WO2014110924A1 - 一种发射上行解调参考信号的方法和系统 - Google Patents

一种发射上行解调参考信号的方法和系统 Download PDF

Info

Publication number
WO2014110924A1
WO2014110924A1 PCT/CN2013/085570 CN2013085570W WO2014110924A1 WO 2014110924 A1 WO2014110924 A1 WO 2014110924A1 CN 2013085570 W CN2013085570 W CN 2013085570W WO 2014110924 A1 WO2014110924 A1 WO 2014110924A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
indication information
transmission
uplink
sequence
Prior art date
Application number
PCT/CN2013/085570
Other languages
English (en)
French (fr)
Inventor
陈宪明
王瑜新
关艳峰
罗薇
李书鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014110924A1 publication Critical patent/WO2014110924A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • H04L1/0053Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables specially adapted for power saving

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and system for transmitting an uplink demodulation reference signal. Background technique
  • FIG. 1 it is a schematic diagram of a method for transmitting an uplink demodulation reference signal (DMRS).
  • DMRS uplink demodulation reference signal
  • Each uplink subframe includes two uplink DMRS transmission locations, specifically in each subframe. 4th and 11th Orthogonal Frequency Division Multiplexing (OFDM) symbols; the final demodulation reference signal sequence of the 4th OFDM symbol position in the sub-band range is an OCC code of length 2
  • OCC code of length 2
  • the product of the first complex value of the first complex value and the initial DMRS sequence of the corresponding position, and the final DMRS sequence of the 11th OFDM symbol position in the subframe range is the second complex value of the OCC code of length 2 and the initial DMRS sequence of the corresponding position. The product of.
  • the characteristics include: the user is usually a fixed user, or the user moving at a very low speed, the user has low mobility requirements, has a small wireless channel delay spread, and the wireless channel environment changes. Slower features; in addition, data services are primarily based Internet Protocol (Internet Procotol, IP for short) Internet service, compared with traditional carrier-class services, most Internet services have low requirements on transmission delay, but have higher requirements on data rate.
  • Internet Protocol Internet Procotol, IP for short
  • the LTE system is mainly applied to large coverage (500 meters to 100 kilometers) and multiple channels (speeds from 3 km/h to 350 km/h, the channel delay never exceeds one)
  • the microsecond to ten microseconds environment is incompatible with the application environment of the data service covered by the existing small cell. Therefore, when it carries the high data rate IP packet service, if the uplink DMRS of the existing LTE system is still used The method of transmission will bring about the problem that the overhead of DMRS is too large, the efficiency is low, and the cost is too high.
  • the uplink DMRS transmission method of the LTE system is that each time slot or subframe needs to send an uplink DMRS signal, which results in an excessive uplink DMRS overhead of a small cell coverage environment, low efficiency, and high cost. Therefore, in a high data rate small cell coverage environment, it is still a need to solve the problem of reducing the uplink DMRS overhead and increasing the system capacity.
  • the present invention provides a method and system for transmitting an uplink DMRS signal.
  • the technical problem to be solved is how to reduce the uplink DMRS signal overhead.
  • the present invention provides the following technical solutions:
  • a method for transmitting an uplink demodulation reference signal DMRS comprising:
  • An uplink DMRS signal is transmitted according to the transmission position and the OCC code.
  • the method further has the following feature: the uplink DMRS signal transmission position is at least one orthogonal frequency division multiplexing OFDM symbol in a range of transmission time windows;
  • the transmission time window is a continuous uplink subframe allocated to the user side by the network side.
  • the method further has the following feature: the uplink DMRS signal transmission location is included in at least one subframe within a transmission time window.
  • the method further has the following feature: the uplink DMRS signal transmission location is determined according to the transmission location indication information of the network side.
  • the method further has the following feature: the transmitting location indication information includes subframe position indication information and OFDM symbol location indication information;
  • the subframe position indication information indicates a subframe including an uplink DMRS within a transmission time window
  • the OFDM symbol position indication information indicates an OFDM symbol that actually carries an uplink DMRS signal within a subframe range including the uplink DMRS signal.
  • the method further has the following feature: the subframe position indication information bit number is equal to a transmission time window size, and each bit indicates whether the corresponding subframe in the transmission time window range includes the uplink DMRS signal; wherein:
  • the transmission time window size is the number of consecutive uplink subframes allocated to the user side by the network side.
  • the method further has the following feature: the OFDM symbol position indication information bit number is equal to the number of OFDM symbols in the subframe, and each bit indicates whether the corresponding OFDM symbol in the subframe range carries the uplink DMRS signal.
  • the method further has the following feature:
  • the OCC code is one of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions; wherein:
  • the number of transmission positions is the number of OFDM symbols carrying the DMRS signal within the transmission time window.
  • the method further has the following feature: the network side OCC indication information indicates a complex value sequence of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions.
  • the method further has the following feature: the number of bits of the network side OCC indication information is Cez/(/o g2 (N) ), and the value of each OCC indication information represents a complex value sequence; wherein, N is The sequence length is equal to the number of complex-valued sequences of a set of mutually orthogonal complex-valued sequences of the number of transmitted positions, and Cez7 represents up-rounding.
  • the method further has the following feature: the transmitting the uplink DMRS signal according to the transmitting position and the OCC code, including:
  • a system for transmitting an uplink demodulation reference signal DMRS comprising:
  • the acquiring device is configured to: obtain an uplink DMRS signal transmission location, and determine an OCC code related to the uplink DMRS signal according to the orthogonal coverage code OCC indication information of the network side; and the transmitting device is configured to: according to the transmitting location and the OCC Code, transmitting the uplink DMRS signal.
  • the system further has the following feature: the uplink DMRS signal transmission position is at least one orthogonal frequency division multiplexing OFDM symbol in a range of transmission time windows;
  • the transmission time window is a continuous uplink subframe allocated to the user side by the network side.
  • the system further has the following feature: the uplink DMRS signal transmission location is included in at least one subframe within a transmission time window.
  • the system further has the following feature: the uplink DMRS signal transmission location is determined according to the transmission location indication information of the network side.
  • the system further has the following features: the transmitting location indication information includes subframe location indication information and OFDM symbol location indication information;
  • the subframe position indication information indicates a subframe including an uplink DMRS within a transmission time window
  • the OFDM symbol position indication information indicates an OFDM symbol that actually carries an uplink DMRS signal within a subframe range including the uplink DMRS signal.
  • the system further has the following feature: the subframe position indication information bit number is equal to the transmission time window size, and each bit indicates whether the corresponding subframe in the transmission time window range includes the uplink DMRS signal; wherein:
  • the transmission time window size is the number of consecutive uplink subframes allocated to the user side by the network side.
  • the system further has the following feature: the OFDM symbol position indication information bit number is equal to the number of OFDM symbols in the subframe, and each bit indicates whether the corresponding OFDM symbol in the subframe range carries the uplink DMRS signal.
  • the system further has the following feature: the OCC code is one of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions;
  • the number of transmission positions is the number of OFDM symbols carrying the DMRS signal within the transmission time window.
  • the system further has the following feature: the network side OCC indication information indicates a complex value sequence of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions.
  • the system further has the following feature: the number of bits of the network side OCC indication information is Ce. g 2 W> , the value of each OCC indication information represents a complex value sequence; where N is the number of complex-valued sequences included in a set of mutually orthogonal complex-valued sequences whose sequence length is equal to the number of transmission positions, and Cez7 represents up-rounding .
  • the transmitting device includes:
  • Obtaining a module configured to: obtain, according to the transmitting location, a first DMRS sequence of each transmitting location, where the sequence length is equal to the number of consecutive subcarriers allocated by the network side to the user side;
  • a calculation module configured to: connect to the acquiring module, multiply each complex value of the OCC code whose length is the number of transmitting positions by a corresponding first DMRS sequence of each transmitting position, to obtain each transmitting position a second DMRS sequence;
  • a transmitting module configured to: connect to the computing module, map a second DMRS sequence of each transmitting location to the transmitting location, and transmit.
  • the embodiment provided by the present invention achieves the problem that the uplink DMRS overhead is too large, the efficiency is low, and the cost is too high in the scenario where the data service small cell coverage is deployed, and the uplink DMRS signal is transmitted according to the transmission location and the OCC code.
  • the overhead of the uplink DMRS signal is reduced, and the effect of the uplink small cell coverage capacity is improved.
  • 1 is a schematic diagram of a method for transmitting an uplink DMRS
  • FIG. 3 is a schematic diagram of a method for transmitting an uplink DMRS according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a method for transmitting an uplink DMRS according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a method for transmitting an uplink DMRS according to Embodiment 3 of the present invention
  • FIG. 6 is a structural diagram of an embodiment of a system for transmitting an uplink DMRS according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be further described in detail below with reference to the drawings and specific embodiments. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
  • the method embodiment includes: Step 201: Acquire an uplink DMRS signal transmission location, and determine an OCC code related to the uplink DMRS signal according to the orthogonal coverage code OCC indication information of the network side; Step 202, according to the transmission location and the OCC Code, transmitting the uplink DMRS signal.
  • the method provided by the present invention achieves the problem that the uplink DMRS overhead is too large, the efficiency is low, and the cost is too high in the data service small cell coverage deployment scenario, and the uplink DMRS signal is transmitted according to the transmission location and the OCC code.
  • the overhead of the uplink DMRS signal is reduced, and the effect of the uplink small cell coverage capacity is improved.
  • the following is a description of the method embodiments of the present invention.
  • the application scenario is described in the following application scenario.
  • the application scenario includes at least one base station (network side device, such as eNode B) and at least one mobile station (user side device, such as UE), wherein the base station has a function of transmitting control information and user data to at least one mobile station, and receiving control information and user data transmitted by at least one mobile station.
  • Embodiment 1 As shown in FIG. 3, it is a schematic diagram of a method for transmitting an uplink DMRS according to Embodiment 1; wherein a twill indicates an uplink DMRS transmission position, and a non-twill indicates an uplink data transmission position.
  • the transmitting position of the uplink DMRS signal may be determined by two methods, including: The network side and the user pre-negotiate the uplink DMRS signal transmission position, and each time the user acquires When the location is transmitted, it may be directly determined according to the negotiated result; or, according to the transmission location indication information of the network side, the uplink DMRS signal transmission location is determined.
