconia-treated rutile type, primary particle diameter 0) manufactured by Ishihara Sangyo Co., Ltd. used in the preparation of the white pigment dispersion 1 used for the heat resistant decorative coloring composition (formulation L5) of Example 5 Instead of Ishihara Sangyo CR-60 (alumina treated rutile type, primary particle diameter 0.21 μm, Example 11), Ishihara Sangyo CR-50 (alumina treated rutile type, primary particle diameter 0. Preparation of the coloring composition for heat-resistant decoration of Example 5 except using 25 μm, Example 12), CR-58 (alumina-treated rutile type, primary particle diameter 0.28 μm, Example 13) manufactured by Ishihara Sangyo Co., Ltd. Similarly, the heat-resistant and decorative coloring compositions of Examples 11 to 13 (respectively referred to as Formulations L11 to L13) were prepared.
A decorative layer is formed in the same manner as in Example 5 except that the heat resistant decorative coloring composition of Examples 11 to 13 is used instead of the heat resistant decorative coloring composition used in Example 5. The front plate was made. The evaluation results of the obtained front plate are shown in Table 1 below. Thereafter, in the same manner as in Example 5, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And, the front plates 11 to 13 which are the capacitance type input devices of Examples 11 to 13 in which the transparent protective layer is formed, and the image display devices 11 to 13 each having the capacitance type input device as a component are manufactured.
The front plates 11 to 13 had no problem in the contamination of the opening and the back surface, were easy to clean, and had no problem of contamination of other members.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例14~19]
 実施例5の耐熱性加飾用着色組成物(処方L5)の全固形分質量部に対する酸化チタン含有量を44質量部としたことに代えて、それぞれ、20質量部(実施例14)、26質量部(実施例15)、32質量部(実施例16)、36質量部(実施例17)、60質量部(実施例18)、75質量部(実施例19)に変更した以外は実施例5の耐熱性加飾用着色組成物の調製と同様にして、実施例14~19の耐熱性加飾用着色組成物(それぞれ処方L14~L19とする)を調製した。
 実施例5で用いた耐熱性加飾用着色組成物に代えて、実施例14~19の耐熱性加飾用着色組成物を用いた以外は実施例5と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表1に記載した。その後、実施例5と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例14~19静電容量型入力装置である前面板14~19、静電容量型入力装置を構成要素として備えた画像表示装置14~19を作製した。
 下記表1の結果から、20質量部から75質量部の範囲内では、全ての評価は実用レベルであった。さらに詳細に説明すると、20質量部から75質量部と酸化チタン含有率が増えるにつれ、得率、加飾層密着性、開口部欠落はやや低下するが、実用レベルであり、白色度、レチキュレーション、開口部汚れは良化傾向にあった。明度は38質量部~60質量部が最も良好な領域であった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 14 to 19]
The titanium oxide content relative to 44 parts by mass of the total solid content by mass of the heat-resistant decorative coloring composition (formulation L5) of Example 5 is replaced with 20 parts by mass (Example 14) and 26 respectively. Example except changing into mass part (Example 15), 32 mass parts (Example 16), 36 mass parts (Example 17), 60 mass parts (Example 18), 75 mass parts (Example 19) In the same manner as in the preparation of the heat resistant decorative coloring composition of No. 5, the heat resistant decorative coloring compositions of Examples 14 to 19 (respectively referred to as Formulations L14 to L19) were prepared.
A decorative layer is formed in the same manner as in Example 5 except that the heat resistant decorative coloring composition of Examples 14 to 19 is used instead of the heat resistant decorative coloring composition used in Example 5. The front plate was made. The evaluation results of the obtained front plate are shown in Table 1 below. Thereafter, in the same manner as in Example 5, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Examples 14 to 19 in which a transparent protective layer was formed The front plates 14 to 19 which are capacitance type input devices, and the image display devices 14 to 19 including the capacitance type input devices as components were manufactured.
From the results of Table 1 below, all evaluations were at practical levels within the range of 20 parts by mass to 75 parts by mass. More specifically, as the titanium oxide content increases from 20 parts by mass to 75 parts by mass, the yield, the adhesion to the decorative layer, and the missing part of the opening slightly decrease, but it is a practical level, and the whiteness and reticulation And the dirt at the opening tended to improve. The lightness of 38 parts by mass to 60 parts by mass was the most favorable region.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例20~22]
 実施例5の耐熱性加飾用着色組成物(処方L5)の調製において、燐酸/ヒンダードフェノール系酸化防止剤スミライザーGPに代えて、それぞれ燐酸系酸化防止剤IRGAFOS168(BASFジャパン社製、実施例20)、燐酸系酸化防止剤IRGAFOS38(BASFジャパン社製、実施例21)、燐酸/ヒンダードフェノール系酸化防止剤IRGAMOD295(BASFジャパン社製、実施例22)を用いた以外は実施例5の耐熱性加飾用着色組成物(処方L5)の調製と同様にして、実施例20~22の耐熱性加飾用着色組成物(それぞれ処方L20~L22とする)を調製した。
 実施例5で用いた耐熱性加飾用着色組成物に代えて、実施例20~22の耐熱性加飾用着色組成物を用いた以外は実施例5と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例5と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例20~22の静電容量型入力装置である前面板20~22、静電容量型入力装置を構成要素として備えた画像表示装置20~22を作製した。
 前面板20及び21は、前面板5に対し、白色度はやや良化し、その他は同等で実用レベルであった。
 前面板22は、前面板5に対し、評価結果は変わらず同等で実用レベルであった。
[Examples 20 to 22]
In the preparation of the heat-resistant decorative coloring composition (formulation L5) of Example 5, the phosphoric acid-based antioxidant IRGAFOS 168 (manufactured by BASF Japan Ltd., Example) is used in place of the phosphoric acid / hindered phenol-based antioxidant Antimulsifier GP. 20) The heat resistance of Example 5 except that phosphoric acid based antioxidant IRGAFOS 38 (manufactured by BASF Japan Ltd., Example 21) and phosphoric acid / hindered phenolic antioxidant IRGAMOD 295 (manufactured by BASF Japan Ltd., Example 22) were used. In the same manner as in the preparation of the coloring composition for decorative decoration (formulation L5), the coloring composition for heat-resistant decoration of Examples 20 to 22 (respectively referred to as formulation L20 to L22) was prepared.
A decorative layer is formed in the same manner as in Example 5 except that the heat resistant decorative coloring composition of Examples 20 to 22 is used instead of the heat resistant decorative coloring composition used in Example 5. The front plate was made. The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 5, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Also, the front plates 20 to 22 which are the capacitance type input devices of Examples 20 to 22 in which the transparent protective layer is formed, and the image display devices 20 to 22 each having the capacitance type input device as a component are manufactured.
