WO2014107053A1 - 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2014107053A1
WO2014107053A1 PCT/KR2014/000060 KR2014000060W WO2014107053A1 WO 2014107053 A1 WO2014107053 A1 WO 2014107053A1 KR 2014000060 W KR2014000060 W KR 2014000060W WO 2014107053 A1 WO2014107053 A1 WO 2014107053A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
transmission
configuration
ack
tdd cell
Prior art date
Application number
PCT/KR2014/000060
Other languages
English (en)
French (fr)
Inventor
양석철
안준기
서동연
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP14735347.8A priority Critical patent/EP2942896A4/en
Priority to US14/759,161 priority patent/US9820237B2/en
Publication of WO2014107053A1 publication Critical patent/WO2014107053A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting an uplink signal in a carrier aggregation (CA) -based wireless communication system.
  • CA carrier aggregation
  • Wireless communication systems have been widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth transmission power, etc.). Examples of multiple access systems include
  • CDMA Code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC to FDMA single carrier frequency division mult iple access
  • An object of the present invention is to provide a method for efficiently transmitting / receiving an uplink signal in a CA-based wireless communication system.
  • the present invention provides a method and apparatus for efficiently transmitting / receiving an uplink signal in an inter-site carrier aggregat ion (CA).
  • CA inter-site carrier aggregat ion
  • a method for transmitting an acknowledgment / negative ACK (ACK / NACK) information by a terminal in a carrier aggregation-based wireless communication system the first UD configuration (Uplink Downlink configuration) Merging a first time division duplex (TDD) cell with a second TDD cell having the first UD configuration; Transmitting ACK / NACK information in response to the first TDD cell through a UL subframe (SF) on the first TDD cell; And transmitting ACK / NACK information for the second TDD cell through UL SF on the second TDD cell, and UL SF timing on the first TDD cell is based on the first SF configuration. Given as a set, the UL SF timing on the second TDD cell is given based on
  • D is DL SF
  • U is UL SF
  • S is special SF.
  • a terminal configured to transmit ACK / NACK (Acknowledgement / Negative ACK) information in a carrier aggregat ion-based wireless communication system, the radio frequency (RF) unit; And a processor, wherein the processor merges a first time division duplex (TDD) cell having a first ink downlink conf igurat ion and a second TDD cell having the first UD configuration; ACK / NACK information for the first TDD cell is transmitted through UL SF (Subframe) on the first TDD cell, and ACK / NACK information for the second TDD cell is for the UL SF on the second TDD cell.
  • TDD time division duplex
  • ACK / NACK information for the first TDD cell is transmitted through UL SF (Subframe) on the first TDD cell
  • ACK / NACK information for the second TDD cell is for the UL SF on the second TDD cell.
  • the SF configuration according to the UD configuration is provided with the following terminals:
  • D is DL SF
  • U is UL SF
  • S is special SF.
  • the subset is a UL SF set according to a second UD configuration, wherein the second UD configuration includes a DL SF set according to the first UD configuration and is more DL SF than the first UD configuration. It may be a UD configuration with.
  • the UL SF timing on the second TDD cell may be determined by shifting the subset in SF units on the time axis.
  • DL SF # n—k + a corresponds to UL SF #n
  • k may be given as follows.
  • a represents a shift value in SF units.
  • the first TDD cell may belong to a first base station, and the second TDD cell may belong to a second base station different from the first base station.
  • an uplink signal can be efficiently transmitted / received in a CA-based wireless communication system.
  • the uplink signal may be efficiently transmitted / received in the inter-site CA.
  • Figures 1A-1B illustrate a CACCarrier Aggregat ion) -based wireless communication system.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • FIG. 5 illustrates an Enhanced Physical Downlink Control Channel (EPDCCH).
  • EPDCCH Enhanced Physical Downlink Control Channel
  • FIG. 6 illustrates a scheduling method when a plurality of cells are configured.
  • Figure 7 illustrates the structure of an uplink subframe.
  • PUCCH 8 illustrates a slot level structure of a physical uplink control channel (PUCCH) format la / lb.
  • PUCCH physical uplink control channel
  • Figure 9 illustrates a slot level structure of PUCCH format 2.
  • Figure 10 illustrates a slot level structure of PUCCH format 3.
  • FIG. 11 illustrates a method of transmitting uplink control information through a physical uplink shared channel (PUSCH).
  • 12-13 illustrate UL ink acknowledgment / negative acknowledgment (UL ACK / NACK) transmission timing in a TDD Time Division Duplex (UL) cell.
  • PUSCH physical uplink shared channel
  • P CH Physical Hybrid ARQ Indicator Channel
  • UL Grant ULgrant UO-PUSCH timing.
  • 16 to 17 illustrate PUSCH-UL grant / PHICH transmission timing of a TDD cell.
  • DAKDownlink Assignment Index DAK
  • FIG. 19 illustrates an inter-site carrier aggregat ion (CA).
  • 20 to 25 illustrate ACK / NACK transmission according to an embodiment of the present invention.
  • Figure 26 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division mult iple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division
  • CDMA may be implemented by a radio technology such as UTRACUniversal Terrestrial Radio Access) or CDMA2000.
  • TD A may be implemented with a wireless technology such as Global System for Mobile Communications (GSM) / Genera 1 Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS Genera 1 Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA).
  • UTRA is part of the UMTSCUniversal Mobile Teleco TM unications System.
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE—A Advanced is an evolution of 3GPP LTE.
  • ACK / NACK (Negative ACK) / DTX (Discont inuous Transmission) answer (simply, ACK / NACK) (Woong), AC / NAK (woong), A / N (woong).
  • ACK / NACK male answer means ACK, NACK, DTX, or NACK / DTX.
  • downlink transmission that requires HARQ-ACK feedback includes, for example, a Physical Downlink Shared Channel (PDSCH) and a Permanent Scheduling release Physical Downlink Control Channel (SPDC).
  • PDSCH Physical Downlink Shared Channel
  • SPDC Permanent Scheduling release Physical Downlink Control Channel
  • HARQ-ACK corresponding to a cell This indicates an ACK / NACK response for downlink transmission scheduled to the corresponding cell.
  • PDSCH Includes PDSCH and Semi-Persistent Scheduling (SPS) PDSCH for DL grant PDCCH.
  • SPS Semi-Persistent Scheduling
  • the PDSCH may be replaced with a transport block or a codeword.
  • SPS PDSCH means a PDSCH transmitted using a resource semi-statically set by the SPS.
  • the SPS PDSCH does not have a corresponding DL grant PDCCH.
  • SPS PDSCH is commonly used with PDSCH w / o (without) PDCCH.
  • SPS release PDCCH PDCCH indicating SPS release.
  • the UE feeds back ACK / NACK information on the SPS release PDCCH.
  • a plurality of DL / UL CCs managed by one base station may be merged into one UE.
  • CCs may be adjacent or non-adjacent to each other in the frequency domain. Can be.
  • the bandwidth of each CC can be determined independently. It is also possible to merge asymmetric carriers in which the number of ULCCs and the number of DLCCs are different.
  • a frequency band that can be used by a specific terminal may be limited to L ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific, or UE-specific manner.
  • control information may be set to be transmitted and received only through a specific CC.
  • This specific CC may be referred to as a primary CC (PCC) (or anchor CC), and the remaining CC may be referred to as a secondary CCX Secondary CC (SCC).
  • PCC primary CC
  • SCC secondary CCX Secondary CC
  • LTE uses the concept of a cell (cell) for the management of radio resources.
  • Sal is defined as a combination of DL and UL resources, and UL resources are not required. Accordingly, the cell may be configured of DL resource alone, or DL resource and UL resource. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the PL resource and the carrier frequency (or UL CC) of the UL resource may be indicated by system information.
  • a cell operating on the primary frequency (or PCC) may be referred to as a primary cell (PCell), and a cell operating on the secondary frequency (or SCC) may be referred to as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the PCell is used for the UE to perform an initial RRC connection establishment process or an RRC connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the RRCXRadio Resource Control (RTC) connection is established between the base station and the terminal and can be used to provide additional radio resources.
  • RTC Radio Resource Control
  • PCell and SCell may be collectively called a serving cell.
  • FIG. 2 illustrates a radio frame structure.
  • FIG. 2 (a) illustrates a type 1 radio frame structure for FDE Frequency Division Duplex (FDE).
  • the radio frame includes a plurality of subframes (eg, subframes, SFs), and the SF includes a plurality of slots (eg, two slots) in the time domain.
  • the SF length may be 1 ms and the slot length may be 0.5 ms.
  • the slot includes a plurality of 0FDM / SC-FDMA symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • Table 1 illustrates an UL-DL configuration (Up 1 ink, Down link Configuration, UD—cfg) of subframes in a wireless prearm in TDD.
  • UD-cfg is signaled through system information (eg, System Information Block, SIB).
  • SIB-cfg System Information Block
  • D denotes a DL SFCDownlink Subframe
  • U denotes an UL Uplink Sub frame (SF)
  • S denotes an S SF (Special Subframe).
  • Special SF includes Downlink Pilot Timeslot (DwPTS), Guard Per iod (GP), UpPTS Uplink Pi lot Timeslot (GP).
  • DwPTS is a time interval for DL transmission
  • UpPTS is a time interval for UL transmission.
  • the DL slot includes a plurality of 0FDMA symbols in the time domain.
  • the DL slot may include 7 (6) (DMA symbols according to the length of the CP Cyclic Prefix), and may include 12 subcarriers in the resource domain of the resource block.
  • Each element on the resource grid includes a Resource Element, RB includes 12X7 (6) REs
  • the number of RBs included in the DL slot N 1 ⁇ depends on the DL transmission band
  • the structure of the UL slot is the same as that of the DL slot.
  • the 0FDMA symbol is replaced by the SC-FDMA symbol.
  • FIG. 4 illustrates a structure of a DL subframe.
  • up to three (4) 0FDMA symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining 0FDMA symbol corresponds to a data region to which a Physical Downlink Shared CHance (PDSCH) is allocated.
  • the DL control channel includes a PCFIOKPhysical Control Format Indicator Channel (PCFIOK), a Physical Downlink Control Channel (PDCCH), and a Physical Hybrid ARQ Indicator Channel (PHICH).
  • PCFIOK Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • the PCFICH is transmitted in the first 0FDMA symbol of a subframe and carries information about the number of 0FDMA symbols used for transmission of a control channel within the subframe.
  • PHICH carries a HARQ-ACK signal in response to a UL transmission.
  • the PDCCH includes transmission format and resource allocation information of a downlink shared channel (DL-SCH), transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel.
  • Paging information on (Paging CHannel, PCH) Paging CHannel, PCH
  • system information on DL-SCH resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, It carries Tx power control command and activation instruction information of Voice over IP (VoIP).
  • VoIP Voice over IP
  • DCI Downlink Control Informational
  • DCI format 0/4 (hereinafter referred to as ULDCI format) for UL scheduling (or UL grant), DCI format 1 / 1A / 1B / for DL scheduling.
  • DL DCI format (1C / 1D / 2 / 2A / 2B / 2CC or less) is defined
  • the UL / DL DCI format includes a hopping flag, RB allocation information, Modular ion Coding Scheme (MCS), and Redundancy (RV). Version), NDKNew Data Indicator), TPC (Transmit Power Control), DMRSC DeModulation Reference Signal (cyclic shift), etc. Include as an option.
  • TPC DCI format DCI format 3 / 3A (hereinafter, TPC DCI format) is defined for power control of an uplink signal.
  • the TPC DCI format includes bitmap information for a plurality of terminals, and each of 2 bits (DCI format 3) or 1 bit (DCI format 3A) information in the bitmap indicates a TPC command for PUCCH and PUSCH of the corresponding terminal. Instruct
  • a plurality of PDCCHs may be transmitted in the control region, and the UE monitors the plurality of PDCCHs in every subframe to confirm the PDCCH indicated to the UE.
  • the PDCCH is transmitted through one or more CCEs.
  • the PDCCH coding rate may be adjusted through the number of CCEs (ie, CCE aggregation level) used for PDCCH transmission.
  • CCE includes a Resource Element Group (REG).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a CRC Cyclic Redundancy Check) to the control information.
  • the CRC is masked with an identifier (eg, Radio Network Temporary Identifier) (RNTI) according to the owner or purpose of use of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a UE identifier eg, Cell-RNTI (ORNTI)
  • P-RNTI Paging-RNTI
  • SIB System Information Block
  • RA-RNTI Random access-RNTI
  • Figure 5 illustrates the EPDCCH.
  • EPDCCH is a channel further introduced in LTE-A.
  • EPDCCH It may carry downlink scheduling information and uplink scheduling information.
  • the terminal may receive an EPDCCH and receive data / control information through a PDSCH corresponding to the EPDCCH.
  • the UE may receive the EPDCCH and transmit data / control information through a PUSCH corresponding to the EPDCCH.