  • the transmitting location is at least one OFDM symbol within a transmission time window; therefore, determining a transmitting location of the uplink DMRS signal is equivalent to determining a subframe including an uplink DMRS signal within a transmission time window, and including an uplink DMRS signal
  • the OFDM symbol actually carrying the uplink DMRS signal within the subframe range.
  • the transmitting location indication information includes: subframe location indication information and OFDM symbol location indication information.
  • the subframe position indication information indicates a subframe including a DMRS signal in a range of a transmission time window; its number of bits is equal to a transmission time window size, and each bit indicates whether a corresponding subframe within a transmission time window includes an uplink DMRS signal;
  • the size of the transmission time window is the number of consecutive uplink subframes allocated by the network side to the user side.
  • the subframe position indication information is carried by 2 bits, and each bit corresponds to one subframe, and the specific value is "11", where the bit is set to "1", indicating that the corresponding subframe includes
  • the uplink DMRS signal otherwise, indicates that the corresponding subframe does not include the uplink DMRS signal, that is, both subframe 1 and subframe 2 contain the uplink DMRS signal.
  • the OFDM symbol position indication information indicates an OFDM symbol that actually carries an uplink DMRS signal within a subframe range including an uplink DMRS signal; its number of bits is equal to the number of OFDM symbols in the subframe, and each bit indicates a subframe range including the uplink DMRS signal. Whether the corresponding OFDM symbol carries the uplink DMRS signal.
  • the OFDM symbol position indication information includes 14 bits, and each bit corresponds to one OFDM symbol, and the specific value is “00000010000000”, where the bit is set to “ ⁇ , indicating that the corresponding OFDM symbol carries the uplink DMRS signal, Otherwise, the corresponding OFDM symbol does not carry the uplink DMRS signal, that is, the seventh OFDM symbol in the subframe 1 and the subframe 2 is used to carry the uplink DMRS signal, where the transmission location indication information of the network side can be carried on the user.
  • determining the transmission position is the 7th OFDM symbol of each subframe.
  • the network side OCC indication information is determined according to the uplink DMRS signal. OCC code.
  • the OCC code is one of a set of mutually orthogonal complex-valued sequences whose sequence length is equal to the number of transmission positions, where the number of transmission positions is the number of OFDM symbols carrying the uplink DMRS signal within the transmission time window.
  • the network side OCC indication information indicates a complex value sequence of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions; the number of bits of the network side OCC indication information is Cez/ (/o g2 (N )), the value of each OCC indication information represents a complex value sequence; where N is the number of complex-valued sequences included in a set of mutually orthogonal complex-valued sequences whose sequence length is equal to the number of transmitted positions, and Cez7 represents up-rounding.
  • the number of transmission positions is two, and therefore the OCC length is two; in addition, the number of complex-value sequences included in a set of mutually orthogonal complex-value sequences of length 2 is generally designed to be two, specifically
  • the sequence [1,1] and the sequence [1,-1] the network side OCC indication information including Cez7 (/o& (N)) is equal to 1 bit, and the specific value is "0", where the bit is set to "0"” , indicates that the order ⁇ ⁇ ⁇ , ⁇ ] is used as the OCC code, and is set to "1", indicating that the sequence [1, -1] is used as the OCC code.
  • the OCC indication information of the network side may be carried in a downlink physical control signaling or a user-specific downlink system message.
  • the method includes: First, acquiring the first DMRS sequence of the 7th OFDM symbol of subframes 1 and 2, respectively.
  • the sequence length is equal to the number of consecutive subcarriers allocated by the network side to the user side.
  • the first DMRS sequence is defined as a cyclic shift of a DMRS base sequence, and the cyclic shift bit number is determined by a cyclic shift index parameter; in addition, the DMRS base sequence is defined as a maximum prime number that is less than or equal to a sequence length.
  • the cyclic extension of the ZC sequence of A/ zc length, and the sequence of the maximum prime number zc length less than or equal to the sequence length, is used, and which one of the Mzc- ⁇ base sequences is used is determined by the DMRS base sequence index parameter.
  • the base sequence index and the cyclic shift index are usually mapped to the DMRS transmission position, and different DMRS transmission positions are used. Usually corresponding to different first DMRS sequences.
  • each complex value of the OCC code whose length is the number of transmission positions is multiplied by the first DMRS sequence of each transmission position to obtain a second DMRS sequence of each transmission position, as follows:
  • the first complex value ([1] ) in the specific [1, 1] is multiplied by the first DMRS sequence of the 7th OFDM symbol of the subframe 1 to obtain the second OFDM symbol of the subframe 1 a DMRS sequence; multiplying a second complex value ([1]) in the OCC code (specifically [1, 1]) with a first DMRS sequence of the 7th OFDM symbol of the subframe 2 to obtain the subframe 2 A second DMRS sequence of 7 OFDM symbols.
  • the second DMRS sequence of the seventh OFDM symbol of subframe 1 is equal to the seventh OFDM of subframe 1.
  • the first DMRS sequence of the symbol, the second DMRS sequence of the 7th OFDM symbol of subframe 2 is equal to the first DMRS sequence of the 7th OFDM symbol of subframe 2.
  • the second DMRS sequence of the 7th OFDM symbol of subframe 1 is mapped to the 7th OFDM symbol position of subframe 1 and transmitted; and the 7th OFDM symbol second DMRS sequence of subframe 2 is mapped to subframe 2 The 7th OFDM symbol position, and transmitted.
  • Embodiment 2 As shown in FIG. 4, it is a schematic diagram of a method for transmitting an uplink DMRS according to Embodiment 2; wherein, a twill indicates an uplink DMRS transmission position, and a non-twill indicates an uplink data transmission position.
  • the transmitting position of the uplink DMRS signal may be determined by two methods, including: the network side and the user pre-negotiating the uplink DMRS signal transmission position, and each time the user acquires the transmitting position, the user may directly determine according to the negotiated result; or The uplink DMRS signal transmission position is determined according to the transmission location indication information on the network side.
  • the transmitting location is at least one OFDM symbol within a transmission time window; therefore, determining a transmitting location of the uplink DMRS signal is equivalent to determining a subframe including an uplink DMRS signal within a transmission time window, and including an uplink DMRS signal
  • the OFDM symbol actually carrying the uplink DMRS signal within the subframe range.
  • the transmitting location indication information includes: subframe location indication information and OFDM symbol location indication information.
  • the subframe position indication information indicates a subframe including a DMRS signal in a range of a transmission time window; its number of bits is equal to a transmission time window size, and each bit indicates whether a corresponding subframe within a transmission time window includes an uplink DMRS signal;
  • the size of the transmission time window is the number of consecutive uplink subframes allocated by the network side to the user side.
  • the subframe position indication information is carried by 3 bits, and each bit corresponds to one subframe, and the specific value is “101”, where the bit is set to “1”, indicating that the corresponding subframe includes
  • the uplink DMRS signal otherwise, indicates that the corresponding subframe does not include the uplink DMRS signal, that is, both subframe 1 and subframe 3 contain the uplink DMRS signal.
  • the OFDM symbol position indication information indicates an OFDM symbol that actually carries an uplink DMRS signal within a subframe range including an uplink DMRS signal; its number of bits is equal to the number of OFDM symbols in the subframe, and each bit indicates a subframe range including the uplink DMRS signal. Whether the corresponding OFDM symbol carries the uplink DMRS signal.
  • the OFDM symbol position indication information includes 14 bits, and each bit corresponds to one OFDM symbol, and the specific value is “00000010000000”, where the bit is set to “1”, indicating that the corresponding OFDM symbol carries the uplink DMRS signal. Otherwise, it indicates that the corresponding OFDM symbol does not carry the uplink DMRS signal, that is, the seventh OFDM symbol in subframe 1 and subframe 3 is used to carry the uplink DMRS signal.
  • the transmitting location indication information of the network side may be carried in a downlink physical control signaling or a user-specific downlink system message. In this embodiment, the transmission position is determined to be subframes 1 and 3, the 7th OFDM symbol.
  • the OCC code related to the uplink DMRS signal is determined according to the network side OCC indication information.
  • the OCC code is one of a set of mutually orthogonal complex-valued sequences whose sequence length is equal to the number of transmission positions, where the number of transmission positions is the number of OFDM symbols carrying the uplink DMRS signal within the transmission time window.
  • the network side OCC indication information indicates a complex value sequence of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions; the number of bits of the network side OCC indication information is Cez/ (/o g2 (N )), the value of each OCC indication information represents a complex value sequence; wherein N is a complex number of mutually orthogonal complex-valued sequences including a sequence length equal to the number of transmission positions
  • the number of value sequences, Cez7 means round up.
  • the number of transmission positions is two, and therefore the OCC length is two; in addition, the number of complex-value sequences included in a set of mutually orthogonal complex-value sequences of length 2 is generally designed to be two, specifically Sequence [1,1] and sequence [1,-1], the network side OCC indication information includes Cez7 (/o&(N)) equal to 1 bit, and the specific value is "1", where the bit is set to "0"” , indicates that the sequence ⁇ [1,1] is used as the OCC code and is set to "1", indicating that the sequence [1, -1] is used as the OCC code.
  • the OCC indication information of the network side may be carried in a downlink physical control signaling or a user-specific downlink system message.
  • the OCC code associated with the uplink DMRS signal is [1, -1]. And transmitting an uplink DMRS signal according to the DMRS transmission position (specifically, the 7th OFDM symbol of subframe 1 and subframe 3) and the OCC code (specifically [1, -1]).
  • the method includes: First, acquiring first DMRS sequences of subframes 1 and 3, 7th OFDM symbols, respectively.
  • the sequence length is equal to the number of consecutive subcarriers allocated by the network side to the user side.
  • the first DMRS sequence is defined as a cyclic shift of a DMRS base sequence, and the cyclic shift bit number is determined by a cyclic shift index parameter; in addition, the DMRS base sequence is defined as a maximum prime number that is less than or equal to a sequence length.
  • the cyclic extension of the ZC sequence of A/ zc length, and the sequence of the maximum prime number zc length less than or equal to the sequence length, is used, and which one of the Mzc- ⁇ base sequences is used is determined by the DMRS base sequence index parameter.
  • the specific first DMRS sequence needs to acquire the base sequence index and the cyclic shift index.
  • the base sequence index and the cyclic shift index are usually mapped to the DMRS transmission location, and different DMRS transmission locations generally correspond to different first DMRS sequences.
  • each complex value of the OCC code whose length is the number of transmission positions is multiplied by the first DMRS sequence of each transmission position to obtain a second DMRS sequence of each transmission position, as follows:
  • the first complex value ([1] ) in the specific [1,-1] is multiplied by the first DMRS sequence of the 7th OFDM symbol of the subframe 1 to obtain the 7th OFDM symbol of the subframe 1 a second DMRS sequence; multiplying a second complex value ([-1]) in the OCC code (specifically [1, -1]) with a first DMRS sequence of the seventh OFDM symbol of the subframe 3 to obtain a subframe 3th 7th OFDM
  • the second DMRS sequence of symbols are examples of symbols.
  • the second DMRS sequence of the seventh OFDM symbol of the subframe 1 is equal to the seventh OFDM of the subframe 1.
  • the symbol first DMRS sequence, subframe 3, seventh OFDM symbol, second DMRS sequence is equal to subframe 3, the seventh OFDM symbol, the first DMRS sequence is inverted.
  • the second DMRS sequence of the 7th OFDM symbol of subframe 1 is mapped to the 7th OFDM symbol position of subframe 1 and transmitted; and the 7th OFDM symbol second DMRS sequence of subframe 3 is mapped to subframe 3 The 7th OFDM symbol position, and transmitted.
