WO2014112181A1 - 充電率推定装置および充電率推定方法 - Google Patents

充電率推定装置および充電率推定方法 Download PDF

Info

Publication number
WO2014112181A1
WO2014112181A1 PCT/JP2013/079725 JP2013079725W WO2014112181A1 WO 2014112181 A1 WO2014112181 A1 WO 2014112181A1 JP 2013079725 W JP2013079725 W JP 2013079725W WO 2014112181 A1 WO2014112181 A1 WO 2014112181A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
battery
slope
charging
determined
Prior art date
Application number
PCT/JP2013/079725
Other languages
English (en)
French (fr)
Inventor
征志 城殿
西垣 研治
隆広 都竹
博之 野村
正清 松井
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014112181A1 publication Critical patent/WO2014112181A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging rate estimation device and a charging rate estimation method for estimating a charging rate.
  • a secondary battery that takes a long time to eliminate polarization the time during which the charge rate cannot be estimated accurately lasts for a long time.
  • a secondary battery that requires a long time to eliminate polarization for example, a secondary battery using SiO (silicon monoxide) as a negative electrode is known.
  • An object of the present invention is to provide a charging rate estimation device and a charging rate estimation method.
  • the voltage measurement unit measures the open circuit voltage of the battery.
  • the calculation unit calculates the slope of the voltage of the battery in the determined first period after the battery finishes discharging.
  • the determination unit determines whether or not the slope in the first period is greater than a threshold value for determining whether or not the polarization has been eliminated.
  • the charging unit When it is determined that the slope is larger than the threshold, the charging unit causes the battery to be charged for the second period of charging the battery.
  • the estimation unit estimates the state of charge using the open circuit voltage when it is determined that the slope is equal to or less than the threshold in the first period after the battery finishes discharging or after the second period.
  • the voltage measurement unit measures the open circuit voltage of the battery.
  • the determination unit determines whether or not the slope in the third period is greater than a threshold value for determining whether or not the polarization has been eliminated.
  • the estimation unit estimates the state of charge using the open circuit voltage when it is determined that the slope is equal to or less than the threshold in the third period after the battery has finished charging or after the fourth period.
  • FIG. 1 is a diagram illustrating an embodiment of a charge / discharge device.
  • FIG. 2 is a diagram illustrating an example of the control unit.
  • FIG. 3 is a diagram illustrating an example of a rest period and a partial charging period after discharging.
  • FIG. 4 is a diagram illustrating an example of the operation of the control unit.
  • FIG. 5 is a diagram illustrating an example of a rest period and a partial discharge period after charging.
  • FIG. 6 is a diagram illustrating an example of the operation of the control unit according to the second embodiment.
  • FIG. 1 is a diagram showing an embodiment of a charging / discharging device.
  • the charging / discharging device 1 in FIG. 1 has a charging rate estimation device, and includes a battery 2, a voltage measurement unit 3, a control unit 4, a storage unit 5, a charger 6, switches SW1, SW2, and the like.
  • a load 7 in FIG. 1 is a device that operates by receiving power from the charging / discharging device 1. For example, a motor may be used as the operating device.
  • the charging rate estimation device includes a voltage measurement unit 3, a control unit 4, a storage unit 5, switches SW1, SW2, and the like.
  • the battery 2 can be a secondary battery.
  • a secondary battery for example, a lithium ion secondary battery, a nickel hydride secondary battery, or the like can be considered.
  • the description is made using one battery, but the number is not limited to one, and a plurality of batteries may be used.
  • the voltage measuring unit 3 measures the voltage of the battery 2. For example, a voltmeter can be considered.
  • the data measured by the voltage measuring unit 3 is output to the control unit 4.
  • the control unit 4 may use a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device, etc.)).
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • PLD Programmable Logic Device, etc.
  • the storage unit 5 may be a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), a hard disk, or the like.
  • the storage unit 5 may record data such as parameter values and variable values, or may be used as a work area at the time of execution. Moreover, when the control part 4 has a memory
  • the charger 6 is a device for receiving power from the power supply device and charging the battery 2.
  • the control unit will be described.
  • FIG. 2 is a diagram illustrating an embodiment of the control unit.
  • FIG. 3 is a diagram illustrating an example of a rest period and a partial charging period after discharging.
