WO2015186549A1 - Laminate, transfer film, method for producing laminate, conductive film laminate, capacitive input device and image display device - Google Patents
Laminate, transfer film, method for producing laminate, conductive film laminate, capacitive input device and image display device Download PDFInfo
- Publication number
- WO2015186549A1 WO2015186549A1 PCT/JP2015/064879 JP2015064879W WO2015186549A1 WO 2015186549 A1 WO2015186549 A1 WO 2015186549A1 JP 2015064879 W JP2015064879 W JP 2015064879W WO 2015186549 A1 WO2015186549 A1 WO 2015186549A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin layer
- transparent resin
- layer
- transparent
- electrode pattern
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
Definitions
- the present invention relates to a laminate, a transfer film, a laminate production method, a conductive film laminate, a capacitance-type input device, and an image display device. More specifically, a laminate that can suppress electrode pattern disconnection even when the front plate is cracked and bent, a transfer film for producing the laminate, a method for producing the laminate, and a conductive film using the laminate.
- the present invention relates to a laminated body, a capacitive input device using the conductive film laminated body, and an image display device using the capacitive input device.
- Capacitance type input devices are more resistant to changes in operating temperature range and changes over time than resistance film type input devices that have a two-layer structure of film and glass.
- the capacitive input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate.
- the capacitive touch panel of the cover glass integrated type (OGS: One Glass Solution) touch panel has a front plate integrated with the capacitive input device, and thus can be reduced in thickness and weight.
- an image display member and a light-transmitting cover member having a light-shielding layer formed on a peripheral portion are light-transmitted through a light-transmitting cured resin layer formed from a liquid photocurable resin composition.
- the manufacturing method of the image display device including the following steps (A) to (D) is provided.
- steps (A) to (D) are listed.
- a liquid photocurable resin composition is formed on the light shielding layer forming side surface of the light transmissive cover member or the surface of the image display member with the light shielding layer and the light shielding layer forming side surface of the light transmissive cover member.
- Step of obtaining an image display device by laminating through a photocurable resin layer an image display device is manufactured by laminating an image display member and a light-transmitting cover member disposed on the surface side of the image display member via a cured resin layer of a photocurable resin composition by the above manufacturing method.
- the photocurable resin composition between the light shielding layer and the image display member is sufficiently cured without being excluded from the light shielding layer and the light transmissive property without using a thermal polymerization process. It is described that a step between the surface of the cover member can be canceled and an image display device can be manufactured only by a photopolymerization process.
- Smartphones and tablet PCs equipped with a capacitive touch panel on a liquid crystal or organic EL display have been developed and announced using a tempered glass typified by Corning's gorilla glass on the front plate (the surface directly touched by a finger) Has been.
- Tempered glass is used for the glass substrate for the touch panel, and it is difficult to break even when impact force is applied, but in the unlikely event that the glass substrate breaks, it can also maintain the function as a capacitive input device It was left as a technical issue. In particular, when the glass substrate is broken, it is difficult for the electrode pattern to be disconnected.
- the capacitance type input device includes a device for storing data, it is required that the data can be taken out.
- Patent Document 1 neither discloses nor suggests that controlling the elastic modulus and elongation at break improves the suppression of disconnection of the electrode pattern when the front plate is cracked and bent.
- the problem to be solved by the present invention is to provide means for suppressing the disconnection of the electrode pattern even if the front plate is cracked and bent.
- the present inventors have laminated at least two transparent resin layers on a part or all of the front plate (one surface of the front plate), and further on the at least two transparent resin layers (at least two of the above).
- the elastic modulus of the second transparent resin layer (second transparent resin layer) from the electrode pattern side satisfy a specific relationship, and further, the second transparent resin layer ( By increasing the breaking elongation of the second transparent resin layer), it was found that the electrode pattern disconnection can be suppressed even when the front plate is cracked and bent, and the present invention has been achieved.
- the liquid photocurable resin composition is applied to the light shielding layer forming side surface of the light transmitting cover member or the surface of the image display member, and the light shielding layer forming side of the light transmitting cover member.
- the coating is thicker than the thickness of the light shielding layer so that the step formed between the surface and the surface is cancelled. Therefore, as in the laminate of the present invention, at least two transparent resin layers are laminated on a part or all of the front plate, and a layer structure having an electrode pattern on the at least two transparent resin layers. Was never disclosed or suggested. That is, the present invention is completely different from the invention described in Patent Document 1 in the layer configuration.
- the present invention which is a specific means for solving the above problems, is as follows.
- a laminate having at least two transparent resin layers laminated on a part or all of the front plate, and further having an electrode pattern on the at least two transparent resin layers,
- the elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern and the second transparent resin layer from the electrode pattern side (the side opposite to the surface facing the electrode pattern of the first transparent resin layer)
- the elastic modulus E2 of the second transparent resin layer that is a transparent resin layer in contact with the surface of A laminate in which the elongation at break ⁇ of the second transparent resin layer satisfies the following formula 2.
- the total thickness of the first transparent resin layer and the second transparent resin layer is preferably 10 to 150 ⁇ m.
- the film thickness of the first transparent resin layer and the film thickness of the second transparent resin layer are each independently 5 to 100 ⁇ m. .
- at least one of the transparent resin layers preferably contains a compound having a siloxane structure.
- the first transparent resin layer includes at least a silicone resin as a binder resin.
- the second transparent resin layer preferably contains at least silicone rubber as a binder resin.
- the elongation at break [phi] of the second transparent resin layer is preferably 20% or more.
- the elastic modulus E2 of the second transparent resin layer is preferably 50 MPa or less.
- the elastic modulus E1 of the first transparent resin layer is preferably 100 MPa or more.
- a decoration layer is disposed on a part of one surface of the front plate, and the first transparent resin layer and the second layer are arranged.
- the transparent resin layer is laminated on a part of the surface of the front plate on which the decoration layer is arranged on the decoration layer and a part on which the decoration layer is not formed.
- a temporary support A first transparent resin layer containing at least a silicone resin as a binder resin; A transfer film having a second transparent resin layer containing at least silicone rubber as a binder resin, The transfer film having a structure in which the first transparent resin layer is sandwiched between the temporary support and the second transparent resin layer.
- the transfer film according to [11] preferably has a thermoplastic resin layer between the temporary support and the first transparent resin layer.
- the resin composition containing at least a silicone resin as a binder resin, the second transparent resin is laminated so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order.
- the second electrode pattern is a transparent electrode pattern.
- An image display device comprising the capacitive input device according to [18] as a constituent element.
- the present invention it is possible to provide a laminate that can suppress the disconnection of the electrode pattern even if the front plate is cracked and bent.
- FIG. 1 It is a top view which shows an example of the front plate in which the electroconductive element different from a black decorating layer and the 1st and 2nd transparent electrode pattern was formed.
- FIG. 1 It is explanatory drawing which shows a metal nanowire cross section.
- FIG. 1 It is the schematic which shows the shape after die-cutting of the transfer film used in order to form a decorating layer.
- FIG. 1 It is explanatory drawing which shows the method of die-cutting the transfer film used in order to form a decorating layer.
- FIG. 1 It is a top view which shows an example of the front plate in which the electroconductive element different from a black decorating layer and the 1st and 2nd transparent electrode pattern was formed.
- FIG. 1 It is a top view which shows an example of the front plate in which the electroconductive element different from a black decorating layer and the 1st and 2nd transparent electrode pattern was formed.
- FIG. 1 It is a top view which shows an example of the front plate in which the electroconductive element different from a black decorating layer
- the laminate, the transfer film, the laminate production method, the conductive film laminate, the capacitive input device, and the image display device of the present invention will be described.
- the description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
- “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
- the laminate of the present invention at least two transparent resin layers are laminated on a part or all of the front plate (one surface of the front plate), and further on the at least two transparent resin layers (at least the above-mentioned at least The elastic modulus E1 of the first transparent resin layer that is a laminate having an electrode pattern on the surface of the two transparent resin layers opposite to the surface facing the front plate) And the elastic modulus E2 of the second transparent resin layer which is the second transparent resin layer from the electrode pattern side satisfies the following formula 1, and the breaking elongation ⁇ of the second transparent resin layer satisfies the following formula 2. .
- FIG. 15A is a schematic cross-sectional view of an example of the laminate of the present invention.
- This laminate is a laminate having the second transparent resin layer 102 and the first transparent resin layer 101 on the front plate 1 and the electrode pattern 3 on the first transparent resin layer.
- the elastic modulus E1 of the first transparent resin layer 101 in contact with the electrode pattern and the elastic modulus E2 of the second transparent resin layer 102 which is the second transparent resin layer from the electrode pattern side are as follows: Expression 1 is satisfied, and the elongation at break ⁇ of the second transparent resin layer 102 satisfies Expression 2 below.
- the laminate of the present invention can suppress electrode pattern disconnection even when the front plate is cracked and bent. That is, as shown in FIG. 15A, the first transparent resin layer 101 having a high elastic modulus that is in contact with the electrode pattern 3 and the second transparent resin layer from the electrode pattern side have a low elastic modulus and a high value. As shown in FIG. 15 (B), an example of the laminate of the present invention provided with the second transparent resin layer 102 having an elongation at break is a second material having a low elastic modulus and a high elongation at break when the front plate 1 is cracked.
- the transparent resin layer 102 acts as an absorber that absorbs impact without cracking, and the first transparent resin layer 101 having a high elastic modulus that is in contact with the electrode pattern is laminated adjacently, thereby Since the bending of the absorbed second elastic resin layer 102 having a low elastic modulus and high elongation at break does not increase, disconnection of the electrode pattern 3 provided on the first transparent resin layer 101 can be suppressed.
- the transparent resin layer includes a first transparent resin layer that is in contact with the electrode pattern, and a second transparent resin layer that is a second transparent resin layer from the electrode pattern side.
- a transparent resin layer you may have other transparent resin layers other than a 1st transparent resin layer and a 2nd transparent resin layer.
- FIG. 16 shows a schematic cross-sectional view of another example of the laminate of the present invention.
- Another example of the laminate of the present invention shown in FIG. 16 includes a first transparent resin layer 101 that is in contact with the electrode pattern 100 and a second transparent resin layer that is the second transparent resin layer from the electrode pattern side.
- the front plate 110 and the second transparent resin are provided between the layers 102.
- the first transparent resin layer and the second transparent resin layer function sufficiently, and the laminate of the present invention is bent due to a crack in the front plate. Even in this case, disconnection of the electrode pattern can be suppressed.
- the laminate of the present invention it is preferable that at least two transparent resin layers are laminated on a part of the front plate, and a decoration formed in a frame shape (frame shape) on a part of the front plate. It is more preferable that at least two transparent resin layers are laminated on the inner region of the frame-shaped decorative layer on the front plate.
- the first transparent resin layer and the second transparent resin layer are in front of the decorative layer arranged on a part of one surface of the front plate and the front plate. It is particularly preferable that the face plate is formed on the same surface as the side on which the decorative layer is formed, on a portion where the decorative layer is not formed and on a part of the decorative layer.
- the laminate of the present invention has a front plate.
- the front plate may be referred to as a “base material”.
- the front plate is preferably a transparent front plate (translucent substrate), more preferably a glass substrate or a resin substrate, and particularly preferably a glass substrate.
- a special glass plate such as aluminosilicate glass (for example, trade name “Gollilla (manufactured by Corning)”, “Dragonrail (manufactured by Asahi Glass)”) or chemically strengthened soda lime glass may be used.
- aluminosilicate glass for example, trade name “Gollilla (manufactured by Corning)”, “Dragonrail (manufactured by Asahi Glass)”
- chemically strengthened soda lime glass may be used.
- These can be used as a glass substrate serving as both a cover glass and a glass on which a touch panel sensor is formed. Since the touch panel sensor is provided on one piece of glass, the number of parts for one piece of
- the laminate of the present invention has an electrode pattern on the at least two transparent resin layers (the surface opposite to the surface facing the front plate of the at least two transparent resin layers).
- a preferred embodiment of the electrode pattern is as described in the conductive film laminate and the capacitance-type input device of the present invention described later, and the electrode pattern on the at least two transparent resin layers is described in (1 It is preferable that the plurality of pad portions are a plurality of first transparent electrode patterns formed extending in the first direction via the connection portions.
- the transparent electrode used for the electrode pattern is made of a material that is transparent and conductive and can be formed into a thin film. Usually, an ITO (Indium Tin Oxide) film is used, and the other is an IZO (Indium Zinc).
- Oxide a composite oxide of indium and zinc
- a light-transmitting conductive metal oxide film or metal film such as a SnO 2 (tin dioxide) film
- translucent conductive metal oxide films and metal films include metal oxide films such as ITO, IZO, SnO 2 , and SiO 2 ; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo And so on.
- Organic conductive materials such as polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), polyaniline, and polypyrrole can also be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
- Each film can be formed by a general film forming method such as a PVD method such as a sputtering method or a vacuum evaporation method, or a CVD method.
- the film thickness of the electrode pattern can be 10 to 200 nm.
- an amorphous ITO film or the like can be used as a polycrystalline ITO film or the like, and the electrical resistance can be reduced.
- the gap between the electrode pattern and the front plate is filled with the at least two transparent resin layers.
- the method for filling at least the gap between the electrode pattern and the front plate with the at least two transparent resin layers is not particularly limited, but the transfer film of the present invention described later is described in the method for forming a decorative layer described later.
- the width (L) of the at least two transparent resin layers is adjusted to the same size as the inner diameter (one side) of the decorative layer by using a transfer method that has undergone a half-cut process or a transfer method that has undergone a die-cut process.
- the at least two transparent resin layers are preferably transferred onto the front plate.
- a preferred embodiment of the method for transferring the at least two transparent resin layers to the front plate is the same as the preferred embodiment of the method for forming the decorative layer using the transfer film.
- the liquid resist for the at least two transparent resin layers is applied or printed at least in a gap portion between the electrode pattern and the front plate, and cured by a known method, so that at least the electrode pattern and the previous liquid resist are cured.
- the gap between the face plate and the face plate may be filled with the at least two transparent resin layers.
- the at least two transparent resin layers are preferably heated to 180 to 300 ° C. in an environment of 0.08 to 1.2 atm from the viewpoint of both transparency and productivity.
- the preferable aspect of a heating is the same as the preferable aspect of the post-baking in the formation method of the below-mentioned decorating layer.
- the first transparent resin layer and the second transparent resin layer may be in a state where the fluidity is maintained, may be in a state where the fluidity is lost, or may be in a cured or fixed state. Good. That is, in the laminate of the present invention, even if the first transparent resin layer and the second transparent resin layer exist in the state of a transparent resist that maintains fluidity, the fluidity is lost by drying the transparent resist. It may exist in the state. In the laminate of the present invention, the first transparent resin layer and the second transparent resin layer may be cured by irradiation with actinic radiation.
- actinic radiation irradiation with actinic radiation
- the elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern and the elastic modulus of the second transparent resin layer that is the second transparent resin layer from the electrode pattern side E2 satisfies the following formula 1.
- E1> E2 Formula 1 The elastic modulus E1 of the first transparent resin layer and the elastic modulus E2 of the second transparent resin layer preferably satisfy the following formula 1A, and more preferably satisfy the following formula 1B. 2000 ⁇ E2>E1> 5 ⁇ E2 Formula 1A 1000 ⁇ E2>E1> 10 ⁇ E2 Formula 1B
- the elastic modulus E1 of the first transparent resin layer is preferably 100 MPa or more, more preferably 300 MPa or more, and particularly preferably 500 MPa or more.
- the elastic modulus E2 of the second transparent resin layer is preferably 50 MPa or less, more preferably 30 MPa or less, and particularly preferably 20 MPa or less.
- the lower limit value of the elastic modulus E2 of the second transparent resin layer is not particularly limited, but is preferably 2 MPa or more, and more preferably 5 MPa or more.
- the breaking elongation ⁇ of the second transparent resin layer which is the second transparent resin layer from the electrode pattern side, satisfies the following formula 2.
- ⁇ ⁇ 10% Formula 2 The breaking elongation ⁇ of the second transparent resin layer is preferably 20% or more, more preferably 30% or more, particularly preferably 100% or more, and particularly preferably 200% or more.
- the upper limit of the breaking elongation ⁇ of the second transparent resin layer is not particularly limited, but is preferably 1000% or less, and more preferably 600% or less.
- the total thickness of the first transparent resin layer and the second transparent resin layer is preferably 10 to 150 ⁇ m, more preferably 20 to 120 ⁇ m, A thickness of 30 to 100 ⁇ m is particularly preferable.
- the decorative layer is a white decorative layer, it is preferable to increase the thickness of the white decorative layer. Therefore, the gap produced by the height difference between the front plate and the white decorative layer using the first transparent resin layer and the second transparent resin layer (hereinafter also referred to as “step of the decorative layer”).
- the total thickness of the first transparent resin layer and the thickness of the second transparent resin layer is more preferably 20 ⁇ m or more.
- the film thickness of the first transparent resin layer and the film thickness of the second transparent resin layer are each independently 5 to 100 ⁇ m.
- the film thickness of the first transparent resin layer is preferably 5 to 100 ⁇ m, more preferably 10 to 90 ⁇ m, and particularly preferably 15 to 70 ⁇ m.
- the first transparent resin layer having a high elastic modulus is preferably thinner from the viewpoint of enhancing the transparency even if it is a heat-colored material such as an acrylic resin.
- the film thickness of the second transparent resin layer is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 15 to 40 ⁇ m.
- the second transparent resin layer having a low elastic modulus and high elongation at break can be made more transparent when the film thickness is thinner, even when the second transparent resin layer contains particles such as silica for the purpose of improving physical properties. It is preferable from the viewpoint.
- composition Composition
- Composition Composition
- Composition Composition
- Composition Composition
- Composition Composition
- Compound having siloxane structure In the laminate of the present invention, at least one of the transparent resin layers contains a compound having a siloxane structure, the transparency after heat-curing the transparent resin layer, and the electrode pattern heat annealing step which is a subsequent step From the viewpoint of increasing the transparency of the transparent resin layer, it is preferable.
- the compound having a siloxane structure refers to a compound having at least one siloxane bond in the molecule.
- the compound having a siloxane structure is preferably a polysiloxane compound (so-called silicone) having a plurality of siloxane bonds in the molecule. Silicone can be classified into silicone rubber, which is an elastomer having rubber elasticity at room temperature, and other silicone resins.
- the second transparent resin layer contains at least silicone rubber as a binder resin.
- Silicone rubber is generally excellent in heat resistance and transparency.
- a rubber precursor is obtained.
- silicone rubber compound is added with a vulcanizing agent such as an organic peroxide or a catalyst as needed and cured by heating, silicone rubber in a narrow sense can be obtained.
- the silicone rubber in this specification includes both a silicone rubber compound and a narrowly defined silicone rubber after heat curing.
- Silicone rubber includes silicone composed of linear polyorganosiloxane having vinyl groups only at both ends, silicone composed of linear polyorganosiloxane having vinyl groups at both ends and side chains, and vinyl groups only at the ends. And a product obtained by crosslinking at least one silicone selected from a silicone comprising a branched polyorganosiloxane having a salt and a silicone comprising a branched polyorganosiloxane having a vinyl group at the terminal and side chain.
- the linear polyorganosiloxane having a vinyl group only at both ends is a compound represented by any one of the following general formulas A-1 to A-3.
- the silicone rubber include a gum-like dimethylpolysiloxane having a high degree of polymerization and a gum-like dimethylsiloxane / methylphenylsiloxane copolymer.
- R represents the following organic group, and m represents an integer
- the organic group (R) bonded to the silicon atom other than the vinyl group may be different or of the same type.
- Specific examples include alkyl groups such as methyl, ethyl and propyl groups, and aryl groups such as phenyl and tolyl groups.
- Preferable examples include those having at least 50 mol% of a methyl group.
- These diorganopolysiloxanes may be used alone or as a mixture of two or more thereof.
- a silicone comprising a linear polyorganosiloxane having vinyl groups at both ends and side chains is a compound in which a part of R in the above general formulas A-1 to A-3 is a vinyl group.
- Silicone comprising a branched polyorganosiloxane having a vinyl group only at the terminal is a compound represented by the above general formula B.
- a silicone composed of a branched polyorganosiloxane having vinyl groups at the terminals and side chains is a compound in which a part of R in the general formula B is a vinyl group.
- the crosslinking agent used for the crosslinking reaction may be a known one.
- the crosslinking agent include organohydrogenpolysiloxane.
- Organohydrogenpolysiloxane has at least three hydrogen atoms bonded to silicon atoms in one molecule, but from a practical point of view, it has a total amount of those having two ⁇ SiH bonds in the molecule.
- the mass is preferably up to mass%, and the remainder preferably contains at least three ⁇ SiH bonds in the molecule.
- the catalyst used for the crosslinking reaction is preferably a platinum-based catalyst.
- the platinum-based catalyst may be a known platinum-based catalyst, such as chloroplatinic acid such as chloroplatinic acid and chloroplatinic acid, an alcohol compound of chloroplatinic acid, an aldehyde compound of chloroplatinic acid, or chloroplatinic acid. Complex salts with various olefins are used.
- the crosslinked silicone layer has flexibility such as silicone rubber, and this flexibility facilitates the close contact with the adherend.
- the shape of the commercially available silicone rubber used in the present invention includes a solventless type, a solvent type, and an emulsion type, and any type can be used.
- the solventless type is very advantageous in terms of safety, hygiene, and air pollution because it does not use a solvent. In consideration of economy, it is preferable to use a solventless silicone rubber.
- the silicone rubber preferably contains particles, more preferably contains inorganic particles, and particularly preferably at least one kind of particles of silica, titania and zirconia.
- silicone rubber examples include KE-109, KE-106, KE-1031, KE-103, KE-108, KE-581U, KE-167U, KE-1820 and KE-1886 from Shin-Etsu Chemical Co., Ltd. KE-167U, KE-1820 and KE-1886 are preferred.
- the first transparent resin layer preferably contains at least a silicone resin as a binder resin.
- a silicone resin is a straight resin that utilizes the inherent properties of silicone by dehydrating and condensing a modified silicone resin with various properties and a silane compound having an alkoxy group or silanol group. It can be classified as a silicone resin.
- the silicone resin is preferably a modified silicone resin or a straight silicone resin, more preferably a straight silicone resin, and at least the following general formula (1) in the molecule.
- a straight silicone resin containing a siloxane structure represented by As the modified silicone resin an acrylic resin-modified silicone resin (such as KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by polymerizing a monomer obtained by reacting an acrylic monomer such as acrylic acid with a silane compound or copolymerizing it with another acrylic monomer, Polyester resin-modified silicone resins (such as KR-5230 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by reacting a hydroxyl group of the polyester with a silane compound, and epoxy resin-modified silicone resins obtained by reacting an amino group residue of the resin with an epoxy-containing silane compound An alkyd resin-modified silicone resin obtained by modifying an alkyd resin with a reactive silane compound, a rubber-based silicone resin that directly forms a covalent bond with the resin using an oxime initiator, and the like can be used.
- an acrylic resin-modified silicone resin such as KR-9706 manufactured by Shin-Etsu
- the acrylic-modified silicone resin or the polyester-modified silicone resin, or the silicone resin containing these as a copolymer component further effectively prevents the electrode pattern from being disconnected when the front plate is cracked and bent. From the viewpoint of being able to do so.
- the straight silicone resin one containing at least a siloxane structure represented by the following general formula (1) in the molecule can be used.
- R 1 is independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched structure having 1 to 20 carbon atoms. Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms A group or an aralkyl group having 7 to 20 carbon atoms, and a plurality of R 1 may be the same or different. That is, the straight silicone resin having a siloxane structure represented by the general formula (1) may be a condensate having the same siloxane structure or a co-condensate having a different combination.
- Examples of the halogen atom represented by R 1 include a fluorine atom and a chlorine atom.
- Examples of the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms represented by R 1 include, for example, methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group. Group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group and the like.
- Examples of the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group. Group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like.
- linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms represented by R 1 an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
- Examples of the linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 include an arylalkyl group, a fluoroalkyl group, a chloroalkyl group, a hydroxyalkyl group, and a (meth) acryloxyalkyl group. Groups and mercaptoalkyl groups.
- phenylmethyl (benzyl) group diphenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-n-propyl group, 2-phenyl-2-propyl (cumyl).
- Examples of the linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms represented by R 1 include, for example, vinyl group, 1-methylvinyl group, 1-propenyl group, allyl group (2-propenyl group). 2-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-cyclopentenyl group, 3-cyclohexenyl group and the like.
- arylalkyl groups are preferred, and cumyl groups are more preferred.
- Examples of the aryl group having 6 to 20 carbon atoms represented by R 1 include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, and 2,4-xylyl group. 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group and the like.
- aryl groups having 6 to 20 carbon atoms represented by R 1 other than unsubstituted phenyl groups, that is, o-tolyl group, m-tolyl group, p-tolyl group, , 3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, 1-naphthyl, A tolyl group, m-tolyl group, and p-tolyl group are more preferred.
- Examples of the aralkyl group having 7 to 20 carbon atoms represented by R 1 include a benzyl group and a phenethyl group.
- R 1 is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic group having 1 to 6 carbon atoms.
- the siloxane structure represented by the general formula (1) preferably contains a methyl group as R 1 from the viewpoint of particularly enhancing the L value of the decorative layer.
- the straight silicone resin includes two or more general formulas (1) in which R 1 are different from each other. It is also preferable that it is a copolymer of the siloxane structure represented by these.
- the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group and the siloxane structure represented by the general formula (1) in which R 1 is a hydrogen atom, a substituted alkyl group, or an aryl group. And a copolymer thereof.
- the copolymerization ratio is not particularly limited, but the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group is 50 to 50% of all the siloxane structures represented by the general formula (1).
- the amount is preferably 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%.
- a siloxane structure comprising a co-condensation with a siloxane structure represented by the following general formula (2) in addition to the siloxane structure represented by the general formula (1) in the molecule.
- the thing containing this can also be used preferably.
- R 2 has the same meaning as R 1 in general formula (1), and the preferred range is also the same as R 1 .
- straight silicone resins include alkyl straight silicones prepared from the condensation of silane compounds having an alkyl group having 1 to 20 carbon atoms and an alkoxy group (methyl straight silicones, etc.), alkyl-aryls such as methylphenyl, etc.
- Straight silicone, aryl straight silicone such as phenyl, and hydrogen straight silicone such as methyl hydrogen can be used. More preferred are methyl-based straight silicone resins, methyl-tolyl-based straight silicone resins, methyl-phenyl-based straight silicone resins, acrylic resin-modified silicone resins, methyl-hydrogen-based straight silicone resins, and hydrogen-hydrogen-based straight silicone resins.
- methyl straight silicone resin methyl tolyl straight silicone resin, methyl hydrogen straight silicone resin, and hydrogen tol straight silicone resin are particularly preferable.
- These silicone resins may be used alone or in combination of two or more, and the film properties can be controlled by mixing them at an arbitrary ratio.
- the weight average molecular weight of the straight silicone resin is preferably 1000 to 5000000, more preferably 2000 to 3000000, and particularly preferably 2500 to 3000000. When the molecular weight is 1000 or more, the film forming property is good.
- the weight average molecular weight in this specification can be measured by, for example, gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions.
- GPC gel permeation chromatography
- Solvent Tetrahydrofuran
- Standard Monodisperse polystyrene
- silicone resins such as modified silicone resins and straight silicone resins can be used.
- the at least two transparent resin layers may not be formed by photocuring a resin composition containing a photocurable resin and a photopolymerization initiator.
- the resin composition to be used may or may not contain a photocurable resin or a photopolymerization initiator.
- the at least two transparent resin layers contain an antioxidant described later, it does not contain a photopolymerization initiator, and functions of the antioxidant by radicals generated when exposed to the photopolymerization initiator. Is not inhibited, and is preferable from the viewpoint of sufficiently increasing the whiteness after baking. Therefore, the compound having the siloxane structure is preferably thermosetting.
- the at least two transparent resin layers preferably contain an antioxidant from the viewpoint of increasing the transparency of the at least two transparent resin layers after baking.
- an antioxidant when forming a transparent electrode pattern such as ITO on the capacitive input device, it is necessary to bake at a high temperature, but by adding an antioxidant, the at least two layers of transparent after baking are transparent. The transparency of the resin layer can be increased.
- Known antioxidants can be used as the antioxidant. For example, hindered phenol antioxidants, semi-hindered phenol antioxidants, phosphoric acid antioxidants, and hybrid antioxidants having phosphoric acid and hindered phenol in the molecule can be used.
- a phosphoric acid antioxidant a combination of a phosphoric acid antioxidant and a hindered phenol antioxidant or a semi-hindered phenol antioxidant; or a hybrid antioxidant having phosphoric acid and hindered phenol in the molecule is there.
- a commercially available antioxidant can also be used as the antioxidant.
- examples of the phosphoric acid antioxidant include IRGAFOS168 and IRGAFOS38 (both manufactured by BASF Japan).
- IRGAMOD295 manufactured by BASF Japan
- Sumiser GP Sumiser GP (Sumitomo Chemical Co., Ltd.) as a hybrid type antioxidant having phosphoric acid and hindered phenol in the molecule.
- the antioxidant is more preferably a phosphoric acid-based antioxidant from the viewpoint of improving the transparency after baking of the at least two transparent resin layers, and IRGAFOS 168 is particularly preferable.
- the amount of the antioxidant added to the total solid content of the at least two transparent resin layers is not particularly limited, but is preferably 0.001 to 10% by mass, and 0.01 to 1% by mass. More preferably, it is 0.05 to 1% by mass.
- the at least two transparent resin layers contain a catalyst from the viewpoint of improving brittleness by curing the at least two transparent resin layers containing the compound having the siloxane structure.
- a catalyst from the viewpoint of improving brittleness by curing the at least two transparent resin layers containing the compound having the siloxane structure.
- two or more compounds having a siloxane structure are used, they are preferably used for promoting crosslinking by dehydration / dealcohol condensation reaction.
- a known catalyst can be used as the catalyst.
- organic metal compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B), and gallium (Ga).
- Sn, Ti, Zn, Zr, Hf, and Ga are preferable from the viewpoint of high reaction activity
- Zn or Ti is more preferable from the viewpoint of preventing cracking during baking
- Zn is particularly preferable from the viewpoint of improving pot life.
- organometallic compound catalyst containing zinc (Zn) examples include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate), and the like.
- organometallic compound catalysts containing tin (Sn), titanium (Ti), zirconium (Zr), hafnium (Hf), and gallium (Ga) include, for example, the catalysts described in JP2012-238636A. It can be preferably used.
- a commercially available catalyst can also be used as the catalyst. Examples thereof include zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.).
- One type of the catalyst may be used alone, or two or more types may be used in any combination and ratio. Moreover, you may use together with a reaction accelerator and reaction inhibitor.
- the content of the catalyst is preferably 0.01 to 10% by mass with respect to the compound having the siloxane structure from the viewpoint of preventing cracking during baking and improving pot life, and more preferably 0.03 to 5%. 0.0% by mass.
- additives may be used in the at least two transparent resin layers.
- the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060 to 0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784.
- the concentration of the surfactant contained in the at least two transparent resin layers is preferably 0.01% by mass to 10% by mass.
- the method for producing the at least two transparent resin layers is not particularly limited, but can be formed by applying a preparation solution containing the compound having the siloxane structure and other additives.
- the preparation liquid used at the time can be prepared using a solvent.
- the solvent for producing at least two transparent resin layers by coating the solvents described in JP-A-2011-95716, paragraphs 0043 to 0044 can be used.
- the laminated body of this invention has a functional layer arrange
- the thickness of the decorative layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and particularly when the decorative layer is a white decorative layer, the thickness of the white decorative layer Is preferably 30 ⁇ m or more.
- the total thickness of the at least two transparent resin layers is preferably 0.2 to 2.0 times the thickness of the decorative layer, preferably 0.3 to 1.5 times. It is more preferable that the ratio is 0.99 to 1.01 times.
- the decorative layer includes a colorant.
- black colorant examples include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. Among these, carbon black is preferable. In addition to the black colorant, a mixture of pigments such as red, blue, and green can be used.
- the white pigment described in paragraph 0019 of JP2009-191118A or paragraph 0109 of JP2000-175718A can be used.
- white pigments described in paragraphs 0015 and 0114 of JP-A-2005-7765 can be used.
- white inorganic pigments such as titanium oxide (rutile type), titanium oxide (anatase type), zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, and barium sulfate are used.
- titanium oxide (rutile type), titanium oxide (anatase type) and zinc oxide are more preferable, titanium oxide (rutile type) and titanium oxide (anatase type) are more preferable, and rutile type titanium oxide is particularly preferable.
- titanium dioxide examples include JR, JRNC, JR-301, 403, 405, 600A, 605, 600E, 603, 701, 800, 805, 806, JA-1, C, 3, 4, 5, MT- 01, 02, 03, 04, 05, 100AQ, 100SA, 100SAK, 100SAS, 100TV, 100Z, 100ZR, 150W, 500B, 500H, 500SA, 500SAK, 500SAS, 500T, SMT-100SAM, 100SAS, 500SAM, 500SAS Manufactured), CR-50, 50-2, 57, 58, 58-2, 60, 60-2, 63, 67, 80, 85, 90, 90-2, 93, 95, 97, 953, Super70, PC -3, PF-690, 691, 711, 736, 737, 739, 740, 42, R-550, 580, 630, 670, 680, 780, 780-2, 820, 830, 850, 855, 930, 980, S
- the surface of the white inorganic pigment can be used in combination with silica treatment, alumina treatment, titania treatment, zirconia treatment, organic matter treatment and the like.
- the catalytic activity of the white inorganic pigment (particularly titanium oxide) can be suppressed, and heat resistance, fluorescence, and the like can be improved.
- the white pigment is preferably a rutile type titanium oxide surface-treated with an inorganic substance, and at least one of alumina treatment and zirconia treatment was surface-treated.
- a rutile type titanium oxide is more preferable, and a rutile type titanium oxide surface-treated by an alumina / zirconia combined treatment is particularly preferable.
- pigments or dyes described in paragraphs 0183 to 0185 of Japanese Patent No. 4546276 may be mixed and used. Specifically, pigments and dyes described in paragraphs 0038 to 0054 of JP-A-2005-17716, pigments described in paragraphs 0068 to 0072 of JP-A-2004-361447, paragraphs of JP-A-2005-17521
- the colorants described in 0080 to 0088 can be preferably used.
- the content of the inorganic pigment with respect to the total solid content of the decorative layer is 20 to 75% by mass to form a decorative layer having good brightness and whiteness and simultaneously satisfying other required characteristics. It is preferable from the viewpoint. Moreover, when using the transfer film of this invention for the manufacturing method of the laminated body of this invention mentioned later, the content rate of the said inorganic pigment with respect to the total solid of the said decoration layer is also 20 from a viewpoint of fully shortening development time. It is preferable that the content be ⁇ 75% by mass.
- the content of the inorganic pigment with respect to the total solid content of the decorative layer is more preferably 25 to 60% by mass, and further preferably 30 to 50% by mass.
- the total solid content as used in this specification means the total mass of the non-volatile component except a solvent etc. from the said decoration layer.
- the inorganic pigment which is the same for other colorants
- This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the inorganic pigment and the pigment dispersant in an organic solvent (or vehicle) described later.
- the above-mentioned vehicle refers to a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it.
- Component (organic solvent) refers to a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it.
- Component organic solvent
- the disperser used for dispersing the inorganic pigment is not particularly limited.
- Known dispersers such as a roll mill, an attritor, a super mill, a dissolver, a homomixer, and a sand mill.
- fine grinding may be performed using frictional force by mechanical grinding described in page 310 of this document.
- the colorant that can be used in the present invention is preferably a colorant having an average primary particle size of 0.16 ⁇ m to 0.3 ⁇ m, more preferably 0.18 ⁇ m to 0.27 ⁇ m, from the viewpoint of dispersion stability and hiding power.
- the colorant is preferred. Further, a colorant of 0.19 ⁇ m to 0.25 ⁇ m is particularly preferable.
- the average particle size of the primary particles is smaller than 0.16 ⁇ m, the hiding power is suddenly lowered, and the base of the decorative layer may be easily seen or the viscosity may be increased.
- the “average particle size of primary particles” as used herein refers to the diameter when the electron micrograph image of the particles is a circle of the same area, and the “number average particle size” refers to the above-mentioned particle size for a large number of particles. The diameter is determined, and among these, an average value of 100 particle diameters arbitrarily selected is referred to.
- laser scattering HORIBA H made by Horiba Advanced Techno Co., Ltd.
- a decoration layer contains binder resin.
- the binder resin is preferably a silicone resin similar to the first transparent resin layer.
- a catalyst is included from a viewpoint of hardening
- the catalyst is preferably the same as the catalyst that may be contained in the at least two transparent resin layers.
- Method for forming the decorative layer Although there is no restriction
- the conductive resin layer is preferably formed by transferring.
- a coloring agent can be used for a resin layer.
- the above-mentioned colorants organic pigments, inorganic pigments, dyes, etc.
- the above-mentioned colorants can be suitably used.
- the first transparent resin layer 7, the second transparent resin layer 9, the decorative layer 2, or the decorative layer 2 described in FIG. 1 is used by using a transfer film on the front plate having the opening 8 having the configuration shown in FIG.
- a transfer film on the front plate having the opening 8 having the configuration shown in FIG.
- the decorative layer needs to form a light shielding pattern just above the boundary line of the front plate, and by using a transfer film, the resist component does not protrude from the glass edge, that is, the back side of the front plate is A touch panel reduced in thickness and weight can be manufactured through a simple process without contamination.
- a method for forming the decorative layer using a transfer film will be described.
- a transfer film when used, it can be formed by an ordinary photolithography method if the decorative layer contains a photocurable resin.
- the transfer film may or may not contain the photocurable resin, and the case where the decorative layer contains the photocurable resin and the case where the decorative layer does not contain the photocurable resin.
- the decorative layer can be formed by using a transfer film by a transfer method by half-cut or a transfer method by die-cut, which will be described later.
- a patterning method using the transfer film will be described using a method of forming the decorative layer as an example.
- the decorative layer in the case of forming the decorative layer using a photolithography method, it is a transfer film having at least a temporary support and a photocurable resin layer, and the photocurable resin layer is a photocurable resin and a colorant.
- a transfer film having The transfer film having the photocurable resin layer may include a protective film and an intermediate layer in addition to the photocurable resin layer, the temporary support, and the thermoplastic resin layer.
- the photocurable resin layer of the transfer film having the photocurable resin layer preferably has the following configuration.
- the binder used in the photocurable resin layer is not particularly limited as long as it is not contrary to the gist of the present invention, and a known polymerizable compound can be used.
- the photocurable resin composition preferably contains an alkali-soluble resin, a polymerizable compound, and a polymerization initiator. Furthermore, although a coloring agent, an additive, etc. are used, it is not restricted to this.
- the alkali-soluble resin polymers described in paragraph 0025 of JP2011-95716A and paragraphs 0033 to 0052 of JP2010-237589A can be used.
- the decorative layer is formed by precutting, it is also preferable to use a silicone resin as the binder resin in the resin layer having the colorant as described above.
- a silicone resin as the binder resin in the resin layer having the colorant as described above.
- the transfer film having the photocurable resin layer is a positive type material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but is not limited thereto.
- the photopolymerization initiator used in the photocurable resin layer the polymerizable compounds described in paragraphs 0031 to 0042 described in JP 2011-95716 A can be used.
- an additive may be used for the photocurable resin layer.
- the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060 to 0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706.
- the transfer film having the photocurable resin layer is a negative type material
- the transfer film may be a positive type material.
- the viscosity of the photocurable resin layer measured at 100 ° C. is in the range of 2000 to 50000 Pa ⁇ sec, and preferably satisfies the following formula. Viscosity of thermoplastic resin layer ⁇ viscosity of photocurable resin layer
- the method for forming the decorative layer includes a protective film removing step for removing the protective film from the transfer film, and a method for removing the protective film from the transfer film.
- the transfer film After the transfer film is laminated on the front plate (base material), it is exposed to the required pattern, and in the case of negative type material, the unexposed part and in the case of positive type material, the exposed part is developed and removed. A pattern can be obtained.
- the development may be carried out by removing the thermoplastic resin layer and the photocurable resin layer with separate liquids, or with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
- the detail of a preferable transfer process, an exposure process, a image development process, and another process is demonstrated.
- the said transfer process is a process of transferring the said photocurable resin layer of the transfer film from which the said protective film was removed on a base material.
- a method of removing the temporary support after laminating the photocurable resin layer of the transfer film on the substrate is preferable.
- Transfer (bonding) of the photocurable resin layer to the surface of the base material is performed by stacking the photocurable resin layer on the surface of the base material, and applying pressure and heating.
- known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
- the said exposure process is a process of exposing the said photocurable resin layer transcribe
- a predetermined mask is disposed above the photocurable resin layer formed on the substrate, and then exposed from above the mask through the mask, the thermoplastic resin layer, and the intermediate layer.
- the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.).
- an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned.
- the exposure dose is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
- the developing step is a step of developing the exposed photocurable resin layer.
- the development can be performed using a developer.
- the developer is not particularly limited, and a known developer such as a developer described in JP-A-5-72724 can be used.
- the developer is preferably a developer in which the photocurable resin layer has a dissolution type development behavior.
- a small amount of an organic solvent miscible with water may be added.
- organic solvents miscible with water examples include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ⁇ -caprolactone, ⁇ -butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ⁇ -caprolactam, N-methylpyrrolidone and the like.
- the concentration of the organic solvent is preferably 0.1% by mass to 30% by mass.
- a known surfactant can be further added to the developer.
- the concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
- the development method may be any of paddle development, shower development, shower & spin development, dip development, and the like.
- shower development will be described.
- An uncured portion can be removed by spraying a developer onto the photocurable resin layer after exposure.
- a thermoplastic resin layer or an intermediate layer an alkaline liquid having a low solubility of the transparent curable resin layer containing a photocurable resin is sprayed by a shower or the like before development, and the thermoplastic resin layer, It is preferable to remove the intermediate layer and the like. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like.
- the liquid temperature of the developer is preferably 20 ° C. to 40 ° C.
- the pH of the developer is preferably 8 to 13.
- (I-1) a step (half-cut step) in which a part of the transfer film has a depth that penetrates the decorative layer and does not penetrate the temporary support (half-cut step); (i-2) the transfer
- the step of cutting the penetrating through the temporary support from the decorative layer into a part of the film (die cutting step) is also referred to as (i) the step of precutting the image portion to be transferred in the decorative layer of the transfer film.
- the method for forming the decorative layer is as follows: (i-1) Half-cut step, that is, a cut having a depth that penetrates the decorative layer and does not penetrate the temporary support is partly formed in the transfer film. And (iii) removing the decorative layer in at least a part of the region surrounded by the cuts (non-image portion not to be transferred), and (iii) the decoration of the part of the region
- (i-1) Half-cut step, that is, a cut having a depth that penetrates the decorative layer and does not penetrate the temporary support is partly formed in the transfer film.
- removing the decorative layer in at least a part of the region surrounded by the cuts (non-image portion not to be transferred) and (iii) the decoration of the part of the region
- a step of forming the decorative layer using the transfer film after removing the layer a step of transferring the image portion of the decorative layer onto the substrate, hereinafter also referred to as “transfer step”). It is preferable.
- the method for forming the decorative layer includes: (i-2) a die-cutting step, that is, a step of making a cut through the temporary support from the decorative layer into a part of the transfer film; and (iii) It is also preferable to include the step of forming the decorating layer using the transfer film after removing the decorating layer in the partial area.
- the transfer film includes a protective film, an intermediate layer, or a thermoplastic resin layer
- the step of removing the decorative layer in at least a part of the region surrounded by the notch is (ii- 1) It is preferable that it is the process of removing the protective film and decoration layer of a non-image part, and the protective film of an image part.
- a transfer film contains a protective film, an intermediate
- the said decoration layer is formed using the said transfer film after removing the said decoration layer of the said one part area
- the step (the step of transferring the image portion of the decorative layer onto the substrate) is (iii-1) the step of transferring the image portion of the decorative layer of the transfer film from which the protective film has been removed onto the substrate. It is preferable that In this case, further, (iii) the step of forming the decorative layer using the transfer film after removing the decorative layer in the partial area includes (iv) temporary support transferred onto the substrate. It is preferable to include a step of peeling the body. In this case, the step of (iii) forming the decorative layer using the transfer film after removing the decorative layer in the partial area includes (v) removing the thermoplastic resin layer and the intermediate layer. It is preferable that the process to include is included.
- the decorative layer forming method includes (i) a step of pre-cutting the transferred image portion of the decorative layer of the transfer film, and (ii-1) a protective film and a decorative layer for the non-image portion, and protection of the image portion.
- the method includes a step of peeling the temporary support and a step (v) of removing the thermoplastic resin layer and the intermediate layer.
- one surface of the base material can be subjected to surface treatment in advance.
- the surface treatment it is preferable to carry out a surface treatment (silane coupling treatment) using a silane compound (silane coupling agent).
- silane coupling agent those having a functional group that interacts with the photosensitive resin are preferable.
- a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
- KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.
- a heating tank may be used, and the reaction can be promoted by preheating the base material of the laminator.
- the transfer method that undergoes a half-cut process first, after pre-cutting with a razor or the like at the boundary between the image portion and the non-image portion of the decorative layer, the protective film, the decorative layer, and the intermediate layer of the non-image portion are removed with a tape, The protective film in the image area is similarly removed, and the decorative layer pattern is transferred to the substrate.
- the transfer method that passes through the die cutting step first, as shown in FIGS.
- the half-cutting step in the method for forming the decorative layer that is, a part of the transfer film penetrates the decorative layer, and the temporary support.
- the process of making a cut with a depth that does not penetrate through will be described below.
- Incision can be made by arbitrary methods, such as a blade and a laser, and it is preferable to make an incision with a blade. Further, the structure of the blade is not particularly limited.
- the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film, in that order, for example, using a blade or a laser, from above the protective film, By cutting through the protective film, the decorative layer, and the intermediate layer and reaching a part of the thermoplastic resin layer, it is possible to separate the image portion to be transferred and the non-image portion not to be transferred.
- One method is a method of removing the non-image part of the decorative layer before transfer, and after removing the protective film, the non-image part of the decorative layer and the intermediate layer are simultaneously peeled off.
- the other is a method of peeling off the protective film on the non-image area, subsequently peeling off the decorative layer and the intermediate layer at the same time, and further peeling off the protective film on the image area. From the viewpoint of protecting the image portion of the decorative layer until just before transfer, the latter is preferred.
- the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film, in that order, for example, using a blade or a laser, from above the protective film, By making a cut through the protective film, the decorative layer, the intermediate layer, the thermoplastic resin layer, and the temporary support, it is possible to separate between the image portion to be transferred and the non-image portion not to be transferred.
- the said transfer process is a process of transferring the said decoration layer of the said transfer film after a precut process on a base material. At this time, it is preferable to remove the temporary support after laminating the decorative layer of the transfer film to the substrate. Transfer (bonding) of the decorative layer to the substrate surface is performed by stacking the decorative layer on the substrate surface, pressurizing and heating.
- laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
- the preferred embodiment of the development process following the exposure process is the same as the preferred embodiment of the development process in the photolithography method, and is used in the step of developing the exposed photocurable resin layer by the photolithography method.
- the developer can be used in the same manner in the development step subsequent to the exposure step after the precut step.
- a known surfactant can be further added to the alkali developer.
- the concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
- the method of removing the thermoplastic resin layer and the intermediate layer may be any of paddle, shower, shower & spin, dip, and the like used for developing the exposed photocurable resin layer.
- the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present invention.
- the decorative layer forming method preferably includes a post-bake step after the transfer step, and more preferably includes a step of post-bake after the step of removing the thermoplastic resin layer and the intermediate layer.
- the decorative layer can be formed by heating the decorative layer after the transfer step in an environment of 0.08 to 1.2 atm at 180 to 300 ° C. to achieve both whiteness and productivity. It is preferable from the viewpoint.
- the post-baking is more preferably performed in an environment of 0.5 atm or more. On the other hand, it is more preferable to carry out in an environment of 1.1 atm or less, and it is particularly preferred to carry out in an environment of 1.0 atm or less.
- the decorative layer is formed by curing by heating, it is performed in a reduced pressure environment of a very low pressure, and the whiteness after baking is maintained by lowering the oxygen concentration.
- the post-baking temperature is more preferably 200 to 280 ° C, and particularly preferably 220 to 260 ° C.
- the post-baking time is more preferably 20 to 150 minutes, and particularly preferably 30 to 100 minutes.
- the post-baking may be performed in an air environment or a nitrogen substitution environment, but it is particularly preferable to perform the post-bake from the viewpoint of reducing the manufacturing cost without using a special decompression device.
- the formation method of a decoration layer may have other processes, such as a post-exposure process.
- a post-exposure process is included.
- the post-exposure step may be performed from the surface of the decorative layer that is in contact with the base material, from the surface that is not in contact with the transparent base material, or from both surfaces.
- the transfer film of the present invention is a transfer film having a temporary support, a first transparent resin layer containing at least a silicone resin as a binder resin, and a second transparent resin layer containing at least a silicone rubber as a binder resin,
- the first transparent resin layer has a structure sandwiched between the temporary support and the second transparent resin layer.
- the transfer film of the present invention preferably has a thermoplastic resin layer between the temporary support and the first transparent resin layer.
- Temporal support a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used.
- Examples of such a temporary support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.
- the thickness of the temporary support is not particularly limited and is generally in the range of 5 to 200 ⁇ m, and in the range of easy handling and versatility, the range of 10 to 150 ⁇ m is particularly preferable.
- the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like. Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
- the transfer film of the present invention includes the first transparent resin layer and the second transparent resin layer.
- the preferable aspect of the 1st transparent resin layer in the transfer film of this invention is the same as the preferable aspect of the said 1st transparent resin layer in the laminated body of this invention.
- the preferable aspect of the 2nd transparent resin layer in the transfer film of this invention is the same as the preferable aspect of the said 2nd transparent resin layer in the laminated body of this invention.
- the first transparent resin layer and the second transparent resin layer used in the present invention have a desired size in order to fill a gap (step difference in the decorative layer) generated by a difference in height between the front plate and the decorative layer. It is preferable.
- the transfer film of the present invention can be made to have a desired size by a precut process or the like in order to fill the step of the decorative layer. Therefore, the first transparent resin layer and the second transparent resin layer used in the transfer film of the present invention are the laminate of the present invention, the conductive film laminate of the present invention described later, and the capacitive input device. It is not always necessary to match the size required to fill the step of the decorative layer. On the other hand, the first transparent resin layer and the second transparent resin layer are used to fill the steps of the decorative layer in the laminate of the present invention, the conductive film laminate of the present invention described later, and the capacitive input device. When forming a transfer film, it is preferable to adjust the thickness to the same level as the height of the decorative layer.
- the viscosity of the first transparent resin layer and the second transparent resin layer measured at 100 ° C. is preferably in the region of 1 to 50000 Pa ⁇ sec.
- the viscosity of each layer can be measured as follows.
- a transparent resin layer coating liquid (first coating liquid for transparent resin layer) containing a thermoplastic resin layer or at least a silicone resin as a binder resin, and a transparent resin layer containing at least a silicone rubber as a binder resin by drying under atmospheric pressure and reduced pressure.
- Remove the solvent from the coating solution for coating (second coating solution for transparent resin layer) to make a measurement sample.
- Vibron Vibron (DD-III type: manufactured by Toyo Baldwin Co., Ltd.) as a measuring instrument and start measurement.
- Measurement is performed under conditions of a temperature of 50 ° C., a measurement end temperature of 150 ° C., a temperature increase rate of 5 ° C./min, and a frequency of 1 Hz / deg, and a measured value of 100 ° C. can be used.
- thermoplastic resin layer In the transfer film of the present invention, it is preferable that a thermoplastic resin layer is provided between the temporary support and the first transparent resin layer.
- the thermoplastic resin layer is preferably alkali-soluble.
- the thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness on the base surface (including unevenness due to images already formed, etc.). It is preferable to have a property that can be deformed.
- the thermoplastic resin layer preferably includes an organic polymer substance described in JP-A-5-72724 as a component.
- the Vicat method specifically, a method for measuring a polymer softening point by American Material Test Method ASTM D1235
- polyolefins such as polyethylene and polypropylene, ethylene copolymers with ethylene and vinyl acetate or saponified products thereof, copolymers of ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride and vinyl chloride, Vinyl chloride copolymer with vinyl acetate or saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer with styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, Vinyl toluene copolymer of vinyl toluene and (meth) acrylic acid ester or saponified product thereof, poly (meth) acrylic acid ester, (meth) acrylic acid ester copolymer weight of butyl (meth) acrylate and vinyl acetate, etc.
- thermoplastic resin layer it is preferable to add a foaming agent or the like for controlling peelability to the thermoplastic resin layer, and those described in paragraphs 0020 to 0028 of JP-A-2007-225939 can be used as appropriate.
- thermoplastic resin layer It is also preferable to add a surfactant to the thermoplastic resin layer.
- a surfactant for example, those described in Paragraph 0017 of Japanese Patent No. 4502784 and Paragraphs 0060 to 0071 of JP-A-2009-237362 can be used as appropriate.
- the layer thickness of the thermoplastic resin layer is preferably 3 to 30 ⁇ m.
- the thickness of the thermoplastic resin layer is more preferably 4 to 25 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
- the thermoplastic resin layer can be formed by applying a preparation liquid containing a thermoplastic organic polymer, and the preparation liquid used for the application can be prepared using a solvent.
- the solvent is not particularly limited as long as it can dissolve the polymer component constituting the thermoplastic resin layer, and examples thereof include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, and 2-propanol.
- the viscosity of the thermoplastic resin layer measured at 100 ° C. is preferably in the region of 1000 to 50000 Pa ⁇ sec.
- an intermediate layer is provided between the first transparent resin layer and the thermoplastic resin layer, or a protective film or the like is further provided on the surface of the second transparent resin layer. Can be configured.
- an intermediate layer for the purpose of preventing mixing of components when applying a plurality of layers and during storage after application.
- an oxygen-blocking film having an oxygen-blocking function which is described as “separation layer” in JP-A-5-72724, is preferable, which increases sensitivity during exposure and reduces the time load of the exposure machine. And productivity is improved.
- the transfer film of the present invention can be produced according to the method for producing a photosensitive transfer material described in paragraphs 0094 to 0098 of JP-A-2006-259138. Specifically, when forming the transfer film of the present invention having an intermediate layer, a preparation liquid (thermoplastic resin layer coating liquid) containing an additive together with a thermoplastic organic polymer is applied on a temporary support. After drying and providing a thermoplastic resin layer, a preparation liquid (intermediate layer coating liquid) obtained by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto the thermoplastic resin layer, and then dried.
- an intermediate layer is laminated, and on this intermediate layer, a first transparent resin layer coating solution and a second transparent resin layer coating solution prepared using a solvent that does not dissolve the intermediate layer are further applied. It can produce suitably by making it dry and laminating
- the production method of the laminate of the present invention is not particularly limited, but the first preferred embodiment of the production method of the laminate described below, the second preferred embodiment of the production method of the laminate of the present invention, the present invention, It is preferable that it is one of the 3rd preferable aspects of the manufacturing method of the laminated body of invention.
- the 1st preferable aspect of the manufacturing method of the laminated body of this invention is 1st transparent resin layer which contains at least silicone resin as binder resin of the transfer film of this invention, and 2nd transparent resin which contains at least silicone rubber as binder resin.
- a part of the front plate (one surface of the front plate) or the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order.
- the 2nd preferable aspect of the manufacturing method of the laminated body of this invention is 2nd transparent resin which transcribe
- the layer forming step, the first transparent resin layer from the transfer film, the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order, Forming a second transparent resin layer, comprising: forming a first transparent resin layer to be transferred onto the second transparent resin layer; and forming an electrode pattern on the first transparent resin layer.
- the process and the first transparent resin layer forming process are simultaneous or continuous transfer processes.
- a resin composition (second coating solution for forming a transparent resin layer) containing at least silicone rubber as a binder resin is placed on the front plate (one surface of the front plate).
- a resin composition (first coating solution for forming a transparent resin layer) containing at least a silicone resin as a binder resin, and the front plate A step of forming a first transparent resin layer applied on the second transparent resin layer such that the second transparent resin layer and the first transparent resin layer are laminated in this order; and A step of forming an electrode pattern on the first transparent resin layer, and the step of forming the second transparent resin layer and the step of forming the first transparent resin layer are continuous coating steps.
- the manufacturing method of the laminated body of this invention includes the formation process of the said at least 2 layer of transparent resin layer.
- each preferred embodiment will be described separately.
- the first preferred embodiment of the step of forming the at least two transparent resin layers is the first transparent resin layer and the second transparent resin layer of the transfer film of the present invention. Is transferred to a part or all of the front plate so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order.
- the first transparent resin layer of the transfer film of the present invention is in contact with the electrode pattern.
- the second transparent resin layer is a second transparent resin layer from the electrode pattern side.
- the first transparent resin layer and the second transparent resin layer can be simultaneously transferred to form the first transparent resin layer and the second transparent resin layer.
- the dimensions can be adjusted at the same time, which is preferable.
- the preferred range of the method of transferring and forming the first transparent resin layer and the second transparent resin layer is the preferred range of the transfer step in the method of forming the decorative layer described above. It is the same.
- the second transparent resin layer is transferred from a transfer film to a part or all of the front plate.
- the step of forming the second transparent resin layer, the first transparent resin layer from the transfer film, the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order.
- a first transparent resin layer forming step to be transferred onto the second transparent resin layer, wherein the second transparent resin layer forming step and the first transparent resin layer forming step are: It is a simultaneous or continuous transfer process.
- the first transparent resin layer and the second transparent resin layer may be formed by transferring at the same time or may be formed by transferring them continuously.
- the preferred range of the method for transferring and forming the first transparent resin layer and the second transparent resin layer is the first preferred embodiment of the method for producing a laminate of the present invention.
- the preferred range of the method for transferring and forming the first transparent resin layer and the second transparent resin layer is the same.
- the second transparent resin layer forming coating solution is applied to a part or all of the front plate.
- the third preferred embodiment is not particularly limited as a formation method by applying the first transparent resin layer and the second transparent resin layer, and the liquid resist for at least two transparent resin layers is at least It can be applied or printed in the gap between the electrode pattern and the front plate and cured by a known method.
- the manufacturing method of the laminated body of this invention includes the process of forming an electrode pattern on the said 1st transparent resin layer.
- the step of forming the electrode pattern is preferably a step of manufacturing using a transfer film having a conductive curable resin layer using conductive fibers described later.
- paragraphs 0014 to 0016 of Japanese Patent No. 4506785 can be referred to.
- the step of forming an electrode pattern is common to the first preferred embodiment, the second preferred embodiment, and the third preferred embodiment of the method for producing a laminate of the present invention, and the preferred embodiment is also common.
- the electrically conductive film laminated body of this invention has a 2nd electrode pattern electrically insulated with the said electrode pattern on the electrode pattern of the laminated body of this invention.
- the second electrode pattern is preferably a transparent electrode pattern.
- the conductive film laminate of the present invention includes a front plate (preferably a transparent front plate), a functional layer disposed on a part of one surface of the front plate, and a surface side on which the functional layer of the front plate is disposed. And at least two transparent resin layers or the second transfer film of the present invention so as to fill at least the gap between the electrode pattern and the front plate. It is more preferable to have 1 transparent resin layer and 2nd transparent resin layer.
- the capacitance-type input device of the present invention includes the conductive film laminate of the present invention.
- the at least two transparent resin layers may maintain a uniform thickness, and some thicknesses May be a non-uniform shape (in other words, a transparent resin layer).
- the at least two transparent resin layers comprise at least a first transparent resin layer and a second transparent resin layer contained in the transfer film of the present invention, at least an electrode pattern and a front plate. It is preferably formed by transferring so as to fill a gap between the two.
- the gap between the electrode pattern and the front plate in the capacitive input device of the present invention is not particularly limited.
- the electrically conductive film laminated body of this invention can mention the laminated body of a decoration layer, a decoration layer, and a mask layer (shielding layer).
- the functional layer described above is preferably a decorative layer or a laminate of a decorative layer and a mask layer (shielding layer), and more preferably a decorative layer.
- the functional layer is a decorative layer
- at least a gap between the electrode pattern and the front plate is formed by “a gap generated by a height difference between the front plate and the decorative layer” (the electrode pattern and the front plate). Is more preferably equal to the gap generated by the height difference between the front plate and the decorative layer.
- the electrode pattern preferably includes the following (1) to (3) from the viewpoint of use as a capacitive input device.
- (1) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (2) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction crossing the first direction; and (3) electrically connecting the first transparent electrode pattern and the second electrode pattern.
- the electrode pattern is disposed on the decorative layer means that a part of (1) or (2) among the above (1) to (3) is the decorative layer. All of (1) to (3) need not be arranged on the decorative layer.
- the electrode pattern may be arrange
- the electrode pattern may further include the following (4). (4) A conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and is different from the first transparent electrode pattern and the second electrode pattern.
- the second electrode pattern may be a transparent electrode pattern.
- the second transparent electrode pattern may be described instead of the second electrode pattern, but the preferred embodiment of the second electrode pattern is the same as the preferred embodiment of the second transparent electrode pattern. is there.
- the conductive film laminate and the capacitance-type input device of the present invention are provided on the surface of the decorative layer formed on one surface side of the front plate on the side opposite to the surface facing the front plate. Further, a mask layer may be provided.
- a mask layer may be provided.
- the preferable aspect of the electrically conductive film laminated body and electrostatic capacitance type input device of this invention is demonstrated.
- preferred configurations and embodiments of the conductive film laminate and the capacitance-type input device of the present invention are described in ⁇ 0016> to ⁇ 0050> of JP2013-24610A. Embodiments can be employed and the contents of this publication are incorporated herein.
- FIG. 14 is a cross-sectional view showing a preferred configuration among the capacitance-type input device of the present invention.
- the capacitive input device shown in FIG. 14 includes a front plate 1, a decorative layer 2 disposed on a part of one surface of the front plate, and one surface side of the front plate (decorative layer 2).
- the gap formed by the height difference between the front plate 1 and the decorative layer 2 is the second transparent resin. It is filled with the layer 102 and the first transparent resin layer 101. Further, the capacitive input device shown in FIG. 14 has a second electrode pattern 4 on the first transparent electrode pattern 3, and the second electrode pattern 4 is the first transparent electrode pattern. 3 and the insulating layer 5, and the capacitive input device shown in FIG. 14 has another conductive element 6. As in the capacitive input device shown in FIG. 14, the first transparent resin layer 101 and the second transparent resin layer 102 are the same as the side of the front plate 1 on which the decorative layer 2 is formed. It is more preferable that the decorative layer 2 on the surface of the surface is formed on a portion where the decorative layer 2 is not formed and on a part of the decorative layer 2.
- the first transparent resin layer 7 and the second transparent resin layer 9 are formed on the same surface as the side of the front plate 1 on which the decorative layer 2 is formed. You may form in the part in which the decoration layer 2 is not formed, and all the said decoration layers 2.
- the first transparent resin layer 101 and the second transparent resin layer 102 are in the laminated state shown in FIG. 14 than in the laminated state shown in FIG. preferable.
- 1 is a second transparent electrode pattern electrically insulated from the first transparent electrode pattern 3 by the insulating layer 5 on the first transparent electrode pattern 3. 4 and a further conductive element 6. Further, as shown in FIG.
- the end portions of the first transparent resin layer 101 and the second transparent resin layer 102 may have the same width (the first transparent resin layer 101 and the second transparent resin Layer 102 may be laminated with their ends aligned), as shown in FIG. 1, the ends of the first transparent resin layer 7 and the second transparent resin layer 9 have different widths. Alternatively, the end portions of the first transparent resin layer 7 and the second transparent resin layer 9 may be laminated unevenly. In the present invention, as shown in FIG. 14, the end portions of the first transparent resin layer 101 and the second transparent resin layer 102 are preferably the same width from the viewpoint of ease of manufacture.
- the end of the decorative layer 2 may be tapered, reverse tapered, or not tapered.
- the decoration layer 2 has a tapered end.
- the decoration layer 2 does not need to form a taper shape.
- the edge part of the said decoration layer is a taper shape.
- the inner diameter (one side) L of the decorative layer 2 is equal to the width of the second transparent resin layer 9.
- L may be wider than the width of the second transparent resin layer 9, and conversely, it may be narrower than the width of the second transparent resin layer 9.
- the second transparent resin layer 9 existing on the decorative layer 2 is more than the second transparent resin layer 9 in direct contact with the front plate 1 due to the pressure applied during transfer due to the thickness of the decorative layer 2.
- the film thickness tends to be thin.
- the end portion of the second transparent resin layer is disposed on at least a part of the surface opposite to the surface facing the front plate of the functional layer (first surface). It is preferable that the end portion of the transparent resin layer 2 is arranged so as to partially ride on the decorative layer, and the inner diameter (one side) L of the decorative layer 2 is narrower than the width of the second transparent resin layer 9. It is preferable. In other words, the width of the second transparent resin layer 9 is preferably wider than the inner diameter (one side) L of the decorative layer 2.
- the width of the second transparent resin layer 9 is preferably equal to or larger than the inner diameter (one side) L of the decorative layer 2 and equal to or greater than 20 mm (wide at one end is equal to or smaller than 10 mm), and is equal to or greater than equal to or greater than 10 mm (one side) 5 mm or less at the end of the transfer film) is to transfer the first transparent resin layer and / or the second transparent resin layer contained in the transfer film, and to easily fill the gap between the electrode pattern and the front plate. It is particularly preferable from the viewpoint of suppressing new bubbles from being mixed in the vicinity of the end portion of the second transparent resin layer present on the decorative layer 2.
- the mask layer that may be installed is a frame-like (frame-like) pattern of the non-image portion 32 formed on one surface side of the front plate 1 so that the lead wiring and the like cannot be seen.
- the decoration layer 2 may be formed for the purpose of decoration between one surface of the front plate 1 and the mask layer.
- the capacitive input device of the present invention has a decorative layer 2, a mask layer (a mask layer (covering a region other than the input surface in FIG. 5)). (Not shown) is preferably provided.
- the front plate 1 can be provided with an opening 8 in a part of the front plate as shown in FIG. A pressing mechanical switch can be installed in the opening 8.
- the tempered glass used as a base material has high strength and is difficult to process, it is general to form the opening 8 by forming the opening 8 before the tempering treatment and then performing the tempering treatment. .
- the resist component mole from the opening The problem is that the resist component protrudes from the edge of the glass in the decorative layer provided between the mask layer and the front plate that needs to form a light-shielding pattern until the boundary of the front plate, and the back side of the substrate is contaminated.
- the decorative layer 2 is formed on the base material having the opening 8 by using a transfer film, such a problem can be solved.
- FIG. 3 shows a plurality of first transparent electrode patterns 3 formed on one surface of the front plate 1 by extending a plurality of pad portions in a first direction via connecting portions, A plurality of second transparent electrode patterns 4 comprising a plurality of pad portions that are electrically insulated from the transparent electrode pattern 3 and extend in a direction crossing the first direction; and a first transparent electrode pattern
- the electrode pattern in which the insulating layer 5 which electrically insulates 3 and the 2nd transparent electrode pattern 4 is formed is shown.
- the preferred composition, film thickness, and manufacturing method of the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 to be described later are the preferred compositions of the electrode pattern in the laminate of the present invention.
- the film thickness and the manufacturing method are the same.
- the first transparent electrode pattern 3 and the second transparent electrode pattern 4 is formed on the second transparent resin layer 102 disposed on one surface of the front plate 1 and on the decorative layer 2. It can be installed across both regions on the surface opposite to the surface facing the front plate 1.
- the second transparent electrode pattern 4 is on the first transparent resin layer 101 disposed on one surface of the front plate 1 and the surface of the decorative layer 2 facing the front plate 1. Is shown installed across both areas on the opposite side. In this manner, electrode patterns are stacked on the decorative layer 2 that requires a certain thickness and on the second transparent resin layer 102 disposed on one surface of the front plate (for example, transfer described later).
- FIG. 3 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention.
- the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction C via the connection portion 3b.
- the second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and intersects the first direction C (second direction D in FIG. 3). It is comprised by the some pad part extended and formed.
- the pad portion 3a and the connection portion 3b may be formed integrally, or only the connection portion 3b is formed, and the pad portion 3a and the second portion 3b are formed.
- the transparent electrode pattern 4 may be integrally formed (patterned).
- the pad portion 3a and the second transparent electrode pattern 4 are integrally formed (patterned)
- a part of the connection part 3b and a part of the pad part 3a are coupled as shown in FIG.
- Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.
- the conductive element 6 is installed on the surface of the decorative layer 2 opposite to the surface facing the front plate 1.
- the conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4.
- Another conductive element is shown in FIG. 14, a diagram in which the conductive element 6 is connected to the second transparent electrode pattern 4 is shown.
- the 1st transparent resin layer 7 is further installed between the said decoration layer 2 and the said electrode pattern, and between the said 2nd transparent resin layer 9 and the said electrode pattern.
- the 1st transparent resin layer 7 may be comprised so that only a part of each component may be covered. Across both regions on the second transparent resin layer 9 disposed on one surface of the front plate 1 and on the surface opposite to the surface facing the front plate 1 of the decorative layer 2, Even when the first transparent resin layer 7 is installed, the use of the second transparent resin layer 9 eliminates the need for expensive equipment such as a vacuum laminator. Lamination without any possible becomes possible.
- the transparent protective layer (not shown) may be installed so that all of each component may be covered further.
- the transparent protective layer is sometimes called an overcoat layer.
- the insulating layer 5 and the first transparent resin layer 7 may be made of the same material or different materials.
- the material constituting the insulating layer 5 and the first transparent resin layer 7 is preferably a material having high surface hardness and high heat resistance, and a known photosensitive siloxane resin material, acrylic resin material, or the like is used.
- FIG. 4 is a top view illustrating an example of the tempered glass 11 in which the opening 8 is formed.
- FIG. 5 is a top view showing an example of the front plate on which the decorative layer 2 is formed.
- FIG. 6 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed.
- FIG. 7 is a top view showing an example of a front plate on which a first transparent electrode pattern (not shown) and a second transparent electrode pattern 4 are formed.
- FIG. 8 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed.
- at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, the temporary support and the photocurable resin layer are arranged in this order.
- the transparent electrode layer is preferably formed by etching using an etching pattern formed by a transfer film (transfer film having a photocurable resin layer) having a temporary support, a thermoplastic resin layer, and light. More preferably, the transparent electrode layer is formed by etching using an etching pattern formed by a transfer film having a curable resin layer in this order.
- the method for manufacturing the capacitance-type input device includes: a temporary support, a conductive curable resin layer, and at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element.
- a temporary support preferably formed using a transfer film (transfer film having a conductive curable resin layer) in this order, and a transfer having a temporary support, a thermoplastic resin layer, and a conductive curable resin layer in this order. More preferably, it is formed using a film. Forming at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element using a transfer film having a temporary support and a conductive curable resin layer in this order.
- a transfer film having at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, and a temporary support and a conductive curable resin layer in this order.
- the conductive curable resin layer is transferred and formed. That is, the first transparent electrode pattern 3 is preferably formed using an etching process or a transfer film having a conductive curable resin layer.
- the first transparent electrode pattern 3 is formed by etching
- a transparent electrode layer such as ITO is first sputtered on one surface of the front plate 1 on which the decorative layer 2 or the transparent protective layer 7 is formed. Formed by.
- an etching pattern is formed on the transparent electrode layer by exposure and development using a transfer film having a photocurable resin layer for etching. Thereafter, the transparent electrode layer is etched to pattern the transparent electrode layer, and the etching pattern is removed, whereby the first transparent electrode pattern 3 and the like can be formed.
- the transfer film which further has the said photocurable resin layer as an etching resist (etching pattern) a resist pattern can be obtained like the said method.
- etching and resist stripping can be applied by a known method described in paragraphs 0048 to 0054 of JP2010-152155A.
- an etching method there is a commonly performed wet etching method of dipping in an etching solution.
- an etchant used for wet etching an acid type or alkaline type etchant may be appropriately selected in accordance with an object to be etched.
- acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done.
- the acidic component may combine a plurality of acidic components.
- alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate.
- a mixed aqueous solution of a salt such as The alkali component may be a combination of a plurality of alkali components.
- the temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower.
- the resin pattern used as an etching mask (etching pattern) in the present invention exhibits particularly excellent resistance to acidic and alkaline etching solutions in such a temperature range. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
- a cleaning process and a drying process may be performed as necessary to prevent line contamination.
- the cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
- the method of peeling the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes.
- the resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resin pattern peeling residue is reduced.
- the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching process, while in the peeling process. Good peelability will be exhibited, and both conflicting properties of chemical resistance and peelability can be satisfied.
- the stripping solution examples include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these.
- a stripping solution dissolved in a mixed solution of You may peel by the spray method, the shower method, the paddle method etc. using said peeling liquid.
- a 1st transparent electrode pattern, a 2nd transparent electrode pattern, and another electroconductive member can also be formed using the transfer film which has a temporary support body and a curable resin layer as a lift-off material.
- An example of the transfer film includes a transfer film having the photocurable resin layer. Also in this case, the transfer film having the photocurable resin layer preferably has the thermoplastic resin layer between the temporary support and the photocurable resin layer.
- the transfer film having a photocurable resin layer after patterning using a transfer film having a photocurable resin layer, after forming a transparent conductive layer on the entire surface of the substrate, the transfer film having a decorative layer or a photocurable resin layer together with the deposited transparent conductive layer A desired transparent conductive layer pattern can be obtained by dissolving and removing the photocurable resin layer in (lift-off method).
- the first transparent electrode pattern 3 When the first transparent electrode pattern 3 is formed using a transfer film having a conductive curable resin layer, it can be formed by transferring the conductive curable resin layer to the surface of the front plate 1. it can.
- the front plate (base material) having an opening has no resist component leakage from the opening. Without contaminating the back side, it is possible to manufacture a touch panel having the advantages of thinning and light weight by a simple process. Furthermore, in forming the first transparent electrode pattern 3, a transfer film having a specific layer structure having a thermoplastic resin layer between the conductive curable resin layer and the temporary support is used to laminate the transfer film. Bubble generation is prevented, and the first transparent electrode pattern 3 having excellent conductivity and low resistance can be formed.
- the transfer film has a conductive curable resin layer
- the conductive curable resin layer contains conductive fibers and the like.
- a solid structure or a hollow structure is preferable.
- the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”.
- a conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 ⁇ m to 100 ⁇ m may be referred to as “nanowire”.
- a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 ⁇ m to 1,000 ⁇ m, and having a hollow structure may be referred to as “nanotube”.
- the material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable.
- the conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
- the material of the metal nanowire is not particularly limited.
- at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable. More preferably, at least one metal selected from Group 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14. At least one metal selected from the group is more preferable, and it is particularly preferable to include it as a main component.
- Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable. Containing mainly silver means that the metal nanowire contains 50% by mass or more, preferably 90% by mass or more. Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
- the shape of the metal nanowire is not particularly limited and may be appropriately selected depending on the purpose. In applications where high transparency is required, a cylindrical shape and a cross-sectional shape with rounded polygonal corners are preferred.
- the cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
- TEM transmission electron microscope
- the corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners.
- the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness.
- the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line.
- a cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners.
- the sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at this corner and plasmon absorption may increase, or the transparency may be deteriorated due to the yellowness remaining. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise.
- the lower limit of the sharpness is preferably 30%, more preferably 40%.
- the average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, still more preferably 10 nm to 40 nm, 15 nm to 35 nm is particularly preferable.
- the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated.
- the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
- the average short axis length of the metal nanowires was measured using a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and 300 metal nanowires were observed. The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular was the shortest axis.
- the average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m. If the average major axis length is less than 1 ⁇ m, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 ⁇ m, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
- the average major axis length of the metal nanowires was measured using, for example, a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and 300 metal nanowires were observed. The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle
- the thickness of the conductive curable resin layer is preferably from 0.1 to 20 ⁇ m, more preferably from 0.5 to 18 ⁇ m, from the viewpoint of process stability such as the stability of the coating solution and the drying time during coating and the development time during patterning. 1 to 15 ⁇ m is preferable.
- the content of the conductive fiber based on the total solid content of the conductive curable resin layer is preferably 0.01 to 50% by mass, and 0.05 to 30% by mass from the viewpoint of conductivity and stability of the coating solution. Is more preferable, and 0.1 to 20% by mass is particularly preferable.
- the second electrode pattern is preferably a transparent electrode pattern.
- the second transparent electrode pattern 4 can be formed using the transfer film having the etching treatment or the conductive curable resin layer. A preferred embodiment at that time is the same as the method for forming the first transparent electrode pattern 3.
- a first transparent electrode pattern is formed by using a transfer film having the photocurable resin layer having an insulating photocurable resin layer as the photocurable resin layer. Further, it can be formed by transferring an insulating photocurable resin layer to the surface of the front plate 1.
- the thickness of the insulating layer is preferably 0.1 to 5 ⁇ m, more preferably 0.3 to 3 ⁇ m, and more preferably 0.5 to 3 ⁇ m from the viewpoint of maintaining insulation. 2 ⁇ m is particularly preferable.