  • Embodiment 3 As shown in FIG. 5, it is a schematic diagram of a method for transmitting an uplink DMRS according to Embodiment 3; wherein, a twill indicates an uplink DMRS transmission position, and a non-twill indicates an uplink data transmission position.
  • the transmitting position of the uplink DMRS signal may be determined by two methods, including: the network side and the user pre-negotiating the uplink DMRS signal transmission position, and each time the user acquires the transmitting position, the user may directly determine according to the negotiated result; or The uplink DMRS signal transmission position is determined according to the transmission location indication information on the network side.
  • the transmitting location is at least one OFDM symbol within a transmission time window; therefore, determining a transmitting location of the uplink DMRS signal is equivalent to determining a subframe including an uplink DMRS signal within a transmission time window, and including an uplink DMRS signal
  • the OFDM symbol actually carrying the uplink DMRS signal within the subframe range.
  • the transmitting location indication information includes: subframe location indication information and OFDM symbol location indication information.
  • the subframe position indication information indicates a subframe including a DMRS signal in a range of a transmission time window; its number of bits is equal to a transmission time window size, and each bit indicates whether a corresponding subframe within a transmission time window includes an uplink DMRS signal;
  • the size of the transmission time window is the number of consecutive uplink subframes allocated by the network side to the user side.
  • the subframe position indication information is carried by 3 bits, and each bit corresponds to one subframe, and the specific value is “111”, where the bit is set to “1”. Indicates that the corresponding subframe contains the uplink DMRS signal. Otherwise, it indicates that the corresponding subframe does not include the uplink DMRS signal, that is, subframe 1 to subframe 3 both contain the uplink DMRS signal.
  • the OFDM symbol position indication information indicates an OFDM symbol that actually carries an uplink DMRS signal within a subframe range including an uplink DMRS signal; its number of bits is equal to the number of OFDM symbols in the subframe, and each bit indicates a subframe range including the uplink DMRS signal. Whether the corresponding OFDM symbol carries the uplink DMRS signal.
  • the OFDM symbol position indication information includes 14 bits, and each bit corresponds to one OFDM symbol, and the specific value is “00000010000000”, where the bit is set to “ ⁇ , indicating that the corresponding OFDM symbol carries the uplink DMRS signal, Otherwise, the corresponding OFDM symbol does not carry the uplink DMRS signal, that is, the 7th OFDM symbol in the subframe 1 to the subframe 3 is used to carry the uplink DMRS signal, where the transmission location indication information of the network side can be carried on the user. In the embodiment, determining the transmission position as the 7th OFDM symbol of each subframe, and determining the uplink DMRS signal according to the network side OCC indication information.
  • the OCC code wherein the OCC code is one of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions, wherein the number of transmission positions is the number of OFDM symbols carrying the uplink DMRS signal in the range of the transmission time window.
  • the network side OCC indication information indicates that the sequence length is equal to the number of transmission positions in a set of mutually orthogonal complex value sequences.
  • a sequence of complex values the number of bits in the network side of information indicating the OCC Ce .g 2 W>, OCC each represents numerical information indicating a sequence of complex values; wherein, N is equal to the number of transmitting a position to set a sequence length of orthogonal
  • the complex-valued sequence includes the number of complex-valued sequences, and Cez7 represents rounding up.
  • the number of transmitting positions is three, so the OCC length is three; in addition, due to the length of three, a set of mutually orthogonal complexes
  • the number of complex-valued sequences included in the numerical sequence is usually designed to be three, specifically for the sequence [1, 1, 1], and the sequence and sequence network side OCC indication information includes Cez7 (/o & (N)) equal to 2 bits, specifically The value is "00", where the bit is set to "00”, indicating that the sequence [1, 1, 1] is used as the OCC code, and is set to "01", indicating that the sequence [1, ⁇ , e] is used as OCC code, set to "10", indicating sequence [1, , 2 Used as an OCC code.
  • the OCC indication information of the network side may be carried in a downlink physical control signaling or a user-specific downlink system message.
  • it is determined that the OCC code associated with the uplink DMRS signal is [1, 1, 1].
  • the DMRS transmission position specifically, the 7th OFDM symbol of each subframe
  • the OCC code (specifically [1, 1, 1]) transmits an uplink DMRS signal.
  • the method includes: First, respectively acquiring a first DMRS sequence of the 7th OFDM symbol of each subframe.
  • the sequence length is equal to the number of consecutive subcarriers allocated by the network side to the user side.
  • the first DMRS sequence is defined as a cyclic shift of a DMRS base sequence, and the cyclic shift bit number is determined by a cyclic shift index parameter; in addition, the DMRS base sequence is defined as a maximum prime number that is less than or equal to a sequence length.
  • each complex value of the OCC code whose length is the number of transmission positions is multiplied by the first DMRS sequence of each transmission position to obtain a second DMRS sequence of each transmission position, as follows:
  • the first complex value ([1] ) in the specific [1,1,1] is multiplied by the first DMRS sequence of the 7th OFDM symbol of the subframe 1 to obtain the 7th OFDM symbol of the subframe 1 a DMRS sequence; multiplying a second complex value ([1]) in the OCC code (specifically [1, 1, 1]) with a first DMRS sequence of the 7th OFDM symbol of the subframe 2 to obtain the subframe 2
  • the seventh OFDM symbol second DMRS sequence multiplying the third complex value ([1]) of the OCC code (specifically [1, 1, 1]) with the seventh OFDM symbol first DMRS sequence of subframe 3 , to obtain the second DMRS sequence of the seventh OFDM symbol of subframe 3.
  • the second DMRS sequence of the seventh OFDM symbol of the subframe 1 is equal to the seventh of the subframe 1.
  • OFDM symbol First DMRS sequence, subframe 2, 7th OFDM symbol, second DMRS sequence is equal to subframe 2, 7th OFDM symbol, first DMRS sequence, subframe 3, 7th OFDM symbol, second DMRS sequence is equal to subframe 7, 7th OFDM symbol first DMRS sequence.
  • the 7th OFDM symbol second DMRS sequence of subframe 1 is mapped to the 7th OFDM symbol position of subframe 1 and transmitted;
  • the subframe 2 7th OFDM symbol second DMRS sequence is mapped to subframe 2 7th OFDM symbol positions, and transmit;
  • Subframe 3, 7th OFDM symbol, second DMRS sequence is mapped to subframe 3, 7th OFDM symbol position, and transmitted.
  • the uplink DMRS signal transmission method is allowed to change semi-statically or dynamically; for example, in a certain time interval, the user side uses the uplink DMRS signal transmission method based on the first embodiment, and In another time interval, the user side uses the uplink DMRS signal transmission method based on Embodiment 2.
  • the number of user-side transport layers of a single layer is conceived, wherein the number of transport layers is also referred to as the rank of the radio channel between the network side and the user side (RANK), indicating the number of independent transmit channels currently supported. Note: If the number of actual user-side transport layers is (>1), the above transport layers can be considered as different users who can share the same uplink DMRS signal transmission location. Allowing different subframes including the uplink DMRS signal to have different uplink DMRS signal transmission positions, in which case more than one of the OFDM symbol position indication information is required, where each OFDM symbol position indication information indicates that the uplink DMRS signal is included. OFDM symbols that actually carry the uplink DMRS signal within a sub-frame range, or within each subframe range of a subset of subframes including the uplink DMRS signal.
  • FIG. 6 is a structural diagram of an embodiment of a system for transmitting an uplink DMRS according to the present invention.
  • the system embodiment shown in FIG. 6 includes: an obtaining device 601, configured to acquire an uplink DMRS signal transmission location, and, according to the network side orthogonal cover code OCC indication information, determine an OCC code related to an uplink DMRS signal; For transmitting an uplink DMRS signal according to a transmission location and an OCC code. among them:
  • the uplink DMRS signal transmission position is at least one OFDM within a transmission time window range Symbol;
  • the transmission time window is a continuous uplink subframe allocated to the user side by the network side.
  • the DMRS signal transmission location is included in at least one subframe within a range of transmission time windows.
  • the DMRS signal transmission position is determined according to the network side transmission position indication information.
  • the transmission location indication information includes subframe position indication information and OFDM symbol location indication information; wherein: the subframe location indication information indicates a subframe including an uplink DMRS within a transmission time window;
  • the OFDM symbol position indication information indicates an OFDM symbol that actually carries an uplink DMRS signal within a subframe range including the uplink DMRS signal.
  • the subframe position indication information bit number is equal to the transmission time window size, and each bit indicates whether the corresponding subframe in the transmission time window range includes an uplink DMRS signal; wherein: the transmission time window size is a network side allocated to the user side The number of uplink subframes.
  • the number of OFDM symbol position indication information bits is equal to the number of intra-subframe OFDM symbols, and each bit indicates whether a corresponding OFDM symbol within a subframe range carries an uplink DMRS signal.
  • the OCC code is one of a set of mutually orthogonal complex-valued sequences having a sequence length equal to the number of transmission positions;
  • the number of transmission positions is the number of OFDM symbols carrying the DMRS signal within the transmission time window.
  • the network side OCC indication information indicates a complex value sequence of a set of mutually orthogonal complex value sequences whose sequence length is equal to the number of transmission positions.
  • the network side OCC indicates that the number of information bits is C hgAN "), and the value of each OCC indication information represents a complex value sequence; wherein, N is a sequence length equal to the number of transmission positions, and a set of mutually orthogonal complex value sequences includes a complex
  • the number of the numerical sequence, Cez7 represents the rounding up.
  • the transmitting device includes: an acquiring module, configured to acquire a first DMRS sequence of each transmitting location according to the transmitting location;
  • the sequence length is equal to the number of consecutive subcarriers allocated to the user side on the network side;
  • the calculation module is connected to the acquiring module, and is configured to use the complex value of the OCC code whose length is the number of transmission positions and each of the transmission locations
  • the first DMRS sequence is multiplied to obtain a second DMRS sequence for each transmission location;
  • a transmitting module is connected to the computing module, and is configured to map a second DMRS sequence of each transmitting location to the transmitting location, and emission.
  • the system embodiment provided by the present invention achieves the problem that the uplink DMRS overhead is too large, the efficiency is low, and the cost is too high in the data service small cell coverage deployment scenario, and the uplink DMRS signal is transmitted according to the transmission location and the OCC code.
  • the overhead of the uplink DMRS signal is reduced, and the effect of the uplink small cell coverage capacity is improved.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the invention is not limited to any particular combination of hardware and software.
  • the various devices/function modules/functional units in the above embodiments may be implemented using a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each device/function module/functional unit in the above embodiments can be stored in a computer readable storage medium when implemented in the form of a software function module and sold or used as a standalone product.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment provided by the present invention achieves the problem that the uplink DMRS overhead is too large, the efficiency is low, and the cost is too high in the scenario where the data service small cell coverage is deployed, and the uplink DMRS signal is transmitted according to the transmission location and the OCC code.
  • the overhead of the uplink DMRS signal is reduced, and the effect of the uplink small cell coverage capacity is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发射上行解调参考信号 DMRS的方法,包括:获取上行 DMRS信号发射位置,以及,根据网络侧的正交覆盖码 OCC指示信息,确定与上行 DMRS信号有关的 OCC码;根据所述发射位置和 OCC码,发射上行 DMRS 信号。