  • the control unit in FIG. 2 includes a calculation unit 201, a determination unit 202, a charge / discharge unit 203, an estimation unit 204, and the like.
  • the calculation unit 201 calculates the slope of the voltage of the battery 2 (absolute value of the slope) during the rest period (first period) after the battery 2 finishes discharging.
  • the pause periods are periods t2, t4, and t6 shown in FIG.
  • the discharge period is the period t1 in FIG.
  • the slope of the voltage of the battery 2 during the rest period will be described using a period t6 shown in an enlarged view 302 of 301 (ellipse) in FIG. It is conceivable that the slope is obtained using the voltage dV increased from the voltage at the beginning of the period t6 and the period t6. For example, the inclination is expressed as dV / t6. Alternatively, the slope may be obtained by using a part of the rest period and the increased voltage in the period.
  • the determination unit 202 determines whether or not the slope of the voltage of the battery 2 calculated by the calculation unit 201 during the suspension period is larger than a threshold value for determining whether or not the polarization has been eliminated. When the polarization is eliminated, the inclination becomes flat as in the period t8.
  • the charging / discharging unit 203 charges the battery 2 using the charger 6 during the partial charging period (second period) for charging the battery 2 determined by the slope of the voltage of the battery 2. Charge the battery. As a result, the polarization can be quickly eliminated by intermittently discharging after charging.
  • the charging / discharging unit 203 may include only a charging unit that performs partial charging.
  • the partial charging periods are periods t3, t5, and t7 shown in FIG.
  • the length of the partial charging period is determined according to the slope obtained in the suspension periods t2, t4, and t6. It is conceivable that the relationship between the length of the partial charge period and the slope is obtained, for example, by experiment or simulation, and the length and slope of the partial charge period are associated with each other and stored in the storage unit 5 or the like. Alternatively, it is conceivable to increase the length of the partial charging period as the inclination increases. Alternatively, the length of the partial charging period may be constant. Further, the length of the partial charging period may be obtained by calculation after the suspension period or the suspension period.
  • the estimation unit 204 uses the open circuit voltage to determine the state of charge when it is determined that the slope of the voltage of the battery 2 is equal to or less than the threshold during the rest period after the battery 2 finishes discharging or after the partial charging period. presume.
  • the state of charge is estimated using an open circuit voltage in which the polarization is eliminated and the inclination is reduced as in the period t8 shown in FIG.
  • the relationship between the open circuit voltage (OCV) and the state of charge (SOC) is obtained by experiment or simulation, and the open circuit voltage and the state of charge are associated and stored in the storage unit 5 or the like. Then, when it is determined that the slope is equal to or less than the threshold value, the charge state is estimated by selecting the related charge state using the open circuit voltage after the stop period or after the stop period. Further, the state of charge may be obtained by calculation after a suspension period or a suspension period.
  • control unit The operation of the control unit will be described.
  • FIG. 4 is a diagram showing an embodiment of the operation of the control unit.
  • the control unit 4 determines whether or not the discharge has been completed. If the discharge has been completed (Yes), the process proceeds to step S402, and if the discharge has not been completed (No), the discharge has been completed. Wait to do.
  • step S402 the control unit 4 acquires an open circuit voltage.
  • the control unit 4 instructs the switches SW1 and SW2 to measure the open circuit voltage, and when the open circuit voltage becomes measurable (Yes), the open circuit of the battery 2 measured by the voltage measuring unit 3 is measured. The voltage is acquired and transmitted to the control unit 4. If not acquired (No), wait until acquisition.
  • step S403 the control unit 4 obtains the slope of the voltage during the pause period, determines whether or not the slope obtained in step S404 is greater than the determined threshold value, and if so (Yes), proceeds to step S405. If it is equal to or less than the threshold (No), the process proceeds to step S407.
  • step S405 the control unit 4 obtains a partial charging period, and in step S406, the control unit 4 causes the battery 2 to be charged using the charger 6 during the partial charging period.
  • the suspension period is made constant, the battery 2 is charged using a current that minimizes the number of suspension periods and partial charge periods.