- Said another electroconductive element 6 can be formed using the said etching process or the transfer film which has the said electroconductive curable resin layer.
- Another conductive element 6 is sometimes referred to as a lead-out wiring.
- MAM is generally used as the lead-out wiring because it is highly conductive and easy to finely process.
- Au gold
- Ag silver
- Cu copper
- Al aluminum
- Mo Metals such as (molybdenum), Pd (palladium), Pt (platinum), C (carbon), and Fe (iron) can also be preferably used.
- the thickness of the transparent protective layer is preferably 0.5 to 10 ⁇ m, more preferably 0.8 to 5 ⁇ m, from the viewpoint of exhibiting sufficient surface protection ability. Particularly preferred is ⁇ 3 ⁇ m.
- the image display device of the present invention includes the capacitive input device of the present invention as a component.
- the image display device including the capacitive input device of the present invention as a constituent element is “latest touch panel technology” (published July 6, 2009, Techno Times), supervised by Yuji Mitani, “Touch Panel Technology and Development. The configurations disclosed in CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied.
- thermoplastic resin layer coating liquid Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer.
- the intermediate layer coating solution: Formulation P1 was applied on the thermoplastic resin layer and dried to form an intermediate layer.
- the second transparent resin layer coating liquid: Formulation C1 was applied and dried to form a transparent resin layer A used as the second transparent resin layer.
- thermoplastic resin layer having a dry film thickness of 15.1 ⁇ m, the intermediate layer having a dry film thickness of 1.6 ⁇ m, and the second transparent resin layer having a dry film thickness of 30 ⁇ m are used on the temporary support.
- a transparent resin layer A was provided.
- a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded on the transparent resin layer A.
- the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer A, and the protective film are integrated to form a second transparent resin layer (transparent resin as the second transparent resin layer).
- a transfer film having a layer A was prepared.
- thermoplastic resin layer coating liquid Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer.
- the intermediate layer coating solution Formulation P1 was applied and dried to form an intermediate layer.
- the 1st coating liquid for transparent resin layers Formula L1 was apply
- thermoplastic resin layer having a dry film thickness of 15.1 ⁇ m, the intermediate layer having a dry film thickness of 1.6 ⁇ m, and the first transparent resin layer having a dry film thickness of 50 ⁇ m are used on the temporary support.
- a transparent resin layer F was provided.
- a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded on the transparent resin layer F.
- the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer F, and the protective film are integrated to form a first transparent resin layer (transparent resin as the first transparent resin layer).
- a transfer film having a layer F) was prepared.
- thermoplastic resin layer coating liquid Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer.
- the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer.
- a decorative layer coating solution: Formula L100 was applied and dried to form a decorative layer.
- a thermoplastic resin layer having a dry film thickness of 15.1 ⁇ m, an intermediate layer having a dry film thickness of 1.6 ⁇ m, and a white decorative layer having a dry film thickness of 35 ⁇ m were provided on the temporary support. .
- a protective film (thickness 12 ⁇ m polypropylene film) was pressure-bonded on the decorative layer.
- a transfer film for forming a white decorative layer was produced in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the decorative layer, and the protective film were integrated.
- Silicone resin catalyst D-15 manufactured by Shin-Etsu Chemical Co., Ltd.
- Xylene solution solid content: 25% by mass
- white pigment dispersion 1 the following composition
- antioxidant Irgafos 168, manufactured by BASF Corp.
- interface Activator Brand name: MegaFuck F-780F, manufactured by DIC Corporation
- the white decorative layer forming transfer films (protective film, decorative layer, intermediate) Layer, thermoplastic resin layer and temporary support) were penetrated from the protective film side and punched out.
- the white decorative layer forming transfer film after punching is formed with an outer peripheral portion 42, a frame inside 41 having a straight portion, and a wiring extraction portion 43 having a straight portion.
- This glass substrate was preheated at 90 ° C. for 2 minutes with a base material preheating device to obtain a tempered glass having been subjected to silane coupling treatment.
- the white decorative layer forming transfer film (white decorative layer forming transfer film after punching) punched with the blade 33 is used to protect the non-image portion 31 with a tape. Only 25 was peeled off, and similarly, the two layers of the decorative layer 24 and the intermediate layer 23 of the non-image part 31 were peeled off simultaneously using a tape. Further, only the protective film 25 in the region corresponding to the image portion 32 was peeled off.
- Laminator (() The product was laminated at a rubber roller temperature of 120 ° C., a linear pressure of 100 N / cm, and a conveying speed of 2.5 m / min. Using Hitachi Industries, Ltd. (Lamic II type).
- the polyethylene terephthalate temporary support 21 was peeled off at the interface with the thermoplastic resin layer 22 to remove the temporary support 21.
- the decorative layer 24, the intermediate layer 23, and the thermoplastic resin layer 22 are transferred from the white decorative layer forming transfer film to the image portion 32 of the glass substrate, and the non-image portion 31 of the glass substrate is heated. Only the plastic resin layer 22 was transferred from the white decorative layer forming transfer film.
- triethanolamine developer containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water
- shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and the intermediate layer 23 of the image portion 32 of the glass substrate and the thermoplastic resin layer 22 of the non-image portion 31.
- air was blown onto the upper surface of the glass substrate to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce a liquid pool on the glass substrate.
- a white decoration layer 24 is formed by performing post-baking treatment at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), and a white decoration layer having a thickness of 35 ⁇ m is formed on the upper surface of the glass substrate.
- a front plate (hereinafter also referred to as “front plate on which a decorative layer is formed”) was obtained.
- the obtained white decorative layer has a frame shape (also referred to as a frame shape), the length of one side inside the frame (frame) is 70 mm, and the length of the outer side parallel to the inner side is It was 90 mm.
- L-CPNC550 manufactured by Climb Products Co., Ltd.
- the transfer film for forming a second transparent resin layer after punching has a white decorative layer (frame shape), although each side is 5 mm larger on each side than the length of the inner side of the white decorative layer (frame shape). It is punched out so as to fit inside (region where the white decorative layer is not formed).
- the front plate on which the decorative layer was formed was preheated at 90 ° C. for 2 minutes with a base material preheating device. Only the protective film was peeled off using a tape to the transfer film for forming the second transparent resin layer after punching (having the transparent resin layer A as the second transparent resin layer).
- the preheated front plate and the transfer film for forming the second transparent resin layer are arranged such that the transfer film for forming the second transparent resin layer is disposed in the frame portion (frame portion) of the white decorative layer without any gap.
- the steps formed by the height difference between the front plate and the white decorative layer are filled with the transparent resin layer A that is the second transparent resin layer, and each of the transparent resin layers A that are the second transparent resin layers
- the end portions are fitted on the white decorative layer so as to run 5 mm each from the end portion (inner end portion) of the white decorative layer. Since the edge part of a decoration layer has a taper shape, the reference
- the transparent resin layer A which is the second transparent resin layer on the front plate transfer for forming the first transparent resin layer (having the transparent resin layer F as the first transparent resin layer) A transparent resin layer F, which is a first transparent resin layer, was formed on the transparent resin layer A, which is a second transparent resin layer, using a film. Then, the post-baking process was performed for 60 minutes at 240 degreeC in the air under atmospheric pressure (1 atm), and the laminated body was obtained.
- the transparent resin layer A that is the second transparent resin layer and the transparent resin layer F that is the first transparent resin layer are laminated without gaps in this order, the step between the front plate and the white decorative layer is filled with the first transparent resin layer and the second transparent resin layer, and the first transparent resin layer and the first decorative resin layer Fit each edge of the transparent resin layer 2 on the part of the surface on the opposite side of the front panel of the white decorative layer by 5mm from the (inner) edge of the white decorative layer. It is rare.
- the second transparent resin layer and the first transparent resin layer are formed by successive transfer processes using the second transparent resin layer forming transfer film and the first transparent resin layer forming transfer film, respectively. This was shown as sequential transfer in Table 2 below.
- a transfer film for forming a second transparent resin layer (having transparent resin layer A as the second transparent resin layer) was transferred onto a glass substrate to form transparent resin layer A.
- a post-bake treatment at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm)
- a self-supporting film having a size of 30 mm ⁇ 0.5 mm was cut from the substrate to obtain a sample film.
- the sample film was pulled using a tensile tester (Tensilon, manufactured by A & D Co., Ltd.), and the elastic modulus E2 and elongation at break ⁇ of the self-supporting film of the transparent resin layer A, which is the second transparent resin layer.
- the measurement was performed at a distance between chucks of 20 mm, a temperature of 23 ° C., and a relative humidity of 55%.
- the first transparent resin layer forming transparent resin as the first transparent resin layer
- the elastic modulus E1 of the self-supporting film of the transparent resin layer F was measured in the same manner as in the elastic modulus measurement method of the transparent resin layer A except that the transfer film (with layer F) was used. .
- the obtained results are shown in Table 2 below.
- the pattern, insulating layer, second transparent electrode pattern, and transparent protective layer were not allowed to be observed by 60 people, and transparency was evaluated according to the following evaluation criteria.
- A, B, C or D evaluation is preferable, A, B or C evaluation is more preferable, A or B evaluation is particularly preferable, and A evaluation is more preferable.
- Photocurable resin layer coating solution for etching Formula E1-- -Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, weight average molecular weight 60000, Acid value 163 mg KOH / g): 16 parts by mass Monomer 1 (Brand name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.): 5.6 parts by mass Addition of 0.5 mol of tetramethylene oxide monomethacrylate of hexamethylene diisocyanate Product: 7 parts by mass-cyclohexanedimethanol monoacrylate as a compound having one polymerizable group in the molecule: 2.8 parts by mass-2-chloro-N-butylacridone: 0.42 parts by mass Biimidazole: 2 .17 parts by mass-Leuco Crystal Violet: 0.26 parts by mass-Phenothiazine: 0.013 parts by mass
- the front plate on which the film was formed was washed, and then the transfer film E1 for etching from which the protective film was removed was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveying speed 2.2 m / cm). Min).
- the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 ⁇ m, and the exposure amount is 50 mJ / cm 2 (i-line).
- the exposure amount is 50 mJ / cm 2 (i-line).
- T-PD2 triethanolamine developer
- T-SD3 surfactant-containing cleaning solution
- the front plate was rubbed with a rotating brush, and the residue was removed by spraying pure water from an ultra-high pressure cleaning nozzle. Furthermore, the post-baking process for 30 minutes was performed at 130 degreeC, and the front board which formed the decorating layer, the laminated
- a front plate on which a decorative layer, a laminated transparent resin layer, a transparent electrode layer and a photocurable resin layer pattern for etching are formed is placed in an etching tank containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.). Immersion, treatment for 100 seconds (etching treatment), dissolution removal of the transparent electrode layer in the exposed area not covered with the photo-curable resin layer for etching, decorative layer, laminated transparent resin layer, transparent electrode layer pattern
- a front plate (hereinafter also referred to as “front plate with a transparent electrode layer pattern”) on which a photocurable resin layer pattern for etching was formed was obtained.
- a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products Co., Ltd., liquid temperature 45 ° C.), immersed in a resist stripping tank, treated for 200 seconds (peeling treatment), removed the photocurable resin layer pattern for etching, and obtained the laminate of Example 1 It was.
- the obtained laminate is opposed to the front plate, the decorative layer, the second transparent resin layer A, the first transparent resin layer F, one surface of the front plate, and the front plate of the laminated transparent resin layer.
- first transparent electrode pattern (3) installed as shown in FIG. 14 across both regions of the surface opposite to the surface to be performed.
- first transparent resin layer F first transparent resin layer 101
- second transparent resin layer A second transparent resin layer 102
- Example 1 Evaluation of electrode pattern disconnection (bending resistance evaluation)
- the laminated body of Example 1 in which the front plate, the second transparent resin layer A, the first transparent resin layer F, and the first transparent electrode pattern were laminated in this order (the laminated body of Example 1 is described later)
- the surface of the front plate on the side where the second transparent resin layer of the front plate is formed perpendicular to the first transparent electrode pattern.
- a crack was made from the opposite side. After the front plate is bent by 12 ° starting from the point where the crack arrives on the surface of the front plate on which the second transparent resin layer is formed, the transparency of the region including the position where the front plate is cracked is transparent.
- the surface resistance value of the electrode pattern was measured across the crack.
- bending until the transparent electrode pattern was disconnected (that is, the surface resistance value of the transparent electrode pattern overflowed) was repeated, the number of bending until the transparent electrode pattern was disconnected was counted, and bending resistance was evaluated according to the following criteria.
- A, B or C evaluation is a practical level, A or B evaluation is preferable, and A evaluation is more preferable.
- an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are formed by the following method.
- a capacitive input device of Example 1 was produced. First, a method for forming an insulating layer pattern is described below.
- transfer film W1 for forming an insulating layer In the production of the decorative layer forming transfer film L100, the decorative layer forming transfer film L100 was prepared except that the insulating layer forming coating liquid: prescription W1 was used instead of the decorative layer coating liquid: prescription L100. Similarly, a transfer film W1 for forming an insulating layer was obtained in which a temporary support, a thermoplastic resin layer, an intermediate layer (oxygen barrier film), a photocurable resin layer for an insulating layer, and a protective film were integrated ( The film thickness of the photocurable resin layer for the insulating layer is 1.4 ⁇ m).
- Example 1 In the same manner as the cleaning of the tempered glass substrate in the formation of the decorative layer, the decorative layer, the second transparent resin layer in which the steps of the decorative layer are embedded, the first transparent resin layer, and the first transparent electrode pattern After the formed laminate of Example 1 was washed, a transfer film W1 for forming an insulating layer was removed by silane coupling treatment and the protective film was removed (base material temperature: 100 ° C., rubber roller temperature 120 ° C., linear pressure). 100 N / cm, transport speed 2.3 m / min).
- the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the insulating layer was set to 100 ⁇ m, and pattern exposure was performed at an exposure amount of 30 mJ / cm 2 (i-line). .
- the residue was removed by rubbing the face plate and spraying pure water from an ultra-high pressure cleaning nozzle. Furthermore, the post-baking process for 230 degreeC and 60 minutes is performed, the 2nd transparent resin layer and 1st transparent resin layer which embedded the level
- Second transparent resin layer The front plate on which the pattern was formed was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa) to form an ITO thin film having a thickness of 80 nm, and the decorative layer
- the front plate on which the second transparent resin layer and the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, and the transparent electrode layer in which the step of the decorative layer is embedded hereinafter referred to as “second transparent resin layer”. Also referred to as a “front plate on which an electrode layer is formed”.
- the surface resistance of the ITO thin film was 110 ⁇ / ⁇ .
- the transfer film E1 for etching is laminated on the front plate on which the second transparent electrode layer is formed, and the second step in which the step between the decorative layer and the decorative layer is embedded.
- a front plate on which a transparent resin layer and a first transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a transparent electrode layer, and a photocurable resin layer pattern for etching were formed (post-baking treatment; 130 ° C., 30 minutes). Further, in the same manner as the formation of the first transparent electrode pattern, an etching process (30 ° C., 50 seconds) is performed, and then the photocurable resin layer for etching is removed (peeling process: 45 ° C., 200 seconds).
- the transfer film E1 for etching is laminated on the front plate on which the aluminum (Al) thin film is formed, and the steps of the decorative layer and the decorative layer are embedded.
- a front plate on which a second transparent resin layer and a first transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, an aluminum thin film, and a photocurable resin layer pattern for etching are formed. Obtained (post-bake treatment; 130 ° C., 30 minutes).
- the first transparent electrode pattern by performing an etching process (30 ° C., 50 seconds), and then removing the photocurable resin layer for etching (peeling process: 45 ° C., 200 seconds), The decorative layer, the second transparent resin layer and the first transparent resin layer in which the steps of the decorative layer are embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the first and second A front plate having a conductive element different from the transparent electrode pattern was obtained.
- Front plate having a white decorative layer (frame shape) in which the second transparent resin layer and the first transparent resin layer are embedded (the second transparent resin layer in which the step between the decorative layer and the decorative layer is embedded, and the first 1 transparent resin layer, first transparent electrode pattern, insulating layer pattern, second transparent electrode pattern, front plate on which conductive elements different from the first and second transparent electrode patterns are formed)
- the photosensitive resin layer of the photosensitive transfer film was peeled off at the interface with the temporary support (PET), and then transferred together with the thermoplastic resin layer and the intermediate layer (layer forming step).
- thermoplastic resin layer side was exposed from the thermoplastic resin layer side at i line and 40 mJ / cm 2 .
- triethanolamine developer containing 30% triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) 10 times with pure water (1 part of T-PD2 and 9 parts of pure water). The mixture was diluted to 30) at 30 C for 60 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin and the intermediate layer.
- the substrate is subjected to a heat treatment (post-bake) at 230 ° C. for 60 minutes, and the second transparent resin layer and the first transparent resin layer in which the steps of the decoration layer and the decoration layer are embedded, the first A front plate in which a transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are laminated is obtained.
- a conductive film laminate and a capacitive input device were obtained.
- the first and second transparent resin films were prepared in the same manner as in Example 1 except that the thicknesses of the first transparent resin film and the second transparent resin film were changed to the specified film thicknesses shown in Table 2 below.
- the transparent resin layer forming transfer films G to J were prepared.
- KE-1820 and KE-1886 are one-part silicone rubbers (both manufactured by Shin-Etsu Chemical Co., Ltd.).
- KR-251, X-40-9246, KR9706, and KR5206 are all silicone resins (all manufactured by Shin-Etsu Chemical Co., Ltd.).
- the types of the first transparent resin layer-forming transfer film and second transparent resin layer-forming transfer film used in Example 1, the first transparent resin layer, and the second The front plate, the second transparent resin layer, and the first transparent resin layer were prepared in the same manner as in the production of the laminate of Example 1 except that the film thickness of the transparent resin layer was changed as shown in Table 2 below.
- the laminated body which formed the 1st transparent electrode pattern was obtained.
- the obtained laminates were made into the laminates of Examples 2 to 17, respectively.
- the front plate the same as in Example 1 except that the laminates of Examples 2 to 17 were used instead of the laminate of Example 1, respectively.
- the second transparent resin layer, the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, and transparent A front plate on which the protective layer-A was formed was produced, and the capacitive input devices of Examples 2 to 17 were obtained.
- the transparency and bending resistance of the laminates of Examples 2 to 17 (the laminates of Examples 2 to 17 do not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) are the same as those of Example 1.
- the evaluation results are shown in Table 2 below.
- thermoplastic resin layer coating liquid Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer.
- the intermediate layer coating solution Formulation P1 was applied and dried to form an intermediate layer.
- the 1st coating liquid for transparent resin layers Formula L1 was apply
- a second transparent resin layer coating solution Formula C6 was applied on the transparent resin layer F and dried to form a transparent resin layer A-2.
- a thermoplastic resin layer having a dry film thickness of 15.1 ⁇ m
- an intermediate layer having a dry film thickness of 1.6 ⁇ m
- a transparent resin layer F having a dry film thickness of 50 ⁇ m
- a dry film thickness on the temporary support Provided a transparent resin layer A-2 having a thickness of 30 ⁇ m.
- a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded on the transparent resin layer A-2.
- the first transparent resin layer (transparent resin layer F) and The second transparent resin layer and the first transparent resin layer are simultaneously laminated using the transfer film of the second transparent resin layer (transparent resin layer A-2), and the subsequent first transparent resin layer. Except that the transparent resin layer F was not formed, the front plate, the second transparent resin layer, the first transparent resin layer, and the first transparent electrode pattern were formed in the same manner as in the production of the laminate of Example 1. A laminated body was obtained. The obtained laminated body was taken as the laminated body of Example 18.
- the front plate and the second plate were obtained in the same manner as in Example 1 except that the laminate of Example 18 was used instead of the laminate of Example 1.
- Transparent resin layer, first transparent resin layer, first transparent electrode pattern, insulating layer pattern, second transparent electrode pattern, conductive element different from first and second transparent electrode patterns, and transparent protective layer- A front plate on which A was formed was produced, and the capacitive input device of Example 18 was obtained.
- the results of evaluating the transparency and bending resistance of the laminate of Example 18 (the laminate of Example 18 does not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
- Example 19 In Example 19, instead of forming a transparent resin layer using a transfer film, a first transparent resin layer and a second transparent resin layer were prepared by application using a liquid resist.
- the two types of transparent resists for preparing the transparent resin layer used in Example 19 were formulated in accordance with the second transparent resin layer coating liquid used in Example 1: Formulation C1 and the first transparent resin layer coating liquid: It is the same as each prescription L1.
- a glass substrate coater manufactured by FS Japan Co., Ltd., trade name: MH-1600
- a transparent resist (prescription: C1) was applied to obtain a coating layer.
- the front was removed using EBR (edge bead remover). Unnecessary transparent resist around the face plate was removed and pre-baked at 120 ° C. for 3 minutes to obtain a 10.0 ⁇ m-thick transparent resin layer on the front plate (liquid resist method).
- the application of the transparent resist for preparing the transparent resin layer (prescription: C1) was repeated three times to obtain a second transparent resin layer having a thickness of 30.0 ⁇ m on the front plate.
- the second transparent resin layer obtained by repeating the coating three times was a single layer.
- the transparent resist for preparing the first transparent resin layer (prescription: L1) is applied and dried on the second transparent resin layer in the same manner as the transparent resist for preparing the second transparent resin layer (prescription: C1).
- a transparent resin layer having a thickness of 10.0 ⁇ m was obtained.
- the application of the transparent resist for preparing the transparent resin layer (prescription: L1) was repeated five times to obtain a first transparent resin layer having a thickness of 50.0 ⁇ m.
- the first transparent resin layer obtained by repeating the coating 5 times was a single layer.
- post-baking treatment is performed at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), and the front plate, the second transparent resin layer A, and the first transparent resin layer F are laminated in this order.
- Got the body is performed at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), and the front plate, the second transparent resin layer A, and the first transparent resin layer F are laminated in this order.
- a first transparent electrode pattern is formed on the first transparent resin layer F in the same manner as in the production of the laminated body of Example 1 except that the obtained laminated body is used.
- the laminated body which formed the transparent resin layer, the 1st transparent resin layer, and the 1st transparent electrode pattern was obtained.
- the obtained laminated body was taken as the laminated body of Example 19. Thereafter, in the manufacture of the capacitive input device of Example 1, the same as the manufacture of the capacitive input device of Example 1, except that the laminate of Example 19 was used instead of the laminate of Example 1. Thus, a capacitance type input device of Example 19 was produced.
- Example 19 The results of evaluating the transparency and bending resistance of the laminate of Example 19 (the laminate of Example 19 does not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
- the 2nd transparent resin layer and the 1st transparent resin layer were formed by the continuous application
- the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the conductive element different from the first and second transparent electrode patterns, and the transparent protective layer-A A face plate was produced and used as a capacitive input device of Comparative Example 1.
- the results of evaluating the transparency and bending resistance of the laminate of Comparative Example 1 (the laminate of Comparative Example 1 does not include an insulating layer, a second transparent electrode pattern, and a transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
- Comparative Examples 4 and 5 in the production of the laminates of Comparative Examples 2 and 3, the type of the second transparent resin layer forming transfer film and the thickness of the second transparent resin layer are shown in Table 2 below.
- a laminated body in which a front plate, a single second transparent resin layer F, and a first transparent electrode pattern were formed was obtained in the same manner as in Comparative Examples 2 and 3 except that the procedure was changed as described above.
- the obtained laminated body was made into the laminated body of Comparative Examples 4 and 5, respectively.
- Comparative Example 7 was the same as Example 1 except that the second transparent resin layer coating liquid: Formulation C1 in Example 1 was used except that the transparent resin layer coating liquid: Formulation C7 shown in Table 1 below was used. Thus, a transfer film for forming the second transparent resin layer (having the transparent resin layer L as the second transparent resin layer) was produced.
- Comparative Examples 6 and 8 in the production of the laminate of Example 1, the types of the first transparent resin layer-forming transfer film and the second transparent resin layer-forming transfer film used in Example 1, and the first A front plate and a second transparent resin were prepared in the same manner as in the production of the laminate of Example 1, except that the film thicknesses of the transparent resin layer and the second transparent resin layer were changed as shown in Table 2 below.
- the laminated body which formed the layer, the 1st transparent resin layer, and the 1st transparent electrode pattern was obtained.
- the obtained laminated body was made into the laminated body of Comparative Examples 6 and 8, respectively.
- the front plate the same as Example 1 except that the laminates of Comparative Examples 2 to 8 were used instead of the laminate of Example 1, respectively.
- the capacitance type input devices of Comparative Examples 2 to 8 were manufactured.
- the transparency and bending resistance of the laminates of Comparative Examples 2 to 8 (the laminates of Comparative Examples 2 to 8 do not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) are the same as in Example 1.
- the evaluation results are shown in Table 2 below.
- the front plate has cracks. It was found that the electrode pattern disconnection can be suppressed even if it occurs and bends. Therefore, the capacitance-type input device of the present invention using the laminate of the present invention can operate a module (for example, a touch panel) even if the front plate cracks and bends, extracts data, etc. Is possible.
- a module for example, a touch panel
- Comparative Example 1 it was found that when the transparent resin layer was not provided between the front plate and the transparent electrode pattern, the electrode pattern was easily disconnected when the front plate was cracked and bent.
- FIG. 17 shows a schematic diagram of a laminate in which a transparent resin layer having a low elastic modulus and high elongation at break is provided as a single layer between the front plate and the transparent electrode pattern.
- the transparent resin layer 102 having a low elastic modulus and high elongation at break does not break, but the bending becomes large.
- FIG. 18 shows a schematic view of a laminate in which a transparent resin layer having a high elastic modulus is provided as a single layer between the front plate and the transparent electrode pattern.
- the transparent resin layer 101 having a high elastic modulus is also cracked. It is thought that it broke.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
Abstract
This laminate comprises at least two transparent resin layers that are laminated on a part or the whole of a front plate, and an electrode pattern that is arranged above the at least two transparent resin layers. The elastic modulus (E1) of a first transparent resin layer, which is in contact with the electrode pattern, and the elastic modulus (E2) of a second transparent resin layer, which is the second transparent resin layer from the electrode pattern, satisfy formula (1). The elongation at break (φ) of the second transparent resin layer satisfies formula (2). E1 > E2 formula (1) φ ≥ 10% formula (2)
Description
本発明は、積層体、転写フィルム、積層体の製造方法、導電膜積層体、静電容量型入力装置および画像表示装置に関する。より詳しくは、前面板に亀裂が生じて屈曲した場合でも電極パターン断線が抑制できる積層体、この積層体を製造するための転写フィルム、この積層体の製造方法、この積層体を用いた導電膜積層体、この導電膜積層体を用いた静電容量型入力装置およびこの静電容量型入力装置を用いた画像表示装置に関する。
The present invention relates to a laminate, a transfer film, a laminate production method, a conductive film laminate, a capacitance-type input device, and an image display device. More specifically, a laminate that can suppress electrode pattern disconnection even when the front plate is cracked and bent, a transfer film for producing the laminate, a method for producing the laminate, and a conductive film using the laminate The present invention relates to a laminated body, a capacitive input device using the conductive film laminated body, and an image display device using the capacitive input device.
携帯電話、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末などの電子機器では、近年、液晶装置などの表面にタブレット型の入力装置が配置され、液晶表示装置の画像表示領域に表示された指示画像を参照しながら、この指示画像が表示されている箇所に指またはタッチペンなどを触れることで、指示画像に対応する情報の入力が行えるものがある。
In recent years, electronic devices such as mobile phones, car navigation systems, personal computers, ticket vending machines, and bank terminals have been equipped with tablet-type input devices on the surface of liquid crystal devices and instructions displayed in the image display area of liquid crystal display devices. There is a type in which information corresponding to an instruction image can be input by touching a part where the instruction image is displayed with a finger or a touch pen while referring to the image.
フィルムとガラスとの2枚構造でフィルムを押下してショートさせる構造の抵抗膜型の入力装置に比べて、静電容量型の入力装置の方が動作温度範囲の広さや、経時変化に強いという利点を有している。また、静電容量型の入力装置は、単に一枚の基板に透光性導電膜を形成すればよいという利点がある。カバーガラス一体型(OGS:One Glass Solution)タッチパネルの静電容量型タッチパネルは、前面板が静電容量型入力装置と一体化しているため、薄層/軽量化が可能となる。
Capacitance type input devices are more resistant to changes in operating temperature range and changes over time than resistance film type input devices that have a two-layer structure of film and glass. Has advantages. In addition, the capacitive input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate. The capacitive touch panel of the cover glass integrated type (OGS: One Glass Solution) touch panel has a front plate integrated with the capacitive input device, and thus can be reduced in thickness and weight.
特許文献1には、画像表示部材と、周縁部に遮光層が形成された光透過性カバー部材とが、液状の光硬化性樹脂組成物から形成された光透過性硬化樹脂層を介し、光透過性カバー部材の遮光層形成面が画像表示部材側に配置されるように積層された画像表示装置の製造方法において、以下の工程(A)~(D)を有する画像表示装置の製造方法が記載されている。
(A)液状の光硬化性樹脂組成物を、光透過性カバー部材の遮光層形成側表面又は画像表示部材の表面に、遮光層と光透過性カバー部材の遮光層形成側表面とで形成される段差がキャンセルされるように、遮光層の厚さより厚く塗布する工程;
(B)塗布された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させることにより仮硬化樹脂層を形成する工程;
(C)画像表示部材に、遮光層と仮硬化樹脂層とが内側になるように光透過性カバー部材を貼り合わせる工程;
(D)画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に対し紫外線を照射して本硬化させることにより、画像表示部材と光透過性カバー部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る工程:
特許文献1には、上記製造方法により、画像表示部材とその表面側に配される光透過性カバー部材とを光硬化性樹脂組成物の硬化樹脂層を介して積層して画像表示装置を製造する際に、熱重合プロセスを利用せずに、遮光層と画像表示部材との間の光硬化性樹脂組成物を、そこから排除されることなく十分に光硬化させ且つ遮光層と光透過性カバー部材表面との間の段差をキャンセルできるようにすると共に、光重合プロセスだけで画像表示装置を製造できるようにする、と記載されている。 InPatent Document 1, an image display member and a light-transmitting cover member having a light-shielding layer formed on a peripheral portion are light-transmitted through a light-transmitting cured resin layer formed from a liquid photocurable resin composition. In the manufacturing method of an image display device laminated so that the light shielding layer forming surface of the transmissive cover member is disposed on the image display member side, the manufacturing method of the image display device including the following steps (A) to (D) is provided. Are listed.
(A) A liquid photocurable resin composition is formed on the light shielding layer forming side surface of the light transmissive cover member or the surface of the image display member with the light shielding layer and the light shielding layer forming side surface of the light transmissive cover member. Applying thicker than the light-shielding layer so as to cancel the uneven step;
(B) A step of forming a temporarily-cured resin layer by irradiating the applied photo-curable resin composition with ultraviolet rays and temporarily curing the composition;
(C) A step of bonding the light-transmitting cover member to the image display member so that the light shielding layer and the temporarily cured resin layer are inside;
(D) The temporary curing resin layer sandwiched between the image display member and the light-transmitting cover member is irradiated with ultraviolet rays to be fully cured, thereby allowing the image display member and the light-transmitting cover member to transmit light. Step of obtaining an image display device by laminating through a photocurable resin layer:
InPatent Document 1, an image display device is manufactured by laminating an image display member and a light-transmitting cover member disposed on the surface side of the image display member via a cured resin layer of a photocurable resin composition by the above manufacturing method. In this case, the photocurable resin composition between the light shielding layer and the image display member is sufficiently cured without being excluded from the light shielding layer and the light transmissive property without using a thermal polymerization process. It is described that a step between the surface of the cover member can be canceled and an image display device can be manufactured only by a photopolymerization process.
(A)液状の光硬化性樹脂組成物を、光透過性カバー部材の遮光層形成側表面又は画像表示部材の表面に、遮光層と光透過性カバー部材の遮光層形成側表面とで形成される段差がキャンセルされるように、遮光層の厚さより厚く塗布する工程;
(B)塗布された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させることにより仮硬化樹脂層を形成する工程;
(C)画像表示部材に、遮光層と仮硬化樹脂層とが内側になるように光透過性カバー部材を貼り合わせる工程;
(D)画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に対し紫外線を照射して本硬化させることにより、画像表示部材と光透過性カバー部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る工程:
特許文献1には、上記製造方法により、画像表示部材とその表面側に配される光透過性カバー部材とを光硬化性樹脂組成物の硬化樹脂層を介して積層して画像表示装置を製造する際に、熱重合プロセスを利用せずに、遮光層と画像表示部材との間の光硬化性樹脂組成物を、そこから排除されることなく十分に光硬化させ且つ遮光層と光透過性カバー部材表面との間の段差をキャンセルできるようにすると共に、光重合プロセスだけで画像表示装置を製造できるようにする、と記載されている。 In
(A) A liquid photocurable resin composition is formed on the light shielding layer forming side surface of the light transmissive cover member or the surface of the image display member with the light shielding layer and the light shielding layer forming side surface of the light transmissive cover member. Applying thicker than the light-shielding layer so as to cancel the uneven step;
(B) A step of forming a temporarily-cured resin layer by irradiating the applied photo-curable resin composition with ultraviolet rays and temporarily curing the composition;
(C) A step of bonding the light-transmitting cover member to the image display member so that the light shielding layer and the temporarily cured resin layer are inside;
(D) The temporary curing resin layer sandwiched between the image display member and the light-transmitting cover member is irradiated with ultraviolet rays to be fully cured, thereby allowing the image display member and the light-transmitting cover member to transmit light. Step of obtaining an image display device by laminating through a photocurable resin layer:
In
静電容量型タッチパネルを液晶や有機ELディスプレイ上に備えたスマートフォンやタブレットPCでは前面板(直接指で接触する面)にコーニング社のゴリラガラスに代表される強化ガラスを用いたものが開発、発表されている。
タッチパネル用のガラス基板には強化ガラスを使用し、衝撃力がかかった時でも割れづらい構成となっているが、万が一ガラス基板が割れた場合に静電容量型入力装置としての機能維持することも技術課題として残されていた。特に、ガラス基板が割れた場合に電極パターンが断線しにくいこと、さらに言えば静電容量型入力装置がデータを保存する装置を備える場合はデータの取り出しが可能なことが求められていた。 Smartphones and tablet PCs equipped with a capacitive touch panel on a liquid crystal or organic EL display have been developed and announced using a tempered glass typified by Corning's gorilla glass on the front plate (the surface directly touched by a finger) Has been.
Tempered glass is used for the glass substrate for the touch panel, and it is difficult to break even when impact force is applied, but in the unlikely event that the glass substrate breaks, it can also maintain the function as a capacitive input device It was left as a technical issue. In particular, when the glass substrate is broken, it is difficult for the electrode pattern to be disconnected. In other words, when the capacitance type input device includes a device for storing data, it is required that the data can be taken out.
タッチパネル用のガラス基板には強化ガラスを使用し、衝撃力がかかった時でも割れづらい構成となっているが、万が一ガラス基板が割れた場合に静電容量型入力装置としての機能維持することも技術課題として残されていた。特に、ガラス基板が割れた場合に電極パターンが断線しにくいこと、さらに言えば静電容量型入力装置がデータを保存する装置を備える場合はデータの取り出しが可能なことが求められていた。 Smartphones and tablet PCs equipped with a capacitive touch panel on a liquid crystal or organic EL display have been developed and announced using a tempered glass typified by Corning's gorilla glass on the front plate (the surface directly touched by a finger) Has been.
Tempered glass is used for the glass substrate for the touch panel, and it is difficult to break even when impact force is applied, but in the unlikely event that the glass substrate breaks, it can also maintain the function as a capacitive input device It was left as a technical issue. In particular, when the glass substrate is broken, it is difficult for the electrode pattern to be disconnected. In other words, when the capacitance type input device includes a device for storing data, it is required that the data can be taken out.
しかしながら、特許文献1には、弾性率と破断伸びを制御することで前面板に亀裂が生じて屈曲した場合の電極パターン断線の抑制を改善することは開示も示唆もされていなかった。
However, Patent Document 1 neither discloses nor suggests that controlling the elastic modulus and elongation at break improves the suppression of disconnection of the electrode pattern when the front plate is cracked and bent.
本発明が解決しようとする課題は、前面板に亀裂が生じて屈曲しても電極パターン断線が抑制できる手段を提供することにある。
The problem to be solved by the present invention is to provide means for suppressing the disconnection of the electrode pattern even if the front plate is cracked and bent.
本発明者らは、前面板上(前面板の一方の面)の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに上記少なくとも2層の透明樹脂層の上(上記少なくとも2層の透明樹脂層の上記前面板と対向する面とは反対側の面)に電極パターンを有する積層体の層構成とし、電極パターンに接触している透明樹脂層(第1の透明樹脂層)の弾性率、および、電極パターン側から2層目の透明樹脂層(第2の透明樹脂層)の弾性率が、特定の関係を満たし、さらに、電極パターン側から2層目の透明樹脂層(第2の透明樹脂層)の破断伸びを大きくすることにより、前面板に亀裂が生じて屈曲しても電極パターン断線が抑制できることを見出し、本発明に至った。
ここで、特許文献1では、液状の光硬化性樹脂組成物を、光透過性カバー部材の遮光層形成側表面又は画像表示部材の表面に、遮光層と光透過性カバー部材の遮光層形成側表面とで形成される段差がキャンセルされるように、遮光層の厚さより厚く塗布している。そのため、本発明の積層体のように、前面板上の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに上記少なくとも2層の透明樹脂層の上に電極パターンを有する層構成は全く開示も示唆もされていなかった。すなわち、本発明は、特許文献1に記載の発明とは、層構成が全く異なる。 The present inventors have laminated at least two transparent resin layers on a part or all of the front plate (one surface of the front plate), and further on the at least two transparent resin layers (at least two of the above). A transparent resin layer (first transparent resin layer) in contact with the electrode pattern, having a layer structure of a laminate having an electrode pattern on the surface of the transparent resin layer opposite to the surface facing the front plate) And the elastic modulus of the second transparent resin layer (second transparent resin layer) from the electrode pattern side satisfy a specific relationship, and further, the second transparent resin layer ( By increasing the breaking elongation of the second transparent resin layer), it was found that the electrode pattern disconnection can be suppressed even when the front plate is cracked and bent, and the present invention has been achieved.
Here, inPatent Document 1, the liquid photocurable resin composition is applied to the light shielding layer forming side surface of the light transmitting cover member or the surface of the image display member, and the light shielding layer forming side of the light transmitting cover member. The coating is thicker than the thickness of the light shielding layer so that the step formed between the surface and the surface is cancelled. Therefore, as in the laminate of the present invention, at least two transparent resin layers are laminated on a part or all of the front plate, and a layer structure having an electrode pattern on the at least two transparent resin layers. Was never disclosed or suggested. That is, the present invention is completely different from the invention described in Patent Document 1 in the layer configuration.
ここで、特許文献1では、液状の光硬化性樹脂組成物を、光透過性カバー部材の遮光層形成側表面又は画像表示部材の表面に、遮光層と光透過性カバー部材の遮光層形成側表面とで形成される段差がキャンセルされるように、遮光層の厚さより厚く塗布している。そのため、本発明の積層体のように、前面板上の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに上記少なくとも2層の透明樹脂層の上に電極パターンを有する層構成は全く開示も示唆もされていなかった。すなわち、本発明は、特許文献1に記載の発明とは、層構成が全く異なる。 The present inventors have laminated at least two transparent resin layers on a part or all of the front plate (one surface of the front plate), and further on the at least two transparent resin layers (at least two of the above). A transparent resin layer (first transparent resin layer) in contact with the electrode pattern, having a layer structure of a laminate having an electrode pattern on the surface of the transparent resin layer opposite to the surface facing the front plate) And the elastic modulus of the second transparent resin layer (second transparent resin layer) from the electrode pattern side satisfy a specific relationship, and further, the second transparent resin layer ( By increasing the breaking elongation of the second transparent resin layer), it was found that the electrode pattern disconnection can be suppressed even when the front plate is cracked and bent, and the present invention has been achieved.
Here, in
上記課題を解決するための具体的な手段である本発明は以下のとおりである。
[1] 前面板上の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに上記少なくとも2層の透明樹脂層の上に電極パターンを有する積層体であって、
上記電極パターンに接触している第1の透明樹脂層の弾性率E1と、上記電極パターン側から2層目の透明樹脂層(第1の透明樹脂層の電極パターンと対向する面とは反対側の面に接触する透明樹脂層)である第2の透明樹脂層の弾性率E2が下記式1を満たし、
上記第2の透明樹脂層の破断伸びφが下記式2を満たす、積層体。
E1>E2・・・式1
φ≧10%・・・式2
[2] [1]に記載の積層体は、上記第1の透明樹脂層の膜厚と上記第2の透明樹脂層の膜厚の合計が10~150μmであることが好ましい。
[3] [1]または[2]に記載の積層体は、上記第1の透明樹脂層の膜厚および上記第2の透明樹脂層の膜厚がそれぞれ独立に5~100μmであることが好ましい。
[4] [1]~[3]のいずれか一つに記載の積層体は、上記透明樹脂層の少なくとも1層はシロキサン構造を有する化合物を含むことが好ましい。
[5] [1]~[4]のいずれか一つに記載の積層体は、上記第1の透明樹脂層が少なくともシリコーンレジンをバインダー樹脂として含むことが好ましい。
[6] [1]~[5]のいずれか一つに記載の積層体は、上記第2の透明樹脂層が少なくともシリコーンゴムをバインダー樹脂として含むことが好ましい。
[7] [1]~[6]のいずれか一つに記載の積層体は、上記第2の透明樹脂層の破断伸びφが20%以上であることが好ましい。
[8] [1]~[7]のいずれか一つに記載の積層体は、上記第2の透明樹脂層の弾性率E2が50MPa以下であることが好ましい。
[9] [1]~[8]のいずれか一つに記載の積層体は、上記第1の透明樹脂層の弾性率E1が100MPa以上であることが好ましい。
[10] [1]~[9]のいずれか一つに記載の積層体は、前面板の一方の面の一部に加飾層が配置され、上記第1の透明樹脂層と上記第2の透明樹脂層が、上記前面板の上記加飾層が配置された側の面の、上記加飾層上の一部と、上記加飾層が形成されていない部分とに積層されたことが好ましい。
[11] 仮支持体と、
少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層と、
少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を有する転写フィルムであって、
上記第1の透明樹脂層は、上記仮支持体と上記第2の透明樹脂層との間に挟まれた構造である転写フィルム。
[12] [11]に記載の転写フィルムは、上記仮支持体と上記第1の透明樹脂層との間に熱可塑性樹脂層を有することが好ましい。
[13] [11]または[12]に記載の転写フィルムの上記第1の透明樹脂層および上記第2の透明樹脂層を、前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、前面板上の一部または全部に転写する工程と、
上記第1の透明樹脂層の上に電極パターンを形成する工程を含む[1]~[10]のいずれか一つに記載の積層体の製造方法。
[14] 転写フィルムから少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を前面板上の一部または全部に転写する第2の透明樹脂層の形成工程と、
転写フィルムから少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に転写する第1の透明樹脂層の形成工程と、
上記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、
上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、同時または連続する転写工程である[1]~[10]のいずれか一つに記載の積層体の製造方法。
[15] 少なくともシリコーンゴムをバインダー樹脂として含む樹脂組成物(第2の透明樹脂層用塗布液)を前面板上の一部または全部に塗布する第2の透明樹脂層の形成工程と、
少なくともシリコーンレジンをバインダー樹脂として含む樹脂組成物を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に塗布する第1の透明樹脂層の形成工程と、
上記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、
上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、連続する塗布工程である[1]~[10]のいずれか一つに記載の積層体の製造方法。
[16] [1]~[10]のいずれか一つに記載の積層体の電極パターン上に、上記電極パターンと電気的に絶縁された第二の電極パターンを有する導電膜積層体。
[17] [16]に記載の導電膜積層体は、上記第二の電極パターンが、透明電極パターンであることが好ましい。
[18] [16]または[17]に記載の導電膜積層体を含む、静電容量型入力装置。
[19] [18]に記載の静電容量型入力装置を構成要素として備えた、画像表示装置。 The present invention, which is a specific means for solving the above problems, is as follows.
[1] A laminate having at least two transparent resin layers laminated on a part or all of the front plate, and further having an electrode pattern on the at least two transparent resin layers,
The elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern and the second transparent resin layer from the electrode pattern side (the side opposite to the surface facing the electrode pattern of the first transparent resin layer) The elastic modulus E2 of the second transparent resin layer that is a transparent resin layer in contact with the surface of
A laminate in which the elongation at break φ of the second transparent resin layer satisfies the followingformula 2.
E1> E2Formula 1
φ ≧ 10% Formula 2
[2] In the laminate according to [1], the total thickness of the first transparent resin layer and the second transparent resin layer is preferably 10 to 150 μm.
[3] In the laminate according to [1] or [2], it is preferable that the film thickness of the first transparent resin layer and the film thickness of the second transparent resin layer are each independently 5 to 100 μm. .
[4] In the laminate according to any one of [1] to [3], at least one of the transparent resin layers preferably contains a compound having a siloxane structure.
[5] In the laminate according to any one of [1] to [4], it is preferable that the first transparent resin layer includes at least a silicone resin as a binder resin.
[6] In the laminate according to any one of [1] to [5], the second transparent resin layer preferably contains at least silicone rubber as a binder resin.
[7] In the laminated body according to any one of [1] to [6], the elongation at break [phi] of the second transparent resin layer is preferably 20% or more.
[8] In the laminated body according to any one of [1] to [7], the elastic modulus E2 of the second transparent resin layer is preferably 50 MPa or less.
[9] In the laminated body according to any one of [1] to [8], the elastic modulus E1 of the first transparent resin layer is preferably 100 MPa or more.
[10] In the laminate according to any one of [1] to [9], a decoration layer is disposed on a part of one surface of the front plate, and the first transparent resin layer and the second layer are arranged. The transparent resin layer is laminated on a part of the surface of the front plate on which the decoration layer is arranged on the decoration layer and a part on which the decoration layer is not formed. preferable.
[11] a temporary support;
A first transparent resin layer containing at least a silicone resin as a binder resin;
A transfer film having a second transparent resin layer containing at least silicone rubber as a binder resin,
The transfer film having a structure in which the first transparent resin layer is sandwiched between the temporary support and the second transparent resin layer.
[12] The transfer film according to [11] preferably has a thermoplastic resin layer between the temporary support and the first transparent resin layer.
[13] The first transparent resin layer and the second transparent resin layer of the transfer film according to [11] or [12], a front plate, the second transparent resin layer, and the first A step of transferring to a part or all of the front plate so that the transparent resin layer is laminated in this order;
The method for producing a laminate according to any one of [1] to [10], including a step of forming an electrode pattern on the first transparent resin layer.
[14] A second transparent resin layer forming step of transferring a second transparent resin layer containing at least silicone rubber as a binder resin from the transfer film to a part or all of the front plate;
A first transparent resin layer containing at least a silicone resin as a binder resin from the transfer film so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. Forming a first transparent resin layer to be transferred onto the second transparent resin layer;
Forming an electrode pattern on the first transparent resin layer,
The production of the laminate according to any one of [1] to [10], wherein the forming step of the second transparent resin layer and the forming step of the first transparent resin layer are simultaneous or continuous transfer steps. Method.
[15] A step of forming a second transparent resin layer in which a resin composition (second coating solution for a transparent resin layer) containing at least silicone rubber as a binder resin is applied to a part or all of the front plate;
The resin composition containing at least a silicone resin as a binder resin, the second transparent resin is laminated so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. Forming a first transparent resin layer applied on the resin layer;
Forming an electrode pattern on the first transparent resin layer,
The method for producing a laminate according to any one of [1] to [10], wherein the forming step of the second transparent resin layer and the forming step of the first transparent resin layer are continuous coating steps.
[16] A conductive film laminate having a second electrode pattern electrically insulated from the electrode pattern on the electrode pattern of the laminate according to any one of [1] to [10].
[17] In the conductive film laminate according to [16], it is preferable that the second electrode pattern is a transparent electrode pattern.
[18] A capacitance-type input device including the conductive film laminate according to [16] or [17].
[19] An image display device comprising the capacitive input device according to [18] as a constituent element.
[1] 前面板上の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに上記少なくとも2層の透明樹脂層の上に電極パターンを有する積層体であって、
上記電極パターンに接触している第1の透明樹脂層の弾性率E1と、上記電極パターン側から2層目の透明樹脂層(第1の透明樹脂層の電極パターンと対向する面とは反対側の面に接触する透明樹脂層)である第2の透明樹脂層の弾性率E2が下記式1を満たし、
上記第2の透明樹脂層の破断伸びφが下記式2を満たす、積層体。
E1>E2・・・式1
φ≧10%・・・式2
[2] [1]に記載の積層体は、上記第1の透明樹脂層の膜厚と上記第2の透明樹脂層の膜厚の合計が10~150μmであることが好ましい。
[3] [1]または[2]に記載の積層体は、上記第1の透明樹脂層の膜厚および上記第2の透明樹脂層の膜厚がそれぞれ独立に5~100μmであることが好ましい。
[4] [1]~[3]のいずれか一つに記載の積層体は、上記透明樹脂層の少なくとも1層はシロキサン構造を有する化合物を含むことが好ましい。
[5] [1]~[4]のいずれか一つに記載の積層体は、上記第1の透明樹脂層が少なくともシリコーンレジンをバインダー樹脂として含むことが好ましい。
[6] [1]~[5]のいずれか一つに記載の積層体は、上記第2の透明樹脂層が少なくともシリコーンゴムをバインダー樹脂として含むことが好ましい。
[7] [1]~[6]のいずれか一つに記載の積層体は、上記第2の透明樹脂層の破断伸びφが20%以上であることが好ましい。
[8] [1]~[7]のいずれか一つに記載の積層体は、上記第2の透明樹脂層の弾性率E2が50MPa以下であることが好ましい。
[9] [1]~[8]のいずれか一つに記載の積層体は、上記第1の透明樹脂層の弾性率E1が100MPa以上であることが好ましい。
[10] [1]~[9]のいずれか一つに記載の積層体は、前面板の一方の面の一部に加飾層が配置され、上記第1の透明樹脂層と上記第2の透明樹脂層が、上記前面板の上記加飾層が配置された側の面の、上記加飾層上の一部と、上記加飾層が形成されていない部分とに積層されたことが好ましい。
[11] 仮支持体と、
少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層と、
少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を有する転写フィルムであって、
上記第1の透明樹脂層は、上記仮支持体と上記第2の透明樹脂層との間に挟まれた構造である転写フィルム。
[12] [11]に記載の転写フィルムは、上記仮支持体と上記第1の透明樹脂層との間に熱可塑性樹脂層を有することが好ましい。
[13] [11]または[12]に記載の転写フィルムの上記第1の透明樹脂層および上記第2の透明樹脂層を、前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、前面板上の一部または全部に転写する工程と、
上記第1の透明樹脂層の上に電極パターンを形成する工程を含む[1]~[10]のいずれか一つに記載の積層体の製造方法。
[14] 転写フィルムから少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を前面板上の一部または全部に転写する第2の透明樹脂層の形成工程と、
転写フィルムから少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に転写する第1の透明樹脂層の形成工程と、
上記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、
上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、同時または連続する転写工程である[1]~[10]のいずれか一つに記載の積層体の製造方法。
[15] 少なくともシリコーンゴムをバインダー樹脂として含む樹脂組成物(第2の透明樹脂層用塗布液)を前面板上の一部または全部に塗布する第2の透明樹脂層の形成工程と、
少なくともシリコーンレジンをバインダー樹脂として含む樹脂組成物を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に塗布する第1の透明樹脂層の形成工程と、
上記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、
上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、連続する塗布工程である[1]~[10]のいずれか一つに記載の積層体の製造方法。
[16] [1]~[10]のいずれか一つに記載の積層体の電極パターン上に、上記電極パターンと電気的に絶縁された第二の電極パターンを有する導電膜積層体。
[17] [16]に記載の導電膜積層体は、上記第二の電極パターンが、透明電極パターンであることが好ましい。
[18] [16]または[17]に記載の導電膜積層体を含む、静電容量型入力装置。
[19] [18]に記載の静電容量型入力装置を構成要素として備えた、画像表示装置。 The present invention, which is a specific means for solving the above problems, is as follows.
[1] A laminate having at least two transparent resin layers laminated on a part or all of the front plate, and further having an electrode pattern on the at least two transparent resin layers,
The elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern and the second transparent resin layer from the electrode pattern side (the side opposite to the surface facing the electrode pattern of the first transparent resin layer) The elastic modulus E2 of the second transparent resin layer that is a transparent resin layer in contact with the surface of
A laminate in which the elongation at break φ of the second transparent resin layer satisfies the following
E1> E2
φ ≧ 10% Formula 2
[2] In the laminate according to [1], the total thickness of the first transparent resin layer and the second transparent resin layer is preferably 10 to 150 μm.
[3] In the laminate according to [1] or [2], it is preferable that the film thickness of the first transparent resin layer and the film thickness of the second transparent resin layer are each independently 5 to 100 μm. .
[4] In the laminate according to any one of [1] to [3], at least one of the transparent resin layers preferably contains a compound having a siloxane structure.
[5] In the laminate according to any one of [1] to [4], it is preferable that the first transparent resin layer includes at least a silicone resin as a binder resin.
[6] In the laminate according to any one of [1] to [5], the second transparent resin layer preferably contains at least silicone rubber as a binder resin.
[7] In the laminated body according to any one of [1] to [6], the elongation at break [phi] of the second transparent resin layer is preferably 20% or more.
[8] In the laminated body according to any one of [1] to [7], the elastic modulus E2 of the second transparent resin layer is preferably 50 MPa or less.
[9] In the laminated body according to any one of [1] to [8], the elastic modulus E1 of the first transparent resin layer is preferably 100 MPa or more.
[10] In the laminate according to any one of [1] to [9], a decoration layer is disposed on a part of one surface of the front plate, and the first transparent resin layer and the second layer are arranged. The transparent resin layer is laminated on a part of the surface of the front plate on which the decoration layer is arranged on the decoration layer and a part on which the decoration layer is not formed. preferable.
[11] a temporary support;
A first transparent resin layer containing at least a silicone resin as a binder resin;
A transfer film having a second transparent resin layer containing at least silicone rubber as a binder resin,
The transfer film having a structure in which the first transparent resin layer is sandwiched between the temporary support and the second transparent resin layer.
[12] The transfer film according to [11] preferably has a thermoplastic resin layer between the temporary support and the first transparent resin layer.
[13] The first transparent resin layer and the second transparent resin layer of the transfer film according to [11] or [12], a front plate, the second transparent resin layer, and the first A step of transferring to a part or all of the front plate so that the transparent resin layer is laminated in this order;
The method for producing a laminate according to any one of [1] to [10], including a step of forming an electrode pattern on the first transparent resin layer.
[14] A second transparent resin layer forming step of transferring a second transparent resin layer containing at least silicone rubber as a binder resin from the transfer film to a part or all of the front plate;
A first transparent resin layer containing at least a silicone resin as a binder resin from the transfer film so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. Forming a first transparent resin layer to be transferred onto the second transparent resin layer;
Forming an electrode pattern on the first transparent resin layer,
The production of the laminate according to any one of [1] to [10], wherein the forming step of the second transparent resin layer and the forming step of the first transparent resin layer are simultaneous or continuous transfer steps. Method.
[15] A step of forming a second transparent resin layer in which a resin composition (second coating solution for a transparent resin layer) containing at least silicone rubber as a binder resin is applied to a part or all of the front plate;
The resin composition containing at least a silicone resin as a binder resin, the second transparent resin is laminated so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. Forming a first transparent resin layer applied on the resin layer;
Forming an electrode pattern on the first transparent resin layer,
The method for producing a laminate according to any one of [1] to [10], wherein the forming step of the second transparent resin layer and the forming step of the first transparent resin layer are continuous coating steps.
[16] A conductive film laminate having a second electrode pattern electrically insulated from the electrode pattern on the electrode pattern of the laminate according to any one of [1] to [10].
[17] In the conductive film laminate according to [16], it is preferable that the second electrode pattern is a transparent electrode pattern.
[18] A capacitance-type input device including the conductive film laminate according to [16] or [17].
[19] An image display device comprising the capacitive input device according to [18] as a constituent element.
本発明によれば、前面板に亀裂が生じて屈曲しても電極パターン断線が抑制できる積層体を提供できる。
According to the present invention, it is possible to provide a laminate that can suppress the disconnection of the electrode pattern even if the front plate is cracked and bent.
以下、本発明の積層体、転写フィルム、積層体の製造方法、導電膜積層体、静電容量型入力装置および画像表示装置について説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されない。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。 Hereinafter, the laminate, the transfer film, the laminate production method, the conductive film laminate, the capacitive input device, and the image display device of the present invention will be described.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In this specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されない。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。 Hereinafter, the laminate, the transfer film, the laminate production method, the conductive film laminate, the capacitive input device, and the image display device of the present invention will be described.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In this specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
[積層体]
本発明の積層体は、前面板上(前面板の一方の面)の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに上記少なくとも2層の透明樹脂層の上(上記少なくとも2層の透明樹脂層の上記前面板と対向する面とは反対側の面)に電極パターンを有する積層体であって、上記電極パターンに接触している第1の透明樹脂層の弾性率E1と、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の弾性率E2が下記式1を満たし、上記第2の透明樹脂層の破断伸びφが下記式2を満たす。
E1>E2・・・式1
φ≧10%・・・式2 [Laminate]
In the laminate of the present invention, at least two transparent resin layers are laminated on a part or all of the front plate (one surface of the front plate), and further on the at least two transparent resin layers (at least the above-mentioned at least The elastic modulus E1 of the first transparent resin layer that is a laminate having an electrode pattern on the surface of the two transparent resin layers opposite to the surface facing the front plate) And the elastic modulus E2 of the second transparent resin layer which is the second transparent resin layer from the electrode pattern side satisfies the followingformula 1, and the breaking elongation φ of the second transparent resin layer satisfies the following formula 2. .
E1>E2 Formula 1
φ ≧ 10% Formula 2
本発明の積層体は、前面板上(前面板の一方の面)の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに上記少なくとも2層の透明樹脂層の上(上記少なくとも2層の透明樹脂層の上記前面板と対向する面とは反対側の面)に電極パターンを有する積層体であって、上記電極パターンに接触している第1の透明樹脂層の弾性率E1と、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の弾性率E2が下記式1を満たし、上記第2の透明樹脂層の破断伸びφが下記式2を満たす。
E1>E2・・・式1
φ≧10%・・・式2 [Laminate]
In the laminate of the present invention, at least two transparent resin layers are laminated on a part or all of the front plate (one surface of the front plate), and further on the at least two transparent resin layers (at least the above-mentioned at least The elastic modulus E1 of the first transparent resin layer that is a laminate having an electrode pattern on the surface of the two transparent resin layers opposite to the surface facing the front plate) And the elastic modulus E2 of the second transparent resin layer which is the second transparent resin layer from the electrode pattern side satisfies the following
E1>
φ ≧ 10
<構成>
まず、本発明の積層体の構成を、図面を参照しながら説明する。
図15(A)は、本発明の積層体の1例の断面外略図である。この積層体は、前面板1上に、第2の透明樹脂層102と第1の透明樹脂層101を有し、第1の透明樹脂層上に電極パターン3を有する積層体である。
ここで、電極パターンに接触している第1の透明樹脂層101の弾性率E1と、電極パターン側から2層目の透明樹脂層である第2の透明樹脂層102の弾性率E2とは下記式1を満たし、第2の透明樹脂層102の破断伸びφは下記式2を満たしている。
E1>E2・・・式1
φ≧10%・・・式2
このような構成により、本発明の積層体は、前面板に亀裂が生じて屈曲した場合でも電極パターン断線が抑制できる。すなわち、図15(A)に示した、上記電極パターン3に接触している高弾性率の第1の透明樹脂層101と、電極パターン側から2層目の透明樹脂層として低弾性率かつ高破断伸びの第2の透明樹脂層102を設けた本発明の積層体の一例は、図15(B)に示すように、前面板1が割れた場合、低弾性率かつ高破断伸びの第2の透明樹脂層102は割れずに衝撃を吸収するアブソーバーとして働き、かつ、電極パターンに接触している高弾性率の第1の透明樹脂層101が隣接して積層されていることで、衝撃を吸収した低弾性率かつ高破断伸びの第2の透明樹脂層102の曲がりが大きくならないため、第1の透明樹脂層101上に設けられた電極パターン3の断線が抑制できる。 <Configuration>
First, the structure of the laminated body of this invention is demonstrated, referring drawings.
FIG. 15A is a schematic cross-sectional view of an example of the laminate of the present invention. This laminate is a laminate having the secondtransparent resin layer 102 and the first transparent resin layer 101 on the front plate 1 and the electrode pattern 3 on the first transparent resin layer.
Here, the elastic modulus E1 of the firsttransparent resin layer 101 in contact with the electrode pattern and the elastic modulus E2 of the second transparent resin layer 102 which is the second transparent resin layer from the electrode pattern side are as follows: Expression 1 is satisfied, and the elongation at break φ of the second transparent resin layer 102 satisfies Expression 2 below.
E1>E2 Formula 1
φ ≧ 10% Formula 2
With such a configuration, the laminate of the present invention can suppress electrode pattern disconnection even when the front plate is cracked and bent. That is, as shown in FIG. 15A, the firsttransparent resin layer 101 having a high elastic modulus that is in contact with the electrode pattern 3 and the second transparent resin layer from the electrode pattern side have a low elastic modulus and a high value. As shown in FIG. 15 (B), an example of the laminate of the present invention provided with the second transparent resin layer 102 having an elongation at break is a second material having a low elastic modulus and a high elongation at break when the front plate 1 is cracked. The transparent resin layer 102 acts as an absorber that absorbs impact without cracking, and the first transparent resin layer 101 having a high elastic modulus that is in contact with the electrode pattern is laminated adjacently, thereby Since the bending of the absorbed second elastic resin layer 102 having a low elastic modulus and high elongation at break does not increase, disconnection of the electrode pattern 3 provided on the first transparent resin layer 101 can be suppressed.
まず、本発明の積層体の構成を、図面を参照しながら説明する。
図15(A)は、本発明の積層体の1例の断面外略図である。この積層体は、前面板1上に、第2の透明樹脂層102と第1の透明樹脂層101を有し、第1の透明樹脂層上に電極パターン3を有する積層体である。
ここで、電極パターンに接触している第1の透明樹脂層101の弾性率E1と、電極パターン側から2層目の透明樹脂層である第2の透明樹脂層102の弾性率E2とは下記式1を満たし、第2の透明樹脂層102の破断伸びφは下記式2を満たしている。
E1>E2・・・式1
φ≧10%・・・式2
このような構成により、本発明の積層体は、前面板に亀裂が生じて屈曲した場合でも電極パターン断線が抑制できる。すなわち、図15(A)に示した、上記電極パターン3に接触している高弾性率の第1の透明樹脂層101と、電極パターン側から2層目の透明樹脂層として低弾性率かつ高破断伸びの第2の透明樹脂層102を設けた本発明の積層体の一例は、図15(B)に示すように、前面板1が割れた場合、低弾性率かつ高破断伸びの第2の透明樹脂層102は割れずに衝撃を吸収するアブソーバーとして働き、かつ、電極パターンに接触している高弾性率の第1の透明樹脂層101が隣接して積層されていることで、衝撃を吸収した低弾性率かつ高破断伸びの第2の透明樹脂層102の曲がりが大きくならないため、第1の透明樹脂層101上に設けられた電極パターン3の断線が抑制できる。 <Configuration>
First, the structure of the laminated body of this invention is demonstrated, referring drawings.
FIG. 15A is a schematic cross-sectional view of an example of the laminate of the present invention. This laminate is a laminate having the second
Here, the elastic modulus E1 of the first
E1>
φ ≧ 10
With such a configuration, the laminate of the present invention can suppress electrode pattern disconnection even when the front plate is cracked and bent. That is, as shown in FIG. 15A, the first
本発明の積層体は、前面板上の一部または全部に、少なくとも2層の透明樹脂層が積層される。透明樹脂層は、電極パターンに接触している第1の透明樹脂層と、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層を有する。透明樹脂層として、第1の透明樹脂層および第2の透明樹脂層以外のその他の透明樹脂層を有していてもよい。図16に本発明の積層体の他の一例の断面概略図を示した。図16に示した本発明の積層体の他の一例は、電極パターン100に接触している第1の透明樹脂層101と、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層102(第1の透明樹脂層101の電極パターン100と対向する面とは反対側の面に接触する第2の透明樹脂層102)に加えて、前面板110と第2の透明樹脂層102の間にその他の透明樹脂層103を有する。このようにその他の透明樹脂層103を有していても、第1の透明樹脂層と第2の透明樹脂層は十分に機能し、本発明の積層体は、前面板に亀裂が生じて屈曲しても電極パターン断線が抑制できる。
In the laminate of the present invention, at least two transparent resin layers are laminated on part or all of the front plate. The transparent resin layer includes a first transparent resin layer that is in contact with the electrode pattern, and a second transparent resin layer that is a second transparent resin layer from the electrode pattern side. As a transparent resin layer, you may have other transparent resin layers other than a 1st transparent resin layer and a 2nd transparent resin layer. FIG. 16 shows a schematic cross-sectional view of another example of the laminate of the present invention. Another example of the laminate of the present invention shown in FIG. 16 includes a first transparent resin layer 101 that is in contact with the electrode pattern 100 and a second transparent resin layer that is the second transparent resin layer from the electrode pattern side. In addition to the transparent resin layer 102 (the second transparent resin layer 102 in contact with the surface opposite to the surface facing the electrode pattern 100 of the first transparent resin layer 101), the front plate 110 and the second transparent resin Another transparent resin layer 103 is provided between the layers 102. Thus, even if it has other transparent resin layers 103, the first transparent resin layer and the second transparent resin layer function sufficiently, and the laminate of the present invention is bent due to a crack in the front plate. Even in this case, disconnection of the electrode pattern can be suppressed.
また、本発明の積層体は、前面板上の一部に少なくとも2層の透明樹脂層が積層されることが好ましく、前面板上の一部に枠状(額縁状)に形成された加飾層をさらに有し、前面板上のうち枠状の加飾層の内側の領域に少なくとも2層の透明樹脂層が積層されることがより好ましい。本発明の積層体は、上記第1の透明樹脂層と上記第2の透明樹脂層が、上記前面板と上記前面板の一方の面の一部に配置された加飾層に対し、上記前面板の上記加飾層が形成された側と同じの面のうち上記加飾層が形成されていない部分と上記加飾層の一部の上に形成されたことが特に好ましい。
以下、本発明の積層体の好ましい態様について説明する。 In the laminate of the present invention, it is preferable that at least two transparent resin layers are laminated on a part of the front plate, and a decoration formed in a frame shape (frame shape) on a part of the front plate. It is more preferable that at least two transparent resin layers are laminated on the inner region of the frame-shaped decorative layer on the front plate. In the laminate of the present invention, the first transparent resin layer and the second transparent resin layer are in front of the decorative layer arranged on a part of one surface of the front plate and the front plate. It is particularly preferable that the face plate is formed on the same surface as the side on which the decorative layer is formed, on a portion where the decorative layer is not formed and on a part of the decorative layer.
Hereinafter, the preferable aspect of the laminated body of this invention is demonstrated.
以下、本発明の積層体の好ましい態様について説明する。 In the laminate of the present invention, it is preferable that at least two transparent resin layers are laminated on a part of the front plate, and a decoration formed in a frame shape (frame shape) on a part of the front plate. It is more preferable that at least two transparent resin layers are laminated on the inner region of the frame-shaped decorative layer on the front plate. In the laminate of the present invention, the first transparent resin layer and the second transparent resin layer are in front of the decorative layer arranged on a part of one surface of the front plate and the front plate. It is particularly preferable that the face plate is formed on the same surface as the side on which the decorative layer is formed, on a portion where the decorative layer is not formed and on a part of the decorative layer.
Hereinafter, the preferable aspect of the laminated body of this invention is demonstrated.
<前面板>
本発明の積層体は、前面板を有する。以下、前面板を、「基材」と称する場合がある。
前面板は、透明な前面板(透光性基板)であることが好ましく、ガラス基板または樹脂基板であることがより好ましく、ガラス基板であることが特に好ましい。
ガラス基板としては、アルミノ珪酸ガラス(例えば、商品名「Gollira(コーニング社製)」、「Dragontrail(旭硝子社製)」)や化学的に強化されたソーダライムガラス等の特殊ガラス板を用いることができ、これらはカバーガラスと、タッチパネルセンサーが形成されたガラスの両方を兼ねるガラス基板として用いることができる。一枚のガラス上に、タッチパネルセンサーを設けるので、ガラス一枚分の部品点数を減らすことができ、低コストでタッチパネルが製造可能になる。 <Front plate>
The laminate of the present invention has a front plate. Hereinafter, the front plate may be referred to as a “base material”.
The front plate is preferably a transparent front plate (translucent substrate), more preferably a glass substrate or a resin substrate, and particularly preferably a glass substrate.
As the glass substrate, a special glass plate such as aluminosilicate glass (for example, trade name “Gollilla (manufactured by Corning)”, “Dragonrail (manufactured by Asahi Glass)”) or chemically strengthened soda lime glass may be used. These can be used as a glass substrate serving as both a cover glass and a glass on which a touch panel sensor is formed. Since the touch panel sensor is provided on one piece of glass, the number of parts for one piece of glass can be reduced, and the touch panel can be manufactured at low cost.
本発明の積層体は、前面板を有する。以下、前面板を、「基材」と称する場合がある。
前面板は、透明な前面板(透光性基板)であることが好ましく、ガラス基板または樹脂基板であることがより好ましく、ガラス基板であることが特に好ましい。
ガラス基板としては、アルミノ珪酸ガラス(例えば、商品名「Gollira(コーニング社製)」、「Dragontrail(旭硝子社製)」)や化学的に強化されたソーダライムガラス等の特殊ガラス板を用いることができ、これらはカバーガラスと、タッチパネルセンサーが形成されたガラスの両方を兼ねるガラス基板として用いることができる。一枚のガラス上に、タッチパネルセンサーを設けるので、ガラス一枚分の部品点数を減らすことができ、低コストでタッチパネルが製造可能になる。 <Front plate>
The laminate of the present invention has a front plate. Hereinafter, the front plate may be referred to as a “base material”.
The front plate is preferably a transparent front plate (translucent substrate), more preferably a glass substrate or a resin substrate, and particularly preferably a glass substrate.
As the glass substrate, a special glass plate such as aluminosilicate glass (for example, trade name “Gollilla (manufactured by Corning)”, “Dragonrail (manufactured by Asahi Glass)”) or chemically strengthened soda lime glass may be used. These can be used as a glass substrate serving as both a cover glass and a glass on which a touch panel sensor is formed. Since the touch panel sensor is provided on one piece of glass, the number of parts for one piece of glass can be reduced, and the touch panel can be manufactured at low cost.
<電極パターン>
本発明の積層体は、上記少なくとも2層の透明樹脂層の上(上記少なくとも2層の透明樹脂層の上記前面板と対向する面とは反対側の面)に電極パターンを有する。
電極パターンの好ましい態様は、後述の本発明の導電膜積層体および静電容量型入力装置に記載のとおりであり、上記少なくとも2層の透明樹脂層の上に有する電極パターンは、後述の(1)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターンであることが好ましい。
電極パターンに用いられる透明電極は、透明で導電性があり薄膜状に形成できる物質が用いられ、通常ITO(Indium Tin Oxide、インジウムと錫の複合酸化物)膜が、他にはIZO(Indium Zinc Oxide、インジウムと亜鉛の複合酸化物)やSnO2(二酸化錫)膜などの透光性の導電性金属酸化膜や金属膜で作製することができる。このような透光性の導電性金属酸化膜や金属膜としては、ITO、IZO、SnO2、SiO2等の金属酸化膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;などが挙げられる。ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)、ポリアニリン、ポリピロール等の有機導電材料を用いることもできる。これら材料は1種のみで用いてもよく、2種以上を併用してもよい。中でも、透明性と抵抗値の点でITOを用いることが好ましい。
各々スパッタリング法、真空蒸着法などのPVD法、あるいはCVD法などの一般的な成膜方法により形成することができる。
この際、電極パターンの膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO等の膜を多結晶のITO等の膜として、電気的抵抗を低減することもできる。 <Electrode pattern>
The laminate of the present invention has an electrode pattern on the at least two transparent resin layers (the surface opposite to the surface facing the front plate of the at least two transparent resin layers).
A preferred embodiment of the electrode pattern is as described in the conductive film laminate and the capacitance-type input device of the present invention described later, and the electrode pattern on the at least two transparent resin layers is described in (1 It is preferable that the plurality of pad portions are a plurality of first transparent electrode patterns formed extending in the first direction via the connection portions.
The transparent electrode used for the electrode pattern is made of a material that is transparent and conductive and can be formed into a thin film. Usually, an ITO (Indium Tin Oxide) film is used, and the other is an IZO (Indium Zinc). Oxide, a composite oxide of indium and zinc) and a light-transmitting conductive metal oxide film or metal film such as a SnO 2 (tin dioxide) film can be used. Examples of such translucent conductive metal oxide films and metal films include metal oxide films such as ITO, IZO, SnO 2 , and SiO 2 ; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo And so on. Organic conductive materials such as polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), polyaniline, and polypyrrole can also be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
Each film can be formed by a general film forming method such as a PVD method such as a sputtering method or a vacuum evaporation method, or a CVD method.
At this time, the film thickness of the electrode pattern can be 10 to 200 nm. Further, by firing, an amorphous ITO film or the like can be used as a polycrystalline ITO film or the like, and the electrical resistance can be reduced.
本発明の積層体は、上記少なくとも2層の透明樹脂層の上(上記少なくとも2層の透明樹脂層の上記前面板と対向する面とは反対側の面)に電極パターンを有する。
電極パターンの好ましい態様は、後述の本発明の導電膜積層体および静電容量型入力装置に記載のとおりであり、上記少なくとも2層の透明樹脂層の上に有する電極パターンは、後述の(1)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターンであることが好ましい。
電極パターンに用いられる透明電極は、透明で導電性があり薄膜状に形成できる物質が用いられ、通常ITO(Indium Tin Oxide、インジウムと錫の複合酸化物)膜が、他にはIZO(Indium Zinc Oxide、インジウムと亜鉛の複合酸化物)やSnO2(二酸化錫)膜などの透光性の導電性金属酸化膜や金属膜で作製することができる。このような透光性の導電性金属酸化膜や金属膜としては、ITO、IZO、SnO2、SiO2等の金属酸化膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;などが挙げられる。ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)、ポリアニリン、ポリピロール等の有機導電材料を用いることもできる。これら材料は1種のみで用いてもよく、2種以上を併用してもよい。中でも、透明性と抵抗値の点でITOを用いることが好ましい。
各々スパッタリング法、真空蒸着法などのPVD法、あるいはCVD法などの一般的な成膜方法により形成することができる。
この際、電極パターンの膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO等の膜を多結晶のITO等の膜として、電気的抵抗を低減することもできる。 <Electrode pattern>
The laminate of the present invention has an electrode pattern on the at least two transparent resin layers (the surface opposite to the surface facing the front plate of the at least two transparent resin layers).
A preferred embodiment of the electrode pattern is as described in the conductive film laminate and the capacitance-type input device of the present invention described later, and the electrode pattern on the at least two transparent resin layers is described in (1 It is preferable that the plurality of pad portions are a plurality of first transparent electrode patterns formed extending in the first direction via the connection portions.
The transparent electrode used for the electrode pattern is made of a material that is transparent and conductive and can be formed into a thin film. Usually, an ITO (Indium Tin Oxide) film is used, and the other is an IZO (Indium Zinc). Oxide, a composite oxide of indium and zinc) and a light-transmitting conductive metal oxide film or metal film such as a SnO 2 (tin dioxide) film can be used. Examples of such translucent conductive metal oxide films and metal films include metal oxide films such as ITO, IZO, SnO 2 , and SiO 2 ; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo And so on. Organic conductive materials such as polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), polyaniline, and polypyrrole can also be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
Each film can be formed by a general film forming method such as a PVD method such as a sputtering method or a vacuum evaporation method, or a CVD method.
At this time, the film thickness of the electrode pattern can be 10 to 200 nm. Further, by firing, an amorphous ITO film or the like can be used as a polycrystalline ITO film or the like, and the electrical resistance can be reduced.
<透明樹脂層>
本発明の積層体において、上記第1の透明樹脂層の弾性率E1と、上記第2の透明樹脂層の弾性率E2は、下記式1を満たし、上記第2の透明樹脂層の破断伸びφが下記式2を満たす。
E1>E2・・・式1
φ≧10%・・・式2 <Transparent resin layer>
In the laminate of the present invention, the elastic modulus E1 of the first transparent resin layer and the elastic modulus E2 of the second transparent resin layer satisfy the followingformula 1, and the elongation at break φ of the second transparent resin layer Satisfies the following formula 2.