The front plates 20 and 21 slightly improved the whiteness with respect to the front plate 5, and the others were equal and practical.
The evaluation results of the front plate 22 were the same as those of the front plate 5 and were at the same practical level.
[実施例23及び24]
 実施例5において、形成した加飾層の厚みを36μm(実施例5;6回印刷塗布)としたことに代えて、18μm(実施例23;3回印刷塗布)または42μm(実施例24;7回印刷塗布)として、実施例23及び24の加飾層を形成した以外は、実施例5と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例5と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例23及び24の静電容量型入力装置である前面板23及び24、及び静電容量型入力装置を構成要素として備えた画像表示装置23を作製した。
 前面板23及び24は、前面板5に対し、明度、白色度、得率、レチキュレーション、加飾層密着性、開口部汚れ及び開口部欠落は実用レベルであった。
 前面板23及び24は開口部及び裏面の汚れに問題がなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 23 and 24]
In Example 5, instead of setting the thickness of the formed decorative layer to 36 μm (Example 5; 6 times printing application), 18 μm (Example 23; 3 times printing application) or 42 μm (Example 24; 7) A front plate on which a decorative layer was formed was produced in the same manner as in Example 5 except that the decorative layers of Examples 23 and 24 were formed as the single-step printing application). The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 5, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And the front plates 23 and 24 which are the capacitance type input devices of Examples 23 and 24 in which the transparent protective layer is formed, and the image display device 23 provided with the capacitance type input device as a component.
With respect to the front plate 5, the front plates 23 and 24 had practical levels of brightness, whiteness, yield, reticulation, decorative layer adhesion, opening contamination and opening loss.
The front plates 23 and 24 had no problem in the contamination of the opening and the back surface, were easy to clean, and did not have the problem of contamination of other members.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例25]
 実施例20の耐熱性加飾用着色組成物(処方L20)の調製において、シリコーンレジンKR-300とシリコーンレジンKR-282の固形分等量混合物に代えて、シリコーンレジンの総固形分添加量を変えずに、シリコーンレジンKR-300とシリコーンレジンKR-311の固形分1/1の等量混合物(実施例25)を用いた以外は実施例20の耐熱性加飾用着色組成物(処方L20)の調製と同様にして、耐熱性加飾用着色組成物(処方L25とする)を調製し、実施例25の耐熱性加飾用着色組成物とした。
 実施例25の耐熱性加飾用着色組成物(処方L25)を用い、すなわち下記表2に示すバインダーに変えた以外は実施例20と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例20と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例25の静電容量型入力装置である前面板25、静電容量型入力装置を構成要素として備えた画像表示装置25を作製した。
 前面板25は、前面板20に対し、白色度、加飾層密着性、開口部汚れ、開口部欠落が低下するものの、実用レベルであり、その他、明度、得率レチキュレーションの評価結果は同等で実用レベルであった。
 前面板25は開口部及び裏面の汚れに問題がなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Example 25]
In the preparation of the coloring composition for heat resistance decoration (formulation L20) of Example 20, it replaces with a solid equivalent mixture of silicone resin KR-300 and silicone resin KR-282, and adds total solid content of silicone resin The heat-resistant and decorative coloring composition of Example 20 (Formulation L 20) except that a 1: 1 equivalent mixture of silicone resin KR-300 and silicone resin KR-311 (Example 25) was used without change. In the same manner as in the preparation of (1), a heat-resistant decorative coloring composition (referred to as formulation L25) was prepared, and it was used as the heat-resistant decorative coloring composition of Example 25.
A front plate on which a decorative layer was formed was produced in the same manner as in Example 20 except that the coloring composition for heat resistance decoration (Formulation L 25) of Example 25 was used, that is, it was changed to the binder shown in Table 2 below. . The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 20, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Also, a front plate 25 which is a capacitance type input device of Example 25 in which a transparent protective layer is formed, and an image display device 25 provided with the capacitance type input device as a component are manufactured.
Although the front plate 25 has reduced whiteness, adhesion to the decorative layer, stains on the opening, and loss of the opening relative to the front plate 20, it is at a practical level, and the evaluation results of lightness and yield reticulation It was equal and practical.
The front plate 25 had no problem in the contamination of the opening and the back surface, was easy to clean, and had no problem of contamination of other members.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例26]
 実施例25の耐熱性加飾用着色組成物(処方L25)の調製において、耐熱性加飾用着色組成物(処方L25)に亜鉛系縮合触媒D-15(信越化学工業式会社製)をシリコーンレジンの総固形分添加量の4質量%添加して、実施例26の耐熱性加飾用着色組成物(処方L26とする)を調製した。
 実施例25で用いた耐熱性加飾用着色組成物(処方L25)に代えて、実施例26の耐熱性加飾用着色組成物を用いた以外は実施例25と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例25と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例26の静電容量型入力装置である前面板26、静電容量型入力装置を構成要素として備えた画像表示装置26を作製した。
 前面板26は、前面板25に対し、白色度、加飾層密着性、開口部汚れ、開口部欠落が低下するものの、実用レベルであり、その他、明度、得率レチキュレーションの評価結果は同等で実用レベルであった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Example 26]
In the preparation of the coloring composition for heat resistance decoration (formulation L25) of Example 25, a zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.) is added to the coloring composition for heat resistance decoration (formulation L25) 4% by mass of the total solid content addition amount of the resin was added to prepare a heat-resistant and decorative colored composition of Example 26 (referred to as Formulation L26).
A decorative layer is prepared in the same manner as in Example 25 except that the heat resistant decorative coloring composition of Example 26 is used instead of the heat resistant decorative coloring composition (Formulation L 25) used in Example 25. A front plate was formed. The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 25, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Also, a front plate 26 which is a capacitance-type input device of Example 26 in which a transparent protective layer is formed, and an image display device 26 provided with the capacitance-type input device as a component are manufactured.