  • step S406 step S402 and subsequent steps are repeated until the slope becomes equal to or less than the threshold value.
  • step S407 the control unit 4 estimates the charging rate using the open circuit voltage.
  • charging can be intermittently performed after discharging, and polarization can be quickly eliminated, and an accurate charging rate can be estimated using an open circuit voltage after polarization is eliminated. Play.
  • Embodiment 2 will be described.
  • the control part of Embodiment 2 has the calculation part 201, the determination part 202, the charging / discharging part 203, the estimation part 204, etc. as shown in FIG.
  • FIG. 5 is a diagram illustrating an example of a rest period and a partial discharge period after charging.
  • the calculation unit 201 of the second embodiment calculates the voltage gradient (absolute value of the gradient) of the battery 2 during the rest period (third period) after the battery 2 has finished charging.
  • the rest periods of the second embodiment are periods t12, t14, and t16 shown in FIG.
  • the charging period is a period t11 in FIG.
  • the slope of the voltage of the battery 2 during the rest period will be described using a period t16 shown in an enlarged view 502 of 501 (oval) in FIG. It is conceivable that the slope is obtained using the voltage dV that is reduced from the voltage at the beginning of the period t16 and the period t16. For example, the inclination is expressed as dV / t16. Alternatively, the slope may be obtained by using a part of the rest period and a voltage corresponding to a decrease in the period.
  • the determination unit 202 of the second embodiment determines whether or not the slope of the voltage of the battery 2 calculated by the calculation unit 201 during the suspension period is greater than a threshold value for determining whether or not the polarization has been eliminated. When the polarization is eliminated, the inclination becomes flat as in the period t18.
  • the charging / discharging unit 203 of the second embodiment performs a partial discharge period (fourth period) in which the battery 2 is discharged determined by the slope of the voltage of the battery 2, the load 7 or the discharge The battery 2 is discharged using a resistance element or the like.
  • the charge / discharge unit 203 may include only a discharge unit that performs partial discharge.
  • the estimation unit 204 uses the open circuit voltage to Estimate the state of charge.
  • the charging state is estimated using the open circuit voltage in which the polarization is eliminated and the inclination is reduced as in the period t18 shown in FIG.
  • the relationship between the open circuit voltage (OCV) and the state of charge (SOC) is obtained by experiment or simulation, and the open circuit voltage and the state of charge are associated and stored in the storage unit 5 or the like. Then, when it is determined that the slope is equal to or less than the threshold value, the charge state is estimated by selecting the related charge state using the open circuit voltage after the stop period or after the stop period. Further, the state of charge may be obtained by calculation after a suspension period or a suspension period.
  • control unit The operation of the control unit will be described.
  • FIG. 6 is a diagram illustrating an example of the operation of the control unit according to the second embodiment.
  • the control unit 4 of the second embodiment determines whether or not the charging is completed. If the charging is completed (Yes), the process proceeds to step S602, and if the charging is not completed (No). Wait for charging to complete.
  • step S602 the control unit 4 acquires an open circuit voltage.
  • the control unit 4 instructs the switches SW1 and SW2 to measure the open circuit voltage, and when the open circuit voltage becomes measurable (Yes), the open circuit voltage of the battery 2 measured by the voltage measurement unit 3 is obtained. Obtained and transmitted to the control unit 4. If not acquired (No), wait until acquisition.
  • step S603 the control unit 4 obtains the slope of the voltage during the pause period, determines whether or not the slope obtained in step S604 is greater than the determined threshold value, and if so (Yes), proceeds to step S605. If it is equal to or less than the threshold (No), the process proceeds to step S607.
  • step S605 the control unit 4 obtains a partial discharge period, and in step S606, the control unit 4 discharges the battery 2 using the partial discharge period, the load 7, and the like.
  • the rest period is made constant, the current is discharged from the battery 2 using a current that minimizes the number of rest periods and partial discharge periods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 放電後には間欠的に充電を行い、充電後には間欠的に放電を行うことにより分極を早く解消させ、分極が解消したのちの開回路電圧を用いて充電率を推定する充電率推定装置および充電率推定方法を提供する。電池が放電を終了した後、決められた第1の期間における電池の電圧の傾きを算出する算出部と、第1の期間における傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定する判定部と、閾値より傾きが大きいと判定されたとき、電池へ充電をする第2の期間、電池へ充電をさせる充電部と、電池が放電を終了した後または第2の期間の後の第1の期間において、傾きが、閾値以下であると判定されたとき、開回路電圧を用いて充電状態を推定する推定部と、を備える充電率推定装置である。

