WO2014109329A1 - 脱水装置、ガス圧縮システム、及び脱水方法 - Google Patents

脱水装置、ガス圧縮システム、及び脱水方法 Download PDF

Info

Publication number
WO2014109329A1
WO2014109329A1 PCT/JP2014/050134 JP2014050134W WO2014109329A1 WO 2014109329 A1 WO2014109329 A1 WO 2014109329A1 JP 2014050134 W JP2014050134 W JP 2014050134W WO 2014109329 A1 WO2014109329 A1 WO 2014109329A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
regeneration
adsorption
adsorption tower
supplied
Prior art date
Application number
PCT/JP2014/050134
Other languages
English (en)
French (fr)
Inventor
乾 正幸
隆仁 米川
浩次 中山
達也 辻内
美樹 反町
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2014205989A priority Critical patent/AU2014205989B2/en
Priority to EP14737823.6A priority patent/EP2944369B1/en
Priority to CA2897489A priority patent/CA2897489C/en
Priority to JP2014556423A priority patent/JP6121449B2/ja
Publication of WO2014109329A1 publication Critical patent/WO2014109329A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)

Definitions

  • the present invention relates to a dehydration apparatus, a gas compression system, and a dehydration method.
  • a gas compression system for example, Patent Document 1 that collects and compresses a predetermined gas such as CO 2 gas from exhaust gas discharged from an industrial facility such as a boiler or a gas turbine has been conventionally installed in an industrial facility or the like. .
  • FIG. 3 is an example of a configuration diagram of a conventional gas compression system 200.
  • the gas compression system 200 compresses CO 2 gas with a plurality of compressors 202 (202-1 to 202-4).
  • the gas compression system 200 includes a plurality of coolers 204, a plurality of knockout drums (gas-liquid separators) 206, and a dehydrator 208 along with a plurality of compressors 202.
  • the cooler 204 cools the compressed CO 2 gas
  • the knock-out drum knock-out drum 206 recovers the condensed water (H 2 O) by reducing the water saturation rate in the CO 2 gas due to compression
  • the dehydrator 208 Water that cannot be recovered by the knockout drum 206 is recovered (dehydrated) by adsorption.
  • a dehydrator 208 is provided in the intermediate stage of the plurality of compressors 202.
  • the dehydrator 208 includes an adsorption tower 210 (210A, 210B), a regeneration gas heater 212, a regeneration gas cooler 214, and a regeneration gas knockout drum 216.
  • the adsorption tower 210 alternately performs an adsorption process for adsorbing moisture contained in the CO 2 gas and a regeneration process for desorbing the adsorbed moisture. In addition, after the completion
  • the adsorption tower 210B performs the regeneration step
  • a part of the CO 2 gas dehydrated in the adsorption tower 210A is heated to a predetermined temperature by the regeneration gas heater 212 and is supplied to the adsorption tower 210B.
  • Moisture is desorbed from 210B.
  • the regeneration gas containing moisture desorbed from the adsorption tower 210B is supplied to the regeneration gas cooler 214 and cooled to a predetermined temperature. At that time, most of the desorbed water is recovered as condensed water by the lower regeneration gas knockout drum 216.
  • the water-saturated regenerated gas after the water has been collected by the regenerative gas knockout drum 216 loses pressure in piping, equipment, etc., it is next to the compressor 202-2 that supplied the CO 2 gas to the dehydrator 208. It is returned not to the inlet side of the stage compressor 202-3 but to the upstream side such as the inlet of the compressor 202-2.
  • the regeneration gas supplied to the adsorption tower 210B performing the regeneration process must always be heated at a predetermined heat amount. For this reason, in the conventional dehydrator 208, the driving demand for the regeneration gas heater 212 is increased, and the consumption of steam or electric power for heating the regeneration gas is increased.
  • the regeneration gas containing the residual heat sent from the adsorption tower 210 performing the regeneration process must always be cooled with a predetermined amount of cooling water. For this reason, in the conventional dehydrator 208, the drive demand for the regenerative gas cooler 214 is increased, and the consumption of cooling water is increased.
  • the regeneration gas is supplied to the inlet of the compressor 202-3 at the next stage of the compressor 202-2 that has supplied the CO 2 gas to the dehydrator 208. It cannot be returned and returned to the upstream side such as the inlet of the compressor 202-2. Therefore, the compressor 202 on the upstream side of the regeneration gas is returned, the flow rate of the CO 2 gas supplied is increased flow amount of the regeneration gas, increasing the power of the compressor 202 on the upstream side, i.e. utility consumption ( Electricity and steam consumption) will increase.
  • utility consumption Electricity and steam consumption
  • the supply of regeneration gas is stopped, so that the operating conditions of the upstream compressor 202 to which the regeneration gas is returned fluctuate. That is, for example, when the compressor 202-2 is designed on the assumption that the regenerated gas is returned, the compressor 202-2 is operated at an optimum operating condition during the standby process in which the regenerated gas is not returned. Not driving. For this reason, in the design stage of the gas compression system 200, the design conditions of the dehydrator 208 affect the design of the upstream compressor 202 to which the regeneration gas is returned.
  • This invention is made
  • the dehydration apparatus, gas compression system, and dehydration method of the present invention employ the following means.
  • the dehydration apparatus includes a plurality of adsorption towers arranged in parallel in a gas supply line for alternately performing an adsorption step for adsorbing moisture contained in a gas and a regeneration step for desorbing adsorbed moisture.
  • a dehydrator for causing the other adsorption tower to perform the regeneration step while allowing the adsorption tower to perform the adsorption step, and heating a part of the gas dehydrated by the adsorption tower during the adsorption step.
  • a gas-liquid separation unit that returns the separated and separated moisture to the adsorption tower; a gas that is sent from the adsorption tower during the regeneration step and supplied to the cooling unit; and a gas that is supplied to the heating unit , Preheating unit for heat exchange , Comprising a.
  • the dehydrating apparatus includes a plurality of adsorption towers that alternately perform an adsorption process for adsorbing moisture contained in a gas and a regeneration process for desorbing the adsorbed moisture in parallel with a gas supply line. While the adsorption process is performed, the regeneration process is performed in another adsorption tower.
  • moisture content contained in gas is performed by adsorption
  • regeneration process is a process of desorbing the water
  • the dehydrator heats a part of the gas dehydrated by the adsorption tower during the adsorption process by the heating unit and supplies the heated gas to the adsorption tower during the regeneration process. Heat is exchanged with the gas delivered from the adsorption tower by the preheating unit.
  • the dehydrator cools the gas sent from the adsorption tower during the regeneration process and heat-exchanged by the preheating unit by the cooling unit, and the moisture condensed from the gas cooled by the cooling unit is separated by the gas-liquid separation unit. The gas from which moisture has been separated is returned to the adsorption tower.
  • the preheating unit Since the preheating unit is provided in this way, the temperature of the gas supplied to the cooling unit is lower than that in the case where the preheating unit is not provided. The consumption of the cooling water supplied to the section is reduced. On the other hand, since the temperature of the gas supplied to the heating unit is higher than that when the preheating unit is not provided, the energy consumed by the heating unit for heating the gas is reduced.
  • the dehydrating apparatus can suppress an increase in utility consumption due to the regeneration process.
  • the heating unit controls a heating amount of the gas based on a heat exchange amount by the preheating unit.
  • the regeneration step when heated gas is supplied to the adsorption tower, moisture is desorbed by gradually heating from the adsorption on the gas supply side.
  • the desorbed moisture moves to the gas delivery side together with the gas, and is adsorbed again by adsorption on the delivery side. That is, in the regeneration process, moisture desorption and adsorption are alternately repeated, so that moisture is desorbed from adsorption on the gas supply side to adsorption on the delivery side.
  • the energy given to the adsorption by the heated gas is greater immediately after the start of the regeneration process, and the gas delivered from the adsorption tower during the regeneration process has a lower temperature than the initial temperature.
  • the amount of heat exchange by the preheating unit changes with time. Therefore, according to this configuration, since the amount of gas heated by the heating unit is controlled based on the amount of heat exchange by the preheating unit, the energy consumed by the heating unit for heating the gas is more effectively reduced. can do.
  • a compressor is provided between the gas-liquid separation unit and the adsorption tower and pressurizes the gas used in the regeneration step so as to compensate for the pressure loss due to the regeneration step. Is preferred.
  • the gas pressurized by the compressor has the same pressure as the gas supplied to the dehydrator, is mixed with the gas supplied to the dehydrator, and is supplied to the adsorption tower. It is possible to return all of the gas to be returned to the gas supply source. Therefore, this configuration eliminates the problem of increasing the power of the compressor to which the gas is returned because the gas used in the regeneration process is not returned to the inlet of the compressor to which the gas has been supplied, as in the past. Is done.
  • the gas supplied from the adsorption tower during the regeneration process and supplied to the cooling unit and the gas supplied to the heating unit can be more efficiently obtained. Heat exchange is possible.
  • a gas compression system includes a plurality of compressors for compressing a gas and the dehydrating device described above, and dehydrates the gas compressed by the predetermined compressor with the dehydrating device. The dehydrated gas is further compressed by the compressor provided in the next stage of the predetermined compressor.
  • the dehydration method according to the third aspect of the present invention comprises a plurality of adsorption towers arranged in parallel in a gas supply line, wherein an adsorption step for adsorbing moisture contained in gas and a regeneration step for desorbing adsorbed moisture are provided in parallel.