Although the front plate 26 has reduced whiteness, adhesion to the decorative layer, stains on the opening, and missing openings with respect to the front plate 25, it is at a practical level, and evaluation results of lightness and yield reticulation It was equal and practical.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例27及び28]
 実施例26の耐熱性加飾用着色組成物(処方L26)の調製において、シリコーンレジンKR-300とシリコーンレジンKR-311の固形分比率を1/1(実施例26)としたことに代えて、それぞれ、3/7(実施例27)、7/3(実施例28)とした以外は、実施例26の耐熱性加飾用着色組成物(処方L26)の調製と同様にして(シリコーンレジンの総固形分添加量は同じ。)、実施例27及び28の耐熱性加飾用着色組成物(それぞれ処方L27およびL28とする)を調製した。
 実施例26で用いた耐熱性加飾用着色組成物に代えて、実施例27および28の耐熱性加飾用着色組成物を用いた以外は実施例26と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例26と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例27及び28の静電容量型入力装置である前面板27及び28、静電容量型入力装置を構成要素として備えた画像表示装置27及び28を作製した。
 前面板27及び28は明度、白色度、レチキュレーション、得率、加飾層密着性、開口部汚れ、開口部欠落は実用レベルであった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 27 and 28]
In the preparation of the heat-resistant and decorative coloring composition (formulation L26) of Example 26, the solid content ratio of silicone resin KR-300 to silicone resin KR-311 is changed to 1/1 (Example 26). (Silicone resin) in the same manner as in the preparation of the coloring composition for heat-resistant decoration (formulation L26) of Example 26 except that 3/7 (Example 27) and 7/3 (Example 28), respectively. The heat-resistant and decorative coloring compositions of Examples 27 and 28 (the formulations L27 and L28, respectively) were prepared.
A decorative layer is formed in the same manner as in Example 26 except that the heat resistant decorative coloring composition of Examples 27 and 28 is used instead of the heat resistant decorative coloring composition used in Example 26. The front plate was made. The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 26, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns In addition, front panels 27 and 28, which are the capacitance type input devices of Examples 27 and 28 in which the transparent protective layer is formed, and image display devices 27 and 28 each including the capacitance type input device as a component, are manufactured.
The front plates 27 and 28 had practical levels of lightness, whiteness, reticulation, yield, adhesion of the decorative layer, contamination of the opening, and missing of the opening.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例29~33]
 実施例26の耐熱性加飾用着色組成物(処方L26)の調製において、シリコーンレジンKR-300とシリコーンレジンKR-311の固形分1/1の等量混合物に代えて、それぞれ、シリコーンレジンKR-400(実施例29)、シリコーンレジンKR-500(実施例30)、シリコーンレジンKR-400とシリコーンレジンKR-500の固形分比=3/7(実施例31)、シリコーンレジンKR-400とシリコーンレジンKR-500の固形分比=7/3(実施例32)、シリコーンレジンKR-400、シリコーンレジンKR-500とシリコーンアルコキシオリゴマーX-40-9225の固形分比=70/30/2.5(実施例33)を用いた以外は、実施例26と同様にして(シリコーンレジンの総固形分添加量は同じ。)、実施例29~33の耐熱性加飾用着色組成物(それぞれ処方L29~L33とする)を調製した。
 実施例26で用いた耐熱性加飾用着色組成物に代えて、実施例29~33の耐熱性加飾用着色組成物をそれぞれ用いた以外は実施例26と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例26と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例29~33の静電容量型入力装置である前面板29~33、静電容量型入力装置を構成要素として備えた画像表示装置29~33を作製した。
 前面板29~33は、明度、白色度、レチキュレーション、得率、加飾層密着性、開口部汚れ、開口部欠落は実用レベルであった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 29 to 33]
In the preparation of the coloring composition for heat resistance decoration (formulation L26) of Example 26, the silicone resin KR is replaced with an equivalent mixture of solid content 1/1 of silicone resin KR-300 and silicone resin KR-311, respectively. -400 (Example 29), silicone resin KR-500 (Example 30), solid ratio of silicone resin KR-400 and silicone resin KR-500 = 3/7 (Example 31), silicone resin KR-400 Solid content ratio of silicone resin KR-500 = 7/3 (Example 32), solid ratio of silicone resin KR-400, silicone resin KR-500, and silicone alkoxy oligomer X-40-9225 = 70/30/2. Example 26 was carried out in the same manner as Example 26 except that 5 (Example 33) was used. Flip.), Heat resistance decorative coloring composition for Examples 29 to 33 (respectively identified as Formulation L29 ~ L33) was prepared.
A decorative layer is prepared in the same manner as in Example 26 except that the heat resistant decorative coloring compositions of Examples 29 to 33 are used instead of the heat resistant decorative coloring composition used in Example 26. The formed front plate was produced. The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 26, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns Also, the front plates 29 to 33, which are the capacitance type input devices of Examples 29 to 33 in which the transparent protective layer is formed, and the image display devices 29 to 33 provided with the capacitance type input device as components are manufactured.
In the front plates 29 to 33, the brightness, the whiteness, the reticulation, the yield, the adhesion of the decorative layer, the contamination of the opening, and the omission of the opening were at practical levels.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例34~39]
 実施例26の耐熱性加飾用着色組成物(処方L26)の調製において、シリコーンレジンKR-300とシリコーンレジンKR-311の固形分1/1の等量混合物に代えて、それぞれ、シリコーンレジンの種類を、合成例1の縮合物のトルエン溶液(実施例34;メチル・トリル型シリコーンレジン)、合成例2の縮合物のトルエン溶液(実施例35;メチル・ベンジル型シリコーンレジン)、合成例3の縮合物のトルエン溶液(実施例36;メチル・クミル型シリコーンレジン)、合成例4の縮合物のトルエン溶液(実施例37;エチル・トリル型シリコーンレジン)、合成例5の縮合物のトルエン溶液(実施例38;プロピル・トリル型シリコーンレジン)、合成例6の縮合物のトルエン溶液(実施例39;メチル・ハイドジェン型シリコーンレジン)、を用いた以外は、実施例26と同様にして(シリコーンレジンの総固形分添加量は同じ。)、実施例34~39の耐熱性加飾用着色組成物(それぞれ処方L34~L39とする)を調製した。
 実施例26で用いた耐熱性加飾用着色組成物に代えて、実施例34~39の耐熱性加飾用着色組成物をそれぞれ用いた以外は実施例26と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例26と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例34~39の静電容量型入力装置である前面板34~39、静電容量型入力装置を構成要素として備えた画像表示装置34~39を作製した。
 前面板34~39は明度、白色度、レチキュレーション、得率、加飾層密着性、開口部汚れ、開口部欠落は実用レベルであった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 34 to 39]
In the preparation of the coloring composition for heat resistance decoration (formulation L26) of Example 26, replacing with an equivalent mixture of solid content 1/1 of silicone resin KR-300 and silicone resin KR-311, respectively, silicone resin For the type, a toluene solution of the condensate of Synthesis Example 1 (Example 34; methyl tolyl type silicone resin), a toluene solution of the condensate of Synthesis Example 2 (Example 35; methyl benzyl type silicone resin), Synthesis Example 3 Solution of the condensate of the present invention (Example 36; methyl cumyl type silicone resin), toluene solution of the condensate of the synthesis example 4 (Example 37; ethyl tolyl type silicone resin), toluene solution of the condensate of the synthesis example 5 (Example 38; propyl / tolyl type silicone resin), a toluene solution of the condensation product of Synthesis Example 6 (Example 39; methyl hydride type silicone resin) The heat-resistant and decorative coloring composition of each of Examples 34 to 39 (respectively formulated L 34 to L) in the same manner as Example 26 (the total solid content addition amount of the silicone resin is the same) except using corn resin). L39 was prepared.