E1>E2 Formula 1
φ ≧ 10% Formula 2
本発明の積層体において、上記第1の透明樹脂層の弾性率E1と、上記第2の透明樹脂層の弾性率E2は、下記式1を満たし、上記第2の透明樹脂層の破断伸びφが下記式2を満たす。
E1>E2・・・式1
φ≧10%・・・式2 <Transparent resin layer>
In the laminate of the present invention, the elastic modulus E1 of the first transparent resin layer and the elastic modulus E2 of the second transparent resin layer satisfy the following
E1>
φ ≧ 10
本発明の積層体は、少なくとも、電極パターンと前面板との間の間隙を上記少なくとも2層の透明樹脂層によって埋められることが好ましい。
少なくとも、電極パターンと前面板との間の間隙を上記少なくとも2層の透明樹脂層によって埋める方法としては特に制限はないが、後述の本発明の転写フィルムを後述の加飾層の形成方法に記載したハーフカット工程を経る転写方法やダイカット工程を経る転写方法を用いて、上記少なくとも2層の透明樹脂層の幅(L)を上記加飾層の内径(一辺)と同等程度の大きさに調整し、上記前面板に上記少なくとも2層の透明樹脂層を転写することが好ましい。
上記前面板に上記少なくとも2層の透明樹脂層を転写する方法の好ましい態様は、上記加飾層を、上記転写フィルムを用いて形成する方法の好ましい態様と同様である。
一方、上記少なくとも2層の透明樹脂層用の液体レジストを、少なくとも、電極パターンと前面板との間の間隙部分に塗布または印刷し、公知の方法で硬化することにより、少なくとも、電極パターンと前面板との間の間隙を上記少なくとも2層の透明樹脂層によって埋めてもよい。 In the laminate of the present invention, it is preferable that at least the gap between the electrode pattern and the front plate is filled with the at least two transparent resin layers.
The method for filling at least the gap between the electrode pattern and the front plate with the at least two transparent resin layers is not particularly limited, but the transfer film of the present invention described later is described in the method for forming a decorative layer described later. The width (L) of the at least two transparent resin layers is adjusted to the same size as the inner diameter (one side) of the decorative layer by using a transfer method that has undergone a half-cut process or a transfer method that has undergone a die-cut process. The at least two transparent resin layers are preferably transferred onto the front plate.
A preferred embodiment of the method for transferring the at least two transparent resin layers to the front plate is the same as the preferred embodiment of the method for forming the decorative layer using the transfer film.
On the other hand, the liquid resist for the at least two transparent resin layers is applied or printed at least in a gap portion between the electrode pattern and the front plate, and cured by a known method, so that at least the electrode pattern and the previous liquid resist are cured. The gap between the face plate and the face plate may be filled with the at least two transparent resin layers.
少なくとも、電極パターンと前面板との間の間隙を上記少なくとも2層の透明樹脂層によって埋める方法としては特に制限はないが、後述の本発明の転写フィルムを後述の加飾層の形成方法に記載したハーフカット工程を経る転写方法やダイカット工程を経る転写方法を用いて、上記少なくとも2層の透明樹脂層の幅(L)を上記加飾層の内径(一辺)と同等程度の大きさに調整し、上記前面板に上記少なくとも2層の透明樹脂層を転写することが好ましい。
上記前面板に上記少なくとも2層の透明樹脂層を転写する方法の好ましい態様は、上記加飾層を、上記転写フィルムを用いて形成する方法の好ましい態様と同様である。
一方、上記少なくとも2層の透明樹脂層用の液体レジストを、少なくとも、電極パターンと前面板との間の間隙部分に塗布または印刷し、公知の方法で硬化することにより、少なくとも、電極パターンと前面板との間の間隙を上記少なくとも2層の透明樹脂層によって埋めてもよい。 In the laminate of the present invention, it is preferable that at least the gap between the electrode pattern and the front plate is filled with the at least two transparent resin layers.
The method for filling at least the gap between the electrode pattern and the front plate with the at least two transparent resin layers is not particularly limited, but the transfer film of the present invention described later is described in the method for forming a decorative layer described later. The width (L) of the at least two transparent resin layers is adjusted to the same size as the inner diameter (one side) of the decorative layer by using a transfer method that has undergone a half-cut process or a transfer method that has undergone a die-cut process. The at least two transparent resin layers are preferably transferred onto the front plate.
A preferred embodiment of the method for transferring the at least two transparent resin layers to the front plate is the same as the preferred embodiment of the method for forming the decorative layer using the transfer film.
On the other hand, the liquid resist for the at least two transparent resin layers is applied or printed at least in a gap portion between the electrode pattern and the front plate, and cured by a known method, so that at least the electrode pattern and the previous liquid resist are cured. The gap between the face plate and the face plate may be filled with the at least two transparent resin layers.
本発明の積層体は、上記少なくとも2層の透明樹脂層が、0.08~1.2atmの環境下で180~300℃に加熱されてなることが透明性と生産性の両立の観点から好ましい。加熱の好ましい態様は、後述の加飾層の形成方法におけるポストベークの好ましい態様と同様である。
In the laminate of the present invention, the at least two transparent resin layers are preferably heated to 180 to 300 ° C. in an environment of 0.08 to 1.2 atm from the viewpoint of both transparency and productivity. . The preferable aspect of a heating is the same as the preferable aspect of the post-baking in the formation method of the below-mentioned decorating layer.
第1の透明樹脂層および第2の透明樹脂層は、流動性を保った状態であってもよく、流動性を失った状態であってもよく、硬化または固定化された状態であってもよい。
すなわち、本発明の積層体において、第1の透明樹脂層および第2の透明樹脂層は、流動性を保った透明レジストの状態で存在しても、透明レジストを乾燥して流動性が失われた状態で存在してもよい。
また、本発明の積層体において、第1の透明樹脂層および第2の透明樹脂層は、活性放射線の照射などにより硬化していてもよい。 以下、少なくとも2層の透明樹脂層の好ましい態様について説明する。 The first transparent resin layer and the second transparent resin layer may be in a state where the fluidity is maintained, may be in a state where the fluidity is lost, or may be in a cured or fixed state. Good.
That is, in the laminate of the present invention, even if the first transparent resin layer and the second transparent resin layer exist in the state of a transparent resist that maintains fluidity, the fluidity is lost by drying the transparent resist. It may exist in the state.
In the laminate of the present invention, the first transparent resin layer and the second transparent resin layer may be cured by irradiation with actinic radiation. Hereinafter, preferred embodiments of at least two transparent resin layers will be described.
すなわち、本発明の積層体において、第1の透明樹脂層および第2の透明樹脂層は、流動性を保った透明レジストの状態で存在しても、透明レジストを乾燥して流動性が失われた状態で存在してもよい。
また、本発明の積層体において、第1の透明樹脂層および第2の透明樹脂層は、活性放射線の照射などにより硬化していてもよい。 以下、少なくとも2層の透明樹脂層の好ましい態様について説明する。 The first transparent resin layer and the second transparent resin layer may be in a state where the fluidity is maintained, may be in a state where the fluidity is lost, or may be in a cured or fixed state. Good.
That is, in the laminate of the present invention, even if the first transparent resin layer and the second transparent resin layer exist in the state of a transparent resist that maintains fluidity, the fluidity is lost by drying the transparent resist. It may exist in the state.
In the laminate of the present invention, the first transparent resin layer and the second transparent resin layer may be cured by irradiation with actinic radiation. Hereinafter, preferred embodiments of at least two transparent resin layers will be described.
(弾性率)
本発明の積層体において、上記電極パターンに接触している第1の透明樹脂層の弾性率E1と、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の弾性率E2は、下記式1を満たす。
E1>E2・・・式1
上記第1の透明樹脂層の弾性率E1と、上記第2の透明樹脂層の弾性率E2は、下記式1Aを満たすことが好ましく、下記式1Bを満たすことがより好ましい。
2000 × E2 > E1 > 5 × E2 ・・・式1A
1000 × E2 > E1 > 10 × E2 ・・・式1B
上記第1の透明樹脂層の弾性率E1は、100MPa以上であることが好ましく、300MPa以上であることがより好ましく、500MPa以上であることが特に好ましい。第1の透明樹脂層の弾性率E1の上限値は特に制限はないが、2000MPa以下であることが好ましく、1000MPa以下であることがより好ましい。
上記第2の透明樹脂層の弾性率E2は、50MPa以下であることが好ましく、30MPa以下であることがより好ましく、20MPa以下であることが特に好ましい。第2の透明樹脂層の弾性率E2の下限値は特に制限はないが、2MPa以上であることが好ましく、5MPa以上であることがより好ましい。 (Elastic modulus)
In the laminate of the present invention, the elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern and the elastic modulus of the second transparent resin layer that is the second transparent resin layer from the electrode pattern side E2 satisfies the followingformula 1.
E1>E2 Formula 1
The elastic modulus E1 of the first transparent resin layer and the elastic modulus E2 of the second transparent resin layer preferably satisfy the following formula 1A, and more preferably satisfy the following formula 1B.
2000 × E2>E1> 5 × E2 Formula 1A
1000 × E2>E1> 10 × E2 Formula 1B
The elastic modulus E1 of the first transparent resin layer is preferably 100 MPa or more, more preferably 300 MPa or more, and particularly preferably 500 MPa or more. Although there is no restriction | limiting in particular in the upper limit of the elasticity modulus E1 of a 1st transparent resin layer, It is preferable that it is 2000 MPa or less, and it is more preferable that it is 1000 MPa or less.
The elastic modulus E2 of the second transparent resin layer is preferably 50 MPa or less, more preferably 30 MPa or less, and particularly preferably 20 MPa or less. The lower limit value of the elastic modulus E2 of the second transparent resin layer is not particularly limited, but is preferably 2 MPa or more, and more preferably 5 MPa or more.
本発明の積層体において、上記電極パターンに接触している第1の透明樹脂層の弾性率E1と、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の弾性率E2は、下記式1を満たす。
E1>E2・・・式1
上記第1の透明樹脂層の弾性率E1と、上記第2の透明樹脂層の弾性率E2は、下記式1Aを満たすことが好ましく、下記式1Bを満たすことがより好ましい。
2000 × E2 > E1 > 5 × E2 ・・・式1A
1000 × E2 > E1 > 10 × E2 ・・・式1B
上記第1の透明樹脂層の弾性率E1は、100MPa以上であることが好ましく、300MPa以上であることがより好ましく、500MPa以上であることが特に好ましい。第1の透明樹脂層の弾性率E1の上限値は特に制限はないが、2000MPa以下であることが好ましく、1000MPa以下であることがより好ましい。
上記第2の透明樹脂層の弾性率E2は、50MPa以下であることが好ましく、30MPa以下であることがより好ましく、20MPa以下であることが特に好ましい。第2の透明樹脂層の弾性率E2の下限値は特に制限はないが、2MPa以上であることが好ましく、5MPa以上であることがより好ましい。 (Elastic modulus)
In the laminate of the present invention, the elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern and the elastic modulus of the second transparent resin layer that is the second transparent resin layer from the electrode pattern side E2 satisfies the following
E1>
The elastic modulus E1 of the first transparent resin layer and the elastic modulus E2 of the second transparent resin layer preferably satisfy the following formula 1A, and more preferably satisfy the following formula 1B.
2000 × E2>E1> 5 × E2 Formula 1A
1000 × E2>E1> 10 × E2 Formula 1B
The elastic modulus E1 of the first transparent resin layer is preferably 100 MPa or more, more preferably 300 MPa or more, and particularly preferably 500 MPa or more. Although there is no restriction | limiting in particular in the upper limit of the elasticity modulus E1 of a 1st transparent resin layer, It is preferable that it is 2000 MPa or less, and it is more preferable that it is 1000 MPa or less.
The elastic modulus E2 of the second transparent resin layer is preferably 50 MPa or less, more preferably 30 MPa or less, and particularly preferably 20 MPa or less. The lower limit value of the elastic modulus E2 of the second transparent resin layer is not particularly limited, but is preferably 2 MPa or more, and more preferably 5 MPa or more.
(破断伸び)
本発明の積層体は、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の破断伸びφが下記式2を満たす。
φ≧10%・・・式2
第2の透明樹脂層の破断伸びφは20%以上であることが好ましく、30%以上であることがより好ましく、100%以上であることが特に好ましく、200%以上であることがより特に好ましい。第2の透明樹脂層の破断伸びφの上限値は特に制限はないが、1000%以下であることが好ましく、600%以下であることがより好ましい。 (Elongation at break)
In the laminate of the present invention, the breaking elongation φ of the second transparent resin layer, which is the second transparent resin layer from the electrode pattern side, satisfies the followingformula 2.
φ ≧ 10% Formula 2
The breaking elongation φ of the second transparent resin layer is preferably 20% or more, more preferably 30% or more, particularly preferably 100% or more, and particularly preferably 200% or more. . The upper limit of the breaking elongation φ of the second transparent resin layer is not particularly limited, but is preferably 1000% or less, and more preferably 600% or less.
本発明の積層体は、上記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の破断伸びφが下記式2を満たす。
φ≧10%・・・式2
第2の透明樹脂層の破断伸びφは20%以上であることが好ましく、30%以上であることがより好ましく、100%以上であることが特に好ましく、200%以上であることがより特に好ましい。第2の透明樹脂層の破断伸びφの上限値は特に制限はないが、1000%以下であることが好ましく、600%以下であることがより好ましい。 (Elongation at break)
In the laminate of the present invention, the breaking elongation φ of the second transparent resin layer, which is the second transparent resin layer from the electrode pattern side, satisfies the following
φ ≧ 10
The breaking elongation φ of the second transparent resin layer is preferably 20% or more, more preferably 30% or more, particularly preferably 100% or more, and particularly preferably 200% or more. . The upper limit of the breaking elongation φ of the second transparent resin layer is not particularly limited, but is preferably 1000% or less, and more preferably 600% or less.
(厚み)
本発明の積層体は、上記第1の透明樹脂層の膜厚と上記第2の透明樹脂層の膜厚の合計が10~150μmであることが好ましく、20~120μmであることがより好ましく、30~100μmであることが特に好ましい。特に加飾層が白色加飾層である場合、白色加飾層の厚みを厚くすることが好ましい。したがって、上記第1の透明樹脂層と上記第2の透明樹脂層とを用いて、前面板と白色加飾層との高低差により生じる間隙(以下、「加飾層の段差」ともいう。)を埋めるためには、上記第1の透明樹脂層の膜厚と上記第2の透明樹脂層の膜厚の合計が20μm以上であることがより好ましい。
上記第1の透明樹脂層の膜厚および上記第2の透明樹脂層の膜厚がそれぞれ独立に5~100μmであることが好ましい。
上記第1の透明樹脂層の膜厚は、5~100μmであることが好ましく、10~90μmであることがより好ましく、15~70μmであることが特に好ましい。高弾性率の上記第1の透明樹脂層は、膜厚が薄い方が、アクリル樹脂等の熱着色する素材であっても透明性を高められる観点から好ましい。
上記第2の透明樹脂層の膜厚は、5~100μmであることが好ましく、10~70μmであることがより好ましく、15~40μmであることが特に好ましい。低弾性率かつ高破断伸びの上記第2の透明樹脂層は、膜厚が薄い方が、物性改善の目的で第2の透明樹脂層がシリカ等の粒子を含む場合にも透明性を高められる観点から好ましい。 (Thickness)
In the laminate of the present invention, the total thickness of the first transparent resin layer and the second transparent resin layer is preferably 10 to 150 μm, more preferably 20 to 120 μm, A thickness of 30 to 100 μm is particularly preferable. In particular, when the decorative layer is a white decorative layer, it is preferable to increase the thickness of the white decorative layer. Therefore, the gap produced by the height difference between the front plate and the white decorative layer using the first transparent resin layer and the second transparent resin layer (hereinafter also referred to as “step of the decorative layer”). In order to fill the thickness, the total thickness of the first transparent resin layer and the thickness of the second transparent resin layer is more preferably 20 μm or more.
It is preferable that the film thickness of the first transparent resin layer and the film thickness of the second transparent resin layer are each independently 5 to 100 μm.
The film thickness of the first transparent resin layer is preferably 5 to 100 μm, more preferably 10 to 90 μm, and particularly preferably 15 to 70 μm. The first transparent resin layer having a high elastic modulus is preferably thinner from the viewpoint of enhancing the transparency even if it is a heat-colored material such as an acrylic resin.
The film thickness of the second transparent resin layer is preferably 5 to 100 μm, more preferably 10 to 70 μm, and particularly preferably 15 to 40 μm. The second transparent resin layer having a low elastic modulus and high elongation at break can be made more transparent when the film thickness is thinner, even when the second transparent resin layer contains particles such as silica for the purpose of improving physical properties. It is preferable from the viewpoint.
本発明の積層体は、上記第1の透明樹脂層の膜厚と上記第2の透明樹脂層の膜厚の合計が10~150μmであることが好ましく、20~120μmであることがより好ましく、30~100μmであることが特に好ましい。特に加飾層が白色加飾層である場合、白色加飾層の厚みを厚くすることが好ましい。したがって、上記第1の透明樹脂層と上記第2の透明樹脂層とを用いて、前面板と白色加飾層との高低差により生じる間隙(以下、「加飾層の段差」ともいう。)を埋めるためには、上記第1の透明樹脂層の膜厚と上記第2の透明樹脂層の膜厚の合計が20μm以上であることがより好ましい。
上記第1の透明樹脂層の膜厚および上記第2の透明樹脂層の膜厚がそれぞれ独立に5~100μmであることが好ましい。
上記第1の透明樹脂層の膜厚は、5~100μmであることが好ましく、10~90μmであることがより好ましく、15~70μmであることが特に好ましい。高弾性率の上記第1の透明樹脂層は、膜厚が薄い方が、アクリル樹脂等の熱着色する素材であっても透明性を高められる観点から好ましい。
上記第2の透明樹脂層の膜厚は、5~100μmであることが好ましく、10~70μmであることがより好ましく、15~40μmであることが特に好ましい。低弾性率かつ高破断伸びの上記第2の透明樹脂層は、膜厚が薄い方が、物性改善の目的で第2の透明樹脂層がシリカ等の粒子を含む場合にも透明性を高められる観点から好ましい。 (Thickness)
In the laminate of the present invention, the total thickness of the first transparent resin layer and the second transparent resin layer is preferably 10 to 150 μm, more preferably 20 to 120 μm, A thickness of 30 to 100 μm is particularly preferable. In particular, when the decorative layer is a white decorative layer, it is preferable to increase the thickness of the white decorative layer. Therefore, the gap produced by the height difference between the front plate and the white decorative layer using the first transparent resin layer and the second transparent resin layer (hereinafter also referred to as “step of the decorative layer”). In order to fill the thickness, the total thickness of the first transparent resin layer and the thickness of the second transparent resin layer is more preferably 20 μm or more.
It is preferable that the film thickness of the first transparent resin layer and the film thickness of the second transparent resin layer are each independently 5 to 100 μm.
The film thickness of the first transparent resin layer is preferably 5 to 100 μm, more preferably 10 to 90 μm, and particularly preferably 15 to 70 μm. The first transparent resin layer having a high elastic modulus is preferably thinner from the viewpoint of enhancing the transparency even if it is a heat-colored material such as an acrylic resin.
The film thickness of the second transparent resin layer is preferably 5 to 100 μm, more preferably 10 to 70 μm, and particularly preferably 15 to 40 μm. The second transparent resin layer having a low elastic modulus and high elongation at break can be made more transparent when the film thickness is thinner, even when the second transparent resin layer contains particles such as silica for the purpose of improving physical properties. It is preferable from the viewpoint.
(組成)
-シロキサン構造を有する化合物-
本発明の積層体は、上記透明樹脂層の少なくとも1層はシロキサン構造を有する化合物を含むことが、透明樹脂層を加熱硬化した後の透明性や、後工程である電極パターンの加熱アニール工程後の透明樹脂層の透明性を高める観点から、好ましい。
シロキサン構造を有する化合物とは、シロキサン結合を少なくとも1つ分子内に有する化合物のことを言う。シロキサン構造を有する化合物は、複数のシロキサン結合を分子内に有するポリシロキサン化合物(いわゆるシリコーン)であることが好ましい。
シリコーンは、室温でゴム弾性を有するエラストマーであるシリコーンゴムと、その他のシリコーンレジンに分けることができる。 (composition)
-Compound having siloxane structure-
In the laminate of the present invention, at least one of the transparent resin layers contains a compound having a siloxane structure, the transparency after heat-curing the transparent resin layer, and the electrode pattern heat annealing step which is a subsequent step From the viewpoint of increasing the transparency of the transparent resin layer, it is preferable.
The compound having a siloxane structure refers to a compound having at least one siloxane bond in the molecule. The compound having a siloxane structure is preferably a polysiloxane compound (so-called silicone) having a plurality of siloxane bonds in the molecule.
Silicone can be classified into silicone rubber, which is an elastomer having rubber elasticity at room temperature, and other silicone resins.
-シロキサン構造を有する化合物-
本発明の積層体は、上記透明樹脂層の少なくとも1層はシロキサン構造を有する化合物を含むことが、透明樹脂層を加熱硬化した後の透明性や、後工程である電極パターンの加熱アニール工程後の透明樹脂層の透明性を高める観点から、好ましい。
シロキサン構造を有する化合物とは、シロキサン結合を少なくとも1つ分子内に有する化合物のことを言う。シロキサン構造を有する化合物は、複数のシロキサン結合を分子内に有するポリシロキサン化合物(いわゆるシリコーン)であることが好ましい。
シリコーンは、室温でゴム弾性を有するエラストマーであるシリコーンゴムと、その他のシリコーンレジンに分けることができる。 (composition)
-Compound having siloxane structure-
In the laminate of the present invention, at least one of the transparent resin layers contains a compound having a siloxane structure, the transparency after heat-curing the transparent resin layer, and the electrode pattern heat annealing step which is a subsequent step From the viewpoint of increasing the transparency of the transparent resin layer, it is preferable.
The compound having a siloxane structure refers to a compound having at least one siloxane bond in the molecule. The compound having a siloxane structure is preferably a polysiloxane compound (so-called silicone) having a plurality of siloxane bonds in the molecule.
Silicone can be classified into silicone rubber, which is an elastomer having rubber elasticity at room temperature, and other silicone resins.
--シリコーンゴム--
本発明の積層体は、上記第2の透明樹脂層が少なくともシリコーンゴムをバインダー樹脂として含むことが好ましい。シリコーンゴムは、一般的に耐熱性、透明性が優れている。
生ゴム状のシロキサン構造を有する化合物(例えば高重合度ジメチルポリシロキサン)と補強材として粒子(例えば微粉末シリカ)とを基本成分として、必要に応じて各種添加剤を配合してシリコーンゴムコンパウンド(シリコーンゴム前駆体)が得られる。このシリコーンゴムコンパウンドに、必要に応じて有機過酸化物や触媒などの加硫剤を使用時に添加して加熱硬化すると、狭義のシリコーンゴムが得られる。本明細書におけるシリコーンゴムには、シリコーンゴムコンパウンドと加熱硬化後の狭義のシリコーンゴムの両方が含まれる。 --silicone rubber--
In the laminate of the present invention, it is preferable that the second transparent resin layer contains at least silicone rubber as a binder resin. Silicone rubber is generally excellent in heat resistance and transparency.
A silicone rubber compound (silicone) containing a compound having a raw rubber-like siloxane structure (for example, highly polymerized dimethylpolysiloxane) and particles (for example, finely divided silica) as reinforcing materials and various additives as necessary. A rubber precursor) is obtained. When this silicone rubber compound is added with a vulcanizing agent such as an organic peroxide or a catalyst as needed and cured by heating, silicone rubber in a narrow sense can be obtained. The silicone rubber in this specification includes both a silicone rubber compound and a narrowly defined silicone rubber after heat curing.
本発明の積層体は、上記第2の透明樹脂層が少なくともシリコーンゴムをバインダー樹脂として含むことが好ましい。シリコーンゴムは、一般的に耐熱性、透明性が優れている。
生ゴム状のシロキサン構造を有する化合物(例えば高重合度ジメチルポリシロキサン)と補強材として粒子(例えば微粉末シリカ)とを基本成分として、必要に応じて各種添加剤を配合してシリコーンゴムコンパウンド(シリコーンゴム前駆体)が得られる。このシリコーンゴムコンパウンドに、必要に応じて有機過酸化物や触媒などの加硫剤を使用時に添加して加熱硬化すると、狭義のシリコーンゴムが得られる。本明細書におけるシリコーンゴムには、シリコーンゴムコンパウンドと加熱硬化後の狭義のシリコーンゴムの両方が含まれる。 --silicone rubber--
In the laminate of the present invention, it is preferable that the second transparent resin layer contains at least silicone rubber as a binder resin. Silicone rubber is generally excellent in heat resistance and transparency.
A silicone rubber compound (silicone) containing a compound having a raw rubber-like siloxane structure (for example, highly polymerized dimethylpolysiloxane) and particles (for example, finely divided silica) as reinforcing materials and various additives as necessary. A rubber precursor) is obtained. When this silicone rubber compound is added with a vulcanizing agent such as an organic peroxide or a catalyst as needed and cured by heating, silicone rubber in a narrow sense can be obtained. The silicone rubber in this specification includes both a silicone rubber compound and a narrowly defined silicone rubber after heat curing.
シリコーンゴムとしては、両末端にのみビニル基を有する直鎖状ポリオルガノシロキサンからなるシリコーンと、両末端及び側鎖にビニル基を有する直鎖状ポリオルガノシロキサンからなるシリコーンと、末端にのみビニル基を有する分岐状ポリオルガノシロキサンからなるシリコーンと、末端及び側鎖にビニル基を有する分岐状ポリオルガノシロキサンからなるシリコーンとから選ばれる少なくとも1種のシリコーンを架橋させてなるものが挙げられる。
Silicone rubber includes silicone composed of linear polyorganosiloxane having vinyl groups only at both ends, silicone composed of linear polyorganosiloxane having vinyl groups at both ends and side chains, and vinyl groups only at the ends. And a product obtained by crosslinking at least one silicone selected from a silicone comprising a branched polyorganosiloxane having a salt and a silicone comprising a branched polyorganosiloxane having a vinyl group at the terminal and side chain.
両末端にのみビニル基を有する直鎖状ポリオルガノシロキサンとは下記一般式A-1~一般式A-3のいずれかで表される化合物である。シリコーンゴムとしては、高重合度のガム状ジメチルポリシロキサン、ガム状のジメチルシロキサン・メチルフェニルシロキサン共重合体等を挙げることができる。
The linear polyorganosiloxane having a vinyl group only at both ends is a compound represented by any one of the following general formulas A-1 to A-3. Examples of the silicone rubber include a gum-like dimethylpolysiloxane having a high degree of polymerization and a gum-like dimethylsiloxane / methylphenylsiloxane copolymer.
(上記一般式A-1~A-3中、Rは下記有機基、nは整数を表す)
(In the above general formulas A-1 to A-3, R represents the following organic group, and n represents an integer)
(上記一般式B中、Rは下記有機基、mは整数を表す)
このビニル基以外のケイ素原子に結合した有機基(R)は異種でも同種でもよいが、具体例としてはメチル基、エチル基、プロピル基などのアルキル基、フェニル基、トリル基、などのアリール基、又はこれらの基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子、シアノ基などで置換した同種又は異種の非置換又は置換の脂肪族不飽和基を除く1価炭化水素基で好ましくはその少なくとも50モル%がメチル基であるものなどが挙げられるが、このジオルガノポリシロキサンは単独でも2種以上の混合物であってもよい。 (In the above general formula B, R represents the following organic group, and m represents an integer)
The organic group (R) bonded to the silicon atom other than the vinyl group may be different or of the same type. Specific examples include alkyl groups such as methyl, ethyl and propyl groups, and aryl groups such as phenyl and tolyl groups. Or a monovalent hydrocarbon group other than the same or different unsubstituted or substituted aliphatic unsaturated group in which part or all of the hydrogen atoms bonded to the carbon atoms of these groups are substituted with a halogen atom, a cyano group, or the like. Preferable examples include those having at least 50 mol% of a methyl group. These diorganopolysiloxanes may be used alone or as a mixture of two or more thereof.
このビニル基以外のケイ素原子に結合した有機基(R)は異種でも同種でもよいが、具体例としてはメチル基、エチル基、プロピル基などのアルキル基、フェニル基、トリル基、などのアリール基、又はこれらの基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子、シアノ基などで置換した同種又は異種の非置換又は置換の脂肪族不飽和基を除く1価炭化水素基で好ましくはその少なくとも50モル%がメチル基であるものなどが挙げられるが、このジオルガノポリシロキサンは単独でも2種以上の混合物であってもよい。 (In the above general formula B, R represents the following organic group, and m represents an integer)
The organic group (R) bonded to the silicon atom other than the vinyl group may be different or of the same type. Specific examples include alkyl groups such as methyl, ethyl and propyl groups, and aryl groups such as phenyl and tolyl groups. Or a monovalent hydrocarbon group other than the same or different unsubstituted or substituted aliphatic unsaturated group in which part or all of the hydrogen atoms bonded to the carbon atoms of these groups are substituted with a halogen atom, a cyano group, or the like. Preferable examples include those having at least 50 mol% of a methyl group. These diorganopolysiloxanes may be used alone or as a mixture of two or more thereof.
両末端および側鎖にビニル基を有する直鎖状ポリオルガノシロキサンからなるシリコーンは、上記一般式A-1~一般式A-3中のRの一部がビニル基である化合物である。末端にのみビニル基を有する分岐状ポリオルガノシロキサンからなるシリコーンは、上記一般式Bで表せられる化合物である。末端及び側鎖にビニル基を有する分岐状ポリオルガノシロキサンからなるシリコーンは、上記一般式B中のRの一部がビニル基である化合物である。
A silicone comprising a linear polyorganosiloxane having vinyl groups at both ends and side chains is a compound in which a part of R in the above general formulas A-1 to A-3 is a vinyl group. Silicone comprising a branched polyorganosiloxane having a vinyl group only at the terminal is a compound represented by the above general formula B. A silicone composed of a branched polyorganosiloxane having vinyl groups at the terminals and side chains is a compound in which a part of R in the general formula B is a vinyl group.
ここで架橋反応に用いる架橋剤は公知のものでよい。架橋剤の例として、オルガノハイドロジェンポリシロキサンが挙げられる。オルガノハイドロジェンポリシロキサンは、1分子中に、ケイ素原子に結合した水素原子を少なくとも3個有するものであるが、実用上からは分子中に2個の≡SiH結合を有するものをその全量の50質量%までとし、残余を分子中に少なくとも3個の≡SiH結合を含むものとすることがよい。
Here, the crosslinking agent used for the crosslinking reaction may be a known one. Examples of the crosslinking agent include organohydrogenpolysiloxane. Organohydrogenpolysiloxane has at least three hydrogen atoms bonded to silicon atoms in one molecule, but from a practical point of view, it has a total amount of those having two ≡SiH bonds in the molecule. The mass is preferably up to mass%, and the remainder preferably contains at least three ≡SiH bonds in the molecule.
架橋反応に用いる触媒は白金系触媒が好ましい。白金系触媒は公知の白金系触媒を用いてもよく、塩化第一白金酸、塩化第二白金酸などの塩化白金酸、塩化白金酸のアルコール化合物、塩化白金酸のアルデヒド化合物あるいは塩化白金酸と各種オレフィンとの錯塩などが用いられる。架橋反応したシリコーン層は、シリコーンゴムのような柔軟性を持ったものとなり、この柔軟性が被着体との密着を容易にさせるものである。
The catalyst used for the crosslinking reaction is preferably a platinum-based catalyst. The platinum-based catalyst may be a known platinum-based catalyst, such as chloroplatinic acid such as chloroplatinic acid and chloroplatinic acid, an alcohol compound of chloroplatinic acid, an aldehyde compound of chloroplatinic acid, or chloroplatinic acid. Complex salts with various olefins are used. The crosslinked silicone layer has flexibility such as silicone rubber, and this flexibility facilitates the close contact with the adherend.
本発明に用いられるシリコーンゴムの市販品の形状は、無溶剤型、溶剤型、エマルション型があるが、いずれの型も使用できる。中でも、無溶剤型は、溶剤を使用しないため、安全性、衛生性、大気汚染の面で非常に利点がある。経済性を考慮する場合は、無溶剤型のシリコーンゴムを用いるのがよい。
The shape of the commercially available silicone rubber used in the present invention includes a solventless type, a solvent type, and an emulsion type, and any type can be used. Above all, the solventless type is very advantageous in terms of safety, hygiene, and air pollution because it does not use a solvent. In consideration of economy, it is preferable to use a solventless silicone rubber.
シリコーンゴムは、粒子を含むことが好ましく、無機粒子を含むことがより好ましく、シリカ、チタニア、ジルコニアのうち少なくとも1種の粒子であることが特に好ましい。
The silicone rubber preferably contains particles, more preferably contains inorganic particles, and particularly preferably at least one kind of particles of silica, titania and zirconia.
シリコーンゴムとしては、例えば信越化学工業株式会社の品名KE-109、KE-106、KE-1031、KE-103、KE-108、KE-581U、KE-167U、KE-1820およびKE-1886を挙げることができ、KE-167U、KE-1820およびKE-1886が好ましい。
Examples of the silicone rubber include KE-109, KE-106, KE-1031, KE-103, KE-108, KE-581U, KE-167U, KE-1820 and KE-1886 from Shin-Etsu Chemical Co., Ltd. KE-167U, KE-1820 and KE-1886 are preferred.
--シリコーンレジン--
本発明の積層体は、上記第1の透明樹脂層が少なくともシリコーンレジンをバインダー樹脂として含むことが好ましい。
上記第1の透明樹脂層に用いられる上記シリコーンレジンとして公知のものが使用できる。
シリコーンレジンは、樹脂を下記シラン化合物で一部変性し、多様な特性が付与されたた変性シリコーンレジンと、アルコキシ基又はシラノール基を有するシラン化合物を脱水縮合させ、シリコーン本来の性質を利用したストレートシリコーンレジンとに分類できる。本発明の積層体および転写フィルムは、上記シリコーンレジンが、変性シリコーンレジン、または、ストレートシリコーンレジンであることが好ましく、ストレートシリコーンレジンであることがより好ましく、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンであることが特に好ましい。
変性シリコーンレジンとしては、アクリル酸などのアクリルモノマーにシラン化合物を反応させたモノマーを重合又は他のアクリルモノマーに共重合させたアクリル樹脂変性シリコーンレジン(信越化学工業株式会社製KR-9706など)、ポリエステルの水酸基等にシラン化合物を反応させたポリエステル樹脂変性シリコーンレジン(信越化学工業株式会社製KR-5230など)、樹脂のアミノ基残基等にエポキシ含有シラン化合物を反応させたエポキシ樹脂変性シリコーンレジン、アルキッド樹脂を反応性シラン化合物で変性したアルキッド樹脂変性シリコーンレジン、オキシム系開始剤を用いて樹脂と直接共有結合を形成させるゴム系のシリコーンレジン等が使用できる。この中でも、アクリル変性シリコーンレジンまたはポリエステル変性シリコーンレジン、あるいは、これらを共重合成分として含むシリコーンレジンを含むことが、より前面板に亀裂が生じて屈曲した場合に電極パターン断線をさらに効果的に防ぐことができる観点から好ましい。 --- Silicone resin--
In the laminate of the present invention, the first transparent resin layer preferably contains at least a silicone resin as a binder resin.
A well-known thing can be used as said silicone resin used for a said 1st transparent resin layer.
Silicone resin is a straight resin that utilizes the inherent properties of silicone by dehydrating and condensing a modified silicone resin with various properties and a silane compound having an alkoxy group or silanol group. It can be classified as a silicone resin. In the laminate and transfer film of the present invention, the silicone resin is preferably a modified silicone resin or a straight silicone resin, more preferably a straight silicone resin, and at least the following general formula (1) in the molecule. A straight silicone resin containing a siloxane structure represented by
As the modified silicone resin, an acrylic resin-modified silicone resin (such as KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by polymerizing a monomer obtained by reacting an acrylic monomer such as acrylic acid with a silane compound or copolymerizing it with another acrylic monomer, Polyester resin-modified silicone resins (such as KR-5230 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by reacting a hydroxyl group of the polyester with a silane compound, and epoxy resin-modified silicone resins obtained by reacting an amino group residue of the resin with an epoxy-containing silane compound An alkyd resin-modified silicone resin obtained by modifying an alkyd resin with a reactive silane compound, a rubber-based silicone resin that directly forms a covalent bond with the resin using an oxime initiator, and the like can be used. Among these, the acrylic-modified silicone resin or the polyester-modified silicone resin, or the silicone resin containing these as a copolymer component further effectively prevents the electrode pattern from being disconnected when the front plate is cracked and bent. From the viewpoint of being able to do so.
本発明の積層体は、上記第1の透明樹脂層が少なくともシリコーンレジンをバインダー樹脂として含むことが好ましい。
上記第1の透明樹脂層に用いられる上記シリコーンレジンとして公知のものが使用できる。
シリコーンレジンは、樹脂を下記シラン化合物で一部変性し、多様な特性が付与されたた変性シリコーンレジンと、アルコキシ基又はシラノール基を有するシラン化合物を脱水縮合させ、シリコーン本来の性質を利用したストレートシリコーンレジンとに分類できる。本発明の積層体および転写フィルムは、上記シリコーンレジンが、変性シリコーンレジン、または、ストレートシリコーンレジンであることが好ましく、ストレートシリコーンレジンであることがより好ましく、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するストレートシリコーンレジンであることが特に好ましい。
変性シリコーンレジンとしては、アクリル酸などのアクリルモノマーにシラン化合物を反応させたモノマーを重合又は他のアクリルモノマーに共重合させたアクリル樹脂変性シリコーンレジン(信越化学工業株式会社製KR-9706など)、ポリエステルの水酸基等にシラン化合物を反応させたポリエステル樹脂変性シリコーンレジン(信越化学工業株式会社製KR-5230など)、樹脂のアミノ基残基等にエポキシ含有シラン化合物を反応させたエポキシ樹脂変性シリコーンレジン、アルキッド樹脂を反応性シラン化合物で変性したアルキッド樹脂変性シリコーンレジン、オキシム系開始剤を用いて樹脂と直接共有結合を形成させるゴム系のシリコーンレジン等が使用できる。この中でも、アクリル変性シリコーンレジンまたはポリエステル変性シリコーンレジン、あるいは、これらを共重合成分として含むシリコーンレジンを含むことが、より前面板に亀裂が生じて屈曲した場合に電極パターン断線をさらに効果的に防ぐことができる観点から好ましい。 --- Silicone resin--
In the laminate of the present invention, the first transparent resin layer preferably contains at least a silicone resin as a binder resin.
A well-known thing can be used as said silicone resin used for a said 1st transparent resin layer.
Silicone resin is a straight resin that utilizes the inherent properties of silicone by dehydrating and condensing a modified silicone resin with various properties and a silane compound having an alkoxy group or silanol group. It can be classified as a silicone resin. In the laminate and transfer film of the present invention, the silicone resin is preferably a modified silicone resin or a straight silicone resin, more preferably a straight silicone resin, and at least the following general formula (1) in the molecule. A straight silicone resin containing a siloxane structure represented by
As the modified silicone resin, an acrylic resin-modified silicone resin (such as KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by polymerizing a monomer obtained by reacting an acrylic monomer such as acrylic acid with a silane compound or copolymerizing it with another acrylic monomer, Polyester resin-modified silicone resins (such as KR-5230 manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by reacting a hydroxyl group of the polyester with a silane compound, and epoxy resin-modified silicone resins obtained by reacting an amino group residue of the resin with an epoxy-containing silane compound An alkyd resin-modified silicone resin obtained by modifying an alkyd resin with a reactive silane compound, a rubber-based silicone resin that directly forms a covalent bond with the resin using an oxime initiator, and the like can be used. Among these, the acrylic-modified silicone resin or the polyester-modified silicone resin, or the silicone resin containing these as a copolymer component further effectively prevents the electrode pattern from being disconnected when the front plate is cracked and bent. From the viewpoint of being able to do so.
ストレートシリコーンレジンとしては、分子内に少なくとも下記一般式(1)で表されるシロキサン構造を含有するものが使用できる。
As the straight silicone resin, one containing at least a siloxane structure represented by the following general formula (1) in the molecule can be used.
一般式(1)中、R1は独立して、水素原子、ハロゲン原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基、炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基であり、複数のR1は同一であっても異なっていてもよい。すなわち上記一般式(1)で表されるシロキサン構造を有するストレートシリコーンレジンは、同一シロキサン構造の縮合体でも良いし、異なる組合せの共縮合体でも良い。
In the general formula (1), R 1 is independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a linear or branched structure having 1 to 20 carbon atoms. Or a cyclic alkyl group, a linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms A group or an aralkyl group having 7 to 20 carbon atoms, and a plurality of R 1 may be the same or different. That is, the straight silicone resin having a siloxane structure represented by the general formula (1) may be a condensate having the same siloxane structure or a co-condensate having a different combination.
R1の表すハロゲン原子としては、フッ素原子、塩素原子等を挙げることができる。
R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等を挙げることができる。
R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基の中では、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
また、R1の表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基としては、例えばアリールアルキル基、フルオロアルキル基、クロロアルキル基、ヒドロキシアルキル基、(メタ)アクリロキシアルキル基およびメルカプトアルキル基を挙げることができる。これらの具体例としては、例えば、フェニルメチル(ベンジル)基、ジフェニルメチル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニル-n-プロピル基、2-フェニル-2-プロピル(クミル)基、3-フェニル-n-プロピル基、1-フェニルブチル基、2-フェニルブチル基、3-フェニルブチル基、4-フェニルブチル基、1-フェニルペンチル基、2-フェニルペンチル基、3-フェニルペンチル基、4-フェニルペンチル基、5-フェニルペンチル基、1-フェニルヘキシル基、2-フェニルヘキシル基、3-フェニルヘキシル基、4-フェニルヘキシル基、5-フェニルヘキシル基、6-フェニルヘキシル基、1-フェニルシクロヘキシル基、2-フェニルシクロヘキシル基、3-フェニルシクロヘキシル基、1-フェニルヘプチル基、2-フェニルヘプチル基、3-フェニルヘプチル基、4-フェニルヘプチル基、5-フェニルヘプチル基、6-フェニルヘプチル基、1-フェニルオクチル基、2-フェニルオクチル基、3-フェニルオクチル基、4-フェニルオクチル基、5-フェニルオクチル基、6-フェニルオクチル基、1-ナフチルエチル基、2-ナフチルエチル基、1-ナフチル-n-プロピル基、2-ナフチル-2-プロピル基、3-ナフチル-n-プロピル基、1-ナフチルブチル基、2-ナフチルブチル基、3-ナフチルブチル基、4-ナフチルブチル基、1-ナフチルペンチル基、2-ナフチルペンチル基、3-ナフチルペンチル基、4-ナフチルペンチル基、5-ナフチルペンチル基、1-ナフチルヘキシル基、2-ナフチルヘキシル基、3-ナフチルヘキシル基、4-ナフチルヘキシル基、5-ナフチルヘキシル基、6-ナフチルヘキシル基、1-ナフチルシクロヘキシル基、2-ナフチルシクロヘキシル基、3-ナフチルシクロヘキシル基、1-ナフチルヘプチル基、2-ナフチルヘプチル基、3-ナフチルヘプチル基、4-ナフチルヘプチル基、5-ナフチルヘプチル基、6-ナフチルヘプチル基、1-ナフチルオクチル基、2-ナフチルオクチル基、3-ナフチルオクチル基、4-ナフチルオクチル基、5-ナフチルオクチル基、6-ナフチルオクチル基、などのアリールアルキル基;フルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、(トリフルオロメチル)メチル基、ペンタフルオロエチル基、3-フルオロ-n-プロピル基、2-(トリフルオロメチル)エチル基、(ペンタフルオロエチル)メチル基、ヘプタフルオロ-n-プロピル基、4-フルオロ-n-ブチル基、3-(トリフルオロメチル)-n-プロピル基、2-(ペンタフルオロエチル)エチル基、(ヘプタフルオロ-n-プロピル)メチル基、ノナフルオロ-n-ブチル基、5-フルオロ-n-ペンチル基、4-(トリフルオロメチル)-n-ブチル基、3-(ペンタフルオロエチル)-n-プロピル基、2-(ヘプタフルオロ-n-プロピル)エチル基、(ノナフルオロ-n-ブチル)メチル基、パーフルオロ-n-ペンチル基、6-フルオロ-n-ヘキシル基、5-(トリフルオロメチル)-n-ペンチル基、4-(ペンタフルオロエチル)-n-ブチル基、3-(ヘプタフルオロ-n-プロピル)-n-プロピル基、2-(ノナフルオロ-n-ブチル)エチル基、(パーフルオロ-n-ペンチル)メチル基、パーフルオロ-n-ヘキシル基、7-(トリフルオロメチル)-n-ヘプチル基、6-(ペンタフルオロエチル)-n-ヘキシル基、5-(ヘプタフルオロ-n-プロピル)-n-ペンチル基、4-(ノナフルオロ-n-ブチル)-n-ブチル基、3-(パーフルオロ-n-ペンチル)-n-プロピル基、2-(パーフルオロ-n-ヘキシル)エチル基、(パーフルオロ-n-ヘプチル)メチル基、パーフルオロ-n-オクチル基、9-(トリフルオロメチル)-n-ノニル基、8-(ペンタフルオロエチル)-n-オクチル基、7-(ヘプタフルオロ-n-プロピル)-n-ヘプチル基、6-(ノナフルオロ-n-ブチル)-n-ヘキシル基、5-(パーフルオロ-n-ペンチル)-n-ペンチル基、4-(パーフルオロ-n-ヘキシル)-n-ブチル基、3-(パーフルオロ-n-ヘプチル)-n-プロピル基、2-(パーフルオロ-n-オクチル)エチル基、(パーフルオロ-n-ノニル)メチル基、パーフルオロ-n-デシル基、4-フルオロシクロペンチル基、4-フルオロシクロヘキシル基等のフルオロアルキル基;ならびにクロロメチル基、2-クロロエチル基、3-クロロ-n-プロピル基、4-クロロ-n-ブチル基、3-クロロシクロペンチル基、4-クロロシクロヘキシル基、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシシクロペンチル基、4-ヒドロキシシクロヘキシル基、3-(メタ)アクリロキシプロピル基、3-メルカプトプロピル基等を挙げることができる。
また、R1の表す炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基としては、例えば、ビニル基、1-メチルビニル基、1-プロペニル基、アリル基(2-プロペニル基)、2-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-シクロペンテニル基、3-シクロヘキセニル基等を挙げることができる。R1の表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基の中では、アリールアルキル基が好ましく、クミル基がより好ましい。
また、R1の表す炭素数6~20のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基等を挙げることができる。R1の表す炭素数6~20のアリール基のなかでは、加熱時にベンゼンを発生しにくい観点から無置換のフェニル基以外、すなわち、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基が好ましく、o-トリル基、m-トリル基、p-トリル基がより好ましい。
また、R1の表す炭素数7~20のアラルキル基としては、例えば、ベンジル基、フェネチル基等を挙げることができる。 Examples of the halogen atom represented by R 1 include a fluorine atom and a chlorine atom.
Examples of the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms represented by R 1 include, for example, methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group. Group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group and the like.
Examples of the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group. Group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like. Among the linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms represented by R 1 , an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
Examples of the linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 include an arylalkyl group, a fluoroalkyl group, a chloroalkyl group, a hydroxyalkyl group, and a (meth) acryloxyalkyl group. Groups and mercaptoalkyl groups. Specific examples thereof include, for example, phenylmethyl (benzyl) group, diphenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-n-propyl group, 2-phenyl-2-propyl (cumyl). ) Group, 3-phenyl-n-propyl group, 1-phenylbutyl group, 2-phenylbutyl group, 3-phenylbutyl group, 4-phenylbutyl group, 1-phenylpentyl group, 2-phenylpentyl group, 3- Phenylpentyl group, 4-phenylpentyl group, 5-phenylpentyl group, 1-phenylhexyl group, 2-phenylhexyl group, 3-phenylhexyl group, 4-phenylhexyl group, 5-phenylhexyl group, 6-phenylhexyl Group, 1-phenylcyclohexyl group, 2-phenylcyclohexyl group, 3-phenylcyclohexyl group 1-phenylheptyl group, 2-phenylheptyl group, 3-phenylheptyl group, 4-phenylheptyl group, 5-phenylheptyl group, 6-phenylheptyl group, 1-phenyloctyl group, 2-phenyloctyl group, 3- Phenyloctyl group, 4-phenyloctyl group, 5-phenyloctyl group, 6-phenyloctyl group, 1-naphthylethyl group, 2-naphthylethyl group, 1-naphthyl-n-propyl group, 2-naphthyl-2-propyl group Group, 3-naphthyl-n-propyl group, 1-naphthylbutyl group, 2-naphthylbutyl group, 3-naphthylbutyl group, 4-naphthylbutyl group, 1-naphthylpentyl group, 2-naphthylpentyl group, 3-naphthyl Pentyl group, 4-naphthylpentyl group, 5-naphthylpentyl group, 1-naphthylhexyl group, 2-naphthyl Hexyl group, 3-naphthylhexyl group, 4-naphthylhexyl group, 5-naphthylhexyl group, 6-naphthylhexyl group, 1-naphthylcyclohexyl group, 2-naphthylcyclohexyl group, 3-naphthylcyclohexyl group, 1-naphthylheptyl group 2-naphthylheptyl group, 3-naphthylheptyl group, 4-naphthylheptyl group, 5-naphthylheptyl group, 6-naphthylheptyl group, 1-naphthyloctyl group, 2-naphthyloctyl group, 3-naphthyloctyl group, 4 -Arylalkyl groups such as naphthyloctyl group, 5-naphthyloctyl group, 6-naphthyloctyl group, etc .; fluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, (trifluoromethyl) methyl group, pentafluoroethyl group , 3-fluoro-n-propyl group, 2- ( (Trifluoromethyl) ethyl group, (pentafluoroethyl) methyl group, heptafluoro-n-propyl group, 4-fluoro-n-butyl group, 3- (trifluoromethyl) -n-propyl group, 2- (pentafluoro Ethyl) ethyl group, (heptafluoro-n-propyl) methyl group, nonafluoro-n-butyl group, 5-fluoro-n-pentyl group, 4- (trifluoromethyl) -n-butyl group, 3- (pentafluoro Ethyl) -n-propyl group, 2- (heptafluoro-n-propyl) ethyl group, (nonafluoro-n-butyl) methyl group, perfluoro-n-pentyl group, 6-fluoro-n-hexyl group, 5- (Trifluoromethyl) -n-pentyl group, 4- (pentafluoroethyl) -n-butyl group, 3- (heptafluoro-n-propyl) -n Propyl group, 2- (nonafluoro-n-butyl) ethyl group, (perfluoro-n-pentyl) methyl group, perfluoro-n-hexyl group, 7- (trifluoromethyl) -n-heptyl group, 6- ( Pentafluoroethyl) -n-hexyl group, 5- (heptafluoro-n-propyl) -n-pentyl group, 4- (nonafluoro-n-butyl) -n-butyl group, 3- (perfluoro-n-pentyl) ) -N-propyl group, 2- (perfluoro-n-hexyl) ethyl group, (perfluoro-n-heptyl) methyl group, perfluoro-n-octyl group, 9- (trifluoromethyl) -n-nonyl Group, 8- (pentafluoroethyl) -n-octyl group, 7- (heptafluoro-n-propyl) -n-heptyl group, 6- (nonafluoro-n-butyl) -n-he Sil group, 5- (perfluoro-n-pentyl) -n-pentyl group, 4- (perfluoro-n-hexyl) -n-butyl group, 3- (perfluoro-n-heptyl) -n-propyl group Fluoroalkyl groups such as 2- (perfluoro-n-octyl) ethyl group, (perfluoro-n-nonyl) methyl group, perfluoro-n-decyl group, 4-fluorocyclopentyl group, 4-fluorocyclohexyl group; Chloromethyl group, 2-chloroethyl group, 3-chloro-n-propyl group, 4-chloro-n-butyl group, 3-chlorocyclopentyl group, 4-chlorocyclohexyl group, hydroxymethyl group, 2-hydroxyethyl group, 3-hydroxycyclopentyl group, 4-hydroxycyclohexyl group, 3- (meth) acryloxypropyl group, 3-mercapto A propyl group etc. can be mentioned.
Examples of the linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms represented by R 1 include, for example, vinyl group, 1-methylvinyl group, 1-propenyl group, allyl group (2-propenyl group). 2-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-cyclopentenyl group, 3-cyclohexenyl group and the like. Of the linear, branched or cyclic substituted alkyl groups having 1 to 20 carbon atoms represented by R 1 , arylalkyl groups are preferred, and cumyl groups are more preferred.
Examples of the aryl group having 6 to 20 carbon atoms represented by R 1 include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, and 2,4-xylyl group. 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group and the like. Among the aryl groups having 6 to 20 carbon atoms represented by R 1 , other than unsubstituted phenyl groups, that is, o-tolyl group, m-tolyl group, p-tolyl group, , 3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, 1-naphthyl, A tolyl group, m-tolyl group, and p-tolyl group are more preferred.
Examples of the aralkyl group having 7 to 20 carbon atoms represented by R 1 include a benzyl group and a phenethyl group.
R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等を挙げることができる。
R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。R1の表す炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基の中では、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
また、R1の表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基としては、例えばアリールアルキル基、フルオロアルキル基、クロロアルキル基、ヒドロキシアルキル基、(メタ)アクリロキシアルキル基およびメルカプトアルキル基を挙げることができる。これらの具体例としては、例えば、フェニルメチル(ベンジル)基、ジフェニルメチル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニル-n-プロピル基、2-フェニル-2-プロピル(クミル)基、3-フェニル-n-プロピル基、1-フェニルブチル基、2-フェニルブチル基、3-フェニルブチル基、4-フェニルブチル基、1-フェニルペンチル基、2-フェニルペンチル基、3-フェニルペンチル基、4-フェニルペンチル基、5-フェニルペンチル基、1-フェニルヘキシル基、2-フェニルヘキシル基、3-フェニルヘキシル基、4-フェニルヘキシル基、5-フェニルヘキシル基、6-フェニルヘキシル基、1-フェニルシクロヘキシル基、2-フェニルシクロヘキシル基、3-フェニルシクロヘキシル基、1-フェニルヘプチル基、2-フェニルヘプチル基、3-フェニルヘプチル基、4-フェニルヘプチル基、5-フェニルヘプチル基、6-フェニルヘプチル基、1-フェニルオクチル基、2-フェニルオクチル基、3-フェニルオクチル基、4-フェニルオクチル基、5-フェニルオクチル基、6-フェニルオクチル基、1-ナフチルエチル基、2-ナフチルエチル基、1-ナフチル-n-プロピル基、2-ナフチル-2-プロピル基、3-ナフチル-n-プロピル基、1-ナフチルブチル基、2-ナフチルブチル基、3-ナフチルブチル基、4-ナフチルブチル基、1-ナフチルペンチル基、2-ナフチルペンチル基、3-ナフチルペンチル基、4-ナフチルペンチル基、5-ナフチルペンチル基、1-ナフチルヘキシル基、2-ナフチルヘキシル基、3-ナフチルヘキシル基、4-ナフチルヘキシル基、5-ナフチルヘキシル基、6-ナフチルヘキシル基、1-ナフチルシクロヘキシル基、2-ナフチルシクロヘキシル基、3-ナフチルシクロヘキシル基、1-ナフチルヘプチル基、2-ナフチルヘプチル基、3-ナフチルヘプチル基、4-ナフチルヘプチル基、5-ナフチルヘプチル基、6-ナフチルヘプチル基、1-ナフチルオクチル基、2-ナフチルオクチル基、3-ナフチルオクチル基、4-ナフチルオクチル基、5-ナフチルオクチル基、6-ナフチルオクチル基、などのアリールアルキル基;フルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、(トリフルオロメチル)メチル基、ペンタフルオロエチル基、3-フルオロ-n-プロピル基、2-(トリフルオロメチル)エチル基、(ペンタフルオロエチル)メチル基、ヘプタフルオロ-n-プロピル基、4-フルオロ-n-ブチル基、3-(トリフルオロメチル)-n-プロピル基、2-(ペンタフルオロエチル)エチル基、(ヘプタフルオロ-n-プロピル)メチル基、ノナフルオロ-n-ブチル基、5-フルオロ-n-ペンチル基、4-(トリフルオロメチル)-n-ブチル基、3-(ペンタフルオロエチル)-n-プロピル基、2-(ヘプタフルオロ-n-プロピル)エチル基、(ノナフルオロ-n-ブチル)メチル基、パーフルオロ-n-ペンチル基、6-フルオロ-n-ヘキシル基、5-(トリフルオロメチル)-n-ペンチル基、4-(ペンタフルオロエチル)-n-ブチル基、3-(ヘプタフルオロ-n-プロピル)-n-プロピル基、2-(ノナフルオロ-n-ブチル)エチル基、(パーフルオロ-n-ペンチル)メチル基、パーフルオロ-n-ヘキシル基、7-(トリフルオロメチル)-n-ヘプチル基、6-(ペンタフルオロエチル)-n-ヘキシル基、5-(ヘプタフルオロ-n-プロピル)-n-ペンチル基、4-(ノナフルオロ-n-ブチル)-n-ブチル基、3-(パーフルオロ-n-ペンチル)-n-プロピル基、2-(パーフルオロ-n-ヘキシル)エチル基、(パーフルオロ-n-ヘプチル)メチル基、パーフルオロ-n-オクチル基、9-(トリフルオロメチル)-n-ノニル基、8-(ペンタフルオロエチル)-n-オクチル基、7-(ヘプタフルオロ-n-プロピル)-n-ヘプチル基、6-(ノナフルオロ-n-ブチル)-n-ヘキシル基、5-(パーフルオロ-n-ペンチル)-n-ペンチル基、4-(パーフルオロ-n-ヘキシル)-n-ブチル基、3-(パーフルオロ-n-ヘプチル)-n-プロピル基、2-(パーフルオロ-n-オクチル)エチル基、(パーフルオロ-n-ノニル)メチル基、パーフルオロ-n-デシル基、4-フルオロシクロペンチル基、4-フルオロシクロヘキシル基等のフルオロアルキル基;ならびにクロロメチル基、2-クロロエチル基、3-クロロ-n-プロピル基、4-クロロ-n-ブチル基、3-クロロシクロペンチル基、4-クロロシクロヘキシル基、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシシクロペンチル基、4-ヒドロキシシクロヘキシル基、3-(メタ)アクリロキシプロピル基、3-メルカプトプロピル基等を挙げることができる。
また、R1の表す炭素数2~20の直鎖状、分岐状もしくは環状のアルケニル基としては、例えば、ビニル基、1-メチルビニル基、1-プロペニル基、アリル基(2-プロペニル基)、2-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-シクロペンテニル基、3-シクロヘキセニル基等を挙げることができる。R1の表す炭素数1~20の直鎖状、分岐状もしくは環状の置換アルキル基の中では、アリールアルキル基が好ましく、クミル基がより好ましい。
また、R1の表す炭素数6~20のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基等を挙げることができる。R1の表す炭素数6~20のアリール基のなかでは、加熱時にベンゼンを発生しにくい観点から無置換のフェニル基以外、すなわち、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基が好ましく、o-トリル基、m-トリル基、p-トリル基がより好ましい。
また、R1の表す炭素数7~20のアラルキル基としては、例えば、ベンジル基、フェネチル基等を挙げることができる。 Examples of the halogen atom represented by R 1 include a fluorine atom and a chlorine atom.
Examples of the linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms represented by R 1 include, for example, methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group. Group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group and the like.
Examples of the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group. Group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like. Among the linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms represented by R 1 , an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
Examples of the linear, branched or cyclic substituted alkyl group having 1 to 20 carbon atoms represented by R 1 include an arylalkyl group, a fluoroalkyl group, a chloroalkyl group, a hydroxyalkyl group, and a (meth) acryloxyalkyl group. Groups and mercaptoalkyl groups. Specific examples thereof include, for example, phenylmethyl (benzyl) group, diphenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-n-propyl group, 2-phenyl-2-propyl (cumyl). ) Group, 3-phenyl-n-propyl group, 1-phenylbutyl group, 2-phenylbutyl group, 3-phenylbutyl group, 4-phenylbutyl group, 1-phenylpentyl group, 2-phenylpentyl group, 3- Phenylpentyl group, 4-phenylpentyl group, 5-phenylpentyl group, 1-phenylhexyl group, 2-phenylhexyl group, 3-phenylhexyl group, 4-phenylhexyl group, 5-phenylhexyl group, 6-phenylhexyl Group, 1-phenylcyclohexyl group, 2-phenylcyclohexyl group, 3-phenylcyclohexyl group 1-phenylheptyl group, 2-phenylheptyl group, 3-phenylheptyl group, 4-phenylheptyl group, 5-phenylheptyl group, 6-phenylheptyl group, 1-phenyloctyl group, 2-phenyloctyl group, 3- Phenyloctyl group, 4-phenyloctyl group, 5-phenyloctyl group, 6-phenyloctyl group, 1-naphthylethyl group, 2-naphthylethyl group, 1-naphthyl-n-propyl group, 2-naphthyl-2-propyl group Group, 3-naphthyl-n-propyl group, 1-naphthylbutyl group, 2-naphthylbutyl group, 3-naphthylbutyl group, 4-naphthylbutyl group, 1-naphthylpentyl group, 2-naphthylpentyl group, 3-naphthyl Pentyl group, 4-naphthylpentyl group, 5-naphthylpentyl group, 1-naphthylhexyl group, 2-naphthyl Hexyl group, 3-naphthylhexyl group, 4-naphthylhexyl group, 5-naphthylhexyl group, 6-naphthylhexyl group, 1-naphthylcyclohexyl group, 2-naphthylcyclohexyl group, 3-naphthylcyclohexyl group, 1-naphthylheptyl group 2-naphthylheptyl group, 3-naphthylheptyl group, 4-naphthylheptyl group, 5-naphthylheptyl group, 6-naphthylheptyl group, 1-naphthyloctyl group, 2-naphthyloctyl group, 3-naphthyloctyl group, 4 -Arylalkyl groups such as naphthyloctyl group, 5-naphthyloctyl group, 6-naphthyloctyl group, etc .; fluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, (trifluoromethyl) methyl group, pentafluoroethyl group , 3-fluoro-n-propyl group, 2- ( (Trifluoromethyl) ethyl group, (pentafluoroethyl) methyl group, heptafluoro-n-propyl group, 4-fluoro-n-butyl group, 3- (trifluoromethyl) -n-propyl group, 2- (pentafluoro Ethyl) ethyl group, (heptafluoro-n-propyl) methyl group, nonafluoro-n-butyl group, 5-fluoro-n-pentyl group, 4- (trifluoromethyl) -n-butyl group, 3- (pentafluoro Ethyl) -n-propyl group, 2- (heptafluoro-n-propyl) ethyl group, (nonafluoro-n-butyl) methyl group, perfluoro-n-pentyl group, 6-fluoro-n-hexyl group, 5- (Trifluoromethyl) -n-pentyl group, 4- (pentafluoroethyl) -n-butyl group, 3- (heptafluoro-n-propyl) -n Propyl group, 2- (nonafluoro-n-butyl) ethyl group, (perfluoro-n-pentyl) methyl group, perfluoro-n-hexyl group, 7- (trifluoromethyl) -n-heptyl group, 6- ( Pentafluoroethyl) -n-hexyl group, 5- (heptafluoro-n-propyl) -n-pentyl group, 4- (nonafluoro-n-butyl) -n-butyl group, 3- (perfluoro-n-pentyl) ) -N-propyl group, 2- (perfluoro-n-hexyl) ethyl group, (perfluoro-n-heptyl) methyl group, perfluoro-n-octyl group, 9- (trifluoromethyl) -n-nonyl Group, 8- (pentafluoroethyl) -n-octyl group, 7- (heptafluoro-n-propyl) -n-heptyl group, 6- (nonafluoro-n-butyl) -n-he Sil group, 5- (perfluoro-n-pentyl) -n-pentyl group, 4- (perfluoro-n-hexyl) -n-butyl group, 3- (perfluoro-n-heptyl) -n-propyl group Fluoroalkyl groups such as 2- (perfluoro-n-octyl) ethyl group, (perfluoro-n-nonyl) methyl group, perfluoro-n-decyl group, 4-fluorocyclopentyl group, 4-fluorocyclohexyl group; Chloromethyl group, 2-chloroethyl group, 3-chloro-n-propyl group, 4-chloro-n-butyl group, 3-chlorocyclopentyl group, 4-chlorocyclohexyl group, hydroxymethyl group, 2-hydroxyethyl group, 3-hydroxycyclopentyl group, 4-hydroxycyclohexyl group, 3- (meth) acryloxypropyl group, 3-mercapto A propyl group etc. can be mentioned.
Examples of the linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms represented by R 1 include, for example, vinyl group, 1-methylvinyl group, 1-propenyl group, allyl group (2-propenyl group). 2-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-cyclopentenyl group, 3-cyclohexenyl group and the like. Of the linear, branched or cyclic substituted alkyl groups having 1 to 20 carbon atoms represented by R 1 , arylalkyl groups are preferred, and cumyl groups are more preferred.
Examples of the aryl group having 6 to 20 carbon atoms represented by R 1 include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, and 2,4-xylyl group. 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group and the like. Among the aryl groups having 6 to 20 carbon atoms represented by R 1 , other than unsubstituted phenyl groups, that is, o-tolyl group, m-tolyl group, p-tolyl group, , 3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, 1-naphthyl, A tolyl group, m-tolyl group, and p-tolyl group are more preferred.
Examples of the aralkyl group having 7 to 20 carbon atoms represented by R 1 include a benzyl group and a phenethyl group.
上記一般式(1)中、R1は独立して、水素原子、炭素数1~20の直鎖状、分岐状もしくは環状のアルキル基、炭素数1~6の直鎖状、分岐状もしくは環状の置換アルキル基または炭素数6~9のアリール基であることが好ましく、水素原子、メチル基、フェニル基またはトリル基を表すことがより好ましい。
上記一般式(1)で表されるシロキサン構造は、R1としてメチル基を含むことが、加飾層のL値を特に高めることができる観点から好ましい。 In the general formula (1), R 1 is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic group having 1 to 6 carbon atoms. Are preferably substituted alkyl groups or aryl groups having 6 to 9 carbon atoms, and more preferably represent a hydrogen atom, a methyl group, a phenyl group or a tolyl group.
The siloxane structure represented by the general formula (1) preferably contains a methyl group as R 1 from the viewpoint of particularly enhancing the L value of the decorative layer.
上記一般式(1)で表されるシロキサン構造は、R1としてメチル基を含むことが、加飾層のL値を特に高めることができる観点から好ましい。 In the general formula (1), R 1 is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic group having 1 to 6 carbon atoms. Are preferably substituted alkyl groups or aryl groups having 6 to 9 carbon atoms, and more preferably represent a hydrogen atom, a methyl group, a phenyl group or a tolyl group.
The siloxane structure represented by the general formula (1) preferably contains a methyl group as R 1 from the viewpoint of particularly enhancing the L value of the decorative layer.
上記ストレートシリコーンレジンは、R1が互いに異なる2種以上の上記一般式(1)
で表されるシロキサン構造の共重合体であることも好ましい。この場合、R1がアルキル基である上記一般式(1)で表されるシロキサン構造と、R1が水素原子、置換アルキル基またはアリール基である上記一般式(1)で表されるシロキサン構造との共重合体を好ましく挙げることができる。共重合比としては特に制限はないが、R1がアルキル基である上記一般式(1)で表されるシロキサン構造が、全ての上記一般式(1)で表されるシロキサン構造中、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。 The straight silicone resin includes two or more general formulas (1) in which R 1 are different from each other.
It is also preferable that it is a copolymer of the siloxane structure represented by these. In this case, the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group and the siloxane structure represented by the general formula (1) in which R 1 is a hydrogen atom, a substituted alkyl group, or an aryl group. And a copolymer thereof. The copolymerization ratio is not particularly limited, but the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group is 50 to 50% of all the siloxane structures represented by the general formula (1). The amount is preferably 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%.
で表されるシロキサン構造の共重合体であることも好ましい。この場合、R1がアルキル基である上記一般式(1)で表されるシロキサン構造と、R1が水素原子、置換アルキル基またはアリール基である上記一般式(1)で表されるシロキサン構造との共重合体を好ましく挙げることができる。共重合比としては特に制限はないが、R1がアルキル基である上記一般式(1)で表されるシロキサン構造が、全ての上記一般式(1)で表されるシロキサン構造中、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。 The straight silicone resin includes two or more general formulas (1) in which R 1 are different from each other.
It is also preferable that it is a copolymer of the siloxane structure represented by these. In this case, the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group and the siloxane structure represented by the general formula (1) in which R 1 is a hydrogen atom, a substituted alkyl group, or an aryl group. And a copolymer thereof. The copolymerization ratio is not particularly limited, but the siloxane structure represented by the general formula (1) in which R 1 is an alkyl group is 50 to 50% of all the siloxane structures represented by the general formula (1). The amount is preferably 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%.
本発明に用いられるストレートシリコーンレジンとしては、分子内に上記一般式(1)で表されるシロキサン構造に加えて、下記一般式(2)で表されるシロキサン構造との共縮合からなるシロキサン構造を含有するものも好ましく使用できる。
一般式(2)中、R2は上記一般式(1)のR1と同義であり、好ましい範囲もR1と同様である。
As a straight silicone resin used in the present invention, a siloxane structure comprising a co-condensation with a siloxane structure represented by the following general formula (2) in addition to the siloxane structure represented by the general formula (1) in the molecule. The thing containing this can also be used preferably.
In general formula (2), R 2 has the same meaning as R 1 in general formula (1), and the preferred range is also the same as R 1 .
ストレートシリコーンレジンの具体例としては、炭素数1~20のアルキル基とアルコキシ基を有するシラン化合物の縮合から調製されるアルキル系ストレートシリコーン(メチル系ストレートシリコーン等)、メチルフェニル等のアルキル・アリール系ストレートシリコーン、フェニル等のアリール系ストレートシリコーン、メチルハイドロジェン等のハイドロジェン系ストレートシリコーンが使用できる。
より好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルフェニル系ストレートシリコーンレジン、アクリル樹脂変性シリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンであり、加熱時にベンゼンを発生せず、明度の低下抑制の観点から、特に好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンである。
これらのシリコーンレジンは単独で使用しても2種以上を併用してもよく、これらを任意の比率で混合することにより膜物性を制御できる。 Specific examples of straight silicone resins include alkyl straight silicones prepared from the condensation of silane compounds having an alkyl group having 1 to 20 carbon atoms and an alkoxy group (methyl straight silicones, etc.), alkyl-aryls such as methylphenyl, etc. Straight silicone, aryl straight silicone such as phenyl, and hydrogen straight silicone such as methyl hydrogen can be used.
More preferred are methyl-based straight silicone resins, methyl-tolyl-based straight silicone resins, methyl-phenyl-based straight silicone resins, acrylic resin-modified silicone resins, methyl-hydrogen-based straight silicone resins, and hydrogen-hydrogen-based straight silicone resins. From the viewpoint of preventing the decrease in lightness without generating benzene, methyl straight silicone resin, methyl tolyl straight silicone resin, methyl hydrogen straight silicone resin, and hydrogen tol straight silicone resin are particularly preferable.
These silicone resins may be used alone or in combination of two or more, and the film properties can be controlled by mixing them at an arbitrary ratio.
より好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルフェニル系ストレートシリコーンレジン、アクリル樹脂変性シリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンであり、加熱時にベンゼンを発生せず、明度の低下抑制の観点から、特に好ましいのは、メチル系ストレートシリコーンレジン、メチルトリル系ストレートシリコーンレジン、メチルハイドロジェン系ストレートシリコーンレジン、ハイドロジェントリル系ストレートシリコーンレジンである。
これらのシリコーンレジンは単独で使用しても2種以上を併用してもよく、これらを任意の比率で混合することにより膜物性を制御できる。 Specific examples of straight silicone resins include alkyl straight silicones prepared from the condensation of silane compounds having an alkyl group having 1 to 20 carbon atoms and an alkoxy group (methyl straight silicones, etc.), alkyl-aryls such as methylphenyl, etc. Straight silicone, aryl straight silicone such as phenyl, and hydrogen straight silicone such as methyl hydrogen can be used.
More preferred are methyl-based straight silicone resins, methyl-tolyl-based straight silicone resins, methyl-phenyl-based straight silicone resins, acrylic resin-modified silicone resins, methyl-hydrogen-based straight silicone resins, and hydrogen-hydrogen-based straight silicone resins. From the viewpoint of preventing the decrease in lightness without generating benzene, methyl straight silicone resin, methyl tolyl straight silicone resin, methyl hydrogen straight silicone resin, and hydrogen tol straight silicone resin are particularly preferable.
These silicone resins may be used alone or in combination of two or more, and the film properties can be controlled by mixing them at an arbitrary ratio.
ストレートシリコーンレジンの重量平均分子量は1000~5000000であることが好ましく、2000~3000000であることがより好ましく、2500~3000000であることが特に好ましい。分子量が1000以上であると、製膜性が良好となる。
The weight average molecular weight of the straight silicone resin is preferably 1000 to 5000000, more preferably 2000 to 3000000, and particularly preferably 2500 to 3000000. When the molecular weight is 1000 or more, the film forming property is good.
本明細書における重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィ(GPC)により測定することができる。具体的には、下記の条件で測定することができる。
・カラム:GPCカラム TSKgelSuper HZM-H(東ソー社製)
・溶媒:テトラヒドロフラン
・標準物質:単分散ポリスチレン The weight average molecular weight in this specification can be measured by, for example, gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions.
Column: GPC column TSKgelSuper HZM-H (manufactured by Tosoh Corporation)
・ Solvent: Tetrahydrofuran ・ Standard: Monodisperse polystyrene
・カラム:GPCカラム TSKgelSuper HZM-H(東ソー社製)
・溶媒:テトラヒドロフラン
・標準物質:単分散ポリスチレン The weight average molecular weight in this specification can be measured by, for example, gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions.