  • the gas is supplied to the adsorption tower during the regeneration step, and the gas supplied to the heating unit and the gas delivered from the adsorption tower during the regeneration step are heat exchanged by the preheating unit,
  • the gas sent from the adsorption tower during the regeneration step and heat-exchanged by the preheating unit is cooled by a cooling unit, moisture condensed from the gas cooled by the cooling unit is separated by a gas-liquid separation unit, and moisture is removed.
  • FIG. 1 shows a CO 2 recovery device 12 provided with a CO 2 compression system 10 according to this embodiment.
  • the CO 2 recovery device 12 includes a cooling tower 14.
  • a cooling tower 14 For example, exhaust gas containing CO 2 discharged from industrial equipment such as a boiler and a gas turbine is supplied to the cooling tower 14 by a blower (not shown).
  • the exhaust gas supplied to the cooling tower 14 is cooled by cooling water.
  • the cooling water used for cooling the exhaust gas is supplied again to the cooling tower 14 by the pump 16 through the cooler 18 and is injected in the tower.
  • the cooled exhaust gas containing CO 2 is supplied from the lower part of the absorption tower 22 through the exhaust gas line 20.
  • a CO 2 absorption liquid (amine solution) based on alkanolamine is brought into counterflow contact with the exhaust gas while passing through the filler 23.
  • CO 2 in the exhaust gas is absorbed by the CO 2 absorbent, and CO 2 is removed from the exhaust gas discharged from the industrial equipment.
  • a purified gas from which CO 2 has been removed is discharged from the tower top 22 a of the absorption tower 22.
  • Purified gas contains water vapor and the like. This water vapor is condensed by the cooling water sprayed at the upper part of the absorption tower 22. The condensed water circulates between the cooling device 26 and the absorption tower 22 by the pump 28 outside the absorption tower 22, and is cooled by the cooling device 26. Furthermore, the mist eliminator 24 is provided on the spray in the upper part of the absorption tower 22, and the mist reaching here is separated and removed from the purified gas.
  • CO 2 absorbent that has absorbed CO 2 in the absorption tower 22 is accumulated in the bottom of the column 22b, the bottom 22b and the regeneration tower 30 from feed line L 1 connecting the upper portion of the regeneration column 30 of absorption tower 22, It is supplied by the pump 32 and injected toward the filler 34 in the tower. Between the absorber 22 and the regenerator 30, feed line L 2 connecting the bottom portion 30b of the regenerator 30 and the upper portion of the absorber 22 is provided.
  • a heat exchanger 36 for replacement is provided. The rich solution is heated by the heat exchanger 36, and the lean solution is cooled.
  • CO 2 absorbent having absorbed CO 2 (rich solution) CO 2 is released by the endothermic reaction by countercurrent contact between passing through the filler 34 in the regeneration tower 30.
  • rich solution reaches the tower bottom 30b of the regeneration tower 30
  • most of the CO 2 is removed and regenerated as a lean solution.
  • the regenerated lean solution is supplied again to the absorption tower 22 via the water-cooled cooler 40 by the pump 38 as a CO 2 absorption liquid and reused.
  • the lean solution regenerated by releasing CO 2 in the regeneration tower 30 is refluxed to the absorption tower 22 by the pump 38 through the liquid feed line L 2 .
  • the lean solution While the lean solution is refluxed, it is cooled by exchanging heat with the absorption liquid supplied from the absorption tower 22 to the regeneration tower 30 in the heat exchanger 36, and is further cooled by the water-cooled cooler 40. 2 is cooled to a temperature suitable for absorption.
  • L 3 is a CO 2 discharge line connected to the top 30 a of the regeneration tower 30.
  • CO 2 gas discharged from the regeneration tower 30 by CO 2 discharge line L 3 is cooled through a cooler 42 using cooling water supplied to the reflux drum 43.
  • the CO 2 gas supplied to the reflux drum 43 is separated from moisture.
  • the separated CO 2 gas is supplied to the CO 2 compression system 10.
  • the condensed water separated in the reflux drum 43 is returned to the upper part of the regeneration tower 30 by a pump 44.
  • the refluxed condensed water cools the condensing unit 46 and suppresses the release of the CO 2 absorbent and the like.
  • FIG. 2 is a configuration diagram of the CO 2 compression system 10 according to the present embodiment.
  • the CO 2 compression system 10 includes a plurality of compressors 50 that compress CO 2 gas.
  • the plurality of compressors 50 are connected in series.
  • the CO 2 compression system 10 includes a cooler 52 and a knockout drum 54 between the compressor 50 and the compressor 50 as appropriate.
  • the knockout drum 54 collects moisture condensed from the CO 2 gas, and the cooler 52 cools the CO 2 gas heated by being compressed by the compressor 50.
  • the knockout drum 54 collects the moisture condensed by the reduction of the moisture saturation rate in the CO 2 gas due to compression.
  • the CO 2 compression system 10 includes a dehydrating device 60 for dehydrating CO 2 gas.
  • the dehydrator 60 collects (dehydrates) moisture contained in the CO 2 gas that cannot be collected by the knockout drum 54 by adsorption.
  • the CO 2 compression system 10 includes four compressors 50 (50-1, 50-2, 50-3, 50-4), four coolers 52 (52-1, 52). -2, 52-3, 52), three knockout drums 54 (54-1, 54-2, 54-3), and one dehydrator 60 are connected in series. More specifically, a knockout drum 54-1 is provided upstream of the compressor 50-1, and a cooler 52-1 and a knockout drum 54- are provided between the compressor 50-1 and the compressor 50-2.
  • a cooler 52-2 a knockout drum 54-3, and a dehydrator 60 are provided between the compressor 50-2 and the compressor 50-3, and the compressor 50-3 and the compressor 50- 4, a cooler 52-3 is provided, and a cooler 52 is provided downstream of the compressor 50-4.
  • the number and installation order of the compressor 50, the cooler 52, the knockout drum 54, and the dehydrating device 60 are examples, and the number and the installation order may be different as long as the CO 2 gas can be compressed and dehydrated.
  • the dehydrator 60 includes an adsorption tower 62 (62A, 62B) that alternately performs an adsorption process for adsorbing moisture contained in the CO 2 gas and a regeneration process for desorbing the adsorbed moisture in parallel with the CO 2 gas supply line 64.
  • a plurality are provided.
  • the dehydrator 60 causes the other adsorption towers 62 to perform the regeneration process while the predetermined adsorption towers 62 perform the adsorption process.
  • finish of a regeneration process the adsorption tower 62 passes to a adsorption process after passing through a standby process.
  • CO 2 gas at 20 ° C. to 40 ° C. is supplied from the opening 66 of the adsorption tower 62 and sent out from the opening 68, so that the adsorption absorbs moisture contained in the CO 2 gas to thereby absorb CO 2.
  • moisture adsorbed by adsorption is desorbed by heat and desorbed together with the heated CO 2 gas. Deliver moisture.
  • the adsorption process is performed for 8 hours, the regeneration process is performed for 4 hours, and the standby process is performed for 4 hours.
  • the dehydrator 60 includes a regeneration gas heater 70, a regeneration gas cooler 72, a regeneration gas knockout drum 74, a regeneration gas preheater 76, and a regeneration gas compressor 78.
  • the regeneration gas heater 70 heats a part of the CO 2 gas dehydrated by the adsorption tower 62 during the adsorption process, and supplies it to the adsorption tower 62 during the regeneration process. Note that the regeneration gas heater 70 heats the CO 2 gas to a predetermined temperature (for example, 200 ° C. to 300 ° C.) by using electric power or separately supplied steam.
  • a predetermined temperature for example, 200 ° C. to 300 ° C.
  • the regeneration gas cooler 72 cools the CO 2 gas sent from the adsorption tower 62 during the regeneration process to a predetermined temperature (for example, 20 ° C. to 40 ° C.).
  • Regeneration gas knockout drum 74 separates the condensed water from the CO 2 gas cooled by the regeneration gas cooler 72, returning the CO 2 gas separated moisture adsorption tower 62.
  • the regeneration gas preheater 76 exchanges heat between the CO 2 gas delivered from the adsorption tower 62 during the regeneration process and supplied to the regeneration gas cooler 72 and the CO 2 gas supplied to the regeneration gas heater 70.
  • the regeneration gas compressor 78 is provided between the regeneration gas knockout drum 74 and the adsorption tower 62, and raises the pressure of the CO 2 gas used in the regeneration process so as to compensate for the pressure loss due to the regeneration process.
  • the supply line 64 connected to the outlet of the knockout drum 54-3 is branched.
  • Each branched supply line 64 includes valves 80A and 80B, and is connected to the openings 66 of the adsorption towers 62A and 62B. Further, the branched supply line 64 is bypassed before being connected to the adsorption towers 62A and 62B, and the bypass supply line 64 is provided with valves 80C and 80D.
  • a supply line 64 connected to the regeneration gas cooler 72 is provided between the valves 80C and 80D via the regeneration gas preheater 76.
  • each supply line 64 connected to the opening 68 of the adsorption towers 62A and 62B is provided with valves 80E and 80F, joined at the tip provided with the valves 80E and 80F, and is connected to the compressor via the filter 82. Connected to the entrance of 50-3. Filter 82, a powder or the like of possible adsorption contained in the CO 2 gas is removed from the CO 2 gas.
  • the supply line 64 connected to the openings 68 of the adsorption towers 62A and 62B is bypassed downstream from the position where the valves 80E and 80F are provided.
  • the bypass supply line 64 is provided with valves 80G and 80H. Yes.
  • a supply line 64 connected to the outlet of the regeneration gas heater 70 is provided between the valves 80G and 80H.
  • the joined supply line 64 connected to the inlet of the compressor 50-3 is branched on the outlet side of the filter 82 and connected to the inlet of the regeneration gas heater 70 through the regeneration gas preheater 76.
  • the regeneration gas cooler 72 is connected to the regeneration gas knockout drum 74, the regeneration gas knockout drum 74 is connected to the inlet of the regeneration gas compressor 78, and the outlet of the regeneration gas compressor 78 is connected to the dehydrator from the knockout drum 54-3. Connected to a supply line 64 for supplying CO 2 gas to 60.
  • valves 80A and 80D are opened while the valves 80B and 80C are closed.
  • valves 80E and 80H are opened, while the valves 80F and 80G are closed.
  • the CO 2 gas containing moisture supplied from the knockout drum 54-3 to the dehydrator 60 is dehydrated by the adsorption tower 62A and returned to the compressor 50-3.