Description

一种发射上行解调参考信号的方法和系统
技术领域
本发明涉及无线通信领域, 尤其涉及一种发射上行解调参考信号的方法 和系统。 背景技术
随着移动互联网和智能手机的普及, 移动数据流量需求飞速增长。 未来 十年内, 移动数据业务量还将每年翻一番, 十年将增长一千倍。 运营商网络 中数据业务比例逐渐增加, 影响了传统电信级业务, 但是, 由于数据业务按 照流量计费, 其盈利增长速度和流量负载不成正比。 此外, 快速增长的数据 业务对移动通信网络的传输能力提出了严峻挑战。 大部分的移动数据业务主 要发生在小小区(包括室内和热点环境), 具体体现为游牧 /本地无线接入场 景。 据统计, 目前移动数据业务量的绝大部分发生在小小区内, 而且这一比 例还将继续增长, 因此, 运营商迫切需要高速率的小小区覆盖的数据业务解 决方案。
如图 1所示, 为现有的发射上行解调参考信号 ( Demodulation Reference Signal, 简称 DMRS ) 的方法的示意图。
在长期演进 ( Long Term Evolution, 简称 LTE ) 系统中, 以正常循环前 缀(Cyclic Prefix, 简称 CP )长度为例, 每个上行子帧包括两个上行 DMRS 发射位置, 具体是在每个子帧范围内的第 4 个和第 11 个正交频分复用 ( Orthogonal Frequency Division Multiplexing , 简称 OFDM )符号; 子†贞范围 内第 4个 OFDM符号位置的最终解调参考信号序列是长度为 2的 OCC码的 第 1 个复数值与相应位置的初始 DMRS序列的乘积, 子帧范围内第 11 个 OFDM符号位置的最终 DMRS序列是长度为 2的 OCC码的第 2个复数值与 相应位置的初始 DMRS序列的乘积。
针对目前小小区覆盖的数据业务而言, 其特征包括: 用户通常为固定的 用户、 或者以非常低速移动的用户, 用户对移动性要求不高, 具有无线信道 延迟扩展较小, 无线信道环境变化较慢的特点; 另外, 数据业务主要为基于 互联网协议(Internet Procotol , 简称 IP )互联网业务, 相对传统的电信级业 务, 大部分互联网业务对传输延时的要求不高, 但对数据速率的要求较高。 在引入 LTE技术后, 由于 LTE系统主要应用于大覆盖范围 ( 500米至 100 千米) 、 以及多种信道(速度可从 3千米 /小时到 350千米 /小时, 信道延迟 从不超过一微秒到十几微秒)环境, 与现有小小区覆盖的数据业务的应用环 境不相适应, 因此, 当其承载高数据速率 IP数据包业务时, 如果仍然沿用现 有 LTE系统的上行 DMRS发射方法, 则会带来 DMRS的开销过大, 效率偏 低, 成本过高的问题。
LTE 系统的上行 DMRS 发射方法是每个时隙或子帧都需要发送上行 DMRS信号,从而导致了小小区覆盖环境的上行 DMRS开销过大,效率偏低, 成本过高的问题。 因此, 在高数据速率小小区覆盖环境下, 设法降低上行 DMRS开销, 提升系统容量, 仍是需要解决的需求。 发明内容
本发明提供一种发射上行 DMRS信号的方法和系统,要解决的技术问题 是如何减少上行 DMRS信号开销。
为解决上述技术问题, 本发明提供了如下技术方案:
一种发射上行解调参考信号 DMRS的方法, 包括:
获取上行 DMRS信号发射位置, 以及, 根据网络侧的正交覆盖码 OCC 指示信息, 确定与上行 DMRS信号有关的 OCC码;
根据所述发射位置和 OCC码, 发射上行 DMRS信号。
优选的, 所述方法还具有如下特点: 所述上行 DMRS信号发射位置为发 射时间窗范围内至少一个正交频分复用 OFDM符号; 其中:
发射时间窗为网络侧分配给用户侧的连续的上行子帧。
优选的, 所述方法还具有如下特点: 所述上行 DMRS信号发射位置包含 于发射时间窗范围内至少一个子帧。
优选的, 所述方法还具有如下特点: 所述上行 DMRS信号发射位置是根 据网络侧的发射位置指示信息确定的。 优选的, 所述方法还具有如下特点: 所述发射位置指示信息包括子帧位 置指示信息与 OFDM符号位置指示信息; 其中:
子帧位置指示信息指示发射时间窗范围内包含上行 DMRS的子帧;
OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号。
优选的, 所述方法还具有如下特点: 所述子帧位置指示信息比特数等于 发射时间窗大小, 每个比特指示在发射时间窗范围内的相应子帧是否包含上 行 DMRS信号; 其中:
发射时间窗大小为网络侧分配给用户侧的连续的上行子帧数。
优选的, 所述方法还具有如下特点: 所述 OFDM符号位置指示信息比特 数等于子帧内的 OFDM符号数, 每个比特指示子帧范围内的相应 OFDM符 号是否承载上行 DMRS信号。
优选的, 所述方法还具有如下特点: 所述 OCC码为序列长度等于发射 位置数的一组相互正交的复数值序列中的一个; 其中:
发射位置数为发射时间窗范围内承载 DMRS信号的 OFDM符号数。 优选的, 所述方法还具有如下特点: 所述网络侧 OCC指示信息指示序 列长度等于发射位置数的一组相互正交的复数值序列中的一个复数值序列。
优选的, 所述方法还具有如下特点: 所述网络侧 OCC指示信息的比特 数目为 Cez/ (/og2 (N) ), 每个 OCC指示信息的数值表示一个复数值序列; 其 中, N为序列长度等于发射位置数的一组相互正交的复数值序列包括的复数 值序列数目, Cez7表示向上取整。
优选的,所述方法还具有如下特点:所述根据所述发射位置和 OCC码, 发射上行 DMRS信号, 包括:
根据所述发射位置, 获取每个发射位置的第一 DMRS序列, 其中, 序列 长度等于网络侧分配给用户侧的连续的子载波数;
将所述长度为发射位置数的 OCC码的每个复数值与每个发射位置的第 一 DMRS序列对应相乘, 以获取每个发射位置的第二 DMRS序列; 将每个发射位置的第二 DMRS序列映射到所述发射位置, 并发射。 一种发射上行解调参考信号 DMRS的系统, 包括:
获取装置, 设置为: 获取上行 DMRS信号发射位置, 以及, 根据网络侧 的正交覆盖码 OCC指示信息, 确定与上行 DMRS信号有关的 OCC码; 发射装置, 设置为: 根据所述发射位置和 OCC码, 发射上行 DMRS信 号。
优选的, 所述系统还具有如下特点: 所述上行 DMRS信号发射位置为发 射时间窗范围内至少一个正交频分复用 OFDM符号; 其中:
发射时间窗为网络侧分配给用户侧的连续的上行子帧。
优选的, 所述系统还具有如下特点: 所述上行 DMRS信号发射位置包含 于发射时间窗范围内至少一个子帧。
优选的, 所述系统还具有如下特点: 所述上行 DMRS信号发射位置是根 据网络侧的发射位置指示信息确定的。
优选的, 所述系统还具有如下特点: 所述发射位置指示信息包括子帧位 置指示信息与 OFDM符号位置指示信息; 其中:
子帧位置指示信息指示发射时间窗范围内包含上行 DMRS的子帧;
OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号。
优选的, 所述系统还具有如下特点: 所述子帧位置指示信息比特数等于 发射时间窗大小, 每个比特指示在发射时间窗范围内的相应子帧是否包含上 行 DMRS信号; 其中:
发射时间窗大小为网络侧分配给用户侧的连续的上行子帧数。
优选的, 所述系统还具有如下特点: 所述 OFDM符号位置指示信息比特 数等于子帧内的 OFDM符号数, 每个比特指示子帧范围内的相应 OFDM符 号是否承载上行 DMRS信号。
优选的, 所述系统还具有如下特点: 所述 OCC码为序列长度等于发射 位置数的一组相互正交的复数值序列中的一个; 其中: 发射位置数为发射时间窗范围内承载 DMRS信号的 OFDM符号数。 优选的, 所述系统还具有如下特点: 所述网络侧 OCC指示信息指示序 列长度等于发射位置数的一组相互正交的复数值序列中的一个复数值序列。
优选的, 所述系统还具有如下特点: 所述网络侧 OCC指示信息的比特 数目为 Ce 。g2 W> , 每个 OCC指示信息的数值表示一个复数值序列; 其 中, N为序列长度等于发射位置数的一组相互正交的复数值序列包括的复数 值序列数目, Cez7表示向上取整。
优选的, 所述系统还具有如下特点: 所述发射装置包括:
获取模块,设置为:根据所述发射位置,获取每个发射位置的第一 DMRS 序列, 其中, 序列长度等于网络侧分配给用户侧的连续的子载波数;
计算模块, 设置为: 与所述获取模块相连, 将所述长度为发射位置数的 OCC码的每个复数值与每个发射位置的第一 DMRS序列对应相乘, 以获取 每个发射位置的第二 DMRS序列;
发射模块,设置为:与所述计算模块相连,将每个发射位置的第二 DMRS 序列映射到所述发射位置, 并发射。