Column: GPC column TSKgelSuper HZM-H (manufactured by Tosoh Corporation)
・ Solvent: Tetrahydrofuran ・ Standard: Monodisperse polystyrene
変性シリコーンレジン及びストレートシリコーンレジンを調製するために使用するシラン化合物としては、
テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトライソブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、クミルトリメトキシシラン、トリルトリメトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、メチルトリフェノキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシエトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシランなどのトリアルコキシ、トリアシルオキシまたはトリフェノキシシラン類、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメチルジメトキシシラン、γ-メルカプトプロピルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジプロポキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、γ-グリシドキシプロピルフェニルジメトキシシラン、γ-グリシドキシプロピルフェニルジエトキシシランなどのアルコキシシランまたはジアシルオキシシラン類、ジメトキシメチルシラン、トリメトキシシラン、ジメチルエトキシシラン、ジアセトキシメチルシラン、ジエトキシメチルシラン、ジエチルメチルシラン、トリエチルシラン、ブチルジメチルシラン、ジメチルフェニルシラン、メチルフェニルビニルシラン、ジフェニルメチルシラン、トリプロピルシラン、トリペンチルオキシシラン、トリフェニルシラン、トリヘキシルシラン、ジエチルシラン、アリルジメチルシラン、メチルフェニルシラン、ジフェニルシラン、フェニルシラン、オクチルシラン、1,4-ビス(ジメチルシリル)ベンゼン、および1,1,3,3-テトラメチルジシロキサン、ジメチルトリルシラン、メチルトリルビニルシラン、ジトリルメチルシラン、トリトリルシラン、ジメチルベンジルシラン、メチルベンジルビニルシラン、ジベンジルメチルシラン、トリベンジルシラン、ジフェニルシラン、2-クロロエチルシラン、ビス[(p-ジメチルシリル)フェニル]エーテル、1,4-ジメチルジシリルエタン、1,3,5-トリス(ジメチルシリル)ベンゼン、1,3,5-トリメチル-1,3,5-トリシラン、ポリ(メチルシリレン)フェニレン、及びポリ(メチルシリレン)メチレン、テトラクロロシラン、トリクロロシラン、トリエトキシシラン、トリ-n-プロポキシシラン、トリ-i-プロポキシシラン、トリ-n-ブトキシシラン、トリ-sec-ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ-n-プロポキシシラン、フルオロトリ-i-プロポキシシラン、フルオロトリ-n-ブトキシシラン、フルオロトリ-sec-ブトキシシラン、メチルトリクロロシラン、メチルトリ-n-プロポキシシラン、メチルトリ-i-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、2-(トリフルオロメチル)エチルトリクロロシラン、2-(トリフルオロメチル)エチルトリメトキシシラン、2-(トリフルオロメチル)エチルトリエトキシシラン、2-(トリフルオロメチル)エチルトリ-n-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-i-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-n-ブトキシシラン、2-(トリフルオロメチル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリクロロシラン、2-(パーフルオロ-n-ヘキシル)エチルトリメトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリエトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリクロロシラン、2-(パーフルオロ-n-オクチル)エチルトリメトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリエトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-sec-ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ-n-プロポキシシラン、ヒドロキシメチルトリ-i-プロポキシシラン、ヒドロキシメチルトリ-n-ブトキシシラン、ヒドロキシメチルトリ-sec-ブトキシシラン、3-(メタ)アクリロキシプロピルトリクロロシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリ-n-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-i-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-n-ブトキシシラン、3-(メタ)アクリロキシプロピルトリ-sec-ブトキシシラン、3-メルカプトプロピルトリクロロシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリ-n-プロポキシシラン、3-メルカプトプロピルトリ-i-プロポキシシラン、3-メルカプトプロピルトリ-n-ブトキシシラン、3-メルカプトプロピルトリ-sec-ブトキシシラン、ビニルトリクロロシラン、ビニルトリ-n-プロポキシシラン、ビニルトリ-i-プロポキシシラン、ビニルトリ-n-ブトキシシラン、ビニルトリ-sec-ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ-n-プロポキシシラン、アリルトリ-i-プロポキシシラン、アリルトリ-n-ブトキシシラン、アリルトリ-sec-ブトキシシラン、フェニルトリクロロシラン、フェニルトリ-n-プロポキシシラン、フェニルトリ-i-プロポキシシラン、フェニルトリ-n-ブトキシシラン、フェニルトリ-sec-ブトキシシラン、メチルジクロロシラン、メチルジエトキシシラン、メチルジ-n-プロポキシシラン、メチルジ-i-プロポキシシラン、メチルジ-n-ブトキシシラン、メチルジ-sec-ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-プロポキシシラン、ジメチルジ-i-プロポキシシラン、ジメチルジ-n-ブトキシシラン、ジメチルジ-sec-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジクロロシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジエトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-i-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-sec-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジクロロシラン、(メチル)(γ-グリシドキシプロピル)ジメトキシシラン、(メチル)(γ-グリシドキシプロピル)ジエトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-i-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-sec-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジクロロシラン、(メチル)(3-メルカプトプロピル)ジメト
キシシラン、(メチル)(3-メルカプトプロピル)ジエトキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-i-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジ-sec-ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ-n-プロポキシシラン、(メチル)(ビニル)ジ-i-プロポキシシラン、(メチル)(ビニル)ジ-n-ブトキシシラン、(メチル)(ビニル)ジ-sec-ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ-n-プロポキシシラン、ジビニルジ-i-プロポキシシラン、ジビニルジ-n-ブトキシシラン、ジビニルジ-sec-ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ-n-プロポキシシラン、ジフェニルジ-i-プロポキシシラン、ジフェニルジ-n-ブトキシシラン、ジフェニルジ-sec-ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n-プロポキシトリメチルシラン、i-プロポキシトリメチルシラン、n-ブトキシトリメチルシラン、sec-ブトキシトリメチルシラン、t-ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等をそれぞれ挙げることができる。但し、本発明はこれらの具体例により限定されない。 As a silane compound used to prepare a modified silicone resin and a straight silicone resin,
Tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraisobutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, Ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, propyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane , Cumyltrimethoxysilane, tolyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropi Trimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxy Silane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, β-cyanoethyltriethoxysilane, methyltriphenoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycid Xylethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypro Pyrtriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxy Propyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltrimethoxyethoxysilane, γ-glycidoxypropyltriphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycid Xylbutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycid Xibutyltrimethoxy , Δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3,4-epoxycyclohexyl) ethyltributoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4 Epoxycyclohexyl) propyltri Trialkoxy such as toxisilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, triacyloxy or triphenoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropyl Methyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethyldimethoxysilane, γ-mercaptopropyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, vinylmethyl Dimethoxysilane, vinylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethyldiethoxysilane, α-glycidoxyethyl ester Rudimethoxysilane, α-glycidoxyethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxy Propylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ- Glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyl Methoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylethyldipropoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, γ-glycid Alkoxysilanes or diacyloxysilanes such as xylpropylphenyldimethoxysilane, γ-glycidoxypropylphenyldiethoxysilane, dimethoxymethylsilane, trimethoxysilane, dimethylethoxysilane, diacetoxymethylsilane, diethoxymethylsilane, diethylmethyl Silane, triethylsilane, butyldimethylsilane, dimethylphenylsilane, methylphenylvinylsilane, diphenylmethylsilane, tripropylsilane, tripentyloxysilane, Nylsilane, trihexylsilane, diethylsilane, allyldimethylsilane, methylphenylsilane, diphenylsilane, phenylsilane, octylsilane, 1,4-bis (dimethylsilyl) benzene, and 1,1,3,3-tetramethyldisiloxane , Dimethyltolylsilane, methyltolylvinylsilane, ditolylmethylsilane, tolylylsilane, dimethylbenzylsilane, methylbenzylvinylsilane, dibenzylmethylsilane, tribenzylsilane, diphenylsilane, 2-chloroethylsilane, bis [(p-dimethyl Silyl) phenyl] ether, 1,4-dimethyldisilylethane, 1,3,5-tris (dimethylsilyl) benzene, 1,3,5-trimethyl-1,3,5-trisilane, poly (methylsilylene) phenylene ,as well as Poly (methylsilylene) methylene, tetrachlorosilane, trichlorosilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluoro Trimethoxysilane, fluorotriethoxysilane, fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methyltrichlorosilane, methyltri-n-propoxy Silane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, 2- (trifluoromethyl) ethyltrichlorosilane, 2- (trifluoromethyl) Rutrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (trifluoromethyl ) Ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltrimethoxysilane 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane, 2- (Perfluoro-n-hexyl) ester Rutri-n-butoxysilane, 2- (perfluoro-n-hexyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-octyl) ethyltrichlorosilane, 2- (perfluoro-n-octyl) ethyltri Methoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-i-propoxy Silane, 2- (perfluoro-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-octyl) ethyltri-sec-butoxysilane, hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltri Methoxysilane, hydroxyme Tiltly-n-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri-n-butoxysilane, hydroxymethyltri-sec-butoxysilane, 3- (meth) acryloxypropyltrichlorosilane, 3- (meth) Acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propoxysilane, 3 -(Meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxypropyltri-sec-butoxysilane, 3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltri Toxisilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, 3-mercaptopropyltri-n-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane, vinyltrichlorosilane, Vinyltri-n-propoxysilane, vinyltri-i-propoxysilane, vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane, allyltri -I-propoxysilane, allyltri-n-butoxysilane, allyltri-sec-butoxysilane, phenyltrichlorosilane, phenyltri-n-propoxysilane, phenyltri-i Propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec-butoxysilane, methyldichlorosilane, methyldiethoxysilane, methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxysilane, methyldi -Sec-butoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane, (methyl) [2- (Perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl Til] diethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i-propoxy Silane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane, (methyl ) (Γ-glycidoxypropyl) dichlorosilane, (methyl) (γ-glycidoxypropyl) dimethoxysilane, (methyl) (γ-glycidoxypropyl) diethoxysilane, (methyl) (γ-glycidoxy Propyl) di-n-propoxysilane, (methyl) (γ-glycidoxypropyl) di-i-propoxysilane, (methyl) (γ-glycidoxypro ) Di-n-butoxysilane, (methyl) (γ-glycidoxypropyl) di-sec-butoxysilane, (methyl) (3-mercaptopropyl) dichlorosilane, (methyl) (3-mercaptopropyl) dimethoxysilane , (Methyl) (3-mercaptopropyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n-propoxysilane, (methyl) (3-mercaptopropyl) di-i-propoxysilane, (methyl) ( 3-mercaptopropyl) di-n-butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane, (methyl) (vinyl) dichlorosilane, (methyl) (vinyl) dimethoxysilane, (methyl) ( Vinyl) diethoxysilane, (methyl) (vinyl) di-n-propoxysilane, (meth) ) (Vinyl) di-i-propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane, divinyldichlorosilane, divinyldimethoxysilane, divinyldiethoxysilane , Divinyldi-n-propoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane, diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi-n-propoxysilane, Diphenyldi-i-propoxysilane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane, chlorotrimethylsilane, Motrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane, (chloro) ( Vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane, (chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane, (ethoxy) (methyl) diphenylsilane, etc. Can be mentioned respectively. However, the present invention is not limited to these specific examples.
テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトライソブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、クミルトリメトキシシラン、トリルトリメトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、メチルトリフェノキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシエトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシランなどのトリアルコキシ、トリアシルオキシまたはトリフェノキシシラン類、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメチルジメトキシシラン、γ-メルカプトプロピルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジプロポキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、γ-グリシドキシプロピルフェニルジメトキシシラン、γ-グリシドキシプロピルフェニルジエトキシシランなどのアルコキシシランまたはジアシルオキシシラン類、ジメトキシメチルシラン、トリメトキシシラン、ジメチルエトキシシラン、ジアセトキシメチルシラン、ジエトキシメチルシラン、ジエチルメチルシラン、トリエチルシラン、ブチルジメチルシラン、ジメチルフェニルシラン、メチルフェニルビニルシラン、ジフェニルメチルシラン、トリプロピルシラン、トリペンチルオキシシラン、トリフェニルシラン、トリヘキシルシラン、ジエチルシラン、アリルジメチルシラン、メチルフェニルシラン、ジフェニルシラン、フェニルシラン、オクチルシラン、1,4-ビス(ジメチルシリル)ベンゼン、および1,1,3,3-テトラメチルジシロキサン、ジメチルトリルシラン、メチルトリルビニルシラン、ジトリルメチルシラン、トリトリルシラン、ジメチルベンジルシラン、メチルベンジルビニルシラン、ジベンジルメチルシラン、トリベンジルシラン、ジフェニルシラン、2-クロロエチルシラン、ビス[(p-ジメチルシリル)フェニル]エーテル、1,4-ジメチルジシリルエタン、1,3,5-トリス(ジメチルシリル)ベンゼン、1,3,5-トリメチル-1,3,5-トリシラン、ポリ(メチルシリレン)フェニレン、及びポリ(メチルシリレン)メチレン、テトラクロロシラン、トリクロロシラン、トリエトキシシラン、トリ-n-プロポキシシラン、トリ-i-プロポキシシラン、トリ-n-ブトキシシラン、トリ-sec-ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ-n-プロポキシシラン、フルオロトリ-i-プロポキシシラン、フルオロトリ-n-ブトキシシラン、フルオロトリ-sec-ブトキシシラン、メチルトリクロロシラン、メチルトリ-n-プロポキシシラン、メチルトリ-i-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、2-(トリフルオロメチル)エチルトリクロロシラン、2-(トリフルオロメチル)エチルトリメトキシシラン、2-(トリフルオロメチル)エチルトリエトキシシラン、2-(トリフルオロメチル)エチルトリ-n-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-i-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-n-ブトキシシラン、2-(トリフルオロメチル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリクロロシラン、2-(パーフルオロ-n-ヘキシル)エチルトリメトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリエトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリクロロシラン、2-(パーフルオロ-n-オクチル)エチルトリメトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリエトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-sec-ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ-n-プロポキシシラン、ヒドロキシメチルトリ-i-プロポキシシラン、ヒドロキシメチルトリ-n-ブトキシシラン、ヒドロキシメチルトリ-sec-ブトキシシラン、3-(メタ)アクリロキシプロピルトリクロロシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリ-n-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-i-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-n-ブトキシシラン、3-(メタ)アクリロキシプロピルトリ-sec-ブトキシシラン、3-メルカプトプロピルトリクロロシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリ-n-プロポキシシラン、3-メルカプトプロピルトリ-i-プロポキシシラン、3-メルカプトプロピルトリ-n-ブトキシシラン、3-メルカプトプロピルトリ-sec-ブトキシシラン、ビニルトリクロロシラン、ビニルトリ-n-プロポキシシラン、ビニルトリ-i-プロポキシシラン、ビニルトリ-n-ブトキシシラン、ビニルトリ-sec-ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ-n-プロポキシシラン、アリルトリ-i-プロポキシシラン、アリルトリ-n-ブトキシシラン、アリルトリ-sec-ブトキシシラン、フェニルトリクロロシラン、フェニルトリ-n-プロポキシシラン、フェニルトリ-i-プロポキシシラン、フェニルトリ-n-ブトキシシラン、フェニルトリ-sec-ブトキシシラン、メチルジクロロシラン、メチルジエトキシシラン、メチルジ-n-プロポキシシラン、メチルジ-i-プロポキシシラン、メチルジ-n-ブトキシシラン、メチルジ-sec-ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-プロポキシシラン、ジメチルジ-i-プロポキシシラン、ジメチルジ-n-ブトキシシラン、ジメチルジ-sec-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジクロロシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジエトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-i-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-sec-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジクロロシラン、(メチル)(γ-グリシドキシプロピル)ジメトキシシラン、(メチル)(γ-グリシドキシプロピル)ジエトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-i-プロポキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-n-ブトキシシラン、(メチル)(γ-グリシドキシプロピル)ジ-sec-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジクロロシラン、(メチル)(3-メルカプトプロピル)ジメト
キシシラン、(メチル)(3-メルカプトプロピル)ジエトキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-i-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジ-sec-ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ-n-プロポキシシラン、(メチル)(ビニル)ジ-i-プロポキシシラン、(メチル)(ビニル)ジ-n-ブトキシシラン、(メチル)(ビニル)ジ-sec-ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ-n-プロポキシシラン、ジビニルジ-i-プロポキシシラン、ジビニルジ-n-ブトキシシラン、ジビニルジ-sec-ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ-n-プロポキシシラン、ジフェニルジ-i-プロポキシシラン、ジフェニルジ-n-ブトキシシラン、ジフェニルジ-sec-ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n-プロポキシトリメチルシラン、i-プロポキシトリメチルシラン、n-ブトキシトリメチルシラン、sec-ブトキシトリメチルシラン、t-ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等をそれぞれ挙げることができる。但し、本発明はこれらの具体例により限定されない。 As a silane compound used to prepare a modified silicone resin and a straight silicone resin,
Tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraisobutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, Ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, propyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane , Cumyltrimethoxysilane, tolyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropi Trimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxy Silane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, β-cyanoethyltriethoxysilane, methyltriphenoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycid Xylethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypro Pyrtriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxy Propyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltrimethoxyethoxysilane, γ-glycidoxypropyltriphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycid Xylbutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycid Xibutyltrimethoxy , Δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3,4-epoxycyclohexyl) ethyltributoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4 Epoxycyclohexyl) propyltri Trialkoxy such as toxisilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, triacyloxy or triphenoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropyl Methyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethyldimethoxysilane, γ-mercaptopropyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, vinylmethyl Dimethoxysilane, vinylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethyldiethoxysilane, α-glycidoxyethyl ester Rudimethoxysilane, α-glycidoxyethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxy Propylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ- Glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyl Methoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylethyldipropoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, γ-glycid Alkoxysilanes or diacyloxysilanes such as xylpropylphenyldimethoxysilane, γ-glycidoxypropylphenyldiethoxysilane, dimethoxymethylsilane, trimethoxysilane, dimethylethoxysilane, diacetoxymethylsilane, diethoxymethylsilane, diethylmethyl Silane, triethylsilane, butyldimethylsilane, dimethylphenylsilane, methylphenylvinylsilane, diphenylmethylsilane, tripropylsilane, tripentyloxysilane, Nylsilane, trihexylsilane, diethylsilane, allyldimethylsilane, methylphenylsilane, diphenylsilane, phenylsilane, octylsilane, 1,4-bis (dimethylsilyl) benzene, and 1,1,3,3-tetramethyldisiloxane , Dimethyltolylsilane, methyltolylvinylsilane, ditolylmethylsilane, tolylylsilane, dimethylbenzylsilane, methylbenzylvinylsilane, dibenzylmethylsilane, tribenzylsilane, diphenylsilane, 2-chloroethylsilane, bis [(p-dimethyl Silyl) phenyl] ether, 1,4-dimethyldisilylethane, 1,3,5-tris (dimethylsilyl) benzene, 1,3,5-trimethyl-1,3,5-trisilane, poly (methylsilylene) phenylene ,as well as Poly (methylsilylene) methylene, tetrachlorosilane, trichlorosilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluoro Trimethoxysilane, fluorotriethoxysilane, fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methyltrichlorosilane, methyltri-n-propoxy Silane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, 2- (trifluoromethyl) ethyltrichlorosilane, 2- (trifluoromethyl) Rutrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (trifluoromethyl ) Ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltrimethoxysilane 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane, 2- (Perfluoro-n-hexyl) ester Rutri-n-butoxysilane, 2- (perfluoro-n-hexyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-octyl) ethyltrichlorosilane, 2- (perfluoro-n-octyl) ethyltri Methoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-i-propoxy Silane, 2- (perfluoro-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-octyl) ethyltri-sec-butoxysilane, hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltri Methoxysilane, hydroxyme Tiltly-n-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri-n-butoxysilane, hydroxymethyltri-sec-butoxysilane, 3- (meth) acryloxypropyltrichlorosilane, 3- (meth) Acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propoxysilane, 3 -(Meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxypropyltri-sec-butoxysilane, 3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltri Toxisilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, 3-mercaptopropyltri-n-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane, vinyltrichlorosilane, Vinyltri-n-propoxysilane, vinyltri-i-propoxysilane, vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane, allyltri -I-propoxysilane, allyltri-n-butoxysilane, allyltri-sec-butoxysilane, phenyltrichlorosilane, phenyltri-n-propoxysilane, phenyltri-i Propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec-butoxysilane, methyldichlorosilane, methyldiethoxysilane, methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxysilane, methyldi -Sec-butoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane, (methyl) [2- (Perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl Til] diethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i-propoxy Silane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane, (methyl ) (Γ-glycidoxypropyl) dichlorosilane, (methyl) (γ-glycidoxypropyl) dimethoxysilane, (methyl) (γ-glycidoxypropyl) diethoxysilane, (methyl) (γ-glycidoxy Propyl) di-n-propoxysilane, (methyl) (γ-glycidoxypropyl) di-i-propoxysilane, (methyl) (γ-glycidoxypro ) Di-n-butoxysilane, (methyl) (γ-glycidoxypropyl) di-sec-butoxysilane, (methyl) (3-mercaptopropyl) dichlorosilane, (methyl) (3-mercaptopropyl) dimethoxysilane , (Methyl) (3-mercaptopropyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n-propoxysilane, (methyl) (3-mercaptopropyl) di-i-propoxysilane, (methyl) ( 3-mercaptopropyl) di-n-butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane, (methyl) (vinyl) dichlorosilane, (methyl) (vinyl) dimethoxysilane, (methyl) ( Vinyl) diethoxysilane, (methyl) (vinyl) di-n-propoxysilane, (meth) ) (Vinyl) di-i-propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane, divinyldichlorosilane, divinyldimethoxysilane, divinyldiethoxysilane , Divinyldi-n-propoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane, diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi-n-propoxysilane, Diphenyldi-i-propoxysilane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane, chlorotrimethylsilane, Motrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane, (chloro) ( Vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane, (chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane, (ethoxy) (methyl) diphenylsilane, etc. Can be mentioned respectively. However, the present invention is not limited to these specific examples.
変性シリコーンレジン及びストレートシリコーンレジンなどの上記シリコーンレジンとしては、市販のものを用いることができる。商品名では、例えば、
KC-89、KC-89S、X-21-3153、X-21-5841、X-21-5842、X-21-5843、X-21-5844、X-21-5845、X-21-5846、X-21-5847、X-21-5848、X-22-160AS、X-22-170B、X-22-170BX、X-22-170D、X-22-170DX、X-22-176B、X-22-176D、X-22-176DX、X-22-176F、X-40-2308、X-40-2651、X-40-2655A、X-40-2671、X-40-2672、X-40-9220、X-40-9225、X-40-9226、X-40-9227、X-40-9246、X-40-9247、X-40-9250、X-40-9323、X-40-2460M、X-41-1053、X-41-1056、X-41-1805、X-41-1810、KF6001、KF6002、KF6003、KR-212、KR-213、KR-217、KR-220、KR-240、KR-242A、KR-271、KR-282、KR-300、KR-311、KR-400、KR-251、KR-253、KR-255、KR-401N、KR-500、KR-510、KR-5206、KR-5230、KR-5235、KR-9218、KR-9706、KR-165(以上、信越化学工業(株)社);
SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング社);
YR3187、YR3370、TSR127B(以上、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)
FZ3711、FZ3722(以上、日本ユニカー社);
DMS-S12、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S38、DMS-S42、DMS-S45、DMS-S51、DMS-227、PSD-0332、PDS-1615、PDS-9931、XMS-5025(以上、チッソ社);
メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学社);
エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート社);
グラスレジンGR100、GR650、GR908、GR950(以上、昭和電工社)等の部分縮合物が挙げられる。但し、本発明はこれらの具体例により限定されない。 Commercially available silicone resins such as modified silicone resins and straight silicone resins can be used. In the product name, for example,
KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5842, X-21-5844, X-21-5845, X-21-5845, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X-22-176B, X- 22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40-2672, X-40- 9220, X-40-9225, X-40-9226, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-40- 460M, X-41-1053, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR-212, KR-213, KR-217, KR-220, KR- 240, KR-242A, KR-271, KR-282, KR-300, KR-311, KR-400, KR-251, KR-253, KR-255, KR-401N, KR-500, KR-510, KR-5206, KR-5230, KR-5235, KR-9218, KR-9706, KR-165 (above, Shin-Etsu Chemical Co., Ltd.);
SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (above, Toray Dow Corning);
YR3187, YR3370, TSR127B (Momentive Performance Materials Japan GK)
FZ3711, FZ3722 (above, Nippon Unicar Company);
DMS-S12, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS- 227, PSD-0332, PDS-1615, PDS-9931, XMS-5025 (above, Chisso);
Methyl silicate MS51, Methyl silicate MS56 (Mitsubishi Chemical Corporation);
Ethyl silicate 28,ethyl silicate 40, ethyl silicate 48 (above, Colcoat);
Examples include partial condensates such as glass resin GR100, GR650, GR908, GR950 (above, Showa Denko). However, the present invention is not limited to these specific examples.
KC-89、KC-89S、X-21-3153、X-21-5841、X-21-5842、X-21-5843、X-21-5844、X-21-5845、X-21-5846、X-21-5847、X-21-5848、X-22-160AS、X-22-170B、X-22-170BX、X-22-170D、X-22-170DX、X-22-176B、X-22-176D、X-22-176DX、X-22-176F、X-40-2308、X-40-2651、X-40-2655A、X-40-2671、X-40-2672、X-40-9220、X-40-9225、X-40-9226、X-40-9227、X-40-9246、X-40-9247、X-40-9250、X-40-9323、X-40-2460M、X-41-1053、X-41-1056、X-41-1805、X-41-1810、KF6001、KF6002、KF6003、KR-212、KR-213、KR-217、KR-220、KR-240、KR-242A、KR-271、KR-282、KR-300、KR-311、KR-400、KR-251、KR-253、KR-255、KR-401N、KR-500、KR-510、KR-5206、KR-5230、KR-5235、KR-9218、KR-9706、KR-165(以上、信越化学工業(株)社);
SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング社);
YR3187、YR3370、TSR127B(以上、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)
FZ3711、FZ3722(以上、日本ユニカー社);
DMS-S12、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S38、DMS-S42、DMS-S45、DMS-S51、DMS-227、PSD-0332、PDS-1615、PDS-9931、XMS-5025(以上、チッソ社);
メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学社);
エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート社);
グラスレジンGR100、GR650、GR908、GR950(以上、昭和電工社)等の部分縮合物が挙げられる。但し、本発明はこれらの具体例により限定されない。 Commercially available silicone resins such as modified silicone resins and straight silicone resins can be used. In the product name, for example,
KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5842, X-21-5844, X-21-5845, X-21-5845, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X-22-176B, X- 22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40-2672, X-40- 9220, X-40-9225, X-40-9226, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-40- 460M, X-41-1053, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR-212, KR-213, KR-217, KR-220, KR- 240, KR-242A, KR-271, KR-282, KR-300, KR-311, KR-400, KR-251, KR-253, KR-255, KR-401N, KR-500, KR-510, KR-5206, KR-5230, KR-5235, KR-9218, KR-9706, KR-165 (above, Shin-Etsu Chemical Co., Ltd.);
SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (above, Toray Dow Corning);
YR3187, YR3370, TSR127B (Momentive Performance Materials Japan GK)
FZ3711, FZ3722 (above, Nippon Unicar Company);
DMS-S12, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS- 227, PSD-0332, PDS-1615, PDS-9931, XMS-5025 (above, Chisso);
Methyl silicate MS51, Methyl silicate MS56 (Mitsubishi Chemical Corporation);
Ethyl silicate 28,
Examples include partial condensates such as glass resin GR100, GR650, GR908, GR950 (above, Showa Denko). However, the present invention is not limited to these specific examples.
ここで、上記少なくとも2層の透明樹脂層は、光硬化性樹脂と光重合開始剤とを含む樹脂組成物を光硬化させて形成されなくともよく、上記少なくとも2層の透明樹脂層の形成に用いられる樹脂組成物は、光硬化性樹脂や光重合開始剤を含んでいても含んでいなくてもよい。その中でも、上記少なくとも2層の透明樹脂層が後述する酸化防止剤を含む場合、光重合開始剤を含まないことが、光重合開始剤に露光したときに生成するラジカルによって上記酸化防止剤の機能が阻害されず、十分にベーク後の白色度を高められる観点から好ましい。そのため、上記シロキサン構造を有する化合物は熱硬化性であることが好ましい。
Here, the at least two transparent resin layers may not be formed by photocuring a resin composition containing a photocurable resin and a photopolymerization initiator. For forming the at least two transparent resin layers, The resin composition to be used may or may not contain a photocurable resin or a photopolymerization initiator. Among them, when the at least two transparent resin layers contain an antioxidant described later, it does not contain a photopolymerization initiator, and functions of the antioxidant by radicals generated when exposed to the photopolymerization initiator. Is not inhibited, and is preferable from the viewpoint of sufficiently increasing the whiteness after baking. Therefore, the compound having the siloxane structure is preferably thermosetting.
-酸化防止剤-
本発明では、上記少なくとも2層の透明樹脂層が酸化防止剤を含むことが、ベーク後の上記少なくとも2層の透明樹脂層の透明度を高める観点から好ましい。ここで、静電容量型入力装置にITOなどの透明電極パターンを形成する場合、高温でベークすることが必要となるが、酸化防止剤を添加することにより、ベーク後の上記少なくとも2層の透明樹脂層の透明度を高めることができる。
上記酸化防止剤として公知の酸化防止剤が使用できる。例えば、ヒンダードフェノール系酸化防止剤、セミヒンダードフェノール系酸化防止剤、燐酸系酸化防止剤、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤が使用できる。
好ましくは燐酸系酸化防止剤;燐酸系酸化防止剤とヒンダードフェノール系酸化防止剤若しくはセミヒンダードフェノール系酸化防止剤の併用;または分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤である。
上記酸化防止剤としては市販の酸化防止剤を用いることもできる。例えば、燐酸系酸化防止剤としてはIRGAFOS168、IRGAFOS38(いずれもBASFジャパン社製)を挙げることができる。燐酸/ヒンダードフェノール系酸化防止剤としてはIRGAMOD295(BASFジャパン社製)を挙げることができ、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤としてはスミライザーGP(住友化学(株)社製)を挙げることができる。
上記酸化防止剤は、上記少なくとも2層の透明樹脂層のベーク後の透明度向上の観点から燐酸系酸化防止剤であることがより好ましく、IRGAFOS168が特に好ましい。
上記少なくとも2層の透明樹脂層の全固形分に対する上記酸化防止剤の添加量としては、特に制限はないが、0.001~10質量%であることが好ましく、0.01~1質量%であることがより好ましく、0.05~1質量%であることが特に好ましい。 -Antioxidant-
In the present invention, the at least two transparent resin layers preferably contain an antioxidant from the viewpoint of increasing the transparency of the at least two transparent resin layers after baking. Here, when forming a transparent electrode pattern such as ITO on the capacitive input device, it is necessary to bake at a high temperature, but by adding an antioxidant, the at least two layers of transparent after baking are transparent. The transparency of the resin layer can be increased.
Known antioxidants can be used as the antioxidant. For example, hindered phenol antioxidants, semi-hindered phenol antioxidants, phosphoric acid antioxidants, and hybrid antioxidants having phosphoric acid and hindered phenol in the molecule can be used.
Preferably a phosphoric acid antioxidant; a combination of a phosphoric acid antioxidant and a hindered phenol antioxidant or a semi-hindered phenol antioxidant; or a hybrid antioxidant having phosphoric acid and hindered phenol in the molecule is there.
A commercially available antioxidant can also be used as the antioxidant. For example, examples of the phosphoric acid antioxidant include IRGAFOS168 and IRGAFOS38 (both manufactured by BASF Japan). IRGAMOD295 (manufactured by BASF Japan) can be mentioned as a phosphoric acid / hindered phenol-based antioxidant, and Sumiser GP (Sumitomo Chemical Co., Ltd.) as a hybrid type antioxidant having phosphoric acid and hindered phenol in the molecule. Manufactured).
The antioxidant is more preferably a phosphoric acid-based antioxidant from the viewpoint of improving the transparency after baking of the at least two transparent resin layers, and IRGAFOS 168 is particularly preferable.
The amount of the antioxidant added to the total solid content of the at least two transparent resin layers is not particularly limited, but is preferably 0.001 to 10% by mass, and 0.01 to 1% by mass. More preferably, it is 0.05 to 1% by mass.
本発明では、上記少なくとも2層の透明樹脂層が酸化防止剤を含むことが、ベーク後の上記少なくとも2層の透明樹脂層の透明度を高める観点から好ましい。ここで、静電容量型入力装置にITOなどの透明電極パターンを形成する場合、高温でベークすることが必要となるが、酸化防止剤を添加することにより、ベーク後の上記少なくとも2層の透明樹脂層の透明度を高めることができる。
上記酸化防止剤として公知の酸化防止剤が使用できる。例えば、ヒンダードフェノール系酸化防止剤、セミヒンダードフェノール系酸化防止剤、燐酸系酸化防止剤、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤が使用できる。
好ましくは燐酸系酸化防止剤;燐酸系酸化防止剤とヒンダードフェノール系酸化防止剤若しくはセミヒンダードフェノール系酸化防止剤の併用;または分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤である。
上記酸化防止剤としては市販の酸化防止剤を用いることもできる。例えば、燐酸系酸化防止剤としてはIRGAFOS168、IRGAFOS38(いずれもBASFジャパン社製)を挙げることができる。燐酸/ヒンダードフェノール系酸化防止剤としてはIRGAMOD295(BASFジャパン社製)を挙げることができ、分子内に燐酸およびヒンダードフェノールを持つハイブリッド型酸化防止剤としてはスミライザーGP(住友化学(株)社製)を挙げることができる。
上記酸化防止剤は、上記少なくとも2層の透明樹脂層のベーク後の透明度向上の観点から燐酸系酸化防止剤であることがより好ましく、IRGAFOS168が特に好ましい。
上記少なくとも2層の透明樹脂層の全固形分に対する上記酸化防止剤の添加量としては、特に制限はないが、0.001~10質量%であることが好ましく、0.01~1質量%であることがより好ましく、0.05~1質量%であることが特に好ましい。 -Antioxidant-
In the present invention, the at least two transparent resin layers preferably contain an antioxidant from the viewpoint of increasing the transparency of the at least two transparent resin layers after baking. Here, when forming a transparent electrode pattern such as ITO on the capacitive input device, it is necessary to bake at a high temperature, but by adding an antioxidant, the at least two layers of transparent after baking are transparent. The transparency of the resin layer can be increased.
Known antioxidants can be used as the antioxidant. For example, hindered phenol antioxidants, semi-hindered phenol antioxidants, phosphoric acid antioxidants, and hybrid antioxidants having phosphoric acid and hindered phenol in the molecule can be used.
Preferably a phosphoric acid antioxidant; a combination of a phosphoric acid antioxidant and a hindered phenol antioxidant or a semi-hindered phenol antioxidant; or a hybrid antioxidant having phosphoric acid and hindered phenol in the molecule is there.
A commercially available antioxidant can also be used as the antioxidant. For example, examples of the phosphoric acid antioxidant include IRGAFOS168 and IRGAFOS38 (both manufactured by BASF Japan). IRGAMOD295 (manufactured by BASF Japan) can be mentioned as a phosphoric acid / hindered phenol-based antioxidant, and Sumiser GP (Sumitomo Chemical Co., Ltd.) as a hybrid type antioxidant having phosphoric acid and hindered phenol in the molecule. Manufactured).
The antioxidant is more preferably a phosphoric acid-based antioxidant from the viewpoint of improving the transparency after baking of the at least two transparent resin layers, and IRGAFOS 168 is particularly preferable.
The amount of the antioxidant added to the total solid content of the at least two transparent resin layers is not particularly limited, but is preferably 0.001 to 10% by mass, and 0.01 to 1% by mass. More preferably, it is 0.05 to 1% by mass.
-触媒-
上記少なくとも2層の透明樹脂層が触媒を含むことが、上記シロキサン構造を有する化合物を含む上記少なくとも2層の透明樹脂層を硬化して脆性を改善する観点から好ましい。特に、シロキサン構造を有する化合物を2種以上用いる場合、脱水・脱アルコール縮合反応させることによる架橋促進のために好ましく用いられる。
上記触媒として公知の触媒が使用できる。
好ましい触媒としては、金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選ばれる少なくとも一種の金属の有機錯体又は有機酸塩のような有機金属化合物触媒が挙げられる。
これらの中でもSn、Ti、Zn、Zr、Hf、Gaは、反応活性が高い点で好ましく、ベーク時のひび割れ防止の観点からZnまたはTiがより好ましく、ポットライフ向上の観点からZnが特に好ましい。
亜鉛(Zn)を含有する有機金属化合物触媒としては、亜鉛トリアセチルアセトネート、ステアリン酸亜鉛、ビス(アセチルアセトナト)亜鉛(II)(一水和物)等が挙げられる。
スズ(Sn)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ガリウム(Ga)を含有する有機金属化合物触媒の例としては、例えば、特開2012-238636号公報に記載の触媒を好ましく用いることができる。
上記触媒としては市販の触媒を用いることもできる。例えば、亜鉛系縮合触媒D-15(信越化学工業会社製)などを挙げることができる。
上記触媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ及び比率で用いてもよい。また反応促進剤や反応抑制剤と併用してもよい。
上記触媒の含有量は、上記シロキサン構造を有する化合物に対して、0.01~10質量%であることがベーク時のひび割れ防止およびポットライフ向上の観点から好ましく、より好ましくは0.03~5.0質量%である。 -catalyst-
It is preferable that the at least two transparent resin layers contain a catalyst from the viewpoint of improving brittleness by curing the at least two transparent resin layers containing the compound having the siloxane structure. In particular, when two or more compounds having a siloxane structure are used, they are preferably used for promoting crosslinking by dehydration / dealcohol condensation reaction.
A known catalyst can be used as the catalyst.
As a preferable catalyst, tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y), aluminum (as a metal component) Examples thereof include organic metal compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B), and gallium (Ga).
Among these, Sn, Ti, Zn, Zr, Hf, and Ga are preferable from the viewpoint of high reaction activity, Zn or Ti is more preferable from the viewpoint of preventing cracking during baking, and Zn is particularly preferable from the viewpoint of improving pot life.
Examples of the organometallic compound catalyst containing zinc (Zn) include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate), and the like.
Examples of organometallic compound catalysts containing tin (Sn), titanium (Ti), zirconium (Zr), hafnium (Hf), and gallium (Ga) include, for example, the catalysts described in JP2012-238636A. It can be preferably used.
A commercially available catalyst can also be used as the catalyst. Examples thereof include zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.).
One type of the catalyst may be used alone, or two or more types may be used in any combination and ratio. Moreover, you may use together with a reaction accelerator and reaction inhibitor.
The content of the catalyst is preferably 0.01 to 10% by mass with respect to the compound having the siloxane structure from the viewpoint of preventing cracking during baking and improving pot life, and more preferably 0.03 to 5%. 0.0% by mass.
上記少なくとも2層の透明樹脂層が触媒を含むことが、上記シロキサン構造を有する化合物を含む上記少なくとも2層の透明樹脂層を硬化して脆性を改善する観点から好ましい。特に、シロキサン構造を有する化合物を2種以上用いる場合、脱水・脱アルコール縮合反応させることによる架橋促進のために好ましく用いられる。
上記触媒として公知の触媒が使用できる。
好ましい触媒としては、金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選ばれる少なくとも一種の金属の有機錯体又は有機酸塩のような有機金属化合物触媒が挙げられる。
これらの中でもSn、Ti、Zn、Zr、Hf、Gaは、反応活性が高い点で好ましく、ベーク時のひび割れ防止の観点からZnまたはTiがより好ましく、ポットライフ向上の観点からZnが特に好ましい。
亜鉛(Zn)を含有する有機金属化合物触媒としては、亜鉛トリアセチルアセトネート、ステアリン酸亜鉛、ビス(アセチルアセトナト)亜鉛(II)(一水和物)等が挙げられる。
スズ(Sn)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ガリウム(Ga)を含有する有機金属化合物触媒の例としては、例えば、特開2012-238636号公報に記載の触媒を好ましく用いることができる。
上記触媒としては市販の触媒を用いることもできる。例えば、亜鉛系縮合触媒D-15(信越化学工業会社製)などを挙げることができる。
上記触媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ及び比率で用いてもよい。また反応促進剤や反応抑制剤と併用してもよい。
上記触媒の含有量は、上記シロキサン構造を有する化合物に対して、0.01~10質量%であることがベーク時のひび割れ防止およびポットライフ向上の観点から好ましく、より好ましくは0.03~5.0質量%である。 -catalyst-
It is preferable that the at least two transparent resin layers contain a catalyst from the viewpoint of improving brittleness by curing the at least two transparent resin layers containing the compound having the siloxane structure. In particular, when two or more compounds having a siloxane structure are used, they are preferably used for promoting crosslinking by dehydration / dealcohol condensation reaction.
A known catalyst can be used as the catalyst.
As a preferable catalyst, tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y), aluminum (as a metal component) Examples thereof include organic metal compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B), and gallium (Ga).
Among these, Sn, Ti, Zn, Zr, Hf, and Ga are preferable from the viewpoint of high reaction activity, Zn or Ti is more preferable from the viewpoint of preventing cracking during baking, and Zn is particularly preferable from the viewpoint of improving pot life.
Examples of the organometallic compound catalyst containing zinc (Zn) include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate), and the like.
Examples of organometallic compound catalysts containing tin (Sn), titanium (Ti), zirconium (Zr), hafnium (Hf), and gallium (Ga) include, for example, the catalysts described in JP2012-238636A. It can be preferably used.
A commercially available catalyst can also be used as the catalyst. Examples thereof include zinc-based condensation catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.).
One type of the catalyst may be used alone, or two or more types may be used in any combination and ratio. Moreover, you may use together with a reaction accelerator and reaction inhibitor.
The content of the catalyst is preferably 0.01 to 10% by mass with respect to the compound having the siloxane structure from the viewpoint of preventing cracking during baking and improving pot life, and more preferably 0.03 to 5%. 0.0% by mass.
-添加剤-
さらに、上記少なくとも2層の透明樹脂層には、その他の添加剤を用いてもよい。上記添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。上記少なくとも2層の透明樹脂層に含まれる界面活性剤の濃度は0.01質量%~10質量%が好ましい。 -Additive-
Further, other additives may be used in the at least two transparent resin layers. Examples of the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060 to 0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706. The concentration of the surfactant contained in the at least two transparent resin layers is preferably 0.01% by mass to 10% by mass.
さらに、上記少なくとも2層の透明樹脂層には、その他の添加剤を用いてもよい。上記添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。上記少なくとも2層の透明樹脂層に含まれる界面活性剤の濃度は0.01質量%~10質量%が好ましい。 -Additive-
Further, other additives may be used in the at least two transparent resin layers. Examples of the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060 to 0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706. The concentration of the surfactant contained in the at least two transparent resin layers is preferably 0.01% by mass to 10% by mass.
(透明樹脂層の製造方法)
また、上記少なくとも2層の透明樹脂層の製造方法としては特に制限はないが、上記シロキサン構造を有する化合物や他の添加剤を含む調製液を塗布等して形成することができ、塗布等の際に用いる調製液は溶媒を用いて調製できる。
少なくとも2層の透明樹脂層を塗布により製造する際の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。 (Transparent resin layer production method)
Further, the method for producing the at least two transparent resin layers is not particularly limited, but can be formed by applying a preparation solution containing the compound having the siloxane structure and other additives. The preparation liquid used at the time can be prepared using a solvent.
As the solvent for producing at least two transparent resin layers by coating, the solvents described in JP-A-2011-95716, paragraphs 0043 to 0044 can be used.
また、上記少なくとも2層の透明樹脂層の製造方法としては特に制限はないが、上記シロキサン構造を有する化合物や他の添加剤を含む調製液を塗布等して形成することができ、塗布等の際に用いる調製液は溶媒を用いて調製できる。
少なくとも2層の透明樹脂層を塗布により製造する際の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。 (Transparent resin layer production method)
Further, the method for producing the at least two transparent resin layers is not particularly limited, but can be formed by applying a preparation solution containing the compound having the siloxane structure and other additives. The preparation liquid used at the time can be prepared using a solvent.
As the solvent for producing at least two transparent resin layers by coating, the solvents described in JP-A-2011-95716, paragraphs 0043 to 0044 can be used.
<加飾層>
本発明の積層体は、上記前面板の一方の面側に配置された機能層を有することが好ましく、この機能層が加飾層であることが好ましい。 <Decoration layer>
It is preferable that the laminated body of this invention has a functional layer arrange | positioned at the one surface side of the said front board, and it is preferable that this functional layer is a decoration layer.
本発明の積層体は、上記前面板の一方の面側に配置された機能層を有することが好ましく、この機能層が加飾層であることが好ましい。 <Decoration layer>
It is preferable that the laminated body of this invention has a functional layer arrange | positioned at the one surface side of the said front board, and it is preferable that this functional layer is a decoration layer.
本発明の積層体は、上記加飾層の厚みが5μm以上であることが好ましく、10μm以上であることがより好ましく、特に加飾層が白色加飾層である場合は白色加飾層の厚みを厚くすることが好ましいために30μm以上であることがより好ましい。
本発明の積層体は、上記少なくとも2層の透明樹脂層の合計の厚みが、上記加飾層の厚みの0.2~2.0倍であることが好ましく、0.3~1.5倍であることがより好ましく、0.99~1.01倍であることが特に好ましい。 In the laminate of the present invention, the thickness of the decorative layer is preferably 5 μm or more, more preferably 10 μm or more, and particularly when the decorative layer is a white decorative layer, the thickness of the white decorative layer Is preferably 30 μm or more.
In the laminate of the present invention, the total thickness of the at least two transparent resin layers is preferably 0.2 to 2.0 times the thickness of the decorative layer, preferably 0.3 to 1.5 times. It is more preferable that the ratio is 0.99 to 1.01 times.
本発明の積層体は、上記少なくとも2層の透明樹脂層の合計の厚みが、上記加飾層の厚みの0.2~2.0倍であることが好ましく、0.3~1.5倍であることがより好ましく、0.99~1.01倍であることが特に好ましい。 In the laminate of the present invention, the thickness of the decorative layer is preferably 5 μm or more, more preferably 10 μm or more, and particularly when the decorative layer is a white decorative layer, the thickness of the white decorative layer Is preferably 30 μm or more.
In the laminate of the present invention, the total thickness of the at least two transparent resin layers is preferably 0.2 to 2.0 times the thickness of the decorative layer, preferably 0.3 to 1.5 times. It is more preferable that the ratio is 0.99 to 1.01 times.
(材料)
-着色剤-
上記加飾層は、着色剤を含む。 (material)
-Colorant-
The decorative layer includes a colorant.
-着色剤-
上記加飾層は、着色剤を含む。 (material)
-Colorant-
The decorative layer includes a colorant.
黒色着色剤としては、例えば、カーボンブラック、チタンカーボン、酸化鉄、酸化チタン、黒鉛などが挙げられ、中でも、カーボンブラックが好ましい。尚、黒色着色剤の他に、赤、青、緑色等の顔料の混合物等を用いることができる。
Examples of the black colorant include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. Among these, carbon black is preferable. In addition to the black colorant, a mixture of pigments such as red, blue, and green can be used.
白色着色剤としては、特開2009-191118号公報の段落0019や、特開2000-175718号公報の段落0109に記載の白色顔料を用いることができる。また、特開2005-7765号公報の段落0015や0114に記載の白色顔料も用いることができる。
具体的には、本発明では、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、硫酸バリウム等の白色無機顔料が好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛がより好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)がさらに好ましく、ルチル型酸化チタンが特に好ましい。 As the white colorant, the white pigment described in paragraph 0019 of JP2009-191118A or paragraph 0109 of JP2000-175718A can be used. Also, white pigments described in paragraphs 0015 and 0114 of JP-A-2005-7765 can be used.
Specifically, in the present invention, white inorganic pigments such as titanium oxide (rutile type), titanium oxide (anatase type), zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, and barium sulfate are used. Preferably, titanium oxide (rutile type), titanium oxide (anatase type) and zinc oxide are more preferable, titanium oxide (rutile type) and titanium oxide (anatase type) are more preferable, and rutile type titanium oxide is particularly preferable.
具体的には、本発明では、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、硫酸バリウム等の白色無機顔料が好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)、酸化亜鉛がより好ましく、酸化チタン(ルチル型)、酸化チタン(アナターゼ型)がさらに好ましく、ルチル型酸化チタンが特に好ましい。 As the white colorant, the white pigment described in paragraph 0019 of JP2009-191118A or paragraph 0109 of JP2000-175718A can be used. Also, white pigments described in paragraphs 0015 and 0114 of JP-A-2005-7765 can be used.
Specifically, in the present invention, white inorganic pigments such as titanium oxide (rutile type), titanium oxide (anatase type), zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, and barium sulfate are used. Preferably, titanium oxide (rutile type), titanium oxide (anatase type) and zinc oxide are more preferable, titanium oxide (rutile type) and titanium oxide (anatase type) are more preferable, and rutile type titanium oxide is particularly preferable.
二酸化チタンの具体例としては、JR、JRNC、JR-301、403、405、600A、605、600E、603、701、800、805、806、JA-1、C、3、4、5、MT-01、02、03、04、05、100AQ、100SA、100SAK、100SAS、100TV、100Z、100ZR、150W、500B、500H、500SA、500SAK、500SAS、500T、SMT-100SAM、100SAS、500SAM、500SAS(テイカ社製)、CR-50、50-2、57、58、58-2、60、60-2、63、67、80、85、90、90-2、93、95、97、953、Super70、PC-3、PF-690、691、711、736、737、739、740、742、R-550、580、630、670、680、780、780-2、820、830、850、855、930、980、S-305、UT771、TTO-51(A)、51(C)、55(A)、55(B)、55(C)、55(D)、S-1、S-2、S-3、S-4、V-3、V-4、MPT-136、FTL-100、110、200、300(石原産業社製)、KA-10、15、20、30、KR-310、380、KV-200、STT-30EHJ、65C-S、455、485SA15、495M、495MC(チタン工業社製)、TA-100、200、300、400、500、TR-600、700、750、840、900(富士チタン工業社製)などが挙げられ、これらを単独、もしくは混合して用いてもよい。
Specific examples of titanium dioxide include JR, JRNC, JR-301, 403, 405, 600A, 605, 600E, 603, 701, 800, 805, 806, JA-1, C, 3, 4, 5, MT- 01, 02, 03, 04, 05, 100AQ, 100SA, 100SAK, 100SAS, 100TV, 100Z, 100ZR, 150W, 500B, 500H, 500SA, 500SAK, 500SAS, 500T, SMT-100SAM, 100SAS, 500SAM, 500SAS Manufactured), CR-50, 50-2, 57, 58, 58-2, 60, 60-2, 63, 67, 80, 85, 90, 90-2, 93, 95, 97, 953, Super70, PC -3, PF-690, 691, 711, 736, 737, 739, 740, 42, R-550, 580, 630, 670, 680, 780, 780-2, 820, 830, 850, 855, 930, 980, S-305, UT771, TTO-51 (A), 51 (C), 55 (A), 55 (B), 55 (C), 55 (D), S-1, S-2, S-3, S-4, V-3, V-4, MPT-136, FTL- 100, 110, 200, 300 (Ishihara Sangyo Co., Ltd.), KA-10, 15, 20, 30, KR-310, 380, KV-200, STT-30EHJ, 65C-S, 455, 485SA15, 495M, 495MC ( Titanium Industry Co., Ltd.), TA-100, 200, 300, 400, 500, TR-600, 700, 750, 840, 900 (Fuji Titanium Industry Co., Ltd.) and the like. It may be.
本発明では上記白色無機顔料(特に酸化チタン)の表面はシリカ処理、アルミナ処理、チタニア処理、ジルコニア処理、有機物処理及びそれらを併用することができる。
これにより上記白色無機顔料(特に酸化チタン)の触媒活性を抑制でき、耐熱性、褪光性等を改善することができる。
加熱後の加飾層の白色度の観点から、本発明では上記白色顔料が無機物で表面処理されたルチル型酸化チタンであることが好ましく、アルミナ処理およびジルコニア処理のうち少なくとも一方で表面処理されたルチル型酸化チタンであることがより好ましく、アルミナ/ジルコニア併用処理で表面処理されたルチル型酸化チタンであることが特に好ましい。 In the present invention, the surface of the white inorganic pigment (particularly titanium oxide) can be used in combination with silica treatment, alumina treatment, titania treatment, zirconia treatment, organic matter treatment and the like.
Thereby, the catalytic activity of the white inorganic pigment (particularly titanium oxide) can be suppressed, and heat resistance, fluorescence, and the like can be improved.
From the viewpoint of the whiteness of the decorative layer after heating, in the present invention, the white pigment is preferably a rutile type titanium oxide surface-treated with an inorganic substance, and at least one of alumina treatment and zirconia treatment was surface-treated. A rutile type titanium oxide is more preferable, and a rutile type titanium oxide surface-treated by an alumina / zirconia combined treatment is particularly preferable.
これにより上記白色無機顔料(特に酸化チタン)の触媒活性を抑制でき、耐熱性、褪光性等を改善することができる。
加熱後の加飾層の白色度の観点から、本発明では上記白色顔料が無機物で表面処理されたルチル型酸化チタンであることが好ましく、アルミナ処理およびジルコニア処理のうち少なくとも一方で表面処理されたルチル型酸化チタンであることがより好ましく、アルミナ/ジルコニア併用処理で表面処理されたルチル型酸化チタンであることが特に好ましい。 In the present invention, the surface of the white inorganic pigment (particularly titanium oxide) can be used in combination with silica treatment, alumina treatment, titania treatment, zirconia treatment, organic matter treatment and the like.
Thereby, the catalytic activity of the white inorganic pigment (particularly titanium oxide) can be suppressed, and heat resistance, fluorescence, and the like can be improved.
From the viewpoint of the whiteness of the decorative layer after heating, in the present invention, the white pigment is preferably a rutile type titanium oxide surface-treated with an inorganic substance, and at least one of alumina treatment and zirconia treatment was surface-treated. A rutile type titanium oxide is more preferable, and a rutile type titanium oxide surface-treated by an alumina / zirconia combined treatment is particularly preferable.
上記その他の色の加飾層として用いるためには、特許第4546276号公報の段落0183~0185などに記載の顔料、あるいは染料を混合して用いてもよい。具体的には、特開2005-17716号公報の段落0038~0054に記載の顔料および染料、特開2004-361447号公報の段落0068~0072に記載の顔料、特開2005-17521号公報の段落0080~0088に記載の着色剤等を好適に用いることができる。
In order to use it as a decorative layer of other colors, pigments or dyes described in paragraphs 0183 to 0185 of Japanese Patent No. 4546276 may be mixed and used. Specifically, pigments and dyes described in paragraphs 0038 to 0054 of JP-A-2005-17716, pigments described in paragraphs 0068 to 0072 of JP-A-2004-361447, paragraphs of JP-A-2005-17521 The colorants described in 0080 to 0088 can be preferably used.
上記加飾層の全固形分に対する上記無機顔料の含有率が20~75質量%であることが、良好な明度および白色度を有し、その他の求められる特性を同時に満たす加飾層を形成する観点から好ましい。また、本発明の転写フィルムを後述の本発明の積層体の製造方法に用いるときに、十分に現像時間を短縮する観点からも上記加飾層の全固形分に対する上記無機顔料の含有率が20~75質量%であることが好ましい。
上記加飾層の全固形分に対する上記無機顔料の含有率は、25~60質量%であることがより好ましく、30~50質量%であることが更に好ましい。
本明細書でいう全固形分とは上記加飾層から溶剤等を除いた不揮発成分の総質量を意味する。 The content of the inorganic pigment with respect to the total solid content of the decorative layer is 20 to 75% by mass to form a decorative layer having good brightness and whiteness and simultaneously satisfying other required characteristics. It is preferable from the viewpoint. Moreover, when using the transfer film of this invention for the manufacturing method of the laminated body of this invention mentioned later, the content rate of the said inorganic pigment with respect to the total solid of the said decoration layer is also 20 from a viewpoint of fully shortening development time. It is preferable that the content be ˜75% by mass.
The content of the inorganic pigment with respect to the total solid content of the decorative layer is more preferably 25 to 60% by mass, and further preferably 30 to 50% by mass.
The total solid content as used in this specification means the total mass of the non-volatile component except a solvent etc. from the said decoration layer.
上記加飾層の全固形分に対する上記無機顔料の含有率は、25~60質量%であることがより好ましく、30~50質量%であることが更に好ましい。
本明細書でいう全固形分とは上記加飾層から溶剤等を除いた不揮発成分の総質量を意味する。 The content of the inorganic pigment with respect to the total solid content of the decorative layer is 20 to 75% by mass to form a decorative layer having good brightness and whiteness and simultaneously satisfying other required characteristics. It is preferable from the viewpoint. Moreover, when using the transfer film of this invention for the manufacturing method of the laminated body of this invention mentioned later, the content rate of the said inorganic pigment with respect to the total solid of the said decoration layer is also 20 from a viewpoint of fully shortening development time. It is preferable that the content be ˜75% by mass.
The content of the inorganic pigment with respect to the total solid content of the decorative layer is more preferably 25 to 60% by mass, and further preferably 30 to 50% by mass.
The total solid content as used in this specification means the total mass of the non-volatile component except a solvent etc. from the said decoration layer.
上記無機顔料(なお、その他の着色剤についても同様である)は、分散液として使用することが望ましい。この分散液は、上記無機顔料と顔料分散剤とを予め混合して得られる組成物を、後述する有機溶媒(またはビヒクル)に添加して分散させることによって調製することができる。上記ビビクルとは、塗料が液体状態にある時に顔料を分散させている媒質の部分をいい、液状であって上記顔料と結合して塗膜を形成する成分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。
It is desirable to use the inorganic pigment (which is the same for other colorants) as a dispersion. This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the inorganic pigment and the pigment dispersant in an organic solvent (or vehicle) described later. The above-mentioned vehicle refers to a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it. Component (organic solvent).
上記無機顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438頁に記載されているニーダー、ロールミル、アトライター、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の公知の分散機が挙げられる。更にこの文献310頁記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。
The disperser used for dispersing the inorganic pigment is not particularly limited. For example, a kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, First Edition, Asakura Shoten, 2000, p. 438. , Known dispersers such as a roll mill, an attritor, a super mill, a dissolver, a homomixer, and a sand mill. Further, fine grinding may be performed using frictional force by mechanical grinding described in page 310 of this document.
本発明で用いることができる上記着色剤は、分散安定性及び隠ぺい力の観点から、一次粒子の平均粒径が0.16μm~0.3μmの着色剤が好ましく、更に0.18μm~0.27μmの着色剤が好ましい。さらに0.19μm~0.25μmの着色剤が特に好ましい。一次粒子の平均粒径が0.16μmよりも小さいと、急激に隠ぺい力が低下して加飾層の下地が見えやすくなったり、粘度上昇を起こしたりすることがある。一方、平均粒径が0.3μmを超えると特に白色無機顔料を用いたときに白色度が低下すると同時に急激に隠ぺい力が低下し、また塗布した際の面状が悪化する場合がある。
尚、ここで言う「一次粒子の平均粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について上記の粒径を求め、このうち、任意に選択する100個の粒径の平均値をいう。
一方、分散液、塗布液中の平均粒径で測定する場合には、レーザー散乱HORIBA H(株式会社堀場アドバンスドテクノ社製)を用いることができる。 The colorant that can be used in the present invention is preferably a colorant having an average primary particle size of 0.16 μm to 0.3 μm, more preferably 0.18 μm to 0.27 μm, from the viewpoint of dispersion stability and hiding power. The colorant is preferred. Further, a colorant of 0.19 μm to 0.25 μm is particularly preferable. When the average particle size of the primary particles is smaller than 0.16 μm, the hiding power is suddenly lowered, and the base of the decorative layer may be easily seen or the viscosity may be increased. On the other hand, when the average particle size exceeds 0.3 μm, the whiteness is lowered particularly when a white inorganic pigment is used, and at the same time, the hiding power is suddenly lowered, and the surface condition when applied may be deteriorated.
The “average particle size of primary particles” as used herein refers to the diameter when the electron micrograph image of the particles is a circle of the same area, and the “number average particle size” refers to the above-mentioned particle size for a large number of particles. The diameter is determined, and among these, an average value of 100 particle diameters arbitrarily selected is referred to.
On the other hand, when measuring by the average particle diameter in a dispersion liquid and a coating liquid, laser scattering HORIBA H (made by Horiba Advanced Techno Co., Ltd.) can be used.
尚、ここで言う「一次粒子の平均粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について上記の粒径を求め、このうち、任意に選択する100個の粒径の平均値をいう。
一方、分散液、塗布液中の平均粒径で測定する場合には、レーザー散乱HORIBA H(株式会社堀場アドバンスドテクノ社製)を用いることができる。 The colorant that can be used in the present invention is preferably a colorant having an average primary particle size of 0.16 μm to 0.3 μm, more preferably 0.18 μm to 0.27 μm, from the viewpoint of dispersion stability and hiding power. The colorant is preferred. Further, a colorant of 0.19 μm to 0.25 μm is particularly preferable. When the average particle size of the primary particles is smaller than 0.16 μm, the hiding power is suddenly lowered, and the base of the decorative layer may be easily seen or the viscosity may be increased. On the other hand, when the average particle size exceeds 0.3 μm, the whiteness is lowered particularly when a white inorganic pigment is used, and at the same time, the hiding power is suddenly lowered, and the surface condition when applied may be deteriorated.
The “average particle size of primary particles” as used herein refers to the diameter when the electron micrograph image of the particles is a circle of the same area, and the “number average particle size” refers to the above-mentioned particle size for a large number of particles. The diameter is determined, and among these, an average value of 100 particle diameters arbitrarily selected is referred to.
On the other hand, when measuring by the average particle diameter in a dispersion liquid and a coating liquid, laser scattering HORIBA H (made by Horiba Advanced Techno Co., Ltd.) can be used.
-バインダー樹脂-
加飾層がバインダー樹脂を含むことが好ましい。上記バインダー樹脂としては、上記第1の透明樹脂層と同様のシリコーンレジンが好ましく挙げられる。
また、上記シリコーンレジンを含む上記加飾層を硬化して脆性を改善する観点からは触媒を含むことが好ましい。上記触媒としては、上記少なくとも2層の透明樹脂層が含んでもよい触媒と同様のものが好ましく挙げられる。 -Binder resin-
It is preferable that a decoration layer contains binder resin. The binder resin is preferably a silicone resin similar to the first transparent resin layer.
Moreover, it is preferable that a catalyst is included from a viewpoint of hardening | curing the said decoration layer containing the said silicone resin, and improving a brittleness. The catalyst is preferably the same as the catalyst that may be contained in the at least two transparent resin layers.
加飾層がバインダー樹脂を含むことが好ましい。上記バインダー樹脂としては、上記第1の透明樹脂層と同様のシリコーンレジンが好ましく挙げられる。
また、上記シリコーンレジンを含む上記加飾層を硬化して脆性を改善する観点からは触媒を含むことが好ましい。上記触媒としては、上記少なくとも2層の透明樹脂層が含んでもよい触媒と同様のものが好ましく挙げられる。 -Binder resin-
It is preferable that a decoration layer contains binder resin. The binder resin is preferably a silicone resin similar to the first transparent resin layer.
Moreover, it is preferable that a catalyst is included from a viewpoint of hardening | curing the said decoration layer containing the said silicone resin, and improving a brittleness. The catalyst is preferably the same as the catalyst that may be contained in the at least two transparent resin layers.
(加飾層の形成方法)
上記加飾層の形成方法は、特に制限はないが、仮支持体と樹脂層とをこの順で有する転写フィルムを用いて形成することが好ましく、仮支持体と光硬化性樹脂層とをこの順で有する感光性転写フィルムを用いて形成することがより好ましく、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する感光性転写フィルムを用いて形成することが特に好ましい。例えば白色の加飾層2を形成する場合には、上記光硬化性樹脂層として白色光硬化性樹脂層を有する後述の感光性転写フィルムを用いて、上記前面板1の表面に上記白色光硬化性樹脂層を転写することで形成することが好ましい。
上記転写フィルムを用いて加飾層を形成する場合には、樹脂層に着色剤を用いることができる。上記着色剤としては、前述の着色剤(有機顔料、無機顔料、染料等)を好適に用いることができる。 (Method for forming the decorative layer)
Although there is no restriction | limiting in particular in the formation method of the said decoration layer, It is preferable to form using the transfer film which has a temporary support body and a resin layer in this order, and this temporary support body and a photocurable resin layer are made into this. It is more preferable to form using a photosensitive transfer film having in order, and it is particularly preferable to use a photosensitive transfer film having a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order. . For example, when the whitedecorative layer 2 is formed, the white light curing is performed on the surface of the front plate 1 by using a photosensitive transfer film described later having a white light curing resin layer as the photocurable resin layer. The conductive resin layer is preferably formed by transferring.
When forming a decoration layer using the said transfer film, a coloring agent can be used for a resin layer. As the colorant, the above-mentioned colorants (organic pigments, inorganic pigments, dyes, etc.) can be suitably used.
上記加飾層の形成方法は、特に制限はないが、仮支持体と樹脂層とをこの順で有する転写フィルムを用いて形成することが好ましく、仮支持体と光硬化性樹脂層とをこの順で有する感光性転写フィルムを用いて形成することがより好ましく、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する感光性転写フィルムを用いて形成することが特に好ましい。例えば白色の加飾層2を形成する場合には、上記光硬化性樹脂層として白色光硬化性樹脂層を有する後述の感光性転写フィルムを用いて、上記前面板1の表面に上記白色光硬化性樹脂層を転写することで形成することが好ましい。
上記転写フィルムを用いて加飾層を形成する場合には、樹脂層に着色剤を用いることができる。上記着色剤としては、前述の着色剤(有機顔料、無機顔料、染料等)を好適に用いることができる。 (Method for forming the decorative layer)
Although there is no restriction | limiting in particular in the formation method of the said decoration layer, It is preferable to form using the transfer film which has a temporary support body and a resin layer in this order, and this temporary support body and a photocurable resin layer are made into this. It is more preferable to form using a photosensitive transfer film having in order, and it is particularly preferable to use a photosensitive transfer film having a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order. . For example, when the white
When forming a decoration layer using the said transfer film, a coloring agent can be used for a resin layer. As the colorant, the above-mentioned colorants (organic pigments, inorganic pigments, dyes, etc.) can be suitably used.
図2の構成の開口部8を有する前面板に、転写フィルムを用いて、図1に記載される上記第1の透明樹脂層7、上記第2の透明樹脂層9、上記加飾層2または不図示のマスク層等を形成すると、前面板が開口部8を有していても、当該開口部8の周縁からレジスト成分のはみ出し(モレ)を生じさせることなく形成することが出来る。特に、加飾層は、前面板の境界線直上まで遮光パターンを形成する必要があり、転写フィルムを用いて形成することで、ガラス端からレジスト成分をはみ出さずに、すなわち、前面板裏側を汚染することなく、簡略な工程で、薄層化および軽量化されたタッチパネルを製造することができる。
The first transparent resin layer 7, the second transparent resin layer 9, the decorative layer 2, or the decorative layer 2 described in FIG. 1 is used by using a transfer film on the front plate having the opening 8 having the configuration shown in FIG. When a mask layer (not shown) or the like is formed, even if the front plate has the opening 8, it can be formed without causing the resist component to protrude from the periphery of the opening 8. In particular, the decorative layer needs to form a light shielding pattern just above the boundary line of the front plate, and by using a transfer film, the resist component does not protrude from the glass edge, that is, the back side of the front plate is A touch panel reduced in thickness and weight can be manufactured through a simple process without contamination.
上記加飾層を、転写フィルムを用いて形成する方法について説明する。
一般に転写フィルムを用いる場合、加飾層が光硬化性樹脂を含んでいれば通常のフォトリソグラフィーの方法によって形成することができる。
転写フィルムは、加飾層が光硬化性樹脂を含んでいても含んでいなくてもよく、加飾層が光硬化性樹脂を含む場合と加飾層が光硬化性樹脂を含まない場合のいずれの場合でも後述のハーフカットによる転写方法やダイカットによる転写方法によって、転写フィルムを用いて加飾層を形成することができる。 A method for forming the decorative layer using a transfer film will be described.
In general, when a transfer film is used, it can be formed by an ordinary photolithography method if the decorative layer contains a photocurable resin.
The transfer film may or may not contain the photocurable resin, and the case where the decorative layer contains the photocurable resin and the case where the decorative layer does not contain the photocurable resin. In any case, the decorative layer can be formed by using a transfer film by a transfer method by half-cut or a transfer method by die-cut, which will be described later.
一般に転写フィルムを用いる場合、加飾層が光硬化性樹脂を含んでいれば通常のフォトリソグラフィーの方法によって形成することができる。
転写フィルムは、加飾層が光硬化性樹脂を含んでいても含んでいなくてもよく、加飾層が光硬化性樹脂を含む場合と加飾層が光硬化性樹脂を含まない場合のいずれの場合でも後述のハーフカットによる転写方法やダイカットによる転写方法によって、転写フィルムを用いて加飾層を形成することができる。 A method for forming the decorative layer using a transfer film will be described.
In general, when a transfer film is used, it can be formed by an ordinary photolithography method if the decorative layer contains a photocurable resin.
The transfer film may or may not contain the photocurable resin, and the case where the decorative layer contains the photocurable resin and the case where the decorative layer does not contain the photocurable resin. In any case, the decorative layer can be formed by using a transfer film by a transfer method by half-cut or a transfer method by die-cut, which will be described later.
加飾層などの永久材を、転写フィルムを用いて形成する場合について、加飾層を形成する方法を例にして、転写フィルムを用いたパターニング方法を説明する。
In the case where a permanent material such as a decorative layer is formed using a transfer film, a patterning method using the transfer film will be described using a method of forming the decorative layer as an example.
(1-A)フォトリソグラフィー方式でのパターニング
フォトリソグラフィー方式を用いて上記加飾層を形成する場合について、パターニング方法を説明する。 (1-A) Patterning by photolithography The patterning method will be described for the case where the decorative layer is formed using photolithography.
フォトリソグラフィー方式を用いて上記加飾層を形成する場合について、パターニング方法を説明する。 (1-A) Patterning by photolithography The patterning method will be described for the case where the decorative layer is formed using photolithography.
フォトリソグラフィー方式を用いて上記加飾層を形成する場合のパターニング方法では、少なくとも仮支持体と光硬化性樹脂層を有する転写フィルムであって、光硬化性樹脂層が光硬化性樹脂と着色剤を有する転写フィルムを用いる。
上記光硬化性樹脂層を有する転写フィルムは、上記光硬化性樹脂層と上記仮支持体と上記熱可塑性樹脂層の他に、保護フィルムや中間層を含んでいてもよい。
上記光硬化性樹脂層を有する転写フィルムの光硬化性樹脂層は、以下の構成であることが好ましい。 In the patterning method in the case of forming the decorative layer using a photolithography method, it is a transfer film having at least a temporary support and a photocurable resin layer, and the photocurable resin layer is a photocurable resin and a colorant. A transfer film having
The transfer film having the photocurable resin layer may include a protective film and an intermediate layer in addition to the photocurable resin layer, the temporary support, and the thermoplastic resin layer.
The photocurable resin layer of the transfer film having the photocurable resin layer preferably has the following configuration.
上記光硬化性樹脂層を有する転写フィルムは、上記光硬化性樹脂層と上記仮支持体と上記熱可塑性樹脂層の他に、保護フィルムや中間層を含んでいてもよい。
上記光硬化性樹脂層を有する転写フィルムの光硬化性樹脂層は、以下の構成であることが好ましい。 In the patterning method in the case of forming the decorative layer using a photolithography method, it is a transfer film having at least a temporary support and a photocurable resin layer, and the photocurable resin layer is a photocurable resin and a colorant. A transfer film having
The transfer film having the photocurable resin layer may include a protective film and an intermediate layer in addition to the photocurable resin layer, the temporary support, and the thermoplastic resin layer.
The photocurable resin layer of the transfer film having the photocurable resin layer preferably has the following configuration.
上記光硬化性樹脂層に用いられる上記モノマーとしては本発明の趣旨に反しない限りにおいて特に制限はなく、公知の重合性化合物を用いることができる。
上記重合性化合物としては、特許第4098550号の段落0023~0024に記載の重合性化合物を用いることができる。 There is no restriction | limiting in particular as long as it is not contrary to the meaning of this invention as said monomer used for the said photocurable resin layer, A well-known polymeric compound can be used.
As the polymerizable compound, polymerizable compounds described in paragraphs 0023 to 0024 of Japanese Patent No. 4098550 can be used.
上記重合性化合物としては、特許第4098550号の段落0023~0024に記載の重合性化合物を用いることができる。 There is no restriction | limiting in particular as long as it is not contrary to the meaning of this invention as said monomer used for the said photocurable resin layer, A well-known polymeric compound can be used.
As the polymerizable compound, polymerizable compounds described in paragraphs 0023 to 0024 of Japanese Patent No. 4098550 can be used.
上記光硬化性樹脂層に用いられる上記バインダーとしては本発明の趣旨に反しない限りにおいて特に制限はなく、公知の重合性化合物を用いることができる。
光硬化性樹脂層を有する転写フィルムがネガ型材料である場合、光硬化性樹脂組成物には、アルカリ可溶性樹脂、重合性化合物、重合開始剤を含むことが好ましい。さらに、着色剤、添加剤、などが用いられるがこれに限られない。
アルカリ可溶性樹脂としては、特開2011-95716号公報の段落0025、特開2010-237589号公報の段落0033~0052に記載のポリマーを用いることができる。一方、加飾層をプレカットにより形成する場合は、着色剤を有する樹脂層には、前述のとおりバインダー樹脂としてシリコーンレジンを用いることも好ましい。
光硬化性樹脂層を有する転写フィルムがポジ型材料である場合、光硬化性樹脂層に、例えば特開2005-221726記載の材料などが用いられるが、これに限られない。 The binder used in the photocurable resin layer is not particularly limited as long as it is not contrary to the gist of the present invention, and a known polymerizable compound can be used.
When the transfer film having the photocurable resin layer is a negative material, the photocurable resin composition preferably contains an alkali-soluble resin, a polymerizable compound, and a polymerization initiator. Furthermore, although a coloring agent, an additive, etc. are used, it is not restricted to this.
As the alkali-soluble resin, polymers described in paragraph 0025 of JP2011-95716A and paragraphs 0033 to 0052 of JP2010-237589A can be used. On the other hand, when the decorative layer is formed by precutting, it is also preferable to use a silicone resin as the binder resin in the resin layer having the colorant as described above.
When the transfer film having the photocurable resin layer is a positive type material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but is not limited thereto.
光硬化性樹脂層を有する転写フィルムがネガ型材料である場合、光硬化性樹脂組成物には、アルカリ可溶性樹脂、重合性化合物、重合開始剤を含むことが好ましい。さらに、着色剤、添加剤、などが用いられるがこれに限られない。
アルカリ可溶性樹脂としては、特開2011-95716号公報の段落0025、特開2010-237589号公報の段落0033~0052に記載のポリマーを用いることができる。一方、加飾層をプレカットにより形成する場合は、着色剤を有する樹脂層には、前述のとおりバインダー樹脂としてシリコーンレジンを用いることも好ましい。
光硬化性樹脂層を有する転写フィルムがポジ型材料である場合、光硬化性樹脂層に、例えば特開2005-221726記載の材料などが用いられるが、これに限られない。 The binder used in the photocurable resin layer is not particularly limited as long as it is not contrary to the gist of the present invention, and a known polymerizable compound can be used.
When the transfer film having the photocurable resin layer is a negative material, the photocurable resin composition preferably contains an alkali-soluble resin, a polymerizable compound, and a polymerization initiator. Furthermore, although a coloring agent, an additive, etc. are used, it is not restricted to this.
As the alkali-soluble resin, polymers described in paragraph 0025 of JP2011-95716A and paragraphs 0033 to 0052 of JP2010-237589A can be used. On the other hand, when the decorative layer is formed by precutting, it is also preferable to use a silicone resin as the binder resin in the resin layer having the colorant as described above.
When the transfer film having the photocurable resin layer is a positive type material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but is not limited thereto.
上記光硬化性樹脂層に用いられる上記光重合開始剤としては、特開2011-95716号公報に記載の段落0031~0042に記載の重合性化合物を用いることができる。
As the photopolymerization initiator used in the photocurable resin layer, the polymerizable compounds described in paragraphs 0031 to 0042 described in JP 2011-95716 A can be used.
さらに、上記光硬化性樹脂層は、添加剤を用いてもよい。上記添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。
Furthermore, an additive may be used for the photocurable resin layer. Examples of the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060 to 0071 of JP-A-2009-237362, and prevention of thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. And other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706.
-溶剤-
また、光硬化性樹脂層を有する転写フィルムを塗布により製造する際の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。 -solvent-
In addition, as a solvent for producing a transfer film having a photocurable resin layer by coating, the solvents described in paragraphs 0043 to 0044 of JP2011-95716A can be used.
また、光硬化性樹脂層を有する転写フィルムを塗布により製造する際の溶剤としては、特開2011-95716号公報の段落0043~0044に記載の溶剤を用いることができる。 -solvent-
In addition, as a solvent for producing a transfer film having a photocurable resin layer by coating, the solvents described in paragraphs 0043 to 0044 of JP2011-95716A can be used.
以上、光硬化性樹脂層を有する転写フィルムがネガ型材料である場合を中心に説明したが、上記転写フィルムは、ポジ型材料であってもよい。
As described above, the case where the transfer film having the photocurable resin layer is a negative type material has been mainly described, but the transfer film may be a positive type material.
光硬化性樹脂層の100℃で測定した粘度が2000~50000Pa・secの領域にあり、さらに次式を満たすことが好ましい。
熱可塑性樹脂層の粘度<光硬化性樹脂層の粘度 The viscosity of the photocurable resin layer measured at 100 ° C. is in the range of 2000 to 50000 Pa · sec, and preferably satisfies the following formula.
Viscosity of thermoplastic resin layer <viscosity of photocurable resin layer
熱可塑性樹脂層の粘度<光硬化性樹脂層の粘度 The viscosity of the photocurable resin layer measured at 100 ° C. is in the range of 2000 to 50000 Pa · sec, and preferably satisfies the following formula.
Viscosity of thermoplastic resin layer <viscosity of photocurable resin layer
上記転写フィルムが光硬化性樹脂層を有する場合に上記加飾層を形成する方法は、上記転写フィルムから上記保護フィルムを除去する保護フィルム除去工程と、上記保護フィルムが除去された上記転写フィルムの上記光硬化性樹脂層を基材上に転写する転写工程と、基材上に転写された上記光硬化性樹脂層を露光する露光工程と、露光された光硬化性樹脂層を現像してパターン画像を得る現像工程と、を有する方法が挙げられる。この場合、さらに上記転写工程後に、転写された光硬化性樹脂層をポスト露光する工程を有することが好ましい。
When the transfer film has a photocurable resin layer, the method for forming the decorative layer includes a protective film removing step for removing the protective film from the transfer film, and a method for removing the protective film from the transfer film. A transfer step of transferring the photocurable resin layer onto the substrate, an exposure step of exposing the photocurable resin layer transferred onto the substrate, and developing the exposed photocurable resin layer to form a pattern And a development step for obtaining an image. In this case, it is preferable to further include a step of post-exposing the transferred photocurable resin layer after the transfer step.
転写フィルムは、前面板(基材)にラミネートされた後、必要なパターン様に露光され、ネガ型材料の場合は非露光部分、ポジ型材料の場合は露光部分を現像処理して除去することでパターンを得ることができる。この際、現像は熱可塑性樹脂層と、光硬化性樹脂層を別々の液で現像除去してもよいし、同一の液で除去してもよい。必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、ポストベークを行ってもよい。
以下、フォトリソグラフィー方式を用いて上記加飾層を形成する場合において、好ましい転写工程、露光工程、現像工程、およびその他の工程の詳細を説明する。 After the transfer film is laminated on the front plate (base material), it is exposed to the required pattern, and in the case of negative type material, the unexposed part and in the case of positive type material, the exposed part is developed and removed. A pattern can be obtained. At this time, the development may be carried out by removing the thermoplastic resin layer and the photocurable resin layer with separate liquids, or with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
Hereinafter, when forming the said decoration layer using a photolithographic system, the detail of a preferable transfer process, an exposure process, a image development process, and another process is demonstrated.