Description

充電率推定装置および充電率推定方法
 本発明は、充電率を推定する充電率推定装置および充電率推定方法に関する。
 電池の充電率(State Of Charge:SOC)を求める方法として、開回路電圧(Open Circuit Voltage:OCV)を計測し、計測した開回路電圧を用いて充電率を推定することが知られている。しかし、開回路電圧は分極の影響を受けるため、分極の影響を受けている間は正確に充電率を推定することができない。そのため、正確に充電率を推定するためには電池の分極を解消させなければならない。
 そのため、分極が解消するまでに長時間を要する二次電池の場合には、正確に充電率の推定をすることができない時間が長く続くことになる。なお、分極が解消するまでに長時間を要する二次電池として、例えば、SiO(一酸化珪素)を負極に用いた二次電池などが知られている。
 なお、二次電池の容量を推定する技術として、充電中における二次電池の電圧値と、充電が中断されてから一定時間経過した二次電池の電圧値と、充電電流と、を用いて二次電池の内部抵抗を求め、その内部抵抗に対応する電池容量を求める技術が知られている。特許文献1を参照。
特開2000-116013号公報
 本発明は、放電後には間欠的に充電を行い、または、充電後には間欠的に放電を行うことにより分極を早く解消させ、分極が解消したのちの開回路電圧を用いて充電率を推定する充電率推定装置および充電率推定方法を提供することを目的とする。
 実施の態様のひとつである充電率推定装置は、電圧計測部、算出部、判定部、充電部、推定部を有している。
 電圧計測部は電池の開回路電圧を計測する。
 算出部は、電池が放電を終了した後、決められた第1の期間における電池の電圧の傾きを算出する。
 判定部は、第1の期間における傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定する。
 充電部は、閾値より傾きが大きいと判定されたとき、電池へ充電をする第2の期間、電池へ充電をさせる。
 推定部は、電池が放電を終了した後または第2の期間の後の第1の期間において、傾きが、閾値以下であると判定されたとき、開回路電圧を用いて充電状態を推定する。
 実施の他の態様のひとつである充電率推定装置は、電圧計測部、算出部、判定部、放電部、推定部を有している。
 電圧計測部は電池の開回路電圧を計測する。
 算出部は、電池が充電を終了した後、決められた第3の期間における電池の電圧の傾きを算出する。
 判定部は、第3の期間における傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定する。
 放電部は、閾値より傾きが大きいと判定されたとき、電池を放電する第4の期間、電池を放電させる。
 推定部は、電池が充電を終了した後または第4の期間の後の第3の期間において、傾きが、閾値以下であると判定されたとき、開回路電圧を用いて充電状態を推定する。
 実施の形態によれば、分極を早く解消できるとともに精度のよい充電率を推定することができるという効果を奏する。
図1は、充放電装置の一実施例を示す図である。 図2は、制御部の一実施例を示す図である。 図3は、放電後の休止期間と部分充電期間の一実施例を表す図である。 図4は、制御部の動作の一実施例を示す図である。 図5は、充電後の休止期間と部分放電期間の一実施例を表す図である。 図6は、実施形態2の制御部の動作の一実施例を示す図である。
 以下図面に基づいて、実施形態について詳細を説明する。
 図1は、充放電装置の一実施例を示す図である。図1の充放電装置1は充電率推定装置を有し、電池2、電圧計測部3、制御部4、記憶部5、充電器6、スイッチSW1、SW2などから構成される。図1の負荷7は、充放電装置1からの電力を受電して動作する装置である。動作する装置は、例えば、モータなどが考えられる。
 なお、充電率推定装置は、電圧計測部3、制御部4、記憶部5、スイッチSW1、SW2などを有する。
 電池2は二次電池などを用いることが考えられる。二次電池として、例えば、リチウムイオン二次電池、ニッケル水素二次電池などが考えられる。なお、本例では1つの電池を用いて説明しているが1つに限定されるものではなく、複数の電池を用いてもよい。
 電圧計測部3は電池2の電圧を計測する。例えば、電圧計などが考えられる。また、電圧計測部3が計測したデータは制御部4に出力される。
 制御部4(コンピュータなど)は、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)、PLD(Programmable Logic Device)など)を用いることが考えられる。
 記憶部5は、例えばROM(Read Only Memory)、RAM(Random Access Memory)などのメモリやハードディスクなどが考えられる。なお、記憶部5にはパラメータ値、変数値などのデータを記録してもよいし、実行時のワークエリアとして用いてもよい。また、制御部4が記憶部を有している場合には記憶部5を用いなくてもよい。