本发明提供的实施例, 针对现有技术在数据业务小小区覆盖部署的场景 下上行 DMRS开销过大,效率偏低,成本过高的问题,根据发射位置和 OCC 码发射上行 DMRS信号, 达到了降低上行 DMRS信号的开销, 并且提升上 行小小区覆盖容量的效果。 附图概述
图 1为发射上行 DMRS方法的示意图;
Figure imgf000007_0001
图 3为本发明实施例 提供的发射上行 DMRS方法的示意图;
图 4为本发明实施例 提供的发射上行 DMRS方法的示意图;
图 5为本发明实施例三提供的发射上行 DMRS方法的示意图; 图 6为本发明提供的发射上行 DMRS的系统实施例的结构图。 本发明的较佳实施方式 下面将结合附图及具体实施例对本发明作进一步的详细描述。 需要说明 的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任 意组合。
方法实施例, 包括: 步骤 201、 获取上行 DMRS信号发射位置, 以及, 根据网络侧的正交覆 盖码 OCC指示信息, 确定与上行 DMRS信号有关的 OCC码; 步骤 202、 根据所述发射位置和 OCC码, 发射上行 DMRS信号。 本发明提供的方法实施例, 针对现有技术在数据业务小小区覆盖部署场 景下上行 DMRS 开销过大, 效率偏低, 成本过高的问题, 根据发射位置和 OCC码发射上行 DMRS信号, 达到了降低上行 DMRS信号的开销, 并且提 升上行小小区覆盖容量的效果。 下面对本发明提供的方法实施例作进一步说明: 本发明以如下应用场景进行说明, 该应用场景包括至少 1个基站(网络 侧设备, 如 eNode B )和至少 1个移动台 (用户侧设备, 如 UE ) , 其中, 基 站具有向至少 1个移动台发送控制信息和用户数据、 接收至少 1个移动台发 送的控制信息和用户数据的功能。 实施例一: 如图 3所示, 为实施例一的发射上行 DMRS方法的示意图; 其中, 斜紋 表示上行 DMRS发射位置, 非斜紋表示上行数据发射位置。
4叚设正常的 CP长度, 并且发射时间窗为子帧 1与子帧 2。 其中, 所述发射时间窗是指网络侧分配给用户侧的连续的子帧。 上行 DMRS信号的发射位置可以由两种方式来确定, 包括: 网络侧与用户预先协商好上行 DMRS信号发射位置,则每次用户在获取 发射位置时, 可以根据协商好的结果直接确定; 或者, 根据网络侧的发射位置指示信息, 确定上行 DMRS信号发射位置。 其中, 所述发射位置为发射时间窗范围内的至少一个 OFDM符号; 因此 确定上行 DMRS 信号的发射位置等价于确定在发射时间窗范围内包含上行 DMRS信号的子帧,以及在包含上行 DMRS信号的子帧范围内实际承载上行 DMRS信号的 OFDM符号。 其中, 所述发射位置指示信息包括: 子帧位置指示信息与 OFDM符号位 置指示信息。 其中: 子帧位置指示信息指示发射时间窗范围内包含 DMRS信号的子帧;它的 比特数等于发射时间窗大小, 每个比特指示在发射时间窗范围内的相应子帧 是否包含上行 DMRS信号; 其中, 发射时间窗大小为网络侧分配给用户侧的 连续的上行子帧数。 在本实施例中, 子帧位置指示信息是通过 2个比特来承 载, 每个比特对应一个子帧, 具体取值为 "11" , 其中, 比特被置为 "1" , 表示相应子帧包含上行 DMRS信号, 否则,表示相应子帧不包含上行 DMRS 信号, 即, 子帧 1与子帧 2都包含上行 DMRS信号。
OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号; 它的比特数等于子帧内的 OFDM符号 数, 每个比特指示包含上行 DMRS信号的子帧范围内的相应 OFDM符号是 否承载上行 DMRS信号。 在本实施例中, OFDM符号位置指示信息包括 14 个比特, 每个比特对应一个 OFDM符号, 具体取值为 "00000010000000" , 其中, 比特被置为 "Γ , 表示相应 OFDM符号承载上行 DMRS信号, 否则 表示相应 OFDM符号没有承载上行 DMRS信号, 即, 子帧 1与子帧 2中的 第 7个 OFDM符号被用于承载上行 DMRS信号。 其中, 所述网络侧的发射位置指示信息可以承载在用户专有的下行物理 控制信令或者用户专有的下行系统消息中。 在本实施例中, 确定发射位置为每个子帧的第 7个 OFDM符号。 根据网络侧 OCC指示信息确定与上行 DMRS信号有关的 OCC码。 其中, 所述 OCC码为序列长度等于发射位置数的一组相互正交的复数 值序列中的一个, 其中, 发射位置数为发射时间窗范围内承载上行 DMRS信 号的 OFDM符号数。 其中, 所述网络侧 OCC指示信息指示序列长度等于发射位置数的一组 相互正交的复数值序列中的一个复数值序列; 网络侧 OCC指示信息的比特 数目为 Cez/ (/og2 (N) ), 每个 OCC指示信息的数值表示一个复数值序列; 其 中, N为序列长度等于发射位置数的一组相互正交的复数值序列包括的复数 值序列数目, Cez7表示向上取整。 在本实施例中, 发射位置数为 2个, 因此 OCC长度为 2; 另外, 由于长 度为 2的一组相互正交的复数值序列包括的复数值序列数目通常被设计为两 个, 具体为序列 [1 ,1]与序列 [1 ,-1] , 网络侧 OCC指示信息包括 Cez7 (/o& (N) ) 等于 1个比特, 具体取值为 "0" , 其中, 比特被置为 "0" , 表示序歹 ι ΐ, ι ] 被用作 OCC码, 被置为 " 1 " , 表示序列 [1 ,-1]被用作 OCC码。 其中, 所述网络侧的 OCC指示信息可以承载在用户专有的下行物理控 制信令或者用户专有的下行系统消息中。 在本实施例中, 确定与上行 DMRS信号有关的 OCC码为 [1 ,1]。 根据所述 DMRS发射位置 (具体为子帧 1与子帧 2的第 7个 OFDM符 号)与 OCC码(具体为 [1 , 1] )发射上行 DMRS信号。 包括: 首先, 分别获取子帧 1与 2第 7个 OFDM符号的第一 DMRS序列。 其中, 序列长度等于网络侧分配给用户侧的连续的子载波数。 其中, 所述第一 DMRS序列被定义为 DMRS基序列的循环移位, 循环 移位位数是由循环移位索引参数决定; 另外, 所述 DMRS基序列被定义为小 于等于序列长度的最大素数 A/zc长度的 ZC序列的循环扩展, 并且小于等于 序列长度的最大素数 zc长度的 序列共有 个, 具体使用 Mzc-\个 基序列中的哪一个是由 DMRS基序列索引参数决定。 因此, 为了确定特定序 列长度(等于网络侧分配给用户侧的连续的子载波数 )的具体第一 DMRS序 歹 |J , 需要获取基序列索引与循环移位索引。 在实际系统中, 基序列索引和循 环移位索引通常与 DMRS发射位置存在映射关系, 不同的 DMRS发射位置 通常对应不同的第一 DMRS序列。 然后, 将所述长度为发射位置数的 OCC码的每个复数值与每个发射位 置第一 DMRS序列对应相乘, 以获取每个发射位置的第二 DMRS序列, 具 体如下: 将 OCC码(具体为 [1,1] ) 中的第 1个复数值([1] ) 与子帧 1第 7 个 OFDM符号的第一 DMRS序列相乘, 以获取子帧 1第 7个 OFDM符号的 第二 DMRS序列; 将 OCC码(具体为 [1, 1] ) 中的第 2个复数值 ( [1] )与子 帧 2第 7个 OFDM符号的第一 DMRS序列相乘,以获取子帧 2第 7个 OFDM 符号的第二 DMRS序列。 在本实施例中, 由于发射位置数为 2个, 并且使用 的 OCC码为 ([1,1] ) , 则子帧 1第 7个 OFDM符号的第二 DMRS序列等于 子帧 1第 7个 OFDM符号的第一 DMRS序列, 子帧 2第 7个 OFDM符号的 第二 DMRS序列等于子帧 2第 7个 OFDM符号的第一 DMRS序列。 最后, 将子帧 1第 7个 OFDM符号的第二 DMRS序列, 映射到子帧 1 第 7个 OFDM符号位置, 并发射; 将子帧 2第 7个 OFDM符号第二 DMRS 序列映射到子帧 2第 7个 OFDM符号位置, 并发射。 实施例二: 如图 4所示, 为实施例二的发射上行 DMRS方法的示意图; 其中, 斜紋 表示上行 DMRS发射位置, 非斜紋表示上行数据发射位置。