  • EPDCCH / PDSCH may be allocated from the first OFDM symbol of the subframe.
  • Non-cross-carrier scheduling (or self scheduling) is the same as the existing LTE scheme. same.
  • the DL grant PDCCH may be transmitted on the DL CC # 0, and the PDSCH to be transmitted may be transmitted on the DL CC # 2.
  • the UL grant PDCCH may be transmitted on DL CC # 0 and the corresponding PUSCH may be transmitted on UL CC # 4.
  • CIF CIFCCarrier Indicator Field
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and terminal-specific (or terminal group-specific) manner by higher layer signaling (eg, RRC signaling).
  • the scheduling according to the CIF configuration may be arranged as follows.
  • PDCCH on DL CC allocates PDSCH or PUSCH resource on a specific DL / UL CC among a plurality of combined DL / UL CCs using CIF
  • the base station may allocate one or more PDCCH monitoring DLCCs (hereinafter, referred to as Monitoring CC, MCC) to the UE.
  • the UE may perform detection / decoding of the PDCCH only in the MCC. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only on the MCC.
  • the MCC may be configured in a UE-speci fic, a UE-group-specific or a cell-specific manner.
  • MCC includes PCC.
  • FIG. 6 illustrates cross-carrier scheduling. Although the figure illustrates DL scheduling, the illustrated examples apply equally to UL scheduling.
  • three DL CCs may be configured for the UE, and DL CC A may be configured as a PDCCH monitoring DL CC (ie, MCC).
  • each DL CC may transmit only the PDCCH scheduling its PDSCH without the CIF according to the LTE PDCCH rule.
  • DL CC A ie, MCC
  • DL CC A may transmit PDCCH scheduling PDSCH of another CC as well as PDCCH scheduling PDSCH of DL CC A using CIF.
  • no PDCCH is transmitted in DLCCB / C.
  • FIG. 7 illustrates a structure of an UL subframe.
  • the subframe 500 having a length of 1 ms is composed of two 0.5 ms slots 501.
  • the slot may include a different number of SC-FDMA symbols according to the CP length. For example, in the case of a normal CP, a slot is composed of seven SC-FDMA symbols, and in the case of an extended CP, a slot is composed of six SC-FDMA symbols.
  • the RB 503 is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
  • the structure of the uplink subframe is divided into a data region 504 and a control region 505 in frequency.
  • the data area includes a PUSCH (Physical Uplink Shared Channel) and is used to transmit data signals such as voice.
  • PUSCH Physical Uplink Shared Channel
  • the control region includes a PUCCH (Physical Uplink Control Channel) and is used for transmitting the UPC (Upl Ink Control Informat ion).
  • PUCCH includes the (R esource Block) pair (RB pair) RB located on both ends of the data region on the frequency axis, and the slot-hopping as a boundary.
  • the Sounding Reference Signal (SRS) is transmitted in the last SC-FDMA symbol of the subframe.
  • the SRS may be transmitted periodically or aperiodically at the request of the base station.
  • SRS periodic transmission is defined by cell-specific parameters and terminal-specific parameters.
  • the cell-specific parameter indicates a total set of subframes (hereinafter, cell-specific SRS subframe set) capable of SRS transmission in a cell, and the terminal-specific parameter is a subframe subset actually allocated to the UE within the total subframe set. (Hereinafter, referred to as UE-specific SRS subframe set).
  • the PUCCH may be used to transmit the following control information.
  • S Information used to request a shared channel (UL-SCH) resource. It is transmitted using 0OK (On-0ff Keying) method.
  • HARQ-ACK This is a received voice response signal for a DL signal (eg PDSCH, SPS release PDCCH). For example, ACK / NACK1 bits are transmitted in response to one DL codeword, and ACK / NACK 2 bits are transmitted in response to two DL codewords.
  • CSI Feedback information on a DL channel.
  • CSI includes Channel Quality Information (CQ1), RKRank Indicator (CQ1), PMKPrecoding Matrix Indicator), PTKPrecoding Type Indicator), and the like.
  • CQ1 Channel Quality Information
  • CQ1 RKRank Indicator
  • PMKPrecoding Matrix Indicator PMKPrecoding Matrix Indicator
  • PTKPrecoding Type Indicator PTKPrecoding Type Indicator
  • Table 2 shows the relationship between the PUCCH format (PUCCH format, PF) and UCI in LTE (-A).
  • FIG. 8 shows the structure of a PUCCH format la / lb at the slot level.
  • control information having the same content is repeated in a slot unit in a subframe.
  • the ACK / NAK signals of different terminals are transmitted through different resources consisting of different CSCCyclic Shift Frequency Domain Codes (CG) -CAZAC (Computer-Generated Constant Amplitude Zero Auto Correlation) sequences and OCCCOrthogonal Cover Codes (Time Domain Spreading Codes). Is sent. 0CC contains Walsh / DFT orthogonal codes.
  • the ACK / NACK signals of 18 terminals may be multiplexed in the same physical resource block (PRB).
  • PRB physical resource block
  • ACK / NAK is replaced with SR in the structure of PUCCH format la / lb.
  • the PUCCH format 2 includes 5 QPSK data symbols and 2 RS symbols at a slot level. If an extended CP is configured, The PUCCH format 2 / 2a / 2b includes 5 QPSK data symbols and 1 RS symbol at the slot level. When the extended CP is configured, the RS symbol is located in the fourth SC-FDMA symbol in each slot. Accordingly, PUCCH format 2 can carry a total of 10 QPSK data symbols. Each QPSK symbol is spread in the frequency domain by CS and then mapped to the corresponding SC-FDMA symbol. RS may be multiplexed by code division multiplexing (CDM) using CS.
  • CDM code division multiplexing
  • a / N transmission and CSI transmission may be required in the same subframe.
  • only A / N transmission is performed using PUCCH format la / lb.
  • CSI transmission is dropped.
  • a / N and CSI are transmitted together through PUCCH format 2 / 2a / 2b.
  • a / N is embedded in the second RS of each slot in the PUCCH format 2a / 2b (eg, RS is multiplied by A / N).
  • a / N and CSI are joint coded and then transmitted through PUCCH format 2.
  • PUCCH format 3 is used to transmit a plurality of ACK / NACK information, and can transmit CSI and / or SR together.
  • one symbol sequence is transmitted over a frequency domain, and 0CC based time-domain spreading is applied to a corresponding symbol sequence.
  • five SC-FDMA symbols i.e., UCI data parts
  • one symbol sequence ⁇ dl, 02, ...) ⁇ using 0CC (C1-C5) of length -5 (or length-4).
  • the symbol sequence ( ⁇ dl, d2 ,. " ⁇ ) may mean a modulation symbol sequence or a codeword bit sequence.
  • the symbol sequence ( ⁇ dl, d2," ' ⁇ ) may be joint coding (eg, Reed). -Muller code, Tail-biting convolutional code, etc.), Block-spreading, SC-FDMA modulation can be generated from a plurality of ACK / NACK information.
  • FIG. 11 illustrates a method of transmitting a UCI through a PUSCH.
  • UCI may be transmitted through PUSCH (PUSCH piggyback).
  • PUSCH data i.e., UL-SCH data
  • information e.g., coded symbols
  • ACK / NACK is inserted into the part of the SC-FDMA resources to which the UL-SCH data is mapped through the flattening.
  • the UCI may be scheduled to be transmitted on the PUSCH without UL—SCH data.
  • the last SC-FDMA symbol of the second slot is not used for PUCCH transmission.
  • the PUCCH format in which all SC-FDMA symbols in a subframe are used for PUCCH transmission is called a normal PUCCH format
  • the last SC-FDMA symbol in the second slot shows a PUCCH format in which no PUCCH transmission is used. Referred to as (shortened) PUCCH format.
  • each UE does not use the last SC-FDMA symbol of the second slot for PUSCH transmission.
  • PUSCH data ie, UL-SCH data
  • information eg, coded symbols
  • PUSCH data ie, UL-SCH data
  • a PUSCH in which all SC-FDMA symbols in a subframe are used for PUSCH transmission is referred to as a normal PUSCH
  • a PUSCH in which the last SC-FDMA symbol in the second slot is not used as a rate-matched PUSCH. do .
  • FIGS. 12 to 17 illustrate a TDD CC (or cell) based on the timing, and the timing of the FDD CC (or cell) will be further described.
  • the terminal may receive one or more PDSCH signals on M DL subframes (SuMrame, SF) (S502_0 to S502_M-1) (M> 1).
  • Each cockpit PDSCH signal may include one or a plurality of transport blocks (TBs) according to a transport mode.
  • a PDCCH signal indicating SPS release may also be received in steps S502_0 to S502_M-1. If there are PDSCH signals and / or SPS release PDCCH signals in M DL subframes, the UE goes through a procedure for ACK / NACK transmission (eg, generating ACK / NACK (payload), ACK / NACK resource allocation, etc.).
  • ACK / NACK is transmitted through one UL subframe to M DL subframes (S504).
  • ACK / NACK is a step The reception response information of the PDSCH signal and / or the SPS release PDCCH signal of S502_0 to S502_M-1 is included.
  • ACK / NACK is basically transmitted through the PUCCH, but when there is a PUSCH assignment at the time of ACK / NACK transmission, it is transmitted through the PUSCH.
  • the PUCCH is transmitted only on the PCC, and the PUSCH is scheduled (transmitted on X.
  • Various PUCCH formats shown in Table 2 may be used for ACK / NACK transmission.
  • ACK / NACK bits To reduce the number, various methods such as ACK / NACK bundling and ACK / NACK channel selection (CHsel) may be used.
  • M l
  • M is an integer of 1 or more.
  • the relationship between M DL subframes and UL subframes in which A / N is transmitted in TDD is given by a DASKDownlink Association Set Index.
  • a method of transmitting A / N for a plurality of DL SFs through one UL SF is as follows. 1) A / N bundling: A / N bits for a plurality of data units (eg PDSCH, SPS release PDCCH, etc.) are combined by logical operations (eg, logical-AND operations). do. For example, if all data units are successfully decoded, the receiving end (eg, terminal) transmits an ACK signal. On the other hand, when decoding (or detecting) one of the data units fails, the receiving end transmits a NACK signal or nothing.
  • a / N bundling A / N bits for a plurality of data units (eg PDSCH, SPS release PDCCH, etc.) are combined by logical operations (eg, logical-AND operations). do. For example, if all data units are successfully decoded, the receiving end (eg, terminal) transmits an ACK signal. On the other hand, when decoding (or detecting) one of the data
  • Channel selection A UE receiving a plurality of data units (eg, PDSCH, SPS release PDCCH) occupies a plurality of PUCCH resources for A / N transmission.
  • the A / N answer for the plurality of data units is identified by the combination of the PUCCH resources used for the actual A / N transmission and the transmitted A / N content (eg bit values, QPSK symbol values).
  • the channel selection scheme is also referred to as A / N selection scheme or PUCCH selection scheme.
  • the DL grant L the ACK / NACK transmission resource for the DL data scheduled by the PDCCH is a specific ECCE index constituting the DL grant L-PDCCH. It may be determined as a PUCCH resource linked to (e.g., a minimum ECCE index) (implicit PUCCH resource).
  • the PF1 resource index is determined as follows.
  • n (1) PUCCH represents a resource index of PF1 for transmitting ACK / NACK / DTX
  • N (1) PUCCH is received from a higher layer (eg Radio Resource Control, RRC)
  • Signaling value represents the n CCE represents the smallest value among the CCE index used for L-PDCCH transmission.
  • n (1) Cyclic Shift (CS), 0rthogonal Code (0C), and Physical Resource Block (PRB) for PF1 are obtained from the PUCCH .
  • PUCCH format 3 (PF3) is configured for A / N transmission
  • one PF3 resource index among a plurality of PF3 resource indexes (n (3) PUCCHs ) allocated by a higher layer (eg, RRC) is allocated. It may be indicated by the ACK (NACK / NACK Resource Indicator) value of the DL grant L-PDCCH (specified). Enemy (explicit PUCCH resource)).
  • the ARI is transmitted through the TPC field of the L-PDCCH scheduling the PDSCH of the SCell.
  • n (3) 0C and PRB for PF3 are obtained from PUCCH .
  • the ACK / NACK transmission resource for DL data scheduled by the DL grant EPDCCH may be a specific ECCE index (eg, a minimum ECCE index) constituting the DL grant EPDCCH or a specific offset therein.
  • the value may be determined as a PUCCH resource linked to the added ECCE index.
  • the ACK / NACK feedback transmission resource may be determined as a PUCCH resource linked to a specific ECCE index (eg, a minimum ECCE index) constituting the DL grant EPDCCH or a PUCCH resource added with a specific offset value.
  • the specific offset value may be determined by a value directly signaled through an ACK / NACK Resource Offset (ARO) field in the DL grant EPDCCH and / or a value designated as dedicated for each AP (Antenna Port).