  • a part of the dehydrated CO 2 gas (for example, 10 to 30%, hereinafter referred to as “regeneration gas”) is supplied to the regeneration gas heater 70 via the regeneration gas preheater 76.
  • regeneration gas a part of the dehydrated CO 2 gas
  • the valve 80F is closed to the adsorption tower 62B where the standby process is performed, and CO 2 gas is not sent out.
  • the regeneration gas supplied to the regeneration gas heater 70 is heated by the regeneration gas heater 70 and supplied to the adsorption tower 62B where the regeneration process is performed.
  • the moisture adsorbed by the adsorption by the heated regeneration gas is desorbed.
  • the desorbed moisture is supplied to the regeneration gas preheater 76 together with the regeneration gas having residual heat.
  • the regeneration gas having residual heat supplied to the regeneration gas preheater 76 is supplied to the regeneration gas cooler 72 after exchanging heat with the regeneration gas before being heated by the regeneration gas heater 70.
  • the regeneration gas sent from the adsorption tower 62B is heat-exchanged by the regeneration gas preheater 76, so that the temperature is lowered, while the regeneration gas before being heated by the regeneration gas heater 70 is raised in temperature.
  • the regeneration gas preheater 76 Since the regeneration gas preheater 76 is provided in this manner, the temperature of the regeneration gas supplied to the regeneration gas cooler 72 is lower than when the regeneration gas preheater 76 is not provided. , That is, the amount of cooling water supplied to the regeneration gas cooler 72 is reduced. On the other hand, since the temperature of the regeneration gas before being heated by the regeneration gas heater 70 is higher than that when the regeneration gas preheater 76 is not provided, the regeneration gas heater 70 consumes to heat the regeneration gas. Energy is reduced.
  • the moisture is desorbed by gradually being heated from the adsorption on the regeneration gas supply side (opening 68 side).
  • the desorbed moisture moves to the regeneration gas delivery side (opening 66 side) together with the regeneration gas, and is adsorbed again by adsorption on the delivery side. That is, in the regeneration step, moisture desorption and adsorption are repeated alternately, so that moisture is desorbed from regeneration gas supply side adsorption to delivery side adsorption.
  • the energy that the heated regeneration gas gives to adsorption is greater immediately after the start of the regeneration process, and the regeneration gas sent from the adsorption tower 62B in the regeneration process is initially at a lower temperature.
  • the temperature increases with time.
  • the regeneration gas sent from the adsorption tower 62B during the regeneration process reaches, for example, about 150 ° in about 30 to 60 minutes after the start of the regeneration process, and then gradually rises in temperature at the end of the regeneration process.
  • the temperature is about 300 ° C. which is the same as the temperature supplied to the adsorption tower 62B.
  • the heat exchange amount of the regeneration gas preheater 76 also changes in the same manner. Therefore, in order to heat the regeneration gas supplied to the adsorption tower 62B in the regeneration process to a predetermined temperature (200 to 300 ° C.), the amount of change is made to follow the amount of change by the regeneration gas heater 70. It is necessary to compensate.
  • the regeneration gas heater 70 controls the heating amount of the regeneration gas based on the heat exchange amount of the regeneration gas preheater 76. Specifically, the temperature of the regeneration gas at the inlet or the outlet of the regeneration gas heater 70 is measured by the thermometer 96A or the thermometer 96B, and the utility (steam amount or electric power) supplied to the regeneration gas heater 70 based on the measurement result. Amount) is adjusted.
  • the dehydration apparatus 60 can further increase the heat exchange amount by including a plurality of the regeneration gas preheaters 76.
  • the regeneration gas sent from the opening 66 of the adsorption tower 62B passes through the regeneration gas preheater 76A and the regeneration gas preheater 76B in this order.
  • the regeneration gas sent from the opening 68 of the adsorption tower 62A is passed through the regeneration gas preheater 76B and the regeneration gas preheater 76A in this order to exchange heat.
  • the regeneration gas sent from the adsorption tower 62B in the regeneration step and heated by the regeneration gas cooler 72 and the regeneration gas sent from the adsorption tower 62B can be heat-exchanged more efficiently.
  • the regeneration gas cooled by the regeneration gas cooler 72 is supplied to the regeneration gas compressor 78 after moisture is separated by the regeneration gas knockout drum 74.
  • the water (condensed water) separated in the regeneration gas knockout drum 74 is discharged from the regeneration gas knockout drum 74.
  • the regeneration gas compressor 78 increases the pressure of the supplied regeneration gas so as to compensate for the pressure loss due to the regeneration process, and returns it to the supply line 64 connected to the opening 66 of the adsorption tower 62.
  • the regeneration gas boosted by the regeneration gas compressor 78 has the same pressure as the regeneration gas supplied from the knockout drum 54-3 to the dehydrator 60, and the regeneration gas supplied from the knockout drum 54-3 to the dehydrator 60. It is mixed with gas and supplied to the adsorption tower 62. For this reason, all of the CO 2 gas delivered from the dehydrator 60 is further compressed by the CO 2 gas supply source, that is, the compressor 50-3 provided in the next stage of the compressor 50-2.
  • the regeneration gas used in the regeneration process is not returned to the inlet of the compressor 50-2 supplied with the CO 2 gas as in the prior art, so that the power of the compressor 50 to which the regeneration gas is returned is increased.
  • the problem is solved. Further, even if the regeneration gas is not supplied to the adsorption tower 62B in the standby process, the amount of CO 2 gas returned from the dehydrator 60 to the compressor 50 does not change at all, so the operation of the compressor 50 to which CO 2 gas is returned is not performed. Conditions do not fluctuate. Therefore, variations in the operating conditions due to the amount of regeneration gas is returned to the compressor 50 is changed, a problem that affects the design of the CO 2 compression system 10 also eliminated.
  • Table 1 shows the difference in power consumption between the conventional CO 2 compression system (see FIG. 3) and the CO 2 compression system 10 according to the present embodiment.
  • the amount of electric power (BHP power, heat exchange heat duty), which is a utility, is provided with regeneration gas preheaters 76A and 76B and a regeneration gas compressor 78 as compared with a conventional CO 2 compression system.
  • the CO 2 compression system 10 according to the embodiment is less. Since the regeneration gas compressor 78 is not provided in the conventional CO 2 compression system, the BHP power of the regeneration gas compressor 78 increases in the CO 2 compression system 10 according to the present embodiment.
  • the BHP power of the regeneration gas compressor 78 is small, it is equal to or less than the BHP power reduced by the CO 2 compression system 10, and the BHP power decreases as a total. Further, the CO 2 compression system 10 according to the present embodiment can also reduce the heat exchange heat duty of the regeneration gas heater 70 and the regeneration gas cooler 72.
  • the compressor 50 of the CO 2 compression system 10 consumes less power than the compressor of the conventional CO 2 compression system. This is because in the conventional CO 2 compression system, the capacity of the compressor to which the regenerated gas returns (compressor 202-2 in the example of FIG. 3) is larger than that of the other compressors and must be boosted at a predetermined compression rate. did not become.
  • CO 2 compression system 10 according to this embodiment by boosting the only regeneration gas by a small regeneration gas compressor 78 capacity only pressure loss generated in the dewatering device 60, necessary to provide a large compressor capacity This is because there is no more. Since the regenerative gas compressor 78 has a small capacity because it boosts a small amount of gas at a constant compression rate as compared with the compressor 50 to which the regenerative gas returns, it consumes less power than a compressor with a large capacity.
  • the dehydrating apparatus 60 uses the adsorption tower 62 that alternately performs the adsorption process for adsorbing the moisture contained in the CO 2 gas and the regeneration process for desorbing the adsorbed moisture to the CO 2 gas.
  • a plurality of the adsorption lines 62 are provided in parallel with the supply line 64, and the regeneration process is performed on the other adsorption towers 62 while the predetermined adsorption tower 62 performs the adsorption process.
  • the dehydrator 60 heats a part of the CO 2 gas dehydrated by the adsorption tower 62 in the adsorption process by the regeneration gas heater 70 and supplies it to the adsorption tower 62 in the regeneration process, to the regeneration gas heater 70.
  • the a CO 2 gas supplied and CO 2 gas sent from the adsorption tower 62 in the regeneration step heat exchanged by regeneration gas preheater 76.
  • the dehydrator 60 cools the CO 2 gas sent from the adsorption tower 62 during the regeneration process and heat-exchanged by the regeneration gas cooler 72, and separates moisture condensed from the cooled CO 2 gas by the regeneration gas knockout drum 74.
  • the CO 2 gas from which the water has been separated is returned to the adsorption tower 62.
  • the dehydrating device 60 can suppress an increase in utility consumption due to the regeneration process.
  • the CO 2 compression system 10 includes a plurality of compressors 50 that compress the regenerated gas and a dehydrating device 60 according to the present embodiment, and the CO 2 compressed by the predetermined compressor 50.
  • the gas is dehydrated by the dehydrating device 60, and the dehydrated CO 2 gas is further compressed by the compressor 50 provided at the next stage of the predetermined compressor 50.
  • the gas dehydrated by the dehydrator 60 is described as being CO 2 gas.
  • the present invention is not limited to this, and the gas dehydrated by the dehydrator 60 is CO 2 gas.
  • a gas other than the above may be used.
  • the dehydration apparatus 60 provided with the two adsorption towers 62 was demonstrated in the said embodiment, this invention is not limited to this, The form in which the dehydration apparatus 60 is provided with three or more adsorption towers 62 is demonstrated. It is good.
  • CO 2 compression system 50 compressor 60 dehydrator 62 adsorption tower 70 regeneration gas heater 72 regeneration gas cooler 74 regeneration gas knockout drum 76 regeneration gas preheater 78 regeneration gas compressor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