4叚设正常的 CP长度, 并且发射时间窗为子帧 1、 子帧 2与子帧 3。 其中, 所述发射时间窗是指网络侧分配给用户侧的连续的子帧。 上行 DMRS信号的发射位置可以由两种方式来确定, 包括: 网络侧与用户预先协商好上行 DMRS信号发射位置,则每次用户在获取 发射位置时, 可以根据协商好的结果直接确定; 或者, 根据网络侧的发射位置指示信息, 确定上行 DMRS信号发射位置。 其中, 所述发射位置为发射时间窗范围内的至少一个 OFDM符号; 因此 确定上行 DMRS 信号的发射位置等价于确定在发射时间窗范围内包含上行 DMRS信号的子帧,以及在包含上行 DMRS信号的子帧范围内实际承载上行 DMRS信号的 OFDM符号。 其中, 所述发射位置指示信息包括: 子帧位置指示信息与 OFDM符号位 置指示信息。 其中: 子帧位置指示信息指示发射时间窗范围内包含 DMRS信号的子帧;它的 比特数等于发射时间窗大小, 每个比特指示在发射时间窗范围内的相应子帧 是否包含上行 DMRS信号; 其中, 发射时间窗大小为网络侧分配给用户侧的 连续的上行子帧数。 在本实施例中, 子帧位置指示信息是通过 3个比特来承 载, 每个比特对应一个子帧, 具体取值为 "101 " , 其中, 比特被置为 "1 " , 表示相应子帧包含上行 DMRS信号, 否则,表示相应子帧不包含上行 DMRS 信号, 即, 子帧 1与子帧 3都包含上行 DMRS信号。 OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号; 它的比特数等于子帧内的 OFDM符号 数, 每个比特指示包含上行 DMRS信号的子帧范围内的相应 OFDM符号是 否承载上行 DMRS信号。 在本实施例中, OFDM符号位置指示信息包括 14 个比特, 每个比特对应一个 OFDM符号, 具体取值为 "00000010000000" , 其中, 比特被置为 "1 " , 表示相应 OFDM符号承载上行 DMRS信号, 否则 表示相应 OFDM符号没有承载上行 DMRS信号, 即, 子帧 1与子帧 3中的 第 7个 OFDM符号被用于承载上行 DMRS信号。 其中, 所述网络侧的发射位置指示信息可以承载在用户专有的下行物理 控制信令或者用户专有的下行系统消息中。 在本实施例中, 确定发射位置为子帧 1与 3第 7个 OFDM符号。 根据网络侧 OCC指示信息确定与上行 DMRS信号有关的 OCC码。 其中, 所述 OCC码为序列长度等于发射位置数的一组相互正交的复数 值序列中的一个, 其中, 发射位置数为发射时间窗范围内承载上行 DMRS信 号的 OFDM符号数。 其中, 所述网络侧 OCC指示信息指示序列长度等于发射位置数的一组 相互正交的复数值序列中的一个复数值序列; 网络侧 OCC指示信息的比特 数目为 Cez/ (/og2 (N) ), 每个 OCC指示信息的数值表示一个复数值序列; 其 中, N为序列长度等于发射位置数的一组相互正交的复数值序列包括的复数 值序列数目, Cez7表示向上取整。 在本实施例中, 发射位置数为 2个, 因此 OCC长度为 2; 另外, 由于长 度为 2的一组相互正交的复数值序列包括的复数值序列数目通常被设计为两 个, 具体为序列 [1,1]与序列 [1,-1], 网络侧 OCC指示信息包括 Cez7(/o&(N)) 等于 1个比特, 具体取值为 "1" , 其中, 比特被置为 "0" , 表示序歹 ^[1,1] 被用作 OCC码, 被置为 "1" , 表示序列 [1,-1]被用作 OCC码。 其中, 所述网络侧的 OCC指示信息可以承载在用户专有的下行物理控 制信令或者用户专有的下行系统消息中。 在本实施例中, 确定与上行 DMRS信号有关的 OCC码为 [1,-1]。 根据所述 DMRS发射位置 (具体为子帧 1与子帧 3的第 7个 OFDM符 号)与 OCC码(具体为 [1, -1] )发射上行 DMRS信号。 包括: 首先, 分别获取子帧 1与 3第 7个 OFDM符号的第一 DMRS序列。 其中, 序列长度等于网络侧分配给用户侧的连续的子载波数。 其中, 所述第一 DMRS序列被定义为 DMRS基序列的循环移位, 循环 移位位数是由循环移位索引参数决定; 另外, 所述 DMRS基序列被定义为小 于等于序列长度的最大素数 A/zc长度的 ZC序列的循环扩展, 并且小于等于 序列长度的最大素数 zc长度的 序列共有 个, 具体使用 Mzc-\个 基序列中的哪一个是由 DMRS基序列索引参数决定。 因此, 为了确定特定序 列长度(等于网络侧分配给用户侧的连续的子载波数 )的具体第一 DMRS序 歹 需要获取基序列索引与循环移位索引。 在实际系统中, 基序列索引和循 环移位索引通常与 DMRS发射位置存在映射关系, 不同的 DMRS发射位置 通常对应不同的第一 DMRS序列。 然后, 将所述长度为发射位置数的 OCC码的每个复数值与每个发射位 置第一 DMRS序列对应相乘, 以获取每个发射位置的第二 DMRS序列, 具 体如下: 将 OCC码(具体为 [1,-1] ) 中的第 1个复数值([1] )与子帧 1第 7 个 OFDM符号的第一 DMRS序列相乘, 以获取子帧 1第 7个 OFDM符号的 第二 DMRS序列; 将 OCC码(具体为 [1, -1] ) 中的第 2个复数值 ( [-1] ) 与 子帧 3第 7个 OFDM符号第一 DMRS序列相乘,以获取子帧 3第 7个 OFDM 符号的第二 DMRS序列。 在本实施例中, 由于发射位置数为 2个, 并且使用 的 OCC码为 ([1,-1] ) , 则子帧 1第 7个 OFDM符号第二 DMRS序列等于 子帧 1第 7个 OFDM符号第一 DMRS序列, 子帧 3第 7个 OFDM符号第二 DMRS序列等于子帧 3第 7个 OFDM符号第一 DMRS序列的取反。 最后, 将子帧 1第 7个 OFDM符号的第二 DMRS序列, 映射到子帧 1 第 7个 OFDM符号位置, 并发射; 将子帧 3第 7个 OFDM符号第二 DMRS 序列映射到子帧 3第 7个 OFDM符号位置, 并发射。 实施例三: 如图 5所示, 为实施例三的发射上行 DMRS方法的示意图; 其中, 斜紋 表示上行 DMRS发射位置, 非斜紋表示上行数据发射位置。
4叚设正常的 CP长度, 并且发射时间窗为子帧 1、 子帧 2与子帧 3。 其中, 所述发射时间窗是指网络侧分配给用户侧的连续的子帧。 上行 DMRS信号的发射位置可以由两种方式来确定, 包括: 网络侧与用户预先协商好上行 DMRS信号发射位置,则每次用户在获取 发射位置时, 可以根据协商好的结果直接确定; 或者, 根据网络侧的发射位置指示信息, 确定上行 DMRS信号发射位置。 其中, 所述发射位置为发射时间窗范围内的至少一个 OFDM符号; 因此 确定上行 DMRS 信号的发射位置等价于确定在发射时间窗范围内包含上行 DMRS信号的子帧,以及在包含上行 DMRS信号的子帧范围内实际承载上行 DMRS信号的 OFDM符号。 其中, 所述发射位置指示信息包括: 子帧位置指示信息与 OFDM符号位 置指示信息。 其中: 子帧位置指示信息指示发射时间窗范围内包含 DMRS信号的子帧;它的 比特数等于发射时间窗大小, 每个比特指示在发射时间窗范围内的相应子帧 是否包含上行 DMRS信号; 其中, 发射时间窗大小为网络侧分配给用户侧的 连续的上行子帧数。 在本实施例中, 子帧位置指示信息是通过 3个比特来承 载, 每个比特对应一个子帧, 具体取值为 "111" , 其中, 比特被置为 "1" , 表示相应子帧包含上行 DMRS信号, 否则,表示相应子帧不包含上行 DMRS 信号, 即, 子帧 1至子帧 3都包含上行 DMRS信号。
OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号; 它的比特数等于子帧内的 OFDM符号 数, 每个比特指示包含上行 DMRS信号的子帧范围内的相应 OFDM符号是 否承载上行 DMRS信号。 在本实施例中, OFDM符号位置指示信息包括 14 个比特, 每个比特对应一个 OFDM符号, 具体取值为 "00000010000000" , 其中, 比特被置为 "Γ , 表示相应 OFDM符号承载上行 DMRS信号, 否则 表示相应 OFDM符号没有承载上行 DMRS信号, 即, 子帧 1至子帧 3中的 第 7个 OFDM符号被用于承载上行 DMRS信号。 其中, 所述网络侧的发射位置指示信息可以承载在用户专有的下行物理 控制信令或者用户专有的下行系统消息中。 在本实施例中, 确定发射位置为每个子帧第 7个 OFDM符号。 根据网络侧 OCC指示信息确定与上行 DMRS信号有关的 OCC码。 其中, 所述 OCC码为序列长度等于发射位置数的一组相互正交的复数 值序列中的一个, 其中, 发射位置数为发射时间窗范围内承载上行 DMRS信 号的 OFDM符号数。 其中, 所述网络侧 OCC指示信息指示序列长度等于发射位置数的一组 相互正交的复数值序列中的一个复数值序列; 网络侧 OCC指示信息的比特 数目为 Ce 。g2 W> , 每个 OCC指示信息的数值表示一个复数值序列; 其 中, N为序列长度等于发射位置数的一组相互正交的复数值序列包括的复数 值序列数目, Cez7表示向上取整。 在本实施例中, 发射位置数为 3个, 因此 OCC长度为 3; 另外, 由于长 度为 3的一组相互正交的复数值序列包括的复数值序列数目通常被设计为 3 个, 具体为序列 [1,1,1]、 序列 与序列 网络侧 OCC指示信息包括 Cez7(/o& (N) )等于 2个比特, 具体取值为 "00" , 其中, 比特被置为 "00" , 表示序列 [1,1,1]被用作 OCC码, 被置为 "01" , 表示序 列 [1,β , e ]被用作 OCC码, 被置为 "10" , 表示序列 [1, , 2 被用作 OCC码。 其中, 所述网络侧的 OCC指示信息可以承载在用户专有的下行物理控 制信令或者用户专有的下行系统消息中。 在本实施例中, 确定与上行 DMRS信号有关的 OCC码为 [1,1,1]。 根据所述 DMRS发射位置 (具体为每个子帧的第 7个 OFDM符号)与