  • ARO ACK / NACK Resource Offset
  • the information signaled through the TPC field and the AR0 field in the DL grant EPDCCH according to the frame structure type (eg FDD or TDD) and A / N feedback transmission scheme (eg PF3 or CHsel) may be configured as follows. have.
  • the TPC command for PUCCH power control indicates a "TPC value", an offset value added when the implicit PUCCH index is determined, an "AR0 value”, or a specific one of a plurality of PF3 indexes or a plurality of PF1 indexes (groups) allocated to RRC.
  • An ARI is defined as “ARI value 1 ".
  • a fixed value e.g. '0'
  • a fixed value that is inserted without any information (for example for a virtual CRC) is "fixed value”. It is defined as.
  • FIG. 13 illustrates A / N timing applied to a CC in which UL-DL configuration # 1 is set.
  • SF # 0 to # 9 and SF # 10 to # 19 respectively stand for radio frames.
  • the number in the box represents the UL subframe associated with it in terms of the DL subframe.
  • 14 to 15 show PHICH / UL grant (UL grant, UG) -PUSCH timing.
  • the PUSCH may be transmitted in correspondence with PDCCH (UL grant) and / or PHICH (NACK).
  • the terminal may receive a PDCCH (UL grant) and / or a PHICH (NACK) (S702).
  • NACK corresponds to ACK / NACK response to the previous PUSCH transmission.
  • the UE may initially / retransmit one or more transmission blocks (TBs) through the PUSCH after the subframe through a process for PUSCH transmission (eg, TB encoding, TB-CT swapping, PUSCH resource allocation, etc.). It may be (S704).
  • a process for PUSCH transmission eg, TB encoding, TB-CT swapping, PUSCH resource allocation, etc.
  • It may be (S704).
  • This example assumes a normal HARQ operation in which a PUSCH is transmitted once.
  • the PHICH / UL grant for the PUSCH transmission is in the same subframe.
  • PHICH / UL grants for PUSCH transmission may exist in different subframes.
  • Table 4 shows UAI (Up 1 ink Association Index) (k) for PUSCH transmission in LTE (-A).
  • Table 4 shows the interval with the UL subframe associated with it in terms of the DL subframe in which the PHICH / UL grant is detected. Specifically, if a PHICH / UL grant is detected in subframe n, the UE can transmit a PUSCH in subframe n + k.
  • UAI (ie k) 4 in FDD.
  • 16 through 17 illustrate UL grant (UG) / PHICH timing.
  • PHICH is used to transmit DL ACK / NACK.
  • DL ACK / NACK means ACK / NACK transmitted in downlink in response to the UL data (eg, PUSCH).
  • the terminal transmits a PUSCH signal to a base station (S902).
  • the PUSCH signal is used to transmit one or a plurality of transport blocks (TBs) according to a transmission mode.
  • the base station performs a process (eg, ACK / NACK generation, ACK / NACK resource allocation, etc.) for transmitting ACK / NACK, and transmits the ACK / NACK to the UE through the PHICH after k subframes. It may be (S904).
  • the ACK / NACK includes reception response information for the PUSCH signal of step S902.
  • the base station may transmit the UL grant PDCCH for PUSCH retransmission to the UE after k subframes (S904).
  • This example assumes a normal HARQ operation in which a PUSCH is transmitted once.
  • the UL grant / PHICH for the PUSCH transmission may be transmitted in the same subframe.
  • the UL grant / PHICH for the PUSCH transmission may be transmitted in different subframes.
  • Table 5 shows the PHICH timing defined in the TDD.
  • the UE determines the PCHIH resource to be treated in subframe # (n + k PHICH ).
  • K PHICH 4 in FDD.
  • FIG. 17 illustrates UL grant / PHICH transmission timing when UL-DL configuration # 1 is set.
  • SF # 0 to # 9 and SF # 10 to # 19 respectively stand for radio frames.
  • the pair in box indicates a DL subframe associated with it in terms of UL subframes.
  • a UE For a CC (or cell) set to TDD, the following problem may occur when a UE transmits an ACK / NACK signal to a base station:
  • the UE may not know that the PDSCH corresponding to the missed PDCCH has been transmitted to itself, so an error may occur when generating ACK / NACK.
  • the DL grant PDCCH / SPS release PDCCH for the TDD CC includes a DAI field (ie, a DL DAI field).
  • the value of the DL DAI field is the cumulative value of PDCCH (s) corresponding to PDSCH (s) and PDCCH (s) indicating downlink SPS release from the DL subframe (s) nk (keK) to the current subframe (ie , Counting value).
  • indexes are sequentially assigned (that is, counted sequentially) to PDSCHs transmitted in three DL subframe intervals to PDCCHs that schedule PDSCHs. Send it.
  • the UE may know whether the previous PDCCH is properly received by looking at the DAI information in the PDCCH.
  • ACK / NACK transmission using a DL DAI This example assumes a TDD system consisting of 3 DL subframes: 1 UL subframe.
  • the terminal is a PUSCH resource It is assumed that ACK / NACK is transmitted using.
  • LTE when ACK / NACK is transmitted through PUSCH, 1-bit or 2-bit bundled ACK / NACK is transmitted.
  • the terminal misses the second PDCCH since the DL DAI value of the third PDCCH is different from the number of PDCCHs detected until then. It can be seen that.
  • the UE may process the ACK / NACK male answer for the second PDCCH as NACK (or NACK / DTX).
  • the UE cannot recognize that the last PDCCH is missed because the DAI value of the last detected PDCCH matches the number of PDCCHs detected up to that point (ie, DTX).
  • the UE recognizes that only two PDCCHs are scheduled during the DL subframe period. In this case, since the UE bundles only the ACK / NACK corresponding to the first two PDCCHs, an error occurs in the ACK / NACK feedback process.
  • the UL grant PDCCH also includes a DAI field (ie, a UL DAI field).
  • the UL DAI field is a 2-bit field, and the UL DAI field indicates information about the number of scheduled PDCCHs.
  • V DL DAI indicates a DL DAI value
  • V UL DAI indicates a UL DAI value
  • V DL DA i represents the value of the DAI field in DCI format 1 / 1A / 1B / 1D / 2 / 2A / 2B / 2C / 2D in the case of UL-DL configuration # 1-6.
  • the V UL DAI is (i) DAI in DCI format 0/4 when (i) one CC (black cell) having UL-DL configuration # 1-6 is configured, or (ii) the UE is configured not to use PUCCH format 3. Represents a field value.
  • Table 7 shows values indicated by the DAI field in DCI format 0/4 ( ⁇ .
  • W UL DAI indicates that (i) a plurality of CCs (black cells) having UL-DL configuration # 1 ⁇ 6. Or (ii) UL-DL Configuration # 1-6 If one CC (or SAL) is configured and configured to use PUCCH format 3, this indicates the value of the DAI field in DCI format 0/4.
  • MSB Most significant bit.
  • LSB Least significant bit.
  • DL DAI is referred to as V and UL DAI is referred to as W.
  • the ACK / NACK payload for PUCCH format 3 is configured per cell and then concatenated according to cell index order. Specifically, c-th
  • the HARQ-ACK feedback bit for the serving cell is ' ⁇ W — ! Is given by (c ⁇ 0).
  • O ⁇ c represents the number of bits (ie, size) of the HARQ-ACK payload for the c-th serving cell.
  • O ⁇ c represents the number of bits (ie, size) of the HARQ-ACK payload for the c-th serving cell.
  • For a c-th serving cell when a transport mode supporting single transport block transmission is set or spatial bundling is applied, it may be given as ⁇ ⁇ ⁇ ⁇ 1 ⁇ .
  • a transmission mode supporting multiple (eg, 2) transport block transmissions is set and spatial bundling is not applied, it may be given as O ⁇ Kc ⁇ B ⁇ c. .
  • B DL C M Is given.
  • M represents the number of elements in the K set as defined in Table 3. If the TDDUL-DL configuration is # 1, # 2, # 3, # 4, # 6, and the HARQ-ACK feedback bit is transmitted through the PUSCH, it is given as BDL ⁇ W ⁇ DM. / ⁇ ! Indicates a value indicated by the UL DAI field in the UL grant PDCCH (Table 7), and is simply denoted by W.
  • U is the PDSCH (s) and (a downlink subframe received in nk denotes the maximum value of Uc Uc is a serving cell in the second c- ) Indicates the total number of PDCCHs indicating SPS release.
  • I I denotes a ceiling function.
  • each c within the HARQ-ACK payload of the serving cell if a transmission mode supporting single transport block transmission is set or spatial bundling is applied, each c within the HARQ-ACK payload of the serving cell.
  • DAI (k) represents a DL DAI value of the PDCCH detected in the DL subframe nk.
  • a transmission mode supporting multiple (eg, two) transport block transmissions is set and spatial bundling is not applied, each ACK in the HARQ—ACK payload of the corresponding serving cell / NACK is located at
  • HARQ-ACK and "c, 2D / i / (:)" 1 indicates HARQ-ACK for codeword .
  • Codeword 0 and codeword 1 are transport blocks 0 and 1 respectively according to swapping. Or corresponds to transport blocks 1 and 0.
  • PUCCH format 3 transmits an ACK / NACK bit and an SR 1-bit together.
  • a plurality of cells merged into one UE are considered to be managed by one base station (Intra-site CA) (see FIG. 1).
  • all cells are managed by a single base station, so signaling related to RRC setup / report and MACXMedium Access Control (MAC) commands / messages can be performed through any cell among the merged cells.
  • signaling related to RRC setup / report and MACXMedium Access Control (MAC) commands / messages can be performed through any cell among the merged cells. For example, adding or releasing a specific SCell to or from a set of CA cells, changing the transmission mode (TM) of a specific cell, or performing a Radio Resource Management (RRM) measurement report associated with a specific cell.
  • the signaling associated with the back can be performed through any cell in the CA cell set.
  • signaling associated with a process of activating / deactivating a specific SCell and a Buffer Status Report (BSR) for UL buffer management may be performed through any cell in the CA cell set.
  • BSR Buffer Status Report
  • a cell-specific PHR (Power Headroom Report) for UL power control, a TAGCTiming Advance Group (TACC) for TA synchronous control, etc. may be signaled through any cell in the CA cell set. .
  • a plurality of cells with small coverage may be arranged in a cell (eg, macro cell) with a large coverage for traffic optimization.
  • a macro cell and a micro cell may be merged for one UE, the macro cell is mainly used for mobility management (eg, PCell), and the micro cell is mainly used for through foot boosting (eg, SCell).
  • PCell mobility management
  • SCell through foot boosting
  • cells merged into one terminal may have different coverages, and each cell may be managed by different base stations (or corresponding nodes (eg relays)) geographically separated from each other.
  • base stations or corresponding nodes (eg relays)
  • FIG. 19 illustrates an inter-site CA.
  • radio resource control and management eg, entire RRC and some functions of MAC
  • a terminal are in charge of a base station managing a PCell (eg, CC1), and each cell (ie, CCl, CC2).
  • the data scheduling and feedback process for the PHY (for example, the entire function of the PHY and the MAC), and the like, may be considered by each base station managing the corresponding cell. Therefore, inter-site CA requires information / data exchange / transmission between cells (ie, between base stations).
  • BH backhaul
  • an interconnection in which a PCelK (eg, CC1) (group) and an SCell (eg, CC2) (group) merged into one terminal are managed by the base station -1 and the base station -2, respectively.
  • the site CA situation can be assumed.
  • the base station (ie, base station-1) managing the PCell manages / manages the RRC function associated with the corresponding terminal.
  • a Radio Resource Management (RM) immediate eg RSRP (Reference Signal Received Power), RSRQCReference Signal Received Quality (RSRP) report associated with the SCell is transmitted through the SCelK, not via PCell, via PUSCH
  • the base station-2 is The RRM measurement report may need to be forwarded to B-1 via BH.
  • the terminal sends a message to the RRC reset command.
  • the confirmation response may be transmitted through an SCell (eg, via PUSCH) rather than a PCell.
  • the base station-2 may need to transmit the confirmation response back to the base station # 1 via the BH.
  • significant latency may be involved in the inter-cell (ie, inter-base station) signaling process. This may cause misalignment between the base station and the terminal for CA cell set interpretation, and may not be easy and stable and efficient cell resource management and control.
  • cell-specific power headroom (PHR) of all cells may be transmitted through PCelK (eg, via PUSCH).
  • the base station-1 which manages the PCell
  • the base station-2 which manages the SCell
  • the base station-2 may need to deliver the PHR corresponding to the entire PHR or the PCell to the base station-1 through the BH.
  • the signal between base stations Due to the latency associated with nulling, stable / efficient UL power control and redundant UL data scheduling / transmission based thereon may not be easy.
  • DL / UL data scheduling and UCI may be performed for each cell (group) belonging to the same base station in an inter-site CA situation.