以下、フォトリソグラフィー方式を用いて上記加飾層を形成する場合において、好ましい転写工程、露光工程、現像工程、およびその他の工程の詳細を説明する。 After the transfer film is laminated on the front plate (base material), it is exposed to the required pattern, and in the case of negative type material, the unexposed part and in the case of positive type material, the exposed part is developed and removed. A pattern can be obtained. At this time, the development may be carried out by removing the thermoplastic resin layer and the photocurable resin layer with separate liquids, or with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
Hereinafter, when forming the said decoration layer using a photolithographic system, the detail of a preferable transfer process, an exposure process, a image development process, and another process is demonstrated.
-転写工程-
上記転写工程は、上記保護フィルムが除去された転写フィルムの上記光硬化性樹脂層を基材上に転写する工程である。
この際、転写フィルムの光硬化性樹脂層を基材にラミネート後、仮支持体を除去することによって行う方法が好ましい。
光硬化性樹脂層の基材表面への転写(貼り合わせ)は、光硬化性樹脂層を基材表面に重ね、加圧、加熱することにより行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。 -Transcription process-
The said transfer process is a process of transferring the said photocurable resin layer of the transfer film from which the said protective film was removed on a base material.
At this time, a method of removing the temporary support after laminating the photocurable resin layer of the transfer film on the substrate is preferable.
Transfer (bonding) of the photocurable resin layer to the surface of the base material is performed by stacking the photocurable resin layer on the surface of the base material, and applying pressure and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
上記転写工程は、上記保護フィルムが除去された転写フィルムの上記光硬化性樹脂層を基材上に転写する工程である。
この際、転写フィルムの光硬化性樹脂層を基材にラミネート後、仮支持体を除去することによって行う方法が好ましい。
光硬化性樹脂層の基材表面への転写(貼り合わせ)は、光硬化性樹脂層を基材表面に重ね、加圧、加熱することにより行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。 -Transcription process-
The said transfer process is a process of transferring the said photocurable resin layer of the transfer film from which the said protective film was removed on a base material.
At this time, a method of removing the temporary support after laminating the photocurable resin layer of the transfer film on the substrate is preferable.
Transfer (bonding) of the photocurable resin layer to the surface of the base material is performed by stacking the photocurable resin layer on the surface of the base material, and applying pressure and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
-露光工程、現像工程、およびその他の工程-
上記露光工程、現像工程、およびその他の工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。 -Exposure process, development process, and other processes-
As examples of the exposure step, the development step, and other steps, the methods described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present invention.
上記露光工程、現像工程、およびその他の工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。 -Exposure process, development process, and other processes-
As examples of the exposure step, the development step, and other steps, the methods described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present invention.
上記露光工程は、基材上に転写された上記光硬化性樹脂層を露光する工程である。
具体的には、上記基材上に形成された光硬化性樹脂層の上方に所定のマスクを配置し、その後このマスク、熱可塑性樹脂層、および中間層を介してマスク上方から露光する方法が挙げられる。
ここで、上記露光の光源としては、光硬化性樹脂層を硬化しうる波長域の光(例えば、365nm、405nmなど)を照射できるものであれば適宜選定して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。露光量としては、通常5~200mJ/cm2程度であり、好ましくは10~100mJ/cm2程度である。 The said exposure process is a process of exposing the said photocurable resin layer transcribe | transferred on the base material.
Specifically, there is a method in which a predetermined mask is disposed above the photocurable resin layer formed on the substrate, and then exposed from above the mask through the mask, the thermoplastic resin layer, and the intermediate layer. Can be mentioned.
Here, the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.). Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned. The exposure dose is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
具体的には、上記基材上に形成された光硬化性樹脂層の上方に所定のマスクを配置し、その後このマスク、熱可塑性樹脂層、および中間層を介してマスク上方から露光する方法が挙げられる。
ここで、上記露光の光源としては、光硬化性樹脂層を硬化しうる波長域の光(例えば、365nm、405nmなど)を照射できるものであれば適宜選定して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。露光量としては、通常5~200mJ/cm2程度であり、好ましくは10~100mJ/cm2程度である。 The said exposure process is a process of exposing the said photocurable resin layer transcribe | transferred on the base material.
Specifically, there is a method in which a predetermined mask is disposed above the photocurable resin layer formed on the substrate, and then exposed from above the mask through the mask, the thermoplastic resin layer, and the intermediate layer. Can be mentioned.
Here, the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.). Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned. The exposure dose is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
上記現像工程は、露光された光硬化性樹脂層を現像する工程である。
上記現像は、現像液を用いて行うことができる。上記現像液としては、特に制約はなく、特開平5-72724号公報に記載の現像液など、公知の現像液を使用することができる。尚、現像液は光硬化性樹脂層が溶解型の現像挙動をする現像液が好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含むものが好ましいが、更に水と混和性を有する有機溶剤を少量添加してもよい。水と混和性を有する有機溶剤としては、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε-カプロラクトン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε-カプロラクタム、N-メチルピロリドン等を挙げることができる。この有機溶剤の濃度は0.1質量%~30質量%が好ましい。また、上記現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%~10質量%が好ましい。 The developing step is a step of developing the exposed photocurable resin layer.
The development can be performed using a developer. The developer is not particularly limited, and a known developer such as a developer described in JP-A-5-72724 can be used. The developer is preferably a developer in which the photocurable resin layer has a dissolution type development behavior. For example, a developer containing a compound having pKa = 7 to 13 at a concentration of 0.05 to 5 mol / L is preferable. A small amount of an organic solvent miscible with water may be added. Examples of organic solvents miscible with water include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ε-caprolactone, γ-butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ε-caprolactam, N-methylpyrrolidone and the like. The concentration of the organic solvent is preferably 0.1% by mass to 30% by mass. Further, a known surfactant can be further added to the developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
上記現像は、現像液を用いて行うことができる。上記現像液としては、特に制約はなく、特開平5-72724号公報に記載の現像液など、公知の現像液を使用することができる。尚、現像液は光硬化性樹脂層が溶解型の現像挙動をする現像液が好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含むものが好ましいが、更に水と混和性を有する有機溶剤を少量添加してもよい。水と混和性を有する有機溶剤としては、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε-カプロラクトン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε-カプロラクタム、N-メチルピロリドン等を挙げることができる。この有機溶剤の濃度は0.1質量%~30質量%が好ましい。また、上記現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%~10質量%が好ましい。 The developing step is a step of developing the exposed photocurable resin layer.
The development can be performed using a developer. The developer is not particularly limited, and a known developer such as a developer described in JP-A-5-72724 can be used. The developer is preferably a developer in which the photocurable resin layer has a dissolution type development behavior. For example, a developer containing a compound having pKa = 7 to 13 at a concentration of 0.05 to 5 mol / L is preferable. A small amount of an organic solvent miscible with water may be added. Examples of organic solvents miscible with water include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ε-caprolactone, γ-butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ε-caprolactam, N-methylpyrrolidone and the like. The concentration of the organic solvent is preferably 0.1% by mass to 30% by mass. Further, a known surfactant can be further added to the developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
上記現像の方式としては、パドル現像、シャワー現像、シャワー&スピン現像、ディップ現像等のいずれでもよい。ここで、上記シャワー現像について説明すると、露光後の光硬化性樹脂層に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。尚、熱可塑性樹脂層や中間層を設けた場合には、現像の前に光硬化性樹脂を含む透明硬化性樹脂層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。現像液の液温度は20℃~40℃が好ましく、また、現像液のpHは8~13が好ましい。
The development method may be any of paddle development, shower development, shower & spin development, dip development, and the like. Here, the shower development will be described. An uncured portion can be removed by spraying a developer onto the photocurable resin layer after exposure. In the case where a thermoplastic resin layer or an intermediate layer is provided, an alkaline liquid having a low solubility of the transparent curable resin layer containing a photocurable resin is sprayed by a shower or the like before development, and the thermoplastic resin layer, It is preferable to remove the intermediate layer and the like. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like. The liquid temperature of the developer is preferably 20 ° C. to 40 ° C., and the pH of the developer is preferably 8 to 13.
(1-B)プレカット方式でのパターニング
加飾層の形成方法は、通常のフォトリソ方式で画像形成しない場合、転写以前に加飾層に画像部を形成する必要がある。 (1-B) Patterning by pre-cut method As a method for forming a decorative layer, when an image is not formed by a normal photolithography method, it is necessary to form an image portion on the decorative layer before transfer.
加飾層の形成方法は、通常のフォトリソ方式で画像形成しない場合、転写以前に加飾層に画像部を形成する必要がある。 (1-B) Patterning by pre-cut method As a method for forming a decorative layer, when an image is not formed by a normal photolithography method, it is necessary to form an image portion on the decorative layer before transfer.
(i-1)上記転写フィルムの一部に、上記加飾層を貫通し、かつ上記仮支持体を貫通しない深さの切り込みを入れる工程(ハーフカット工程)や、(i-2)上記転写フィルムの一部に、上記加飾層から上記仮支持体を貫通する切り込みを入れる工程(ダイカット工程)を、(i)転写フィルムの加飾層のうち転写する画像部をプレカットする工程とも言う。
(I-1) a step (half-cut step) in which a part of the transfer film has a depth that penetrates the decorative layer and does not penetrate the temporary support (half-cut step); (i-2) the transfer The step of cutting the penetrating through the temporary support from the decorative layer into a part of the film (die cutting step) is also referred to as (i) the step of precutting the image portion to be transferred in the decorative layer of the transfer film.
上記加飾層を形成する方法は、(i-1)ハーフカット工程、すなわち上記転写フィルムの一部に、上記加飾層を貫通し、かつ上記仮支持体を貫通しない深さの切り込みを入れる工程と、(ii)上記切り込みによって囲まれた領域のうち少なくとも一部の領域(転写しない非画像部)の上記加飾層を除去する工程と、(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程(加飾層の画像部を基材上に転写する工程、以下、「転写工程」とも言う。)と、を含むことが好ましい。
また、上記加飾層を形成する方法は、(i-2)ダイカット工程、すなわち上記転写フィルムの一部に、上記加飾層から上記仮支持体を貫通する切り込みを入れる工程と、(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程と、を含むことも好ましい。 The method for forming the decorative layer is as follows: (i-1) Half-cut step, that is, a cut having a depth that penetrates the decorative layer and does not penetrate the temporary support is partly formed in the transfer film. And (iii) removing the decorative layer in at least a part of the region surrounded by the cuts (non-image portion not to be transferred), and (iii) the decoration of the part of the region A step of forming the decorative layer using the transfer film after removing the layer (a step of transferring the image portion of the decorative layer onto the substrate, hereinafter also referred to as “transfer step”). It is preferable.
The method for forming the decorative layer includes: (i-2) a die-cutting step, that is, a step of making a cut through the temporary support from the decorative layer into a part of the transfer film; and (iii) It is also preferable to include the step of forming the decorating layer using the transfer film after removing the decorating layer in the partial area.
また、上記加飾層を形成する方法は、(i-2)ダイカット工程、すなわち上記転写フィルムの一部に、上記加飾層から上記仮支持体を貫通する切り込みを入れる工程と、(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程と、を含むことも好ましい。 The method for forming the decorative layer is as follows: (i-1) Half-cut step, that is, a cut having a depth that penetrates the decorative layer and does not penetrate the temporary support is partly formed in the transfer film. And (iii) removing the decorative layer in at least a part of the region surrounded by the cuts (non-image portion not to be transferred), and (iii) the decoration of the part of the region A step of forming the decorative layer using the transfer film after removing the layer (a step of transferring the image portion of the decorative layer onto the substrate, hereinafter also referred to as “transfer step”). It is preferable.
The method for forming the decorative layer includes: (i-2) a die-cutting step, that is, a step of making a cut through the temporary support from the decorative layer into a part of the transfer film; and (iii) It is also preferable to include the step of forming the decorating layer using the transfer film after removing the decorating layer in the partial area.
さらに転写フィルムが、保護フィルムや中間層や熱可塑性樹脂層を含む場合、(ii)上記切り込みによって囲まれた領域のうち少なくとも一部の領域の上記加飾層を除去する工程は、(ii-1)非画像部の保護フィルム及び加飾層、並びに画像部の保護フィルムを除去する工程であることが好ましい。
Further, when the transfer film includes a protective film, an intermediate layer, or a thermoplastic resin layer, (ii) the step of removing the decorative layer in at least a part of the region surrounded by the notch is (ii- 1) It is preferable that it is the process of removing the protective film and decoration layer of a non-image part, and the protective film of an image part.
さらに転写フィルムが、保護フィルムや中間層や熱可塑性樹脂層を含む場合、(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程(加飾層の画像部を基材上に転写する工程)は、(iii-1)上記保護フィルムが除去された上記転写フィルムの上記加飾層の画像部を基材上に転写する工程であることが好ましい。
この場合、さらに(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程は、(iv)基材上に転写された仮支持体を剥離する工程を含むことが好ましい。
この場合、さらに(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程は、(v)熱可塑性樹脂層と中間層を除去する工程を含むことが好ましい。 Furthermore, when a transfer film contains a protective film, an intermediate | middle layer, and a thermoplastic resin layer, (iii) The said decoration layer is formed using the said transfer film after removing the said decoration layer of the said one part area | region. The step (the step of transferring the image portion of the decorative layer onto the substrate) is (iii-1) the step of transferring the image portion of the decorative layer of the transfer film from which the protective film has been removed onto the substrate. It is preferable that
In this case, further, (iii) the step of forming the decorative layer using the transfer film after removing the decorative layer in the partial area includes (iv) temporary support transferred onto the substrate. It is preferable to include a step of peeling the body.
In this case, the step of (iii) forming the decorative layer using the transfer film after removing the decorative layer in the partial area includes (v) removing the thermoplastic resin layer and the intermediate layer. It is preferable that the process to include is included.
この場合、さらに(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程は、(iv)基材上に転写された仮支持体を剥離する工程を含むことが好ましい。
この場合、さらに(iii)上記一部の領域の上記加飾層を除去した後の上記転写フィルムを用いて上記加飾層を形成する工程は、(v)熱可塑性樹脂層と中間層を除去する工程を含むことが好ましい。 Furthermore, when a transfer film contains a protective film, an intermediate | middle layer, and a thermoplastic resin layer, (iii) The said decoration layer is formed using the said transfer film after removing the said decoration layer of the said one part area | region. The step (the step of transferring the image portion of the decorative layer onto the substrate) is (iii-1) the step of transferring the image portion of the decorative layer of the transfer film from which the protective film has been removed onto the substrate. It is preferable that
In this case, further, (iii) the step of forming the decorative layer using the transfer film after removing the decorative layer in the partial area includes (iv) temporary support transferred onto the substrate. It is preferable to include a step of peeling the body.
In this case, the step of (iii) forming the decorative layer using the transfer film after removing the decorative layer in the partial area includes (v) removing the thermoplastic resin layer and the intermediate layer. It is preferable that the process to include is included.
加飾層の形成方法は、(i)転写フィルムの加飾層のうち転写する画像部をプレカットする工程と、(ii-1)非画像部の保護フィルム及び加飾層、並びに画像部の保護フィルムを除去する工程と、(iii-1)上記保護フィルムが除去された上記転写フィルムの上記加飾層の画像部を基材上に転写する転写工程と、(iv)基材上に転写された仮支持体を剥離する工程と、(v)熱可塑性樹脂層と中間層を除去する工程とを有する方法がより好ましい。
The decorative layer forming method includes (i) a step of pre-cutting the transferred image portion of the decorative layer of the transfer film, and (ii-1) a protective film and a decorative layer for the non-image portion, and protection of the image portion. A step of removing the film; (iii-1) a transfer step of transferring the image portion of the decorative layer of the transfer film from which the protective film has been removed onto the substrate; and (iv) a transfer of the image onto the substrate. More preferably, the method includes a step of peeling the temporary support and a step (v) of removing the thermoplastic resin layer and the intermediate layer.
また、後の転写工程におけるラミネートによる加飾層の密着性を高めるために、予め基材(前面板)の一方の面に表面処理を施すことができる。上記表面処理としては、シラン化合物(シランカップリング剤)を用いた表面処理(シランカップリング処理)を実施することが好ましい。シランカップリング剤としては、感光性樹脂と相互作用する官能基を有するものが好ましい。例えばシランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄する。この後、加熱により反応させる。加熱槽を用いてもよく、ラミネータの基材予備加熱でも反応を促進できる。
Also, in order to enhance the adhesion of the decorative layer by lamination in the subsequent transfer process, one surface of the base material (front plate) can be subjected to surface treatment in advance. As the surface treatment, it is preferable to carry out a surface treatment (silane coupling treatment) using a silane compound (silane coupling agent). As the silane coupling agent, those having a functional group that interacts with the photosensitive resin are preferable. For example, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) is sprayed for 20 seconds by a shower, and pure water shower washing is performed. To do. Thereafter, the reaction is carried out by heating. A heating tank may be used, and the reaction can be promoted by preheating the base material of the laminator.
ハーフカット工程を経る転写方法では、まず、加飾層の画像部と非画像部の境界に剃刀等でプレカット後、非画像部の保護フィルム、加飾層及び中間層をテープで除去し、さらに画像部の保護フィルムを同様に除去して、基材に加飾層パターンを転写する。
一方、ダイカット工程を経る転写方法では、まず、図11~図13に示すように加飾層の画像部32と非画像部31の境界に剃刀等で全層を貫通するようにプレカット後、上記一部の領域の上記加飾層(非画像部31)を除去した後に残った画像部32の保護フィルムをテープで除去して、基材に加飾層パターンを転写する。
引き続き、現像により熱可塑性樹脂層と中間層を除去することで加飾層パターンを形成することが可能である。
必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、およびポストベークを行ってもよく、ポストベークを行うことが好ましい。
以下、プレカット方式を用いて上記加飾層を形成する場合において、好ましいプレカット工程、転写工程、露光工程、現像工程およびその他の工程の詳細を説明する。 In the transfer method that undergoes a half-cut process, first, after pre-cutting with a razor or the like at the boundary between the image portion and the non-image portion of the decorative layer, the protective film, the decorative layer, and the intermediate layer of the non-image portion are removed with a tape, The protective film in the image area is similarly removed, and the decorative layer pattern is transferred to the substrate.
On the other hand, in the transfer method that passes through the die cutting step, first, as shown in FIGS. 11 to 13, after pre-cutting so as to penetrate the entire layer with a razor or the like at the boundary between theimage portion 32 and the non-image portion 31 of the decorative layer, The protective film of the image part 32 which remained after removing the said decoration layer (non-image part 31) of a one part area | region is removed with a tape, and a decoration layer pattern is transcribe | transferred to a base material.
Subsequently, the decorative layer pattern can be formed by removing the thermoplastic resin layer and the intermediate layer by development.
You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After development, post-exposure and post-bake may be performed as necessary, and post-bake is preferably performed.
Hereinafter, when forming the said decoration layer using a precut system, the detail of a preferable precut process, a transfer process, an exposure process, a development process, and another process is demonstrated.
一方、ダイカット工程を経る転写方法では、まず、図11~図13に示すように加飾層の画像部32と非画像部31の境界に剃刀等で全層を貫通するようにプレカット後、上記一部の領域の上記加飾層(非画像部31)を除去した後に残った画像部32の保護フィルムをテープで除去して、基材に加飾層パターンを転写する。
引き続き、現像により熱可塑性樹脂層と中間層を除去することで加飾層パターンを形成することが可能である。
必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、およびポストベークを行ってもよく、ポストベークを行うことが好ましい。
以下、プレカット方式を用いて上記加飾層を形成する場合において、好ましいプレカット工程、転写工程、露光工程、現像工程およびその他の工程の詳細を説明する。 In the transfer method that undergoes a half-cut process, first, after pre-cutting with a razor or the like at the boundary between the image portion and the non-image portion of the decorative layer, the protective film, the decorative layer, and the intermediate layer of the non-image portion are removed with a tape, The protective film in the image area is similarly removed, and the decorative layer pattern is transferred to the substrate.
On the other hand, in the transfer method that passes through the die cutting step, first, as shown in FIGS. 11 to 13, after pre-cutting so as to penetrate the entire layer with a razor or the like at the boundary between the
Subsequently, the decorative layer pattern can be formed by removing the thermoplastic resin layer and the intermediate layer by development.
You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After development, post-exposure and post-bake may be performed as necessary, and post-bake is preferably performed.
Hereinafter, when forming the said decoration layer using a precut system, the detail of a preferable precut process, a transfer process, an exposure process, a development process, and another process is demonstrated.
-プレカット工程-
(i-1)ハーフカット工程
まず、プレカット工程のうち、上記加飾層を形成する方法におけるハーフカット工程、すなわち上記転写フィルムの一部に、上記加飾層を貫通し、かつ上記仮支持体を貫通しない深さの切り込みを入れる工程について、以下説明する。
上記切り込みを入れる方法としては特に制限は無く、刃、レーザーなど任意の方法で切り込みを入れることができ、刃で切り込みを入れることが好ましい。また、刃の構造は特に限定されることはない。
上記転写フィルムが、例えば、仮支持体、熱可塑性樹脂層、中間層、加飾層、保護フィルムの順に積層されて構成されるとき、例えば、刃もしくはレーザーを用いて、保護フィルムの上から、保護フィルム、加飾層、中間層を貫き、熱可塑性樹脂層の一部にまで至る切り込みを入れることで、転写する画像部と転写しない非画像部の間を分離することができる。 -Pre-cut process-
(I-1) Half-cutting step First, in the pre-cutting step, the half-cutting step in the method for forming the decorative layer, that is, a part of the transfer film penetrates the decorative layer, and the temporary support. The process of making a cut with a depth that does not penetrate through will be described below.
There is no restriction | limiting in particular as the method of making the said incision, Incision can be made by arbitrary methods, such as a blade and a laser, and it is preferable to make an incision with a blade. Further, the structure of the blade is not particularly limited.
When the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film, in that order, for example, using a blade or a laser, from above the protective film, By cutting through the protective film, the decorative layer, and the intermediate layer and reaching a part of the thermoplastic resin layer, it is possible to separate the image portion to be transferred and the non-image portion not to be transferred.
(i-1)ハーフカット工程
まず、プレカット工程のうち、上記加飾層を形成する方法におけるハーフカット工程、すなわち上記転写フィルムの一部に、上記加飾層を貫通し、かつ上記仮支持体を貫通しない深さの切り込みを入れる工程について、以下説明する。
上記切り込みを入れる方法としては特に制限は無く、刃、レーザーなど任意の方法で切り込みを入れることができ、刃で切り込みを入れることが好ましい。また、刃の構造は特に限定されることはない。
上記転写フィルムが、例えば、仮支持体、熱可塑性樹脂層、中間層、加飾層、保護フィルムの順に積層されて構成されるとき、例えば、刃もしくはレーザーを用いて、保護フィルムの上から、保護フィルム、加飾層、中間層を貫き、熱可塑性樹脂層の一部にまで至る切り込みを入れることで、転写する画像部と転写しない非画像部の間を分離することができる。 -Pre-cut process-
(I-1) Half-cutting step First, in the pre-cutting step, the half-cutting step in the method for forming the decorative layer, that is, a part of the transfer film penetrates the decorative layer, and the temporary support. The process of making a cut with a depth that does not penetrate through will be described below.
There is no restriction | limiting in particular as the method of making the said incision, Incision can be made by arbitrary methods, such as a blade and a laser, and it is preferable to make an incision with a blade. Further, the structure of the blade is not particularly limited.
When the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film, in that order, for example, using a blade or a laser, from above the protective film, By cutting through the protective film, the decorative layer, and the intermediate layer and reaching a part of the thermoplastic resin layer, it is possible to separate the image portion to be transferred and the non-image portion not to be transferred.
ハーフカットによりプレカットした加飾層の画像部を選択的に基板に転写するには非画像部を転写させない工夫が必要となる。一つの方法は転写前に加飾層の非画像部を除去する方法であり、保護フィルム除去した後、加飾層の非画像部と中間層を同時に剥離する方法である。もう一つは非画像部上の保護フィルムを剥がし、引き続いて加飾層と中間層を同時に剥離し、さらに画像部上の保護フィルムを剥がす方法である。加飾層の画像部を転写直前まで保護する観点から、後者の方が好ましい。
In order to selectively transfer the image portion of the decorative layer precut by the half cut to the substrate, it is necessary to devise a method not to transfer the non-image portion. One method is a method of removing the non-image part of the decorative layer before transfer, and after removing the protective film, the non-image part of the decorative layer and the intermediate layer are simultaneously peeled off. The other is a method of peeling off the protective film on the non-image area, subsequently peeling off the decorative layer and the intermediate layer at the same time, and further peeling off the protective film on the image area. From the viewpoint of protecting the image portion of the decorative layer until just before transfer, the latter is preferred.
(i-2)ダイカット工程
次に、プレカット工程のうち、上記加飾層を形成する方法におけるダイカット工程、すなわち上記転写フィルムの一部に、上記加飾層から上記仮支持体を貫通する切り込みを入れる工程について、以下説明する。
上記切り込みを入れる方法としてはハーフカット同様、特に制限は無く、刃、レーザーなど任意の方法で切り込みを入れることができ、刃で切り込みを入れることが好ましい。また、刃の構造は特に限定されることはない。
上記転写フィルムが、例えば、仮支持体、熱可塑性樹脂層、中間層、加飾層、保護フィルムの順に積層されて構成されるとき、例えば、刃もしくはレーザーを用いて、保護フィルムの上から、保護フィルム、加飾層、中間層、熱可塑性樹脂層、上記仮支持体を貫く切り込みを入れることで、転写する画像部と転写させない非画像部の間を分離することができる。 (I-2) Die-cutting step Next, in the pre-cutting step, a die-cutting step in the method of forming the decorative layer, that is, a cut that penetrates the temporary support from the decorative layer into a part of the transfer film. The process of putting in is demonstrated below.
There is no restriction | limiting in particular as the method of making the said incision like a half cut, It can cut with arbitrary methods, such as a blade and a laser, It is preferable to make an incision with a blade. Further, the structure of the blade is not particularly limited.
When the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film, in that order, for example, using a blade or a laser, from above the protective film, By making a cut through the protective film, the decorative layer, the intermediate layer, the thermoplastic resin layer, and the temporary support, it is possible to separate between the image portion to be transferred and the non-image portion not to be transferred.
次に、プレカット工程のうち、上記加飾層を形成する方法におけるダイカット工程、すなわち上記転写フィルムの一部に、上記加飾層から上記仮支持体を貫通する切り込みを入れる工程について、以下説明する。
上記切り込みを入れる方法としてはハーフカット同様、特に制限は無く、刃、レーザーなど任意の方法で切り込みを入れることができ、刃で切り込みを入れることが好ましい。また、刃の構造は特に限定されることはない。
上記転写フィルムが、例えば、仮支持体、熱可塑性樹脂層、中間層、加飾層、保護フィルムの順に積層されて構成されるとき、例えば、刃もしくはレーザーを用いて、保護フィルムの上から、保護フィルム、加飾層、中間層、熱可塑性樹脂層、上記仮支持体を貫く切り込みを入れることで、転写する画像部と転写させない非画像部の間を分離することができる。 (I-2) Die-cutting step Next, in the pre-cutting step, a die-cutting step in the method of forming the decorative layer, that is, a cut that penetrates the temporary support from the decorative layer into a part of the transfer film. The process of putting in is demonstrated below.
There is no restriction | limiting in particular as the method of making the said incision like a half cut, It can cut with arbitrary methods, such as a blade and a laser, It is preferable to make an incision with a blade. Further, the structure of the blade is not particularly limited.
When the transfer film is composed of, for example, a temporary support, a thermoplastic resin layer, an intermediate layer, a decorative layer, and a protective film, in that order, for example, using a blade or a laser, from above the protective film, By making a cut through the protective film, the decorative layer, the intermediate layer, the thermoplastic resin layer, and the temporary support, it is possible to separate between the image portion to be transferred and the non-image portion not to be transferred.
-転写工程-
上記転写工程は、プレカット工程後の上記転写フィルムの上記加飾層を基材上に転写する工程である。
この際、上記転写フィルムの加飾層を基材にラミネート後、仮支持体を除去することが好ましい。
加飾層の基材表面への転写(貼り合わせ)は、加飾層を基材表面に重ね、加圧、加熱することにより行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。 -Transcription process-
The said transfer process is a process of transferring the said decoration layer of the said transfer film after a precut process on a base material.
At this time, it is preferable to remove the temporary support after laminating the decorative layer of the transfer film to the substrate.
Transfer (bonding) of the decorative layer to the substrate surface is performed by stacking the decorative layer on the substrate surface, pressurizing and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
上記転写工程は、プレカット工程後の上記転写フィルムの上記加飾層を基材上に転写する工程である。
この際、上記転写フィルムの加飾層を基材にラミネート後、仮支持体を除去することが好ましい。
加飾層の基材表面への転写(貼り合わせ)は、加飾層を基材表面に重ね、加圧、加熱することにより行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。 -Transcription process-
The said transfer process is a process of transferring the said decoration layer of the said transfer film after a precut process on a base material.
At this time, it is preferable to remove the temporary support after laminating the decorative layer of the transfer film to the substrate.
Transfer (bonding) of the decorative layer to the substrate surface is performed by stacking the decorative layer on the substrate surface, pressurizing and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
-露光工程、現像工程-
加飾層が光硬化性樹脂を含む場合はプレカット工程後に露光工程を行ってもよく、プレカット工程後の露光工程の好ましい態様はフォトリソグラフィー方式での露光工程の好ましい態様と同様である。加飾層が光硬化性樹脂を含まない場合はプレカット工程後に露光工程を行わなくてもよい。 -Exposure process, development process-
When a decoration layer contains a photocurable resin, you may perform an exposure process after a precut process, and the preferable aspect of the exposure process after a precut process is the same as the preferable aspect of the exposure process in a photolithography system. When the decorative layer does not contain a photocurable resin, the exposure process may not be performed after the precut process.
加飾層が光硬化性樹脂を含む場合はプレカット工程後に露光工程を行ってもよく、プレカット工程後の露光工程の好ましい態様はフォトリソグラフィー方式での露光工程の好ましい態様と同様である。加飾層が光硬化性樹脂を含まない場合はプレカット工程後に露光工程を行わなくてもよい。 -Exposure process, development process-
When a decoration layer contains a photocurable resin, you may perform an exposure process after a precut process, and the preferable aspect of the exposure process after a precut process is the same as the preferable aspect of the exposure process in a photolithography system. When the decorative layer does not contain a photocurable resin, the exposure process may not be performed after the precut process.
プレカット工程後、露光工程に続く現像工程の好ましい態様は、フォトリソグラフィー方式での現像工程の好ましい態様と同様であり、フォトリソグラフィー方式で上記露光された光硬化性樹脂層を現像する工程において用いられる現像液を、プレカット工程後、露光工程に続く現像工程でも同様に用いることができる。また、上記アルカリ現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%~10質量%が好ましい。
上記熱可塑性樹脂層と中間層を除去する工程の方式としては、上記露光された光硬化性樹脂層の現像に用いられる、パドル、シャワー、シャワー&スピン、ディップ等の方式のいずれでもよい。上記熱可塑性樹脂層と中間層を除去する工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。 After the pre-cut process, the preferred embodiment of the development process following the exposure process is the same as the preferred embodiment of the development process in the photolithography method, and is used in the step of developing the exposed photocurable resin layer by the photolithography method. The developer can be used in the same manner in the development step subsequent to the exposure step after the precut step. Further, a known surfactant can be further added to the alkali developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
The method of removing the thermoplastic resin layer and the intermediate layer may be any of paddle, shower, shower & spin, dip, and the like used for developing the exposed photocurable resin layer. As an example of the step of removing the thermoplastic resin layer and the intermediate layer, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present invention.
上記熱可塑性樹脂層と中間層を除去する工程の方式としては、上記露光された光硬化性樹脂層の現像に用いられる、パドル、シャワー、シャワー&スピン、ディップ等の方式のいずれでもよい。上記熱可塑性樹脂層と中間層を除去する工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。 After the pre-cut process, the preferred embodiment of the development process following the exposure process is the same as the preferred embodiment of the development process in the photolithography method, and is used in the step of developing the exposed photocurable resin layer by the photolithography method. The developer can be used in the same manner in the development step subsequent to the exposure step after the precut step. Further, a known surfactant can be further added to the alkali developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
The method of removing the thermoplastic resin layer and the intermediate layer may be any of paddle, shower, shower & spin, dip, and the like used for developing the exposed photocurable resin layer. As an example of the step of removing the thermoplastic resin layer and the intermediate layer, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present invention.
(2)ポストベーク
加飾層の形成方法は、上記転写工程後にポストベーク工程を含むことが好ましく、上記熱可塑性樹脂層と中間層を除去する工程の後にポストベークを行う工程を含むことがより好ましい。
加飾層の形成方法は、上記転写工程後の上記加飾層を0.08~1.2atmの環境下、180~300℃で、加熱して形成することが白色度と生産性の両立の観点から好ましい。
上記ポストベークの加熱は0.5atm以上の環境下で行うことがより好ましい。一方、1.1atm以下の環境下で行うことがより好ましく、1.0atm以下の環境下で行うことが特に好ましい。さらに、約1atm(大気圧)環境下で行うことが特別な減圧装置を用いることなく製造コストを低減できる観点からより特に好ましい。ここで、従来は上記加飾層を加熱により硬化して形成する場合、非常に低い圧力の減圧環境下で行い、酸素濃度を低くすることでベーク後の白色度を維持していたが、上記シリコーンレジンを含む加飾層用塗布液を用いて形成した転写フィルムを用いることにより、上記圧力の範囲でベークした後も加飾層の白色度を高めることができる。
上記ポストベークの温度は、200~280℃であることがより好ましく、220~260℃であることが特に好ましい。
上記ポストベークの時間は、20~150分であることがより好ましく、30~100分であることが特に好ましい。
上記ポストベークは、空気環境下で行っても、窒素置換環境下で行ってもよいが、空気環境下で行うことが、特別な減圧装置を用いることなく製造コストを低減できる観点から特に好ましい。 (2) Post-bake The decorative layer forming method preferably includes a post-bake step after the transfer step, and more preferably includes a step of post-bake after the step of removing the thermoplastic resin layer and the intermediate layer. preferable.
The decorative layer can be formed by heating the decorative layer after the transfer step in an environment of 0.08 to 1.2 atm at 180 to 300 ° C. to achieve both whiteness and productivity. It is preferable from the viewpoint.
The post-baking is more preferably performed in an environment of 0.5 atm or more. On the other hand, it is more preferable to carry out in an environment of 1.1 atm or less, and it is particularly preferred to carry out in an environment of 1.0 atm or less. Furthermore, it is more preferable to carry out in an environment of about 1 atm (atmospheric pressure) from the viewpoint of reducing the manufacturing cost without using a special decompression device. Here, conventionally, when the decorative layer is formed by curing by heating, it is performed in a reduced pressure environment of a very low pressure, and the whiteness after baking is maintained by lowering the oxygen concentration. By using a transfer film formed using a coating liquid for a decoration layer containing a silicone resin, the whiteness of the decoration layer can be increased even after baking in the above pressure range.
The post-baking temperature is more preferably 200 to 280 ° C, and particularly preferably 220 to 260 ° C.
The post-baking time is more preferably 20 to 150 minutes, and particularly preferably 30 to 100 minutes.
The post-baking may be performed in an air environment or a nitrogen substitution environment, but it is particularly preferable to perform the post-bake from the viewpoint of reducing the manufacturing cost without using a special decompression device.
加飾層の形成方法は、上記転写工程後にポストベーク工程を含むことが好ましく、上記熱可塑性樹脂層と中間層を除去する工程の後にポストベークを行う工程を含むことがより好ましい。
加飾層の形成方法は、上記転写工程後の上記加飾層を0.08~1.2atmの環境下、180~300℃で、加熱して形成することが白色度と生産性の両立の観点から好ましい。
上記ポストベークの加熱は0.5atm以上の環境下で行うことがより好ましい。一方、1.1atm以下の環境下で行うことがより好ましく、1.0atm以下の環境下で行うことが特に好ましい。さらに、約1atm(大気圧)環境下で行うことが特別な減圧装置を用いることなく製造コストを低減できる観点からより特に好ましい。ここで、従来は上記加飾層を加熱により硬化して形成する場合、非常に低い圧力の減圧環境下で行い、酸素濃度を低くすることでベーク後の白色度を維持していたが、上記シリコーンレジンを含む加飾層用塗布液を用いて形成した転写フィルムを用いることにより、上記圧力の範囲でベークした後も加飾層の白色度を高めることができる。
上記ポストベークの温度は、200~280℃であることがより好ましく、220~260℃であることが特に好ましい。
上記ポストベークの時間は、20~150分であることがより好ましく、30~100分であることが特に好ましい。
上記ポストベークは、空気環境下で行っても、窒素置換環境下で行ってもよいが、空気環境下で行うことが、特別な減圧装置を用いることなく製造コストを低減できる観点から特に好ましい。 (2) Post-bake The decorative layer forming method preferably includes a post-bake step after the transfer step, and more preferably includes a step of post-bake after the step of removing the thermoplastic resin layer and the intermediate layer. preferable.
The decorative layer can be formed by heating the decorative layer after the transfer step in an environment of 0.08 to 1.2 atm at 180 to 300 ° C. to achieve both whiteness and productivity. It is preferable from the viewpoint.
The post-baking is more preferably performed in an environment of 0.5 atm or more. On the other hand, it is more preferable to carry out in an environment of 1.1 atm or less, and it is particularly preferred to carry out in an environment of 1.0 atm or less. Furthermore, it is more preferable to carry out in an environment of about 1 atm (atmospheric pressure) from the viewpoint of reducing the manufacturing cost without using a special decompression device. Here, conventionally, when the decorative layer is formed by curing by heating, it is performed in a reduced pressure environment of a very low pressure, and the whiteness after baking is maintained by lowering the oxygen concentration. By using a transfer film formed using a coating liquid for a decoration layer containing a silicone resin, the whiteness of the decoration layer can be increased even after baking in the above pressure range.
The post-baking temperature is more preferably 200 to 280 ° C, and particularly preferably 220 to 260 ° C.
The post-baking time is more preferably 20 to 150 minutes, and particularly preferably 30 to 100 minutes.
The post-baking may be performed in an air environment or a nitrogen substitution environment, but it is particularly preferable to perform the post-bake from the viewpoint of reducing the manufacturing cost without using a special decompression device.
(3)その他の工程
加飾層の形成方法は、ポスト露光工程等、その他の工程を有していてもよい。
上記加飾層が光硬化性樹脂層を有する場合に上記加飾層を形成するときは、ポスト露光工程を含むことが好ましい。上記ポスト露光工程は、上記加飾層の上記基材と接している側の表面から行っても、上記透明基材と接していない側の表面から行っても、両面から行ってもよい。 (3) Other process The formation method of a decoration layer may have other processes, such as a post-exposure process.
When the said decoration layer has a photocurable resin layer, when forming the said decoration layer, it is preferable that a post-exposure process is included. The post-exposure step may be performed from the surface of the decorative layer that is in contact with the base material, from the surface that is not in contact with the transparent base material, or from both surfaces.
加飾層の形成方法は、ポスト露光工程等、その他の工程を有していてもよい。
上記加飾層が光硬化性樹脂層を有する場合に上記加飾層を形成するときは、ポスト露光工程を含むことが好ましい。上記ポスト露光工程は、上記加飾層の上記基材と接している側の表面から行っても、上記透明基材と接していない側の表面から行っても、両面から行ってもよい。 (3) Other process The formation method of a decoration layer may have other processes, such as a post-exposure process.
When the said decoration layer has a photocurable resin layer, when forming the said decoration layer, it is preferable that a post-exposure process is included. The post-exposure step may be performed from the surface of the decorative layer that is in contact with the base material, from the surface that is not in contact with the transparent base material, or from both surfaces.
なお、その他の工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。
As examples of other steps, the method described in paragraphs 0035 to 0051 of JP-A-2006-23696 can be suitably used in the present invention.
[転写フィルム]
本発明の転写フィルムは、仮支持体と、少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層と、少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を有する転写フィルムであって、上記第1の透明樹脂層は、上記仮支持体と上記第2の透明樹脂層との間に挟まれた構造である。
本発明の転写フィルムは、上記仮支持体と上記第1の透明樹脂層との間に熱可塑性樹脂層を有することが好ましい。 [Transfer film]
The transfer film of the present invention is a transfer film having a temporary support, a first transparent resin layer containing at least a silicone resin as a binder resin, and a second transparent resin layer containing at least a silicone rubber as a binder resin, The first transparent resin layer has a structure sandwiched between the temporary support and the second transparent resin layer.
The transfer film of the present invention preferably has a thermoplastic resin layer between the temporary support and the first transparent resin layer.
本発明の転写フィルムは、仮支持体と、少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層と、少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を有する転写フィルムであって、上記第1の透明樹脂層は、上記仮支持体と上記第2の透明樹脂層との間に挟まれた構造である。
本発明の転写フィルムは、上記仮支持体と上記第1の透明樹脂層との間に熱可塑性樹脂層を有することが好ましい。 [Transfer film]
The transfer film of the present invention is a transfer film having a temporary support, a first transparent resin layer containing at least a silicone resin as a binder resin, and a second transparent resin layer containing at least a silicone rubber as a binder resin, The first transparent resin layer has a structure sandwiched between the temporary support and the second transparent resin layer.
The transfer film of the present invention preferably has a thermoplastic resin layer between the temporary support and the first transparent resin layer.
<仮支持体>
仮支持体としては、可撓性を有し、加圧下または、加圧および加熱下で著しい変形、収縮もしくは伸びを生じない材料を用いることができる。このような仮支持体の例として、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられ、中でも2軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。 <Temporary support>
As the temporary support, a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used. Examples of such a temporary support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.
仮支持体としては、可撓性を有し、加圧下または、加圧および加熱下で著しい変形、収縮もしくは伸びを生じない材料を用いることができる。このような仮支持体の例として、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられ、中でも2軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。 <Temporary support>
As the temporary support, a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used. Examples of such a temporary support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.
仮支持体の厚みには、特に制限はなく、5~200μmの範囲が一般的であり、取扱い易さ、汎用性などの点で、特に10~150μmの範囲が好ましい。
また、仮支持体は透明でもよいし、染料化ケイ素、アルミナゾル、クロム塩、ジルコニウム塩などを含有していてもよい。
また、仮支持体には、特開2005-221726号公報に記載の方法などにより、導電性を付与することができる。 The thickness of the temporary support is not particularly limited and is generally in the range of 5 to 200 μm, and in the range of easy handling and versatility, the range of 10 to 150 μm is particularly preferable.
Further, the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like.
Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
また、仮支持体は透明でもよいし、染料化ケイ素、アルミナゾル、クロム塩、ジルコニウム塩などを含有していてもよい。
また、仮支持体には、特開2005-221726号公報に記載の方法などにより、導電性を付与することができる。 The thickness of the temporary support is not particularly limited and is generally in the range of 5 to 200 μm, and in the range of easy handling and versatility, the range of 10 to 150 μm is particularly preferable.
Further, the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like.
Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
<透明樹脂層>
本発明の転写フィルムは、上記第1の透明樹脂層と、上記第2の透明樹脂層を含む。
本発明の転写フィルムにおける第1の透明樹脂層の好ましい態様は、本発明の積層体における上記第1の透明樹脂層の好ましい態様と同様である。本発明の転写フィルムにおける第2の透明樹脂層の好ましい態様は、本発明の積層体における上記第2の透明樹脂層の好ましい態様と同様である。
本発明で用いられる第1の透明樹脂層と、第2の透明樹脂層は、前面板と加飾層との高低差により生じる間隙(加飾層の段差)を埋めるために所望のサイズにすることが好ましい。本発明の転写フィルムを、加飾層の段差を埋めるためにプレカット工程などによって所望のサイズとすることができる。したがって、本発明の転写フィルムに用いられる第1の透明樹脂層と、第2の透明樹脂層は、本発明の積層体や後述の本発明の導電膜積層体や静電容量型入力装置における、加飾層の段差を埋めるために必要なサイズと必ずしも一致させる必要はない。
一方、本発明の積層体や後述の本発明の導電膜積層体や静電容量型入力装置における、加飾層の段差を埋めるために、第1の透明樹脂層と、第2の透明樹脂層は、転写フィルムを形成する際に、加飾層の高さと同程度の厚みに調整しておくことが好ましい。 <Transparent resin layer>
The transfer film of the present invention includes the first transparent resin layer and the second transparent resin layer.
The preferable aspect of the 1st transparent resin layer in the transfer film of this invention is the same as the preferable aspect of the said 1st transparent resin layer in the laminated body of this invention. The preferable aspect of the 2nd transparent resin layer in the transfer film of this invention is the same as the preferable aspect of the said 2nd transparent resin layer in the laminated body of this invention.
The first transparent resin layer and the second transparent resin layer used in the present invention have a desired size in order to fill a gap (step difference in the decorative layer) generated by a difference in height between the front plate and the decorative layer. It is preferable. The transfer film of the present invention can be made to have a desired size by a precut process or the like in order to fill the step of the decorative layer. Therefore, the first transparent resin layer and the second transparent resin layer used in the transfer film of the present invention are the laminate of the present invention, the conductive film laminate of the present invention described later, and the capacitive input device. It is not always necessary to match the size required to fill the step of the decorative layer.
On the other hand, the first transparent resin layer and the second transparent resin layer are used to fill the steps of the decorative layer in the laminate of the present invention, the conductive film laminate of the present invention described later, and the capacitive input device. When forming a transfer film, it is preferable to adjust the thickness to the same level as the height of the decorative layer.
本発明の転写フィルムは、上記第1の透明樹脂層と、上記第2の透明樹脂層を含む。
本発明の転写フィルムにおける第1の透明樹脂層の好ましい態様は、本発明の積層体における上記第1の透明樹脂層の好ましい態様と同様である。本発明の転写フィルムにおける第2の透明樹脂層の好ましい態様は、本発明の積層体における上記第2の透明樹脂層の好ましい態様と同様である。
本発明で用いられる第1の透明樹脂層と、第2の透明樹脂層は、前面板と加飾層との高低差により生じる間隙(加飾層の段差)を埋めるために所望のサイズにすることが好ましい。本発明の転写フィルムを、加飾層の段差を埋めるためにプレカット工程などによって所望のサイズとすることができる。したがって、本発明の転写フィルムに用いられる第1の透明樹脂層と、第2の透明樹脂層は、本発明の積層体や後述の本発明の導電膜積層体や静電容量型入力装置における、加飾層の段差を埋めるために必要なサイズと必ずしも一致させる必要はない。
一方、本発明の積層体や後述の本発明の導電膜積層体や静電容量型入力装置における、加飾層の段差を埋めるために、第1の透明樹脂層と、第2の透明樹脂層は、転写フィルムを形成する際に、加飾層の高さと同程度の厚みに調整しておくことが好ましい。 <Transparent resin layer>
The transfer film of the present invention includes the first transparent resin layer and the second transparent resin layer.
The preferable aspect of the 1st transparent resin layer in the transfer film of this invention is the same as the preferable aspect of the said 1st transparent resin layer in the laminated body of this invention. The preferable aspect of the 2nd transparent resin layer in the transfer film of this invention is the same as the preferable aspect of the said 2nd transparent resin layer in the laminated body of this invention.
The first transparent resin layer and the second transparent resin layer used in the present invention have a desired size in order to fill a gap (step difference in the decorative layer) generated by a difference in height between the front plate and the decorative layer. It is preferable. The transfer film of the present invention can be made to have a desired size by a precut process or the like in order to fill the step of the decorative layer. Therefore, the first transparent resin layer and the second transparent resin layer used in the transfer film of the present invention are the laminate of the present invention, the conductive film laminate of the present invention described later, and the capacitive input device. It is not always necessary to match the size required to fill the step of the decorative layer.
On the other hand, the first transparent resin layer and the second transparent resin layer are used to fill the steps of the decorative layer in the laminate of the present invention, the conductive film laminate of the present invention described later, and the capacitive input device. When forming a transfer film, it is preferable to adjust the thickness to the same level as the height of the decorative layer.
(透明樹脂層の粘度)
第1の透明樹脂層と、第2の透明樹脂層の100℃で測定した粘度が1~50000Pa・secの領域にあることが好ましい。 (Viscosity of transparent resin layer)
The viscosity of the first transparent resin layer and the second transparent resin layer measured at 100 ° C. is preferably in the region of 1 to 50000 Pa · sec.
第1の透明樹脂層と、第2の透明樹脂層の100℃で測定した粘度が1~50000Pa・secの領域にあることが好ましい。 (Viscosity of transparent resin layer)
The viscosity of the first transparent resin layer and the second transparent resin layer measured at 100 ° C. is preferably in the region of 1 to 50000 Pa · sec.
ここで、各層の粘度は、次のようにして測定できる。大気圧および減圧乾燥により、熱可塑性樹脂層あるいは少なくともシリコーンレジンをバインダー樹脂として含む透明樹脂層用塗布液(第1の透明樹脂層用塗布液)と、少なくともシリコーンゴムをバインダー樹脂として含む透明樹脂層用塗布液(第2の透明樹脂層用塗布液)から溶剤を除去して測定サンプルとし、例えば、測定器として、バイブロン(DD-III型:東洋ボールドウィン(株)製)を使用し、測定開始温度50℃、測定終了温度150℃、昇温速度5℃/分および振動数1Hz/degの条件で測定し、100℃の測定値を用いることができる。
Here, the viscosity of each layer can be measured as follows. A transparent resin layer coating liquid (first coating liquid for transparent resin layer) containing a thermoplastic resin layer or at least a silicone resin as a binder resin, and a transparent resin layer containing at least a silicone rubber as a binder resin by drying under atmospheric pressure and reduced pressure. Remove the solvent from the coating solution for coating (second coating solution for transparent resin layer) to make a measurement sample. For example, use Vibron (DD-III type: manufactured by Toyo Baldwin Co., Ltd.) as a measuring instrument and start measurement. Measurement is performed under conditions of a temperature of 50 ° C., a measurement end temperature of 150 ° C., a temperature increase rate of 5 ° C./min, and a frequency of 1 Hz / deg, and a measured value of 100 ° C. can be used.
<熱可塑性樹脂層>
本発明の転写フィルムは、上記仮支持体と上記第1の透明樹脂層との間に熱可塑性樹脂層が設けられることが好ましい。上記熱可塑性樹脂層はアルカリ可溶性であることが好ましい。熱可塑性樹脂層は、下地表面の凹凸(既に形成されている画像などによる凹凸等も含む。)を吸収することができるようにクッション材としての役割を担うものであり、対象面の凹凸に応じて変形しうる性質を有していることが好ましい。 <Thermoplastic resin layer>
In the transfer film of the present invention, it is preferable that a thermoplastic resin layer is provided between the temporary support and the first transparent resin layer. The thermoplastic resin layer is preferably alkali-soluble. The thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness on the base surface (including unevenness due to images already formed, etc.). It is preferable to have a property that can be deformed.
本発明の転写フィルムは、上記仮支持体と上記第1の透明樹脂層との間に熱可塑性樹脂層が設けられることが好ましい。上記熱可塑性樹脂層はアルカリ可溶性であることが好ましい。熱可塑性樹脂層は、下地表面の凹凸(既に形成されている画像などによる凹凸等も含む。)を吸収することができるようにクッション材としての役割を担うものであり、対象面の凹凸に応じて変形しうる性質を有していることが好ましい。 <Thermoplastic resin layer>
In the transfer film of the present invention, it is preferable that a thermoplastic resin layer is provided between the temporary support and the first transparent resin layer. The thermoplastic resin layer is preferably alkali-soluble. The thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness on the base surface (including unevenness due to images already formed, etc.). It is preferable to have a property that can be deformed.
熱可塑性樹脂層は、特開平5-72724号公報に記載の有機高分子物質を成分として含む態様が好ましく、ヴィカー(Vicat)法〔具体的には、アメリカ材料試験法ASTMD1235によるポリマー軟化点測定法〕による軟化点が約80℃以下の有機高分子物質より選ばれる少なくとも1種を含む態様が特に好ましい。
The thermoplastic resin layer preferably includes an organic polymer substance described in JP-A-5-72724 as a component. The Vicat method [specifically, a method for measuring a polymer softening point by American Material Test Method ASTM D1235] An embodiment including at least one selected from organic polymer substances having a softening point of about 80 ° C. or lower is particularly preferable.
具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニルまたはそのケン化物等とのエチレン共重合体、エチレンとアクリル酸エステルまたはそのケン化物との共重合体、ポリ塩化ビニルや塩化ビニルと酢酸ビニルまたはそのケン化物等との塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステルまたはそのケン化物等とのスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステルまたはそのケン化物等とのビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等との(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N-アルコキシメチル化ナイロン、N-ジメチルアミノ化ナイロン等のポリアミド樹脂、ポリエステル、などの有機高分子が挙げられる。
Specifically, polyolefins such as polyethylene and polypropylene, ethylene copolymers with ethylene and vinyl acetate or saponified products thereof, copolymers of ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride and vinyl chloride, Vinyl chloride copolymer with vinyl acetate or saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer with styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, Vinyl toluene copolymer of vinyl toluene and (meth) acrylic acid ester or saponified product thereof, poly (meth) acrylic acid ester, (meth) acrylic acid ester copolymer weight of butyl (meth) acrylate and vinyl acetate, etc. Copolymer, vinyl acetate copolymer nylon, copolymer nylon N- alkoxymethyl nylon, N- dimethylamino nylon or the like of the polyamide resin, polyester, and organic polymers such as.
また、熱可塑性樹脂層に剥離性を制御するための発泡剤等を添加することが好ましく、特開2007-225939号公報の段落0020~0028に記載のものを適宜使用することができる。
Further, it is preferable to add a foaming agent or the like for controlling peelability to the thermoplastic resin layer, and those described in paragraphs 0020 to 0028 of JP-A-2007-225939 can be used as appropriate.
熱可塑性樹脂層に界面活性剤を添加することも好ましく、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載のものを適宜使用することができる。
It is also preferable to add a surfactant to the thermoplastic resin layer. For example, those described in Paragraph 0017 of Japanese Patent No. 4502784 and Paragraphs 0060 to 0071 of JP-A-2009-237362 can be used as appropriate.
熱可塑性樹脂層の層厚は、3~30μmが好ましい。熱可塑性樹脂層の層厚が3μm以上の場合には、ラミネート時の追随性が十分で、下地表面の凹凸を完全に吸収しやすい。また、層厚が30μm以下である場合には、仮支持体への熱可塑性樹脂層の形成時の乾燥(溶剤除去)に負荷がかかりにくく、熱可塑性樹脂層の現像に時間を要し過ぎず、プロセス適性が良好となる。上記熱可塑性樹脂層の層厚としては、4~25μmが更に好ましく、5~20μmが特に好ましい。
The layer thickness of the thermoplastic resin layer is preferably 3 to 30 μm. When the thickness of the thermoplastic resin layer is 3 μm or more, the followability at the time of lamination is sufficient, and the unevenness of the base surface is easily absorbed. In addition, when the layer thickness is 30 μm or less, it is difficult to apply a load to drying (solvent removal) when forming the thermoplastic resin layer on the temporary support, and development of the thermoplastic resin layer does not take too much time. , Process aptitude is good. The thickness of the thermoplastic resin layer is more preferably 4 to 25 μm, and particularly preferably 5 to 20 μm.
熱可塑性樹脂層は、熱可塑性の有機高分子を含む調製液を塗布等して形成することができ、塗布等の際に用いる調製液は溶媒を用いて調製できる。溶媒には、熱可塑性樹脂層を構成する高分子成分を溶解し得るものであれば特に制限なく、例えば、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、n-プロパノール、2-プロパノール等が挙げられる。
The thermoplastic resin layer can be formed by applying a preparation liquid containing a thermoplastic organic polymer, and the preparation liquid used for the application can be prepared using a solvent. The solvent is not particularly limited as long as it can dissolve the polymer component constituting the thermoplastic resin layer, and examples thereof include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, and 2-propanol.
上記熱可塑性樹脂層の100℃で測定した粘度が1000~50000Pa・secの領域にあることが好ましい。
The viscosity of the thermoplastic resin layer measured at 100 ° C. is preferably in the region of 1000 to 50000 Pa · sec.
<他の層>
本発明の転写フィルムには、第1の透明樹脂層と熱可塑性樹脂層との間に中間層を設けたり、あるいは第2の透明樹脂層の表面に保護フィルムなどを更に設けたりして好適に構成することができる。 <Other layers>
In the transfer film of the present invention, an intermediate layer is provided between the first transparent resin layer and the thermoplastic resin layer, or a protective film or the like is further provided on the surface of the second transparent resin layer. Can be configured.
本発明の転写フィルムには、第1の透明樹脂層と熱可塑性樹脂層との間に中間層を設けたり、あるいは第2の透明樹脂層の表面に保護フィルムなどを更に設けたりして好適に構成することができる。 <Other layers>
In the transfer film of the present invention, an intermediate layer is provided between the first transparent resin layer and the thermoplastic resin layer, or a protective film or the like is further provided on the surface of the second transparent resin layer. Can be configured.
本発明の転写フィルムには、複数層を塗布する際および塗布後の保存の際における成分の混合を防止する目的で、中間層を設けることが好ましい。中間層としては、特開平5-72724号公報に「分離層」として記載されている、酸素遮断機能のある酸素遮断膜が好ましく、露光時の感度がアップし、露光機の時間負荷を低減し得、生産性が向上する。
In the transfer film of the present invention, it is preferable to provide an intermediate layer for the purpose of preventing mixing of components when applying a plurality of layers and during storage after application. As the intermediate layer, an oxygen-blocking film having an oxygen-blocking function, which is described as “separation layer” in JP-A-5-72724, is preferable, which increases sensitivity during exposure and reduces the time load of the exposure machine. And productivity is improved.
上記中間層および保護フィルムとしては、特開2006-259138号公報の段落0083~0087および0093に記載のものを適宜使用することができる。
As the intermediate layer and the protective film, those described in paragraphs 0083 to 0087 and 0093 of JP-A-2006-259138 can be appropriately used.
<転写フィルムの作製方法>
本発明の転写フィルムは、特開2006-259138号公報の段落0094~0098に記載の感光性転写材料の作製方法に準じて作製することができる。
具体的に中間層を有する本発明における転写フィルムを形成する場合には、仮支持体上に、熱可塑性の有機高分子と共に添加剤を含む調製液(熱可塑性樹脂層用塗布液)を塗布し、乾燥させて熱可塑性樹脂層を設けた後、この熱可塑性樹脂層上に熱可塑性樹脂層を溶解しない溶剤に樹脂や添加剤を加えた調製液(中間層用塗布液)を塗布し、乾燥させて中間層を積層し、この中間層上に更に、中間層を溶解しない溶剤を用いて調製した第1の透明樹脂層用塗布液と、第2の透明樹脂層用塗布液を塗布し、乾燥させて第1の透明樹脂層および第2の透明樹脂層を積層することによって、好適に作製することができる。 <Production method of transfer film>
The transfer film of the present invention can be produced according to the method for producing a photosensitive transfer material described in paragraphs 0094 to 0098 of JP-A-2006-259138.
Specifically, when forming the transfer film of the present invention having an intermediate layer, a preparation liquid (thermoplastic resin layer coating liquid) containing an additive together with a thermoplastic organic polymer is applied on a temporary support. After drying and providing a thermoplastic resin layer, a preparation liquid (intermediate layer coating liquid) obtained by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto the thermoplastic resin layer, and then dried. Then, an intermediate layer is laminated, and on this intermediate layer, a first transparent resin layer coating solution and a second transparent resin layer coating solution prepared using a solvent that does not dissolve the intermediate layer are further applied. It can produce suitably by making it dry and laminating | stacking a 1st transparent resin layer and a 2nd transparent resin layer.
本発明の転写フィルムは、特開2006-259138号公報の段落0094~0098に記載の感光性転写材料の作製方法に準じて作製することができる。
具体的に中間層を有する本発明における転写フィルムを形成する場合には、仮支持体上に、熱可塑性の有機高分子と共に添加剤を含む調製液(熱可塑性樹脂層用塗布液)を塗布し、乾燥させて熱可塑性樹脂層を設けた後、この熱可塑性樹脂層上に熱可塑性樹脂層を溶解しない溶剤に樹脂や添加剤を加えた調製液(中間層用塗布液)を塗布し、乾燥させて中間層を積層し、この中間層上に更に、中間層を溶解しない溶剤を用いて調製した第1の透明樹脂層用塗布液と、第2の透明樹脂層用塗布液を塗布し、乾燥させて第1の透明樹脂層および第2の透明樹脂層を積層することによって、好適に作製することができる。 <Production method of transfer film>
The transfer film of the present invention can be produced according to the method for producing a photosensitive transfer material described in paragraphs 0094 to 0098 of JP-A-2006-259138.
Specifically, when forming the transfer film of the present invention having an intermediate layer, a preparation liquid (thermoplastic resin layer coating liquid) containing an additive together with a thermoplastic organic polymer is applied on a temporary support. After drying and providing a thermoplastic resin layer, a preparation liquid (intermediate layer coating liquid) obtained by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto the thermoplastic resin layer, and then dried. Then, an intermediate layer is laminated, and on this intermediate layer, a first transparent resin layer coating solution and a second transparent resin layer coating solution prepared using a solvent that does not dissolve the intermediate layer are further applied. It can produce suitably by making it dry and laminating | stacking a 1st transparent resin layer and a 2nd transparent resin layer.
[積層体の製造方法]
本発明の積層体の製造方法は特に制限はないが、以下に記載する本発明の積層体の製造方法の第1の好ましい態様、本発明の積層体の製造方法の第2の好ましい態様、本発明の積層体の製造方法の第3の好ましい態様のいずれかであることが好ましい。
本発明の積層体の製造方法の第1の好ましい態様は、本発明の転写フィルムの少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層および少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を、前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記前面板上(前面板の一方の面)の一部または全部に転写する工程と、上記第1の透明樹脂層の上に電極パターンを形成する工程を含む。 [Manufacturing method of laminate]
The production method of the laminate of the present invention is not particularly limited, but the first preferred embodiment of the production method of the laminate described below, the second preferred embodiment of the production method of the laminate of the present invention, the present invention, It is preferable that it is one of the 3rd preferable aspects of the manufacturing method of the laminated body of invention.
The 1st preferable aspect of the manufacturing method of the laminated body of this invention is 1st transparent resin layer which contains at least silicone resin as binder resin of the transfer film of this invention, and 2nd transparent resin which contains at least silicone rubber as binder resin. A part of the front plate (one surface of the front plate) or the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. A step of transferring to the whole and a step of forming an electrode pattern on the first transparent resin layer.
本発明の積層体の製造方法は特に制限はないが、以下に記載する本発明の積層体の製造方法の第1の好ましい態様、本発明の積層体の製造方法の第2の好ましい態様、本発明の積層体の製造方法の第3の好ましい態様のいずれかであることが好ましい。
本発明の積層体の製造方法の第1の好ましい態様は、本発明の転写フィルムの少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層および少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を、前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記前面板上(前面板の一方の面)の一部または全部に転写する工程と、上記第1の透明樹脂層の上に電極パターンを形成する工程を含む。 [Manufacturing method of laminate]
The production method of the laminate of the present invention is not particularly limited, but the first preferred embodiment of the production method of the laminate described below, the second preferred embodiment of the production method of the laminate of the present invention, the present invention, It is preferable that it is one of the 3rd preferable aspects of the manufacturing method of the laminated body of invention.
The 1st preferable aspect of the manufacturing method of the laminated body of this invention is 1st transparent resin layer which contains at least silicone resin as binder resin of the transfer film of this invention, and 2nd transparent resin which contains at least silicone rubber as binder resin. A part of the front plate (one surface of the front plate) or the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. A step of transferring to the whole and a step of forming an electrode pattern on the first transparent resin layer.
本発明の積層体の製造方法の第2の好ましい態様は、転写フィルムから第2の透明樹脂層を前面板上(前面板の一方の面)の一部または全部に転写する第2の透明樹脂層の形成工程と、転写フィルムから第1の透明樹脂層を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に転写する第1の透明樹脂層の形成工程と、上記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、同時または連続する転写工程である。
The 2nd preferable aspect of the manufacturing method of the laminated body of this invention is 2nd transparent resin which transcribe | transfers the 2nd transparent resin layer to a part or all on a front plate (one side of a front plate) from a transfer film. The layer forming step, the first transparent resin layer from the transfer film, the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order, Forming a second transparent resin layer, comprising: forming a first transparent resin layer to be transferred onto the second transparent resin layer; and forming an electrode pattern on the first transparent resin layer. The process and the first transparent resin layer forming process are simultaneous or continuous transfer processes.
本発明の積層体の製造方法の第3の好ましい態様は、少なくともシリコーンゴムをバインダー樹脂として含む樹脂組成物(第2の透明樹脂層形成用塗布液)を前面板上(前面板の一方の面)の一部または全部に塗布する第2の透明樹脂層の形成工程と、少なくともシリコーンレジンをバインダー樹脂として含む樹脂組成物(第1の透明樹脂層形成用塗布液)を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に塗布する第1の透明樹脂層の形成工程と、上記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、連続する塗布工程である。
In a third preferred embodiment of the method for producing a laminate of the present invention, a resin composition (second coating solution for forming a transparent resin layer) containing at least silicone rubber as a binder resin is placed on the front plate (one surface of the front plate). And a resin composition (first coating solution for forming a transparent resin layer) containing at least a silicone resin as a binder resin, and the front plate, A step of forming a first transparent resin layer applied on the second transparent resin layer such that the second transparent resin layer and the first transparent resin layer are laminated in this order; and A step of forming an electrode pattern on the first transparent resin layer, and the step of forming the second transparent resin layer and the step of forming the first transparent resin layer are continuous coating steps.
<少なくとも2層の透明樹脂層の形成工程>
本発明の積層体の製造方法は、上記少なくとも2層の透明樹脂層の形成工程を含む。以下、各好ましい態様に分けて、説明する。 <Step of forming at least two transparent resin layers>
The manufacturing method of the laminated body of this invention includes the formation process of the said at least 2 layer of transparent resin layer. In the following, each preferred embodiment will be described separately.
本発明の積層体の製造方法は、上記少なくとも2層の透明樹脂層の形成工程を含む。以下、各好ましい態様に分けて、説明する。 <Step of forming at least two transparent resin layers>
The manufacturing method of the laminated body of this invention includes the formation process of the said at least 2 layer of transparent resin layer. In the following, each preferred embodiment will be described separately.
(第1の好ましい態様)
本発明の積層体の製造方法における、上記少なくとも2層の透明樹脂層の形成工程の第1の好ましい態様は、本発明の転写フィルムの上記第1の透明樹脂層および上記第2の透明樹脂層を、前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記前面板上の一部または全部に転写する工程である。
上記第1の好ましい態様では、本発明の転写フィルムの上記第1の透明樹脂層が、上記電極パターンに接触している。また、上記第2の透明樹脂層が、上記電極パターン側から2層目の透明樹脂層である。
上記第1の好ましい態様では、上記第1の透明樹脂層と上記第2の透明樹脂層を同時に転写して形成することができ、上記第1の透明樹脂層と上記第2の透明樹脂層の寸法の調整も同時にできるため、好ましい。
上記第1の好ましい態様において、上記第1の透明樹脂層と上記第2の透明樹脂層を転写して形成する方法の好ましい範囲は、上述の加飾層の形成方法における転写工程の好ましい範囲と同様である。 (First preferred embodiment)
In the method for producing a laminate of the present invention, the first preferred embodiment of the step of forming the at least two transparent resin layers is the first transparent resin layer and the second transparent resin layer of the transfer film of the present invention. Is transferred to a part or all of the front plate so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order.
In the first preferred embodiment, the first transparent resin layer of the transfer film of the present invention is in contact with the electrode pattern. The second transparent resin layer is a second transparent resin layer from the electrode pattern side.
In the first preferred embodiment, the first transparent resin layer and the second transparent resin layer can be simultaneously transferred to form the first transparent resin layer and the second transparent resin layer. The dimensions can be adjusted at the same time, which is preferable.
In the first preferred embodiment, the preferred range of the method of transferring and forming the first transparent resin layer and the second transparent resin layer is the preferred range of the transfer step in the method of forming the decorative layer described above. It is the same.
本発明の積層体の製造方法における、上記少なくとも2層の透明樹脂層の形成工程の第1の好ましい態様は、本発明の転写フィルムの上記第1の透明樹脂層および上記第2の透明樹脂層を、前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記前面板上の一部または全部に転写する工程である。
上記第1の好ましい態様では、本発明の転写フィルムの上記第1の透明樹脂層が、上記電極パターンに接触している。また、上記第2の透明樹脂層が、上記電極パターン側から2層目の透明樹脂層である。
上記第1の好ましい態様では、上記第1の透明樹脂層と上記第2の透明樹脂層を同時に転写して形成することができ、上記第1の透明樹脂層と上記第2の透明樹脂層の寸法の調整も同時にできるため、好ましい。
上記第1の好ましい態様において、上記第1の透明樹脂層と上記第2の透明樹脂層を転写して形成する方法の好ましい範囲は、上述の加飾層の形成方法における転写工程の好ましい範囲と同様である。 (First preferred embodiment)
In the method for producing a laminate of the present invention, the first preferred embodiment of the step of forming the at least two transparent resin layers is the first transparent resin layer and the second transparent resin layer of the transfer film of the present invention. Is transferred to a part or all of the front plate so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order.
In the first preferred embodiment, the first transparent resin layer of the transfer film of the present invention is in contact with the electrode pattern. The second transparent resin layer is a second transparent resin layer from the electrode pattern side.
In the first preferred embodiment, the first transparent resin layer and the second transparent resin layer can be simultaneously transferred to form the first transparent resin layer and the second transparent resin layer. The dimensions can be adjusted at the same time, which is preferable.
In the first preferred embodiment, the preferred range of the method of transferring and forming the first transparent resin layer and the second transparent resin layer is the preferred range of the transfer step in the method of forming the decorative layer described above. It is the same.
(第2の好ましい態様)
本発明の積層体の製造方法における、上記少なくとも2層の透明樹脂層の形成工程の第2の好ましい態様は、転写フィルムから第2の透明樹脂層を前面板上の一部または全部に転写する第2の透明樹脂層の形成工程と、転写フィルムから第1の透明樹脂層を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に転写する第1の透明樹脂層の形成工程であり、上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、同時または連続する転写工程である。
上記第2の好ましい態様では、上記第1の透明樹脂層と上記第2の透明樹脂層を同時に転写して形成してもよく、連続して転写して形成してもよい。
上記第2の好ましい態様において、上記第1の透明樹脂層と上記第2の透明樹脂層を転写して形成する方法の好ましい範囲は、本発明の積層体の製造方法の第1の好ましい態様における、上記第1の透明樹脂層と上記第2の透明樹脂層を転写して形成する方法の好ましい範囲と同様である。 (Second preferred embodiment)
In the second preferred embodiment of the step of forming the at least two transparent resin layers in the method for producing a laminate of the present invention, the second transparent resin layer is transferred from a transfer film to a part or all of the front plate. The step of forming the second transparent resin layer, the first transparent resin layer from the transfer film, the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. As described above, a first transparent resin layer forming step to be transferred onto the second transparent resin layer, wherein the second transparent resin layer forming step and the first transparent resin layer forming step are: It is a simultaneous or continuous transfer process.
In the second preferred embodiment, the first transparent resin layer and the second transparent resin layer may be formed by transferring at the same time or may be formed by transferring them continuously.
In the second preferred embodiment, the preferred range of the method for transferring and forming the first transparent resin layer and the second transparent resin layer is the first preferred embodiment of the method for producing a laminate of the present invention. The preferred range of the method for transferring and forming the first transparent resin layer and the second transparent resin layer is the same.
本発明の積層体の製造方法における、上記少なくとも2層の透明樹脂層の形成工程の第2の好ましい態様は、転写フィルムから第2の透明樹脂層を前面板上の一部または全部に転写する第2の透明樹脂層の形成工程と、転写フィルムから第1の透明樹脂層を、上記前面板と、上記第2の透明樹脂層と、上記第1の透明樹脂層と、がこの順に積層されるように、上記第2の透明樹脂層上に転写する第1の透明樹脂層の形成工程であり、上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、同時または連続する転写工程である。
上記第2の好ましい態様では、上記第1の透明樹脂層と上記第2の透明樹脂層を同時に転写して形成してもよく、連続して転写して形成してもよい。
上記第2の好ましい態様において、上記第1の透明樹脂層と上記第2の透明樹脂層を転写して形成する方法の好ましい範囲は、本発明の積層体の製造方法の第1の好ましい態様における、上記第1の透明樹脂層と上記第2の透明樹脂層を転写して形成する方法の好ましい範囲と同様である。 (Second preferred embodiment)
In the second preferred embodiment of the step of forming the at least two transparent resin layers in the method for producing a laminate of the present invention, the second transparent resin layer is transferred from a transfer film to a part or all of the front plate. The step of forming the second transparent resin layer, the first transparent resin layer from the transfer film, the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. As described above, a first transparent resin layer forming step to be transferred onto the second transparent resin layer, wherein the second transparent resin layer forming step and the first transparent resin layer forming step are: It is a simultaneous or continuous transfer process.
In the second preferred embodiment, the first transparent resin layer and the second transparent resin layer may be formed by transferring at the same time or may be formed by transferring them continuously.
In the second preferred embodiment, the preferred range of the method for transferring and forming the first transparent resin layer and the second transparent resin layer is the first preferred embodiment of the method for producing a laminate of the present invention. The preferred range of the method for transferring and forming the first transparent resin layer and the second transparent resin layer is the same.
(第3の好ましい態様)
本発明の積層体の製造方法における、上記少なくとも2層の透明樹脂層の形成工程の第3の好ましい態様は、第2の透明樹脂層形成用塗布液を前面板上の一部または全部に塗布する第2の透明樹脂層の形成工程と、第1の透明樹脂層形成用塗布液を、上記前面板と、上記第1の透明樹脂層と、上記第2の透明樹脂層と、がこの順に積層されるように、上記第2透明樹脂層上に塗布する第1の透明樹脂層の形成工程であり、上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、連続する塗布工程である。
上記第3の好ましい態様は、上記第1の透明樹脂層と上記第2の透明樹脂層の塗布による形成方法としては特に制限は無く、上記少なくとも2層の透明樹脂層用の液体レジストを、少なくとも、電極パターンと前面板との間の間隙部分に塗布または印刷し、公知の方法で硬化することができる。 (Third preferred embodiment)
In the third preferred embodiment of the step of forming the at least two transparent resin layers in the laminate production method of the present invention, the second transparent resin layer forming coating solution is applied to a part or all of the front plate. The second transparent resin layer forming step, the first transparent resin layer forming coating liquid, the front plate, the first transparent resin layer, and the second transparent resin layer in this order. A step of forming a first transparent resin layer applied on the second transparent resin layer so as to be laminated, the step of forming the second transparent resin layer and the step of forming the first transparent resin layer , A continuous coating process.
The third preferred embodiment is not particularly limited as a formation method by applying the first transparent resin layer and the second transparent resin layer, and the liquid resist for at least two transparent resin layers is at least It can be applied or printed in the gap between the electrode pattern and the front plate and cured by a known method.
本発明の積層体の製造方法における、上記少なくとも2層の透明樹脂層の形成工程の第3の好ましい態様は、第2の透明樹脂層形成用塗布液を前面板上の一部または全部に塗布する第2の透明樹脂層の形成工程と、第1の透明樹脂層形成用塗布液を、上記前面板と、上記第1の透明樹脂層と、上記第2の透明樹脂層と、がこの順に積層されるように、上記第2透明樹脂層上に塗布する第1の透明樹脂層の形成工程であり、上記第2の透明樹脂層の形成工程および上記第1の透明樹脂層の形成工程が、連続する塗布工程である。
上記第3の好ましい態様は、上記第1の透明樹脂層と上記第2の透明樹脂層の塗布による形成方法としては特に制限は無く、上記少なくとも2層の透明樹脂層用の液体レジストを、少なくとも、電極パターンと前面板との間の間隙部分に塗布または印刷し、公知の方法で硬化することができる。 (Third preferred embodiment)
In the third preferred embodiment of the step of forming the at least two transparent resin layers in the laminate production method of the present invention, the second transparent resin layer forming coating solution is applied to a part or all of the front plate. The second transparent resin layer forming step, the first transparent resin layer forming coating liquid, the front plate, the first transparent resin layer, and the second transparent resin layer in this order. A step of forming a first transparent resin layer applied on the second transparent resin layer so as to be laminated, the step of forming the second transparent resin layer and the step of forming the first transparent resin layer , A continuous coating process.
The third preferred embodiment is not particularly limited as a formation method by applying the first transparent resin layer and the second transparent resin layer, and the liquid resist for at least two transparent resin layers is at least It can be applied or printed in the gap between the electrode pattern and the front plate and cured by a known method.