A decorative layer is prepared in the same manner as in Example 26 except that the heat resistant decorative coloring composition of Examples 34 to 39 is used instead of the heat resistant decorative coloring composition used in Example 26. The formed front plate was produced. The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 26, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And the front plates 34 to 39 which are the capacitance type input devices of Examples 34 to 39 in which the transparent protective layer is formed, and the image display devices 34 to 39 having the capacitance type input device as a component.
For the front plates 34 to 39, the brightness, the whiteness, the reticulation, the yield, the adhesion of the decorative layer, the contamination of the opening, and the omission of the opening were at practical levels.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[実施例40及び41]
 実施例1の耐熱性加飾用着色組成物(処方L1)の調製において、それぞれ、シリコーンレジンKR-251(実施例40)、シリコーンレジンKR-251とX-40-9246の固形分9/1の混合物(実施例41)に変更した耐熱性加飾用着色組成物(処方L40及びL41)を用い、すなわち下記表2に示すバインダーに変えた以外は実施例1と同様にして(シリコーンレジンの総固形分添加量は同じ。)、実施例40および41の耐熱性加飾用着色組成物(それぞれ処方L40およびL41とする)を調製した。
 実施例1の耐熱性加飾用着色組成物に代えて、実施例40および41の耐熱性加飾用着色組成物をそれぞれ用いた以外は実施例1と同様にして、加飾層を形成した前面板を作製した。得られた前面板の評価結果を下記表2に記載した。その後、実施例1と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した実施例40及び41の静電容量型入力装置である前面板40及び41、静電容量型入力装置を構成要素として備えた画像表示装置40及び41を作製した。
 前面板1に対し、前面板40及び41は、明度が大幅に改善され、白色度、レチキュレーション、得率、加飾層密着性、開口部汚れ、開口部欠落は実用レベルであった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
[Examples 40 and 41]
In preparation of the coloring composition for heat resistance decoration (formulation L1) of Example 1, solid content 9/1 of silicone resin KR-251 (Example 40) and silicone resin KR-251 and X-40-9246, respectively. (The silicone resin was prepared in the same manner as in Example 1 except that the heat resistant decorative coloring composition (Formulations L40 and L41) was changed to the mixture of Examples (Example 41), that is, it was changed to the binder shown in Table 2 below. The total solid content addition amount was the same.), And the heat resistant and decorative coloring composition of Examples 40 and 41 (respectively formulated as L40 and L41) were prepared.
A decorative layer was formed in the same manner as in Example 1 except that the heat resistant decorative coloring compositions of Examples 40 and 41 were used in place of the heat resistant decorative coloring composition of Example 1, respectively. A front plate was produced. The evaluation results of the obtained front plate are listed in Table 2 below. Thereafter, in the same manner as in Example 1, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And the front plates 40 and 41 which are the capacitance-type input devices of Examples 40 and 41 which formed the transparent protective layer, The image display devices 40 and 41 provided with the capacitance-type input device as a component were produced.
With respect to the front plate 1, the front plates 40 and 41 have significantly improved lightness, and the whiteness, reticulation, yield, adhesion of the decorative layer, the contamination of the opening, and the omission of the opening were at practical levels.
In addition, the mask layer had no pinholes and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[比較例1]
 実施例1の耐熱性加飾用着色組成物(処方L1)の調製において、シリコーンレジンKR-311に代えて、下記ポリアミド酸(下記表2にはポリイミドと記載)を同じ固形分量を添加して用いたこと以外は実施例1の耐熱性加飾用着色組成物の調製と同様にして、耐熱性加飾用着色組成物(処方L51)を調製した。得られた耐熱性加飾用着色組成物を比較例1の耐熱性加飾用着色組成物とした。
Comparative Example 1
In preparation of the coloring composition for heat resistance decoration (formulation L1) of Example 1, it replaces with silicone resin KR-311 and adds the same solid content of the following polyamic acid (it describes as a polyimide in following Table 2). A heat resistant decorative coloring composition (Formulation L51) was prepared in the same manner as in the preparation of the heat resistant decorative coloring composition of Example 1 except for the use. The obtained heat resistant decorative coloring composition was used as the heat resistant decorative coloring composition of Comparative Example 1.
(ポリイミド前駆体ポリアミド酸の重合)
 反応容器に4,4’-メチレンビス(シクロヘキシルアミン)210質量部を入れ、N-メチル-2-ピロリドン2860質量部に溶解した後、窒素気流下、撹拌しながらそこへピロメリット酸二無水物の粉末218質量部を徐々に加え、35℃で8時間反応させることにより、透明で粘稠なポリアミド酸溶液を得た。
(Polymerization of Polyimide Precursor Polyamide Acid)
After adding 210 parts by mass of 4,4'-methylenebis (cyclohexylamine) to a reaction vessel and dissolving it in 2860 parts by mass of N-methyl-2-pyrrolidone, the reaction mixture was stirred under nitrogen flow with stirring of pyromellitic dianhydride there. A clear and viscous polyamic acid solution was obtained by gradually adding 218 parts by weight of powder and reacting at 35 ° C. for 8 hours.
 実施例1で用いた耐熱性加飾用着色組成物に代えて、比較例1の耐熱性加飾用着色組成物(処方L51)を用いた以外は実施例1と同様にして、強化処理ガラス上に加飾層を形成した前面板51を形成した。加飾層を形成した前面板51をポストベーク処理した後、約20秒間で350℃まで昇温し、350℃にて7分間熱処理し、ポリアミド酸のイミド化を完了した。
 その後、実施例1と同様にして加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した比較例1の静電容量型入力装置である前面板51、および、静電容量型入力装置を構成要素として備えた画像表示装置51を作製した。得られた比較例1の前面板51の評価結果を下記表2に記載した。
 前面板51は前面板1に対し、白色度、加飾層密着性、開口部欠落、得率が著しく、低下し、NGレベルとなった。開口部及び裏面の汚れに問題がなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、前面板51はマスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
A tempered glass is prepared in the same manner as in Example 1 except that the coloring composition for heat resistance decoration (Formulation L51) of Comparative Example 1 is used instead of the coloring composition for heat resistance decoration used in Example 1. A front plate 51 having a decorative layer formed thereon was formed. After post-baking the front plate 51 on which the decorative layer is formed, the temperature is raised to 350 ° C. for about 20 seconds, and heat treatment is performed at 350 ° C. for 7 minutes to complete imidization of the polyamic acid.