脱水装置は、COガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔を、COガスの供給ラインに並列に複数備え、所定の吸着塔に吸着工程を行わせる間に他の吸着塔に再生工程を行わせる。そして、脱水装置は、吸着工程中の吸着塔によって脱水されたCOガスの一部を再生ガスヒーターによって加熱して、再生工程中の吸着塔Aへ供給し、再生ガスヒーターへ供給されるCOガスと再生工程中の吸着塔から送出されるCOガスとを、再生ガスプレヒーターによって熱交換する。次に脱水装置は、再生工程中の吸着塔62から送出されて熱交換したCOガスを再生ガスクーラーによって冷却し、冷却したCOガスから凝縮した水分を分離し、吸着塔に戻す。従って、脱水装置は、再生工程に起因するユーティリティ消費量の増加を抑制できる。

Description

脱水装置、ガス圧縮システム、及び脱水方法
 本発明は、脱水装置、ガス圧縮システム、及び脱水方法に関するものである。
 例えばボイラやガスタービン等の産業設備から排出される排ガスからCOガス等の所定のガスを回収して圧縮するガス圧縮システム(例えば特許文献1)が、従来から産業設備等に設置されている。
 図3は、従来のガス圧縮システム200の構成図の一例である。なお、図3に示されるガス圧縮システム200は、一例としてCOガスを圧縮する。
 ガス圧縮システム200は、複数の圧縮機202(202-1~202-4)でCOガスを圧縮する。なお、ガス圧縮システム200は、複数の圧縮機202と共に、複数のクーラー204、複数のノックアウトドラム(気液分離器)206、及び脱水装置208を備えている。
 クーラー204は圧縮されたCOガスを冷却し、ノックアウトドラムノックアウトドラム206は圧縮によりCOガス中の水分飽和率が低下することで凝縮した水分(HO)を回収し、脱水装置208はノックアウトドラム206によって回収できなかった水分を吸着によって回収(脱水)する。なお、図3の例では、複数の圧縮機202の中間段に脱水装置208を備えている。
 脱水装置208は、吸着塔210(210A,210B)、再生ガスヒーター212、再生ガスクーラー214、再生ガスノックアウトドラム216を備える。
 吸着塔210は、COガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う。なお、吸着塔210は、再生工程の終了後、クーリング工程とスタンバイ工程を経てから吸着工程に移行する。
 例えば、吸着塔210Bが再生工程を行う場合、吸着塔210Aで脱水されたCOガスの一部が、再生ガスヒーター212によって所定温度まで昇温され、吸着塔210Bへ供給されることで吸着塔210Bから水分が脱着される。
 そして、吸着塔210Bから送出され、脱着した水分を含んだ再生ガスは、再生ガスクーラー214へ供給され、所定温度まで冷却される。その際、脱着した大半の水分は、凝縮水として下段の再生ガスノックアウトドラム216によって回収される。
 再生ガスノックアウトドラム216によって水分が回収された後の水分飽和した再生ガスは、配管や機器等で圧力を損失しているため、脱水装置208へCOガスを供給した圧縮機202-2の次段の圧縮機202-3の入口側ではなく、圧縮機202-2の入口等の上流側に戻される。
特開2010-241630号公報
 上述した従来の脱水装置208では、再生工程を行っている吸着塔210Bへ供給する再生ガスを常に所定熱量で昇温しなければならない。このため、従来の脱水装置208では、再生ガスヒーター212に対する駆動要求が高くなり、再生ガスを加熱させるための蒸気又は電力の消費量が多くなる。
 また、従来の脱水装置208では、再生工程が行われている間、再生工程を行っている吸着塔210から送出される余熱を含んだ再生ガスを常に所定冷却水量で冷却しなければならない。このため、従来の脱水装置208では、再生ガスクーラー214に対する駆動要求が高くなり、冷却水の消費量が多くなる。
 また、再生工程に用いた再生ガスは、再生工程に用いられる過程で圧力が下がるため、脱水装置208へCOガスを供給した圧縮機202-2の次段の圧縮機202-3の入口に戻すことができず、圧縮機202-2の入口等の上流側に戻される。このため、再生ガスが戻された上流側の圧縮機202では、供給されるCOガスの流量が再生ガスの流量分多くなり、上流側の圧縮機202の動力が増加、すなわちユーティリティ消費量(電力や蒸気の消費量)が増加する。
 さらに、再生工程を終えた後に行われるスタンバイ工程では、再生ガスの供給が停止されるため、再生ガスが戻される上流側の圧縮機202の運転条件が変動する。すなわち、例えば圧縮機202-2が、再生ガスが戻されることを前提に設計されると、圧縮機202-2は、再生ガスが戻されないスタンバイ工程が行われている間において最適な運転条件で運転されない。このため、ガス圧縮システム200の設計段階において、脱水装置208の設計条件が、再生ガスが戻される上流側の圧縮機202の設計に影響を及ぼす。
 本発明は、このような事情に鑑みてなされたものであって、再生工程に起因するユーティリティ消費量の増加を抑制する、脱水装置、ガス圧縮システム、及び脱水方法を提供することを目的とする。
 上記課題を解決するために、本発明の脱水装置、ガス圧縮システム、及び脱水方法は以下の手段を採用する。
 本発明の第一態様に係る脱水装置は、ガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔を、ガスの供給ラインに並列に複数備え、所定の前記吸着塔に前記吸着工程を行わせる間に他の前記吸着塔に前記再生工程を行わせる脱水装置であって、前記吸着工程中の前記吸着塔によって脱水されたガスの一部を加熱して、前記再生工程中の前記吸着塔へ供給する加熱部と、前記再生工程中の前記吸着塔から送出されたガスを冷却する冷却部と、前記冷却部によって冷却されたガスから凝縮した水分を分離し、水分を分離したガスを前記吸着塔に戻す気液分離部と、前記再生工程中の前記吸着塔から送出されて前記冷却部へ供給されるガスと前記加熱部へ供給されるガスとを、熱交換させる予加熱部と、を備える。
 本構成に係る脱水装置は、ガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔を、ガスの供給ラインに並列に複数備え、所定の吸着塔に吸着工程を行わせる間に他の吸着塔に再生工程を行わせる。なお、ガスに含まれる水分の吸着は吸着塔が有する吸着によって行われ、再生工程は、吸着が吸着した水分を熱により脱着させる工程である。
 そして、脱水装置は、吸着工程中の吸着塔によって脱水されたガスの一部を加熱部によって加熱して、再生工程中の吸着塔へ供給し、加熱部へ供給されるガスと再生工程中の吸着塔から送出されるガスとを、予加熱部によって熱交換する。次に脱水装置は、再生工程中の吸着塔から送出されて予加熱部によって熱交換したガスを冷却部によって冷却し、冷却部によって冷却されたガスから凝縮した水分を気液分離部によって分離し、水分を分離したガスを吸着塔に戻す。
 このように、予加熱部が備えられることによって、冷却部へ供給されるガスは、予加熱部が備えられていない場合に比べて温度が低くなるので、冷却部で消費されるエネルギー、すなわち冷却部へ供給される冷却水の消費量が低減される。一方、加熱部へ供給されるガスは、予加熱部が備えられていない場合に比べて温度が高くなるので、加熱部がガスを加熱するために消費するエネルギーが低減される。
 従って、本構成に係る脱水装置は、再生工程に起因するユーティリティ消費量の増加を抑制することができる。
 上記第一態様では、前記加熱部が、前記予加熱部による熱交換量に基づいて、ガスの加熱量を制御することが好ましい。