<電極パターンを形成する工程>
本発明の積層体の製造方法は、上記第1の透明樹脂層の上に電極パターンを形成する工程を含む。
電極パターンを形成する工程は、後述の導電性繊維を用いた導電性硬化性樹脂層を有する転写フィルムを用いて製造する工程であることが好ましい。その他、ITO等によって電極パターンを形成する場合には、特許第4506785号公報の段落0014~0016等を参考にすることができる。
電極パターンを形成する工程は、本発明の積層体の製造方法の第1の好ましい態様、第2の好ましい態様、第3の好ましい態様に共通し、好ましい態様も同様に共通する。 <Step of forming electrode pattern>
The manufacturing method of the laminated body of this invention includes the process of forming an electrode pattern on the said 1st transparent resin layer.
The step of forming the electrode pattern is preferably a step of manufacturing using a transfer film having a conductive curable resin layer using conductive fibers described later. In addition, when the electrode pattern is formed of ITO or the like, paragraphs 0014 to 0016 of Japanese Patent No. 4506785 can be referred to.
The step of forming an electrode pattern is common to the first preferred embodiment, the second preferred embodiment, and the third preferred embodiment of the method for producing a laminate of the present invention, and the preferred embodiment is also common.
本発明の積層体の製造方法は、上記第1の透明樹脂層の上に電極パターンを形成する工程を含む。
電極パターンを形成する工程は、後述の導電性繊維を用いた導電性硬化性樹脂層を有する転写フィルムを用いて製造する工程であることが好ましい。その他、ITO等によって電極パターンを形成する場合には、特許第4506785号公報の段落0014~0016等を参考にすることができる。
電極パターンを形成する工程は、本発明の積層体の製造方法の第1の好ましい態様、第2の好ましい態様、第3の好ましい態様に共通し、好ましい態様も同様に共通する。 <Step of forming electrode pattern>
The manufacturing method of the laminated body of this invention includes the process of forming an electrode pattern on the said 1st transparent resin layer.
The step of forming the electrode pattern is preferably a step of manufacturing using a transfer film having a conductive curable resin layer using conductive fibers described later. In addition, when the electrode pattern is formed of ITO or the like, paragraphs 0014 to 0016 of Japanese Patent No. 4506785 can be referred to.
The step of forming an electrode pattern is common to the first preferred embodiment, the second preferred embodiment, and the third preferred embodiment of the method for producing a laminate of the present invention, and the preferred embodiment is also common.
[導電膜積層体、静電容量型入力装置]
本発明の導電膜積層体は、本発明の積層体の電極パターン上に、上記電極パターンと電気的に絶縁された第二の電極パターンを有する。本発明の導電膜積層体は、上記第二の電極パターンが、透明電極パターンであることが好ましい。
本発明の導電膜積層体は、前面板(好ましくは、透明な前面板)と、前面板の一方の面の一部に配置された機能層と、前面板の機能層が配置された面側と同じ面側に配置された電極パターンとを有し、少なくとも、電極パターンと前面板との間の間隙を埋めるように、上記少なくとも2層の透明樹脂層、あるいは、本発明の転写フィルムの第1の透明樹脂層と第2の透明樹脂層を有することがより好ましい。
本発明の静電容量型入力装置は、本発明の導電膜積層体を含む。
なお、本発明の導電膜積層体や本発明の静電容量型入力装置の中で、上記少なくとも2層の透明樹脂層は、厚みが均一な形状を維持していてもよく、一部の厚みが不均一となった形状(言い換えると透明樹脂層)であってもよい。 [Conductive film laminate, capacitance type input device]
The electrically conductive film laminated body of this invention has a 2nd electrode pattern electrically insulated with the said electrode pattern on the electrode pattern of the laminated body of this invention. In the conductive film laminate of the present invention, the second electrode pattern is preferably a transparent electrode pattern.
The conductive film laminate of the present invention includes a front plate (preferably a transparent front plate), a functional layer disposed on a part of one surface of the front plate, and a surface side on which the functional layer of the front plate is disposed. And at least two transparent resin layers or the second transfer film of the present invention so as to fill at least the gap between the electrode pattern and the front plate. It is more preferable to have 1 transparent resin layer and 2nd transparent resin layer.
The capacitance-type input device of the present invention includes the conductive film laminate of the present invention.
In the conductive film laminate of the present invention and the capacitance-type input device of the present invention, the at least two transparent resin layers may maintain a uniform thickness, and some thicknesses May be a non-uniform shape (in other words, a transparent resin layer).
本発明の導電膜積層体は、本発明の積層体の電極パターン上に、上記電極パターンと電気的に絶縁された第二の電極パターンを有する。本発明の導電膜積層体は、上記第二の電極パターンが、透明電極パターンであることが好ましい。
本発明の導電膜積層体は、前面板(好ましくは、透明な前面板)と、前面板の一方の面の一部に配置された機能層と、前面板の機能層が配置された面側と同じ面側に配置された電極パターンとを有し、少なくとも、電極パターンと前面板との間の間隙を埋めるように、上記少なくとも2層の透明樹脂層、あるいは、本発明の転写フィルムの第1の透明樹脂層と第2の透明樹脂層を有することがより好ましい。
本発明の静電容量型入力装置は、本発明の導電膜積層体を含む。
なお、本発明の導電膜積層体や本発明の静電容量型入力装置の中で、上記少なくとも2層の透明樹脂層は、厚みが均一な形状を維持していてもよく、一部の厚みが不均一となった形状(言い換えると透明樹脂層)であってもよい。 [Conductive film laminate, capacitance type input device]
The electrically conductive film laminated body of this invention has a 2nd electrode pattern electrically insulated with the said electrode pattern on the electrode pattern of the laminated body of this invention. In the conductive film laminate of the present invention, the second electrode pattern is preferably a transparent electrode pattern.
The conductive film laminate of the present invention includes a front plate (preferably a transparent front plate), a functional layer disposed on a part of one surface of the front plate, and a surface side on which the functional layer of the front plate is disposed. And at least two transparent resin layers or the second transfer film of the present invention so as to fill at least the gap between the electrode pattern and the front plate. It is more preferable to have 1 transparent resin layer and 2nd transparent resin layer.
The capacitance-type input device of the present invention includes the conductive film laminate of the present invention.
In the conductive film laminate of the present invention and the capacitance-type input device of the present invention, the at least two transparent resin layers may maintain a uniform thickness, and some thicknesses May be a non-uniform shape (in other words, a transparent resin layer).
本発明の導電膜積層体は、上記少なくとも2層の透明樹脂層が、本発明の転写フィルムに含まれる第1の透明樹脂層と第2の透明樹脂層を、少なくとも、電極パターンと前面板との間の間隙を埋めるように、転写することにより形成されることが好ましい。
ここで、本発明の静電容量型入力装置における、電極パターンと前面板との間の間隙は、特に制限はない。
本発明の導電膜積層体は、前述の機能層としては特に制限はないが、加飾層、及び加飾層とマスク層(遮蔽層)の積層体等、を挙げることができる。その中でも、前述の機能層は加飾層、または、加飾層とマスク層(遮蔽層)の積層体であることが好ましく、加飾層であることがより好ましい。
機能層が加飾層である場合は、少なくとも、電極パターンと前面板との間の間隙は、「前面板と加飾層との高低差により生じる間隙」により形成される(電極パターンと前面板との間の間隙が、前面板と加飾層との高低差により生じる間隙と等しい)ことがより好ましい。 In the conductive film laminate of the present invention, the at least two transparent resin layers comprise at least a first transparent resin layer and a second transparent resin layer contained in the transfer film of the present invention, at least an electrode pattern and a front plate. It is preferably formed by transferring so as to fill a gap between the two.
Here, the gap between the electrode pattern and the front plate in the capacitive input device of the present invention is not particularly limited.
Although there is no restriction | limiting in particular as an above-mentioned functional layer, the electrically conductive film laminated body of this invention can mention the laminated body of a decoration layer, a decoration layer, and a mask layer (shielding layer). Among them, the functional layer described above is preferably a decorative layer or a laminate of a decorative layer and a mask layer (shielding layer), and more preferably a decorative layer.
When the functional layer is a decorative layer, at least a gap between the electrode pattern and the front plate is formed by “a gap generated by a height difference between the front plate and the decorative layer” (the electrode pattern and the front plate). Is more preferably equal to the gap generated by the height difference between the front plate and the decorative layer.
ここで、本発明の静電容量型入力装置における、電極パターンと前面板との間の間隙は、特に制限はない。
本発明の導電膜積層体は、前述の機能層としては特に制限はないが、加飾層、及び加飾層とマスク層(遮蔽層)の積層体等、を挙げることができる。その中でも、前述の機能層は加飾層、または、加飾層とマスク層(遮蔽層)の積層体であることが好ましく、加飾層であることがより好ましい。
機能層が加飾層である場合は、少なくとも、電極パターンと前面板との間の間隙は、「前面板と加飾層との高低差により生じる間隙」により形成される(電極パターンと前面板との間の間隙が、前面板と加飾層との高低差により生じる間隙と等しい)ことがより好ましい。 In the conductive film laminate of the present invention, the at least two transparent resin layers comprise at least a first transparent resin layer and a second transparent resin layer contained in the transfer film of the present invention, at least an electrode pattern and a front plate. It is preferably formed by transferring so as to fill a gap between the two.
Here, the gap between the electrode pattern and the front plate in the capacitive input device of the present invention is not particularly limited.
Although there is no restriction | limiting in particular as an above-mentioned functional layer, the electrically conductive film laminated body of this invention can mention the laminated body of a decoration layer, a decoration layer, and a mask layer (shielding layer). Among them, the functional layer described above is preferably a decorative layer or a laminate of a decorative layer and a mask layer (shielding layer), and more preferably a decorative layer.
When the functional layer is a decorative layer, at least a gap between the electrode pattern and the front plate is formed by “a gap generated by a height difference between the front plate and the decorative layer” (the electrode pattern and the front plate). Is more preferably equal to the gap generated by the height difference between the front plate and the decorative layer.
本発明の導電膜積層体は、静電容量型入力装置として用いる観点で、上記電極パターンが、下記(1)~(3)を含むことが好ましい。
(1)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(2)上記第一の透明電極パターンと電気的に絶縁され、上記第一の方向と交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(3)上記第一の透明電極パターンと上記第二の電極パターンとを電気的に絶縁する絶縁層
ただし、「電極パターンが加飾層の上に配置された」とは、上記(1)~(3)のうち(1)または(2)の一部が上記加飾層の上に配置されていればよく、(1)~(3)の全てが加飾層の上に配置される必要はない。また、電極パターンは、上記加飾層に隣接して配置されていてもよく、他の層を介して配置されていてもよい。
さらに、本発明の導電膜積層体および静電容量型入力装置は、さらに上記電極パターンが下記(4)を有していてもよい。
(4)上記第一の透明電極パターンおよび上記第二の電極パターンの少なくとも一方に電気的に接続され、上記第一の透明電極パターンおよび上記第二の電極パターンとは別の導電性要素
また、本発明の導電膜積層体および静電容量型入力装置は、第二の電極パターンが透明電極パターンであってもよい。なお、本明細書中において第二の電極パターンの代わりに第二の透明電極パターンについて説明することがあるが、第二の電極パターンの好ましい態様も第二の透明電極パターンの好ましい態様と同様である。
さらに本発明の導電膜積層体および静電容量型入力装置は、上記前面板の一方の面側に形成される上記加飾層の、上記前面板と対向する面とは反対側の面上に、さらにマスク層を設置してもよい。
以下、本発明の導電膜積層体および静電容量型入力装置の好ましい態様について説明する。なお、本発明の導電膜積層体および静電容量型入力装置の好ましい構成や態様については、以下の好ましい態様に加えて、特開2013-24610号公報の<0016>~<0050>に記載の態様を採用することができ、この公報の内容は本明細書に組み込まれる。 In the conductive film laminate of the present invention, the electrode pattern preferably includes the following (1) to (3) from the viewpoint of use as a capacitive input device.
(1) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (2) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction crossing the first direction; and (3) electrically connecting the first transparent electrode pattern and the second electrode pattern. However, “the electrode pattern is disposed on the decorative layer” means that a part of (1) or (2) among the above (1) to (3) is the decorative layer. All of (1) to (3) need not be arranged on the decorative layer. Moreover, the electrode pattern may be arrange | positioned adjacent to the said decoration layer, and may be arrange | positioned through another layer.
Furthermore, in the conductive film laminate and the capacitive input device of the present invention, the electrode pattern may further include the following (4).
(4) A conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and is different from the first transparent electrode pattern and the second electrode pattern. In the conductive film laminate and the capacitive input device of the present invention, the second electrode pattern may be a transparent electrode pattern. In this specification, the second transparent electrode pattern may be described instead of the second electrode pattern, but the preferred embodiment of the second electrode pattern is the same as the preferred embodiment of the second transparent electrode pattern. is there.
Furthermore, the conductive film laminate and the capacitance-type input device of the present invention are provided on the surface of the decorative layer formed on one surface side of the front plate on the side opposite to the surface facing the front plate. Further, a mask layer may be provided.
Hereinafter, the preferable aspect of the electrically conductive film laminated body and electrostatic capacitance type input device of this invention is demonstrated. In addition to the following preferred embodiments, preferred configurations and embodiments of the conductive film laminate and the capacitance-type input device of the present invention are described in <0016> to <0050> of JP2013-24610A. Embodiments can be employed and the contents of this publication are incorporated herein.
(1)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(2)上記第一の透明電極パターンと電気的に絶縁され、上記第一の方向と交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(3)上記第一の透明電極パターンと上記第二の電極パターンとを電気的に絶縁する絶縁層
ただし、「電極パターンが加飾層の上に配置された」とは、上記(1)~(3)のうち(1)または(2)の一部が上記加飾層の上に配置されていればよく、(1)~(3)の全てが加飾層の上に配置される必要はない。また、電極パターンは、上記加飾層に隣接して配置されていてもよく、他の層を介して配置されていてもよい。
さらに、本発明の導電膜積層体および静電容量型入力装置は、さらに上記電極パターンが下記(4)を有していてもよい。
(4)上記第一の透明電極パターンおよび上記第二の電極パターンの少なくとも一方に電気的に接続され、上記第一の透明電極パターンおよび上記第二の電極パターンとは別の導電性要素
また、本発明の導電膜積層体および静電容量型入力装置は、第二の電極パターンが透明電極パターンであってもよい。なお、本明細書中において第二の電極パターンの代わりに第二の透明電極パターンについて説明することがあるが、第二の電極パターンの好ましい態様も第二の透明電極パターンの好ましい態様と同様である。
さらに本発明の導電膜積層体および静電容量型入力装置は、上記前面板の一方の面側に形成される上記加飾層の、上記前面板と対向する面とは反対側の面上に、さらにマスク層を設置してもよい。
以下、本発明の導電膜積層体および静電容量型入力装置の好ましい態様について説明する。なお、本発明の導電膜積層体および静電容量型入力装置の好ましい構成や態様については、以下の好ましい態様に加えて、特開2013-24610号公報の<0016>~<0050>に記載の態様を採用することができ、この公報の内容は本明細書に組み込まれる。 In the conductive film laminate of the present invention, the electrode pattern preferably includes the following (1) to (3) from the viewpoint of use as a capacitive input device.
(1) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (2) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction crossing the first direction; and (3) electrically connecting the first transparent electrode pattern and the second electrode pattern. However, “the electrode pattern is disposed on the decorative layer” means that a part of (1) or (2) among the above (1) to (3) is the decorative layer. All of (1) to (3) need not be arranged on the decorative layer. Moreover, the electrode pattern may be arrange | positioned adjacent to the said decoration layer, and may be arrange | positioned through another layer.
Furthermore, in the conductive film laminate and the capacitive input device of the present invention, the electrode pattern may further include the following (4).
(4) A conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and is different from the first transparent electrode pattern and the second electrode pattern. In the conductive film laminate and the capacitive input device of the present invention, the second electrode pattern may be a transparent electrode pattern. In this specification, the second transparent electrode pattern may be described instead of the second electrode pattern, but the preferred embodiment of the second electrode pattern is the same as the preferred embodiment of the second transparent electrode pattern. is there.
Furthermore, the conductive film laminate and the capacitance-type input device of the present invention are provided on the surface of the decorative layer formed on one surface side of the front plate on the side opposite to the surface facing the front plate. Further, a mask layer may be provided.
Hereinafter, the preferable aspect of the electrically conductive film laminated body and electrostatic capacitance type input device of this invention is demonstrated. In addition to the following preferred embodiments, preferred configurations and embodiments of the conductive film laminate and the capacitance-type input device of the present invention are described in <0016> to <0050> of JP2013-24610A. Embodiments can be employed and the contents of this publication are incorporated herein.
<導電膜積層体、静電容量型入力装置の構成>
本発明の導電膜積層体および静電容量型入力装置の構成について説明する。以下の説明では、前述の機能層が加飾層であり、電極パターンと前面板との間の間隙が、前面板と上記加飾層との高低差により生じる間隙と等しい場合について説明するが、本発明はこのような態様に限定されない。図14は、本発明の静電容量型入力装置の中でも好ましい構成を示す断面図である。図14に示す静電容量型入力装置は、前面板1と、この前面板の一方の面の一部に配置された加飾層2と、上記前面板の一方の面側(加飾層2と同じ面側)に配置された電極パターン3(第一の透明電極パターン3)とを有し、上記前面板1と上記加飾層2との高低差により生じる間隙が、第2の透明樹脂層102および第1の透明樹脂層101によって埋められている。また、図14に示す静電容量型入力装置は、第一の透明電極パターン3の上に、第二の電極パターン4を有し、第二の電極パターン4は、上記第一の透明電極パターン3と絶縁層5により電気的に絶縁されており、さらに、図14に示す静電容量型入力装置は、別の導電性要素6を有する。
図14に示す静電容量型入力装置のように、上記第1の透明樹脂層101と上記第2の透明樹脂層102が、上記前面板1の上記加飾層2が形成された側と同じの面の上記加飾層2が形成されていない部分と、上記加飾層2の一部の上とに形成されたことが、より好ましい。 <Structure of conductive film laminate and capacitive input device>
The structures of the conductive film laminate and the capacitance type input device of the present invention will be described. In the following description, the functional layer described above is a decorative layer, and the case where the gap between the electrode pattern and the front plate is equal to the gap caused by the height difference between the front plate and the decorative layer will be described. The present invention is not limited to such an embodiment. FIG. 14 is a cross-sectional view showing a preferred configuration among the capacitance-type input device of the present invention. The capacitive input device shown in FIG. 14 includes afront plate 1, a decorative layer 2 disposed on a part of one surface of the front plate, and one surface side of the front plate (decorative layer 2). The gap formed by the height difference between the front plate 1 and the decorative layer 2 is the second transparent resin. It is filled with the layer 102 and the first transparent resin layer 101. Further, the capacitive input device shown in FIG. 14 has a second electrode pattern 4 on the first transparent electrode pattern 3, and the second electrode pattern 4 is the first transparent electrode pattern. 3 and the insulating layer 5, and the capacitive input device shown in FIG. 14 has another conductive element 6.
As in the capacitive input device shown in FIG. 14, the firsttransparent resin layer 101 and the second transparent resin layer 102 are the same as the side of the front plate 1 on which the decorative layer 2 is formed. It is more preferable that the decorative layer 2 on the surface of the surface is formed on a portion where the decorative layer 2 is not formed and on a part of the decorative layer 2.
本発明の導電膜積層体および静電容量型入力装置の構成について説明する。以下の説明では、前述の機能層が加飾層であり、電極パターンと前面板との間の間隙が、前面板と上記加飾層との高低差により生じる間隙と等しい場合について説明するが、本発明はこのような態様に限定されない。図14は、本発明の静電容量型入力装置の中でも好ましい構成を示す断面図である。図14に示す静電容量型入力装置は、前面板1と、この前面板の一方の面の一部に配置された加飾層2と、上記前面板の一方の面側(加飾層2と同じ面側)に配置された電極パターン3(第一の透明電極パターン3)とを有し、上記前面板1と上記加飾層2との高低差により生じる間隙が、第2の透明樹脂層102および第1の透明樹脂層101によって埋められている。また、図14に示す静電容量型入力装置は、第一の透明電極パターン3の上に、第二の電極パターン4を有し、第二の電極パターン4は、上記第一の透明電極パターン3と絶縁層5により電気的に絶縁されており、さらに、図14に示す静電容量型入力装置は、別の導電性要素6を有する。
図14に示す静電容量型入力装置のように、上記第1の透明樹脂層101と上記第2の透明樹脂層102が、上記前面板1の上記加飾層2が形成された側と同じの面の上記加飾層2が形成されていない部分と、上記加飾層2の一部の上とに形成されたことが、より好ましい。 <Structure of conductive film laminate and capacitive input device>
The structures of the conductive film laminate and the capacitance type input device of the present invention will be described. In the following description, the functional layer described above is a decorative layer, and the case where the gap between the electrode pattern and the front plate is equal to the gap caused by the height difference between the front plate and the decorative layer will be described. The present invention is not limited to such an embodiment. FIG. 14 is a cross-sectional view showing a preferred configuration among the capacitance-type input device of the present invention. The capacitive input device shown in FIG. 14 includes a
As in the capacitive input device shown in FIG. 14, the first
一方、図1に示すように、上記第1の透明樹脂層7と上記第2の透明樹脂層9は、上記前面板1の上記加飾層2が形成された側と同じの面の上記加飾層2が形成されていない部分と、上記加飾層2の全部の上とに形成されていてもよい。ただし、本発明の導電膜積層体は、上記第1の透明樹脂層101と上記第2の透明樹脂層102は、図14に示した積層状態の方が、図1に示した積層状態よりも好ましい。さらに図1に示す静電容量型入力装置は、第一の透明電極パターン3の上に、絶縁層5により、上記第一の透明電極パターン3と電気的に絶縁された第二の透明電極パターン4を有し、さらに別の導電性要素6とを有する。
また、図14に示すように上記第1の透明樹脂層101と上記第2の透明樹脂層102の端部は同じ幅であってもよく(第1の透明樹脂層101と第2の透明樹脂層102とが、端部を揃えて積層されていてもよく)、図1に示すように上記第1の透明樹脂層7と上記第2の透明樹脂層9の端部は異なる幅であってもよい(第1の透明樹脂層7と第2の透明樹脂層9との端部が、不揃いに積層されていてもよい)。本発明では、図14に示すように上記第1の透明樹脂層101と上記第2の透明樹脂層102の端部は同じ幅であることが、製造の容易さの観点から好ましい。 On the other hand, as shown in FIG. 1, the firsttransparent resin layer 7 and the second transparent resin layer 9 are formed on the same surface as the side of the front plate 1 on which the decorative layer 2 is formed. You may form in the part in which the decoration layer 2 is not formed, and all the said decoration layers 2. However, in the conductive film laminate of the present invention, the first transparent resin layer 101 and the second transparent resin layer 102 are in the laminated state shown in FIG. 14 than in the laminated state shown in FIG. preferable. 1 is a second transparent electrode pattern electrically insulated from the first transparent electrode pattern 3 by the insulating layer 5 on the first transparent electrode pattern 3. 4 and a further conductive element 6.
Further, as shown in FIG. 14, the end portions of the firsttransparent resin layer 101 and the second transparent resin layer 102 may have the same width (the first transparent resin layer 101 and the second transparent resin Layer 102 may be laminated with their ends aligned), as shown in FIG. 1, the ends of the first transparent resin layer 7 and the second transparent resin layer 9 have different widths. Alternatively, the end portions of the first transparent resin layer 7 and the second transparent resin layer 9 may be laminated unevenly. In the present invention, as shown in FIG. 14, the end portions of the first transparent resin layer 101 and the second transparent resin layer 102 are preferably the same width from the viewpoint of ease of manufacture.
また、図14に示すように上記第1の透明樹脂層101と上記第2の透明樹脂層102の端部は同じ幅であってもよく(第1の透明樹脂層101と第2の透明樹脂層102とが、端部を揃えて積層されていてもよく)、図1に示すように上記第1の透明樹脂層7と上記第2の透明樹脂層9の端部は異なる幅であってもよい(第1の透明樹脂層7と第2の透明樹脂層9との端部が、不揃いに積層されていてもよい)。本発明では、図14に示すように上記第1の透明樹脂層101と上記第2の透明樹脂層102の端部は同じ幅であることが、製造の容易さの観点から好ましい。 On the other hand, as shown in FIG. 1, the first
Further, as shown in FIG. 14, the end portions of the first
加飾層2の端部はテーパー状であっても、逆テーパー状であっても、テーパー形状を形成していなくてもよい。図1では、加飾層2は端部がテーパー状である。一方、図14に示すように、加飾層2はテーパー形状を形成していなくてもよい。本発明の導電膜積層体は、上記加飾層の端部がテーパー形状であることが好ましい。
The end of the decorative layer 2 may be tapered, reverse tapered, or not tapered. In FIG. 1, the decoration layer 2 has a tapered end. On the other hand, as shown in FIG. 14, the decoration layer 2 does not need to form a taper shape. As for the electrically conductive film laminated body of this invention, it is preferable that the edge part of the said decoration layer is a taper shape.
図1では、加飾層2の内径(一辺)Lは第2の透明樹脂層9の幅と等しい。一方、上記前面板1と上記加飾層2との高低差により生じる間隙を第2の透明樹脂層9で埋めたときに、本発明の趣旨に反しない限りにおいて加飾層2の内径(一辺)Lは、第2の透明樹脂層9の幅より広くてもよく、その逆に、第2の透明樹脂層9の幅より狭くてもよい。加飾層2の厚みによる転写時の圧力のかかり方に起因して、加飾層2上に存在する第2の透明樹脂層9は、前面板1に直接接する第2の透明樹脂層9よりも、膜厚は薄くなる傾向がある。ここで、本発明の導電膜積層体は、第2の透明樹脂層の端部が、前述の機能層の前面板と対向する面とは反対側の面の少なくとも一部の上に配置(第2の透明樹脂層の端部を加飾層の上に一部乗り上げるように配置)されたことが好ましく、加飾層2の内径(一辺)Lは第2の透明樹脂層9の幅より狭いことが好ましい。言い換えると、第2の透明樹脂層9の幅は、加飾層2の内径(一辺)Lより広いことが好ましい。なお、第2の透明樹脂層9の幅は、加飾層2の内径(一辺)Lと同等以上20mm以下広い(一方の端部では10mm以下広い)ことが好ましく、同等以上10mm以下広い(一方の端部では5mm以下広い)ことが、転写フィルムに含まれる第1の透明樹脂層および/または第2の透明樹脂層を転写して、電極パターンと前面板との間の間隙を埋め易くする観点、加飾層2上に存在する第2の透明樹脂層の端部近傍の新たな気泡混入を抑制する観点から特に好ましい。
In FIG. 1, the inner diameter (one side) L of the decorative layer 2 is equal to the width of the second transparent resin layer 9. On the other hand, when the gap caused by the height difference between the front plate 1 and the decorative layer 2 is filled with the second transparent resin layer 9, the inner diameter (one side of the decorative layer 2 is not deviated from the spirit of the present invention. ) L may be wider than the width of the second transparent resin layer 9, and conversely, it may be narrower than the width of the second transparent resin layer 9. The second transparent resin layer 9 existing on the decorative layer 2 is more than the second transparent resin layer 9 in direct contact with the front plate 1 due to the pressure applied during transfer due to the thickness of the decorative layer 2. However, the film thickness tends to be thin. Here, in the conductive film laminate of the present invention, the end portion of the second transparent resin layer is disposed on at least a part of the surface opposite to the surface facing the front plate of the functional layer (first surface). It is preferable that the end portion of the transparent resin layer 2 is arranged so as to partially ride on the decorative layer, and the inner diameter (one side) L of the decorative layer 2 is narrower than the width of the second transparent resin layer 9. It is preferable. In other words, the width of the second transparent resin layer 9 is preferably wider than the inner diameter (one side) L of the decorative layer 2. The width of the second transparent resin layer 9 is preferably equal to or larger than the inner diameter (one side) L of the decorative layer 2 and equal to or greater than 20 mm (wide at one end is equal to or smaller than 10 mm), and is equal to or greater than equal to or greater than 10 mm (one side) 5 mm or less at the end of the transfer film) is to transfer the first transparent resin layer and / or the second transparent resin layer contained in the transfer film, and to easily fill the gap between the electrode pattern and the front plate. It is particularly preferable from the viewpoint of suppressing new bubbles from being mixed in the vicinity of the end portion of the second transparent resin layer present on the decorative layer 2.
また、設置してもよいマスク層は、前面板1の一方の面側に形成された非画像部32の枠状(額縁状)のパターンであり、引回し配線等が見えないようにするために形成される。
加飾層2は、前面板1の一方の面とマスク層との間に加飾を目的に形成されてもよい。
本発明の静電容量型入力装置には、図5に示すように、前面板1の一部の領域(図5においては入力面以外の領域)を覆うように加飾層2、マスク層(不図示)が設けられていることが好ましい。更に、前面板1には、図5に示すように上記前面板の一部に開口部8を設けることができる。開口部8には、押圧式のメカニカルなスイッチを設置することができる。基材として用いられる強化ガラスは強度が高く、加工が困難であるため、上記開口部8を形成するには強化処理前に開口部8を形成したのち、強化処理を行うのが一般的である。しかしながら、この開口部8を有した強化処理後の基板に、加飾層形成用液体レジストやスクリーン印刷インクを用いて加飾層2を形成しようとすると、開口部からのレジスト成分のモレや、前面板の境界ギリギリまで遮光パターンを形成する必要のあるマスク層と前面板の間に設けられる加飾層でのガラス端からのレジスト成分のはみ出しを生じ、基板裏側を汚染してしまうという問題が起こることがあるが、開口部8を有する基材上に転写フィルムを用いて加飾層2を形成する場合、このような問題も解決することができる。 Further, the mask layer that may be installed is a frame-like (frame-like) pattern of thenon-image portion 32 formed on one surface side of the front plate 1 so that the lead wiring and the like cannot be seen. Formed.
Thedecoration layer 2 may be formed for the purpose of decoration between one surface of the front plate 1 and the mask layer.
As shown in FIG. 5, the capacitive input device of the present invention has adecorative layer 2, a mask layer (a mask layer (covering a region other than the input surface in FIG. 5)). (Not shown) is preferably provided. Further, the front plate 1 can be provided with an opening 8 in a part of the front plate as shown in FIG. A pressing mechanical switch can be installed in the opening 8. Since the tempered glass used as a base material has high strength and is difficult to process, it is general to form the opening 8 by forming the opening 8 before the tempering treatment and then performing the tempering treatment. . However, when trying to form the decorative layer 2 using the liquid resist for decorating layer formation or the screen printing ink on the substrate after the strengthening treatment having the opening 8, the resist component mole from the opening, The problem is that the resist component protrudes from the edge of the glass in the decorative layer provided between the mask layer and the front plate that needs to form a light-shielding pattern until the boundary of the front plate, and the back side of the substrate is contaminated. However, when the decorative layer 2 is formed on the base material having the opening 8 by using a transfer film, such a problem can be solved.
加飾層2は、前面板1の一方の面とマスク層との間に加飾を目的に形成されてもよい。
本発明の静電容量型入力装置には、図5に示すように、前面板1の一部の領域(図5においては入力面以外の領域)を覆うように加飾層2、マスク層(不図示)が設けられていることが好ましい。更に、前面板1には、図5に示すように上記前面板の一部に開口部8を設けることができる。開口部8には、押圧式のメカニカルなスイッチを設置することができる。基材として用いられる強化ガラスは強度が高く、加工が困難であるため、上記開口部8を形成するには強化処理前に開口部8を形成したのち、強化処理を行うのが一般的である。しかしながら、この開口部8を有した強化処理後の基板に、加飾層形成用液体レジストやスクリーン印刷インクを用いて加飾層2を形成しようとすると、開口部からのレジスト成分のモレや、前面板の境界ギリギリまで遮光パターンを形成する必要のあるマスク層と前面板の間に設けられる加飾層でのガラス端からのレジスト成分のはみ出しを生じ、基板裏側を汚染してしまうという問題が起こることがあるが、開口部8を有する基材上に転写フィルムを用いて加飾層2を形成する場合、このような問題も解決することができる。 Further, the mask layer that may be installed is a frame-like (frame-like) pattern of the
The
As shown in FIG. 5, the capacitive input device of the present invention has a
図3は、前面板1の一方の面には、複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン3と、第一の透明電極パターン3と電気的に絶縁され、第一の方向と交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン4と、第一の透明電極パターン3と第二の透明電極パターン4を電気的に絶縁する絶縁層5とが形成された電極パターンが示されている。上記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する別の導電性要素6の好ましい組成、膜厚、製造方法は、本発明の積層体における上記電極パターンの好ましい組成、膜厚、製造方法と同様である。
FIG. 3 shows a plurality of first transparent electrode patterns 3 formed on one surface of the front plate 1 by extending a plurality of pad portions in a first direction via connecting portions, A plurality of second transparent electrode patterns 4 comprising a plurality of pad portions that are electrically insulated from the transparent electrode pattern 3 and extend in a direction crossing the first direction; and a first transparent electrode pattern The electrode pattern in which the insulating layer 5 which electrically insulates 3 and the 2nd transparent electrode pattern 4 is formed is shown. The preferred composition, film thickness, and manufacturing method of the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 to be described later are the preferred compositions of the electrode pattern in the laminate of the present invention. The film thickness and the manufacturing method are the same.
また、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方は、前面板1の一方の面上に配置された第2の透明樹脂層102上、および、加飾層2の前面板1と対向する面とは反対側の面上の両方の領域にまたがって設置することができる。図14においては、第二の透明電極パターン4が、前面板1の一方の面上に配置された第1の透明樹脂層101上、および、加飾層2の前面板1と対向する面とは反対側の面上の両方の領域にまたがって、設置されている図が示されている。このように、一定の厚みが必要な加飾層2上と、前面板の一方の面上に配置された第2の透明樹脂層102上とにまたがって電極パターンを積層(例えば、後述の転写フィルムをラミネート)する場合でも、第2の透明樹脂層102を用いることで、真空ラミネータなどの高価な設備を用いなくても、簡単な工程によって加飾層の境界に気泡の発生や、電極パターンの断線を抑制しつつラミネートすることが可能になる。
Further, at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4 is formed on the second transparent resin layer 102 disposed on one surface of the front plate 1 and on the decorative layer 2. It can be installed across both regions on the surface opposite to the surface facing the front plate 1. In FIG. 14, the second transparent electrode pattern 4 is on the first transparent resin layer 101 disposed on one surface of the front plate 1 and the surface of the decorative layer 2 facing the front plate 1. Is shown installed across both areas on the opposite side. In this manner, electrode patterns are stacked on the decorative layer 2 that requires a certain thickness and on the second transparent resin layer 102 disposed on one surface of the front plate (for example, transfer described later). Even in the case of laminating a film, by using the second transparent resin layer 102, without using expensive equipment such as a vacuum laminator, the generation of bubbles or the electrode pattern at the boundary of the decorative layer can be performed by a simple process. It becomes possible to laminate while suppressing disconnection.
図3を用いて第一の透明電極パターン3および第二の透明電極パターン4について説明する。図3は、本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。図3に示すように、第一の透明電極パターン3は、パッド部分3aが接続部分3bを介して第一の方向Cに延在して形成されている。また、第二の透明電極パターン4は、第一の透明電極パターン3と絶縁層5によって電気的に絶縁されており、第一の方向Cと交差する方向(図3における第二の方向D)に延在して形成された複数のパッド部分によって構成されている。ここで、第一の透明電極パターン3を形成する場合、上記パッド部分3aと接続部分3bとを一体に作製してもよいし、接続部分3bのみを作製して、パッド部分3aと第二の透明電極パターン4とを一体に作製(パターニング)してもよい。パッド部分3aと第二の透明電極パターン4とを一体に作製(パターニング)する場合、図3に示すように接続部分3bの一部とパッド部分3aの一部とが連結され、且つ、絶縁層5によって第一の透明電極パターン3と第二の透明電極パターン4とが電気的に絶縁されるように各層が形成される。
The first transparent electrode pattern 3 and the second transparent electrode pattern 4 will be described with reference to FIG. FIG. 3 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention. As shown in FIG. 3, the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction C via the connection portion 3b. Further, the second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and intersects the first direction C (second direction D in FIG. 3). It is comprised by the some pad part extended and formed. Here, when the first transparent electrode pattern 3 is formed, the pad portion 3a and the connection portion 3b may be formed integrally, or only the connection portion 3b is formed, and the pad portion 3a and the second portion 3b are formed. The transparent electrode pattern 4 may be integrally formed (patterned). When the pad portion 3a and the second transparent electrode pattern 4 are integrally formed (patterned), a part of the connection part 3b and a part of the pad part 3a are coupled as shown in FIG. Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.
図14において、加飾層2の前面板1と対向する面とは反対側の面側には、導電性要素6が設置されている。導電性要素6は、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方と電気的に接続され、且つ、第一の透明電極パターン3および第二の透明電極パターン4とは別の導電性要素である。図14においては、導電性要素6が第二の透明電極パターン4に接続されている図が示されている。
In FIG. 14, the conductive element 6 is installed on the surface of the decorative layer 2 opposite to the surface facing the front plate 1. The conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4. Another conductive element. In FIG. 14, a diagram in which the conductive element 6 is connected to the second transparent electrode pattern 4 is shown.
また、図1においては、上記加飾層2および上記電極パターンの間、ならびに、上記第2の透明樹脂層9および上記電極パターンの間に、さらに第1の透明樹脂層7が設置されている。第1の透明樹脂層7は、各構成要素の一部のみを覆うように構成されていてもよい。前面板1の一方の面上に配置された第2の透明樹脂層9上、および、加飾層2の前面板1と対向する面とは反対側の面上の両方の領域にまたがって、第1の透明樹脂層7を設置する場合でも、第2の透明樹脂層9を用いることで真空ラミネータなどの高価な設備を用いなくても、簡単な工程で加飾層の境界に気泡の発生がないラミネートが可能になる。
なお、図1において、さらに各構成要素の全てを覆うように透明保護層(不図示)が設置されていてもよい。透明保護層は、オーバーコート層と呼ばれることもある。
絶縁層5と第1の透明樹脂層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5と第1の透明樹脂層7を構成する材料としては、表面硬度、耐熱性が高いものが好ましく、公知の感光性シロキサン樹脂材料、アクリル樹脂材料などが用いられる。 Moreover, in FIG. 1, the 1sttransparent resin layer 7 is further installed between the said decoration layer 2 and the said electrode pattern, and between the said 2nd transparent resin layer 9 and the said electrode pattern. . The 1st transparent resin layer 7 may be comprised so that only a part of each component may be covered. Across both regions on the second transparent resin layer 9 disposed on one surface of the front plate 1 and on the surface opposite to the surface facing the front plate 1 of the decorative layer 2, Even when the first transparent resin layer 7 is installed, the use of the second transparent resin layer 9 eliminates the need for expensive equipment such as a vacuum laminator. Lamination without any possible becomes possible.
In addition, in FIG. 1, the transparent protective layer (not shown) may be installed so that all of each component may be covered further. The transparent protective layer is sometimes called an overcoat layer.
The insulatinglayer 5 and the first transparent resin layer 7 may be made of the same material or different materials. The material constituting the insulating layer 5 and the first transparent resin layer 7 is preferably a material having high surface hardness and high heat resistance, and a known photosensitive siloxane resin material, acrylic resin material, or the like is used.
なお、図1において、さらに各構成要素の全てを覆うように透明保護層(不図示)が設置されていてもよい。透明保護層は、オーバーコート層と呼ばれることもある。
絶縁層5と第1の透明樹脂層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5と第1の透明樹脂層7を構成する材料としては、表面硬度、耐熱性が高いものが好ましく、公知の感光性シロキサン樹脂材料、アクリル樹脂材料などが用いられる。 Moreover, in FIG. 1, the 1st
In addition, in FIG. 1, the transparent protective layer (not shown) may be installed so that all of each component may be covered further. The transparent protective layer is sometimes called an overcoat layer.
The insulating
本発明の静電容量型入力装置の製造過程で形成される態様例として、図4~8の態様を挙げることができる。図4は、開口部8が形成された強化処理ガラス11の一例を示す上面図である。図5は、加飾層2が形成された前面板の一例を示す上面図である。図6は、第一の透明電極パターン3が形成された前面板の一例を示す上面図である。図7は、第一の透明電極パターン(不図示)と第二の透明電極パターン4が形成された前面板の一例を示す上面図である。図8は、第一および第二の透明電極パターンとは別の導電性要素6が形成された前面板の一例を示す上面図である。これらは、上記説明を具体化した例を示すものであり、本発明の範囲はこれらの図面により限定的に解釈されることはない。
Examples of the embodiment formed in the manufacturing process of the capacitive input device of the present invention include the embodiments shown in FIGS. FIG. 4 is a top view illustrating an example of the tempered glass 11 in which the opening 8 is formed. FIG. 5 is a top view showing an example of the front plate on which the decorative layer 2 is formed. FIG. 6 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed. FIG. 7 is a top view showing an example of a front plate on which a first transparent electrode pattern (not shown) and a second transparent electrode pattern 4 are formed. FIG. 8 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed. These show examples embodying the above description, and the scope of the present invention is not limitedly interpreted by these drawings.
<(1)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン>
静電容量型入力装置の製造方法は、上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と光硬化性樹脂層とをこの順で有する転写フィルム(光硬化性樹脂層を有する転写フィルム)によって形成されたエッチングパターンを用いて、透明電極層をエッチング処理することによって形成することが好ましく、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する転写フィルムによって形成されたエッチングパターンを用いて、透明電極層をエッチング処理することによって形成することがより好ましい。
また、静電容量型入力装置の製造方法は、上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルム(導電性硬化性樹脂層を有する転写フィルム)を用いて形成することが好ましく、仮支持体と熱可塑性樹脂層と導電性硬化性樹脂層とをこの順で有する転写フィルムを用いて形成することがより好ましい。
上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルムを用いて形成するとは、具体的には、上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルムのこの導電性硬化性樹脂層を転写して形成することを言う。
すなわち、上記第一の透明電極パターン3は、エッチング処理または導電性硬化性樹脂層を有する転写フィルムを用いて形成することが好ましい。 <(1) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions>
In the method of manufacturing the capacitance-type input device, at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, the temporary support and the photocurable resin layer are arranged in this order. The transparent electrode layer is preferably formed by etching using an etching pattern formed by a transfer film (transfer film having a photocurable resin layer) having a temporary support, a thermoplastic resin layer, and light. More preferably, the transparent electrode layer is formed by etching using an etching pattern formed by a transfer film having a curable resin layer in this order.
In addition, the method for manufacturing the capacitance-type input device includes: a temporary support, a conductive curable resin layer, and at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element. Are preferably formed using a transfer film (transfer film having a conductive curable resin layer) in this order, and a transfer having a temporary support, a thermoplastic resin layer, and a conductive curable resin layer in this order. More preferably, it is formed using a film.
Forming at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element using a transfer film having a temporary support and a conductive curable resin layer in this order. Specifically, a transfer film having at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, and a temporary support and a conductive curable resin layer in this order. The conductive curable resin layer is transferred and formed.
That is, the firsttransparent electrode pattern 3 is preferably formed using an etching process or a transfer film having a conductive curable resin layer.
静電容量型入力装置の製造方法は、上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と光硬化性樹脂層とをこの順で有する転写フィルム(光硬化性樹脂層を有する転写フィルム)によって形成されたエッチングパターンを用いて、透明電極層をエッチング処理することによって形成することが好ましく、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する転写フィルムによって形成されたエッチングパターンを用いて、透明電極層をエッチング処理することによって形成することがより好ましい。
また、静電容量型入力装置の製造方法は、上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルム(導電性硬化性樹脂層を有する転写フィルム)を用いて形成することが好ましく、仮支持体と熱可塑性樹脂層と導電性硬化性樹脂層とをこの順で有する転写フィルムを用いて形成することがより好ましい。
上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルムを用いて形成するとは、具体的には、上記第一の透明電極パターン、上記第二の透明電極パターンおよび上記導電性要素の少なくとも一つを、仮支持体と導電性硬化性樹脂層とをこの順で有する転写フィルムのこの導電性硬化性樹脂層を転写して形成することを言う。
すなわち、上記第一の透明電極パターン3は、エッチング処理または導電性硬化性樹脂層を有する転写フィルムを用いて形成することが好ましい。 <(1) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions>
In the method of manufacturing the capacitance-type input device, at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, the temporary support and the photocurable resin layer are arranged in this order. The transparent electrode layer is preferably formed by etching using an etching pattern formed by a transfer film (transfer film having a photocurable resin layer) having a temporary support, a thermoplastic resin layer, and light. More preferably, the transparent electrode layer is formed by etching using an etching pattern formed by a transfer film having a curable resin layer in this order.
In addition, the method for manufacturing the capacitance-type input device includes: a temporary support, a conductive curable resin layer, and at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element. Are preferably formed using a transfer film (transfer film having a conductive curable resin layer) in this order, and a transfer having a temporary support, a thermoplastic resin layer, and a conductive curable resin layer in this order. More preferably, it is formed using a film.
Forming at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element using a transfer film having a temporary support and a conductive curable resin layer in this order. Specifically, a transfer film having at least one of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element, and a temporary support and a conductive curable resin layer in this order. The conductive curable resin layer is transferred and formed.
That is, the first
(エッチング処理)
エッチング処理によって、上記第一の透明電極パターン3を形成する場合、まず加飾層2または透明保護層7等が形成された前面板1の一方の面上に、ITO等の透明電極層をスパッタリングによって形成する。次いで、上記透明電極層上に、エッチング用光硬化性樹脂層を有する転写フィルムを用いて露光・現像によって、エッチングパターンを形成する。その後、透明電極層をエッチングして透明電極層をパターニングし、エッチングパターンを除去することで、第一の透明電極パターン3等を形成することができる。
上記光硬化性樹脂層をさらに有する転写フィルムをエッチングレジスト(エッチングパターン)として用いる場合にも、上記方法と同様にして、レジストパターンを得ることができる。上記エッチングは、特開2010-152155公報の段落0048~0054等に記載の公知の方法でエッチング、レジスト剥離を適用することができる。 (Etching process)
When the firsttransparent electrode pattern 3 is formed by etching, a transparent electrode layer such as ITO is first sputtered on one surface of the front plate 1 on which the decorative layer 2 or the transparent protective layer 7 is formed. Formed by. Next, an etching pattern is formed on the transparent electrode layer by exposure and development using a transfer film having a photocurable resin layer for etching. Thereafter, the transparent electrode layer is etched to pattern the transparent electrode layer, and the etching pattern is removed, whereby the first transparent electrode pattern 3 and the like can be formed.
Also when using the transfer film which further has the said photocurable resin layer as an etching resist (etching pattern), a resist pattern can be obtained like the said method. For the etching, etching and resist stripping can be applied by a known method described in paragraphs 0048 to 0054 of JP2010-152155A.
エッチング処理によって、上記第一の透明電極パターン3を形成する場合、まず加飾層2または透明保護層7等が形成された前面板1の一方の面上に、ITO等の透明電極層をスパッタリングによって形成する。次いで、上記透明電極層上に、エッチング用光硬化性樹脂層を有する転写フィルムを用いて露光・現像によって、エッチングパターンを形成する。その後、透明電極層をエッチングして透明電極層をパターニングし、エッチングパターンを除去することで、第一の透明電極パターン3等を形成することができる。
上記光硬化性樹脂層をさらに有する転写フィルムをエッチングレジスト(エッチングパターン)として用いる場合にも、上記方法と同様にして、レジストパターンを得ることができる。上記エッチングは、特開2010-152155公報の段落0048~0054等に記載の公知の方法でエッチング、レジスト剥離を適用することができる。 (Etching process)
When the first
Also when using the transfer film which further has the said photocurable resin layer as an etching resist (etching pattern), a resist pattern can be obtained like the said method. For the etching, etching and resist stripping can be applied by a known method described in paragraphs 0048 to 0054 of JP2010-152155A.
例えば、エッチングの方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプまたはアルカリ性タイプのエッチング液を適宜選択すればよい。酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第2鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩の混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせてもよい。また、アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩の混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせてもよい。
For example, as an etching method, there is a commonly performed wet etching method of dipping in an etching solution. As an etchant used for wet etching, an acid type or alkaline type etchant may be appropriately selected in accordance with an object to be etched. Examples of acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done. The acidic component may combine a plurality of acidic components. In addition, alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate. A mixed aqueous solution of a salt such as The alkali component may be a combination of a plurality of alkali components.
エッチング液の温度は特に限定されないが、45℃以下であることが好ましい。本発明でエッチングマスク(エッチングパターン)として使用される樹脂パターンは、このような温度域において、酸性およびアルカリ性のエッチング液に対して特に優れた耐性を発揮する。したがって、エッチング工程中に樹脂パターンが剥離することが防止され、樹脂パターンの存在しない部分が選択的にエッチングされることになる。
上記エッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程・乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10~300秒間基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1~5kg/cm2程度)を適宜調整し行えばよい。 The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower. The resin pattern used as an etching mask (etching pattern) in the present invention exhibits particularly excellent resistance to acidic and alkaline etching solutions in such a temperature range. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
After the etching, a cleaning process and a drying process may be performed as necessary to prevent line contamination. The cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
上記エッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程・乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10~300秒間基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1~5kg/cm2程度)を適宜調整し行えばよい。 The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower. The resin pattern used as an etching mask (etching pattern) in the present invention exhibits particularly excellent resistance to acidic and alkaline etching solutions in such a temperature range. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
After the etching, a cleaning process and a drying process may be performed as necessary to prevent line contamination. The cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
次いで、樹脂パターンの剥離方法としては、特に限定されないが、例えば、30~80℃、好ましくは50~80℃にて攪拌中の剥離液に基材を5~30分間浸漬する方法が挙げられる。本発明でエッチングマスクとして使用される樹脂パターンは、上述のように45℃以下において優れた薬液耐性を示すものであるが、薬液温度が50℃以上になるとアルカリ性の剥離液により膨潤する性質を示す。このような性質により、50~80℃の剥離液を使用して剥離工程を行うと工程時間が短縮され、樹脂パターンの剥離残渣が少なくなるという利点がある。すなわち、上記エッチング工程と剥離工程との間で薬液温度に差を設けることにより、本発明でエッチングマスクとして使用される樹脂パターンは、エッチング工程において良好な薬液耐性を発揮する一方で、剥離工程において良好な剥離性を示すことになり、薬液耐性と剥離性という、相反する特性を両方とも満足することができる。
Next, the method of peeling the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes. The resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resin pattern peeling residue is reduced. That is, by providing a difference in the chemical temperature between the etching process and the peeling process, the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching process, while in the peeling process. Good peelability will be exhibited, and both conflicting properties of chemical resistance and peelability can be satisfied.
剥離液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分や、第3級アミン、第4級アンモニウム塩等の有機アルカリ成分を、水、ジメチルスルホキシド、N-メチルピロリドン、またはこれらの混合溶液に溶解させた剥離液が挙げられる。上記の剥離液を使用し、スプレー法、シャワー法、パドル法等により剥離してもよい。
Examples of the stripping solution include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these. A stripping solution dissolved in a mixed solution of You may peel by the spray method, the shower method, the paddle method etc. using said peeling liquid.
(導電性硬化性樹脂層を有する転写フィルムを用いる方法)
また、仮支持体および硬化性樹脂層を有する転写フィルムをリフトオフ材として用いて、第一の透明電極パターン、第二の透明電極パターンおよびその他の導電性部材を形成することもできる。上記転写フィルムとしては、上記光硬化性樹脂層を有する転写フィルムを挙げることができる。この場合も、上記光硬化性樹脂層を有する転写フィルムは、上記仮支持体および上記光硬化性樹脂層の間に、上記熱可塑性樹脂層を有することが好ましい。この場合、光硬化性樹脂層を有する転写フィルムを用いてパターニングした後に、基材全面に透明導電層を形成した後、堆積した透明導電層ごと加飾層または光硬化性樹脂層を有する転写フィルムにおけるこの光硬化性樹脂層の溶解除去を行うことにより所望の透明導電層パターンを得ることができる(リフトオフ法)。 (Method using transfer film having conductive curable resin layer)
Moreover, a 1st transparent electrode pattern, a 2nd transparent electrode pattern, and another electroconductive member can also be formed using the transfer film which has a temporary support body and a curable resin layer as a lift-off material. An example of the transfer film includes a transfer film having the photocurable resin layer. Also in this case, the transfer film having the photocurable resin layer preferably has the thermoplastic resin layer between the temporary support and the photocurable resin layer. In this case, after patterning using a transfer film having a photocurable resin layer, after forming a transparent conductive layer on the entire surface of the substrate, the transfer film having a decorative layer or a photocurable resin layer together with the deposited transparent conductive layer A desired transparent conductive layer pattern can be obtained by dissolving and removing the photocurable resin layer in (lift-off method).
また、仮支持体および硬化性樹脂層を有する転写フィルムをリフトオフ材として用いて、第一の透明電極パターン、第二の透明電極パターンおよびその他の導電性部材を形成することもできる。上記転写フィルムとしては、上記光硬化性樹脂層を有する転写フィルムを挙げることができる。この場合も、上記光硬化性樹脂層を有する転写フィルムは、上記仮支持体および上記光硬化性樹脂層の間に、上記熱可塑性樹脂層を有することが好ましい。この場合、光硬化性樹脂層を有する転写フィルムを用いてパターニングした後に、基材全面に透明導電層を形成した後、堆積した透明導電層ごと加飾層または光硬化性樹脂層を有する転写フィルムにおけるこの光硬化性樹脂層の溶解除去を行うことにより所望の透明導電層パターンを得ることができる(リフトオフ法)。 (Method using transfer film having conductive curable resin layer)
Moreover, a 1st transparent electrode pattern, a 2nd transparent electrode pattern, and another electroconductive member can also be formed using the transfer film which has a temporary support body and a curable resin layer as a lift-off material. An example of the transfer film includes a transfer film having the photocurable resin layer. Also in this case, the transfer film having the photocurable resin layer preferably has the thermoplastic resin layer between the temporary support and the photocurable resin layer. In this case, after patterning using a transfer film having a photocurable resin layer, after forming a transparent conductive layer on the entire surface of the substrate, the transfer film having a decorative layer or a photocurable resin layer together with the deposited transparent conductive layer A desired transparent conductive layer pattern can be obtained by dissolving and removing the photocurable resin layer in (lift-off method).
導電性硬化性樹脂層を有する転写フィルムを用いて、上記第一の透明電極パターン3を形成する場合、上記前面板1の表面に上記導電性硬化性樹脂層を転写することで形成することができる。
When the first transparent electrode pattern 3 is formed using a transfer film having a conductive curable resin layer, it can be formed by transferring the conductive curable resin layer to the surface of the front plate 1. it can.
上記第一の透明電極パターン3を、上記導電性硬化性樹脂層を有する転写フィルムを用いて形成すると、開口部を有する前面板(基材)でも開口部分からレジスト成分のモレがなく、前面板裏側を汚染することなく、簡略な工程で、薄層化および軽量化のメリットがあるタッチパネルを製造することができる。
さらに、第一の透明電極パターン3の形成に、導電性硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する転写フィルムを用いることで転写フィルムラミネート時の気泡発生を防止し、導電性に優れ、抵抗の少ない第一の透明電極パターン3を形成することができる。 When the firsttransparent electrode pattern 3 is formed using a transfer film having the conductive curable resin layer, the front plate (base material) having an opening has no resist component leakage from the opening. Without contaminating the back side, it is possible to manufacture a touch panel having the advantages of thinning and light weight by a simple process.
Furthermore, in forming the firsttransparent electrode pattern 3, a transfer film having a specific layer structure having a thermoplastic resin layer between the conductive curable resin layer and the temporary support is used to laminate the transfer film. Bubble generation is prevented, and the first transparent electrode pattern 3 having excellent conductivity and low resistance can be formed.
さらに、第一の透明電極パターン3の形成に、導電性硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する転写フィルムを用いることで転写フィルムラミネート時の気泡発生を防止し、導電性に優れ、抵抗の少ない第一の透明電極パターン3を形成することができる。 When the first
Furthermore, in forming the first
また、上記転写フィルムが導電性硬化性樹脂層を有する場合は、上記導電性硬化性樹脂層に導電性繊維等が含有される。
In addition, when the transfer film has a conductive curable resin layer, the conductive curable resin layer contains conductive fibers and the like.
~導電性硬化性樹脂層(導電性繊維)~
上記導電性硬化性樹脂層を積層した転写フィルムを透明電極パターン、あるいは別の導電性要素の形成に用いる場合には、以下の導電性繊維などを導電性硬化性樹脂層に用いることができる。 -Conductive curable resin layer (conductive fiber)-
When the transfer film on which the conductive curable resin layer is laminated is used for forming a transparent electrode pattern or another conductive element, the following conductive fibers can be used for the conductive curable resin layer.
上記導電性硬化性樹脂層を積層した転写フィルムを透明電極パターン、あるいは別の導電性要素の形成に用いる場合には、以下の導電性繊維などを導電性硬化性樹脂層に用いることができる。 -Conductive curable resin layer (conductive fiber)-
When the transfer film on which the conductive curable resin layer is laminated is used for forming a transparent electrode pattern or another conductive element, the following conductive fibers can be used for the conductive curable resin layer.
導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造および中空構造のいずれかが好ましい。
ここで、中実構造の繊維を「ワイヤー」と称することがあり、中空構造の繊維を「チューブ」と称することがある。また、平均短軸長さが1nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と称することがある。
また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と称することがある。
上記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属およびカーボンの少なくともいずれかが好ましく、これらの中でも、上記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、およびカーボンナノチューブの少なくともいずれかが特に好ましい。 There is no restriction | limiting in particular as a structure of an electroconductive fiber, Although it can select suitably according to the objective, A solid structure or a hollow structure is preferable.
Here, the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”. A conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 μm to 100 μm may be referred to as “nanowire”.
In addition, a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 μm to 1,000 μm, and having a hollow structure may be referred to as “nanotube”.
The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable. The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
ここで、中実構造の繊維を「ワイヤー」と称することがあり、中空構造の繊維を「チューブ」と称することがある。また、平均短軸長さが1nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と称することがある。
また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と称することがある。
上記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属およびカーボンの少なくともいずれかが好ましく、これらの中でも、上記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、およびカーボンナノチューブの少なくともいずれかが特に好ましい。 There is no restriction | limiting in particular as a structure of an electroconductive fiber, Although it can select suitably according to the objective, A solid structure or a hollow structure is preferable.
Here, the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”. A conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 μm to 100 μm may be referred to as “nanowire”.
In addition, a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 μm to 1,000 μm, and having a hollow structure may be referred to as “nanotube”.
The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable. The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
-金属ナノワイヤー-
--金属--
上記金属ナノワイヤーの材料としては、特に制限はなく、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。 -Metal nanowires-
--metal--
The material of the metal nanowire is not particularly limited. For example, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable. More preferably, at least one metal selected fromGroup 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14. At least one metal selected from the group is more preferable, and it is particularly preferable to include it as a main component.
--金属--
上記金属ナノワイヤーの材料としては、特に制限はなく、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。 -Metal nanowires-
--metal--
The material of the metal nanowire is not particularly limited. For example, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable. More preferably, at least one metal selected from
上記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、これらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀を主に含有するもの、または銀と銀以外の金属との合金を含有するものが好ましい。
上記銀を主に含有するとは、金属ナノワイヤー中に銀を50質量%以上、好ましくは90質量%以上含有することを意味する。
上記銀との合金で使用する金属としては、白金、オスミウム、パラジウムおよびイリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable.
Containing mainly silver means that the metal nanowire contains 50% by mass or more, preferably 90% by mass or more.
Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
上記銀を主に含有するとは、金属ナノワイヤー中に銀を50質量%以上、好ましくは90質量%以上含有することを意味する。
上記銀との合金で使用する金属としては、白金、オスミウム、パラジウムおよびイリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable.
Containing mainly silver means that the metal nanowire contains 50% by mass or more, preferably 90% by mass or more.
Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
--形状--
上記金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状、断面の多角形の角が丸まっている断面形状が好ましい。
上記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
上記金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、上記「断面の各辺」の合計長さに対する上記「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図9に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。上記鋭利度は60%以下が好ましく、50%以下がより好ましい。上記鋭利度が75%を超えると、この角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。また、パターンのエッジ部の直線性が低下し、ガタツキが生じてしまうことがある。上記鋭利度の下限は、30%が好ましく、40%がより好ましい。 --shape--
The shape of the metal nanowire is not particularly limited and may be appropriately selected depending on the purpose. In applications where high transparency is required, a cylindrical shape and a cross-sectional shape with rounded polygonal corners are preferred.
The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
The corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners. In this case, the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness. For example, in the metal nanowire cross section as shown in FIG. 9, the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line. A cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners. The sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at this corner and plasmon absorption may increase, or the transparency may be deteriorated due to the yellowness remaining. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise. The lower limit of the sharpness is preferably 30%, more preferably 40%.
上記金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状、断面の多角形の角が丸まっている断面形状が好ましい。
上記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
上記金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、上記「断面の各辺」の合計長さに対する上記「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図9に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。上記鋭利度は60%以下が好ましく、50%以下がより好ましい。上記鋭利度が75%を超えると、この角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。また、パターンのエッジ部の直線性が低下し、ガタツキが生じてしまうことがある。上記鋭利度の下限は、30%が好ましく、40%がより好ましい。 --shape--
The shape of the metal nanowire is not particularly limited and may be appropriately selected depending on the purpose. In applications where high transparency is required, a cylindrical shape and a cross-sectional shape with rounded polygonal corners are preferred.
The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
The corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners. In this case, the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness. For example, in the metal nanowire cross section as shown in FIG. 9, the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line. A cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners. The sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at this corner and plasmon absorption may increase, or the transparency may be deteriorated due to the yellowness remaining. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise. The lower limit of the sharpness is preferably 30%, more preferably 40%.
--平均短軸長さおよび平均長軸長さ--
上記金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、150nm以下が好ましく、1nm~40nmがより好ましく、10nm~40nmが更に好ましく、15nm~35nmが特に好ましい。
上記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、150nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。
上記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、上記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。 --- Average minor axis length and average major axis length--
The average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, still more preferably 10 nm to 40 nm, 15 nm to 35 nm is particularly preferable.
When the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated. When the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
The average short axis length of the metal nanowires was measured using a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and 300 metal nanowires were observed. The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular was the shortest axis.
上記金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、150nm以下が好ましく、1nm~40nmがより好ましく、10nm~40nmが更に好ましく、15nm~35nmが特に好ましい。
上記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、150nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。
上記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、上記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。 --- Average minor axis length and average major axis length--
The average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, still more preferably 10 nm to 40 nm, 15 nm to 35 nm is particularly preferable.
When the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated. When the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
The average short axis length of the metal nanowires was measured using a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and 300 metal nanowires were observed. The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular was the shortest axis.
上記金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm~40μmが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。
上記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
上記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、上記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長さとした。 The average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and even more preferably 5 μm to 30 μm.
If the average major axis length is less than 1 μm, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 μm, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
The average major axis length of the metal nanowires was measured using, for example, a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and 300 metal nanowires were observed. The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle | round | yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.
上記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
上記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、上記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長さとした。 The average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and even more preferably 5 μm to 30 μm.
If the average major axis length is less than 1 μm, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 μm, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
The average major axis length of the metal nanowires was measured using, for example, a transmission electron microscope (TEM; JEM-2000FX, JEM-2000FX), and 300 metal nanowires were observed. The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle | round | yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.
導電性硬化性樹脂層の層厚は、塗布液の安定性や塗布時の乾燥やパターニング時の現像時間などのプロセス適性の観点から、0.1~20μmが好ましく、0.5~18μmが更に好ましく、1~15μmが特に好ましい。上記導電性硬化性樹脂層の全固形分に対する上記導電性繊維の含有量は、導電性と塗布液の安定性の観点から、0.01~50質量%が好ましく、0.05~30質量%が更に好ましく、0.1~20質量%が特に好ましい。
The thickness of the conductive curable resin layer is preferably from 0.1 to 20 μm, more preferably from 0.5 to 18 μm, from the viewpoint of process stability such as the stability of the coating solution and the drying time during coating and the development time during patterning. 1 to 15 μm is preferable. The content of the conductive fiber based on the total solid content of the conductive curable resin layer is preferably 0.01 to 50% by mass, and 0.05 to 30% by mass from the viewpoint of conductivity and stability of the coating solution. Is more preferable, and 0.1 to 20% by mass is particularly preferable.
<(2)第一の透明電極パターンと電気的に絶縁され、第一の方向と交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン>
第二の電極パターンは、透明電極パターンであることが好ましい。上記第二の透明電極パターン4は、上記エッチング処理または上記導電性硬化性樹脂層を有する転写フィルムを用いて形成することができる。そのときの好ましい態様は、上記第一の透明電極パターン3の形成方法と同様である。 <(2) A plurality of second electrode patterns composed of a plurality of pad portions that are electrically insulated from the first transparent electrode pattern and extend in a direction crossing the first direction>
The second electrode pattern is preferably a transparent electrode pattern. The secondtransparent electrode pattern 4 can be formed using the transfer film having the etching treatment or the conductive curable resin layer. A preferred embodiment at that time is the same as the method for forming the first transparent electrode pattern 3.
第二の電極パターンは、透明電極パターンであることが好ましい。上記第二の透明電極パターン4は、上記エッチング処理または上記導電性硬化性樹脂層を有する転写フィルムを用いて形成することができる。そのときの好ましい態様は、上記第一の透明電極パターン3の形成方法と同様である。 <(2) A plurality of second electrode patterns composed of a plurality of pad portions that are electrically insulated from the first transparent electrode pattern and extend in a direction crossing the first direction>
The second electrode pattern is preferably a transparent electrode pattern. The second
<(3)第一の透明電極パターンと第二の透明電極パターンとを電気的に絶縁する絶縁層>
絶縁層5を形成する場合には、上記光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する上記光硬化性樹脂層を有する転写フィルムを用いて、第一の透明電極パターンが形成された上記前面板1の表面に絶縁性の光硬化性樹脂層を転写することで形成することができる。
尚、転写フィルムを用いて絶縁層を形成する場合、絶縁層の層厚は、絶縁性の維持の観点から、0.1~5μmが好ましく、0.3~3μmが更に好ましく、0.5~2μmが特に好ましい。 <(3) Insulating layer that electrically insulates first transparent electrode pattern and second transparent electrode pattern>
When the insulatinglayer 5 is formed, a first transparent electrode pattern is formed by using a transfer film having the photocurable resin layer having an insulating photocurable resin layer as the photocurable resin layer. Further, it can be formed by transferring an insulating photocurable resin layer to the surface of the front plate 1.
When forming an insulating layer using a transfer film, the thickness of the insulating layer is preferably 0.1 to 5 μm, more preferably 0.3 to 3 μm, and more preferably 0.5 to 3 μm from the viewpoint of maintaining insulation. 2 μm is particularly preferable.
絶縁層5を形成する場合には、上記光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する上記光硬化性樹脂層を有する転写フィルムを用いて、第一の透明電極パターンが形成された上記前面板1の表面に絶縁性の光硬化性樹脂層を転写することで形成することができる。
尚、転写フィルムを用いて絶縁層を形成する場合、絶縁層の層厚は、絶縁性の維持の観点から、0.1~5μmが好ましく、0.3~3μmが更に好ましく、0.5~2μmが特に好ましい。 <(3) Insulating layer that electrically insulates first transparent electrode pattern and second transparent electrode pattern>
When the insulating
When forming an insulating layer using a transfer film, the thickness of the insulating layer is preferably 0.1 to 5 μm, more preferably 0.3 to 3 μm, and more preferably 0.5 to 3 μm from the viewpoint of maintaining insulation. 2 μm is particularly preferable.
<(4)第一の透明電極パターンおよび第二の透明電極パターンの少なくとも一方に電気的に接続され、第一の透明電極パターンおよび第二の透明電極パターンとは別の導電性要素>
上記別の導電性要素6は、上記エッチング処理または上記導電性硬化性樹脂層を有する転写フィルムを用いて形成することができる。
別の導電性要素6は、取出配線と言われることもある。
取出配線は、従来は導電性が高く微細加工が容易な点から、MAMが一般的に用いられてきたが、Au(金)、Ag(銀)、Cu(銅)、Al(アルミニウム)、Mo(モリブデン)、Pd(パラジウム)、Pt(白金)、C(炭素)、Fe(鉄)等の金属も好ましく用いることができる。これらの金属が含まれる導電性ペーストまたは導電性インクをウェット法により成膜することで、蒸着法に比べてより安価なプロセスで取出配線を得ることができる。 <(4) Conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern and is different from the first transparent electrode pattern and the second transparent electrode pattern>
Said anotherelectroconductive element 6 can be formed using the said etching process or the transfer film which has the said electroconductive curable resin layer.
Anotherconductive element 6 is sometimes referred to as a lead-out wiring.
Conventionally, MAM is generally used as the lead-out wiring because it is highly conductive and easy to finely process. However, Au (gold), Ag (silver), Cu (copper), Al (aluminum), Mo Metals such as (molybdenum), Pd (palladium), Pt (platinum), C (carbon), and Fe (iron) can also be preferably used. By forming a conductive paste or conductive ink containing these metals into a film by a wet method, it is possible to obtain a lead-out wiring by a cheaper process than the vapor deposition method.
上記別の導電性要素6は、上記エッチング処理または上記導電性硬化性樹脂層を有する転写フィルムを用いて形成することができる。
別の導電性要素6は、取出配線と言われることもある。
取出配線は、従来は導電性が高く微細加工が容易な点から、MAMが一般的に用いられてきたが、Au(金)、Ag(銀)、Cu(銅)、Al(アルミニウム)、Mo(モリブデン)、Pd(パラジウム)、Pt(白金)、C(炭素)、Fe(鉄)等の金属も好ましく用いることができる。これらの金属が含まれる導電性ペーストまたは導電性インクをウェット法により成膜することで、蒸着法に比べてより安価なプロセスで取出配線を得ることができる。 <(4) Conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern and is different from the first transparent electrode pattern and the second transparent electrode pattern>
Said another
Another
Conventionally, MAM is generally used as the lead-out wiring because it is highly conductive and easy to finely process. However, Au (gold), Ag (silver), Cu (copper), Al (aluminum), Mo Metals such as (molybdenum), Pd (palladium), Pt (platinum), C (carbon), and Fe (iron) can also be preferably used. By forming a conductive paste or conductive ink containing these metals into a film by a wet method, it is possible to obtain a lead-out wiring by a cheaper process than the vapor deposition method.
<(5)透明保護層>
透明保護層を形成する場合には、上記光硬化性樹脂層として透明の光硬化性樹脂層を有する上記光硬化性樹脂層を有する転写フィルムを用いて、各要素が形成された上記前面板1の表面に透明の光硬化性樹脂層を転写することで形成することができる。
転写フィルムを用いて透明保護層を形成する場合、透明保護層の層厚は、十分な表面保護能を発揮させる観点から、0.5~10μmが好ましく、0.8~5μmが更に好ましく、1~3μmが特に好ましい。 <(5) Transparent protective layer>
When forming a transparent protective layer, the saidfront board 1 in which each element was formed using the transfer film which has the said photocurable resin layer which has a transparent photocurable resin layer as said photocurable resin layer. It can be formed by transferring a transparent photocurable resin layer to the surface.
In the case of forming a transparent protective layer using a transfer film, the thickness of the transparent protective layer is preferably 0.5 to 10 μm, more preferably 0.8 to 5 μm, from the viewpoint of exhibiting sufficient surface protection ability. Particularly preferred is ˜3 μm.
透明保護層を形成する場合には、上記光硬化性樹脂層として透明の光硬化性樹脂層を有する上記光硬化性樹脂層を有する転写フィルムを用いて、各要素が形成された上記前面板1の表面に透明の光硬化性樹脂層を転写することで形成することができる。
転写フィルムを用いて透明保護層を形成する場合、透明保護層の層厚は、十分な表面保護能を発揮させる観点から、0.5~10μmが好ましく、0.8~5μmが更に好ましく、1~3μmが特に好ましい。 <(5) Transparent protective layer>
When forming a transparent protective layer, the said
In the case of forming a transparent protective layer using a transfer film, the thickness of the transparent protective layer is preferably 0.5 to 10 μm, more preferably 0.8 to 5 μm, from the viewpoint of exhibiting sufficient surface protection ability. Particularly preferred is ˜3 μm.
[画像表示装置]
本発明の画像表示装置は、本発明の静電容量型入力装置を構成要素として備える。
本発明の静電容量型入力装置を構成要素として備えた画像表示装置は、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。 [Image display device]
The image display device of the present invention includes the capacitive input device of the present invention as a component.
The image display device including the capacitive input device of the present invention as a constituent element is “latest touch panel technology” (published July 6, 2009, Techno Times), supervised by Yuji Mitani, “Touch Panel Technology and Development. The configurations disclosed in CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied.
本発明の画像表示装置は、本発明の静電容量型入力装置を構成要素として備える。
本発明の静電容量型入力装置を構成要素として備えた画像表示装置は、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。 [Image display device]
The image display device of the present invention includes the capacitive input device of the present invention as a component.
The image display device including the capacitive input device of the present invention as a constituent element is “latest touch panel technology” (published July 6, 2009, Techno Times), supervised by Yuji Mitani, “Touch Panel Technology and Development. The configurations disclosed in CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied.
以下、本発明を実施例により更に具体的に説明する。
以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples.
The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below. Unless otherwise specified, “%” and “parts” are based on mass.
以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples.
The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below. Unless otherwise specified, “%” and “parts” are based on mass.
[実施例1]
<第2の透明樹脂層形成用の転写フィルムの作製>
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、熱可塑性樹脂層の上に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、中間層の上に、第2の透明樹脂層用塗布液:処方C1を塗布し、乾燥させて、第2の透明樹脂層として用いる透明樹脂層Aを形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が30μmの第2の透明樹脂層として用いる透明樹脂層Aを設けた。最後に、透明樹脂層Aの上に、保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と透明樹脂層Aと保護フィルムとが一体となった、第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムを作製した。 [Example 1]
<Preparation of transfer film for forming second transparent resin layer>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied on the thermoplastic resin layer and dried to form an intermediate layer. Furthermore, on the intermediate layer, the second transparent resin layer coating liquid: Formulation C1 was applied and dried to form a transparent resin layer A used as the second transparent resin layer. Thus, the thermoplastic resin layer having a dry film thickness of 15.1 μm, the intermediate layer having a dry film thickness of 1.6 μm, and the second transparent resin layer having a dry film thickness of 30 μm are used on the temporary support. A transparent resin layer A was provided. Finally, a protective film (12 μm thick polypropylene film) was pressure-bonded on the transparent resin layer A. In this way, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer A, and the protective film are integrated to form a second transparent resin layer (transparent resin as the second transparent resin layer). A transfer film having a layer A was prepared.
<第2の透明樹脂層形成用の転写フィルムの作製>
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、熱可塑性樹脂層の上に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、中間層の上に、第2の透明樹脂層用塗布液:処方C1を塗布し、乾燥させて、第2の透明樹脂層として用いる透明樹脂層Aを形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が30μmの第2の透明樹脂層として用いる透明樹脂層Aを設けた。最後に、透明樹脂層Aの上に、保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と透明樹脂層Aと保護フィルムとが一体となった、第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムを作製した。 [Example 1]
<Preparation of transfer film for forming second transparent resin layer>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied on the thermoplastic resin layer and dried to form an intermediate layer. Furthermore, on the intermediate layer, the second transparent resin layer coating liquid: Formulation C1 was applied and dried to form a transparent resin layer A used as the second transparent resin layer. Thus, the thermoplastic resin layer having a dry film thickness of 15.1 μm, the intermediate layer having a dry film thickness of 1.6 μm, and the second transparent resin layer having a dry film thickness of 30 μm are used on the temporary support. A transparent resin layer A was provided. Finally, a protective film (12 μm thick polypropylene film) was pressure-bonded on the transparent resin layer A. In this way, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer A, and the protective film are integrated to form a second transparent resin layer (transparent resin as the second transparent resin layer). A transfer film having a layer A was prepared.