Thereafter, in the same manner as in Example 1, a conductive layer different from the decorative layer, the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns And the front plate 51 which is an electrostatic capacitance type input device of the comparative example 1 which formed the transparent protective layer, and the image display apparatus 51 provided with the electrostatic capacitance type input device as a component were produced. The evaluation results of the obtained front plate 51 of Comparative Example 1 are shown in Table 2 below.
The front plate 51 had the whiteness, the adhesion to the decorative layer, the missing opening portion, and the yield significantly lowered with respect to the front plate 1, and became an NG level. There was no problem in the contamination of the opening and the back surface, it was easy to clean, and there was no problem of contamination of other members.
Further, the front plate 51 had no pinholes in the mask layer and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
[比較例2]
 実施例1の耐熱性加飾用着色組成物(処方L1)の調製において、シリコーンレジンKR-311に代えて、アクリルバインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万、下記表2にはアクリルと記載)を同じ固形分量添加して用いた以外は実施例1の耐熱性加飾用着色組成物の調製と同様にして、比較例2の耐熱性加飾用着色組成物(処方L52)を調製した。
 実施例1で用いた耐熱性加飾用着色組成物に代えて、比較例2の耐熱性加飾用着色組成物(処方L52)を用いた以外は実施例1と同様にして、加飾層、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、ならびに透明保護層を形成した比較例2の静電容量型入力装置である前面板52、および、静電容量型入力装置を構成要素として備えた画像表示装置52を作製した。得られた比較例2の前面板52の評価結果を下記表2に記載した。
 前面板52は前面板1に対し、白色度、加飾層密着性、開口部欠落、得率が著しく、低下し、NGレベルとなった。開口部及び裏面の汚れに問題がなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、前面板52はマスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、透明保護層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
Figure JPOXMLDOC01-appb-T000006
Comparative Example 2
Acrylic binder 1 (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer in place of silicone resin KR-311 in preparation of heat resistant decorative coloring composition (formulation L1) of Example 1; Comparative Example 2 in the same manner as in the preparation of the coloring composition for heat-resistant decoration of Example 1 except that the weight average molecular weight was 37,000 and the same solid content was added and used in Table 2 below. The heat resistant decorative coloring composition (formulation L52) was prepared.
A decorative layer is prepared in the same manner as in Example 1, except that the heat resistant decorative coloring composition (Formulation L52) of Comparative Example 2 is used instead of the heat resistant decorative coloring composition used in Example 1. Comparative Example 2 in which the mask layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the conductive element different from the first and second transparent electrode patterns, and the transparent protective layer are formed A front plate 52, which is a capacitive input device, and an image display device 52 provided with a capacitive input device as components were manufactured. The evaluation results of the front plate 52 of Comparative Example 2 obtained are shown in Table 2 below.
The front plate 52 had the whiteness, the adhesion to the decorative layer, the missing opening portion, and the yield significantly lower than that of the front plate 1 and became an NG level. There was no problem in the contamination of the opening and the back surface, it was easy to clean, and there was no problem of contamination of other members.
Further, the front plate 52 had no pinholes in the mask layer and was excellent in light shielding properties.
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and the other conductive element, and while the first transparent electrode pattern and the second transparent electrode pattern do not have any problem. It had insulation between the transparent electrode patterns.
Furthermore, the transparent protective layer was free from defects such as air bubbles, and an image display device excellent in display characteristics was obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表1および表2より、本発明の耐熱性加飾用着色組成物を用いることで、転写後の明度、白色度、レチキュレーションおよび密着性が良好である白色加飾層を、高い得率で得ることができることがわかった。
 また、以上のように、本発明の耐熱性加飾用着色組成物を用いた本発明の静電容量型入力装置の製造方法によれば、薄層化および軽量化のメリットがある静電容量型入力装置を、簡単な工程で高品位に製造可能にすることができた。このため、本発明の製造方法で製造した静電容量型入力装置、およびそれを用いた画像表示装置は高品位であることがわかる。
 なお、本発明の静電容量型入力装置の製造方法のより好ましい態様によれば、開口部を有する基板を用いた場合でもレジストのはみ出し(モレ)や、前面板裏側(非接触面側)の汚染が少ないことがわかった。
From the above Table 1 and Table 2, by using the heat-resistant decorative coloring composition of the present invention, a white decorative layer having good lightness, whiteness, reticulation and adhesion after transfer can be obtained with high quality. It turns out that it can be obtained at a rate.
Further, as described above, according to the method of manufacturing the capacitance-type input device of the present invention using the coloring composition for heat-resistant decoration of the present invention, the capacitance having the merit of thinning and weight reduction The mold input device can be made high quality in a simple process. Therefore, it is understood that the capacitance type input device manufactured by the manufacturing method of the present invention and the image display device using the same have high quality.
According to a more preferable embodiment of the method of manufacturing a capacitance-type input device according to the present invention, even in the case where a substrate having an opening is used, the resist is protruded (moist) or the front plate back side (non-contact surface side) It turned out that there is little pollution.
 1 前面板
1a 前面板の非接触面
2a 加飾層
2b マスク層
 3 第一の透明電極パターン
3a パッド部分
3b 接続部分
 4 第二の透明電極パターン
 5 絶縁層
 6 導電性要素
 7 透明保護層
 8 開口部
10 静電容量型入力装置
11 強化処理ガラス
12 別の導電性要素
13 汚れ防止板
14 汚れ防止栓
C  第1の方向
D  第2の方向
1 front plate 1a front plate non-contact surface 2a decorative layer 2b mask layer 3 first transparent electrode pattern 3a pad portion 3b connection portion 4 second transparent electrode pattern 5 insulating layer 6 conductive element 7 transparent protective layer 8 opening Part 10 Capacitance type input device 11 Hardened glass 12 Another conductive element 13 Antifouling plate 14 Antifouling plug C First direction D Second direction

Claims (28)

  1.  少なくとも(A)白色無機顔料および(B)シリコーン系レジンを含むことを特徴とする耐熱性加飾用着色組成物。 A coloring composition for heat resistant decoration comprising at least (A) a white inorganic pigment and (B) a silicone resin.
  2.  前記耐熱性加飾用着色組成物がさらに、(C)酸化防止剤を含むことを特徴とする請求項1に記載の耐熱性加飾用着色組成物。 The heat-resistant decorative coloring composition according to claim 1, wherein the heat-resistant decorative coloring composition further comprises (C) an antioxidant.