 充電器6は、給電装置から電力を受電して電池2に充電するための装置である。
 スイッチSW1、SW2は、制御部4からの指示により充電と放電と開回路電圧を計測とを切り替えるスイッチで、リレーなどを用いることが考えられる。本例では、2つのスイッチSW1、SW2を用いて切り替えをしているが図1の回路に限定されるものではない。
 制御部について説明する。
 図2は、制御部の一実施例を示す図である。図3は、放電後の休止期間と部分充電期間の一実施例を表す図である。図2の制御部は算出部201、判定部202、充放電部203、推定部204などを有している。
 算出部201は、電池2が放電を終了した後、休止期間(第1の期間)における電池2の電圧の傾き(傾きの絶対値)を算出する。休止期間は図3に示す期間t2、t4、t6である。放電期間は図3の期間t1である。
 休止期間における電池2の電圧の傾きについて、図3の301(楕円)の拡大図302に示す期間t6を用いて説明する。傾きは期間t6の始まりの電圧から増加した分の電圧dVと期間t6とを用いて求めることが考えられる。例えば、傾きはdV/t6と表す。または、休止期間のうちの一部の期間とその期間における増加した分の電圧を用いて傾きを求めてもよい。
 判定部202は、休止期間における算出部201で算出した電池2の電圧の傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定する。分極が解消した場合には期間t8のように傾きが平らになる。
 充放電部203は、閾値より傾きが大きいと判定されたとき、電池2の電圧の傾きにより決まる電池2へ充電をする部分充電期間(第2の期間)、充電器6を用いて電池2に充電をさせる。その結果、充電後に間欠的に放電を行うことにより分極を早く解消させることができる。ただし、充放電部203は実施形態1においては部分充電を行う充電部だけを備えているだけでもよい。
 部分充電期間は図3に示す期間t3、t5、t7である。部分充電期間の長さは休止期間t2、t4、t6において求めた傾きに応じて決まる。部分充電期間の長さと傾きとの関係は、例えば、実験またはシミュレーションなどにより求め、部分充電期間の長さと傾きとを関連付けて記憶部5などに記憶しておくことが考えられる。または、傾きが大きいほど部分充電期間の長さを長くすることも考えられる。または、部分充電期間の長さは一定でも良い。また、部分充電期間の長さは休止期間または休止期間後に演算により求めてもよい。
 推定部204は、電池2が放電を終了した後または部分充電期間の後の休止期間において、電池2の電圧の傾きが閾値以下であると判定されたとき、開回路電圧を用いて充電状態を推定する。図3に示す期間t8のように分極が解消して傾きが小さくなった開回路電圧を用いて充電状態を推定する。
 充電状態の推定は、例えば、開回路電圧(OCV)と充電状態(SOC)との関係を、実験またはシミュレーションなどにより求め、開回路電圧と充電状態とを関連付けて記憶部5などに記憶する。そして、傾きが閾値以下であると判定されたとき、その休止期間または休止期間後の開回路電圧を用いて、関連する充電状態を選択して充電状態を推定する。また、充電状態は休止期間または休止期間後に演算により求めてもよい。
 制御部の動作について説明する。
 図4は、制御部の動作の一実施例を示す図である。ステップS401では、制御部4が放電を完了したか否かを判定し、放電を完了した場合(Yes)にはステップS402に移行し、放電が完了していない場合(No)には放電が完了するのを待つ。
 ステップS402では制御部4が開回路電圧を取得する。図1の例では、制御部4がスイッチSW1、SW2に開回路電圧を計測するための指示をし、開回路電圧が計測可能(Yes)になると電圧計測部3が計測した電池2の開回路電圧を取得し、制御部4に送信する。取得していない場合(No)には取得するまで待つ。
 ステップS403で制御部4は休止期間における電圧の傾きを求め、ステップS404で求めた傾きが決められた閾値より大きいか否かを判定し、大きい場合(Yes)にはステップS405に移行する。閾値以下の場合(No)にはステップS407に移行する。
 ステップS405で制御部4は部分充電期間を求め、ステップS406で制御部4が部分充電期間、充電器6を用いて電池2に充電をさせる。休止期間を一定にする場合、休止期間と部分充電期間の回数ができる限り少なくなる電流を用いて、電池2に充電をする。
 なお、電流を一定とする場合、休止期間と部分充電期間の回数ができる限り少なくなる休止期間を毎回求め、求めた休止期間に一定電流で電池2に充電をする。これにより、分極を早く解消できる。ステップS406の後は、傾きが閾値以下になるまでステップS402以降を繰り返す。
 ステップS407では、制御部4が開回路電圧を用いて、充電率を推定する。
 実施形態1によれば、放電後には間欠的に充電を行い、分極を早く解消できるとともに、分極が解消したのちの開回路電圧を用いて、精度のよい充電率を推定することができるという効果を奏する。