(熱可塑性樹脂層用塗布液:処方H1)
・メタノール :11.1質量部
・プロピレングリコールモノメチルエーテルアセテート:6.36質量部
・メチルエチルケトン :52.4質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度)≒70℃):5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、重量平均分子量=1万、Tg≒100℃) :13.6質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製) :9.1質量部
・界面活性剤(フッ素系ポリマー、商品名:メガファックF780F、大日本インキ化学工業(株)製) :0.54質量部
上記のフッ素系ポリマーは、C6F13CH2CH2OCOCH=CH2 40部とH(OCH(CH3)CH2)7OCOCH=CH2 55部とH(OCH2CH2)7OCOCH=CH2 5部との共重合体で、重量平均分子量3万、メチルエチルケトン30質量%溶液である。
なお、熱可塑性樹脂層用塗布液:処方H1の溶剤除去後の120℃の粘度は1500Pa・secであった。 (Coating solution for thermoplastic resin layer: Formulation H1)
Methanol: 11.1 parts by mass Propylene glycol monomethyl ether acetate: 6.36 parts by mass Methyl ethyl ketone: 52.4 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio) (Molar ratio) = 55 / 11.7 / 4.5 / 28.8, weight average molecular weight = 100,000, Tg (glass transition temperature) ≈70 ° C.): 5.83 parts by mass / styrene / acrylic acid copolymer (Copolymerization composition ratio (molar ratio) = 63/37, weight average molecular weight = 10,000, Tg≈100 ° C.): 13.6 parts by mass / monomer 1 (trade name: BPE-500, Shin-Nakamura Chemical Co., Ltd.) 9.1 parts by mass / surfactant (fluorine polymer, trade name: MegaFuck F780F, Dainippon · The Chemical Industries, Ltd.): 0.54 parts by mass The above fluorine-containing polymer, C 6 F 13 CH 2 CH 2 OCOCH =CH 2 40 parts of H (OCH (CH 3) CH 2) 7 OCOCH = CH 2 55 parts and a copolymer of 5 parts H (OCH 2 CH 2 ) 7 OCOCH═CH 2 , a weight average molecular weight of 30,000 and a 30% by mass solution of methyl ethyl ketone.
The viscosity at 120 ° C. after removing the solvent of the coating solution for thermoplastic resin layer: Formulation H1 was 1500 Pa · sec.
・メタノール :11.1質量部
・プロピレングリコールモノメチルエーテルアセテート:6.36質量部
・メチルエチルケトン :52.4質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度)≒70℃):5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、重量平均分子量=1万、Tg≒100℃) :13.6質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製) :9.1質量部
・界面活性剤(フッ素系ポリマー、商品名:メガファックF780F、大日本インキ化学工業(株)製) :0.54質量部
上記のフッ素系ポリマーは、C6F13CH2CH2OCOCH=CH2 40部とH(OCH(CH3)CH2)7OCOCH=CH2 55部とH(OCH2CH2)7OCOCH=CH2 5部との共重合体で、重量平均分子量3万、メチルエチルケトン30質量%溶液である。
なお、熱可塑性樹脂層用塗布液:処方H1の溶剤除去後の120℃の粘度は1500Pa・secであった。 (Coating solution for thermoplastic resin layer: Formulation H1)
Methanol: 11.1 parts by mass Propylene glycol monomethyl ether acetate: 6.36 parts by mass Methyl ethyl ketone: 52.4 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio) (Molar ratio) = 55 / 11.7 / 4.5 / 28.8, weight average molecular weight = 100,000, Tg (glass transition temperature) ≈70 ° C.): 5.83 parts by mass / styrene / acrylic acid copolymer (Copolymerization composition ratio (molar ratio) = 63/37, weight average molecular weight = 10,000, Tg≈100 ° C.): 13.6 parts by mass / monomer 1 (trade name: BPE-500, Shin-Nakamura Chemical Co., Ltd.) 9.1 parts by mass / surfactant (fluorine polymer, trade name: MegaFuck F780F, Dainippon · The Chemical Industries, Ltd.): 0.54 parts by mass The above fluorine-containing polymer, C 6 F 13 CH 2 CH 2 OCOCH =
The viscosity at 120 ° C. after removing the solvent of the coating solution for thermoplastic resin layer: Formulation H1 was 1500 Pa · sec.
(中間層用塗布液:処方P1)
・ポリビニルアルコール :32.2質量部
(商品名:PVA205、(株)クラレ製、鹸化度=88%、重合度550)
・ポリビニルピロリドン :14.9質量部
(商品名:K-30、アイエスピー・ジャパン(株)製)
・蒸留水 :524質量部
・メタノール :429質量部 (Coating liquid for intermediate layer: prescription P1)
Polyvinyl alcohol: 32.2 parts by mass (trade name: PVA205, manufactured by Kuraray Co., Ltd., saponification degree = 88%, polymerization degree 550)
・ Polyvinylpyrrolidone: 14.9 parts by mass (trade name: K-30, manufactured by IS Japan Co., Ltd.)
-Distilled water: 524 parts by mass-Methanol: 429 parts by mass
・ポリビニルアルコール :32.2質量部
(商品名:PVA205、(株)クラレ製、鹸化度=88%、重合度550)
・ポリビニルピロリドン :14.9質量部
(商品名:K-30、アイエスピー・ジャパン(株)製)
・蒸留水 :524質量部
・メタノール :429質量部 (Coating liquid for intermediate layer: prescription P1)
Polyvinyl alcohol: 32.2 parts by mass (trade name: PVA205, manufactured by Kuraray Co., Ltd., saponification degree = 88%, polymerization degree 550)
・ Polyvinylpyrrolidone: 14.9 parts by mass (trade name: K-30, manufactured by IS Japan Co., Ltd.)
-Distilled water: 524 parts by mass-Methanol: 429 parts by mass
(第2の透明樹脂層用塗布液:処方C1)
・キシレン :800質量部
・シリコーンゴム KE-167U(信越化学(株)製、
シリカ入りコンパウンド型) :200質量部
・Pt触媒 C25A(信越化学(株)製) :0.1質量部
・架橋剤 KF9901(信越化学(株)製):2質量部 (Second coating solution for transparent resin layer: Formulation C1)
-Xylene: 800 parts by mass-Silicone rubber KE-167U (manufactured by Shin-Etsu Chemical Co., Ltd.)
Compound type containing silica): 200 parts by mass / Pt catalyst C25A (manufactured by Shin-Etsu Chemical Co., Ltd.): 0.1 part by mass / crosslinking agent KF9901 (manufactured by Shin-Etsu Chemical Co., Ltd.): 2 parts by mass
・キシレン :800質量部
・シリコーンゴム KE-167U(信越化学(株)製、
シリカ入りコンパウンド型) :200質量部
・Pt触媒 C25A(信越化学(株)製) :0.1質量部
・架橋剤 KF9901(信越化学(株)製):2質量部 (Second coating solution for transparent resin layer: Formulation C1)
-Xylene: 800 parts by mass-Silicone rubber KE-167U (manufactured by Shin-Etsu Chemical Co., Ltd.)
Compound type containing silica): 200 parts by mass / Pt catalyst C25A (manufactured by Shin-Etsu Chemical Co., Ltd.): 0.1 part by mass / crosslinking agent KF9901 (manufactured by Shin-Etsu Chemical Co., Ltd.): 2 parts by mass
<第1の透明樹脂層形成用転写フィルムL1の作製>
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、第1の透明樹脂層用塗布液:処方L1を塗布し、乾燥させて、第1の透明樹脂層として用いる透明樹脂層Fを形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が50μmの第1の透明樹脂層として用いる透明樹脂層Fを設けた。最後に、透明樹脂層Fの上に、保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と透明樹脂層Fと保護フィルムとが一体となった、第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを作製した。 <Preparation of first transparent resin layer forming transfer film L1>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer. Furthermore, the 1st coating liquid for transparent resin layers: Formula L1 was apply | coated and dried, and the transparent resin layer F used as a 1st transparent resin layer was formed. Thus, the thermoplastic resin layer having a dry film thickness of 15.1 μm, the intermediate layer having a dry film thickness of 1.6 μm, and the first transparent resin layer having a dry film thickness of 50 μm are used on the temporary support. A transparent resin layer F was provided. Finally, a protective film (12 μm thick polypropylene film) was pressure-bonded on the transparent resin layer F. Thus, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer F, and the protective film are integrated to form a first transparent resin layer (transparent resin as the first transparent resin layer). A transfer film having a layer F) was prepared.
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、第1の透明樹脂層用塗布液:処方L1を塗布し、乾燥させて、第1の透明樹脂層として用いる透明樹脂層Fを形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が50μmの第1の透明樹脂層として用いる透明樹脂層Fを設けた。最後に、透明樹脂層Fの上に、保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と透明樹脂層Fと保護フィルムとが一体となった、第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを作製した。 <Preparation of first transparent resin layer forming transfer film L1>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer. Furthermore, the 1st coating liquid for transparent resin layers: Formula L1 was apply | coated and dried, and the transparent resin layer F used as a 1st transparent resin layer was formed. Thus, the thermoplastic resin layer having a dry film thickness of 15.1 μm, the intermediate layer having a dry film thickness of 1.6 μm, and the first transparent resin layer having a dry film thickness of 50 μm are used on the temporary support. A transparent resin layer F was provided. Finally, a protective film (12 μm thick polypropylene film) was pressure-bonded on the transparent resin layer F. Thus, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer F, and the protective film are integrated to form a first transparent resin layer (transparent resin as the first transparent resin layer). A transfer film having a layer F) was prepared.
(第1の透明樹脂層用塗布液:処方L1)
・メチルエチルケトン(東燃化学(株)製) :380質量部
・シリコーンレジンKR-300(信越化学工業(株)製;
ストレートシリコーンのキシレン溶液(固形分50質量%)):300質量部
・シリコーンレジンKR-311(信越化学工業(株)製;
ストレートシリコーンのキシレン溶液(固形分60質量%)):2220質量部
・リン酸系酸化防止剤(Irgafos168、BASF(株)製):1.5質量部
・シリコーン樹脂用Zn触媒 D-15(信越化学工業(株)製;
キシレン溶液(固形分25質量%)) :59質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製) :6.0質量部 (First coating liquid for transparent resin layer: Formula L1)
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 380 parts by mass ・ Silicone resin KR-300 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Xylene solution of straight silicone (solid content 50% by mass): 300 parts by mass Silicone resin KR-311 (manufactured by Shin-Etsu Chemical Co., Ltd.)
Xylene solution of straight silicone (solid content 60% by mass): 2220 parts by mass Phosphoric acid antioxidant (Irgafos168, manufactured by BASF Corp.): 1.5 parts by mass Zn catalyst for silicone resin D-15 (Shin-Etsu) Manufactured by Chemical Industry Co., Ltd .;
Xylene solution (solid content: 25% by mass): 59 parts by mass. Surfactant (trade name: Megafac F-780F, manufactured by DIC Corporation): 6.0 parts by mass
・メチルエチルケトン(東燃化学(株)製) :380質量部
・シリコーンレジンKR-300(信越化学工業(株)製;
ストレートシリコーンのキシレン溶液(固形分50質量%)):300質量部
・シリコーンレジンKR-311(信越化学工業(株)製;
ストレートシリコーンのキシレン溶液(固形分60質量%)):2220質量部
・リン酸系酸化防止剤(Irgafos168、BASF(株)製):1.5質量部
・シリコーン樹脂用Zn触媒 D-15(信越化学工業(株)製;
キシレン溶液(固形分25質量%)) :59質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製) :6.0質量部 (First coating liquid for transparent resin layer: Formula L1)
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 380 parts by mass ・ Silicone resin KR-300 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Xylene solution of straight silicone (solid content 50% by mass): 300 parts by mass Silicone resin KR-311 (manufactured by Shin-Etsu Chemical Co., Ltd.)
Xylene solution of straight silicone (solid content 60% by mass): 2220 parts by mass Phosphoric acid antioxidant (Irgafos168, manufactured by BASF Corp.): 1.5 parts by mass Zn catalyst for silicone resin D-15 (Shin-Etsu) Manufactured by Chemical Industry Co., Ltd .;
Xylene solution (solid content: 25% by mass): 59 parts by mass. Surfactant (trade name: Megafac F-780F, manufactured by DIC Corporation): 6.0 parts by mass
<タッチパネル用白色加飾層(額縁形状)形成用転写フィルムL100の作製>
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、加飾層用塗布液:処方L100を塗布し、乾燥させて加飾層を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が35μmの白色の加飾層を設けた。最後に、加飾層上に、保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と加飾層と保護フィルムとが一体となった白色加飾層形成用転写フィルムを作製した。 <Preparation of transfer film L100 for forming white decorative layer (frame shape) for touch panel>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer. Further, a decorative layer coating solution: Formula L100 was applied and dried to form a decorative layer. In this way, a thermoplastic resin layer having a dry film thickness of 15.1 μm, an intermediate layer having a dry film thickness of 1.6 μm, and a white decorative layer having a dry film thickness of 35 μm were provided on the temporary support. . Finally, a protective film (thickness 12 μm polypropylene film) was pressure-bonded on the decorative layer. In this way, a transfer film for forming a white decorative layer was produced in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the decorative layer, and the protective film were integrated.
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、加飾層用塗布液:処方L100を塗布し、乾燥させて加飾層を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が35μmの白色の加飾層を設けた。最後に、加飾層上に、保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と加飾層と保護フィルムとが一体となった白色加飾層形成用転写フィルムを作製した。 <Preparation of transfer film L100 for forming white decorative layer (frame shape) for touch panel>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer. Further, a decorative layer coating solution: Formula L100 was applied and dried to form a decorative layer. In this way, a thermoplastic resin layer having a dry film thickness of 15.1 μm, an intermediate layer having a dry film thickness of 1.6 μm, and a white decorative layer having a dry film thickness of 35 μm were provided on the temporary support. . Finally, a protective film (thickness 12 μm polypropylene film) was pressure-bonded on the decorative layer. In this way, a transfer film for forming a white decorative layer was produced in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the decorative layer, and the protective film were integrated.
(加飾層用塗布液:処方L100)
・メチルエチルケトン(東燃化学(株)製) :56質量部
・シリコーンレジンKR-300(信越化学工業(株)製;
ストレートシリコーンのキシレン溶液(固形分50質量%)) :584質量部
・シリコーン樹脂用触媒 D-15(信越化学工業(株)製;
キシレン溶液(固形分25質量%)) :12質量部
・白色顔料分散物1(下記の組成) :346質量部
・酸化防止剤(Irgafos168、BASF(株)製) :0.6質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製)
:2.2質量部 (Coating liquid for decoration layer: Formula L100)
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 56 parts by mass ・ Silicone resin KR-300 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Straight silicone xylene solution (solid content 50% by mass): 584 parts by mass. Silicone resin catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Xylene solution (solid content: 25% by mass): 12 parts by mass, white pigment dispersion 1 (the following composition): 346 parts by mass, antioxidant (Irgafos 168, manufactured by BASF Corp.): 0.6 parts by mass, interface Activator (Brand name: MegaFuck F-780F, manufactured by DIC Corporation)
: 2.2 parts by mass
・メチルエチルケトン(東燃化学(株)製) :56質量部
・シリコーンレジンKR-300(信越化学工業(株)製;
ストレートシリコーンのキシレン溶液(固形分50質量%)) :584質量部
・シリコーン樹脂用触媒 D-15(信越化学工業(株)製;
キシレン溶液(固形分25質量%)) :12質量部
・白色顔料分散物1(下記の組成) :346質量部
・酸化防止剤(Irgafos168、BASF(株)製) :0.6質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製)
:2.2質量部 (Coating liquid for decoration layer: Formula L100)
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 56 parts by mass ・ Silicone resin KR-300 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Straight silicone xylene solution (solid content 50% by mass): 584 parts by mass. Silicone resin catalyst D-15 (manufactured by Shin-Etsu Chemical Co., Ltd.);
Xylene solution (solid content: 25% by mass): 12 parts by mass, white pigment dispersion 1 (the following composition): 346 parts by mass, antioxidant (Irgafos 168, manufactured by BASF Corp.): 0.6 parts by mass, interface Activator (Brand name: MegaFuck F-780F, manufactured by DIC Corporation)
: 2.2 parts by mass
-白色顔料分散物1の組成-
・酸化チタン(石原産業製CR97;アルミナ/ジルコニア処理ルチル型、
一次粒子径0.25μm) :70.0質量%
・ベンジルメタクリレート/メタクリル酸=72/28モル比の
ランダム共重合物(重量平均分子量3.7万) :3.5質量%
・メチルエチルケトン(東燃化学(株)製) :26.5質量% -Composition of white pigment dispersion 1-
・ Titanium oxide (CR97 manufactured by Ishihara Sangyo; alumina / zirconia-treated rutile type,
Primary particle diameter 0.25 μm): 70.0 mass%
-Random copolymer (weight average molecular weight 37,000) of benzyl methacrylate / methacrylic acid = 72/28 molar ratio: 3.5% by mass
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 26.5% by mass
・酸化チタン(石原産業製CR97;アルミナ/ジルコニア処理ルチル型、
一次粒子径0.25μm) :70.0質量%
・ベンジルメタクリレート/メタクリル酸=72/28モル比の
ランダム共重合物(重量平均分子量3.7万) :3.5質量%
・メチルエチルケトン(東燃化学(株)製) :26.5質量% -Composition of white pigment dispersion 1-
・ Titanium oxide (CR97 manufactured by Ishihara Sangyo; alumina / zirconia-treated rutile type,
Primary particle diameter 0.25 μm): 70.0 mass%
-Random copolymer (weight average molecular weight 37,000) of benzyl methacrylate / methacrylic acid = 72/28 molar ratio: 3.5% by mass
・ Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 26.5% by mass
作製した白色加飾層形成用転写フィルムを、CO2レーザーカッター(L-CPNC550、クライムプロダクツ株式会社製)を用いて、白色加飾層形成用転写フィルムのすべて(保護フィルム、加飾層、中間層、熱可塑性樹脂層および仮支持体)を保護フィルム側から貫通させて、打ち抜いた。打ち抜き後の白色加飾層形成用転写フィルムは、図10に示すように、外周部42、直線部分を有する枠内部41、および直線部分を有する配線取出し部43が形成されている。
Using the CO 2 laser cutter (L-CPNC550, manufactured by Crime Products Co., Ltd.), all the white decorative layer forming transfer films (protective film, decorative layer, intermediate) Layer, thermoplastic resin layer and temporary support) were penetrated from the protective film side and punched out. As shown in FIG. 10, the white decorative layer forming transfer film after punching is formed with an outer peripheral portion 42, a frame inside 41 having a straight portion, and a wiring extraction portion 43 having a straight portion.
<加飾層(額縁形状)が形成された前面板の作製>
開口部(15mmΦ)が形成された強化処理ガラス(300mm×400mm×0.7mm)を透明な前面板(ガラス基板)として用い、25℃に調整したガラス洗浄剤をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。このガラス基板を基材予備加熱装置で90℃、2分間予備加熱しシランカップリング処理済みの強化処理ガラスを得た。 <Preparation of front plate with decorative layer (frame shape)>
Using tempered glass (300mm x 400mm x 0.7mm) with an opening (15mmΦ) as a transparent front plate (glass substrate), nylon hair while spraying glass cleaner adjusted to 25 ° C for 20 seconds by shower After washing with a rotating brush having a pure water shower wash, a silane coupling liquid (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, Shin-Etsu Chemical Co., Ltd.) )) Was sprayed for 20 seconds with a shower and washed with pure water. This glass substrate was preheated at 90 ° C. for 2 minutes with a base material preheating device to obtain a tempered glass having been subjected to silane coupling treatment.
開口部(15mmΦ)が形成された強化処理ガラス(300mm×400mm×0.7mm)を透明な前面板(ガラス基板)として用い、25℃に調整したガラス洗浄剤をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。このガラス基板を基材予備加熱装置で90℃、2分間予備加熱しシランカップリング処理済みの強化処理ガラスを得た。 <Preparation of front plate with decorative layer (frame shape)>
Using tempered glass (300mm x 400mm x 0.7mm) with an opening (15mmΦ) as a transparent front plate (glass substrate), nylon hair while spraying glass cleaner adjusted to 25 ° C for 20 seconds by shower After washing with a rotating brush having a pure water shower wash, a silane coupling liquid (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, Shin-Etsu Chemical Co., Ltd.) )) Was sprayed for 20 seconds with a shower and washed with pure water. This glass substrate was preheated at 90 ° C. for 2 minutes with a base material preheating device to obtain a tempered glass having been subjected to silane coupling treatment.
図11および12に示すように刃33で打ち抜かれた白色加飾層形成用転写フィルム(打ち抜き後の白色加飾層形成用転写フィルム)に対して、テープを用いて非画像部31の保護フィルム25のみを剥離し、同様にテープを用いて非画像部31の加飾層24と中間層23の2層を同時に剥離した。さらに画像部32に対応する領域の保護フィルム25のみを剥離した。
保護フィルム25を剥離した後に露出した画像部32の加飾層24の表面と、上記90℃で予備加熱したシランカップリング処理済みの強化処理ガラスの表面とが接するように重ね合わせ、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.5m/分でラミネートした。続いてポリエチレンテレフタレートの仮支持体21を、熱可塑性樹脂層22との界面で剥離し、仮支持体21を除去した。
これにより、上記ガラス基板の画像部32には加飾層24、中間層23および熱可塑性樹脂層22が白色加飾層形成用転写フィルムから転写され、上記ガラス基板の非画像部31には熱可塑性樹脂層22のみが白色加飾層形成用転写フィルムから転写された。 As shown in FIGS. 11 and 12, the white decorative layer forming transfer film (white decorative layer forming transfer film after punching) punched with theblade 33 is used to protect the non-image portion 31 with a tape. Only 25 was peeled off, and similarly, the two layers of the decorative layer 24 and the intermediate layer 23 of the non-image part 31 were peeled off simultaneously using a tape. Further, only the protective film 25 in the region corresponding to the image portion 32 was peeled off.
Laminator (() The product was laminated at a rubber roller temperature of 120 ° C., a linear pressure of 100 N / cm, and a conveying speed of 2.5 m / min. Using Hitachi Industries, Ltd. (Lamic II type). Subsequently, the polyethylene terephthalatetemporary support 21 was peeled off at the interface with the thermoplastic resin layer 22 to remove the temporary support 21.
Thus, thedecorative layer 24, the intermediate layer 23, and the thermoplastic resin layer 22 are transferred from the white decorative layer forming transfer film to the image portion 32 of the glass substrate, and the non-image portion 31 of the glass substrate is heated. Only the plastic resin layer 22 was transferred from the white decorative layer forming transfer film.
保護フィルム25を剥離した後に露出した画像部32の加飾層24の表面と、上記90℃で予備加熱したシランカップリング処理済みの強化処理ガラスの表面とが接するように重ね合わせ、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.5m/分でラミネートした。続いてポリエチレンテレフタレートの仮支持体21を、熱可塑性樹脂層22との界面で剥離し、仮支持体21を除去した。
これにより、上記ガラス基板の画像部32には加飾層24、中間層23および熱可塑性樹脂層22が白色加飾層形成用転写フィルムから転写され、上記ガラス基板の非画像部31には熱可塑性樹脂層22のみが白色加飾層形成用転写フィルムから転写された。 As shown in FIGS. 11 and 12, the white decorative layer forming transfer film (white decorative layer forming transfer film after punching) punched with the
Laminator (() The product was laminated at a rubber roller temperature of 120 ° C., a linear pressure of 100 N / cm, and a conveying speed of 2.5 m / min. Using Hitachi Industries, Ltd. (Lamic II type). Subsequently, the polyethylene terephthalate
Thus, the
次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、30℃で60秒間、フラットノズル圧力0.1MPaでシャワー現像し、上記ガラス基板の画像部32の熱可塑性樹脂層22と中間層23、並びに非画像部31の熱可塑性樹脂層22とを除去した。引き続き、このガラス基板の上面にエアを吹きかけて液切りした後、純水をシャワーにより10秒間吹き付け、純水シャワー洗浄し、エアを吹きかけてガラス基板上の液だまりを減らした。
その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行なって白色加飾層24を形成し、ガラス基板の上面に、膜厚35μmの白色加飾層が形成された前面板(以下、「加飾層が形成された前面板」ともいう。)を得た。得られた白色加飾層は枠の形状(額縁形状とも言う)であり、枠(額縁)の内側の一辺の長さは70mmであり、その内側の一辺と平行な外側の一辺の長さは90mmであった。 Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 30 ° C. For 60 seconds, shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and theintermediate layer 23 of the image portion 32 of the glass substrate and the thermoplastic resin layer 22 of the non-image portion 31. Subsequently, air was blown onto the upper surface of the glass substrate to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce a liquid pool on the glass substrate.
Thereafter, awhite decoration layer 24 is formed by performing post-baking treatment at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), and a white decoration layer having a thickness of 35 μm is formed on the upper surface of the glass substrate. A front plate (hereinafter also referred to as “front plate on which a decorative layer is formed”) was obtained. The obtained white decorative layer has a frame shape (also referred to as a frame shape), the length of one side inside the frame (frame) is 70 mm, and the length of the outer side parallel to the inner side is It was 90 mm.
その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行なって白色加飾層24を形成し、ガラス基板の上面に、膜厚35μmの白色加飾層が形成された前面板(以下、「加飾層が形成された前面板」ともいう。)を得た。得られた白色加飾層は枠の形状(額縁形状とも言う)であり、枠(額縁)の内側の一辺の長さは70mmであり、その内側の一辺と平行な外側の一辺の長さは90mmであった。 Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 30 ° C. For 60 seconds, shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and the
Thereafter, a
<第1の透明樹脂層および第2の透明樹脂層が形成された前面板の作製>
A5サイズの打ち抜き前の第2の透明樹脂層形成用の(第2の透明樹脂層として透明樹脂層Aを有し、前面板と白色加飾層との高低差により生じる間隙を埋めるための)転写フィルムおよび第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを、CO2レーザーカッター(L-CPNC550、クライムプロダクツ株式会社製)を用いて、第2の透明樹脂層形成用の転写フィルムのすべてを保護フィルム側から貫通させて、ダイカット方式で打ち抜いた。打ち抜き後の第2の透明樹脂層形成用の転写フィルムは、各辺が白色加飾層(額縁形状)の内側の辺の長さよりも両側に5mmずつ大きいものの、白色加飾層(額縁形状)の内部(白色加飾層が形成されていない領域)にはまるように、打ち抜かれている。 <Preparation of front plate on which first transparent resin layer and second transparent resin layer are formed>
For forming a second transparent resin layer before punching of A5 size (for filling the gap caused by the difference in height between the front plate and the white decorative layer having the transparent resin layer A as the second transparent resin layer) Using a CO 2 laser cutter (L-CPNC550, manufactured by Climb Products Co., Ltd.), a transfer film and a transfer film for forming the first transparent resin layer (having the transparent resin layer F as the first transparent resin layer) All of the transfer film for forming the second transparent resin layer was penetrated from the protective film side and punched out by a die-cut method. The transfer film for forming a second transparent resin layer after punching has a white decorative layer (frame shape), although each side is 5 mm larger on each side than the length of the inner side of the white decorative layer (frame shape). It is punched out so as to fit inside (region where the white decorative layer is not formed).
A5サイズの打ち抜き前の第2の透明樹脂層形成用の(第2の透明樹脂層として透明樹脂層Aを有し、前面板と白色加飾層との高低差により生じる間隙を埋めるための)転写フィルムおよび第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを、CO2レーザーカッター(L-CPNC550、クライムプロダクツ株式会社製)を用いて、第2の透明樹脂層形成用の転写フィルムのすべてを保護フィルム側から貫通させて、ダイカット方式で打ち抜いた。打ち抜き後の第2の透明樹脂層形成用の転写フィルムは、各辺が白色加飾層(額縁形状)の内側の辺の長さよりも両側に5mmずつ大きいものの、白色加飾層(額縁形状)の内部(白色加飾層が形成されていない領域)にはまるように、打ち抜かれている。 <Preparation of front plate on which first transparent resin layer and second transparent resin layer are formed>
For forming a second transparent resin layer before punching of A5 size (for filling the gap caused by the difference in height between the front plate and the white decorative layer having the transparent resin layer A as the second transparent resin layer) Using a CO 2 laser cutter (L-CPNC550, manufactured by Climb Products Co., Ltd.), a transfer film and a transfer film for forming the first transparent resin layer (having the transparent resin layer F as the first transparent resin layer) All of the transfer film for forming the second transparent resin layer was penetrated from the protective film side and punched out by a die-cut method. The transfer film for forming a second transparent resin layer after punching has a white decorative layer (frame shape), although each side is 5 mm larger on each side than the length of the inner side of the white decorative layer (frame shape). It is punched out so as to fit inside (region where the white decorative layer is not formed).
加飾層が形成された前面板を、基材予備加熱装置で90℃、2分間予備加熱した。
打ち抜き後の第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムに対して、テープを用いて保護フィルムのみを剥離した。
保護フィルムを剥離した後に露出した画像部の第2の透明樹脂層として用いる透明樹脂層Aの表面と、上記90℃で予備加熱した前面板(シランカップリング処理済みの強化処理ガラス)の表面とが接するように、ラミネートした(ラミネータ((株)日立インダストリイズ製(LamicII型))、ゴムローラー温度100℃、線圧100N/cm、搬送速度2.5m/分)。予備加熱した前面板と、第2の透明樹脂層形成用の転写フィルムは、第2の透明樹脂層形成用の転写フィルムが白色加飾層の枠部(額縁部)内に隙間無く配置されて、前面板と白色加飾層との高低差により生じる段差が第2の透明樹脂層である透明樹脂層Aによって埋められており、かつ、第2の透明樹脂層である透明樹脂層Aの各端部が白色加飾層の上に、白色加飾層の端部(内側の端部)からそれぞれ5mmずつ乗り上げるように、はめこまれている。加飾層の端部がテーパー形状を有するため、加飾層の端部の基準は、加飾層の最大高さと等しくなる部分とした。続いてポリエチレンテレフタレートの仮支持体を、熱可塑性樹脂層との界面で剥離し、仮支持体を除去した。 The front plate on which the decorative layer was formed was preheated at 90 ° C. for 2 minutes with a base material preheating device.
Only the protective film was peeled off using a tape to the transfer film for forming the second transparent resin layer after punching (having the transparent resin layer A as the second transparent resin layer).
The surface of the transparent resin layer A used as the second transparent resin layer of the image portion exposed after peeling off the protective film, and the surface of the front plate (tempered glass that has been subjected to silane coupling treatment) preheated at 90 ° C. (Laminator (manufactured by Hitachi Industries (Lamic II type)),rubber roller temperature 100 ° C., linear pressure 100 N / cm, conveyance speed 2.5 m / min). The preheated front plate and the transfer film for forming the second transparent resin layer are arranged such that the transfer film for forming the second transparent resin layer is disposed in the frame portion (frame portion) of the white decorative layer without any gap. The steps formed by the height difference between the front plate and the white decorative layer are filled with the transparent resin layer A that is the second transparent resin layer, and each of the transparent resin layers A that are the second transparent resin layers The end portions are fitted on the white decorative layer so as to run 5 mm each from the end portion (inner end portion) of the white decorative layer. Since the edge part of a decoration layer has a taper shape, the reference | standard of the edge part of a decoration layer was made into the part equal to the maximum height of a decoration layer. Subsequently, the polyethylene terephthalate temporary support was peeled off at the interface with the thermoplastic resin layer to remove the temporary support.
打ち抜き後の第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムに対して、テープを用いて保護フィルムのみを剥離した。
保護フィルムを剥離した後に露出した画像部の第2の透明樹脂層として用いる透明樹脂層Aの表面と、上記90℃で予備加熱した前面板(シランカップリング処理済みの強化処理ガラス)の表面とが接するように、ラミネートした(ラミネータ((株)日立インダストリイズ製(LamicII型))、ゴムローラー温度100℃、線圧100N/cm、搬送速度2.5m/分)。予備加熱した前面板と、第2の透明樹脂層形成用の転写フィルムは、第2の透明樹脂層形成用の転写フィルムが白色加飾層の枠部(額縁部)内に隙間無く配置されて、前面板と白色加飾層との高低差により生じる段差が第2の透明樹脂層である透明樹脂層Aによって埋められており、かつ、第2の透明樹脂層である透明樹脂層Aの各端部が白色加飾層の上に、白色加飾層の端部(内側の端部)からそれぞれ5mmずつ乗り上げるように、はめこまれている。加飾層の端部がテーパー形状を有するため、加飾層の端部の基準は、加飾層の最大高さと等しくなる部分とした。続いてポリエチレンテレフタレートの仮支持体を、熱可塑性樹脂層との界面で剥離し、仮支持体を除去した。 The front plate on which the decorative layer was formed was preheated at 90 ° C. for 2 minutes with a base material preheating device.
Only the protective film was peeled off using a tape to the transfer film for forming the second transparent resin layer after punching (having the transparent resin layer A as the second transparent resin layer).
The surface of the transparent resin layer A used as the second transparent resin layer of the image portion exposed after peeling off the protective film, and the surface of the front plate (tempered glass that has been subjected to silane coupling treatment) preheated at 90 ° C. (Laminator (manufactured by Hitachi Industries (Lamic II type)),
次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、30℃で60秒間、フラットノズル圧力0.1MPaでシャワー現像し、上記前面板の画像部の熱可塑性樹脂層22と中間層23、並びに非画像部の熱可塑性樹脂層22とを除去した。引き続き、この前面板の上面にエアを吹きかけて液切りした後、純水をシャワーにより10秒間吹き付け、純水シャワー洗浄し、エアを吹きかけて前面板上の液だまりを減らした。こうして、前面板の上に第2の透明樹脂層である透明樹脂層Aを形成した。
さらに前面板上への第2の透明樹脂層である透明樹脂層Aの形成と同様にして、第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを用いて、第2の透明樹脂層である透明樹脂層Aの上に、第1の透明樹脂層である透明樹脂層Fを形成した。
その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行って積層体を得た。得られた積層体の前面板の上の白色加飾層の枠部(額縁部)内は、第2の透明樹脂層である透明樹脂層Aおよび第1の透明樹脂層である透明樹脂層Fがこの順で隙間無く積層されて、前面板と白色加飾層との段差が第1の透明樹脂層および第2の透明樹脂層によって埋められており、かつ、第1の透明樹脂層および第2の透明樹脂層の各端部が白色加飾層の前面板とは反対側の面の一部の上に、白色加飾層の(内側の)端部からそれぞれ5mmずつ乗り上げるようにはめこまれている。
なお、第2の透明樹脂層および第1の透明樹脂層が、それぞれ、第2の透明樹脂層形成用転写フィルムおよび第1の透明樹脂層形成用転写フィルムを用いて、連続する転写工程により形成されたことを、下記表2中、逐次転写と示した。 Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 30 ° C. For 60 seconds, shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and theintermediate layer 23 in the image area of the front plate and the thermoplastic resin layer 22 in the non-image area. Subsequently, air was blown onto the upper surface of the front plate to drain the liquid, and then pure water was sprayed for 10 seconds by showering, followed by pure water shower washing, and air was blown to reduce the liquid pool on the front plate. Thus, the transparent resin layer A which is the second transparent resin layer was formed on the front plate.
Further, in the same manner as the formation of the transparent resin layer A which is the second transparent resin layer on the front plate, transfer for forming the first transparent resin layer (having the transparent resin layer F as the first transparent resin layer) A transparent resin layer F, which is a first transparent resin layer, was formed on the transparent resin layer A, which is a second transparent resin layer, using a film.
Then, the post-baking process was performed for 60 minutes at 240 degreeC in the air under atmospheric pressure (1 atm), and the laminated body was obtained. Inside the frame portion (frame portion) of the white decorative layer on the front plate of the obtained laminate, the transparent resin layer A that is the second transparent resin layer and the transparent resin layer F that is the first transparent resin layer Are laminated without gaps in this order, the step between the front plate and the white decorative layer is filled with the first transparent resin layer and the second transparent resin layer, and the first transparent resin layer and the first decorative resin layer Fit each edge of thetransparent resin layer 2 on the part of the surface on the opposite side of the front panel of the white decorative layer by 5mm from the (inner) edge of the white decorative layer. It is rare.
The second transparent resin layer and the first transparent resin layer are formed by successive transfer processes using the second transparent resin layer forming transfer film and the first transparent resin layer forming transfer film, respectively. This was shown as sequential transfer in Table 2 below.
さらに前面板上への第2の透明樹脂層である透明樹脂層Aの形成と同様にして、第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを用いて、第2の透明樹脂層である透明樹脂層Aの上に、第1の透明樹脂層である透明樹脂層Fを形成した。
その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行って積層体を得た。得られた積層体の前面板の上の白色加飾層の枠部(額縁部)内は、第2の透明樹脂層である透明樹脂層Aおよび第1の透明樹脂層である透明樹脂層Fがこの順で隙間無く積層されて、前面板と白色加飾層との段差が第1の透明樹脂層および第2の透明樹脂層によって埋められており、かつ、第1の透明樹脂層および第2の透明樹脂層の各端部が白色加飾層の前面板とは反対側の面の一部の上に、白色加飾層の(内側の)端部からそれぞれ5mmずつ乗り上げるようにはめこまれている。
なお、第2の透明樹脂層および第1の透明樹脂層が、それぞれ、第2の透明樹脂層形成用転写フィルムおよび第1の透明樹脂層形成用転写フィルムを用いて、連続する転写工程により形成されたことを、下記表2中、逐次転写と示した。 Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 30 ° C. For 60 seconds, shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer 22 and the
Further, in the same manner as the formation of the transparent resin layer A which is the second transparent resin layer on the front plate, transfer for forming the first transparent resin layer (having the transparent resin layer F as the first transparent resin layer) A transparent resin layer F, which is a first transparent resin layer, was formed on the transparent resin layer A, which is a second transparent resin layer, using a film.
Then, the post-baking process was performed for 60 minutes at 240 degreeC in the air under atmospheric pressure (1 atm), and the laminated body was obtained. Inside the frame portion (frame portion) of the white decorative layer on the front plate of the obtained laminate, the transparent resin layer A that is the second transparent resin layer and the transparent resin layer F that is the first transparent resin layer Are laminated without gaps in this order, the step between the front plate and the white decorative layer is filled with the first transparent resin layer and the second transparent resin layer, and the first transparent resin layer and the first decorative resin layer Fit each edge of the
The second transparent resin layer and the first transparent resin layer are formed by successive transfer processes using the second transparent resin layer forming transfer film and the first transparent resin layer forming transfer film, respectively. This was shown as sequential transfer in Table 2 below.
(弾性率および破断伸びの測定)
第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムをガラス基板上に転写し、透明樹脂層Aを形成した。大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行なった後、基板から30mm×0.5mmのサイズの自立膜を切り取り、サンプルフィルムを得た。
次いでこのサンプルフィルムを引っ張り試験機(テンシロン、(株)エー・アンド・デイ社製)を用いて引っ張り、第2の透明樹脂層である透明樹脂層Aの自立膜の弾性率E2および破断伸びφを測定した。測定はチャック間距離20mm、温度23℃、相対湿度55%下で行った。
また、第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムの代わりに、第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを用いた以外は透明樹脂層Aの弾性率の測定方法と同様にして、第1の透明樹脂層である透明樹脂層Fの自立膜の弾性率E1を測定した。
得られた結果を下記表2に記載した。 (Measurement of elastic modulus and elongation at break)
A transfer film for forming a second transparent resin layer (having transparent resin layer A as the second transparent resin layer) was transferred onto a glass substrate to form transparent resin layer A. After a post-bake treatment at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), a self-supporting film having a size of 30 mm × 0.5 mm was cut from the substrate to obtain a sample film.
Next, the sample film was pulled using a tensile tester (Tensilon, manufactured by A & D Co., Ltd.), and the elastic modulus E2 and elongation at break φ of the self-supporting film of the transparent resin layer A, which is the second transparent resin layer. Was measured. The measurement was performed at a distance between chucks of 20 mm, a temperature of 23 ° C., and a relative humidity of 55%.
Also, instead of the transfer film for forming the second transparent resin layer (having the transparent resin layer A as the second transparent resin layer), the first transparent resin layer forming (transparent resin as the first transparent resin layer) The elastic modulus E1 of the self-supporting film of the transparent resin layer F, which is the first transparent resin layer, was measured in the same manner as in the elastic modulus measurement method of the transparent resin layer A except that the transfer film (with layer F) was used. .
The obtained results are shown in Table 2 below.
第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムをガラス基板上に転写し、透明樹脂層Aを形成した。大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行なった後、基板から30mm×0.5mmのサイズの自立膜を切り取り、サンプルフィルムを得た。
次いでこのサンプルフィルムを引っ張り試験機(テンシロン、(株)エー・アンド・デイ社製)を用いて引っ張り、第2の透明樹脂層である透明樹脂層Aの自立膜の弾性率E2および破断伸びφを測定した。測定はチャック間距離20mm、温度23℃、相対湿度55%下で行った。
また、第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Aを有する)の転写フィルムの代わりに、第1の透明樹脂層形成用(第1の透明樹脂層として透明樹脂層Fを有する)の転写フィルムを用いた以外は透明樹脂層Aの弾性率の測定方法と同様にして、第1の透明樹脂層である透明樹脂層Fの自立膜の弾性率E1を測定した。
得られた結果を下記表2に記載した。 (Measurement of elastic modulus and elongation at break)
A transfer film for forming a second transparent resin layer (having transparent resin layer A as the second transparent resin layer) was transferred onto a glass substrate to form transparent resin layer A. After a post-bake treatment at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), a self-supporting film having a size of 30 mm × 0.5 mm was cut from the substrate to obtain a sample film.
Next, the sample film was pulled using a tensile tester (Tensilon, manufactured by A & D Co., Ltd.), and the elastic modulus E2 and elongation at break φ of the self-supporting film of the transparent resin layer A, which is the second transparent resin layer. Was measured. The measurement was performed at a distance between chucks of 20 mm, a temperature of 23 ° C., and a relative humidity of 55%.
Also, instead of the transfer film for forming the second transparent resin layer (having the transparent resin layer A as the second transparent resin layer), the first transparent resin layer forming (transparent resin as the first transparent resin layer) The elastic modulus E1 of the self-supporting film of the transparent resin layer F, which is the first transparent resin layer, was measured in the same manner as in the elastic modulus measurement method of the transparent resin layer A except that the transfer film (with layer F) was used. .
The obtained results are shown in Table 2 below.
(膜厚の測定)
上記引っ張り試験で用いたサンプルフィルムにおいて、ガラス基板まで貫通する切れ込みを作製し、ガラス表面と透明樹脂層Aの膜面までの距離、および、ガラス表面と透明樹脂層Fの膜面までの距離をZygo社製3次元非接触表面粗度測定計にて測定した。
さらに透明樹脂層Aの膜厚と透明樹脂層Fの膜厚をもとに、透明樹脂層の合計膜厚を求めた。
得られた結果を下記表2に記載した。 (Measurement of film thickness)
In the sample film used in the tensile test, a notch penetrating to the glass substrate is prepared, and the distance between the glass surface and the film surface of the transparent resin layer A and the distance between the glass surface and the film surface of the transparent resin layer F are determined. It was measured with a Zygo 3D non-contact surface roughness meter.
Furthermore, based on the film thickness of the transparent resin layer A and the film thickness of the transparent resin layer F, the total film thickness of the transparent resin layer was determined.
The obtained results are shown in Table 2 below.
上記引っ張り試験で用いたサンプルフィルムにおいて、ガラス基板まで貫通する切れ込みを作製し、ガラス表面と透明樹脂層Aの膜面までの距離、および、ガラス表面と透明樹脂層Fの膜面までの距離をZygo社製3次元非接触表面粗度測定計にて測定した。
さらに透明樹脂層Aの膜厚と透明樹脂層Fの膜厚をもとに、透明樹脂層の合計膜厚を求めた。
得られた結果を下記表2に記載した。 (Measurement of film thickness)
In the sample film used in the tensile test, a notch penetrating to the glass substrate is prepared, and the distance between the glass surface and the film surface of the transparent resin layer A and the distance between the glass surface and the film surface of the transparent resin layer F are determined. It was measured with a Zygo 3D non-contact surface roughness meter.
Furthermore, based on the film thickness of the transparent resin layer A and the film thickness of the transparent resin layer F, the total film thickness of the transparent resin layer was determined.
The obtained results are shown in Table 2 below.
(透明性の評価)
上記のとおり作製した、第2の透明樹脂層である透明樹脂層Aおよび第1の透明樹脂層である透明樹脂層Fが積層された積層体(この積層体は、後述の第一の透明電極パターン、絶縁層、第二の透明電極パターン、透明保護層を含まない)を60人に観察させ、下記評価基準に従い、透明性を評価した。A、B、CまたはD評価であることが好ましく、A、BまたはC評価であることがより好ましく、AまたはB評価であることが特に好ましく、A評価であることがより特に好ましい。
〈評価基準〉
A:黄色味を帯びているもしくは白濁していると認識した人数 0~1人
B:黄色味を帯びているもしくは白濁していると認識した人数 2~3人
C:黄色味を帯びているもしくは白濁していると認識した人数 4~5人
D:黄色味を帯びているもしくは白濁していると認識した人数 6~10人
E:黄色味を帯びているもしくは白濁していると認識した人数 11人以上
評価結果を下記表2に記載した。 (Evaluation of transparency)
A laminate in which the transparent resin layer A, which is the second transparent resin layer, and the transparent resin layer F, which is the first transparent resin layer, are laminated as described above (this laminate is a first transparent electrode described later) The pattern, insulating layer, second transparent electrode pattern, and transparent protective layer were not allowed to be observed by 60 people, and transparency was evaluated according to the following evaluation criteria. A, B, C or D evaluation is preferable, A, B or C evaluation is more preferable, A or B evaluation is particularly preferable, and A evaluation is more preferable.
<Evaluation criteria>
A: Number of people recognized as yellowish or cloudy 0 to 1 B: Number of people recognized as yellowish or cloudy 2 to 3 people C: Yellowish Or the number of people who recognized that it was cloudy 4-5 people D: The number of people who recognized yellowish or cloudy 6-10 people E: We recognized that it was yellowish or cloudy Number of people 11 or more Evaluation results are shown in Table 2 below.
上記のとおり作製した、第2の透明樹脂層である透明樹脂層Aおよび第1の透明樹脂層である透明樹脂層Fが積層された積層体(この積層体は、後述の第一の透明電極パターン、絶縁層、第二の透明電極パターン、透明保護層を含まない)を60人に観察させ、下記評価基準に従い、透明性を評価した。A、B、CまたはD評価であることが好ましく、A、BまたはC評価であることがより好ましく、AまたはB評価であることが特に好ましく、A評価であることがより特に好ましい。
〈評価基準〉
A:黄色味を帯びているもしくは白濁していると認識した人数 0~1人
B:黄色味を帯びているもしくは白濁していると認識した人数 2~3人
C:黄色味を帯びているもしくは白濁していると認識した人数 4~5人
D:黄色味を帯びているもしくは白濁していると認識した人数 6~10人
E:黄色味を帯びているもしくは白濁していると認識した人数 11人以上
評価結果を下記表2に記載した。 (Evaluation of transparency)
A laminate in which the transparent resin layer A, which is the second transparent resin layer, and the transparent resin layer F, which is the first transparent resin layer, are laminated as described above (this laminate is a first transparent electrode described later) The pattern, insulating layer, second transparent electrode pattern, and transparent protective layer were not allowed to be observed by 60 people, and transparency was evaluated according to the following evaluation criteria. A, B, C or D evaluation is preferable, A, B or C evaluation is more preferable, A or B evaluation is particularly preferable, and A evaluation is more preferable.
<Evaluation criteria>
A: Number of people recognized as yellowish or cloudy 0 to 1 B: Number of people recognized as yellowish or cloudy 2 to 3 people C: Yellowish Or the number of people who recognized that it was cloudy 4-5 people D: The number of people who recognized yellowish or cloudy 6-10 people E: We recognized that it was yellowish or cloudy Number of people 11 or more Evaluation results are shown in Table 2 below.
<本発明の積層体の製造>
(第一の透明電極パターンの形成)
-透明電極層の形成-
加飾層、透明樹脂層(透明樹脂層Aおよび透明樹脂層F)が積層された前面板を、真空チャンバー内に導入し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。 <Manufacture of the laminate of the present invention>
(Formation of first transparent electrode pattern)
-Formation of transparent electrode layer-
A front plate on which a decorative layer and transparent resin layers (transparent resin layer A and transparent resin layer F) are laminated is introduced into a vacuum chamber, and an ITO target having a SnO 2 content of 10 mass% (indium: tin = 95). : 5 (molar ratio)), a 40 nm thick ITO thin film was formed by DC magnetron sputtering (conditions: substrate temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a transparent electrode A front plate with a layer formed was obtained. The surface resistance of the ITO thin film was 80Ω / □.
(第一の透明電極パターンの形成)
-透明電極層の形成-
加飾層、透明樹脂層(透明樹脂層Aおよび透明樹脂層F)が積層された前面板を、真空チャンバー内に導入し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。 <Manufacture of the laminate of the present invention>
(Formation of first transparent electrode pattern)
-Formation of transparent electrode layer-
A front plate on which a decorative layer and transparent resin layers (transparent resin layer A and transparent resin layer F) are laminated is introduced into a vacuum chamber, and an ITO target having a SnO 2 content of 10 mass% (indium: tin = 95). : 5 (molar ratio)), a 40 nm thick ITO thin film was formed by DC magnetron sputtering (conditions: substrate temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a transparent electrode A front plate with a layer formed was obtained. The surface resistance of the ITO thin film was 80Ω / □.
-エッチング用転写フィルムE1の作製-
上記第1の透明樹脂層形成用転写フィルムL1の作製において、上記第1の透明樹脂層形成用塗布液:処方L1に代えて、エッチング用光硬化性樹脂層用塗布液:処方E1を用いた以外は第1の透明樹脂層形成用転写フィルムL1の作製と同様にして、仮支持体、熱可塑性樹脂層、中間層(酸素遮断膜)、エッチング用光硬化性樹脂層および保護フィルムとが一体となった、エッチング用転写フィルムE1を得た(エッチング用光硬化性樹脂層の膜厚は2.0μmであった)。 -Production of transfer film E1 for etching-
In the production of the first transparent resin layer forming transfer film L1, the etching liquid photocurable resin layer coating solution: Formula E1 was used instead of the first transparent resin layer forming coating solution: Formula L1. Except for the above, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the photocurable resin layer for etching and the protective film are integrated in the same manner as in the production of the first transfer film L1 for forming the transparent resin layer. Thus, an etching transfer film E1 was obtained (the film thickness of the photocurable resin layer for etching was 2.0 μm).
上記第1の透明樹脂層形成用転写フィルムL1の作製において、上記第1の透明樹脂層形成用塗布液:処方L1に代えて、エッチング用光硬化性樹脂層用塗布液:処方E1を用いた以外は第1の透明樹脂層形成用転写フィルムL1の作製と同様にして、仮支持体、熱可塑性樹脂層、中間層(酸素遮断膜)、エッチング用光硬化性樹脂層および保護フィルムとが一体となった、エッチング用転写フィルムE1を得た(エッチング用光硬化性樹脂層の膜厚は2.0μmであった)。 -Production of transfer film E1 for etching-
In the production of the first transparent resin layer forming transfer film L1, the etching liquid photocurable resin layer coating solution: Formula E1 was used instead of the first transparent resin layer forming coating solution: Formula L1. Except for the above, the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the photocurable resin layer for etching and the protective film are integrated in the same manner as in the production of the first transfer film L1 for forming the transparent resin layer. Thus, an etching transfer film E1 was obtained (the film thickness of the photocurable resin layer for etching was 2.0 μm).
--エッチング用光硬化性樹脂層用塗布液:処方E1--
・メチルメタクリレート/スチレン/メタクリル酸共重合体
(共重合体組成(質量%):31/40/29、重量平均分子量60000、
酸価163mgKOH/g) :16質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製) :5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノメタクリレート0.5モル付加物 :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジメタノールモノアクリレート :2.8質量部
・2-クロロ-N-ブチルアクリドン :0.42質量部
ビイミダゾール :2.17質量部
・ロイコクリスタルバイオレット :0.26質量部
・フェノチアジン :0.013質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製) :0.03質量部
・メチルエチルケトン :40質量部
・1-メトキシ-2-プロパノール :20質量部 --- Photocurable resin layer coating solution for etching: Formula E1--
-Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, weight average molecular weight 60000,
Acid value 163 mg KOH / g): 16 parts by mass Monomer 1 (Brand name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.): 5.6 parts by mass Addition of 0.5 mol of tetramethylene oxide monomethacrylate of hexamethylene diisocyanate Product: 7 parts by mass-cyclohexanedimethanol monoacrylate as a compound having one polymerizable group in the molecule: 2.8 parts by mass-2-chloro-N-butylacridone: 0.42 parts by mass Biimidazole: 2 .17 parts by mass-Leuco Crystal Violet: 0.26 parts by mass-Phenothiazine: 0.013 parts by mass-Surfactant (trade name: MegaFuck F-780F, manufactured by Dainippon Ink Co., Ltd.): 0.03 parts by mass・ Methyl ethyl ketone: 4 Parts by weight of 1-methoxy-2-propanol 20 parts by weight
・メチルメタクリレート/スチレン/メタクリル酸共重合体
(共重合体組成(質量%):31/40/29、重量平均分子量60000、
酸価163mgKOH/g) :16質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製) :5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノメタクリレート0.5モル付加物 :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジメタノールモノアクリレート :2.8質量部
・2-クロロ-N-ブチルアクリドン :0.42質量部
ビイミダゾール :2.17質量部
・ロイコクリスタルバイオレット :0.26質量部
・フェノチアジン :0.013質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製) :0.03質量部
・メチルエチルケトン :40質量部
・1-メトキシ-2-プロパノール :20質量部 --- Photocurable resin layer coating solution for etching: Formula E1--
-Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, weight average molecular weight 60000,
Acid value 163 mg KOH / g): 16 parts by mass Monomer 1 (Brand name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.): 5.6 parts by mass Addition of 0.5 mol of tetramethylene oxide monomethacrylate of hexamethylene diisocyanate Product: 7 parts by mass-cyclohexanedimethanol monoacrylate as a compound having one polymerizable group in the molecule: 2.8 parts by mass-2-chloro-N-butylacridone: 0.42 parts by mass Biimidazole: 2 .17 parts by mass-Leuco Crystal Violet: 0.26 parts by mass-Phenothiazine: 0.013 parts by mass-Surfactant (trade name: MegaFuck F-780F, manufactured by Dainippon Ink Co., Ltd.): 0.03 parts by mass・ Methyl ethyl ketone: 4 Parts by weight of 1-methoxy-2-propanol 20 parts by weight
-第一の透明電極パターンの形成-
第1の透明樹脂層および第2の透明樹脂層の形成における強化処理ガラスの洗浄と同様にして、加飾層、積層した透明樹脂層(透明樹脂層Aおよび透明樹脂層F)、透明電極層を形成した前面板を、洗浄し、次いで保護フィルムを除去したエッチング用転写フィルムE1をラミネートした(基材温度:130℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.2m/分)。仮支持体を剥離後、露光マスク(透明電極パターンを有す石英露光マスク)面とこのエッチング用光硬化性樹脂層との間の距離を200μmに設定し、露光量50mJ/cm2(i線)でパターン露光した。
次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、25℃で100秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理し、回転ブラシで前面板を擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに130℃、30分間のポストベーク処理を行って、加飾層、積層した透明樹脂層、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を得た。 -Formation of the first transparent electrode pattern-
The decorative layer, the laminated transparent resin layers (transparent resin layer A and transparent resin layer F), and the transparent electrode layer in the same manner as the cleaning of the tempered glass in the formation of the first transparent resin layer and the second transparent resin layer The front plate on which the film was formed was washed, and then the transfer film E1 for etching from which the protective film was removed was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveying speed 2.2 m / cm). Min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 μm, and the exposure amount is 50 mJ / cm 2 (i-line). ) For pattern exposure.
Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 25 ° C. Developed for 100 seconds, washed with surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) 10 times with pure water) at 33 ° C. for 20 seconds, The front plate was rubbed with a rotating brush, and the residue was removed by spraying pure water from an ultra-high pressure cleaning nozzle. Furthermore, the post-baking process for 30 minutes was performed at 130 degreeC, and the front board which formed the decorating layer, the laminated | stacked transparent resin layer, the transparent electrode layer, and the photocurable resin layer pattern for an etching was obtained.
第1の透明樹脂層および第2の透明樹脂層の形成における強化処理ガラスの洗浄と同様にして、加飾層、積層した透明樹脂層(透明樹脂層Aおよび透明樹脂層F)、透明電極層を形成した前面板を、洗浄し、次いで保護フィルムを除去したエッチング用転写フィルムE1をラミネートした(基材温度:130℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.2m/分)。仮支持体を剥離後、露光マスク(透明電極パターンを有す石英露光マスク)面とこのエッチング用光硬化性樹脂層との間の距離を200μmに設定し、露光量50mJ/cm2(i線)でパターン露光した。
次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、25℃で100秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理し、回転ブラシで前面板を擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに130℃、30分間のポストベーク処理を行って、加飾層、積層した透明樹脂層、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を得た。 -Formation of the first transparent electrode pattern-
The decorative layer, the laminated transparent resin layers (transparent resin layer A and transparent resin layer F), and the transparent electrode layer in the same manner as the cleaning of the tempered glass in the formation of the first transparent resin layer and the second transparent resin layer The front plate on which the film was formed was washed, and then the transfer film E1 for etching from which the protective film was removed was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveying speed 2.2 m / cm). Min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 μm, and the exposure amount is 50 mJ / cm 2 (i-line). ) For pattern exposure.
Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 25 ° C. Developed for 100 seconds, washed with surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) 10 times with pure water) at 33 ° C. for 20 seconds, The front plate was rubbed with a rotating brush, and the residue was removed by spraying pure water from an ultra-high pressure cleaning nozzle. Furthermore, the post-baking process for 30 minutes was performed at 130 degreeC, and the front board which formed the decorating layer, the laminated | stacked transparent resin layer, the transparent electrode layer, and the photocurable resin layer pattern for an etching was obtained.
加飾層、積層した透明樹脂層、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒間処理(エッチング処理)し、エッチング用光硬化性樹脂層で覆われていない露出した領域の透明電極層を溶解除去し、加飾層、積層した透明樹脂層、透明電極層パターン、エッチング用光硬化性樹脂層パターンを形成した前面板(以下、「透明電極層パターン付の前面板」ともいう。)を得た。
A front plate on which a decorative layer, a laminated transparent resin layer, a transparent electrode layer and a photocurable resin layer pattern for etching are formed is placed in an etching tank containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.). Immersion, treatment for 100 seconds (etching treatment), dissolution removal of the transparent electrode layer in the exposed area not covered with the photo-curable resin layer for etching, decorative layer, laminated transparent resin layer, transparent electrode layer pattern A front plate (hereinafter also referred to as “front plate with a transparent electrode layer pattern”) on which a photocurable resin layer pattern for etching was formed was obtained.
次に、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を、レジスト剥離液(N-メチル-2-ピロリドン、モノエタノールアミン、界面活性剤(商品名:サーフィノール465、エアープロダクツ製)、液温45℃)を入れたレジスト剥離槽に浸漬し、200秒間処理(剥離処理)し、エッチング用光硬化性樹脂層パターンを除去し、実施例1の積層体を得た。得られた積層体は、前面板、加飾層、第2の透明樹脂層A、第1の透明樹脂層F、上記前面板の一方の面および上記積層した透明樹脂層の上記前面板と対向する面とは反対側の面の両方の領域にまたがって図14のように設置された第一の透明電極パターン(3)を有する。
なお、実施例1の積層体は、第1の透明樹脂層F(第1の透明樹脂層101)と第2の透明樹脂層A(第2の透明樹脂層102)が、前面板1の加飾層2が配置された側の面の、加飾層2上の一部と、加飾層2が配置されていない部分とに積層されている。 Next, a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products Co., Ltd.,liquid temperature 45 ° C.), immersed in a resist stripping tank, treated for 200 seconds (peeling treatment), removed the photocurable resin layer pattern for etching, and obtained the laminate of Example 1 It was. The obtained laminate is opposed to the front plate, the decorative layer, the second transparent resin layer A, the first transparent resin layer F, one surface of the front plate, and the front plate of the laminated transparent resin layer. 14 has a first transparent electrode pattern (3) installed as shown in FIG. 14 across both regions of the surface opposite to the surface to be performed.
In the laminate of Example 1, the first transparent resin layer F (first transparent resin layer 101) and the second transparent resin layer A (second transparent resin layer 102) are added to thefront plate 1. It is laminated | stacked on a part on the decoration layer 2 of the surface by which the decoration layer 2 is arrange | positioned, and the part in which the decoration layer 2 is not arrange | positioned.
なお、実施例1の積層体は、第1の透明樹脂層F(第1の透明樹脂層101)と第2の透明樹脂層A(第2の透明樹脂層102)が、前面板1の加飾層2が配置された側の面の、加飾層2上の一部と、加飾層2が配置されていない部分とに積層されている。 Next, a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products Co., Ltd.,
In the laminate of Example 1, the first transparent resin layer F (first transparent resin layer 101) and the second transparent resin layer A (second transparent resin layer 102) are added to the
(電極パターンの断線の評価(屈曲耐性評価))
上記の前面板、第2の透明樹脂層A、第1の透明樹脂層Fおよび第一の透明電極パターンがこの順で積層された実施例1の積層体(実施例1の積層体は、後述の絶縁層、第二の透明電極パターン、透明保護層を含まない)において、前面板に、第一の透明電極パターンと垂直に前面板の第2透明樹脂層が形成された側の面とは反対側の面から亀裂を作製した。前面板の第2の透明樹脂層が形成された側の面の、亀裂が到達した点を起点として12°前面板を屈曲させた後、前面板に亀裂が作製された位置を含む領域の透明電極パターンの表面抵抗値を、亀裂を跨ぐように測定した。ついで、透明電極パターンが断線する(すなわち、透明電極パターンの表面抵抗値がオーバーフローする)までの屈曲を繰り返し、断線するまでの屈曲回数を数え、下記基準にしたがって屈曲耐性を評価した。A、BまたはC評価であることが実用レベルであり、AまたはB評価であることが好ましく、A評価であることがより好ましい。 (Evaluation of electrode pattern disconnection (bending resistance evaluation))
The laminated body of Example 1 in which the front plate, the second transparent resin layer A, the first transparent resin layer F, and the first transparent electrode pattern were laminated in this order (the laminated body of Example 1 is described later) In the insulating layer, the second transparent electrode pattern, and the transparent protective layer, the surface of the front plate on the side where the second transparent resin layer of the front plate is formed perpendicular to the first transparent electrode pattern. A crack was made from the opposite side. After the front plate is bent by 12 ° starting from the point where the crack arrives on the surface of the front plate on which the second transparent resin layer is formed, the transparency of the region including the position where the front plate is cracked is transparent. The surface resistance value of the electrode pattern was measured across the crack. Subsequently, bending until the transparent electrode pattern was disconnected (that is, the surface resistance value of the transparent electrode pattern overflowed) was repeated, the number of bending until the transparent electrode pattern was disconnected was counted, and bending resistance was evaluated according to the following criteria. A, B or C evaluation is a practical level, A or B evaluation is preferable, and A evaluation is more preferable.
上記の前面板、第2の透明樹脂層A、第1の透明樹脂層Fおよび第一の透明電極パターンがこの順で積層された実施例1の積層体(実施例1の積層体は、後述の絶縁層、第二の透明電極パターン、透明保護層を含まない)において、前面板に、第一の透明電極パターンと垂直に前面板の第2透明樹脂層が形成された側の面とは反対側の面から亀裂を作製した。前面板の第2の透明樹脂層が形成された側の面の、亀裂が到達した点を起点として12°前面板を屈曲させた後、前面板に亀裂が作製された位置を含む領域の透明電極パターンの表面抵抗値を、亀裂を跨ぐように測定した。ついで、透明電極パターンが断線する(すなわち、透明電極パターンの表面抵抗値がオーバーフローする)までの屈曲を繰り返し、断線するまでの屈曲回数を数え、下記基準にしたがって屈曲耐性を評価した。A、BまたはC評価であることが実用レベルであり、AまたはB評価であることが好ましく、A評価であることがより好ましい。 (Evaluation of electrode pattern disconnection (bending resistance evaluation))
The laminated body of Example 1 in which the front plate, the second transparent resin layer A, the first transparent resin layer F, and the first transparent electrode pattern were laminated in this order (the laminated body of Example 1 is described later) In the insulating layer, the second transparent electrode pattern, and the transparent protective layer, the surface of the front plate on the side where the second transparent resin layer of the front plate is formed perpendicular to the first transparent electrode pattern. A crack was made from the opposite side. After the front plate is bent by 12 ° starting from the point where the crack arrives on the surface of the front plate on which the second transparent resin layer is formed, the transparency of the region including the position where the front plate is cracked is transparent. The surface resistance value of the electrode pattern was measured across the crack. Subsequently, bending until the transparent electrode pattern was disconnected (that is, the surface resistance value of the transparent electrode pattern overflowed) was repeated, the number of bending until the transparent electrode pattern was disconnected was counted, and bending resistance was evaluated according to the following criteria. A, B or C evaluation is a practical level, A or B evaluation is preferable, and A evaluation is more preferable.
〈評価基準〉
A:300回以上
B:100回以上、300回未満
C:30回以上、100回未満
D:10回以上、30回未満
E:10回未満
評価結果を下記表2に記載した。 <Evaluation criteria>
A: 300 times or more B: 100 times or more, less than 300 times C: 30 times or more, less than 100 times D: 10 times or more, less than 30 times E: less than 10 times Evaluation results are shown in Table 2 below.
A:300回以上
B:100回以上、300回未満
C:30回以上、100回未満
D:10回以上、30回未満
E:10回未満
評価結果を下記表2に記載した。 <Evaluation criteria>
A: 300 times or more B: 100 times or more, less than 300 times C: 30 times or more, less than 100 times D: 10 times or more, less than 30 times E: less than 10 times Evaluation results are shown in Table 2 below.
<絶縁層パターンの形成>
実施例1の積層体の上に、以下の方法で絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成し、実施例1の静電容量型入力装置を作製した。
まず、絶縁層パターンの形成方法を以下に示す。 <Formation of insulating layer pattern>
On the laminate of Example 1, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are formed by the following method. A capacitive input device of Example 1 was produced.
First, a method for forming an insulating layer pattern is described below.
実施例1の積層体の上に、以下の方法で絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成し、実施例1の静電容量型入力装置を作製した。
まず、絶縁層パターンの形成方法を以下に示す。 <Formation of insulating layer pattern>
On the laminate of Example 1, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are formed by the following method. A capacitive input device of Example 1 was produced.
First, a method for forming an insulating layer pattern is described below.
(絶縁層形成用転写フィルムW1の作製)
加飾層形成用転写フィルムL100の作製において、加飾層用塗布液:処方L100に代えて、絶縁層形成用塗布液:処方W1を用いた以外は加飾層形成用転写フィルムL100の作製と同様にして、仮支持体、熱可塑性樹脂層、中間層(酸素遮断膜)、絶縁層用光硬化性樹脂層および保護フィルムとが一体となった、絶縁層形成用転写フィルムW1を得た(絶縁層用光硬化性樹脂層の膜厚は1.4μm)。 (Preparation of transfer film W1 for forming an insulating layer)
In the production of the decorative layer forming transfer film L100, the decorative layer forming transfer film L100 was prepared except that the insulating layer forming coating liquid: prescription W1 was used instead of the decorative layer coating liquid: prescription L100. Similarly, a transfer film W1 for forming an insulating layer was obtained in which a temporary support, a thermoplastic resin layer, an intermediate layer (oxygen barrier film), a photocurable resin layer for an insulating layer, and a protective film were integrated ( The film thickness of the photocurable resin layer for the insulating layer is 1.4 μm).
加飾層形成用転写フィルムL100の作製において、加飾層用塗布液:処方L100に代えて、絶縁層形成用塗布液:処方W1を用いた以外は加飾層形成用転写フィルムL100の作製と同様にして、仮支持体、熱可塑性樹脂層、中間層(酸素遮断膜)、絶縁層用光硬化性樹脂層および保護フィルムとが一体となった、絶縁層形成用転写フィルムW1を得た(絶縁層用光硬化性樹脂層の膜厚は1.4μm)。 (Preparation of transfer film W1 for forming an insulating layer)
In the production of the decorative layer forming transfer film L100, the decorative layer forming transfer film L100 was prepared except that the insulating layer forming coating liquid: prescription W1 was used instead of the decorative layer coating liquid: prescription L100. Similarly, a transfer film W1 for forming an insulating layer was obtained in which a temporary support, a thermoplastic resin layer, an intermediate layer (oxygen barrier film), a photocurable resin layer for an insulating layer, and a protective film were integrated ( The film thickness of the photocurable resin layer for the insulating layer is 1.4 μm).
-絶縁層形成用塗布液:処方W1-
・バインダー3(シクロヘキシルメタクリレート(a)/メチルメタクリレート(b)/メタクリル酸共重合体(c)のグリシジルメタクリレート付加物(d)(組成(質量%):a/b/c/d=46/1/10/43、重量平均分子量:36000、酸価66mgKOH/g)の1-メトキシ-2-プロパノール、メチルエチルケトン溶液(固形分:45%))
:12.5質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%) :1.4質量部
・ウレタン系モノマー(商品名:NKオリゴUA-32P、新中村化学(株)製:不揮発分75%、プロピレングリコールモノメチルエーテルアセテート:25%) :0.68質量部
・トリペンタエリスリトールオクタアクリレート(商品名:V#802、 大阪有機化学工業(株)製) :1.8質量部
・ジエチルチオキサントン :0.17質量部
・2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン (商品名:Irgacure379、BASF製) :0.17質量部
・分散剤(商品名:ソルスパース20000、アビシア製) :0.19質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ製) :0.05質量部
・メチルエチルケトン :23.3質量部
・MMPGAc(ダイセル化学(株)製) :59.8質量部
なお、絶縁層形成用塗布液W1の溶剤除去後の100℃の粘度は4000Pa・secであった。 -Insulating layer forming coating solution: Formula W1-
Binder 3 (cyclohexyl methacrylate (a) / methyl methacrylate (b) / methacrylic acid copolymer (c) glycidyl methacrylate adduct (d) (composition (% by mass): a / b / c / d = 46/1) / 10/43, weight average molecular weight: 36000, acid value 66 mgKOH / g) 1-methoxy-2-propanol, methyl ethyl ketone solution (solid content: 45%))
: 12.5 parts by mass · DPHA (dipentaerythritol hexaacrylate, Nippon Kayaku Co., Ltd.) propylene glycol monomethyl ether acetate solution (76% by mass): 1.4 parts by mass · Urethane monomer (trade name: NK Oligo UA-32P, manufactured by Shin-Nakamura Chemical Co., Ltd .: non-volatile content 75%, propylene glycol monomethyl ether acetate: 25%: 0.68 parts by mass, tripentaerythritol octaacrylate (trade name: V # 802, Osaka Organic Chemical) Manufactured by Kogyo Co., Ltd.): 1.8 parts by mass. Diethylthioxanthone: 0.17 parts by mass. 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) ) Phenyl] -1-butanone (trade name: Irgacu) re379, manufactured by BASF): 0.17 parts by mass, dispersant (trade name: Solsperse 20000, manufactured by Avisia): 0.19 parts by mass, surfactant (trade name: MegaFuck F-780F, manufactured by Dainippon Ink): 0.05 part by mass, methyl ethyl ketone: 23.3 parts by mass, MMPGAc (manufactured by Daicel Chemical Co., Ltd.): 59.8 parts by mass The viscosity at 100 ° C. after removing the solvent of the coating liquid W1 for forming the insulating layer is 4000 Pa · sec.
・バインダー3(シクロヘキシルメタクリレート(a)/メチルメタクリレート(b)/メタクリル酸共重合体(c)のグリシジルメタクリレート付加物(d)(組成(質量%):a/b/c/d=46/1/10/43、重量平均分子量:36000、酸価66mgKOH/g)の1-メトキシ-2-プロパノール、メチルエチルケトン溶液(固形分:45%))
:12.5質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%) :1.4質量部
・ウレタン系モノマー(商品名:NKオリゴUA-32P、新中村化学(株)製:不揮発分75%、プロピレングリコールモノメチルエーテルアセテート:25%) :0.68質量部
・トリペンタエリスリトールオクタアクリレート(商品名:V#802、 大阪有機化学工業(株)製) :1.8質量部
・ジエチルチオキサントン :0.17質量部
・2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン (商品名:Irgacure379、BASF製) :0.17質量部
・分散剤(商品名:ソルスパース20000、アビシア製) :0.19質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ製) :0.05質量部
・メチルエチルケトン :23.3質量部
・MMPGAc(ダイセル化学(株)製) :59.8質量部
なお、絶縁層形成用塗布液W1の溶剤除去後の100℃の粘度は4000Pa・secであった。 -Insulating layer forming coating solution: Formula W1-
Binder 3 (cyclohexyl methacrylate (a) / methyl methacrylate (b) / methacrylic acid copolymer (c) glycidyl methacrylate adduct (d) (composition (% by mass): a / b / c / d = 46/1) / 10/43, weight average molecular weight: 36000, acid value 66 mgKOH / g) 1-methoxy-2-propanol, methyl ethyl ketone solution (solid content: 45%))
: 12.5 parts by mass · DPHA (dipentaerythritol hexaacrylate, Nippon Kayaku Co., Ltd.) propylene glycol monomethyl ether acetate solution (76% by mass): 1.4 parts by mass · Urethane monomer (trade name: NK Oligo UA-32P, manufactured by Shin-Nakamura Chemical Co., Ltd .: non-volatile content 75%, propylene glycol monomethyl ether acetate: 25%: 0.68 parts by mass, tripentaerythritol octaacrylate (trade name: V # 802, Osaka Organic Chemical) Manufactured by Kogyo Co., Ltd.): 1.8 parts by mass. Diethylthioxanthone: 0.17 parts by mass. 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) ) Phenyl] -1-butanone (trade name: Irgacu) re379, manufactured by BASF): 0.17 parts by mass, dispersant (trade name: Solsperse 20000, manufactured by Avisia): 0.19 parts by mass, surfactant (trade name: MegaFuck F-780F, manufactured by Dainippon Ink): 0.05 part by mass, methyl ethyl ketone: 23.3 parts by mass, MMPGAc (manufactured by Daicel Chemical Co., Ltd.): 59.8 parts by mass The viscosity at 100 ° C. after removing the solvent of the coating liquid W1 for forming the insulating layer is 4000 Pa · sec.
加飾層の形成における強化処理ガラス基板の洗浄と同様にして、加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターンを形成した実施例1の積層体を洗浄した後、シランカップリング処理し、保護フィルムを除去した絶縁層形成用転写フィルムW1をラミネートした(基材温度:100℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.3m/分)。仮支持体を剥離後、露光マスク(絶縁層用パターンを有す石英露光マスク)面と絶縁層との間の距離を100μmに設定し、露光量30mJ/cm2(i線)でパターン露光した。
In the same manner as the cleaning of the tempered glass substrate in the formation of the decorative layer, the decorative layer, the second transparent resin layer in which the steps of the decorative layer are embedded, the first transparent resin layer, and the first transparent electrode pattern After the formed laminate of Example 1 was washed, a transfer film W1 for forming an insulating layer was removed by silane coupling treatment and the protective film was removed (base material temperature: 100 ° C., rubber roller temperature 120 ° C., linear pressure). 100 N / cm, transport speed 2.3 m / min). After removing the temporary support, the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the insulating layer was set to 100 μm, and pattern exposure was performed at an exposure amount of 30 mJ / cm 2 (i-line). .
次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で60秒間現像処理し、さらに、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて、25℃で50秒間現像処理した。次いで、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて、33℃で20秒間洗浄処理し、回転ブラシで前面板を擦り、超高圧洗浄ノズルから純水を噴射することにより残渣を除去した。さらに230℃、60分間のポストベーク処理を行って、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターンを形成した前面板を得た。
Next, using a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 33 ° C. Using a sodium carbonate / sodium hydrogen carbonate developer (trade name: T-CD1 (manufactured by Fuji Film Co., Ltd.) diluted 5 times with pure water) at 25 ° C. for 60 seconds. Developed for 50 seconds. Next, using a surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) diluted 10-fold with pure water), the substrate was cleaned at 33 ° C. for 20 seconds, and then cleaned with a rotating brush. The residue was removed by rubbing the face plate and spraying pure water from an ultra-high pressure cleaning nozzle. Furthermore, the post-baking process for 230 degreeC and 60 minutes is performed, the 2nd transparent resin layer and 1st transparent resin layer which embedded the level | step difference of the said decoration layer and a decoration layer, a 1st transparent electrode pattern, an insulating layer A front plate on which a pattern was formed was obtained.
<第二の透明電極パターンの形成>
(透明電極層の形成)
上記第一の透明電極パターンの形成と同様にして、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターンを形成した前面板を、DCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、透明電極層を形成した前面板(以下、「第二の透明電極層を形成した前面板」ともいう。)を得た。ITO薄膜の表面抵抗は110Ω/□であった。 <Formation of second transparent electrode pattern>
(Formation of transparent electrode layer)
Similarly to the formation of the first transparent electrode pattern, the decorative layer, the second transparent resin layer and the first transparent resin layer in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer The front plate on which the pattern was formed was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa) to form an ITO thin film having a thickness of 80 nm, and the decorative layer The front plate on which the second transparent resin layer and the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, and the transparent electrode layer in which the step of the decorative layer is embedded (hereinafter referred to as “second transparent resin layer”). Also referred to as a “front plate on which an electrode layer is formed”. The surface resistance of the ITO thin film was 110Ω / □.