 上記第一態様では、再生工程において、加熱されたガスが吸着塔へ供給されると、ガスの供給側の吸着から徐々に加熱されて水分が脱着する。そして、脱着された水分は、ガスと共にガスの送出側へ移動し、送出側の吸着によって再び吸着される。すなわち、再生工程では、水分の脱着と吸着が交互に繰り返されることによって、ガスの供給側の吸着から送出側の吸着へ水分の脱着が行われる。このため、再生工程の開始直後の方が、加熱されたガスが吸着に付与するエネルギーがより大きく、再生工程中の吸着塔から送出されるガスは、初めのうちは温度が低いものの時間と共に温度が高くなり、予加熱部による熱交換量は、時間と共に変化することとなる。
 そこで、本構成によれば、予加熱部による熱交換量に基づいて、加熱部によるガスの加熱量が制御されるので、加熱部がガスを加熱するために消費するエネルギーをより効果的に低減することができる。
 上記第一態様では、前記気液分離部と前記吸着塔との間に設けられ、前記再生工程に用いられたガスに対して、前記再生工程による圧損を補うように昇圧する圧縮機を備えることが好ましい。
 本構成によれば、圧縮機で昇圧されたガスは、脱水装置へ供給されるガスと同じ圧力となり、脱水装置へ供給されるガスと混合され、吸着塔へ供給されるので、脱水装置から送出されるガスの全てを、ガスの供給元へ戻すことが可能となる。従って、本構成は、従来のように、再生工程に用いたガスが、ガスを供給した圧縮機の入口に戻されることがないため、ガスが戻される圧縮機の動力を増加させるという問題が解消される。
 上記第一態様では、前記予加熱部が、複数備えられることが好ましい。
 本構成によれば、予加熱部が例えば直列に複数備えられることにより、再生工程中の吸着塔から送出されて冷却部へ供給されるガスと加熱部へ供給されるガスとを、より効率良く熱交換できる。
 本発明の第二態様に係るガス圧縮システムは、ガスを圧縮する複数の圧縮機と、上記記載の脱水装置と、を備え、所定の前記圧縮機によって圧縮されたガスを前記脱水装置で脱水し、脱水されたガスを該所定の前記圧縮機の次段に備えられた前記圧縮機で更に圧縮する。
 本発明の第三態様に係る脱水方法は、ガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔を、ガスの供給ラインに並列に複数備え、所定の前記吸着塔に前記吸着工程を行わせる間に他の前記吸着塔に前記再生工程を行わせる脱水方法であって、前記吸着工程中の前記吸着塔によって脱水されたガスの一部を加熱部によって加熱して、前記再生工程中の前記吸着塔へ供給し、前記加熱部へ供給されるガスと前記再生工程中の前記吸着塔から送出されるガスとを、予加熱部によって熱交換し、前記再生工程中の前記吸着塔から送出され、前記予加熱部によって熱交換したガスを冷却部によって冷却し、前記冷却部によって冷却したガスから凝縮した水分を気液分離部によって分離し、水分を分離したガスを前記吸着塔に戻す。
 本発明によれば、再生工程に起因するユーティリティ消費量の増加を抑制できる、という優れた効果を有する。
本発明の実施形態に係るCO回収装置の構成図である。 本発明の実施形態に係る脱水装置の構成図である。 従来の脱水装置の構成図である。
 以下に、本発明に係る脱水装置、ガス圧縮システム、及び脱水方法の一実施形態について、図面を参照して説明する。
 図1は、本実施形態に係るCO圧縮システム10が備えられるCO回収装置12である。
 CO回収装置12は、冷却塔14を備えている。
 例えばボイラやガスタービン等の産業設備から排出されたCOを含有する排ガスが、図示されないブロワによって冷却塔14へと供給されている。冷却塔14へと供給された排ガスは、冷却水によって冷却される。排ガスを冷却するのに用いられた冷却水は、ポンプ16により、冷却器18を通り再び冷却塔14へと供給されて塔内で噴射されている。
 冷却されたCOを含有する排ガスは、排ガスライン20を介して吸収塔22の下部から供給される。吸収塔22において、例えば、アルカノールアミンをベースとするCO吸収液(アミン溶液)が、充填材23を通過する間に排ガスと対向流接触される。これにより排ガス中のCOは、CO吸収液に吸収され、産業設備から排出された排ガスからCOが除去される。吸収塔22の塔頂部22aからは、COが除去された浄化ガスが排出される。
 浄化ガスには水蒸気等が含まれる。この水蒸気は、吸収塔22の上部で噴霧される冷却水によって凝縮される。凝縮された水は、吸収塔22の外でポンプ28によって冷却装置26と吸収塔22との間を循環し、冷却装置26によって冷却される。さらにミストエリミネータ24は吸収塔22の上部のスプレイ上に設けられ、ここに至ったミストは浄化ガスから分離除去される。
 吸収塔22でCOを吸収したCO吸収液は、塔底部22bに貯溜され、吸収塔22の塔底部22bと再生塔30の上部とを接続する送液ラインL1から再生塔30へ、ポンプ32によって供給され塔内で充填材34へ向けて噴射される。また、吸収塔22と再生塔30との間には、再生塔30の塔底部30bと吸収塔22の上部とを接続する送液ラインLが設けられている。そして、送液ラインL1と送液ラインLとの交差部分においてリッチ溶液(COが吸収されたCO吸収液)とリーン溶液(COが除去されたCO吸収液)とを熱交換する熱交換器36が設けられている。熱交換器36でリッチ溶液は加熱され、リーン溶液は冷却される。
 COを吸収したCO吸収液(リッチ溶液)は、再生塔30において充填材34を通過する間の対向流接触による吸熱反応によりCOが放出される。リッチ溶液は、再生塔30の塔底部30bに至る頃には、大部分のCOが除去され、リーン溶液として再生される。再生されたリーン溶液は、CO吸収液としてポンプ38により水冷式冷却器40を介して再び吸収塔22へ供給され、再利用される。
 再生塔30でCOを放出して再生されたリーン溶液は、送液ラインLを通じてポンプ38によって吸収塔22に還流される。リーン溶液は、還流される間に、熱交換器36において、吸収塔22から再生塔30へ供給される吸収液との間で熱交換して冷却され、更に、水冷式冷却器40によって、COの吸収に適した温度まで冷却される。
 L3は再生塔30の塔頂部30aに接続されたCO排出ラインである。CO排出ラインL3によって再生塔30から排出されたCOガスは、冷却水を用いた冷却器42を介して冷却されてリフラックスドラム43へと供給される。リフラックスドラム43へ供給されたCOガスは、水分と分離される。分離後のCOガスは、CO圧縮システム10へと供給される。
 リフラックスドラム43において分離された凝縮水は、ポンプ44によって再生塔30上部に還流される。還流された凝縮水は、凝縮部46を冷却してCO吸収液等の放出を抑制する。
 また、再生塔30の塔底部30bに貯留されたCO吸収液の一部は、循環路Lを通してリボイラ48へ供給され、蒸気管48aを流れる高温蒸気との熱交換によって加熱された後に再生塔30内へ還流される。この加熱によって、塔底部30bのCO吸収液からCOが放出され、又、間接的に加熱される充填材34上での気液接触間にもCO吸収液からCOが放出される。
 図2は、本実施形態に係るCO圧縮システム10の構成図である。
 CO圧縮システム10は、COガスを圧縮する複数の圧縮機50を備えている。複数の圧縮機50は、直列に接続されている。
 また、CO圧縮システム10は、クーラー52、ノックアウトドラム54を適宜、圧縮機50と圧縮機50との間に備えている。ノックアウトドラム54は、COガスから凝縮した水分を回収し、クーラー52は、圧縮機50で圧縮されることによって加熱されたCOガスを冷却する。なお、ノックアウトドラム54は、圧縮によりCOガス中の水分飽和率が低下することで凝縮した水分を回収する。