  • UCI eg, AC / NACK, CSI, SR
  • a PCell and a SCell merged into one UE belong to BS-1 and BS-2, respectively, a DL / UL grant and a corresponding DL / UL for scheduling DL / UL data transmitted through the PCell.
  • ACK / NACK feedback for data is transmitted through PCell
  • ACK / NACK feedback for corresponding DL / UL data can be transmitted through SCell.
  • aperiodic CSKaperiodic CSI (a-CSI) / periodic CSKperiodic CSI (p-CSI) reporting and SR signaling for the PCell may be transmitted through the PCell
  • CSI reporting and SR signaling for the SCell may be transmitted through the SCell.
  • PUCCH simultaneous transmission operation may be required / allowed in a plurality of cells.
  • allowing simultaneous PUCCH transmission in a plurality of cells may cause UL performance loss by deteriorating a single carrier characteristic of the UL signal according to the situation / condition (eg, hardware, location) of the UE.
  • the present invention first proposes whether to allow simultaneous transmission of a plurality of PUCCHs through higher layer signaling (eg, RRC signaling).
  • simultaneous transmission of a plurality of PUCCHs includes simultaneous transmission of a plurality of PUCCHs (ie, simultaneous transmission of a plurality of per-cell PUCCHs) in a plurality of cells.
  • a parameter indicating whether to concurrently transmit and transmit PUCCH is defined as “multi-PUCCH '.” When multi-PUCCH is set to ON, the UE may perform simultaneous transmission of multiple PUCCHs in one UL subframe.
  • the UE when multi-PUCCH is set to OFF, the UE cannot perform multiple PUCCH transmission operations in one UL subframe, that is, when multi-PUCCH is OFF, multiple PUCCH in one UL subframe. Simultaneous transmission is not allowed and only a single PUCCH transmission (on a single cell) may be allowed within one UL subframe. [151] Meanwhile, (i) simultaneous transmission of periodic CSI and periodic / aperiodic SRS on different cells, (ii) simultaneous transmission of periodic CSI and aperiodic CSI on different cells, and (iii) multiple transmissions on different cells.
  • Whether to allow simultaneous transmission of aperiodic CSIs of and / or (iv) simultaneous transmission of SR and periodic / aperiodic SRS on different cells may be configured through higher layer signaling (eg, RRC signaling).
  • higher layer signaling eg, RRC signaling
  • HARQ-ACK and periodic / aperiodic SRS on different cells can be configured through higher layer signaling (eg, RRC signaling).
  • whether to allow simultaneous transmission of SRS and UCI (eg, A / N, SR) for each cell or cell group may be independently configured through higher layer signaling (eg, RRC signaling). If simultaneous transmission of SRS and UCI is allowed, a shortened PUCCH format is used. If simultaneous transmission of SRS and UCI is not allowed, a normal PUCCH format may be used.
  • higher layer signaling eg, RRC signaling
  • an additional terminal operation / process may be required to support mult i-PUCCH ON / OFF setting in an inter-site CA situation (black is a similar CA structure).
  • per-cell PUCCH transmission may be performed at different times, that is, per-cell PUCCH may be transmitted in a TDM manner.
  • the cell-specific UCI transmission timing eg, ACK / NACK transmission timing
  • the per-cell UCI transmission timing may vary depending on the frame structure type (ie, FDD or TDD), subframe configuration type (eg, UD-cfg), etc. of the cell configuring the CA.
  • the frame structure type ie, FDD or TDD
  • subframe configuration type eg, UD-cfg
  • the cell group includes one or more cells. Therefore, the cell group may consist of only one cell or a plurality of cells.
  • each sal group may belong to different base stations.
  • the PCell group and the SCell group are merged into one terminal, and the PCell group belongs to base station-1 (eg, macro base station), The SCell group may belong to base station-2 (eg, micro base station).
  • the PCell group indicates a sal group including the PCell.
  • the PCell group consists of the PCell alone or includes a PCell and one or more SCells.
  • SCell group represents a cell group consisting of only the SCell and includes one or more SCells.
  • the present invention may be equally / similarly applied to a situation in which three or more cell groups (eg, one PCell group and two or more SCell groups) are merged with one UE.
  • the present invention is a situation in which a plurality of cell groups are merged to one terminal, UCI transmission is performed for each cell group (that is, the UCI for each cell group through the specific cell in the cell group) ACK / NACK transmission timing setting and ACK / NACK feedback configuration / transmission method in the transmitted structure) (black is PUCCH transmission per cell). Therefore, hereinafter, a description will be given mainly on the case where a plurality of cell groups belonging to different base stations are merged to one terminal, but this is exemplified by the present invention. In this case, the same / similar can be applied.
  • the PUCCH may be transmitted through the PCell in the PCell group, and the PUCCH may be configured to be transmitted through one specific SCell in the SCell group.
  • the SCell configured to transmit the PUCCH in the SCell group is called an ACell.
  • the PCell group and the SCell group may belong to different base stations (eg, PCell-macro base station, SCell-micro base station), or (ii) the PCell group and the SCell group may belong to the same base station.
  • the ACell may be determined to be the cell having the lowest cell index (eg, ServCell index or SCell index) among cells configured to transmit PDCCH / EPDCCH (ie, through scheduling CC) within one sal group (via cross-CC scheduling configuration). have.
  • cell index eg, ServCell index or SCell index
  • signaling the information necessary for controlling / determining A / N transmission PUCCH resources through a specific field (eg, TPC / AR0) in the DL grant EPDCCH, to the ACell. It is also proposed to provide / activate Daewoong / transmitted DL grant EPDCCH.
  • information signaled through a TPC / AR0 field in a DL grant EPDCCH according to a frame structure type (FDD or TDD) and an A / N feedback transmission scheme (PF3 or CHsel) may be configured as follows for each cell.
  • SCell may mean all SCells except PCell and ACell.
  • a / N feedback for a certain cell group is configured to be transmitted through a specific ACell (in which case, the cell group may include an ACell), for the corresponding cell group (that is, the corresponding cell group).
  • ARI scheduling (and / or signaled on all DL grant PDCCH) and / or all DL grant PDCCH transmitted through the corresponding cell group may all have the same value.
  • the UE may operate in a state where it is assumed / assumed that all ARIs in all DL grant PDCCHs have the same value. In this case, the ARI may have an independent value for each cell group.
  • the ARI for the cell group to which the PCell belongs (for the same A / N transmission time point) and the ARI for the cell group to which the ACell belongs may have the same or different values.
  • the A / N payload in PUCCH format 3 arranges the A / N bits corresponding to the ACell on the MSB side. It may be configured as.
  • ACK / NACK transmission timing configuration and ACK / NACK feedback configuration / transmission method will be described based on combination / configuration of UCI transmission cells (ie, PCell and ACell) when a plurality of cell groups are merged.
  • a cell may be expanded into a 3 ⁇ 4 group.
  • N UL SFs [eg, SF #k-SF # (k + Nl)] (hereinafter, first part_ul)
  • a / N corresponding to cell 1 is transmitted through cell 1
  • M UL SFs [eg, SF # (k + N) to SF # (k + N + Ml)] (hereinafter, second part_ul)
  • a / N to be transmitted to cell 2 is set to be transmitted through cell 2 (N ⁇ l, M> 1).
  • N and M may be set to a value less than dF (e.g. 4) in order to properly limit the maximum A / N payload size and / or to minimize SF that cannot be used for A / N feedback transmission.
  • First part_ul and Second part ul are configured.
  • the first DL SF of Second part ⁇ dl [that is, SF # (k + Nd F )] is defined as "Last SF”.
  • First part_dl + Last SF [that is, SF # (kd F ) to SF # (k + Nd F )] is defined as "Entire duration”.
  • the first part_ul and the second part_ul illustrate a case where a plurality of consecutive SFs are configured, respectively, but they may also be composed of a plurality of discontinuous SFs.
  • the UE considers that DL data scheduling / transmission for Cell 2 is not allowed or not in First part dl [ie, DL SF # (kd F )-DL SF # (k + Nl— d F )].
  • the UE performs monitoring (eg, blind decoding) on a PDCCH carrying a DLDCI format for scheduling DL data of cell 2 in DL SF # (kd F ) to DL SF # (k + N-l_d F ). If not, or if a PDCCH carrying a DL DCI format is detected, it can be ignored (no PDSCH decoding process is performed).
  • the UE may perform normal operation (eg, PDCCH monitoring and PUSCH transmission) with respect to the UL DCI format. Accordingly, in cell 2, the A / N feedback and timing for the first part_dl may not be defined / set. Accordingly, in Second part_ul [ie, UL SF # (k + N) to UL SF # (k + N + Ml)], Second part_dl [that is, DL SF # (k + Nd F ) to DL SF # (k + N) + M_l-d F )] can only transmit A / N to DL data received through SAL 2 based on FDD A / N timing through cell 2, respectively.
  • Second part_ul ie, UL SF # (k + N) to UL SF # (k + N + Ml)
  • Second part_dl that is, DL SF # (k + Nd F ) to DL SF # (k + N) + M_l-d F )] can only transmit A
  • the UE sends DL data received through Cell 2 in First part.dl + Last SF [ie, SF # (kd F ) -SF # (k + Nld F ) + SF # (k + Nd F )].
  • a plurality of SF-based PF3 or CHsel methods can be applied to Daewoong A / N.
  • the plurality of SF-based PF3 or CHsel schemes means that a plurality of A / N information on DL data received in a plurality of SFs is transmitted through PF3 or transmitted using CHsel.
  • a plurality of A / N information for the first part dl + Last SF is stored in the first UL SF [ie, UL SF # (k + N)] of the second par t_ul based on the PF3 / CHsel method. May be sent over two.
  • a TPC command for PUCCH power control may be signaled in the DL grant PDCCH scheduling the Last SF, and an ARI value indicating the PF3 resource may be signaled in the DL grant PDCCH scheduling the first part_dl.
  • all ARI values may be set identically.
  • the A / N bit placement in PF3 can follow the SF order (eg, place the A / N bits on the MSB side corresponding to the fast or slow SF).
  • cell 2 is a specific cell (eg, PCell or ACell) in a cell group consisting of a plurality of cells
  • one DL data is detected only in the last SF of cell 2 during the first part—dl + Last SF
  • Only the A / N corresponding to the DL data can be transmitted using the implicit PF1 resource linked to the DL grant PDCCH scheduling the data.
  • a / N can be transmitted using PF3 as described above.
  • an ARI value indicating a PF3 resource may be signaled to all DL grant PDCCHs scheduling the first part dl and the last SF.
  • the PUCCH resource devoted to Last SF may be allocated an implicit PF1 resource linked to a DL grant PDCCH scheduling the SF.
  • the PUCCH resource corresponding to the first part 'dl may be allocated an explicit PF1 resource reserved through RRC signaling.
  • a TPC command for PUCCH power control may be signaled in the DL grant PDCCH scheduling the Last SF, and an ARI value indicating the explicit PF1 resource may be signaled in the DL grant PDCCH scheduling the first part_dl all.
  • the A / N ques- tion arrangement in the A / N state may follow the SF order (eg, the A / N ques- tions corresponding to the fast or slow SFs are placed on the MSB side).
  • SF bundling and / or CW bundling for A / N treated for DL data received through cell 2 in entire duration [ie, SF # (k-dF) to SF # (k + N-dF)] Can be applied.
  • SF bundling means applying A / N bundling to all or some DL subframes in each DL CC.
  • CW bundling means applying A / N bundling for each DL CC in each DL SF.
  • a / N bundling means a logical AND operation of A / N results.
  • bundling based A / N feedback may be transmitted through cell 2 in ULSF # (k + N).
  • the bundled A / N feedback may be transmitted using an implicit PF1 resource linked to a DL grant PDCCH that schedules the last received DL data in the entire duration, or an explicit PF1 resource reserved through RRC signaling.
  • the DL grant PDCCH scheduling the entire duration is signaled by an ARI value indicating the DAI and / or explicit PF1 resource indicating the time sequence (black cumulative value) of the scheduled DL data (or DL grant). Can be.
  • Entire duration [ ⁇ SF # 2, SF # 3 ⁇ , ⁇ SF # 4, SF # 5, SF # 6 ⁇ , ⁇ SF # 8, SF # 9 ⁇ ]
  • Entire duration [ ⁇ SF # 0, SF # 1, SF # 2 ⁇ , ⁇ SF # 3, SF # 4 ⁇ , ⁇ SF # 6, SF # 7, SF # 8 ⁇ ]] (dotted line circle) .
  • a / N for the entire duration in each cell may be transmitted through PF3, CHsel, bundling, etc. in UL SF (ie, Last SF + d F ) corresponding to Last SF.
  • a TACTiming Advance value (ie, UL transmission timing of a UL radio frame compared to a DL radio frame) applied to UL transmission in a plurality of cells merged into one UE may be set differently between cells.