  3.  前記(B)シリコーン系レジンが、変性シリコーンレジン、または、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンを含むことを特徴とする請求項1または2に記載の耐熱性加飾用着色組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Rは独立して、水素原子、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基を表す。
    3. The silicone resin according to claim 1, wherein the silicone resin (B) comprises a modified silicone resin or a straight silicone resin containing at least a siloxane structure represented by the following general formula (1) in its molecule. The heat resistant decorating coloring composition as described.
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), R 1 independently represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched chain having 1 to 20 carbon atoms Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, an aryl having 6 to 20 carbon atoms Represents a group or an aralkyl group having 7 to 20 carbon atoms.
  4.  前記一般式(1)中、Rは独立して、水素原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~6の直鎖状、分岐状もしくは環状の置換アルキル基または炭素数6~9のアリール基を表すことを特徴とする請求項3に記載の耐熱性加飾用着色組成物。 In the general formula (1), R 1 independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms 4. The heat-resistant and decorative coloring composition according to claim 3, which is a substituted alkyl group or an aryl group having 6 to 9 carbon atoms.
  5.  前記一般式(1)中、Rは独立して、水素原子、メチル基またはトリル基を表すことを特徴とする請求項3に記載の耐熱性加飾用着色組成物。 In the said General formula (1), R < 1 > represents independently a hydrogen atom, a methyl group, or a tolyl group, The coloring composition for heat-resistant decoration of Claim 3 characterized by the above-mentioned.
  6.  前記耐熱性加飾用着色組成物の全固形分に対する前記白色無機顔料の含有率が20~75質量%であることを特徴とする請求項1~5のいずれか一項に記載の耐熱性加飾用着色組成物。 The heat resistant additive according to any one of claims 1 to 5, wherein the content of the white inorganic pigment is 20 to 75% by mass with respect to the total solid content of the heat resistant decorative colored composition. Colored composition for decoration.
  7.  前記白色無機顔料が、無機物で表面処理されたルチル型酸化チタンであることを特徴とする請求項1~6のいずれか一項に記載の耐熱性加飾用着色組成物。 The heat-resistant decorative coloring composition according to any one of claims 1 to 6, wherein the white inorganic pigment is rutile-type titanium oxide surface-treated with an inorganic substance.
  8.  前記無機物で表面処理されたルチル型酸化チタンが、少なくともアルミナ、ジルコニアのいずれかで表面処理されたルチル型酸化チタンであることを特徴とする請求項7に記載の耐熱性加飾用着色組成物。 The coloring composition according to claim 7, wherein the rutile titanium oxide surface-treated with the inorganic substance is rutile titanium oxide surface-treated with at least one of alumina and zirconia. .
  9.  前記耐熱性加飾用着色組成物が、静電容量型入力装置前面板加飾用であることを特徴とする請求項1~8のいずれか一項に記載の耐熱性加飾用着色組成物。 The heat-resistant decorative coloring composition according to any one of claims 1 to 8, wherein the heat-resistant decorative coloring composition is for electrostatic capacitance type input device front plate decoration. .
  10.  前面板と、前記前面板の表面のうち一方の面側に少なくとも下記(1)および(3)~(5)の要素を有する静電容量型入力装置の製造方法であって、
     請求項1~9のいずれか一項に記載の耐熱性加飾用着色組成物を前記前面板の一方の面側に適用して少なくとも(1)加飾層を形成する工程を含むことを特徴とする静電容量型入力装置の製造方法。
    (1)加飾層
    (3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
    (4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
    (5)前記第一の透明電極パターンと前記第二の電極パターンとを電気的に絶縁する絶縁層
    A method of manufacturing a capacitive input device comprising a front plate, and at least one of the following elements (1) and (3) to (5) on one of the surfaces of the front plate:
    A heat-resistant decorative coloring composition according to any one of claims 1 to 9 is applied to one side of the front plate to form at least (1) a decorative layer. A method of manufacturing a capacitive input device.
    (1) Decorative layer (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction through connection portions (4) The first transparent electrode pattern A plurality of second electrode patterns (5) comprising a plurality of pad portions which are electrically insulated and extend in a direction crossing the first direction (5) the first transparent electrode pattern and the second Layer that electrically isolates from the electrode pattern of
  11.  前記静電容量型入力装置がさらに、(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素を有することを特徴とする請求項10に記載の静電容量型入力装置の製造方法。 The capacitive input device is further electrically connected to (6) at least one of the first transparent electrode pattern and the second electrode pattern, and the first transparent electrode pattern and the second electrode The method of manufacturing a capacitive input device according to claim 10, further comprising a conductive element different from the pattern.
  12.  前記第二の電極パターンが透明電極パターンであることを特徴とする請求項10または11に記載の静電容量型入力装置の製造方法。 The method according to claim 10, wherein the second electrode pattern is a transparent electrode pattern.
  13.  前記(1)加飾層の厚みが1~40μmであることを特徴とする請求項10~12のいずれか一項に記載の静電容量型入力装置の製造方法。 The method for manufacturing a capacitance-type input device according to any one of claims 10 to 12, wherein the thickness of the (1) decorative layer is 1 to 40 μm.
  14.  前記前面板の表面のうち一方の面側に前記耐熱性加飾用着色組成物を適用した後に、0.08~1.2atmの環境下で、180~300℃に加熱して、前記(1)加飾層を形成することを特徴とする請求項10~13のいずれか一項に記載の静電容量型入力装置の製造方法。 The heat-resistant decorative coloring composition is applied to one of the surfaces of the front plate, and then heated to 180 to 300 ° C. under an environment of 0.08 to 1.2 atm, A method of manufacturing a capacitive input device according to any one of claims 10 to 13, characterized by forming a decorative layer.
  15.  前記加熱を、空気環境下で行うことを特徴とする請求項14に記載の静電容量型入力装置の製造方法。 The method of manufacturing a capacitive input device according to claim 14, wherein the heating is performed in an air environment.
  16.  前記(1)加飾層を形成する工程が、前記耐熱性加飾用着色組成物を印刷して行われることを特徴とする請求項10~15のいずれか一項に記載の静電容量型入力装置の製造方法。 The capacitance type according to any one of claims 10 to 15, wherein the step (1) of forming the decorative layer is performed by printing the heat resistant decorative coloring composition. Method of manufacturing an input device.
  17.  前記(1)加飾層の表面のうち前記前面板と対向する面とは逆側の面上に、さらに(2)マスク層を形成することを特徴とする請求項10~16のいずれか一項に記載の静電容量型入力装置の製造方法。 17. The method according to any one of claims 10 to 16, further comprising (2) forming a mask layer on the surface of the surface of the decorative layer opposite to the surface facing the front plate. The manufacturing method of the capacitance-type input device as described in a term.