 さらに、CO圧縮システム10は、COガスを脱水するための脱水装置60を備えている。脱水装置60は、ノックアウトドラム54によって回収できないCOガスに含まれる水分を、吸着によって回収(脱水)する。
 本実施形態に係るCO圧縮システム10は、一例として、4台の圧縮機50(50-1,50-2,50-3,50-4)、4台のクーラー52(52-1,52-2,52-3,52)、3台のノックアウトドラム54(54-1,54-2,54-3)、及び1台の脱水装置60が直列に接続されている。より具体的には、圧縮機50-1の上流には、ノックアウトドラム54-1が備えられ、圧縮機50-1と圧縮機50-2の間には、クーラー52-1及びノックアウトドラム54-2が備えられ、圧縮機50-2と圧縮機50-3の間には、クーラー52-2、ノックアウトドラム54-3、及び脱水装置60が備えられ、圧縮機50-3と圧縮機50-4の間には、クーラー52-3が備えられ、圧縮機50-4の下流にはクーラー52が備えられる。
 なお、圧縮機50、クーラー52、ノックアウトドラム54、及び脱水装置60の数及び設置順序は、一例であり、COガスを圧縮すると共に脱水できれば、数及び設置順序は異なっていてもよい。
 脱水装置60は、COガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔62(62A,62B)を、COガスの供給ライン64に並列に複数(本実施形態では2つ)備えている。脱水装置60は、所定の吸着塔62に吸着工程を行わせる間に、他の吸着塔62に再生工程を行わせる。なお、吸着塔62は、再生工程の終了後、スタンバイ工程を経てから吸着工程に移行する。
 吸着工程では、例えば20℃~40℃のCOガスが吸着塔62の開口66から供給されて開口68から送出される過程で、吸着がCOガスに含まれる水分を吸着することでCOガスを脱水する。
 再生工程では、加熱されたCOガスが吸着塔62の開口68から供給されて開口66から送出される過程で、吸着が吸着した水分を熱により脱着し、加熱されたCOガスと共に脱着した水分を送出する。
 なお、例えば、吸着工程は8時間行われる一方、再生工程は4時間行われ、スタンバイ工程は4時間行われる。
 さらに、本実施形態に係る脱水装置60は、再生ガスヒーター70、再生ガスクーラー72、再生ガスノックアウトドラム74、再生ガスプレヒーター76、及び再生ガス圧縮機78を備える。
 再生ガスヒーター70は、吸着工程中の吸着塔62によって脱水されたCOガスの一部を加熱して、再生工程中の吸着塔62へ供給する。なお、再生ガスヒーター70は、電力又は別途供給される蒸気によって、COガスを所定の温度(例えば200℃~300℃)まで加熱する。
 再生ガスクーラー72は、再生工程中の吸着塔62から送出されたCOガスを所定の温度(例えば20℃~40℃)まで冷却する。
 再生ガスノックアウトドラム74は、再生ガスクーラー72によって冷却されたCOガスから凝縮した水分を分離し、水分を分離したCOガスを吸着塔62に戻す。
 再生ガスプレヒーター76は、再生工程中の吸着塔62から送出されて再生ガスクーラー72へ供給されるCOガスと再生ガスヒーター70へ供給されるCOガスとを、熱交換させる。
 再生ガス圧縮機78は、再生ガスノックアウトドラム74と吸着塔62との間に設けられ、再生工程に用いられたCOガスに対して、再生工程による圧損を補うように昇圧する。
 次に、本実施形態に係る脱水装置60に係るCOガスの供給ライン64の構成について説明する。
 ノックアウトドラム54-3の出口に接続される供給ライン64は、分岐される。分岐された各供給ライン64は、各々バルブ80A,80Bを備え、吸着塔62A,62Bの開口66に接続される。
 また、分岐された供給ライン64は、吸着塔62A,62Bに接続される前にバイパスされ、バイパスする供給ライン64には、バルブ80C,80Dが備えられている。バルブ80C,80Dの間には、再生ガスプレヒーター76を介して、再生ガスクーラー72に接続される供給ライン64が備えられている。
 一方、吸着塔62A,62Bの開口68に接続される各供給ライン64は、各々バルブ80E,80Fが備えられ、バルブ80E,80Fが備えられた先で接合され、フィルタ82を介して、圧縮機50-3の入り口に接続される。フィルタ82は、COガスに含まれる可能性のある吸着の粉末等を、COガスから除去する。
 また、吸着塔62A,62Bの開口68に接続される供給ライン64は、バルブ80E,80Fが備えられる位置よりも下流でバイパスされ、バイパスする供給ライン64には、バルブ80G,80Hが備えられている。バルブ80G,80Hの間には、再生ガスヒーター70の出口に接続される供給ライン64が備えられる。
 圧縮機50-3の入り口に接続される接合された供給ライン64は、フィルタ82の出口側で分岐され、再生ガスプレヒーター76を介して、再生ガスヒーター70の入り口に接続される。
 そして、再生ガスクーラー72は再生ガスノックアウトドラム74と接続され、再生ガスノックアウトドラム74は再生ガス圧縮機78の入口と接続され、再生ガス圧縮機78の出口は、ノックアウトドラム54-3から脱水装置60へCOガスを供給する供給ライン64に接続される。
 次に、本実施形態に係る脱水装置60の動作について説明する。
 以下の説明では、一例として、吸着塔62Aが吸着工程を行い、吸着塔62Bが再生工程を行う場合について説明する。
 この場合、バルブ80A,80Dは開かれる一方、バルブ80B,80Cは閉じられる。また、バルブ80E,80Hは開かれる一方、バルブ80F,80Gは閉じられる。
 これにより、ノックアウトドラム54-3から脱水装置60へ供給される水分を含んだCOガスは、吸着塔62Aで脱水され、圧縮機50-3へ戻される。そして、脱水されたCOガスの一部(例えば、10~30%であり、以下、「再生ガス」という。)は、再生ガスプレヒーター76を介して、再生ガスヒーター70へ供給される。なお、再生工程が終了すると、吸着工程へ移行するためのスタンバイ工程が吸着塔62Bで行われる。スタンバイ工程が行われる吸着塔62Bには、バルブ80Fが閉じられ、COガスは送出されない。
 再生ガスヒーター70へ供給された再生ガスは、再生ガスヒーター70によって加熱されて再生工程が行われる吸着塔62Bへ供給される。
 吸着塔62Bでは、加熱された再生ガスによって吸着に吸着された水分が脱着される。脱着された水分は、余熱を持った再生ガスと共に再生ガスプレヒーター76へ供給される。再生ガスプレヒーター76へ供給された余熱を持った再生ガスは、再生ガスヒーター70によって加熱される前の再生ガスと熱交換した後に、再生ガスクーラー72へ供給される。
 そして、吸着塔62Bから送出された再生ガスは、再生ガスプレヒーター76で熱交換されるので温度が低くなる一方、再生ガスヒーター70によって加熱される前の再生ガスは、温度が高くなる。
 このように再生ガスプレヒーター76が備えられることによって、再生ガスクーラー72へ供給される再生ガスの温度は、再生ガスプレヒーター76が備えられていない場合に比べて低くなるので、再生ガスクーラー72で消費されるエネルギー、すなわち再生ガスクーラー72へ供給される冷却水の消費量が低減される。
 一方、再生ガスヒーター70によって加熱される前の再生ガスの温度は、再生ガスプレヒーター76が備えられていない場合に比べて高くなるので、再生ガスヒーター70が再生ガスを加熱するために消費するエネルギーが低減される。