  • a / N transmission signals eg, PUCCH
  • the neighboring UL SFs may be used to apply a TDM-based A / N (PUCCH) transmission method between cells.
  • the SF gap refers to an SF in which UL transmission is limited.
  • UCI eg, A / N
  • PUCCH Physical Uplink Control Channel
  • the SF gap may be specified / set to SF for which UCI (eg A / N) and / or PUCCH transmissions are not performed / defined, or for IL data and / or PUSCH scheduling (for UL non-CA terminals).
  • the transmission can be specified / set to SF not performed / defined.
  • N UL SFs [eg, SF #k to SF # (k + N—1)] (First part_ul) correspond to A / N corresponding to cell 1 Feedback is sent through cell 1, then one ULSF [e.g. SF # (k + N)] is set to the SF gap, followed by M UL SFs [e.g. SF # (k + N + l) In SF # (k + N + M)] (Second part_ul), an A / N feedback corresponding to cell 2 is transmitted through cell 2, followed by one UL SF [eg, SF # (k + N + M). + l)] may be set back to the SF gap.
  • the proposed methods (Sol 1 to 3) can be applied in a state in which DL SF corresponding to the SF gap is added as the last SF constituting First part_dl or Second part_dl.
  • DL SF # (k + Nd F ) may be added to First part-dl
  • DL SF # (k + N + M + ld F )) may be added to Second part-dl.
  • the above-described SF gap-based scheme may be applied to the same / similarly for the FDD cell when the FDD cell and the TDD cell are merged.
  • a / N feedback configuration / transmission may be performed by applying the A / N timing defined in its UD—cfg.
  • the Sol 1 to 3 method may be applied by considering the SF section set as the A / N transmission SF in the TDD cell as the SF section not set as the A / N transmission SF in the FDD cell, that is, the first part_ul. .
  • increasing the A / N feedback delay / size for the TDD cell by maintaining the original A / N timing of the TDD cell. You can avoid going.
  • 21 illustrates an A / N transmission method according to the present scheme. Referring to FIG. 21, A / N timing according to SIB-cfg is applied to a TDD cell, and Sol 2 is applied to a FDD cell in a state in which a UL SF section of the TDD cell is regarded as a first part_ul.
  • the TDD cell applies the A / N timing defined in its UD-cfg, and the FDD cell
  • the original A / N timing based on the FDDA / N delay dF can be applied as it is.
  • a / N for all (FDD and / or TDD) cells is transmitted through the TDD cell in the SF designated as the A / N transmission timing of the TDD cell and the remaining SF (that is, the A / N transmission of the TDD cell In SF, not dimming, a method of transmitting through an FDD cell may be considered.
  • a / N for both the FDD cell and the TDD cell is transmitted through the TDD cell in SF designated as the A / N transmission timing of the TDD cell.
  • the merge SF that is, the SF not the A / N transmission timing of the TDD cell
  • only A / N for the FDD cell may be transmitted through the FDD cell.
  • the A / N feedback delay / size for the FDD cell is reduced by reducing the size / frequency of the first part_ul generated in the FDD cell in Alt 1-1.
  • a / N feedback configuration / transmission may be performed by applying A / N timing defined in DL superset-cfg.
  • DL superset-cfg is a number of DLs larger than SIB-cfg including UD-cfg in which DL SF is set for the superset of DL SF configuring SIB-cfg (that is, DLSF of SIB-cfg).
  • SF is set in UD-cfg) (see Table 1).
  • DL superset-cfg is equivalent to UL subset-cfg.
  • UL subset-cfg means UD-cfg in which ULSF is set for a subset of ULSF constituting SIB-cfg (that is, UD-cfg in which fewer ULSFs are set than SIB-cfg while being included in ULSF of SIB-cfg). do.
  • the Sol 1-3 method may be applied by considering the SF section set as the A / N transmission SF in the DL superset-cfg as First part_ul.
  • a / N timing according to DL superset-cfg is applied to a TDD cell, and a DL is applied to an FDD cell.
  • Sol 2 is applied while the UL SF section according to superset-cfg is regarded as the first part_ul.
  • SIB-cfg of the TDD cell is applied.
  • a / N timing defined in UD-cfg # 2, # 4, # 5, which is DL superset-cfg of UD-cfg # 1 is applied.
  • a / N feedback configuration / transmission can be performed.
  • DL superset-cfg is set to UD-cfg # 2, in case of FDD Sal, SF # 2 and SF # 7 set as A / N transmission SF in UD-cfg # 2 are considered as first part.ul.
  • the -3 method can be applied.
  • a / N timing is applied to a TDD cell based on Alt 1-2
  • a / N of DL superset-cfg is applied only to the DL SF of the TDD cell (ie, DL SF in SIB-cfg (and S SF)). It can be defined / set to apply N timings (and perform DL data detection / reception operations) and configure the A / N signals / bits to be processed.
  • the A / N timing (and DL data detection / reception operation) of DL superset-cfg and the A / N signal / bit configuration to be set for the UL SF of the TDD cell (that is, the UL SF in SIB-cfg).
  • a / N may be transmitted in subframe #n (kc Kc).
  • Kc includes a value of 1 ⁇ 1 ⁇ , but only subframe #nk sp actually includes only k sp values corresponding to DL SF or S SF in the TDD cell.
  • K sp represents the DASI value of DL superset cfg (see Table 3).
  • the A / N timing defined in the DL superset-cfg and the A / N timing defined in the SIB-cfg of the TDD cell may be different. Because of this, it may not be possible to apply an implicit PF1 linkage (ie, an implicit PF1 resource index linked to DL SF) based on the A / N timing of SIB-cfg. To solve this problem, only explicit PF1 resources reserved through RRC signaling can be used for CHsel.
  • PF3 when PF3 is configured for A / N transmission, DL data for single A / N fallback (i.e., data for PDCCH having DAI initial value (e.g., 1) or DAI initial value (e.g., When only the SPS release PDCCH) having 1) is received, an explicit PF1 resource reserved through RRC signaling may be used for A / N transmission.
  • an ARI indicating an explicit PF1 resource may be signaled in all DL grant PDCCHs.
  • DAI An ARI indicating an explicit PF1 resource to a DL grant PDCCH having an initial value (eg, 1) may be signaled.
  • the UL SF timing of DL superset-cfg 2 may be (cyclic) SF-shifted so that A / N transmission times of Cell 1 and Cell 2 are different from each other.
  • the DL SF superset-cfg whose UL SF timing is SF ⁇ shifted is referred to as SF-shifted DL superset ⁇ cfg.
  • DL superset-cfg 1 and DL superset-cfg 2 may be set to be the same or different from each other.
  • DL superset-cfg for each cell may be set such that UL SF timing (ie, A / N transmission time) determined based on DL superset-cfg 1 and SF-shifted DL superset-cfg 2 is different from each other.
  • UL SF timing ie, A / N transmission time
  • SIB-cfg is UD-cfg # 3
  • DL superset-cfg is UD-cfg # 4 and # 5.
  • a / N timing is applied and A / N feedback configuration / transmission is performed based on the UL SF timing shifted to the right by 1 SF-shift in UD-cfg # 2 which is DL superset-cfg 2.
  • SFs other than SF # 2 and SF # 7 may be set as A / N transmission SFs.
  • the DASI for determining the A / N timing when applying SF-shited DL superset-cfg can be determined in the following two ways.
  • This method applies the original DASI to SF-shifted UL SF before applying SF-shift.
  • DASI generated in UL SF #n before applying SF-shift may be applied to SF-shifted ULSF # (n + k) as it is.
  • the DASI value defined in SF # 2 of UD-cfg # 2 is applied to SF # 2
  • the DASI value defined in SF # 2 of UD-cfg # 2 is applied.
  • Applicable to SF # 3. 23 illustrates an A / N transmission method according to the present scheme.
  • This method is to apply the shifted UL SF to the shifted UL SF (based on Table 3) plus the number of shifted SFs (k (SF)). For example, a value obtained by adding k to the DASI generated in the UL SF #n before applying the SF-shift may be applied to the SF-shifted ULSF # (n + k). In the above example, in the case of cell 1, the DASI value defined in SF # 2 of UD-cfg # 2 may be applied to SF # 2.
  • the DL SF of the TDD cell ie, DL in SIB-cfg.
  • SF can be defined / set to apply A / N timing of SF-shifted DL superset-cfg (and perform DL data detection / reception operation) and A / N signal / bit to be processed.
  • the UL SF (i.e., UL SF in SIB-cfg) of the TDD cell includes the A / N timing (and DL data detection / reception operation) of the SF-shifted DL superset-cfg and the A / N signal / bit configuration to be processed. May not be set / applied have.
  • a / N may be transmitted in subframe # 1 (kcKc).
  • Kc includes a value of 13 ⁇ 4 ) [( ⁇ ) , but includes only a k sp value in which subframe #nk sp actually corresponds to DL SF or S SF in a TDD cell.
  • K sp represents the DASI value of the DL superset-cfg (see Table 3).
  • the A / N timing defined in the SF-shiited DL superset-cfg and the A / N timing defined in the SIB-cfg of the TDD cell may be different. Because of this, it may not be possible to apply an implicit PF1 linkage (ie, an implicit PF1 resource index linked to DLSF) based on the A / N timing of the SIB-cig. To solve this problem, only explicit PF1 resources reserved through RRC signaling can be used for CHsel.
  • a TA value applied to UL transmission in a plurality of cells merged into one UE may be set differently between cells.
  • a / N transmission signals eg, PUCCH
  • PUCCH transmission signals
  • a / N transmission signals eg, PUCCH
  • the A / N transmission SF timing of different cells is determined by the first half of the radio frame (eg, SF # 0 to SF # 4) and the second half (eg, SF # 5 to It is proposed to select / apply DL superset-cfg and / or SF—shifted DL superset-cfg to be set separately in SF # 9).
  • SIB—cfg in Cell 1 and Cell 2 are identical to UD-cfg. Assume the case given by # 1.
  • SF # 2 and SF # 3 corresponding to the first half of the radio frame are set to the A / N transmission SF of the cell 1, and SF # 7 and / or SF # 8 corresponding to the second half of the radio frame are assigned to the cell 2 A / N transmission SF is set.
  • UL SF gaps (eg, A / N feedback) between A / N transmission SF timings of different cells may be used.
  • / or the appropriate DL superset-cfg and / or SF-shifted DL superset-cfg may be selected / adapted to allow SF) where UCI / PUCCH and / or UL data / PUSCH) transmissions are not performed / defined. .
  • the same / similar principle / method as the previously proposed method eg, SF gap-based method and pre / post-separation method of radio frame.
  • the SIB-cfg of Cell 1 and the DL superset-cfg of Cell 2 may be set to be the same or different from each other.
  • the DL superset—cfg of cell 2 is set so that UL SF timing (ie, A / N transmission time) determined based on SIB-cfg of cell 1 and SF-shifted DL superset-cfg of cell 2 is different from each other. May be limited.
  • SIB-cfg of Cell 1 and Cell 2 are UD-cfg # 4 and # 1, respectively, DL superset-cfg of Cell 2 may be limited to UD-cfg # 4 or # 5.
  • SIB-cfg of cells 1 and 2 is UD-cfg # 4 and # 3 respectively, DL superset-cfg of cell 2 may be limited to UD-cfg # 5.
  • both cell 1 and cell 2 apply A / N timing defined in SIB-cfg of the corresponding cell.
  • a / N for all cells (cell 1 and / or cell 2) is transmitted through a specific cell (e.g. cell 1) in the SF designated as the A / N transmission timing of a particular cell (e.g. cell 1).
  • a method of transmitting through another cell (eg, cell 2) may be considered.
  • a particular cell may be set to, for example, a PCell, an ACell, or a cell with fewer SFs designated as A / N transmission timings. For example, if cell 1 and cell 2 are merged and cell 1 is set to a specific cell, in SF designated as cell 1's A / N transmission timing, only A / N for cell 1 or cell 1 is determined according to SF. A / N for both cell 2 may be sent (via cell 1). Meanwhile, only the A / N for cell 2 may be transmitted (via cell 2) in the remaining SFs (that is, SFs that are not A / N transmission timings of cell 1).
  • a / N feedback configuration / transmission may be performed by applying A / N timing defined in DL superset-cfg 1 for SIB-cfg of cell 1. Meanwhile, in the case of cell 2, A / N feedback configuration / transmission may be performed based on A / N timing defined in DL superset-cfg 2 for SIB-cfg of SAL2.
  • the UL SF timing of DL superset-cfg 2 may be SF-shifted so that the A / N transmission time points of Cell 1 and Cell 2 are different from each other.
  • 26 illustrates an A / N transmission method according to the present scheme. Referring to FIG. 26, A / N timing according to DL superset-cfg is applied to TDD cell 1, and A / N timing according to SF_shifted DL superset-cfg is applied to TDD cell 2.
  • DL superset-cfg 1 and DL superset-cfg 2 may be set to the same or different from each other.