  18.  前記(3)第一の透明電極パターンおよび前記(4)第二の電極パターンの少なくとも一方を、前記前面板の一方の面、および前記(2)マスク層の表面のうち前記前面板と対向する面とは逆側の面の両方の領域にまたがって設置することを特徴とする請求項17に記載の静電容量型入力装置の製造方法。 At least one of the (3) first transparent electrode pattern and the (4) second electrode pattern is opposed to the front plate among the surface of the front plate and the surface of the (2) mask layer The method of manufacturing a capacitive input device according to claim 17, wherein the method is installed across both areas of the surface opposite to the surface.
  19.  前記静電容量型入力装置がさらに、(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素を有し、
     前記(6)別の導電性要素が、少なくとも前記(2)マスク層の表面のうち前記前面板と対向する面とは逆側の面側に設けられることを特徴とする請求項17または18に記載の静電容量型入力装置の製造方法。
    The capacitive input device is further electrically connected to (6) at least one of the first transparent electrode pattern and the second electrode pattern, and the first transparent electrode pattern and the second electrode Have conductive elements separate from the pattern,
    19. The conductive film according to claim 17 or 18, wherein the (6) another conductive element is provided on at least the surface of the (2) mask layer opposite to the surface facing the front plate. The manufacturing method of the capacitance-type input device as described.
  20.  さらに、前記(1)および(3)~(5)の要素の全てまたは一部を覆うように透明保護層を形成することを特徴とする請求項10~19のいずれか一項に記載の静電容量型入力装置の製造方法。 Furthermore, a transparent protective layer is formed to cover all or part of the elements (1) and (3) to (5), and the static according to any one of claims 10 to 19 is characterized. Method of manufacturing a capacitive input device.
  21.  前記透明保護層を、硬化性樹脂組成物を用いて形成することを特徴とする請求項20に記載の静電容量型入力装置の製造方法。 The method for producing a capacitance-type input device according to claim 20, wherein the transparent protective layer is formed using a curable resin composition.
  22.  前記静電容量型入力装置がさらに、(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素を有し、
     前記(4)第二の電極パターンが透明電極パターンであり、
     前記(3)第一の透明電極パターン、前記(4)第二の電極パターンおよび前記(6)別の導電性要素を、硬化性樹脂組成物によって形成されたエッチングパターンを用いて透明導電材料をエッチング処理することによって形成することを特徴とする請求項10~21のいずれか1項に記載の静電容量型入力装置の製造方法。
    The capacitive input device is further electrically connected to (6) at least one of the first transparent electrode pattern and the second electrode pattern, and the first transparent electrode pattern and the second electrode Have conductive elements separate from the pattern,
    The (4) second electrode pattern is a transparent electrode pattern,
    The (3) first transparent electrode pattern, the (4) second electrode pattern, and the (6) another conductive element are formed of a transparent conductive material using an etching pattern formed of a curable resin composition. The method of manufacturing a capacitance-type input device according to any one of claims 10 to 21, which is formed by performing an etching process.
  23.  前記静電容量型入力装置がさらに、(6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素を有し、
     前記(4)第二の電極パターンが透明電極パターンであり、
     前記(3)第一の透明電極パターン、前記(4)第二の電極パターンおよび前記(6)別の導電性要素の少なくとも一つを、導電性硬化性樹脂組成物を用いて形成することを特徴とする請求項10~21のいずれか1項に記載の静電容量型入力装置の製造方法。
    The capacitive input device is further electrically connected to (6) at least one of the first transparent electrode pattern and the second electrode pattern, and the first transparent electrode pattern and the second electrode Have conductive elements separate from the pattern,
    The (4) second electrode pattern is a transparent electrode pattern,
    Forming at least one of the (3) first transparent electrode pattern, the (4) second electrode pattern, and the (6) another conductive element using the conductive curable resin composition The method for manufacturing a capacitance-type input device according to any one of claims 10 to 21, characterized in that
  24.  前記前面板の一方の面に表面処理を行い、
     前記表面処理を施した前記前面板の一方の面上に硬化性樹脂組成物を適用することを特徴とする請求項10~23のいずれか1項に記載の静電容量型入力装置の製造方法。
    Perform surface treatment on one side of the front plate;
    The method for producing a capacitive input device according to any one of claims 10 to 23, characterized in that a curable resin composition is applied on one surface of the front plate subjected to the surface treatment. .
  25.  前記前面板の表面処理に、シラン化合物を用いることを特徴とする請求項24に記載の静電容量型入力装置の製造方法。 The method for manufacturing a capacitive input device according to claim 24, wherein a silane compound is used for the surface treatment of the front plate.
  26.  前記前面板が、少なくとも一部に開口部を有することを特徴とする請求項10~25のいずれか1項に記載の静電容量型入力装置の製造方法。 The method for manufacturing a capacitive input device according to any one of claims 10 to 25, wherein the front plate has an opening at least in part.
  27.  請求項10~26のいずれか1項に記載の静電容量型入力装置の製造方法で製造されたことを特徴とする静電容量型入力装置。 A capacitive input device manufactured by the method of manufacturing a capacitive input device according to any one of claims 10 to 26.
  28.  請求項27に記載の静電容量型入力装置を構成要素として備えたことを特徴とする画像表示装置。 An image display apparatus comprising the capacitance type input device according to claim 27 as a component.