 実施形態2について説明する。
 実施形態2の制御部について説明する。
 実施形態2の制御部は図2に示すように算出部201、判定部202、充放電部203、推定部204などを有している。図5は、充電後の休止期間と部分放電期間の一実施例を表す図である。
 実施形態2の算出部201は、電池2が充電を終了した後、休止期間(第3の期間)における電池2の電圧の傾き(傾きの絶対値)を算出する。実施形態2の休止期間は図5に示す期間t12、t14、t16である。充電期間は図5の期間t11である。
 休止期間における電池2の電圧の傾きについて、図5の501(楕円)の拡大図502に示す期間t16を用いて説明する。傾きは期間t16の始まりの電圧から減少した分の電圧dVと期間t16とを用いて求めることが考えられる。例えば、傾きはdV/t16と表す。または、休止期間のうちの一部の期間とその期間における減少した分の電圧を用いて傾きを求めてもよい。
 実施形態2の判定部202は、休止期間における算出部201で算出した電池2の電圧の傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定する。分極が解消した場合には期間t18のように傾きが平らになる。
 実施形態2の充放電部203は、閾値より傾きが大きいと判定されたとき、電池2の電圧の傾きにより決まる電池2へ放電をする部分放電期間(第4の期間)、負荷7または放電用抵抗素子などを用いて電池2を放電させる。その結果、充電後に間欠的に放電を行うことにより分極を早く解消させることができる。ただし、充放電部203は実施形態2においては部分放電を行う放電部だけを備えているだけでもよい。
 部分放電期間は図5に示す期間t13、t15、t17である。部分放電期間の長さは休止期間t12、t14、t16において求めた傾きに応じて決まる。部分放電期間の長さと傾きとの関係は、例えば、実験またはシミュレーションなどにより求め、部分放電期間の長さと傾きとを関連付けて記憶部5などに記憶しておくことが考えられる。または、傾きが大きいほど部分放電期間の長さを長くすることも考えられる。または、部分放電期間は一定でも良い。また、部分放電期間の長さは休止期間または休止期間後に演算により求めてもよい。
 推定部204は、電池2が充電を終了した後または部分放電期間の後の休止期間において、電池2の電圧の傾きが閾値以下であると判定されたとき、開回路電圧を用いて電池2の充電状態を推定する。図5に示す期間t18のように分極が解消して傾きが小さくなった開回路電圧を用いて充電状態を推定する。
 充電状態の推定は、例えば、開回路電圧(OCV)と充電状態(SOC)との関係を、実験またはシミュレーションなどにより求め、開回路電圧と充電状態とを関連付けて記憶部5などに記憶する。そして、傾きが閾値以下であると判定されたとき、その休止期間または休止期間後の開回路電圧を用いて、関連する充電状態を選択して充電状態を推定する。また、充電状態は休止期間または休止期間後に演算により求めてもよい。
 制御部の動作について説明する。
 図6は、実施形態2の制御部の動作の一実施例を示す図である。ステップS601では、実施形態2の制御部4が充電を完了したか否かを判定し、充電を完了した場合(Yes)にはステップS602に移行し、充電が完了していない場合(No)には充電が完了するのを待つ。
 ステップS602では制御部4が開回路電圧を取得する。図1の例では、制御部4がスイッチSW1、SW2に開回路電圧を計測する指示をし、開回路電圧が計測可能(Yes)になると電圧計測部3が計測した電池2の開回路電圧を取得し、制御部4に送信する。取得していない場合(No)には取得するまで待つ。
 ステップS603で制御部4は休止期間における電圧の傾きを求め、ステップS604で求めた傾きが決められた閾値より大きいか否かを判定し、大きい場合(Yes)にはステップS605に移行する。閾値以下の場合(No)にはステップS607に移行する。
 ステップS605で制御部4は部分放電期間を求め、ステップS606で制御部4が部分放電期間、負荷7などを用いて電池2を放電させる。休止期間を一定にする場合、休止期間と部分放電期間の回数ができる限り少なくなる電流を用いて、電池2から電流を放電させる。
 なお、電流を一定とする場合、休止期間と部分放電期間の回数ができる限り少なくなる休止期間を毎回求め、求めた休止期間に一定電流を電池2から放電させる。これにより、分極を早く解消できる。ステップS606の後は、傾きが閾値以下になるまでステップS602以降を繰り返す。
 ステップS607では、制御部4が開回路電圧を用いて、充電率を推定する。
 実施形態2によれば、充電後には間欠的に放電を行い、分極を早く解消できるとともに、分極が解消したのちの開回路電圧を用いて、精度のよい充電率を推定することができるという効果を奏する。
 また、本発明は、実施形態1、2に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。