  • DL superset-cfg for each cell may be restricted so that UL SF timing (ie, A / N transmission time) determined based on DL superset-cfg 1 and SF-shifted DL superset-cfg 2 is different from each other.
  • UL SF timing ie, A / N transmission time
  • the A / N timing setting method, the PUCCH resource allocation method, and the DASI determination method (Opt 1 or Opt 2) for applying the DL superset-cfg and the SF-shifted DL superset-cfg described above are the same in this example. Can be applied based on similar principles
  • the TDM-based A / N transmission method (SF (group) based method) between cells in SF (group) units has been described.
  • the A / N transmission SF section for each cell may be set in units of a radio frame or a multiple of the radio frame.
  • one or more radio frames, which are units of A / N transmission SF intervals for each cell, are defined as a radio frame group (RFG).
  • a / N transmission SF interval for each cell considering a UL HARQ process / timeline (eg, UL grant-to-PUSCH and PUSCH-to-PHICH) for PUSCH transmission (black May set the UCI / PUCCH and / or UL data / SFSCH in which the PUSCH transmission / scheduling is performed / defined) in FG units.
  • the number of radio frames constituting the RFG is 4 for FDD, 5 for UD-cfg # 1 to # 5 for TDD, 6 for UD—cfg # 6, and 7 for UD—cfg # 0.
  • a / N transmission SF based on RFG such that N RFGs are Sal 1, M MGGs are Cell 2, and L LGGs are A / N transmission SF periods corresponding to Cell 1 again. Intervals can be set alternately between cells (N ⁇ l, M> 1, L> 1). In this case, the original A / N timing defined in each cell may be applied in the A / N transmission SF (RFG) period of each cell.
  • RFG A / N transmission SF
  • N RFGs are set to the A / N transmission SF intervals that are treated in Cell 1, and then M RFGs are set to the A / N transmission SF intervals per cell in the SF (group) unit proposed above.
  • the L RFGs can be alternately applied to the RFG-based method and the SF (group) -based method by setting the A / N transmission SF period to the cell 1 (or cell 2).
  • the original A / N timing of the cell in which A / N transmission is configured may be applied to the other RFG interval except the SF (RFG) interval to which the SF (group) based method is applied.
  • N RFGs may be set to A / N transmission SF intervals for cell 1, and then M RFGs are set to A / N transmission SF intervals for both cell 1 and cell 2, and the The next L RFGs are alternately set to A / N transmission SF intervals that are treated in cell 1 (or cell 2), and alternate between cell-specific A / N transmission RFG intervals and cell-common A / N transmission RFG intervals.
  • the original A / N timing defined in each cell may be applied as it is in the A / N transmission RFG interval that is common to all the cells, and the resulting A / N PUCCH per cell may be generated at the base station. It may be desirable to prevent / mitigate through proper scheduling of.
  • the UE operates in the state of assuming / recalling that multiple A / N PUCCH transmissions are not required simultaneously (on multiple cells and / or on multiple cells) through one SF in a cell-common A / N transmission RFG interval. can do. For example, if a plurality of PUCCH transmissions are required through one SF in a Sal-common A / N transmission RFG interval, the terminal transmits only one PUCCH according to a specific rule (eg, UCI priority) and the other PUCCH The transmission may be dropped or a plurality of PUCCH transmissions may all be dropped.
  • a specific rule eg, UCI priority
  • the A / N timing for each cell has the original timing (d F for FDD, DASI according to SIB-cfg for TDD) and It can be set differently.
  • inconsistencies between the base station and the terminal with respect to A / N timing may occur in various reset periods involving RRC signaling.
  • a specific search space (a CCE resource occupied by that region), a specific PDCCH candidate, and / or DL data scheduled through a specific DCI format. It is suggested to apply the original A / N timing of.
  • the specific search space may be a common search space and the specific DCI format may be DCI format 1A.
  • per-cell PUCCH transmission timing may be set only within cell-specific A / N transmission time points determined based on the above schemes. Can be.
  • UCI transmission timing for each cell such as p-CSI, SR, etc. may be set to be identical to A / N transmission SF per cell (or a subset thereof) determined based on the above schemes.
  • the transmission time of the periodic UCI eg, p-CSI, SR
  • the transmission of the periodic UCI may be dropped.
  • a / N feedback transmission scheme eg, by cell (group)
  • by SF (group) by cell (group) / SF (group) combination
  • / or by frame structure type eg FDD or TDD
  • FDD or TDD PF3 or CHsel
  • a method of transmitting all the UCIPUCCHs corresponding to each cell only through the UL of the PCell may be considered.
  • SF #N may be set to the UCI PUCCH transmission time point to the PCell
  • SF # (N + k) may be set to the UCI PUCCH transmission time point to the SCell respectively.
  • the SF #N transmits the UCI PUCCH to the PCell through the UL of the PCell (defined SF as "PCell UCI-PUCCH SF"), and the SF # (N + k) transmits the SCell through the UL of the PCell.
  • UCIPUCCH can be transmitted (defined SF as "SCell UCI-PUCCH SF").
  • SCell UCI-PUCCH SF This means that a base station that manages / controls a SCell from a terminal point of view overhears, that is, detects / receives, a carrier that is treated to the PCell of the terminal, that is, a UCI PUCCH that is treated to the corresponding SCell through a frequency band. This is because they may have the ability to do so.
  • the TA value set in the corresponding SCell is applied to the SCell. If there is no UL), a separate TA value to be applied only to UCI PUCCH transmission for the SCell may be set.
  • the TPC signaled through the DL grant for PCell all scheduling is applied only to the PCell UCI-PUCCH SF, and the TPC signaled through the DL grant scheduling the SCell may be applied only to the SCell UCI-PUCCH SF.
  • the UCI performed on the specific cell (group) be piggybacked only on the PUSCH transmitted through the corresponding cell (group). Accordingly, the following method may be considered when only the PUSCH transmitted through the PCell is scheduled in the SCell UCI-PUCCH SF (generally, SF set to the point in which the UCI PUCCH is transmitted to the SCell).
  • Method 1 Simultaneous transmission of a UCI PUCCH to a SCell and a corresponding PUSCH scheduled to a PCell without UCI piggyback to a PUSCH is allowed.
  • Method 2 giving up / omitting transmission of the scheduled PUSCH to the PCell and transmitting only the UCI PUCCH corresponding to the SCell;
  • Method 2 giving up / omitting transmission of the UCI PUCCH corresponding to the SCell and transmitting only the scheduled PUSCH to the PCell;
  • Method 2 It is assumed / regarded that the UE is not scheduled / set to perform UCI-PUCCH transmission to the SCell and PUSCH transmission through the PCell at the same time through one UL SF (eg, SCell UCI-PUCCH SF). Can operate in one state.
  • the method 2) may be applied when the UCI Daewoong in the SCell is SR for A / N black, and the method 3) may be applied when the UCI is CSI.
  • the A / N corresponding to the SCell is all NACK black is composed only of DTX, or if the SR is negative, the scheme 3). If the CSI corresponding to the SCell includes the RI information, the scheme 2 is used.
  • subcarriers (i.e., equal to RE) in each SC-FDMA symbol constituting existing PUCCH (ie, legacy PUCCH) resources may be even indexes (i.e., even-comb) and odd indexes. It is also possible to transmit the PUCCH for each cell (the UCI of the corresponding cell) by using different combs by dividing by (ie, odd-comb). For example, in the legacy PUCCH resource region, a PUCCH that is treated as Cell 1 (UCI of a corresponding cell) may use an even bit comb, and a PUCCH corresponding to Cell 2 (UCI of the cell) may use an odd-comb.
  • the SC-FDMA symbol constituting the legacy PUCCH resource is divided into an even index (i.e., even-symbol) and an odd index (i.e., odd-symbol (odd-sym)). It is also possible to transmit the PUCCH to the cell's UCI) using different symbols. For example, in the legacy PUCCH resource region, the PUCCH generated by Cell 1 (the UCI of the corresponding cell) may use even-symbols, and the PUCCH corresponding to Cell 2 (the UCI of the corresponding cell) may use odd-symbols. .
  • FIG. 26 illustrates a base station and a terminal that can be applied to an embodiment in the present invention. In the case of a system including a relay, the base station or the terminal may be replaced by a relay.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected to the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • Processor 122 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected to the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • a base station may, in some cases, be performed by an upper node thereof. That is, in a network consisting of a plurality of network nodes including a base station It is apparent that various operations performed for communication with the terminal may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as UEOJser Equipment (MSO), Mobile Station (MS), and Mobile Subscriber Station (MSS).
  • an embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more applicat ion specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAsCfield. progra ⁇ able gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs applicat ion specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAsCfield FPGAsCfield. progra ⁇ able gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 캐리어 병합-기반 무선 통신 시스템에서 단말이 ACK/NACK 정보를 전송하는 방법 및 장치에 있어서, 제1 UD 구성을 갖는 제1 TDD 셀과 상기 제1 UD 구성을 갖는 제2 TDD 셀을 병합하는 단계; 상기 제1 TDD 셀에 대응하는 ACK/NACK 정보는 상기 제1 TDD 셀 상의 UL SF을 통해 전송하는 단계; 및 상기 제2 TDD 셀에 대응하는 ACK/NACK 정보는 상기 제2 TDD 셀 상의 UL SF을 통해 전송하는 단계를 포함하고, 상기 제1 TDD 셀 상의 UL SF 타이밍은 상기 제1 UD 구성에 따른 UL SF 세트로 주어지고, 상기 제2 TDD 셀 상의 UL SF 타이밍은 상기 제1 UD 구성에 따른 UL SF 세트에 속하는 서브세트에 기반하여 주어지는 방법 및 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 캐리어 병합 (Carrier Aggregation, CA)-기반 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치에 관한 것이다.
【배경기술】
[2] 무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스 를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용 한 시스템 자원 (대역폭ᅳ 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는
CDMA(code division multiple access) 시스템, FDMA( frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, 0FDMA( orthogonal frequency division multiple access) 시스템, SC~FDMA( single carrier frequency division mult iple access)'시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3] 본 발명의 목적은 CA-기반 무선 통신 시스템에서 상향링크 신호를 효율적으 로 전송 /수신하는 방법 이를 위한 장치를 제공하는데 있다. 구체적으로, 본 발 명은 인터-사이트 CA(inter-site carrier aggregat ion)에서 상향링크 신호를 효율적 으로 전송 /수신하는 방법 및 이를 위한 장치를 제공하는데 있다.
[4] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속 하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. 【기술적 해결방법】 [5] 본 발명의 일 양상으로, 캐리어 병합 (carrier aggregat ion)-기반 무선 통신 시스템에서 단말이 ACK/NACK( Acknowledgement /Negative ACK) 정보를 전송하는 방법 에 있어서, 제 1 UD 구성 (Uplink Downlink configuration)을 갖는 제 1 TDD(Time Division Duplex) 샐과 상기 제 1 UD 구성을 갖는 제 2 TDD 셀을 병합하는 단계; 상 기 제 1 TDD 샐에 대웅하는 ACK/NACK 정보는 상기 제 1 TDD 셀 상의 UL SF(Subframe) 을 통해 전송하는 단계 ; 및 상기 제 2 TDD 셀에 대웅하는 ACK/NACK 정보는 상기 제 2 TDD 셀 상의 UL SF을 통해 전송하는 단계를 포함하고 , 상기 제 1 TDD 셀 상의 UL SF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세트로 주어지고, 상기 제 2 TDD 샐 상의 UL SF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세트에 속하는 서브세트에 기반하여 주어지며, UD 구성에 따른 SF 구성은 다음과 같은 방법이 제공된다:
Figure imgf000004_0001
여기서, D는 DL SF이고, U는 UL SF이며, S는 스페셜 SF이다.
[6] 본 발명의 다른 양상으로, 캐리어 병합 (carrier aggregat ion)-기반 무선 통신 시스템에서 ACK/NACK( Acknowledgement /Negative ACK) 정보를 전송하도록 구성된 단 말에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상 기 프로세서는 제 1 UD 구성 (Upl ink Downlink conf igurat ion)을 갖는 제 1 TDD(Time Division Duplex) 셀과 상기 제 1 UD 구성을 갖는 제 2 TDD 샐을 병합하고, 상기 제 1 TDD 셀에 대웅하는 ACK/NACK 정보는 상기 제 1 TDD 셀 상의 UL SF(Subframe)을 통해 전송하며 , 상기 제 2 TDD 샐에 대웅하는 ACK/NACK 정보는 상기 제 2 TDD 셀 상의 UL SF을 통해 전송하도록 구성되며, 상기 제 1TDD 셀 상의 ULSF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세트로 주어지고, 상기 제 2 TDD 셀 상의 UL SF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세트에 속하는 서브세트에 기반하여 주어지며, UD구성에 따 른 SF 구성은 다음과 같은 단말이 제공된다:
Figure imgf000005_0001
여기서, D는 DL SF이고, U는 UL SF이며, S는 스페셜 SF이다.