 また、再生工程において、加熱された再生ガスが吸着塔62Bへ供給されると、再生ガスの供給側(開口68側)の吸着から徐々に加熱されて水分が脱着する。そして、脱着された水分は、再生ガスと共に再生ガスの送出側(開口66側)へ移動し、送出側の吸着によって再び吸着される。すなわち、再生工程では、水分の脱着と吸着が交互に繰り返されることによって、再生ガスの供給側の吸着から送出側の吸着へ水分の脱着が行われる。このため、再生工程の開始直後の方が、加熱された再生ガスが吸着に付与するエネルギーがより大きく、再生工程中の吸着塔62Bから送出される再生ガスは、初めのうちは温度が低いものの、時間と共に温度が高くなる。
 例えば、再生工程中の吸着塔62Bから送出される再生ガスは、再生工程開始後の30から60分ぐらいで、例えば約150°に到達し、その後徐々に温度が上がり、再生工程の終盤において、吸着塔62Bへの供給される温度と同じ約300℃となる。
 このように、再生工程中、吸着塔62Bの開口66から送出された再生ガスの温度は時間と共に変化するため、再生ガスプレヒーター76の熱交換量も同様に変化する。そのため、再生工程中の吸着塔62Bへ供給される再生ガスを所定温度(200~300℃)まで加熱するためには、この熱交換の変化量に追従させ、再生ガスヒーター70で変化量分を補う必要がある。
 そこで、本実施形態では、再生ガスヒーター70は、再生ガスプレヒーター76の熱交換量に基づいて、再生ガスの加熱量を制御する。
 具体的には、再生ガスヒーター70の入口又は出口における再生ガスの温度が、温度計96A又は温度計96Bによって計測され、計測結果に基づいて再生ガスヒーター70へ供給されるユーティリティ(蒸気量又は電力量)が調節される。
 また、脱水装置60は、再生ガスプレヒーター76を複数備えることで、熱交換量をより増加させることができる。本実施形態では、一例として、二つの再生ガスプレヒーター76A,76Bを直列に接続し、吸着塔62Bの開口66から送出された再生ガスを再生ガスプレヒーター76A、再生ガスプレヒーター76Bの順に通過させ、吸着塔62Aの開口68から送出された再生ガスを再生ガスプレヒーター76B、再生ガスプレヒーター76Aの順に通過させ、熱交換させる。
 これにより、再生工程中の吸着塔62Bから送出されて再生ガスクーラー72によって加熱される前の再生ガスと吸着塔62Bから送出された再生ガスとを、より効率良く熱交換できる。
 再生ガスクーラー72で冷却された再生ガスは、再生ガスノックアウトドラム74によって水分が分離された後、再生ガス圧縮機78へ供給される。なお、再生ガスノックアウトドラム74において分離された水(凝縮水)は、再生ガスノックアウトドラム74から排出される。
 そして、再生ガス圧縮機78は、供給された再生ガスを再生工程による圧損を補うように昇圧し、吸着塔62の開口66へ接続される供給ライン64へ戻す。これにより、再生ガス圧縮機78で昇圧された再生ガスは、ノックアウトドラム54-3から脱水装置60へ供給される再生ガスと同じ圧力となり、ノックアウトドラム54-3から脱水装置60へ供給される再生ガスと混合され、吸着塔62へ供給される。このため、脱水装置60から送出されるCOガスの全ては、CO2ガスの供給元、すなわち、圧縮機50-2の次段に備えられた圧縮機50-3で更に圧縮される。
 これによって従来のように、再生工程に用いた再生ガスは、COガスを供給した圧縮機50-2の入口に戻されることがないため、再生ガスが戻される圧縮機50の動力を増加させるという問題が解消される。
 また、スタンバイ工程において再生ガスが吸着塔62Bへ供給されなくなっても、脱水装置60から圧縮機50へ戻されるCOガスの量は何ら変化しないので、COガスが戻される圧縮機50の運転条件が変動することもない。このため、圧縮機50へ戻される再生ガスの量が変化することによる運転条件の変動が、CO圧縮システム10の設計に影響を及ぼすという問題も解消される。
 ここで、表1に、従来のCO圧縮システム(図3参照)と本実施形態に係るCO圧縮システム10の消費電力量の相違を示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、ユーティリティである電力量(BHP動力、熱交ヒートデューティ)は、従来のCO圧縮システムに比べて再生ガスプレヒーター76A,76B、再生ガス圧縮機78を備えた本実施形態に係るCO圧縮システム10の方が少ない。なお、再生ガス圧縮機78は、従来のCO圧縮システムには備えられていないため、本実施形態に係るCO圧縮システム10は再生ガス圧縮機78のBHP動力が増加する。しかし、再生ガス圧縮機78のBHP動力は小さいため、CO圧縮システム10で削減されたBHP動力以下であり、合計としてBHP動力が減少する。
 また、本実施形態に係るCO圧縮システム10は、再生ガスヒーター70及び再生ガスクーラー72の熱交ヒートデューティも削減できる。
 また、本実施形態に係るCO圧縮システム10の圧縮機50の方が、従来のCO圧縮システムの圧縮機に比べ、消費電力量が少ない。
 この理由は、従来のCO圧縮システムでは、再生ガスが戻る圧縮機(図3の例では圧縮機202-2)の容量を他の圧縮機よりも大きく、所定の圧縮率で昇圧しなければならなかった。しかし、本実施形態に係るCO圧縮システム10は、容量の小さい再生ガス圧縮機78によって再生ガスのみを脱水装置60で生じた圧力損失分のみ昇圧することで、容量の大きい圧縮機を備える必要がなくなったためである。再生ガス圧縮機78は、再生ガスが戻る圧縮機50と比較して、少量のガスを定圧縮率で昇圧するため容量が小さいので、容量の大きい圧縮機よりも消費電力が少なくて済む。
 以上説明したように、本実施形態に係る脱水装置60は、COガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔62を、COガスの供給ライン64に並列に複数備え、所定の吸着塔62に吸着工程を行わせる間に他の吸着塔62に再生工程を行わせる。
 そして、脱水装置60は、吸着工程中の吸着塔62によって脱水されたCOガスの一部を再生ガスヒーター70によって加熱して、再生工程中の吸着塔62へ供給し、再生ガスヒーター70へ供給されるCOガスと再生工程中の吸着塔62から送出されるCOガスとを、再生ガスプレヒーター76によって熱交換する。次に脱水装置60は、再生工程中の吸着塔62から送出されて熱交換したCOガスを再生ガスクーラー72によって冷却し、冷却したCOガスから凝縮した水分を再生ガスノックアウトドラム74によって分離し、水分を分離したCOガスを吸着塔62に戻す。
 従って、脱水装置60は、再生工程に起因するユーティリティ消費量の増加を抑制することができる。
 また、本実施形態に係るCO圧縮システム10は、再生ガスを圧縮する複数の圧縮機50と、本実施形態に係る脱水装置60と、を備え、所定の圧縮機50によって圧縮されたCOガスを脱水装置60で脱水し、脱水されたCOガスを該所定の圧縮機50の次段に備えられた圧縮機50で更に圧縮する。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記実施形態では、脱水装置60が脱水するガスをCOガスとする形態について説明したが、本発明は、これに限定されるものではなく、脱水装置60が脱水するガスをCOガス以外の他のガスとする形態としてもよい。
 また、上記実施形態では、脱水装置60が吸着塔62を2つ備える形態について説明したが、本発明は、これに限定されるものではなく、脱水装置60が吸着塔62を3つ以上備える形態としてもよい。
 また、上記実施形態では、脱水装置60が圧縮機50の中間段に導入される形態について説明したが、本発明は、これに限定されるものではなく、脱水装置60が圧縮機50の後に導入される形態としてもよい。
 10  CO圧縮システム
 50  圧縮機
 60  脱水装置
 62  吸着塔
 70  再生ガスヒーター
 72  再生ガスクーラー
 74  再生ガスノックアウトドラム
 76  再生ガスプレヒーター
 78  再生ガス圧縮機
 