PCT/JP2014/050276 2013-01-15 2014-01-10 Heat-resistant decorating coloring composition, method for producing electrostatic capacitance type input device, and electrostatic capacitance type input device, as well as image display device provided with same WO2014112429A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480004092.9A CN104903409B (en) 2013-01-15 2014-01-10 Heat resistance decoration coloured composition, the manufacture method of capacitive input device and capacitive input device and possesses this image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004454 2013-01-15
JP2013004454A JP5860419B2 (en) 2013-01-15 2013-01-15 Coloring composition for heat-resistant decoration, method for manufacturing capacitive input device, capacitive input device, and image display device including the same

Publications (1)

Publication Number Publication Date
WO2014112429A1 true WO2014112429A1 (en) 2014-07-24

Family

ID=51209520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050276 WO2014112429A1 (en) 2013-01-15 2014-01-10 Heat-resistant decorating coloring composition, method for producing electrostatic capacitance type input device, and electrostatic capacitance type input device, as well as image display device provided with same

Country Status (3)

Country Link
JP (1) JP5860419B2 (en)
CN (1) CN104903409B (en)
WO (1) WO2014112429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186488A (en) * 2016-04-08 2017-10-12 山陽色素株式会社 Fluorescent pigment and white laminate
JP7496264B2 (en) 2020-08-27 2024-06-06 Dicグラフィックス株式会社 Liquid printing inks, paper substrates, plastic substrates, containers and packaging materials

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6199501B2 (en) 2014-09-12 2017-09-20 富士フイルム株式会社 Coloring composition for decoration, decoration material, base material with decoration material, transfer material, touch panel, and information display device
KR102363119B1 (en) * 2018-03-15 2022-02-14 동우 화인켐 주식회사 Colored photosensitive resin composition, color filter, and image display apparatus comprising the same
KR102308735B1 (en) * 2019-12-11 2021-10-06 조광페인트주식회사 Heat-resistant coating composition and method for manufacturing coated body using the same
CN112905049B (en) * 2021-02-08 2024-04-23 京东方科技集团股份有限公司 Touch substrate, preparation method thereof and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233137A (en) * 1997-02-18 1998-09-02 Shin Etsu Polymer Co Ltd Metal-resembling display and its manufacture
JPH10334757A (en) * 1997-05-28 1998-12-18 Shin Etsu Polymer Co Ltd Manufacture of pushing member for illumination type push button switch
JP2005271229A (en) * 2004-03-23 2005-10-06 Fujicopian Co Ltd Protective layer transfer sheet for molded product and intermediate transfer sheet for molded product
JP2007332166A (en) * 2004-09-29 2007-12-27 Taiyo Ink Mfg Ltd Photo-curable white ink composition
JP2008170822A (en) * 2007-01-12 2008-07-24 Fuji Seal International Inc Plastic label and manufacturing method for the same
JP2009197124A (en) * 2008-02-21 2009-09-03 Nitto Denko Corp Double-sided self-adhesive tape having refection and light shielding function and liquid crystal display
WO2013191062A1 (en) * 2012-06-20 2013-12-27 富士フイルム株式会社 Transfer film, method for producing capacitive input device, capacitive input device, and image display device provided with same
WO2014045846A1 (en) * 2012-09-19 2014-03-27 富士フイルム株式会社 Method for manufacturing capacitive input device, capacitive input device, as well as image display device provided with same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162342A (en) * 1994-04-25 1997-10-15 录象射流系统国际有限公司 Ink composition for use wite textiles
JPH08337756A (en) * 1995-06-13 1996-12-24 Shin Etsu Polymer Co Ltd Liquid film-forming agent and finishing of wood
KR100569220B1 (en) * 2004-04-06 2006-04-10 한국과학기술원 Dielectric/Barrier Rib Composition for Plasma Display Panel and Manufacturing Method thereof
JP2011062948A (en) * 2009-09-18 2011-03-31 Seiko Epson Corp Image forming apparatus
CN102023770B (en) * 2009-09-22 2013-02-27 群康科技(深圳)有限公司 Capacitive touch panel module and manufacturing method thereof
JP2012226688A (en) * 2011-04-22 2012-11-15 Toppan Printing Co Ltd Decorative cover glass integrated type touch panel sensor
JP5730240B2 (en) * 2011-04-25 2015-06-03 信越ポリマー株式会社 Capacitance sensor sheet manufacturing method and capacitance sensor sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233137A (en) * 1997-02-18 1998-09-02 Shin Etsu Polymer Co Ltd Metal-resembling display and its manufacture
JPH10334757A (en) * 1997-05-28 1998-12-18 Shin Etsu Polymer Co Ltd Manufacture of pushing member for illumination type push button switch
JP2005271229A (en) * 2004-03-23 2005-10-06 Fujicopian Co Ltd Protective layer transfer sheet for molded product and intermediate transfer sheet for molded product
JP2007332166A (en) * 2004-09-29 2007-12-27 Taiyo Ink Mfg Ltd Photo-curable white ink composition
JP2008170822A (en) * 2007-01-12 2008-07-24 Fuji Seal International Inc Plastic label and manufacturing method for the same
JP2009197124A (en) * 2008-02-21 2009-09-03 Nitto Denko Corp Double-sided self-adhesive tape having refection and light shielding function and liquid crystal display
WO2013191062A1 (en) * 2012-06-20 2013-12-27 富士フイルム株式会社 Transfer film, method for producing capacitive input device, capacitive input device, and image display device provided with same
WO2014045846A1 (en) * 2012-09-19 2014-03-27 富士フイルム株式会社 Method for manufacturing capacitive input device, capacitive input device, as well as image display device provided with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186488A (en) * 2016-04-08 2017-10-12 山陽色素株式会社 Fluorescent pigment and white laminate
JP7496264B2 (en) 2020-08-27 2024-06-06 Dicグラフィックス株式会社 Liquid printing inks, paper substrates, plastic substrates, containers and packaging materials

Also Published As

Publication number Publication date
CN104903409A (en) 2015-09-09
CN104903409B (en) 2017-08-11
JP2014137617A (en) 2014-07-28
JP5860419B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5955787B2 (en) Transfer film, method of manufacturing capacitive input device, capacitive input device, and image display device including the same
WO2014112429A1 (en) Heat-resistant decorating coloring composition, method for producing electrostatic capacitance type input device, and electrostatic capacitance type input device, as well as image display device provided with same
US9292146B2 (en) Photosensitive film, method for producing capacitance type input device, capacitance type input device, and image display apparatus using the same
KR101667129B1 (en) Conductive member and method for manufacturing same
JP6510651B2 (en) Colored composition for heating device decoration, transfer material for heating device decoration, heating device and cooker
CN103842948A (en) Method for producing capacitive input device, capacitive input device, and image display device provided with same
TW201720652A (en) Transfer film, method of manufacturing film sensor, film sensor, front face plate integrated sensor and image display device
JP6204887B2 (en) LAMINATE, TRANSFER FILM, LAMINATE MANUFACTURING METHOD, CONDUCTIVE FILM LAMINATE, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE
WO2014115646A1 (en) Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device
EP3239111B1 (en) Curable composition, transfer film, front plate of image display device, front plate-integrated sensor, image display device, and manufacturing method for front plate of image display device
TWI785051B (en) Transparent resin composition, transparent film and glass substrate coated with transparent resin
JP2014141592A (en) Composition for forming protective film, transfer material, conductive film laminate, touch panel and image display device
JP6393179B2 (en) A curable composition, a front plate of an image display device, a front plate integrated sensor, an image display device, and a method of manufacturing the front plate of the image display device.
WO2015186549A1 (en) Laminate, transfer film, method for producing laminate, conductive film laminate, capacitive input device and image display device
TW201623694A (en) Manufacturing method of transparent electrode and transparent electrode laminate
JP2015173010A (en) Method of producing transparent conductive pattern and transparent conductive sheet
JP6207466B2 (en) Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device
JP2013200998A (en) Method for manufacturing conductive material, conductive material manufactured thereby, touch panel with the same, and display device with touch panel function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740213

Country of ref document: EP

Kind code of ref document: A1