[7] 바람직하게, 상기 서브세트는 제 2 UD 구성에 따른 UL SF 세트이며, 상기 제 2 UD 구성은 상기 제 1 UD 구성에 따른 DL SF 세트를 포함하고 상기 제 1 UD 구성보다 더 많은 DL SF를 가진 UD 구성일 수 있다.
[8] 바람직하게, 상기 제 2 TDD 셀 상의 UL SF 타이밍은 상기 서브세트를 시간 축 상에서 SF 단위로 쉬프트 함으로써 결정될 수 있다.
[9] 바람직하게 , 상기 제 2 TDD 셀 상에서 ACK/NACK 정보가 UL SF #n올 통해 전송 되는 경우, UL SF #n에는 DL SF #n— k+a가 대응하며, k는 아래와 같이 주어질 수 있 다:
Figure imgf000005_0002
여기서, a는 SF 단위의 쉬프트 값을 나타낸다. [10] 바람직하게, 상기 제 1TDD 셀은 제 1 기지국에 속하고, 상기 제 2TDD 셀은 상 기 제 1 기지국과 다른 제 2 기지국에 속할 수 있다.
【유리한 효과】
[11] 본 발명에 의하면, CA-기반 무선 통신 시스템에서 상향링크 신호를 효율적으 로 전송 /수신할 수 있다. 구체적으로, 인터-사이트 CA 에서 상향링크 신호를 효율적 으로 전송 /수신할 수 있다.
[12] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분 야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[13] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도 면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사 상을 설명한다.
[14] 도 1A~1B는 CACCarrier Aggregat ion)-기반 무선 통신 시스템을 예시한다.
[15] 도 2는 무선 프레임 (radio frame)의 구조를 예시한다.
[16] 도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
[17] 도 4는 하향링크 서브프레임의 구조를 예시한다.
[18] 도 5는 EPDCCH( Enhanced Physical Downlink Control Channel)를 예시한다.
[19] 도 6은 복수의 셀이 구성된 경우의 스케줄링 방법을 예시한다.
[20] 도 7은 상향링크 서브프레임의 구조를 예시한다.
[21] 도 8은 PUCCH(Physical Uplink Control Channel) 포맷 la/lb의 슬롯 레벨 구 조를 예시한다.
[22] 도 9는 PUCCH 포맷 2의 슬롯 레벨 구조를 예시한다.
[23] 도 10은 PUCCH 포맷 3의 슬롯 레벨 구조를 예시한다.
[24] 도 11 은 PUSCH(Physical Uplink Shared Channel)를 통해 상향링크 제어 정보 를 전송하는 방법을 예시한다. [25] 도 12-13 은 TDD Time Division Du lex) 샐에서 UL ACK/NACK(U l ink Acknowledgement /Negative Acknowledgement) 전송 타이밍을 예시한다.
[26] 도 14~15는 P CH(Physical Hybrid ARQ Indicator Channel )/UL 그랜트 (ULgrant UO-PUSCH타이밍을 나타낸다.
[27] 도 16~17은 TDD 샐의 PUSCH-UL 그랜트 /PHICH 전송 타이밍을 예시한다.
[28] 도 18 은 DAKDownlink Assignment Index)를 이용하여 ACK/NACK 전송 과정을 수행하는 방법을 예시한다.
[29] 도 19는 인터-사이트 CA( inter-site carrier aggregat ion)를 예시한다.
[30] 도 20~25는 본 발명의 실시예에 따른 ACK/NACK 전송을 예시한다.
[31] 도 26은 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
【발명을 실시를 위한 형태】 '
[32] 이하의 기술은 CDMA(code division multiple access) , FDMA( frequency division multiple access), TDMA(t ime division mult iple access) , OFDMA (orthogonal frequency division multiple access) , SC-FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA 는 UTRACUniversal Terrestrial Radio Access)나 CDMA2000 과 같은 무선 기술 (radio technology)로 구현될 수 있다. TD A 는 GSM(Global System for Mobile commun i cat i ons ) /GPRS (Genera 1 Packet Radio Service) /EDGE (Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA (Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA는 UMTSCUniversal Mobile Teleco™unications System)의 일부이 다. 3GPP(3rd Generation Partnership Project) LTE( long term evolution)는 E-UTRA 를 사용하는 E-UMTS( Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향 링크에서 SC-FDMA를 채용한다. LTE—A( Advanced)는 3GPP LTE의 진화된 버전이다.
[33] 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해 제공된 것이며, 이러한 특정 용어는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[34] 먼저, 본 명세서에서 사용되는 용어에 대해 정리한다.
[35] 參證 Q-ACK(Hybr id Automatic Repeat reQuest Acknowledgement): 하향링크 전 송에 대한 수신응답결과ᅳ 즉, ACK/NACK(Negative ACK)/DTX(Discont inuous Transmission) 웅답 (간단히, ACK/NACK (웅답), AC /NAK (웅답), A/N (웅답))을 나타 낸다. ACK/NACK 웅답은 ACK, NACK, DTX또는 NACK/DTX를 의미한다. 여기서, HARQ-ACK 피드백이 필요한 하향링크 전송은 예를 들어 PDSCH(Physical Downlink Shared Channel) 및 SPS 해제 PDCCH (Sem卜 Per si stent Scheduling release Physical Downlink Control Channel)를 포함한다.
[36] 眷 셀 (또는 CC(Component Carrier))에 대응하는 HARQ-ACK: 해당 셀에 스케줄 링된 하향링크 전송에 대한 ACK/NACK웅답을 나타낸다.
[37] · PDSCH: DL 그랜트 PDCCH 에 대웅하는 PDSCH 및 SPS(Semi-Persistent Scheduling) PDSCH를 포함한다. PDSCH는 전송블록 (transport block) 흑은 코드워드 (codeword)로 대체될 수 있다.
[38] · SPS PDSCH: SPS 에 의해 반-정적으로 설정된 자원을 이용하여 전송되는 PDSCH 를 의미한다. SPS PDSCH 는 대응되는 DL 그랜트 PDCCH 가 없다. SPS PDSCH 는 PDSCH w/o(without) PDCCH와 흔용된다.
[39] · SPS 해제 (release) PDCCH: SPS 해제를 지시하는 PDCCH를 의미한다. 단말은 SPS 해제 PDCCH에 대한 ACK/NACK 정보를 피드백한다 .
[40] 도 1A~1B는 기존의 캐리어 병합 (Carrier Aggregation, CA)-기반 무선 통신 시 스템을 예시한다. LTE 시스템은 하나의 DL/UL 주파수 블록만을 지원하지만, LTE-A 시스템은 복수의 UL/DL 주파수 블록을 병합하여 더 넓은 주파수 대역을 제공한다. 각 주파수 블록은 콤포넌트 캐리어 (Component Carrier, CC)를 이용해 전송된다. CC 는 주파수 블록의 캐리어 주파수 (또는 중심 캐리어 , 중심 주파수)를 나타낸다.
[41] 도 1A-1B를 참조하면 , 하나의 기지국에 의해 관리되는 복수의 DL/UL CC가 하 나의 단말에게 병합될 수 있다. CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 CC의 대역폭은 독립적으로 정해질 수 있다. ULCC의 개수와 DLCC의 개 수가 다른 비대칭 캐리어 병합도 가능하다. 또한, 시스템 전체 대역이 N 개의 CC로 구성되더라도 특정 단말이 사용할 수 있는 주파수 대역은 L(<N)개의 CC 로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 샐 특정 (cell-specific), 단말 그 룹 특정 (UE group-specific) 또는 단말 특정 (UE-specif ic) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특 정 CC를 프라이머리 CC(Primary CC, PCC) (또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CCXSecondary CC, SCC)로 지칭할 수 있다. PCC에서만 UCI 가 전송되므로, 복수의 UL CC 에서 복수 PUCCH 의 동시 전송 상황은 발생하지 않으며 , 단말의 전력 관리 등을 위해 PCC 에서의 복수의 PUCCH 전송도 허용되지 않는다. 따라서, 기존의 CA시스템에서는 하나의 UL서브프레임에서 하나의 PUCCH 전송만 가능하다.
[42] LTE(-A)는 무선 자원의 관리를 위해 샐 (cell)의 개념을 사용한다. 샐은 DL 자원과 UL자원의 조합으로 정의되며, UL자원은 필수 요소는 아니다. 따라서, 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원으로 구성될 수 있다. 캐리어 병합이 지원되 는 경우, PL 자원의 캐리어 주파수 (또는, DL CC)와 UL 자원의 캐리어 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수 (또는 PCC) 상에서 동작하는 셀을 프라이머리 셀 (Primary Cell, PCell)로 지 칭하고, 세컨더리 주파수 (또는 SCC) 상에서 동작하는 셀을 세컨더리 셀 (Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 RRC 연결 설정 (initial Radio Resource Control connection establishment) 과정 또는 RRC 연결 재 -설정 과정을 수 행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수 있다. SCell 은 기지국과 단말간에 RRCXRadio Resource Control) 연결이 설정된 이후에 구성 가 능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell 과 SCell 은 서빙 셀로 통칭될 수 있다.
[43] 별도로 언급하지 않는 한, 이하의 설명은 복수의 CC (또는 셀)가 병합된 경우 에 각각의 CC (또는 셀)에 적용될 수 있다. 또한, 이하의 설명에서 CC 는 서빙 CC, 서빙 캐리어, 셀, 서빙 셀 등의 용어로 대체될 수 있다. [44] 도 2는 무선 프레임 (radio frame) 구조를 예시한다.
[45] 도 2(a)는 FDE Frequency Division Duplex)를 위한 타입 1 무선 프레임 구조 를 예시한다. 무선 프레임은 복수 (예, 10 개)의 서브프레임 (Subframe, SF)을 포함하 고, SF는 시간 영역에서 복수 (예, 2개)의 슬롯을 포함한다. SF 길이는 1ms, 슬롯 길 이는 0.5ms 일 수 있다. 슬롯은 시간 영역에서 복수의 0FDM/SC-FDMA 심볼을 포함하 고, 주파수 영역에서 복수의 자원블록 (Resource Block, RB)을 포함한다.
[46] 도 2(b)는 TDD(Time Division Duplex)를 위한 타입 2 무선 프레임 구조를 예 시한다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame)을 포함하고, 하프 프 레임은 5개의 SF를 포함한다. SF는 2개의 슬롯을 포함한다.
[47] 표 1은 TDD에서 무선 프레암내 서브프레임들의 UL-DL 구성 (Up 1 inkᅳ Down link Configuration, UD—cfg)을 예시한다. UD-cfg는 시스템 정보 (예, System Information Block, SIB)를 통해 시그널링 된다. 편의상, TDD 셀에 대해 SIB 를 통해 설정되는 UD-cfg를 SIB-cfg라고 지칭한다.
【표 1】
Figure imgf000010_0001
[48] 표 1에서, D는 DL SFCDownlink Subframe)을, U는 UL SF(Uplink Sub frame)올, S 는 S SF(Special Subframe)를 나타낸다. 스페셜 SF 는 DwPTS(Downlink Pilot TimeSlot), GP(Guard Per iod) , UpPTS Uplink Pi lot TimeSlot)을 포함한다. DwPTS는 DL 전송을 위한 시간 구간이며, UpPTS는 UL 전송을 위한 시간 구간이다.
[49] 도 3은 DL 슬롯의 자원 그리드를 예시한다. [50] 도 3을 참조하면, DL슬롯은 시간 도메인에서 복수의 0FDMA심볼을 포함한다. DL슬롯은 CP Cyclic Prefix) 길이에 따라 7(6)개의 ( DMA심볼을 포함하고, 자원블 톡은 주파수 도메인에서 12 개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소는 자원 요소 (Resource Element, RE)로 지칭된다. RB는 12X7(6)개의 RE를 포 함한다. DL슬롯에 포함되는 RB의 개수 N1^는 DL 전송 대역에 의존한다. UL슬롯의 구조는 DL슬롯의 구조와 동일하되 , 0FDMA심볼이 SC-FDMA심볼로 대체된다.
[51] 도 4는 DL서브프레임의 구조를 예시한다.
[52] 도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞에 위치한 최대 3(4)개 의 0FDMA 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 남은 0FDMA 심볼은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. DL 제어 채널은 PCFIOKPhysical Control Format Indicator Channel), PDCCH( Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel)를 포함 한다. PCFICH는 서브프레임의 첫 번째 0FDMA심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 0FDMA심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송에 대한 웅답으로 HARQ-ACK신호를 나른다.
[53] PDCCH는 하향링크 공유 채널 (Downlink Shared CHannel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (Uplink Shared CHannel , UL-SCH)의 전송 포 맷 및 자원 할당 정보, 페이징 채널 (Paging CHannel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다.