Claims (6)

  1.  ガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔を、ガスの供給ラインに並列に複数備え、所定の前記吸着塔に前記吸着工程を行わせる間に他の前記吸着塔に前記再生工程を行わせる脱水装置であって、
     前記吸着工程中の前記吸着塔によって脱水されたガスの一部を加熱して、前記再生工程中の前記吸着塔へ供給する加熱部と、
     前記再生工程中の前記吸着塔から送出されたガスを冷却する冷却部と、
     前記冷却部によって冷却されたガスから凝縮した水分を分離し、水分を分離したガスを前記吸着塔に戻す気液分離部と、
     前記再生工程中の前記吸着塔から送出されて前記冷却部へ供給されるガスと前記加熱部へ供給されるガスとを、熱交換させる予加熱部と、
    を備える脱水装置。
  2.  前記加熱部は、前記予加熱部による熱交換量に基づいて、ガスの加熱量を制御する請求項1記載の脱水装置。
  3.  前記気液分離部と前記吸着塔との間に設けられ、前記再生工程に用いられたガスに対して、前記再生工程による圧損を補うように昇圧する圧縮機を備える請求項1記載の脱水装置。
  4.  前記予加熱部は、複数備えられる請求項1記載の脱水装置。
  5.  ガスを圧縮する複数の圧縮機と、
     請求項1記載の脱水装置と、
    を備え、
     所定の前記圧縮機によって圧縮されたガスを前記脱水装置で脱水し、脱水されたガスを該所定の前記圧縮機の次段に備えられた前記圧縮機で更に圧縮するガス圧縮システム。
  6.  ガスに含まれる水分を吸着する吸着工程及び吸着した水分を脱着する再生工程を交互に行う吸着塔を、ガスの供給ラインに並列に複数備え、所定の前記吸着塔に前記吸着工程を行わせる間に他の前記吸着塔に前記再生工程を行わせる脱水方法であって、
     前記吸着工程中の前記吸着塔によって脱水されたガスの一部を加熱部によって加熱して、前記再生工程中の前記吸着塔へ供給し、
     前記加熱部へ供給されるガスと前記再生工程中の前記吸着塔から送出されるガスとを、予加熱部によって熱交換し、
     前記再生工程中の前記吸着塔から送出され、前記予加熱部によって熱交換したガスを冷却部によって冷却し、
     前記冷却部によって冷却したガスから凝縮した水分を気液分離部によって分離し、水分を分離したガスを前記吸着塔に戻す
    脱水方法。
PCT/JP2014/050134 2013-01-10 2014-01-08 脱水装置、ガス圧縮システム、及び脱水方法 WO2014109329A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2014205989A AU2014205989B2 (en) 2013-01-10 2014-01-08 Dehydration device, gas compression system, and dehydration method
EP14737823.6A EP2944369B1 (en) 2013-01-10 2014-01-08 Dehydration device, gas compression system, and dehydration method
CA2897489A CA2897489C (en) 2013-01-10 2014-01-08 Dehydration equipment, gas compression system, and dehydration method
JP2014556423A JP6121449B2 (ja) 2013-01-10 2014-01-08 脱水装置、ガス圧縮システム、及び脱水方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201313738611A 2013-01-10 2013-01-10
US13/738611 2013-01-10
US13/859339 2013-04-09
US13/859,339 US9433890B2 (en) 2013-01-10 2013-04-09 Dehydration equipment, gas compression system, and dehydration method

Publications (1)

Publication Number Publication Date
WO2014109329A1 true WO2014109329A1 (ja) 2014-07-17

Family

ID=51059980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050134 WO2014109329A1 (ja) 2013-01-10 2014-01-08 脱水装置、ガス圧縮システム、及び脱水方法

Country Status (6)

Country Link
US (1) US9433890B2 (ja)
EP (1) EP2944369B1 (ja)
JP (1) JP6121449B2 (ja)
AU (1) AU2014205989B2 (ja)
CA (1) CA2897489C (ja)
WO (1) WO2014109329A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801143A (zh) * 2015-05-11 2015-07-29 中国神华能源股份有限公司 工艺气脱水系统及工艺气脱水方法
JP2020189282A (ja) * 2019-05-23 2020-11-26 日立造船株式会社 除湿装置および除湿方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3108953T3 (pl) 2015-06-25 2022-10-10 Ateliers François Sposób sprężania i suszenia gazu
RU2696437C1 (ru) * 2018-12-18 2019-08-01 Акционерное общество "НИПИгазпереработка" (АО "НИПИГАЗ") Способ подготовки отработанного газа регенерации
CN112705018A (zh) * 2020-12-10 2021-04-27 西南化工研究设计院有限公司 一种高效变温吸附气体干燥方法
CN112755737A (zh) * 2020-12-30 2021-05-07 上海沪盛机械科技有限公司 便于安装的吸干机
CN112755738A (zh) * 2020-12-30 2021-05-07 上海沪盛机械科技有限公司 吸附式气体干燥机
CN112844347A (zh) * 2021-01-27 2021-05-28 浙江华泓新材料有限公司 一种干燥器再生气加热器系统
CN115957591A (zh) * 2021-10-12 2023-04-14 中国石油天然气股份有限公司 一种湿乙烷气采用分子筛塔脱水和再生的装置及方法
CN114752719B (zh) * 2022-04-26 2023-07-07 酒泉钢铁(集团)有限责任公司 一种基于富氢冶金气体的预处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320936U (ja) * 1986-07-25 1988-02-12
US20050229784A1 (en) * 2004-04-15 2005-10-20 Michel Thomas Method of purifying a natural gas by mercaptan adsorption
JP2010241630A (ja) 2009-04-03 2010-10-28 Mitsubishi Heavy Ind Ltd Co2回収装置及びその方法
US20130000486A1 (en) * 2010-03-12 2013-01-03 Dge Dr.-Ing. Guenther Engineering Gmbh Method for the adsorptive drying of purified biogas and for regenerating laden adsorbents

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642955A (en) * 1947-06-25 1953-06-23 Aluminum Co Of America Gas separation by adsorption
US2747681A (en) * 1951-09-05 1956-05-29 British Oxygen Co Ltd Regeneration of adsorbent units
US3527024A (en) * 1968-11-05 1970-09-08 Black Sivalls & Bryson Inc Process for recovering condensible components from a gas stream
US5968234A (en) * 1998-04-14 1999-10-19 Air Products And Chemicals, Inc. Temperature swing adsorption with regeneration by elevated pressure ASU nitrogen-enriched gas
US8303695B2 (en) * 2010-05-17 2012-11-06 General Electric Company Systems for compressing a gas
US8647409B2 (en) * 2012-05-24 2014-02-11 Praxair Technology, Inc. Air compression system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320936U (ja) * 1986-07-25 1988-02-12
US20050229784A1 (en) * 2004-04-15 2005-10-20 Michel Thomas Method of purifying a natural gas by mercaptan adsorption
JP2010241630A (ja) 2009-04-03 2010-10-28 Mitsubishi Heavy Ind Ltd Co2回収装置及びその方法
US20130000486A1 (en) * 2010-03-12 2013-01-03 Dge Dr.-Ing. Guenther Engineering Gmbh Method for the adsorptive drying of purified biogas and for regenerating laden adsorbents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801143A (zh) * 2015-05-11 2015-07-29 中国神华能源股份有限公司 工艺气脱水系统及工艺气脱水方法
JP2020189282A (ja) * 2019-05-23 2020-11-26 日立造船株式会社 除湿装置および除湿方法
JP7220622B2 (ja) 2019-05-23 2023-02-10 日立造船株式会社 除湿装置および除湿方法

Also Published As

Publication number Publication date
EP2944369A4 (en) 2016-10-05
AU2014205989A1 (en) 2015-07-23
US9433890B2 (en) 2016-09-06
EP2944369A1 (en) 2015-11-18
JP6121449B2 (ja) 2017-04-26
CA2897489A1 (en) 2014-07-17
JPWO2014109329A1 (ja) 2017-01-19
EP2944369B1 (en) 2022-04-20
CA2897489C (en) 2018-01-02
AU2014205989B2 (en) 2016-07-14
US20140190349A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP6121449B2 (ja) 脱水装置、ガス圧縮システム、及び脱水方法
JP6629431B2 (ja) 有機ランキンサイクルに基づく、ガス処理プラント廃熱の電力への変換
JP6546341B2 (ja) カリーナサイクルに基づく、ガス処理プラント廃熱の電力への変換
CA2698906C (en) Improved method for regeneration of absorbent
CN107940801B (zh) 一种回收压缩空气余热的空分系统
JP2013139013A (ja) Co2化学吸収システム
CN201840977U (zh) 零气耗节能型吸附式干燥机
JP6174239B2 (ja) 脱水圧縮システム及びco2回収システム
CN102380361B (zh) 一种利用产品氮气参与分子筛吸附器再生的工艺
CN108079736B (zh) 一种闪蒸气净化回收系统
CN104964515B (zh) 合成氨尾气综合利用工艺及装置
CN114632402B (zh) 烟气二氧化碳捕集系统的捕集方法
CN104141992A (zh) 热泵驱动的膜式新风溶液除湿空调系统及方法
CN106731600A (zh) 一种二氧化碳捕集液化装置
RU2659991C2 (ru) Способ абсорбционного выделения диоксида углерода из газовых смесей абсорбентами, содержащими водные растворы аминов
JP3544860B2 (ja) 空気分離装置における前処理装置
RU2791272C1 (ru) Адсорбционная установка подготовки и транспорта природного газа
CN217340747U (zh) 一种强化co2再生和能量回收的双塔装置
RU2786012C1 (ru) Адсорбционная установка подготовки и транспорта углеводородного газа
CN220939890U (zh) 一种天然气锅炉排放烟气的二氧化碳捕集加工一体化装置
RU66243U1 (ru) Устройство подготовки кислого газа для закачки в пласт через нагнетательную скважину
CN212833551U (zh) 甲醇制备系统
CN217247889U (zh) 一种二氧化碳吸收富液分流多级换热装置
RU2813542C2 (ru) Установка комплексной подготовки углеводородного газа
CN202238066U (zh) 一种产品氮气参与分子筛吸附器再生的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014737823

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2897489

Country of ref document: CA

Ref document number: 2014556423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014205989

Country of ref document: AU

Date of ref document: 20140108

Kind code of ref document: A