OCC码(具体为 [1,1,1] )发射上行 DMRS信号。 包括: 首先, 分别获取每个子帧第 7个 OFDM符号的第一 DMRS序列。 其中, 序列长度等于网络侧分配给用户侧的连续的子载波数。 其中, 所述第一 DMRS序列被定义为 DMRS基序列的循环移位, 循环 移位位数是由循环移位索引参数决定; 另外, 所述 DMRS基序列被定义为小 于等于序列长度的最大素数 A/zc长度的 ZC序列的循环扩展, 并且小于等于 序列长度的最大素数 zc长度的 序列共有 个, 具体使用 Mzc-\个 基序列中的哪一个是由 DMRS基序列索引参数决定。 因此, 为了确定特定序 列长度(等于网络侧分配给用户侧的连续的子载波数 )的具体第一 DMRS序 歹 需要获取基序列索引与循环移位索引。 在实际系统中, 基序列索引和循 环移位索引通常与 DMRS发射位置存在映射关系, 不同的 DMRS发射位置 通常对应不同的第一 DMRS序列。 然后, 将所述长度为发射位置数的 OCC码的每个复数值与每个发射位 置第一 DMRS序列对应相乘, 以获取每个发射位置的第二 DMRS序列, 具 体如下: 将 OCC码(具体为 [1,1,1] ) 中的第 1个复数值([1] )与子帧 1第 7 个 OFDM符号第一 DMRS序列相乘, 以获取子帧 1第 7个 OFDM符号第二 DMRS序列; 将 OCC码(具体为 [1,1,1] ) 中的第 2个复数值 ( [1] )与子帧 2 第 7个 OFDM符号第一 DMRS序列相乘, 以获取子帧 2第 7个 OFDM符号 第二 DMRS序列; 将 OCC码(具体为 [1,1,1] ) 中第 3个复数值 ( [1] )与子 帧 3第 7个 OFDM符号第一 DMRS序列相乘, 以获取子帧 3第 7个 OFDM 符号第二 DMRS序列。 在本实施例中,由于发射位置数为 3个,且使用的 OCC码为( [1,1,1] ) , 则子帧 1第 7个 OFDM符号第二 DMRS序列等于子帧 1第 7个 OFDM符号 第一 DMRS序列, 子帧 2第 7个 OFDM符号第二 DMRS序列等于子帧 2第 7个 OFDM符号第一 DMRS序列, 子帧 3第 7个 OFDM符号第二 DMRS序 列等于子帧 3第 7个 OFDM符号第一 DMRS序列。
最后, 将子帧 1第 7个 OFDM符号第二 DMRS序列映射到子帧 1第 7 个 OFDM符号位置, 并发射; 将子帧 2第 7个 OFDM符号第二 DMRS序列 映射到子帧 2第 7个 OFDM符号位置, 并发射; 将子帧 3第 7个 OFDM符 号第二 DMRS序列映射到子帧 3第 7个 OFDM符号位置, 并发射。
关于本发明或上述实施例, 还需要额外说明的是:
由于发射时间窗或无线信道条件可能改变, 因此, 允许上行 DMRS信号 发射方法半静态或动态地改变; 例如, 在某一个时间间隔内, 用户侧使用基 于实施例一的上行 DMRS信号发射方法, 而在另一个时间间隔内, 用户侧使 用基于实施例二的上行 DMRS信号发射方法。
单层的用户侧传输层数被设想, 其中, 传输层数又称为网络侧与用户侧 间无线信道的秩(RANK ) , 表明当前支持的独立发射通道数。 注意: 如果 实际用户侧传输层数为 ( >1 )层, 则可以将上述 个传输层看作是能够共 享相同上行 DMRS信号发射位置的 个不同用户。 允许包含上行 DMRS信 号的不同子帧具有不同的上行 DMRS信号发射位置数, 此时, 超过一个的所 述 OFDM符号位置指示信息被需要, 其中, 每个 OFDM符号位置指示信息 指示包含上行 DMRS信号的一个子帧范围内, 或者, 包含上行 DMRS信号 的一个子帧子集的每个子帧范围内, 实际承载上行 DMRS信号的 OFDM符 号。
图 6为本发明提供的发射上行 DMRS的系统实施例的结构图。图 6所示 系统实施例, 包括: 获取装置 601 , 用于获取上行 DMRS信号发射位置, 以及, 根据网络侧 正交覆盖码 OCC指示信息, 确定与上行 DMRS信号有关的 OCC码; 发射装置 602 , 用于根据发射位置和 OCC码发射上行 DMRS信号。 其中:
所述上行 DMRS信号发射位置为发射时间窗范围内的至少一个 OFDM 符号; 其中:
发射时间窗为网络侧分配给用户侧的连续的上行子帧。 所述 DMRS信号发射位置包含于发射时间窗范围内至少一个子帧。 所述 DMRS信号发射位置是根据网络侧发射位置指示信息确定的。 所述发射位置指示信息包括子帧位置指示信息与 OFDM符号位置指示 信息; 其中: 子帧位置指示信息指示发射时间窗范围内包含上行 DMRS的子帧;
OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号。 所述子帧位置指示信息比特数等于发射时间窗大小, 每个比特指示在发 射时间窗范围内的相应子帧是否包含上行 DMRS信号; 其中: 发射时间窗大小为网络侧分配给用户侧的连续的上行子帧数。 所述 OFDM符号位置指示信息比特数等于子帧内 OFDM符号数, 每个 比特指示子帧范围内的相应 OFDM符号是否承载上行 DMRS信号。 所述 OCC码为序列长度等于发射位置数的一组相互正交的复数值序列 中的一个; 其中:
发射位置数为发射时间窗范围内承载 DMRS信号的 OFDM符号数。 所述网络侧 OCC指示信息指示序列长度等于发射位置数的一组相互正 交的复数值序列中的一个复数值序列。 所述网络侧 OCC指示信息比特数目为 C hgAN") ,每个 OCC指示信 息的数值表示一个复数值序列; 其中, N为序列长度等于发射位置数一组相 互正交的复数值序列包括的复数值序列数目, Cez7表示向上取整。 所述发射装置包括: 获取模块, 用于根据所述发射位置, 获取每个发射位置的第一 DMRS序 列; 其中: 序列长度等于网络侧分配给用户侧的连续的子载波数; 计算模块, 与所述获取模块相连, 用于将所述长度为发射位置数的 OCC 码的每个复数值与每个发射位置的第一 DMRS序列对应相乘,以获取每个发 射位置的第二 DMRS序列; 发射模块, 与所述计算模块相连, 用于将每个发射位置的第二 DMRS序 列映射到所述发射位置, 并发射。 本发明提供的系统实施例, 针对现有技术在数据业务小小区覆盖部署场 景下上行 DMRS 开销过大, 效率偏低, 成本过高的问题, 根据发射位置和 OCC码发射上行 DMRS信号, 达到了降低上行 DMRS信号的开销, 并且提 升上行小小区覆盖容量的效果。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中, 所述计算机程序在相应的硬件平台上(如系统、设备、装置、 器件等)执行, 在执行时, 包括方法实施例的步骤之一或其组合。
可选地, 上述实施例的全部或部分步骤也可以使用集成电路来实现, 这 些步骤可以被分别制作成一个个集成电路模块, 或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬 件和软件结合。
上述实施例中的各装置 /功能模块 /功能单元可以釆用通用的计算装置来 实现, 它们可以集中在单个的计算装置上, 也可以分布在多个计算装置所组 成的网络上。
上述实施例中的各装置 /功能模块 /功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器, 磁盘或光盘等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求所述的保护范围为准。 工业实用性
本发明提供的实施例, 针对现有技术在数据业务小小区覆盖部署的场景 下上行 DMRS开销过大,效率偏低,成本过高的问题,根据发射位置和 OCC 码发射上行 DMRS信号, 达到了降低上行 DMRS信号的开销, 并且提升上 行小小区覆盖容量的效果。