Claims (10)

  1.  電池の開回路電圧を計測する電圧計測部と、
     前記電池が放電を終了した後、決められた第1の期間における前記電池の電圧の傾きを算出する算出部と、
     前記第1の期間における前記傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定する判定部と、
     前記閾値より前記傾きが大きいと判定されたとき、前記電池へ充電をする第2の期間、前記電池へ充電をさせる充電部と、
     前記電池が放電を終了した後または前記第2の期間の後の前記第1の期間において、前記傾きが、前記閾値以下であると判定されたとき、前記開回路電圧を用いて充電状態を推定する推定部と、
     を備えることを特徴とする充電率推定装置。
  2.  前記第2の期間は、前記算出部により算出された前記傾きにより決める、ことを特徴とする請求項1に記載の充電率推定装置。
  3.  前記充電部は、
     前記第1の期間が一定であるとき、前記第1の期間と前記第2の期間の回数が最小となる、前記電池へ充電させる電流を求めることを特徴とする請求項1または2に記載の充電率推定装置。
  4.  前記充電部は、
     前記電池へ充電させる電流が一定であるとき、前記第1の期間と前記第2の期間の回数が最小となる、前記第1の期間を求めることを特徴とする請求項1または2に記載の充電率推定装置。
  5.  電池の開回路電圧を計測する電圧計測部と、
     前記電池が充電を終了した後、決められた第3の期間における前記電池の電圧の傾きを算出する算出部と、
     前記第3の期間における前記傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定する判定部と、
     前記閾値より前記傾きが大きいと判定されたとき、前記電池を放電する第4の期間、前記電池を放電させる放電部と、
     前記電池が充電を終了した後または前記第4の期間の後の前記第3の期間において、前記傾きが、前記閾値以下であると判定されたとき、前記開回路電圧を用いて充電状態を推定する推定部と、
     を備えることを特徴とする充電率推定装置。
  6.  前記第4の期間は、前記算出部により算出された前記傾きにより決める、ことを特徴とする請求項5に記載の充電率推定装置。
  7.  前記放電部は、
     前記第3の期間が一定であるとき、前記第3の期間と前記第4の期間の回数が最小となる、前記電池を放電させる電流を求めることを特徴とする請求項5または6に記載の充電率推定装置。
  8.  前記放電部は、
     前記電池を放電させる電流が一定であるとき、前記第3の期間と前記第4の期間の回数が最小となる、前記第3の期間を求めることを特徴とする請求項5または6に記載の充電率推定装置。
  9.  コンピュータが、
     前記電池が放電を終了した後、決められた第1の期間における前記電池の電圧の傾きを求め、
     前記第1の期間における前記傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定し、
     前記閾値より前記傾きが大きいと判定されたとき、前記電池へ充電をする第2の期間、前記電池へ充電をさせ、
     前記電池が放電を終了した後または前記第2の期間の後の前記第1の期間において、前記傾きが、前記閾値以下であると判定されたとき、開回路電圧を用いて充電状態を推定する、
     処理を実行することを特徴とする充電率推定方法。
  10.  コンピュータが、
     前記電池が充電を終了した後、決められた第3の期間における前記電池の電圧の傾きを算出し、
     前記第3の期間における前記傾きが、分極が解消したか否かを判定する閾値より大きいか否かを判定し、
     前記閾値より前記傾きが大きいと判定されたとき、前記電池を放電する第4の期間、前記電池を放電させ、
     前記電池が充電を終了した後または前記第4の期間の後の前記第3の期間において、前記傾きが、前記閾値以下であると判定されたとき、開回路電圧を用いて充電状態を推定する、
     処理を実行することを特徴とする充電率推定方法。
PCT/JP2013/079725 2013-01-21 2013-11-01 充電率推定装置および充電率推定方法 WO2014112181A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008169A JP2014139520A (ja) 2013-01-21 2013-01-21 充電率推定装置および充電率推定方法
JP2013-008169 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112181A1 true WO2014112181A1 (ja) 2014-07-24

Family

ID=51209293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079725 WO2014112181A1 (ja) 2013-01-21 2013-11-01 充電率推定装置および充電率推定方法

Country Status (2)