(透明電極層の形成)
上記第一の透明電極パターンの形成と同様にして、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターンを形成した前面板を、DCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、透明電極層を形成した前面板(以下、「第二の透明電極層を形成した前面板」ともいう。)を得た。ITO薄膜の表面抵抗は110Ω/□であった。 <Formation of second transparent electrode pattern>
(Formation of transparent electrode layer)
Similarly to the formation of the first transparent electrode pattern, the decorative layer, the second transparent resin layer and the first transparent resin layer in which the step of the decorative layer is embedded, the first transparent electrode pattern, the insulating layer The front plate on which the pattern was formed was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa) to form an ITO thin film having a thickness of 80 nm, and the decorative layer The front plate on which the second transparent resin layer and the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, and the transparent electrode layer in which the step of the decorative layer is embedded (hereinafter referred to as “second transparent resin layer”). Also referred to as a “front plate on which an electrode layer is formed”. The surface resistance of the ITO thin film was 110Ω / □.
第一の透明電極パターンの形成と同様に、第二の透明電極層を形成した前面板に、エッチング用転写フィルムE1をラミネートして、加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、透明電極層、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃、30分間)。
さらに、第一の透明電極パターンの形成と同様にして、エッチング処理(30℃、50秒間)して、次いで、エッチング用光硬化性樹脂層を除去(剥離処理:45℃、200秒間)することにより、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、加飾層と第1の透明樹脂層と絶縁層との領域にまたがって設置された第二の透明電極パターンを形成した前面板を得た。 Similarly to the formation of the first transparent electrode pattern, the transfer film E1 for etching is laminated on the front plate on which the second transparent electrode layer is formed, and the second step in which the step between the decorative layer and the decorative layer is embedded. A front plate on which a transparent resin layer and a first transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a transparent electrode layer, and a photocurable resin layer pattern for etching were formed (post-baking treatment; 130 ° C., 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, an etching process (30 ° C., 50 seconds) is performed, and then the photocurable resin layer for etching is removed (peeling process: 45 ° C., 200 seconds). The second transparent resin layer and the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, the decorative layer and the first transparent resin layer in which the steps of the decorative layer and the decorative layer are embedded And a front plate on which a second transparent electrode pattern formed across the region of the insulating layer was formed.
さらに、第一の透明電極パターンの形成と同様にして、エッチング処理(30℃、50秒間)して、次いで、エッチング用光硬化性樹脂層を除去(剥離処理:45℃、200秒間)することにより、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、加飾層と第1の透明樹脂層と絶縁層との領域にまたがって設置された第二の透明電極パターンを形成した前面板を得た。 Similarly to the formation of the first transparent electrode pattern, the transfer film E1 for etching is laminated on the front plate on which the second transparent electrode layer is formed, and the second step in which the step between the decorative layer and the decorative layer is embedded. A front plate on which a transparent resin layer and a first transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a transparent electrode layer, and a photocurable resin layer pattern for etching were formed (post-baking treatment; 130 ° C., 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, an etching process (30 ° C., 50 seconds) is performed, and then the photocurable resin layer for etching is removed (peeling process: 45 ° C., 200 seconds). The second transparent resin layer and the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, the decorative layer and the first transparent resin layer in which the steps of the decorative layer and the decorative layer are embedded And a front plate on which a second transparent electrode pattern formed across the region of the insulating layer was formed.
<第一および第二の透明電極パターンとは別の導電性要素の形成>
上記第一、および第二の透明電極パターンの形成と同様にして、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板を、DCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。 <Formation of Conductive Element Different from First and Second Transparent Electrode Pattern>
Similar to the formation of the first and second transparent electrode patterns, the second transparent resin layer, the first transparent resin layer, and the first transparent electrode in which the step of the decorative layer and the decorative layer is embedded. The front plate on which the pattern, the insulating layer pattern, and the second transparent electrode pattern were formed was subjected to DC magnetron sputtering treatment to obtain a front plate on which an aluminum (Al) thin film having a thickness of 200 nm was formed.
上記第一、および第二の透明電極パターンの形成と同様にして、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板を、DCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。 <Formation of Conductive Element Different from First and Second Transparent Electrode Pattern>
Similar to the formation of the first and second transparent electrode patterns, the second transparent resin layer, the first transparent resin layer, and the first transparent electrode in which the step of the decorative layer and the decorative layer is embedded. The front plate on which the pattern, the insulating layer pattern, and the second transparent electrode pattern were formed was subjected to DC magnetron sputtering treatment to obtain a front plate on which an aluminum (Al) thin film having a thickness of 200 nm was formed.
上記第一、および第二の透明電極パターンの形成と同様に、アルミニウム(Al)薄膜を形成した前面板に、エッチング用転写フィルムE1をラミネートして、加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、アルミニウム薄膜、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃、30分間)。
さらに、第一の透明電極パターンの形成と同様にして、エッチング処理(30℃、50秒間)し、次いでエッチング用光硬化性樹脂層を除去(剥離処理:45℃、200秒間)することにより、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。 Similarly to the formation of the first and second transparent electrode patterns, the transfer film E1 for etching is laminated on the front plate on which the aluminum (Al) thin film is formed, and the steps of the decorative layer and the decorative layer are embedded. A front plate on which a second transparent resin layer and a first transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, an aluminum thin film, and a photocurable resin layer pattern for etching are formed. Obtained (post-bake treatment; 130 ° C., 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, by performing an etching process (30 ° C., 50 seconds), and then removing the photocurable resin layer for etching (peeling process: 45 ° C., 200 seconds), The decorative layer, the second transparent resin layer and the first transparent resin layer in which the steps of the decorative layer are embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the first and second A front plate having a conductive element different from the transparent electrode pattern was obtained.
さらに、第一の透明電極パターンの形成と同様にして、エッチング処理(30℃、50秒間)し、次いでエッチング用光硬化性樹脂層を除去(剥離処理:45℃、200秒間)することにより、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。 Similarly to the formation of the first and second transparent electrode patterns, the transfer film E1 for etching is laminated on the front plate on which the aluminum (Al) thin film is formed, and the steps of the decorative layer and the decorative layer are embedded. A front plate on which a second transparent resin layer and a first transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, an aluminum thin film, and a photocurable resin layer pattern for etching are formed. Obtained (post-bake treatment; 130 ° C., 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, by performing an etching process (30 ° C., 50 seconds), and then removing the photocurable resin layer for etching (peeling process: 45 ° C., 200 seconds), The decorative layer, the second transparent resin layer and the first transparent resin layer in which the steps of the decorative layer are embedded, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the first and second A front plate having a conductive element different from the transparent electrode pattern was obtained.
<透明保護層の作製>
(透明保護層-Aの形成方法)
特開2012-78528号公報の実施例1に記載の感光性樹脂層用塗布液処方1を用いて、同公報の段落0103~0113に記載の方法に従い、仮支持体(PET)と熱可塑性樹脂層と中間層と感光性樹脂層とが一体となった感光性転写フィルムを作製した。
第2の透明樹脂層と第1の透明樹脂層を埋め込んだ白色加飾層(額縁形状)を有する前面板(上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板)上に、作製した感光性転写フィルムの感光性樹脂層を、仮支持体(PET)との界面で剥離したのち、熱可塑性樹脂層および中間層と共に転写した(層形成工程)。
次に、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、熱可塑性樹脂層側からi線、40mJ/cm2にて全面露光した。次に、トリエタノールアミン系現像液(トリエタノールアミン30%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍(T-PD2を1部と純水9部の割合で混合)に希釈した液)を30Cで60秒間、フラットノズル圧力0.04MPaでシャワー現像し、熱可塑性樹脂と中間層を除去した。引き続き、このガラス基板の上面(感光性樹脂層側)にエアを吹きかけて液きりした後、純水をシャワーにより10秒間吹きつけ、洗浄し、エアを吹きかけてガラス基板上の液だまりを減らした。次に、基板を230℃下で60分間加熱処理(ポストベーク)を行い、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを積層した前面板を得て、実施例1の導電膜積層体および静電容量型入力装置とした。 <Preparation of transparent protective layer>
(Method for forming transparent protective layer-A)
Using thecoating solution formulation 1 for photosensitive resin layer described in Example 1 of JP2012-78528A, according to the method described in paragraphs 0103 to 0113 of the same publication, a temporary support (PET) and a thermoplastic resin A photosensitive transfer film in which a layer, an intermediate layer, and a photosensitive resin layer were integrated was produced.
Front plate having a white decorative layer (frame shape) in which the second transparent resin layer and the first transparent resin layer are embedded (the second transparent resin layer in which the step between the decorative layer and the decorative layer is embedded, and the first 1 transparent resin layer, first transparent electrode pattern, insulating layer pattern, second transparent electrode pattern, front plate on which conductive elements different from the first and second transparent electrode patterns are formed) The photosensitive resin layer of the photosensitive transfer film was peeled off at the interface with the temporary support (PET), and then transferred together with the thermoplastic resin layer and the intermediate layer (layer forming step).
Next, using a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp, the entire surface was exposed from the thermoplastic resin layer side at i line and 40 mJ / cm 2 . Next, triethanolamine developer (containing 30% triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) 10 times with pure water (1 part of T-PD2 and 9 parts of pure water). The mixture was diluted to 30) at 30 C for 60 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin and the intermediate layer. Subsequently, air was blown onto the upper surface (photosensitive resin layer side) of the glass substrate to drain the liquid, and then pure water was blown for 10 seconds by a shower, washed, and air was blown to reduce the liquid pool on the glass substrate. . Next, the substrate is subjected to a heat treatment (post-bake) at 230 ° C. for 60 minutes, and the second transparent resin layer and the first transparent resin layer in which the steps of the decoration layer and the decoration layer are embedded, the first A front plate in which a transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are laminated is obtained. A conductive film laminate and a capacitive input device were obtained.
(透明保護層-Aの形成方法)
特開2012-78528号公報の実施例1に記載の感光性樹脂層用塗布液処方1を用いて、同公報の段落0103~0113に記載の方法に従い、仮支持体(PET)と熱可塑性樹脂層と中間層と感光性樹脂層とが一体となった感光性転写フィルムを作製した。
第2の透明樹脂層と第1の透明樹脂層を埋め込んだ白色加飾層(額縁形状)を有する前面板(上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板)上に、作製した感光性転写フィルムの感光性樹脂層を、仮支持体(PET)との界面で剥離したのち、熱可塑性樹脂層および中間層と共に転写した(層形成工程)。
次に、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、熱可塑性樹脂層側からi線、40mJ/cm2にて全面露光した。次に、トリエタノールアミン系現像液(トリエタノールアミン30%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍(T-PD2を1部と純水9部の割合で混合)に希釈した液)を30Cで60秒間、フラットノズル圧力0.04MPaでシャワー現像し、熱可塑性樹脂と中間層を除去した。引き続き、このガラス基板の上面(感光性樹脂層側)にエアを吹きかけて液きりした後、純水をシャワーにより10秒間吹きつけ、洗浄し、エアを吹きかけてガラス基板上の液だまりを減らした。次に、基板を230℃下で60分間加熱処理(ポストベーク)を行い、上記加飾層、加飾層の段差を埋め込んだ第2の透明樹脂層と第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを積層した前面板を得て、実施例1の導電膜積層体および静電容量型入力装置とした。 <Preparation of transparent protective layer>
(Method for forming transparent protective layer-A)
Using the
Front plate having a white decorative layer (frame shape) in which the second transparent resin layer and the first transparent resin layer are embedded (the second transparent resin layer in which the step between the decorative layer and the decorative layer is embedded, and the first 1 transparent resin layer, first transparent electrode pattern, insulating layer pattern, second transparent electrode pattern, front plate on which conductive elements different from the first and second transparent electrode patterns are formed) The photosensitive resin layer of the photosensitive transfer film was peeled off at the interface with the temporary support (PET), and then transferred together with the thermoplastic resin layer and the intermediate layer (layer forming step).
Next, using a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp, the entire surface was exposed from the thermoplastic resin layer side at i line and 40 mJ / cm 2 . Next, triethanolamine developer (containing 30% triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) 10 times with pure water (1 part of T-PD2 and 9 parts of pure water). The mixture was diluted to 30) at 30 C for 60 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin and the intermediate layer. Subsequently, air was blown onto the upper surface (photosensitive resin layer side) of the glass substrate to drain the liquid, and then pure water was blown for 10 seconds by a shower, washed, and air was blown to reduce the liquid pool on the glass substrate. . Next, the substrate is subjected to a heat treatment (post-bake) at 230 ° C. for 60 minutes, and the second transparent resin layer and the first transparent resin layer in which the steps of the decoration layer and the decoration layer are embedded, the first A front plate in which a transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns and a transparent protective layer-A are laminated is obtained. A conductive film laminate and a capacitive input device were obtained.
[実施例2~17]
実施例1の積層体の製造に用いた、第2の透明樹脂層用塗布液:処方C1の調製において、処方C1に代えて、下記表1に示す第2の透明樹脂層用塗布液:処方C2~C5を用い、第1の透明樹脂膜、および、第2の透明樹脂膜の膜厚を下記表2に示す膜厚にした以外は実施例1と同様にして、第2の透明樹脂層形成用転写フィルムB~Eを作製した。
次に実施例1の積層体の製造に用いた、第1の透明樹脂層用塗布液:処方L1の調製において、処方L1に代えて、下記表1に示す第1の透明樹脂層用塗布液:処方L2~L5を用い、第1の透明樹脂膜、および、第2の透明樹脂膜の膜厚を下記表2に示す指定の膜厚にした以外は実施例1と同様にして、第1の透明樹脂層形成用転写フィルムG~Jを作製した。
下記表1中、KE-1820およびKE-1886は一液系シリコーンゴム(いずれも信越化学工業(株)製)である。
下記表1中、KR-251、X-40-9246、KR9706、KR5206はいずれもシリコーンレジン(いずれも信越化学工業(株)製)である。
また、下記表1中のアクリル樹脂1は実施例17および後述の比較例6で用いたメチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度)≒70℃)である。
また、下記表1中のアクリル樹脂Fは後述の比較例7で用いたベンジルメタクリレート/メタクリル酸=68/32モル比のランダム共重合物、重量平均分子量5.0万)である。 [Examples 2 to 17]
In the preparation of the second transparent resin layer coating liquid: Formulation C1 used in the manufacture of the laminate of Example 1, the second transparent resin layer coating liquid shown in Table 1 below: Formulation instead of Formulation C1 The second transparent resin layer was obtained in the same manner as in Example 1 except that C2 to C5 were used, and the thicknesses of the first transparent resin film and the second transparent resin film were changed to those shown in Table 2 below. Formation transfer films B to E were prepared.
Next, in the preparation of the first transparent resin layer coating liquid: formulation L1 used for the production of the laminate of Example 1, the first transparent resin layer coating liquid shown in Table 1 below is used instead of the formulation L1. The first and second transparent resin films were prepared in the same manner as in Example 1 except that the thicknesses of the first transparent resin film and the second transparent resin film were changed to the specified film thicknesses shown in Table 2 below. The transparent resin layer forming transfer films G to J were prepared.
In Table 1 below, KE-1820 and KE-1886 are one-part silicone rubbers (both manufactured by Shin-Etsu Chemical Co., Ltd.).
In Table 1 below, KR-251, X-40-9246, KR9706, and KR5206 are all silicone resins (all manufactured by Shin-Etsu Chemical Co., Ltd.).
Theacrylic resin 1 in Table 1 below is a methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio)) = 55 used in Example 17 and Comparative Example 6 described later. /11.7/4.5/28.8, weight average molecular weight = 100,000, Tg (glass transition temperature) ≈70 ° C.).
In addition, acrylic resin F in the following Table 1 is a random copolymer of benzyl methacrylate / methacrylic acid = 68/32 molar ratio, weight average molecular weight 50,000 used in Comparative Example 7 described later.
実施例1の積層体の製造に用いた、第2の透明樹脂層用塗布液:処方C1の調製において、処方C1に代えて、下記表1に示す第2の透明樹脂層用塗布液:処方C2~C5を用い、第1の透明樹脂膜、および、第2の透明樹脂膜の膜厚を下記表2に示す膜厚にした以外は実施例1と同様にして、第2の透明樹脂層形成用転写フィルムB~Eを作製した。
次に実施例1の積層体の製造に用いた、第1の透明樹脂層用塗布液:処方L1の調製において、処方L1に代えて、下記表1に示す第1の透明樹脂層用塗布液:処方L2~L5を用い、第1の透明樹脂膜、および、第2の透明樹脂膜の膜厚を下記表2に示す指定の膜厚にした以外は実施例1と同様にして、第1の透明樹脂層形成用転写フィルムG~Jを作製した。
下記表1中、KE-1820およびKE-1886は一液系シリコーンゴム(いずれも信越化学工業(株)製)である。
下記表1中、KR-251、X-40-9246、KR9706、KR5206はいずれもシリコーンレジン(いずれも信越化学工業(株)製)である。
また、下記表1中のアクリル樹脂1は実施例17および後述の比較例6で用いたメチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度)≒70℃)である。
また、下記表1中のアクリル樹脂Fは後述の比較例7で用いたベンジルメタクリレート/メタクリル酸=68/32モル比のランダム共重合物、重量平均分子量5.0万)である。 [Examples 2 to 17]
In the preparation of the second transparent resin layer coating liquid: Formulation C1 used in the manufacture of the laminate of Example 1, the second transparent resin layer coating liquid shown in Table 1 below: Formulation instead of Formulation C1 The second transparent resin layer was obtained in the same manner as in Example 1 except that C2 to C5 were used, and the thicknesses of the first transparent resin film and the second transparent resin film were changed to those shown in Table 2 below. Formation transfer films B to E were prepared.
Next, in the preparation of the first transparent resin layer coating liquid: formulation L1 used for the production of the laminate of Example 1, the first transparent resin layer coating liquid shown in Table 1 below is used instead of the formulation L1. The first and second transparent resin films were prepared in the same manner as in Example 1 except that the thicknesses of the first transparent resin film and the second transparent resin film were changed to the specified film thicknesses shown in Table 2 below. The transparent resin layer forming transfer films G to J were prepared.
In Table 1 below, KE-1820 and KE-1886 are one-part silicone rubbers (both manufactured by Shin-Etsu Chemical Co., Ltd.).
In Table 1 below, KR-251, X-40-9246, KR9706, and KR5206 are all silicone resins (all manufactured by Shin-Etsu Chemical Co., Ltd.).
The
In addition, acrylic resin F in the following Table 1 is a random copolymer of benzyl methacrylate / methacrylic acid = 68/32 molar ratio, weight average molecular weight 50,000 used in Comparative Example 7 described later.
実施例1の積層体の製造において、実施例1で用いた第1の透明樹脂層形成用転写フィルムおよび第2の透明樹脂層形成用転写フィルムの種類と、第1の透明樹脂層および第2の透明樹脂層の膜厚を、下記表2に記載のとおりに変えた以外は実施例1の積層体の製造と同様にして、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターンを形成した積層体を得た。得られた積層体を、それぞれ実施例2~17の積層体とした。
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりにそれぞれ実施例2~17の積層体を用いた以外は実施例1と同様にして、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、実施例2~17の静電容量型入力装置とした。
実施例2~17の積層体(実施例2~17の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 In the production of the laminate of Example 1, the types of the first transparent resin layer-forming transfer film and second transparent resin layer-forming transfer film used in Example 1, the first transparent resin layer, and the second The front plate, the second transparent resin layer, and the first transparent resin layer were prepared in the same manner as in the production of the laminate of Example 1 except that the film thickness of the transparent resin layer was changed as shown in Table 2 below. The laminated body which formed the 1st transparent electrode pattern was obtained. The obtained laminates were made into the laminates of Examples 2 to 17, respectively.
Thereafter, in the manufacture of the capacitive input device of Example 1, the front plate, the same as in Example 1 except that the laminates of Examples 2 to 17 were used instead of the laminate of Example 1, respectively. The second transparent resin layer, the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, and transparent A front plate on which the protective layer-A was formed was produced, and the capacitive input devices of Examples 2 to 17 were obtained.
The transparency and bending resistance of the laminates of Examples 2 to 17 (the laminates of Examples 2 to 17 do not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) are the same as those of Example 1. The evaluation results are shown in Table 2 below.
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりにそれぞれ実施例2~17の積層体を用いた以外は実施例1と同様にして、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、実施例2~17の静電容量型入力装置とした。
実施例2~17の積層体(実施例2~17の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 In the production of the laminate of Example 1, the types of the first transparent resin layer-forming transfer film and second transparent resin layer-forming transfer film used in Example 1, the first transparent resin layer, and the second The front plate, the second transparent resin layer, and the first transparent resin layer were prepared in the same manner as in the production of the laminate of Example 1 except that the film thickness of the transparent resin layer was changed as shown in Table 2 below. The laminated body which formed the 1st transparent electrode pattern was obtained. The obtained laminates were made into the laminates of Examples 2 to 17, respectively.
Thereafter, in the manufacture of the capacitive input device of Example 1, the front plate, the same as in Example 1 except that the laminates of Examples 2 to 17 were used instead of the laminate of Example 1, respectively. The second transparent resin layer, the first transparent resin layer, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, and transparent A front plate on which the protective layer-A was formed was produced, and the capacitive input devices of Examples 2 to 17 were obtained.
The transparency and bending resistance of the laminates of Examples 2 to 17 (the laminates of Examples 2 to 17 do not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) are the same as those of Example 1. The evaluation results are shown in Table 2 below.
[実施例18]
<第1の透明樹脂層および第2の透明樹脂層の重層転写フィルムの作製>
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、第1の透明樹脂層用塗布液:処方L1を塗布し、乾燥させて透明樹脂層Fを形成した。 [Example 18]
<Preparation of Multilayer Transfer Film of First Transparent Resin Layer and Second Transparent Resin Layer>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer. Furthermore, the 1st coating liquid for transparent resin layers: Formula L1 was apply | coated and dried, and the transparent resin layer F was formed.
<第1の透明樹脂層および第2の透明樹脂層の重層転写フィルムの作製>
厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、熱可塑性樹脂層用塗布液:処方H1を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、中間層用塗布液:処方P1を塗布し、乾燥させて中間層を形成した。更に、第1の透明樹脂層用塗布液:処方L1を塗布し、乾燥させて透明樹脂層Fを形成した。 [Example 18]
<Preparation of Multilayer Transfer Film of First Transparent Resin Layer and Second Transparent Resin Layer>
On a 75 μm thick polyethylene terephthalate film (temporary support), a thermoplastic resin layer coating liquid: Formulation H1 was applied using a slit nozzle and dried to form a thermoplastic resin layer. Next, the intermediate layer coating solution: Formulation P1 was applied and dried to form an intermediate layer. Furthermore, the 1st coating liquid for transparent resin layers: Formula L1 was apply | coated and dried, and the transparent resin layer F was formed.
さらに透明樹脂層F上に第2の透明樹脂層用塗布液:処方C6を塗布し、乾燥させて透明樹脂層A-2を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が50μmの透明樹脂層F、乾燥膜厚が30μmの透明樹脂層A-2を設けた。最後に、透明樹脂層A-2の上に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と透明樹脂層Fおよび透明樹脂層A-2と保護フィルムとが一体となった第1の透明樹脂層(透明樹脂層F)および第2の透明樹脂層(透明樹脂層A-2)の重層の転写フィルムを作製した。
Further, a second transparent resin layer coating solution: Formula C6 was applied on the transparent resin layer F and dried to form a transparent resin layer A-2. Thus, a thermoplastic resin layer having a dry film thickness of 15.1 μm, an intermediate layer having a dry film thickness of 1.6 μm, a transparent resin layer F having a dry film thickness of 50 μm, and a dry film thickness on the temporary support. Provided a transparent resin layer A-2 having a thickness of 30 μm. Finally, a protective film (12 μm thick polypropylene film) was pressure-bonded on the transparent resin layer A-2. Thus, the first transparent resin layer (transparent resin layer F) in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer F, the transparent resin layer A-2, and the protective film are integrated. Then, a transfer film having a multilayer of the second transparent resin layer (transparent resin layer A-2) was produced.
(第2の透明樹脂層用塗布液:処方C6)
・キシレン :500質量部
・メチルエチルケトン(東燃化学(株)製) :300質量部
・シリコーンゴム KE-167U(信越化学(株)製、シリカ入りコンパウンド型) :200質量部
・Pt触媒 C25A(信越化学(株)製) :0.1質量部
・架橋剤 KF9901(信越化学(株)製) :2質量部 (Second coating solution for transparent resin layer: Formula C6)
-Xylene: 500 parts by mass-Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 300 parts by mass-Silicone rubber KE-167U (manufactured by Shin-Etsu Chemical Co., Ltd., compound type containing silica): 200 parts by mass-Pt catalyst C25A (Shin-Etsu Chemical) (Made by Co., Ltd.): 0.1 parts by mass / crosslinking agent KF9901 (produced by Shin-Etsu Chemical Co., Ltd.): 2 parts by mass
・キシレン :500質量部
・メチルエチルケトン(東燃化学(株)製) :300質量部
・シリコーンゴム KE-167U(信越化学(株)製、シリカ入りコンパウンド型) :200質量部
・Pt触媒 C25A(信越化学(株)製) :0.1質量部
・架橋剤 KF9901(信越化学(株)製) :2質量部 (Second coating solution for transparent resin layer: Formula C6)
-Xylene: 500 parts by mass-Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 300 parts by mass-Silicone rubber KE-167U (manufactured by Shin-Etsu Chemical Co., Ltd., compound type containing silica): 200 parts by mass-Pt catalyst C25A (Shin-Etsu Chemical) (Made by Co., Ltd.): 0.1 parts by mass / crosslinking agent KF9901 (produced by Shin-Etsu Chemical Co., Ltd.): 2 parts by mass
実施例1の積層体の製造において、予備加熱した前面板の上に第2の透明樹脂層である透明樹脂層Aの形成を行う代わりに、第1の透明樹脂層(透明樹脂層F)および第2の透明樹脂層(透明樹脂層A-2)の重層の転写フィルムを用いて第2の透明樹脂層と第1の透明樹脂層を同時に積層し、その後の第1の透明樹脂層である透明樹脂層Fの形成を行わなかった以外は実施例1の積層体の製造と同様にして、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターンを形成した積層体を得た。得られた積層体を、実施例18の積層体とした。
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりに実施例18の積層体を用いた以外は実施例1と同様にして、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、実施例18の静電容量型入力装置とした。
実施例18の積層体(実施例18の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 In the production of the laminate of Example 1, instead of forming the transparent resin layer A as the second transparent resin layer on the preheated front plate, the first transparent resin layer (transparent resin layer F) and The second transparent resin layer and the first transparent resin layer are simultaneously laminated using the transfer film of the second transparent resin layer (transparent resin layer A-2), and the subsequent first transparent resin layer. Except that the transparent resin layer F was not formed, the front plate, the second transparent resin layer, the first transparent resin layer, and the first transparent electrode pattern were formed in the same manner as in the production of the laminate of Example 1. A laminated body was obtained. The obtained laminated body was taken as the laminated body of Example 18.
Thereafter, in the manufacture of the capacitive input device of Example 1, the front plate and the second plate were obtained in the same manner as in Example 1 except that the laminate of Example 18 was used instead of the laminate of Example 1. Transparent resin layer, first transparent resin layer, first transparent electrode pattern, insulating layer pattern, second transparent electrode pattern, conductive element different from first and second transparent electrode patterns, and transparent protective layer- A front plate on which A was formed was produced, and the capacitive input device of Example 18 was obtained.
The results of evaluating the transparency and bending resistance of the laminate of Example 18 (the laminate of Example 18 does not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりに実施例18の積層体を用いた以外は実施例1と同様にして、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、実施例18の静電容量型入力装置とした。
実施例18の積層体(実施例18の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 In the production of the laminate of Example 1, instead of forming the transparent resin layer A as the second transparent resin layer on the preheated front plate, the first transparent resin layer (transparent resin layer F) and The second transparent resin layer and the first transparent resin layer are simultaneously laminated using the transfer film of the second transparent resin layer (transparent resin layer A-2), and the subsequent first transparent resin layer. Except that the transparent resin layer F was not formed, the front plate, the second transparent resin layer, the first transparent resin layer, and the first transparent electrode pattern were formed in the same manner as in the production of the laminate of Example 1. A laminated body was obtained. The obtained laminated body was taken as the laminated body of Example 18.
Thereafter, in the manufacture of the capacitive input device of Example 1, the front plate and the second plate were obtained in the same manner as in Example 1 except that the laminate of Example 18 was used instead of the laminate of Example 1. Transparent resin layer, first transparent resin layer, first transparent electrode pattern, insulating layer pattern, second transparent electrode pattern, conductive element different from first and second transparent electrode patterns, and transparent protective layer- A front plate on which A was formed was produced, and the capacitive input device of Example 18 was obtained.
The results of evaluating the transparency and bending resistance of the laminate of Example 18 (the laminate of Example 18 does not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
[実施例19]
実施例19では、転写フィルムを用いて透明樹脂層を形成する代わりに、液体レジストを用いた塗布により第1の透明樹脂層および第2の透明樹脂層の作製を行った。
実施例19で用いる2種の透明樹脂層作成用の透明レジストの処方は、実施例1で用いた第2の透明樹脂層用塗布液:処方C1と、第1の透明樹脂層用塗布液:処方L1とそれぞれ同じである。
加飾層が形成された前面板上に、スリット状ノズルを有するガラス基板用コーター(エフ・エー・エス・ジャパン社製、商品名:MH-1600)を用いて、第2の透明樹脂層作成用の透明レジスト(処方:C1)を塗布して塗布層を得た。引き続きVCD(真空乾燥装置、東京応化工業(株)製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、EBR(エッジ・ビード・リムーバー)を用いて、前面板の周囲の不要な透明レジストを除去し、120℃、3分間プリベークして、前面板の上に膜厚10.0μmの透明樹脂層を得た(液体レジスト法)。この透明樹脂層作成用の透明レジスト(処方:C1)の塗布を3回繰り返し、前面板の上に、膜厚30.0μmの第2の透明樹脂層を得た。塗布を3回繰り返して得られた第2の透明樹脂層は単層となっていた。
次に第1の透明樹脂層作成用の透明レジスト(処方:L1)を第2の透明樹脂層作成用の透明レジスト(処方:C1)と同様に第2の透明樹脂層上に塗布・乾燥し、膜厚10.0μmの透明樹脂層を得た。この透明樹脂層作成用の透明レジスト(処方:L1)の塗布を5回繰り返し、膜厚50.0μmの第1の透明樹脂層を得た。塗布を5回繰り返して得られた第1の透明樹脂層は単層となっていた。
その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行ない、前面板、第2の透明樹脂層Aおよび第1の透明樹脂層Fがこの順で積層された積層体を得た。得られた積層体を用いた以外は、実施例1の積層体の製造と同様にして、第1の透明樹脂層Fの上に第一の透明電極パターンを形成し、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターンを形成した積層体を得た。得られた積層体を、実施例19の積層体とした。
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりに実施例19の積層体を用いた以外は実施例1の静電容量型入力装置の製造と同様にして、実施例19の静電容量型入力装置を作製した。
実施例19の積層体(実施例19の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。
なお、第2の透明樹脂層および第1の透明樹脂層が、それぞれ、第2の透明樹脂層用塗布液および第1の透明樹脂層用塗布液を用いて、連続する塗布工程により形成されたことを、下記表2中、スリット塗布と示した。 [Example 19]
In Example 19, instead of forming a transparent resin layer using a transfer film, a first transparent resin layer and a second transparent resin layer were prepared by application using a liquid resist.
The two types of transparent resists for preparing the transparent resin layer used in Example 19 were formulated in accordance with the second transparent resin layer coating liquid used in Example 1: Formulation C1 and the first transparent resin layer coating liquid: It is the same as each prescription L1.
Using a glass substrate coater (manufactured by FS Japan Co., Ltd., trade name: MH-1600) having a slit nozzle on the front plate on which the decorative layer is formed, a second transparent resin layer is prepared. A transparent resist (prescription: C1) was applied to obtain a coating layer. Subsequently, after part of the solvent was dried by VCD (vacuum drying device, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to eliminate the fluidity of the coating layer, the front was removed using EBR (edge bead remover). Unnecessary transparent resist around the face plate was removed and pre-baked at 120 ° C. for 3 minutes to obtain a 10.0 μm-thick transparent resin layer on the front plate (liquid resist method). The application of the transparent resist for preparing the transparent resin layer (prescription: C1) was repeated three times to obtain a second transparent resin layer having a thickness of 30.0 μm on the front plate. The second transparent resin layer obtained by repeating the coating three times was a single layer.
Next, the transparent resist for preparing the first transparent resin layer (prescription: L1) is applied and dried on the second transparent resin layer in the same manner as the transparent resist for preparing the second transparent resin layer (prescription: C1). A transparent resin layer having a thickness of 10.0 μm was obtained. The application of the transparent resist for preparing the transparent resin layer (prescription: L1) was repeated five times to obtain a first transparent resin layer having a thickness of 50.0 μm. The first transparent resin layer obtained by repeating thecoating 5 times was a single layer.
Thereafter, post-baking treatment is performed at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), and the front plate, the second transparent resin layer A, and the first transparent resin layer F are laminated in this order. Got the body. A first transparent electrode pattern is formed on the first transparent resin layer F in the same manner as in the production of the laminated body of Example 1 except that the obtained laminated body is used. The laminated body which formed the transparent resin layer, the 1st transparent resin layer, and the 1st transparent electrode pattern was obtained. The obtained laminated body was taken as the laminated body of Example 19.
Thereafter, in the manufacture of the capacitive input device of Example 1, the same as the manufacture of the capacitive input device of Example 1, except that the laminate of Example 19 was used instead of the laminate of Example 1. Thus, a capacitance type input device of Example 19 was produced.
The results of evaluating the transparency and bending resistance of the laminate of Example 19 (the laminate of Example 19 does not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
In addition, the 2nd transparent resin layer and the 1st transparent resin layer were formed by the continuous application | coating process using the coating liquid for 2nd transparent resin layers, and the coating liquid for 1st transparent resin layers, respectively. This is shown as slit coating in Table 2 below.
実施例19では、転写フィルムを用いて透明樹脂層を形成する代わりに、液体レジストを用いた塗布により第1の透明樹脂層および第2の透明樹脂層の作製を行った。
実施例19で用いる2種の透明樹脂層作成用の透明レジストの処方は、実施例1で用いた第2の透明樹脂層用塗布液:処方C1と、第1の透明樹脂層用塗布液:処方L1とそれぞれ同じである。
加飾層が形成された前面板上に、スリット状ノズルを有するガラス基板用コーター(エフ・エー・エス・ジャパン社製、商品名:MH-1600)を用いて、第2の透明樹脂層作成用の透明レジスト(処方:C1)を塗布して塗布層を得た。引き続きVCD(真空乾燥装置、東京応化工業(株)製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、EBR(エッジ・ビード・リムーバー)を用いて、前面板の周囲の不要な透明レジストを除去し、120℃、3分間プリベークして、前面板の上に膜厚10.0μmの透明樹脂層を得た(液体レジスト法)。この透明樹脂層作成用の透明レジスト(処方:C1)の塗布を3回繰り返し、前面板の上に、膜厚30.0μmの第2の透明樹脂層を得た。塗布を3回繰り返して得られた第2の透明樹脂層は単層となっていた。
次に第1の透明樹脂層作成用の透明レジスト(処方:L1)を第2の透明樹脂層作成用の透明レジスト(処方:C1)と同様に第2の透明樹脂層上に塗布・乾燥し、膜厚10.0μmの透明樹脂層を得た。この透明樹脂層作成用の透明レジスト(処方:L1)の塗布を5回繰り返し、膜厚50.0μmの第1の透明樹脂層を得た。塗布を5回繰り返して得られた第1の透明樹脂層は単層となっていた。
その後、大気圧(1atm)下、空気中で240℃、60分間のポストベーク処理を行ない、前面板、第2の透明樹脂層Aおよび第1の透明樹脂層Fがこの順で積層された積層体を得た。得られた積層体を用いた以外は、実施例1の積層体の製造と同様にして、第1の透明樹脂層Fの上に第一の透明電極パターンを形成し、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターンを形成した積層体を得た。得られた積層体を、実施例19の積層体とした。
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりに実施例19の積層体を用いた以外は実施例1の静電容量型入力装置の製造と同様にして、実施例19の静電容量型入力装置を作製した。
実施例19の積層体(実施例19の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。
なお、第2の透明樹脂層および第1の透明樹脂層が、それぞれ、第2の透明樹脂層用塗布液および第1の透明樹脂層用塗布液を用いて、連続する塗布工程により形成されたことを、下記表2中、スリット塗布と示した。 [Example 19]
In Example 19, instead of forming a transparent resin layer using a transfer film, a first transparent resin layer and a second transparent resin layer were prepared by application using a liquid resist.
The two types of transparent resists for preparing the transparent resin layer used in Example 19 were formulated in accordance with the second transparent resin layer coating liquid used in Example 1: Formulation C1 and the first transparent resin layer coating liquid: It is the same as each prescription L1.
Using a glass substrate coater (manufactured by FS Japan Co., Ltd., trade name: MH-1600) having a slit nozzle on the front plate on which the decorative layer is formed, a second transparent resin layer is prepared. A transparent resist (prescription: C1) was applied to obtain a coating layer. Subsequently, after part of the solvent was dried by VCD (vacuum drying device, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to eliminate the fluidity of the coating layer, the front was removed using EBR (edge bead remover). Unnecessary transparent resist around the face plate was removed and pre-baked at 120 ° C. for 3 minutes to obtain a 10.0 μm-thick transparent resin layer on the front plate (liquid resist method). The application of the transparent resist for preparing the transparent resin layer (prescription: C1) was repeated three times to obtain a second transparent resin layer having a thickness of 30.0 μm on the front plate. The second transparent resin layer obtained by repeating the coating three times was a single layer.
Next, the transparent resist for preparing the first transparent resin layer (prescription: L1) is applied and dried on the second transparent resin layer in the same manner as the transparent resist for preparing the second transparent resin layer (prescription: C1). A transparent resin layer having a thickness of 10.0 μm was obtained. The application of the transparent resist for preparing the transparent resin layer (prescription: L1) was repeated five times to obtain a first transparent resin layer having a thickness of 50.0 μm. The first transparent resin layer obtained by repeating the
Thereafter, post-baking treatment is performed at 240 ° C. for 60 minutes in air under atmospheric pressure (1 atm), and the front plate, the second transparent resin layer A, and the first transparent resin layer F are laminated in this order. Got the body. A first transparent electrode pattern is formed on the first transparent resin layer F in the same manner as in the production of the laminated body of Example 1 except that the obtained laminated body is used. The laminated body which formed the transparent resin layer, the 1st transparent resin layer, and the 1st transparent electrode pattern was obtained. The obtained laminated body was taken as the laminated body of Example 19.
Thereafter, in the manufacture of the capacitive input device of Example 1, the same as the manufacture of the capacitive input device of Example 1, except that the laminate of Example 19 was used instead of the laminate of Example 1. Thus, a capacitance type input device of Example 19 was produced.
The results of evaluating the transparency and bending resistance of the laminate of Example 19 (the laminate of Example 19 does not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
In addition, the 2nd transparent resin layer and the 1st transparent resin layer were formed by the continuous application | coating process using the coating liquid for 2nd transparent resin layers, and the coating liquid for 1st transparent resin layers, respectively. This is shown as slit coating in Table 2 below.
[比較例1]
実施例1の積層体の製造において、において、第1の透明樹脂層形成用転写フィルムおよび第2の透明樹脂層形成用転写フィルムを転写せず、すなわち、前面板上に透明樹脂層が存在しない状態とした以外は実施例1の積層体の製造と同様にして、前面板の上に直接第一の透明電極パターンを形成し、比較例1の積層体を得た。
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりに比較例1の積層体を用いた以外は実施例1の静電容量型入力装置の製造と同様にして、前面板、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一ならびに第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、比較例1の静電容量型入力装置とした。
比較例1の積層体(比較例1の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 [Comparative Example 1]
In the production of the laminate of Example 1, the first transfer film for forming a transparent resin layer and the second transfer film for forming a transparent resin layer are not transferred, that is, there is no transparent resin layer on the front plate. A first transparent electrode pattern was directly formed on the front plate in the same manner as in the production of the laminate of Example 1 except that the state was changed to obtain a laminate of Comparative Example 1.
Thereafter, in the manufacture of the capacitive input device of Example 1, the same as the manufacture of the capacitive input device of Example 1, except that the laminate of Comparative Example 1 was used instead of the laminate of Example 1. Before forming the front plate, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the conductive element different from the first and second transparent electrode patterns, and the transparent protective layer-A A face plate was produced and used as a capacitive input device of Comparative Example 1.
The results of evaluating the transparency and bending resistance of the laminate of Comparative Example 1 (the laminate of Comparative Example 1 does not include an insulating layer, a second transparent electrode pattern, and a transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
実施例1の積層体の製造において、において、第1の透明樹脂層形成用転写フィルムおよび第2の透明樹脂層形成用転写フィルムを転写せず、すなわち、前面板上に透明樹脂層が存在しない状態とした以外は実施例1の積層体の製造と同様にして、前面板の上に直接第一の透明電極パターンを形成し、比較例1の積層体を得た。
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりに比較例1の積層体を用いた以外は実施例1の静電容量型入力装置の製造と同様にして、前面板、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一ならびに第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、比較例1の静電容量型入力装置とした。
比較例1の積層体(比較例1の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 [Comparative Example 1]
In the production of the laminate of Example 1, the first transfer film for forming a transparent resin layer and the second transfer film for forming a transparent resin layer are not transferred, that is, there is no transparent resin layer on the front plate. A first transparent electrode pattern was directly formed on the front plate in the same manner as in the production of the laminate of Example 1 except that the state was changed to obtain a laminate of Comparative Example 1.
Thereafter, in the manufacture of the capacitive input device of Example 1, the same as the manufacture of the capacitive input device of Example 1, except that the laminate of Comparative Example 1 was used instead of the laminate of Example 1. Before forming the front plate, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, the conductive element different from the first and second transparent electrode patterns, and the transparent protective layer-A A face plate was produced and used as a capacitive input device of Comparative Example 1.
The results of evaluating the transparency and bending resistance of the laminate of Comparative Example 1 (the laminate of Comparative Example 1 does not include an insulating layer, a second transparent electrode pattern, and a transparent protective layer) in the same manner as in Example 1. It described in Table 2 below.
[比較例2~8]
比較例2および3では、実施例1の積層体の製造において、予備加熱した前面板の上に形成した第2の透明樹脂層の膜厚を、下記表2に記載のとおりにそれぞれ変更して透明樹脂層Aを形成し、その後の第1の透明樹脂層である透明樹脂層Fの形成を行わなかった以外は実施例1の積層体の製造と同様にして、前面板、単層の透明樹脂層A、第一の透明電極パターンとを形成した積層体を得た。得られた積層体を、それぞれ比較例2および3の積層体とした。 [Comparative Examples 2 to 8]
In Comparative Examples 2 and 3, in the production of the laminate of Example 1, the film thickness of the second transparent resin layer formed on the preheated front plate was changed as shown in Table 2 below. In the same manner as in the production of the laminate of Example 1, except that the transparent resin layer A was formed and the subsequent transparent resin layer F, which was the first transparent resin layer, was not formed, the front plate and the single-layer transparent A laminate in which the resin layer A and the first transparent electrode pattern were formed was obtained. The obtained laminated body was made into the laminated body of Comparative Examples 2 and 3, respectively.
比較例2および3では、実施例1の積層体の製造において、予備加熱した前面板の上に形成した第2の透明樹脂層の膜厚を、下記表2に記載のとおりにそれぞれ変更して透明樹脂層Aを形成し、その後の第1の透明樹脂層である透明樹脂層Fの形成を行わなかった以外は実施例1の積層体の製造と同様にして、前面板、単層の透明樹脂層A、第一の透明電極パターンとを形成した積層体を得た。得られた積層体を、それぞれ比較例2および3の積層体とした。 [Comparative Examples 2 to 8]
In Comparative Examples 2 and 3, in the production of the laminate of Example 1, the film thickness of the second transparent resin layer formed on the preheated front plate was changed as shown in Table 2 below. In the same manner as in the production of the laminate of Example 1, except that the transparent resin layer A was formed and the subsequent transparent resin layer F, which was the first transparent resin layer, was not formed, the front plate and the single-layer transparent A laminate in which the resin layer A and the first transparent electrode pattern were formed was obtained. The obtained laminated body was made into the laminated body of Comparative Examples 2 and 3, respectively.
比較例4および5では、比較例2および3の積層体の製造において、それぞれ第2の透明樹脂層形成用転写フィルムの種類と、第2の透明樹脂層の膜厚を下記表2に記載のとおりに変えた以外は比較例2および3と同様にして、前面板、単層の第2の透明樹脂層F、第一の透明電極パターンとを形成した積層体を得た。得られた積層体を、それぞれ比較例4および5の積層体とした。
In Comparative Examples 4 and 5, in the production of the laminates of Comparative Examples 2 and 3, the type of the second transparent resin layer forming transfer film and the thickness of the second transparent resin layer are shown in Table 2 below. A laminated body in which a front plate, a single second transparent resin layer F, and a first transparent electrode pattern were formed was obtained in the same manner as in Comparative Examples 2 and 3 except that the procedure was changed as described above. The obtained laminated body was made into the laminated body of Comparative Examples 4 and 5, respectively.
比較例7では、実施例1の第2の透明樹脂層用塗布液:処方C1の調製において、下記表1に示す透明樹脂層用塗布液:処方C7を用いた以外は実施例1と同様にして、第2の透明樹脂層形成用(第2の透明樹脂層として透明樹脂層Lを有する)の転写フィルムを作製した。
(第2の透明樹脂層用塗布液:処方C7)
・メチルエチルケトン(東燃化学(株)製) :800質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度)≒70℃) :200質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製)
:2.0質量部
比較例2の積層体の製造において、第2の透明樹脂層形成用転写フィルムの種類を下記表2に記載のとおりに変えた透明樹脂層形成用転写フィルムをそれぞれ用いた以外は比較例2の積層体の製造と同様にして、前面板、単層の第2の透明樹脂層L、第一の透明電極パターンとを形成した積層体を得た。得られた積層体を、それぞれ比較例7の積層体とした。 Comparative Example 7 was the same as Example 1 except that the second transparent resin layer coating liquid: Formulation C1 in Example 1 was used except that the transparent resin layer coating liquid: Formulation C7 shown in Table 1 below was used. Thus, a transfer film for forming the second transparent resin layer (having the transparent resin layer L as the second transparent resin layer) was produced.
(Second coating solution for transparent resin layer: Formula C7)
Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 800 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio) = 55 / 11.7 / 4.5 /28.8, weight average molecular weight = 100,000, Tg (glass transition temperature) ≈70 ° C.): 200 parts by mass / surfactant (trade name: Megafac F-780F, manufactured by DIC Corporation)
: 2.0 parts by mass In the production of the laminate of Comparative Example 2, the transfer film for forming a transparent resin layer in which the type of the second transfer film for forming a transparent resin layer was changed as shown in Table 2 below was used. Except for the above, in the same manner as in the production of the laminate of Comparative Example 2, a laminate having a front plate, a single second transparent resin layer L, and a first transparent electrode pattern was obtained. The obtained laminated body was made into the laminated body of the comparative example 7, respectively.
(第2の透明樹脂層用塗布液:処方C7)
・メチルエチルケトン(東燃化学(株)製) :800質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度)≒70℃) :200質量部
・界面活性剤(商品名:メガファックF-780F、DIC(株)製)
:2.0質量部
比較例2の積層体の製造において、第2の透明樹脂層形成用転写フィルムの種類を下記表2に記載のとおりに変えた透明樹脂層形成用転写フィルムをそれぞれ用いた以外は比較例2の積層体の製造と同様にして、前面板、単層の第2の透明樹脂層L、第一の透明電極パターンとを形成した積層体を得た。得られた積層体を、それぞれ比較例7の積層体とした。 Comparative Example 7 was the same as Example 1 except that the second transparent resin layer coating liquid: Formulation C1 in Example 1 was used except that the transparent resin layer coating liquid: Formulation C7 shown in Table 1 below was used. Thus, a transfer film for forming the second transparent resin layer (having the transparent resin layer L as the second transparent resin layer) was produced.
(Second coating solution for transparent resin layer: Formula C7)
Methyl ethyl ketone (manufactured by Tonen Chemical Co., Ltd.): 800 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio) = 55 / 11.7 / 4.5 /28.8, weight average molecular weight = 100,000, Tg (glass transition temperature) ≈70 ° C.): 200 parts by mass / surfactant (trade name: Megafac F-780F, manufactured by DIC Corporation)
: 2.0 parts by mass In the production of the laminate of Comparative Example 2, the transfer film for forming a transparent resin layer in which the type of the second transfer film for forming a transparent resin layer was changed as shown in Table 2 below was used. Except for the above, in the same manner as in the production of the laminate of Comparative Example 2, a laminate having a front plate, a single second transparent resin layer L, and a first transparent electrode pattern was obtained. The obtained laminated body was made into the laminated body of the comparative example 7, respectively.
比較例6および8では、実施例1の積層体の製造において、実施例1で用いた第1の透明樹脂層形成用転写フィルムおよび第2の透明樹脂層形成用転写フィルムの種類と、第1の透明樹脂層および第2の透明樹脂層の膜厚を、それぞれ下記表2に記載のとおりに変えた以外は実施例1の積層体の製造と同様にして、前面板、第2の透明樹脂層、第1の透明樹脂層、第一の透明電極パターンを形成した積層体を得た。得られた積層体を、それぞれ比較例6および8の積層体とした。
In Comparative Examples 6 and 8, in the production of the laminate of Example 1, the types of the first transparent resin layer-forming transfer film and the second transparent resin layer-forming transfer film used in Example 1, and the first A front plate and a second transparent resin were prepared in the same manner as in the production of the laminate of Example 1, except that the film thicknesses of the transparent resin layer and the second transparent resin layer were changed as shown in Table 2 below. The laminated body which formed the layer, the 1st transparent resin layer, and the 1st transparent electrode pattern was obtained. The obtained laminated body was made into the laminated body of Comparative Examples 6 and 8, respectively.
その後、実施例1の静電容量型入力装置の製造において、実施例1の積層体の代わりにそれぞれ比較例2~8の積層体を用いた以外は実施例1と同様にして、前面板、透明樹脂層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素および透明保護層-Aを形成した前面板を作製し、比較例2~8の静電容量型入力装置とした。
比較例2~8の積層体(比較例2~8の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 Thereafter, in the manufacture of the capacitive input device of Example 1, the front plate, the same as Example 1 except that the laminates of Comparative Examples 2 to 8 were used instead of the laminate of Example 1, respectively. A front plate on which a transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, and a transparent protective layer-A are formed. The capacitance type input devices of Comparative Examples 2 to 8 were manufactured.
The transparency and bending resistance of the laminates of Comparative Examples 2 to 8 (the laminates of Comparative Examples 2 to 8 do not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) are the same as in Example 1. The evaluation results are shown in Table 2 below.
比較例2~8の積層体(比較例2~8の積層体は、絶縁層、第二の透明電極パターン、透明保護層を含まない)の透明性および屈曲耐性を実施例1と同様にして評価した結果を下記表2に記載した。 Thereafter, in the manufacture of the capacitive input device of Example 1, the front plate, the same as Example 1 except that the laminates of Comparative Examples 2 to 8 were used instead of the laminate of Example 1, respectively. A front plate on which a transparent resin layer, a first transparent electrode pattern, an insulating layer pattern, a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, and a transparent protective layer-A are formed. The capacitance type input devices of Comparative Examples 2 to 8 were manufactured.
The transparency and bending resistance of the laminates of Comparative Examples 2 to 8 (the laminates of Comparative Examples 2 to 8 do not include the insulating layer, the second transparent electrode pattern, and the transparent protective layer) are the same as in Example 1. The evaluation results are shown in Table 2 below.
上記表2より、前面板と透明電極パターンの間に本発明で規定する弾性率と破断伸びの範囲を満たす少なくとも2層の透明樹脂層を設けた本発明の積層体は、前面板に亀裂が生じて屈曲しても電極パターン断線が抑制できることがわかった。そのため、本発明の積層体を用いた本発明の静電容量型入力装置は、前面板に亀裂が生じて屈曲しても、モジュール(例えば、タッチパネル)を作動させることができ、データの取り出し等が可能である。
一方、比較例1より、前面板と透明電極パターンの間に透明樹脂層を有さない場合は、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。
比較例2および3より、前面板と透明電極パターンの間に低弾性率かつ高破断伸びの透明樹脂層を単層で設けた場合は、膜厚を厚くしたとしても、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。このような前面板と透明電極パターンの間に低弾性率かつ高破断伸びの透明樹脂層を単層で設けた積層体の模式図を図17に示した。図17(A)に示した積層体は、図17(B)のように前面板110が割れた場合、低弾性率かつ高破断伸びの透明樹脂層102は割れないが、曲がりが大きくなるため、透明樹脂層よりも硬い電極パターン100が割れたと考えられる。
比較例4、5および7より、前面板と透明電極パターンの間に高弾性率の透明樹脂層を単層で設けた場合は、膜厚を厚くしたとしても、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。このような前面板と透明電極パターンの間に高弾性率の透明樹脂層を単層で設けた積層体の模式図を図18に示した。図18(A)に示した積層体は、図18(B)のように前面板110が割れた場合、高弾性率の透明樹脂層101も割れるため、透明樹脂層よりも硬い電極パターン100も割れたと考えられる。
比較例6より、電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の破断伸びφが本発明で規定する下限値を下回る場合、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。
比較例8より、電極パターンに接触している第1の透明樹脂層の弾性率E1が、電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の弾性率E2よりも小さい場合、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。 From Table 2 above, in the laminate of the present invention in which at least two transparent resin layers satisfying the elastic modulus and elongation at break specified in the present invention are provided between the front plate and the transparent electrode pattern, the front plate has cracks. It was found that the electrode pattern disconnection can be suppressed even if it occurs and bends. Therefore, the capacitance-type input device of the present invention using the laminate of the present invention can operate a module (for example, a touch panel) even if the front plate cracks and bends, extracts data, etc. Is possible.
On the other hand, from Comparative Example 1, it was found that when the transparent resin layer was not provided between the front plate and the transparent electrode pattern, the electrode pattern was easily disconnected when the front plate was cracked and bent.
From Comparative Examples 2 and 3, when the transparent resin layer having a low elastic modulus and high elongation at break is provided between the front plate and the transparent electrode pattern, the front plate is cracked even if the film thickness is increased. It was found that the electrode pattern is easily disconnected when bent. FIG. 17 shows a schematic diagram of a laminate in which a transparent resin layer having a low elastic modulus and high elongation at break is provided as a single layer between the front plate and the transparent electrode pattern. In the laminate shown in FIG. 17 (A), when thefront plate 110 is cracked as shown in FIG. 17 (B), the transparent resin layer 102 having a low elastic modulus and high elongation at break does not break, but the bending becomes large. It is considered that the electrode pattern 100 that is harder than the transparent resin layer was cracked.
From Comparative Examples 4, 5 and 7, when a transparent resin layer having a high elastic modulus is provided between the front plate and the transparent electrode pattern as a single layer, the front plate is cracked and bent even if the film thickness is increased. In this case, it was found that the electrode pattern was easily disconnected. FIG. 18 shows a schematic view of a laminate in which a transparent resin layer having a high elastic modulus is provided as a single layer between the front plate and the transparent electrode pattern. In the laminate shown in FIG. 18A, when thefront plate 110 is cracked as shown in FIG. 18B, the transparent resin layer 101 having a high elastic modulus is also cracked. It is thought that it broke.
From Comparative Example 6, when the breaking elongation φ of the second transparent resin layer, which is the second transparent resin layer from the electrode pattern side, is lower than the lower limit specified in the present invention, the front plate is cracked and bent It was found that the electrode pattern was easily broken.
From Comparative Example 8, the elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern is smaller than the elastic modulus E2 of the second transparent resin layer that is the second transparent resin layer from the electrode pattern side. In this case, it was found that the electrode pattern was easily broken when the front plate was bent due to a crack.
一方、比較例1より、前面板と透明電極パターンの間に透明樹脂層を有さない場合は、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。
比較例2および3より、前面板と透明電極パターンの間に低弾性率かつ高破断伸びの透明樹脂層を単層で設けた場合は、膜厚を厚くしたとしても、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。このような前面板と透明電極パターンの間に低弾性率かつ高破断伸びの透明樹脂層を単層で設けた積層体の模式図を図17に示した。図17(A)に示した積層体は、図17(B)のように前面板110が割れた場合、低弾性率かつ高破断伸びの透明樹脂層102は割れないが、曲がりが大きくなるため、透明樹脂層よりも硬い電極パターン100が割れたと考えられる。
比較例4、5および7より、前面板と透明電極パターンの間に高弾性率の透明樹脂層を単層で設けた場合は、膜厚を厚くしたとしても、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。このような前面板と透明電極パターンの間に高弾性率の透明樹脂層を単層で設けた積層体の模式図を図18に示した。図18(A)に示した積層体は、図18(B)のように前面板110が割れた場合、高弾性率の透明樹脂層101も割れるため、透明樹脂層よりも硬い電極パターン100も割れたと考えられる。
比較例6より、電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の破断伸びφが本発明で規定する下限値を下回る場合、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。
比較例8より、電極パターンに接触している第1の透明樹脂層の弾性率E1が、電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の弾性率E2よりも小さい場合、前面板に亀裂が生じて屈曲した場合に電極パターンの断線が生じやすいことがわかった。 From Table 2 above, in the laminate of the present invention in which at least two transparent resin layers satisfying the elastic modulus and elongation at break specified in the present invention are provided between the front plate and the transparent electrode pattern, the front plate has cracks. It was found that the electrode pattern disconnection can be suppressed even if it occurs and bends. Therefore, the capacitance-type input device of the present invention using the laminate of the present invention can operate a module (for example, a touch panel) even if the front plate cracks and bends, extracts data, etc. Is possible.
On the other hand, from Comparative Example 1, it was found that when the transparent resin layer was not provided between the front plate and the transparent electrode pattern, the electrode pattern was easily disconnected when the front plate was cracked and bent.
From Comparative Examples 2 and 3, when the transparent resin layer having a low elastic modulus and high elongation at break is provided between the front plate and the transparent electrode pattern, the front plate is cracked even if the film thickness is increased. It was found that the electrode pattern is easily disconnected when bent. FIG. 17 shows a schematic diagram of a laminate in which a transparent resin layer having a low elastic modulus and high elongation at break is provided as a single layer between the front plate and the transparent electrode pattern. In the laminate shown in FIG. 17 (A), when the
From Comparative Examples 4, 5 and 7, when a transparent resin layer having a high elastic modulus is provided between the front plate and the transparent electrode pattern as a single layer, the front plate is cracked and bent even if the film thickness is increased. In this case, it was found that the electrode pattern was easily disconnected. FIG. 18 shows a schematic view of a laminate in which a transparent resin layer having a high elastic modulus is provided as a single layer between the front plate and the transparent electrode pattern. In the laminate shown in FIG. 18A, when the
From Comparative Example 6, when the breaking elongation φ of the second transparent resin layer, which is the second transparent resin layer from the electrode pattern side, is lower than the lower limit specified in the present invention, the front plate is cracked and bent It was found that the electrode pattern was easily broken.
From Comparative Example 8, the elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern is smaller than the elastic modulus E2 of the second transparent resin layer that is the second transparent resin layer from the electrode pattern side. In this case, it was found that the electrode pattern was easily broken when the front plate was bent due to a crack.
また、上記表2より、本発明の積層体の好ましい態様では、さらに透明性も良好となることがわかった。
なお、各実施例の積層体に対してさらに絶縁層、第二の透明電極パターン、透明保護層を積層した各実施例の静電容量型入力装置についても、各実施例の積層体と同様に評価したところ、透明性と、前面板に亀裂が生じて屈曲した場合の電極パターンの断線に関する屈曲耐性とが、良好であった。 Moreover, from the said Table 2, in the preferable aspect of the laminated body of this invention, it turned out that transparency becomes further favorable.
The capacitive input device of each example in which an insulating layer, a second transparent electrode pattern, and a transparent protective layer are further laminated on the laminate of each example is the same as the laminate of each example. As a result of evaluation, the transparency and the bending resistance with respect to the disconnection of the electrode pattern when the front plate cracked and bent were good.
なお、各実施例の積層体に対してさらに絶縁層、第二の透明電極パターン、透明保護層を積層した各実施例の静電容量型入力装置についても、各実施例の積層体と同様に評価したところ、透明性と、前面板に亀裂が生じて屈曲した場合の電極パターンの断線に関する屈曲耐性とが、良好であった。 Moreover, from the said Table 2, in the preferable aspect of the laminated body of this invention, it turned out that transparency becomes further favorable.
The capacitive input device of each example in which an insulating layer, a second transparent electrode pattern, and a transparent protective layer are further laminated on the laminate of each example is the same as the laminate of each example. As a result of evaluation, the transparency and the bending resistance with respect to the disconnection of the electrode pattern when the front plate cracked and bent were good.
1、110 前面板
2 加飾層
3、100 電極パターン(第一の透明電極パターン)
3a パッド部分
3b 接続部分
4 第二の透明電極パターン
5 絶縁層
6 導電性要素
7 第1の透明樹脂層(高弾性率の透明樹脂層)
8 開口部
9 第2の透明樹脂層(低弾性率かつ高破断伸びの透明樹脂層)
L 加飾層の内径(一辺)
11 強化処理ガラス
C 第1の方向
D 第2の方向
21 仮支持体
22 熱可塑性樹脂層
23 中間層
24 加飾層
25 カバーフィルム(保護フィルム)
31 非画像部
32 画像部
33 刃
40 転写材料
41 枠内部
42 枠外部
43 配線取出し部
44 加飾層(取り除かれなかった領域)
45 加飾層が取り除かれた領域
101 第1の透明樹脂層(高弾性率の透明樹脂層)
102 第2の透明樹脂層(低弾性率かつ高破断伸びの透明樹脂層)
103 その他の透明樹脂層 1, 110Front plate 2 Decorating layer 3, 100 Electrode pattern (first transparent electrode pattern)
3a Pad portion3b Connection portion 4 Second transparent electrode pattern 5 Insulating layer 6 Conductive element 7 First transparent resin layer (transparent resin layer having high elastic modulus)
8Opening 9 Second transparent resin layer (transparent resin layer having low elastic modulus and high elongation at break)
L Inner diameter of decorative layer (one side)
DESCRIPTION OF SYMBOLS 11 Tempered glass C 1st direction D2nd direction 21 Temporary support body 22 Thermoplastic resin layer 23 Intermediate | middle layer 24 Decorating layer 25 Cover film (protective film)
31Non-image part 32 Image part 33 Blade 40 Transfer material 41 Inside frame 42 Outside frame 43 Wiring extraction part 44 Decoration layer (region not removed)
45Region 101 from which decorative layer is removed First transparent resin layer (transparent resin layer with high elastic modulus)
102 2nd transparent resin layer (transparent resin layer of low elastic modulus and high elongation at break)
103 Other transparent resin layers
2 加飾層
3、100 電極パターン(第一の透明電極パターン)
3a パッド部分
3b 接続部分
4 第二の透明電極パターン
5 絶縁層
6 導電性要素
7 第1の透明樹脂層(高弾性率の透明樹脂層)
8 開口部
9 第2の透明樹脂層(低弾性率かつ高破断伸びの透明樹脂層)
L 加飾層の内径(一辺)
11 強化処理ガラス
C 第1の方向
D 第2の方向
21 仮支持体
22 熱可塑性樹脂層
23 中間層
24 加飾層
25 カバーフィルム(保護フィルム)
31 非画像部
32 画像部
33 刃
40 転写材料
41 枠内部
42 枠外部
43 配線取出し部
44 加飾層(取り除かれなかった領域)
45 加飾層が取り除かれた領域
101 第1の透明樹脂層(高弾性率の透明樹脂層)
102 第2の透明樹脂層(低弾性率かつ高破断伸びの透明樹脂層)
103 その他の透明樹脂層 1, 110
3a Pad portion
8
L Inner diameter of decorative layer (one side)
DESCRIPTION OF SYMBOLS 11 Tempered glass C 1st direction D
31
45
102 2nd transparent resin layer (transparent resin layer of low elastic modulus and high elongation at break)
103 Other transparent resin layers
Claims (19)
- 前面板上の一部または全部に、少なくとも2層の透明樹脂層が積層され、さらに前記少なくとも2層の透明樹脂層の上に電極パターンを有する積層体であって、
前記電極パターンに接触している第1の透明樹脂層の弾性率E1と、前記電極パターン側から2層目の透明樹脂層である第2の透明樹脂層の弾性率E2が下記式1を満たし、
前記第2の透明樹脂層の破断伸びφが下記式2を満たす、積層体。
E1>E2・・・式1
φ≧10%・・・式2 A laminate having at least two transparent resin layers laminated on a part or all of the front plate, and further having an electrode pattern on the at least two transparent resin layers,
The elastic modulus E1 of the first transparent resin layer in contact with the electrode pattern and the elastic modulus E2 of the second transparent resin layer that is the second transparent resin layer from the electrode pattern side satisfy the following formula 1. ,
A laminate in which the elongation at break φ of the second transparent resin layer satisfies the following formula 2.
E1> E2 Formula 1
φ ≧ 10% Formula 2 - 前記第1の透明樹脂層の膜厚と前記第2の透明樹脂層の膜厚の合計が10~150μmである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the total thickness of the first transparent resin layer and the second transparent resin layer is 10 to 150 µm.
- 前記第1の透明樹脂層の膜厚および前記第2の透明樹脂層の膜厚がそれぞれ独立に5~100μmである、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the thickness of the first transparent resin layer and the thickness of the second transparent resin layer are each independently 5 to 100 µm.
- 前記透明樹脂層の少なくとも1層はシロキサン構造を有する化合物を含む、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein at least one of the transparent resin layers contains a compound having a siloxane structure.
- 前記第1の透明樹脂層が少なくともシリコーンレジンをバインダー樹脂として含む、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the first transparent resin layer contains at least a silicone resin as a binder resin.
- 前記第2の透明樹脂層が少なくともシリコーンゴムをバインダー樹脂として含む、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the second transparent resin layer contains at least silicone rubber as a binder resin.
- 前記第2の透明樹脂層の破断伸びφが20%以上である、請求項1~6のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the elongation at break φ of the second transparent resin layer is 20% or more.
- 前記第2の透明樹脂層の弾性率E2が50MPa以下である、請求項1~7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the elastic modulus E2 of the second transparent resin layer is 50 MPa or less.
- 前記第1の透明樹脂層の弾性率E1が100MPa以上である、請求項1~8のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the elastic modulus E1 of the first transparent resin layer is 100 MPa or more.
- 前記前面板の一方の面の一部に加飾層が配置され、
前記第1の透明樹脂層と前記第2の透明樹脂層が、前記前面板の前記加飾層が配置された側の面の、前記加飾層上の一部と、前記加飾層が配置されていない部分とに積層された、請求項1~9のいずれか一項に記載の積層体。 A decorative layer is disposed on a part of one surface of the front plate;
The first transparent resin layer and the second transparent resin layer are arranged on a part of the surface of the front plate on which the decorative layer is disposed, on the decorative layer, and the decorative layer is disposed. The laminated body according to any one of claims 1 to 9, wherein the laminated body is laminated on a portion not formed. - 仮支持体と、
少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層と、
少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を有する転写フィルムであって、
前記第1の透明樹脂層は、前記仮支持体と前記第2の透明樹脂層との間に挟まれた構造である転写フィルム。 A temporary support;
A first transparent resin layer containing at least a silicone resin as a binder resin;
A transfer film having a second transparent resin layer containing at least silicone rubber as a binder resin,
The transfer film having a structure in which the first transparent resin layer is sandwiched between the temporary support and the second transparent resin layer. - 前記仮支持体と前記第1の透明樹脂層との間に熱可塑性樹脂層を有する、請求項11に記載の転写フィルム。 The transfer film according to claim 11, further comprising a thermoplastic resin layer between the temporary support and the first transparent resin layer.
- 請求項11または12に記載の転写フィルムの前記第1の透明樹脂層および前記第2の透明樹脂層を、前面板と、前記第2の透明樹脂層と、前記第1の透明樹脂層と、がこの順に積層されるように、前記前面板上の一部または全部に転写する工程と、
前記第1の透明樹脂層の上に電極パターンを形成する工程を含む、請求項1~10のいずれか一項に記載の積層体の製造方法。 The first transparent resin layer and the second transparent resin layer of the transfer film according to claim 11 or 12, a front plate, the second transparent resin layer, the first transparent resin layer, Are transferred to a part or all of the front plate, so that are stacked in this order,
The method for producing a laminate according to any one of claims 1 to 10, further comprising a step of forming an electrode pattern on the first transparent resin layer. - 転写フィルムから少なくともシリコーンゴムをバインダー樹脂として含む第2の透明樹脂層を前面板上の一部または全部に転写する第2の透明樹脂層の形成工程と、
転写フィルムから少なくともシリコーンレジンをバインダー樹脂として含む第1の透明樹脂層を、前記前面板と、前記第2の透明樹脂層と、前記第1の透明樹脂層と、がこの順に積層されるように、前記第2の透明樹脂層上に転写する第1の透明樹脂層の形成工程と、
前記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、
前記第2の透明樹脂層の形成工程および前記第1の透明樹脂層の形成工程が、同時または連続する転写工程である、請求項1~10のいずれか一項に記載の積層体の製造方法。 A second transparent resin layer forming step of transferring a second transparent resin layer containing at least silicone rubber as a binder resin from the transfer film to a part or all of the front plate;
A first transparent resin layer containing at least a silicone resin as a binder resin from the transfer film so that the front plate, the second transparent resin layer, and the first transparent resin layer are laminated in this order. Forming a first transparent resin layer to be transferred onto the second transparent resin layer;
Forming an electrode pattern on the first transparent resin layer,
The method for producing a laminate according to any one of claims 1 to 10, wherein the forming step of the second transparent resin layer and the forming step of the first transparent resin layer are simultaneous or continuous transfer steps. . - 少なくともシリコーンゴムをバインダー樹脂として含む樹脂組成物を前面板上の一部または全部に塗布する第2の透明樹脂層の形成工程と、
少なくともシリコーンレジンをバインダー樹脂として含む樹脂組成物を、前記前面板と、前記第2の透明樹脂層と、前記第1の透明樹脂層と、がこの順に積層されるように、前記第2の透明樹脂層上に塗布する第1の透明樹脂層の形成工程と、
前記第1の透明樹脂層の上に電極パターンを形成する工程とを含み、
前記第2の透明樹脂層の形成工程および前記第1の透明樹脂層の形成工程が、連続する塗布工程である、請求項1~10のいずれか一項に記載の積層体の製造方法。 A step of forming a second transparent resin layer, wherein a resin composition containing at least silicone rubber as a binder resin is applied to a part or all of the front plate;
The resin composition containing at least a silicone resin as a binder resin, the second transparent resin layer, the second transparent resin layer, and the second transparent resin layer are laminated in this order. Forming a first transparent resin layer applied on the resin layer;
Forming an electrode pattern on the first transparent resin layer,
The method for producing a laminate according to any one of claims 1 to 10, wherein the forming step of the second transparent resin layer and the forming step of the first transparent resin layer are continuous coating steps. - 請求項1~10のいずれか一項に記載の積層体の電極パターン上に、前記電極パターンと電気的に絶縁された第二の電極パターンを有する導電膜積層体。 A conductive film laminate having a second electrode pattern electrically insulated from the electrode pattern on the electrode pattern of the laminate according to any one of claims 1 to 10.
- 前記第二の電極パターンが、透明電極パターンである、請求項16に記載の導電膜積層体。 The conductive film laminate according to claim 16, wherein the second electrode pattern is a transparent electrode pattern.
- 請求項16または17に記載の導電膜積層体を含む、静電容量型入力装置。 A capacitance-type input device comprising the conductive film laminate according to claim 16 or 17.
- 請求項18に記載の静電容量型入力装置を構成要素として備えた、画像表示装置。 An image display device comprising the capacitive input device according to claim 18 as a constituent element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016525773A JPWO2015186549A1 (en) | 2014-06-06 | 2015-05-25 | LAMINATE, TRANSFER FILM, LAMINATE MANUFACTURING METHOD, CONDUCTIVE FILM LAMINATE, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-118080 | 2014-06-06 | ||
JP2014118080 | 2014-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186549A1 true WO2015186549A1 (en) | 2015-12-10 |
Family
ID=54766623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064879 WO2015186549A1 (en) | 2014-06-06 | 2015-05-25 | Laminate, transfer film, method for producing laminate, conductive film laminate, capacitive input device and image display device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2015186549A1 (en) |
TW (1) | TW201545870A (en) |
WO (1) | WO2015186549A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110096179B (en) * | 2019-05-09 | 2022-04-15 | 业成科技(成都)有限公司 | Stack design of touch panel for increasing ball drop test strength |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011461A1 (en) * | 2004-07-27 | 2006-02-02 | Jsr Corporation | Shock absorber, shock absorption laminate structure, shock absorption laminate structure for liquid crystal display, shock absorption laminate structure for plasma display, shock absorption laminate structure for organic electroluminescece display and display apparatus |
JP2011175397A (en) * | 2010-02-24 | 2011-09-08 | Sony Corp | Electrode film, electrode film manufacturing method, and coordinate input device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004246666A (en) * | 2003-02-14 | 2004-09-02 | Kawaguchiko Seimitsu Co Ltd | Touch panel and screen input type display device equipped with same |
JP2006201575A (en) * | 2005-01-21 | 2006-08-03 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display |
-
2015
- 2015-05-25 JP JP2016525773A patent/JPWO2015186549A1/en active Pending
- 2015-05-25 WO PCT/JP2015/064879 patent/WO2015186549A1/en active Application Filing
- 2015-06-01 TW TW104117580A patent/TW201545870A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011461A1 (en) * | 2004-07-27 | 2006-02-02 | Jsr Corporation | Shock absorber, shock absorption laminate structure, shock absorption laminate structure for liquid crystal display, shock absorption laminate structure for plasma display, shock absorption laminate structure for organic electroluminescece display and display apparatus |
JP2011175397A (en) * | 2010-02-24 | 2011-09-08 | Sony Corp | Electrode film, electrode film manufacturing method, and coordinate input device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015186549A1 (en) | 2017-04-20 |
TW201545870A (en) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5955787B2 (en) | Transfer film, method of manufacturing capacitive input device, capacitive input device, and image display device including the same | |
CN107066134B (en) | Transfer material, capacitance-type input device, method for manufacturing capacitance-type input device, and image display device provided with capacitance-type input device and method for manufacturing capacitance-type input device | |
WO2014007050A1 (en) | Transparent layered body, electrostatic capacitance input device, and image display device | |
JP5857013B2 (en) | SUBSTRATE WITH DECORATION MATERIAL AND ITS MANUFACTURING METHOD, TOUCH PANEL AND INFORMATION DISPLAY DEVICE | |
JP5860419B2 (en) | Coloring composition for heat-resistant decoration, method for manufacturing capacitive input device, capacitive input device, and image display device including the same | |
CN114089600A (en) | Capacitive input device, method of manufacturing the same, and image display device | |
JP6204887B2 (en) | LAMINATE, TRANSFER FILM, LAMINATE MANUFACTURING METHOD, CONDUCTIVE FILM LAMINATE, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE | |
JP6030966B2 (en) | Transparent laminate and method for producing the same | |
TW201542055A (en) | Transfer film, producing method of transfer film, transparent laminate, producing method of t transparent laminate, capacitive device and image display device | |
JP5887314B2 (en) | Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same | |
KR20150016934A (en) | Method for producing patterned conductive base, patterned conductive base produced by same, and touch panel | |
WO2014115646A1 (en) | Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device | |
JP5986934B2 (en) | Protective film forming composition, transfer material, conductive film laminate, touch panel and image display device | |
KR20170016570A (en) | Composition for window film, flexible window film prepared using the same and flexible display apparatus comprising the same | |
JP6375226B2 (en) | Curable composition, transfer film, front plate of image display device, front plate integrated sensor, image display device, and method for manufacturing front plate of image display device | |
EP2441579A2 (en) | Manufacturing method of touch panel and touch panel | |
WO2015186549A1 (en) | Laminate, transfer film, method for producing laminate, conductive film laminate, capacitive input device and image display device | |
JP6393179B2 (en) | A curable composition, a front plate of an image display device, a front plate integrated sensor, an image display device, and a method of manufacturing the front plate of the image display device. | |
JP2016509079A (en) | Low refractive layer coating composition and transparent conductive film containing the same | |
JP6207466B2 (en) | Transparent resin film, transfer film, conductive film laminate, capacitive input device, and image display device | |
TW201623694A (en) | Manufacturing method of transparent electrode and transparent electrode laminate | |
JP2017134205A (en) | Negative photosensitive colored resin composition and method for manufacturing decorated cover base material using negative photosensitive resin composition by transfer process | |
JP2015173010A (en) | Method of producing transparent conductive pattern and transparent conductive sheet | |
TWI598408B (en) | Thermosetting colored composition and cured film, touch panel having the cured film, manufacturing method for touch panel using the thermosetting colored composition | |
JP6865867B2 (en) | Transfer films and transparent laminates, their manufacturing methods, capacitive input devices and image display devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15802351 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016525773 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15802351 Country of ref document: EP Kind code of ref document: A1 |