Claims

权 利 要 求 书
1、 一种发射上行解调参考信号 DMRS的方法, 包括:
获取上行 DMRS信号发射位置, 以及, 根据网络侧的正交覆盖码 OCC 指示信息, 确定与上行 DMRS信号有关的 OCC码;
根据所述发射位置和 OCC码, 发射上行 DMRS信号。
2、 根据权利要求 1所述的方法, 其中, 所述上行 DMRS信号发射位置 为发射时间窗范围内至少一个正交频分复用 OFDM符号; 其中:
发射时间窗为网络侧分配给用户侧的连续的上行子帧。
3、 根据权利要求 1或 2所述的方法, 其中, 所述上行 DMRS信号发射 位置包含于发射时间窗范围内至少一个子帧。
4、 根据权利要求 1或 2所述的方法, 其中, 所述上行 DMRS信号发射 位置是根据网络侧的发射位置指示信息确定的。
5、根据权利要求 4所述的方法, 其中, 所述发射位置指示信息包括子帧 位置指示信息与 OFDM符号位置指示信息; 其中:
子帧位置指示信息指示发射时间窗范围内包含上行 DMRS的子帧;
OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号。
6、根据权利要求 5所述的方法, 其中, 所述子帧位置指示信息比特数等 于发射时间窗大小, 每个比特指示在发射时间窗范围内的相应子帧是否包含 上行 DMRS信号; 其中:
发射时间窗大小为网络侧分配给用户侧的连续的上行子帧数。
7、 根据权利要求 5所述的方法, 其中, 所述 OFDM符号位置指示信息 比特数等于子帧内的 OFDM符号数,每个比特指示子帧范围内的相应 OFDM 符号是否承载上行 DMRS信号。
8、 根据权利要求 1所述的方法, 其中, 所述 OCC码为序列长度等于发 射位置数的一组相互正交的复数值序列中的一个; 其中:
发射位置数为发射时间窗范围内承载 DMRS信号的 OFDM符号数。
9、 根据权利要求 8所述的方法, 其中, 所述网络侧 OCC指示信息指示 序列长度等于发射位置数的一组相互正交的复数值序列中的一个复数值序列。
10、 根据权利要求 9所述的方法, 其中, 所述网络侧 OCC指示信息的 比特数目为 Cez7 (/og2 (N) ) ,每个 OCC指示信息的数值表示一个复数值序列; 其中, N为序列长度等于发射位置数的一组相互正交的复数值序列包括的复 数值序列数目, Cez7表示向上取整。
1 1、 根据权利要求 1所述的方法, 其中, 所述根据所述发射位置和 OCC 码, 发射上行 DMRS信号, 包括:
根据所述发射位置, 获取每个发射位置的第一 DMRS序列, 其中, 序列 长度等于网络侧分配给用户侧的连续的子载波数;
将所述长度为发射位置数的 OCC码的每个复数值与每个发射位置的第 一 DMRS序列对应相乘, 以获取每个发射位置的第二 DMRS序列;
将每个发射位置的第二 DMRS序列映射到所述发射位置, 并发射。
12、 一种发射上行解调参考信号 DMRS的系统, 包括:
获取装置, 设置为: 获取上行 DMRS信号发射位置, 以及, 根据网络侧 的正交覆盖码 OCC指示信息, 确定与上行 DMRS信号有关的 OCC码;
发射装置, 设置为: 根据所述发射位置和 OCC码, 发射上行 DMRS信 号。
13、 根据权利要求 12所述的系统, 其中, 所述上行 DMRS信号发射位 置为发射时间窗范围内至少一个正交频分复用 OFDM符号; 其中:
发射时间窗为网络侧分配给用户侧的连续的上行子帧。
14、 根据权利要求 12或 13所述的系统, 其中, 所述上行 DMRS信号发 射位置包含于发射时间窗范围内至少一个子帧。
15、 根据权利要求 12或 13所述的系统, 其中, 所述上行 DMRS信号发 射位置是根据网络侧的发射位置指示信息确定的。
16、根据权利要求 15所述的系统, 其中, 所述发射位置指示信息包括子 帧位置指示信息与 OFDM符号位置指示信息; 其中:
子帧位置指示信息指示发射时间窗范围内包含上行 DMRS的子帧;
OFDM符号位置指示信息指示包含上行 DMRS信号的子帧范围内实际 承载上行 DMRS信号的 OFDM符号。
17、 根据权利要求 16所述的系统, 其中, 所述子帧位置指示信息比特 数等于发射时间窗大小, 每个比特指示在发射时间窗范围内的相应子帧是否 包含上行 DMRS信号; 其中:
发射时间窗大小为网络侧分配给用户侧的连续的上行子帧数。
18、 根据权利要求 16所述的系统, 其中, 所述 OFDM符号位置指示信 息比特数等于子帧内的 OFDM符号数, 每个比特指示子帧范围内的相应 OFDM符号是否承载上行 DMRS信号。
19、 根据权利要求 12所述的系统, 其中, 所述 OCC码为序列长度等于 发射位置数的一组相互正交的复数值序列中的一个; 其中:
发射位置数为发射时间窗范围内承载 DMRS信号的 OFDM符号数。
20、 根据权利要求 19所述的系统, 其中, 所述网络侧 OCC指示信息指 示序列长度等于发射位置数的一组相互正交的复数值序列中的一个复数值序 列。
21、 根据权利要求 20所述的系统, 其中, 所述网络侧 OCC指示信息的 比特数目为 Cez7 (/og2 (N) ) ,每个 OCC指示信息的数值表示一个复数值序列; 其中, N为序列长度等于发射位置数的一组相互正交的复数值序列包括的复 数值序列数目, Cez7表示向上取整。
22、 根据权利要求 12所述的系统, 其中, 所述发射装置包括: 获取模块,设置为:根据所述发射位置,获取每个发射位置的第一 DMRS 序列, 其中, 序列长度等于网络侧分配给用户侧的连续的子载波数;
计算模块, 设置为: 与所述获取模块相连, 将所述长度为发射位置数的 OCC码的每个复数值与每个发射位置的第一 DMRS序列对应相乘, 以获取 每个发射位置的第二 DMRS序列;
发射模块,设置为:与所述计算模块相连,将每个发射位置的第二 DMRS 序列映射到所述发射位置, 并发射。
PCT/CN2013/085570 2013-01-18 2013-10-21 一种发射上行解调参考信号的方法和系统 WO2014110924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310018556.9 2013-01-18
CN201310018556.9A CN103944662B (zh) 2013-01-18 2013-01-18 一种发射上行解调参考信号的方法和系统

Publications (1)

Publication Number Publication Date
WO2014110924A1 true WO2014110924A1 (zh) 2014-07-24

Family

ID=51192171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085570 WO2014110924A1 (zh) 2013-01-18 2013-10-21 一种发射上行解调参考信号的方法和系统

Country Status (2)

Country Link
CN (1) CN103944662B (zh)
WO (1) WO2014110924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728710A (zh) * 2019-05-02 2021-11-30 高通股份有限公司 随机接入消息的参考信号传输技术
US11533210B2 (en) * 2016-02-05 2022-12-20 Panasonic Intellectual Property Corporation Of America Communication apparatus and transmission method for transmitting a demodulation reference signal

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123169B1 (ko) * 2015-11-03 2020-06-16 텔레폰악티에볼라겟엘엠에릭슨(펍) 업링크 스케줄링 방법 및 장치
CN107040354B (zh) * 2016-02-04 2020-10-27 中兴通讯股份有限公司 上行dmrs的配置方法、网元、上行dmrs的传输方法和装置
CN107769903B (zh) * 2016-08-22 2020-01-31 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107819557B (zh) * 2016-09-13 2020-11-27 中国移动通信有限公司研究院 传输处理方法、网络侧设备及移动通信终端
CN108347320B (zh) * 2017-01-24 2022-05-10 中兴通讯股份有限公司 一种发射功率状态转化时间的处理方法及装置
CN114285714B (zh) * 2017-06-16 2024-05-14 华为技术有限公司 相位跟踪参考信号处理方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989970A (zh) * 2009-08-07 2011-03-23 中国移动通信集团公司 一种解调导频信号的发送方法和设备
WO2011139081A2 (en) * 2010-05-03 2011-11-10 Pantech Co.,Ltd. Apparatus and method for transmitting and receiving of cyclic shift parameter for supporting orthogonality in mimo environment
US20120033630A1 (en) * 2009-04-15 2012-02-09 Jae Hoon Chung Method and apparatus for transmitting reference signal
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365232B (zh) * 2007-08-10 2012-02-29 中兴通讯股份有限公司 一种长期演进系统中解调参考信号模式的通知方法
CN102413572B (zh) * 2011-09-28 2017-06-06 中兴通讯股份有限公司 Dmrs及其信令的发送方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120033630A1 (en) * 2009-04-15 2012-02-09 Jae Hoon Chung Method and apparatus for transmitting reference signal
CN101989970A (zh) * 2009-08-07 2011-03-23 中国移动通信集团公司 一种解调导频信号的发送方法和设备
WO2011139081A2 (en) * 2010-05-03 2011-11-10 Pantech Co.,Ltd. Apparatus and method for transmitting and receiving of cyclic shift parameter for supporting orthogonality in mimo environment
CN102404854A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533210B2 (en) * 2016-02-05 2022-12-20 Panasonic Intellectual Property Corporation Of America Communication apparatus and transmission method for transmitting a demodulation reference signal
US11665039B2 (en) 2016-02-05 2023-05-30 Panasonic Intellectual Property Corporation Of America Communication apparatus and transmission method for transmitting a demodulation reference signal
US12015512B2 (en) 2016-02-05 2024-06-18 Panasonic Intellectual Property Corporation Of America Communication apparatus and transmission method for transmitting a demodulation reference signal
CN113728710A (zh) * 2019-05-02 2021-11-30 高通股份有限公司 随机接入消息的参考信号传输技术
US11950294B2 (en) 2019-05-02 2024-04-02 Qualcomm Incorporated Reference signal transmission techniques for random access messages

Also Published As

Publication number Publication date
CN103944662B (zh) 2018-10-02
CN103944662A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2014110924A1 (zh) 一种发射上行解调参考信号的方法和系统
US20190261373A1 (en) Device, method, and program
JP2020522903A (ja) データチャネルを送受信する方法及びそのための装置
CN110460419A (zh) 上行数据发送方法及装置、存储介质、终端、基站
CN106788926B (zh) 一种降低网络延迟的无线通信方法和装置
US9948562B2 (en) Method and device for transmitting pilot signal
WO2014110928A1 (zh) 上行解调参考信号的发送方法、装置和系统
CN109804579A (zh) 用于多波形数据传输的公共控制信道和参考符号
WO2011095009A1 (zh) 测量参考信号的发送方法及系统
WO2018027806A1 (zh) 解调参考信号传输方法及相关设备
EP2892264A1 (en) Method, base station and user equipment for transmitting broadcast message
CN112714497B (zh) 一种传输块尺寸确定方法及装置
WO2020063464A1 (zh) Dmrs处理方法、装置、系统、设备、终端、存储介质
JP2015507437A (ja) 柔軟な基準信号構成をサポートするためのシグナリングの方法および装置
WO2013020491A1 (zh) 一种导频信号发送方法和设备
WO2018137675A1 (zh) 通信方法和网络设备
WO2019095931A1 (zh) 信息指示、资源确定方法及装置、计算机存储介质
CN109076513A (zh) 下行控制信息的发送方法、检测方法和设备
JP2018196029A (ja) 送信装置、受信装置、方法及び記録媒体
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
CN106877984A (zh) 一种窄带无线传输中的方法和装置
JP2021516461A (ja) 無線通信システムにおけるアップリンク制御信号に対する復調参照信号を送信するための方法、及びこのための装置
WO2014190792A1 (zh) 灵活子帧的处理方法及装置
CN108173627A (zh) 时间信息的确定方法、网络节点和终端设备
WO2020187132A1 (zh) 数据信道的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871397

Country of ref document: EP

Kind code of ref document: A1