Country Link
JP (1) JP2014139520A (ja)
WO (1) WO2014112181A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678316A (zh) * 2015-02-28 2015-06-03 北京交通大学 锂离子电池荷电状态估算方法和装置
JP2017161311A (ja) * 2016-03-08 2017-09-14 株式会社東芝 蓄電池装置
GB2570356A (en) * 2018-05-29 2019-07-24 Manodya Ltd A pulse discharge system
CN112673266A (zh) * 2020-04-30 2021-04-16 华为技术有限公司 析锂检测方法及装置、极化比例的获取方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520017B2 (ja) * 2014-08-20 2019-05-29 株式会社デンソー 充電率算出装置
CN107533105B (zh) * 2015-02-28 2020-01-24 北京交通大学 锂离子电池荷电状态估算方法和装置
KR101985812B1 (ko) * 2015-08-18 2019-06-04 주식회사 엘지화학 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
JP6428545B2 (ja) * 2015-09-25 2018-11-28 トヨタ自動車株式会社 電動車両
JP2017073929A (ja) * 2015-10-09 2017-04-13 株式会社デンソー 充放電制御装置及び組電池装置
JP7089547B2 (ja) * 2020-04-30 2022-06-22 プライムアースEvエナジー株式会社 二次電池の状態判定方法及び状態判定装置
JP7431192B2 (ja) 2021-04-16 2024-02-14 プライムアースEvエナジー株式会社 アルカリ二次電池の制御方法
JP7440455B2 (ja) 2021-04-16 2024-02-28 プライムアースEvエナジー株式会社 アルカリ二次電池の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301783A (ja) * 2003-03-31 2004-10-28 Yazaki Corp バッテリ状態監視方法およびその装置
JP2008233092A (ja) * 1996-07-30 2008-10-02 Allied Signal Inc 分極したバッテリーの減極を加速させてバッテリー試験を容易にする方法
JP2011043460A (ja) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd 二次電池の特性検出方法および二次電池装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233092A (ja) * 1996-07-30 2008-10-02 Allied Signal Inc 分極したバッテリーの減極を加速させてバッテリー試験を容易にする方法
JP2004301783A (ja) * 2003-03-31 2004-10-28 Yazaki Corp バッテリ状態監視方法およびその装置
JP2011043460A (ja) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd 二次電池の特性検出方法および二次電池装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678316A (zh) * 2015-02-28 2015-06-03 北京交通大学 锂离子电池荷电状态估算方法和装置
JP2017161311A (ja) * 2016-03-08 2017-09-14 株式会社東芝 蓄電池装置
GB2570356A (en) * 2018-05-29 2019-07-24 Manodya Ltd A pulse discharge system
GB2570356B (en) * 2018-05-29 2020-01-15 Manodya Ltd A pulse discharge system
CN112673266A (zh) * 2020-04-30 2021-04-16 华为技术有限公司 析锂检测方法及装置、极化比例的获取方法及装置
WO2021217662A1 (zh) * 2020-04-30 2021-11-04 华为技术有限公司 析锂检测方法及装置、极化比例的获取方法及装置

Also Published As

Publication number Publication date
JP2014139520A (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2014112181A1 (ja) 充電率推定装置および充電率推定方法
JP6528906B2 (ja) 蓄電装置及び蓄電装置の制御方法
US9081068B2 (en) Method and apparatus for determining a capacity of a battery
KR102369249B1 (ko) 모델-독립적 배터리 수명 및 성능 예측기
JP5929778B2 (ja) 充電率推定装置および充電率推定方法
JP6369340B2 (ja) 蓄電装置および蓄電装置の制御方法
JP6106991B2 (ja) 状態管理装置、蓄電素子の均等化方法
EP2089731A2 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
CN107894570B (zh) 基于Thevenin模型的电池组SOC的估算方法和装置
WO2020259007A1 (zh) 电池的剩余可用能量估算方法、装置、系统和存储介质
US10310021B2 (en) Method for real time correction of ion concentration and Coulomb counting state-of-charge (SOC) in battery
US11095130B2 (en) Power storage apparatus for estimating an open-circuit voltage
JP2016176780A (ja) 電池残量予測装置及びバッテリパック
JP6330605B2 (ja) 推定プログラム、推定方法および推定装置
JP7390490B2 (ja) 電池管理装置、電池管理方法
US20150369876A1 (en) Deterioration determination method, manufacturing method of electric storage device, deterioration determination device, and storage medium
JP7332098B2 (ja) バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両
JP2017022852A (ja) 蓄電装置及び蓄電方法
WO2018025350A1 (ja) 推定装置、推定プログラムおよび充電制御装置
JP2017225225A (ja) 充電率推定装置
KR101595956B1 (ko) 리튬이차전지의 전지잔량 측정 장치 및 방법
JP6866756B2 (ja) 充電率推定装置
JP2018048910A (ja) 蓄電装置
JP5851514B2 (ja) 電池制御装置、二次電池システム
JP2016181991A (ja) 充電装置および充電装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872166

Country of ref document: EP

Kind code of ref document: A1