[54] PDCCH를 통해 DCI (Downlink Control Informational" 전송된다. UL스케줄링 (또 는 UL 그랜트)을 위해 DCI 포맷 0/4(이하, ULDCI 포맷) , DL스케줄링을 위해 DCI 포 맷 1/1A/1B/1C/1D/2/2A/2B/2CC이하ᅳ DL DCI 포맷)가 정의된다. UL/DL DCI 포맷은 호 핑 플래그 (hopping flag), RB 할당 정보, MCS(Modulat ion Coding Scheme) , RV( Redundancy Version) , NDKNew Data Indicator) , TPC( Transmit Power Control ) , DMRSCDeModulation Reference Signal) 사이클릭 쉬프트 등의 정보를 용도에 따라 선 택적으로 포함한다. 또한, 상향링크 신호의 전력 조절을 위해 DCI 포맷 3/3A (이하, TPC DCI 포맷)이 정의된다. TPC DCI 포맷은 복수의 단말을 위한 비트맵 정보를 포함 하며, 비트맵 내에서 각각의 2 비트 (DCI 포맷 3) 또는 1 비트 (DCI 포맷 3A) 정보는 해당 단말의 PUCCH 및 PUSCH에 대한 TPC 커맨드를 지시한다 .
[55] 제어 영역 내에서 복수의 PDCCH 가 전송될 수 있고, 단말은 자신에게 지시된 PDCCH를 확인하기 위해 매 서브프레임마다 복수의 PDCCH를 모니터링 한다. PDCCH는 하나 이상의 CCE(Control Channel Element)를 통해 전송된다. PDCCH 전송에 사용되 는 CCE 개수 (즉, CCE 병합 레벨 (aggregation level))를 통해 PDCCH 코딩 레이트를 조절할 수 있다. CCE는 REG(Resource Element Group)를 포함한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI 에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC Cyclic Redundancy Check)를 부가한 다. CRC 는 PDCCH 의 소유자 또는 사용 목적에 따라 식별자 (예, RNTI (Radio Network Temporary Ident i f ier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 단말 식별자 (예, Cell-RNTI (ORNTI))가 CRC 에 마스킹 될 수 있다. PDCCH 가 페이징 메시지를 위한 것일 경우, 페이징 식별자 (예, Paging-RNTI (P-RNTI))가 CRC 에 마스킹 될 수 있다. PDCCH 가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (System Information Block, SIB))를 위한 것일 경우, SI-RNTK System Information RNTI)가 CRC 에 마스킹 될 수 있다. PDCCH 가 랜덤 접속 웅답을 위한 것일 경우, RA-RNTI (Random Access-RNTI)가 CRC에 마스킹 될 수 있다.
[56] 도 5는 EPDCCH를 예시한다 . EPDCCH는 LTE-A에서 추가로 도입된 채널이다.
[57] 도 5를 참조하면, 서브프레임의 제어 영역 (도 4 참조)에는 기존 LTE 에 따른 PDCCH (편의상, Legacy PDCCH, L— PDCCH)가 할당될 수 있다. 도면에서 L-PDCCH 영역은 L-PDCCH 가 할당될 수 있는 영역을 의미한다. 한편, 데이터 영역 (예, PDSCH 를 위한 자원 영역) 내에 PDCCH 가 추가로 할당될 수 있다. 데이터 영역에 할당된 PDCCH 를 EPDCCH라고 지칭한다 . 도시된 바와 같이 , EPDCCH를 통해 제어 채널 자원을 추가 확 보함으로써, L-PDCCH 영역의 제한된 제어 채널 자원으로 인한 스케줄링 제약을 완화 할 수 있다. L-PDCCH와 마찬가지로, EPDCCH는 DCI를 나른다. 예를 들어, EPDCCH는 하향링크 스케줄링 정보, 상향링크 스케즐링 정보를 나를 수 있다. 예를 들어, 단 말은 EPDCCH를 수신하고 EPDCCH에 대응되는 PDSCH를 통해 데이터 /제어 정보를 수신 할 수 있다. 또한, 단말은 EPDCCH를 수신하고 EPDCCH에 대응되는 PUSCH를 통해 데 이터 /제어 정보를 송신할 수 있다. 셀 타입에 따라 EPDCCH/PDSCH 는 서브프레임의 첫 번째 OFDM 심볼부터 할당될 수 있다.
[58] 다음으로 복수의 CC (또는 셀)가 구성된 경우의 스케줄링에 대해 설명한다. 복수의 (X 가 구성된 경우, 크로스-캐리어 스케줄링과 논-크로스—캐리어 스케줄링 (또는 셀프 스케줄링 )이 사용될 수 있다. 논-크로스-캐리어 스케줄링 (또는 셀프 스 케줄링 )은 기존 LTE에서의 스케줄링 방식과 동일하다.
[59] 크로스—캐리어 스케줄링이 적용될 경우, DL 그랜트 PDCCH 는 DL CC#0 상에서 전송되고, 대웅되는 PDSCH는 DL CC#2 상에서 전송될 수 있다. 유사하게, UL 그랜트 PDCCH는 DL CC#0 상에서 전송되고, 대응되는 PUSCH는 UL CC#4상에서 전송될 수 있 다. 크로스-캐리어 스케줄링을 위해, CIFCCarrier Indicator Field, CIF)가 사용된 다. PDCCH 내에서 CIF의 존재 여부는 상위 계층 시그널링 (예 , RRC 시그널링)에 의해 반 -정적 및 단말 -특정 (또는 단말 그룹-특정) 방식으로 설정될 수 있다.
[60] CIF 설정에 따른 스케줄링은 다음과 같이 정리될 수 있다.
[61] - CIF 디스에이블드 (disabled): DL CC 상의 PDCCH는 동일한 DL CC상의 PDSCH 자원을 할당하거나 하나의 링크된 UL (X 상의 PUSCH 자원을 할당
[62] - CIF 이네이블드 (enabled): DL CC 상의 PDCCH 는 CIF 를 이용하여 복수의 병 합된 DL/UL CC 중에서 특정 DL/UL CC상의 PDSCH 또는 PUSCH 자원을 할당
[63] CIF가 존재할 경우, 기지국은 단말에게 하나 이상의 PDCCH 모니터링 DLCC (이 하, Monitoring CC, MCC)를 할당할 수 있다. 단말은 MCC 에서만 PDCCH 의 검출 /디코 딩을 수행할 수 있다. 즉, 기지국이 단말에게 PDSCH/PUSCH 를 스케줄링 할 경우, PDCCH 는 MCC 상에서만 전송된다. MCC 는 단말 -특정 (UE-speci f ic), 단말 -그룹 -특정 또는 셀 -특정 (cell-specific) 방식으로 설정될 수 있다. MCC는 PCC를 포함한다.
[64] 도 6 은 크로스-캐리어 스케줄링을 예시한다. 도면은 DL 스케줄링을 예시하고 있지만, 예시된 사항은 UL 스케줄링에도 동일하게 적용된다. [65] 도 6을 참조하면 , 단말에게 3개의 DL CC가 구성되고, DL CC A가 PDCCH 모니 터링 DL CC (즉, MCC)로 설정될 수 있다. CIF 가 디스에이블 된 경우, 각각의 DL CC 는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송 할 수 있다. 반면, CIF가 이네이블 된 경우, DL CC A (즉, MCC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른 CC의 PDSCH를 스케줄링 하 는 PDCCH도 전송할 수 있다. 본 예에서, DLCCB/C에서는 PDCCH가 전송되지 않는다ᅳ [66] 도 7은 UL 서브프레임의 구조를 예시한다.
[67] 도 7 을 참조하면 , 1ms 길이의 서브프레임 (500)은 두 개의 0.5ms 슬롯 (501)으 로 구성된다. 슬롯은 CP 길이에 따라 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 예를 들어, 보통 CP의 경우 슬롯은 7개의 SC-FDMA 심볼로 구성되고, 확장 CP의 경 우 슬롯은 6 개의 SC-FDMA 심볼로 구성된다. RB(503)는 주파수 영역에서 12 개의 부 반송파, 시간 영역에서 한 슬롯에 해당되는 자원 할당 단위이다. 상향링크 서브프 레임의 구조는 주파수 상에서 데이터 영역 (504)과 제어 영역 (505)으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared Channel)를 포함하고 음성 등의 데이 터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(Physical Uplink Control Channel)를 포함하고 UCI (Upl ink Control Informat ion)를 전송에 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양 끝 부분에 위치한 RB(Resource Block) 쌍 (RB pair) 을 포함하며 슬롯을 경계로 호핑한다. SRS(Sounding Reference Signal)는 서브프레 임의 마지막 SC-FDMA 심볼에서 전송된다. SRS 는 주기적으로 전송되거나, 기지국의 요청에 따라 비주기적으로 전송될 수 있다. SRS 주기적 전송은 셀 -특정 파라미터와 단말ᅳ특정 파라미터에 의해 정의된다. 셀 -특정 파라미터는 셀 내에서 SRS 전송이 가능한 총 서브프레임 세트 (이하ᅳ 셀 -특정 SRS 서브프레임 세트)를 알려주고, 단말 ᅳ특정 파라미터는 총 서브프레임 세트 내에서 실제로 단말에게 할당된 서브프레임 서브 세트 (이하, 단말 -특정 SRS 서브프레임 세트)를 알려준다.
[68] PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
[69] - S ( Scheduling Request): UL-SCH(Shared Channel) 자원을 요청하는데 사용 되는 정보이다. 0OK(On-0ff Keying) 방식을 이용하여 전송된다. [70] - HARQ-ACK: DL신호 (예, PDSCH, SPS 해제 PDCCH)에 대한 수신 웅답 신호이다. 일 예로, 하나의 DL코드워드에 대한 응답으로 ACK/NACK1비트가 전송되고, 두 개의 DL코드워드에 대한 웅답으로 ACK/NACK 2비트가 전송된다.
[71] - CSKChannel Status Information): DL 채널에 대한 피드백 정보이다. CSI는 CQ1 (Channel Quality Information) , RKRank Indicator) , PMKPrecoding Matrix Indicator), PTKPrecoding Type Indicator) 등을 포함한다. 여기서, CSI 는 주기적 CSI (per iodic CSI, p-CSI)를 의미한다. 기지국의 요청에 따라 전송되는 비주기적 CSI (aperiodic CSI, a_CSI)는 PUSCH를 통해 전송된다.
[72] 표 2는 LTE(-A)에서 PUCCH포맷 (PUCCH format, PF)과 UCI의 관계를 나타낸다. 【표 2】
PUCCH 포' ¾ 상향링크 제어 정보 (Uplink Control Information, UCI)
포맷 1 SR(Scheduling Request) (비변조된 파형)
포맷 la 1-비트 HARQ ACK/NACK (SR 존재 /비존재)
포맷 lb 2-비트 ACK/NACK (SR 즌재 /비존재)
포맷 2 CSI (20개의 코딩된 비트)
포맷 2 CSI 및 ]- 또는 2-비트 HARQ ACK/NACK (20비 ε) (확장 CP만 해당)
포뱃 2a CSI 및 1-비트 HARQ ACK/NACK (20+1개의 코딩된 비트)
포맷 2b CSI 및 2ᅳ비 ε HARQ ACK/NACK (20+2개의 코¾된 비트)
포맷 3 (LTE-A) HARQ ACK/NACK + SR (48개의 코딩된 비트)
[73] 도 8 은 슬롯 레벨에서 PUCCH 포맷 la/lb 의 구조를 나타낸다. PUCCH 포맷 la/lb 에서는 동일 내용의 제어 정보가 서브프레임 내에서 슬롯 단위로 반복된다. 서로 다른 단말의 ACK/NAK신호는 CG—CAZAC(Computer— Generated Constant Amplitude Zero Auto Correlation) 시퀀스의 서로 다른 CSCCyclic Shift 주파수 도메인 코드) 와 OCCCOrthogonal Cover Code) (시간 도메인 확산 코드)로 구성된 서로 다른 자원을 통해 전송된다. 0CC는 왈쉬 (Walsh)/DFT직교 코드를 포함한다. CS의 개수가 6개이 고 0C 의 개수가 3 개인 경우, 18 개 단말의 ACK/NACK신호가 동일한 PRB(Physical Resource Block) 안에 다중화 될 수 있다. PUCCH포맷 1에서는 PUCCH포맷 la/lb의 구조에서 ACK/NAK이 SR로 대체된다 .
[74] 도 9는 슬롯 레벨에서 PUCCH포떳 2의 구조를 나타낸다 .
[75] 도 9를 참조하면, 보통 CP가 구성된 경우 PUCCH포맷 2는 슬롯 레벨에서 5 개의 QPSK 데이터 심볼과 2 개의 RS 심볼을 포함한다. 확장 CP 가 구성된 경우, PUCCH포맷 2/2a/2b는 슬롯 레벨에서 5 개의 QPSK 데이터 심볼과 1 개의 RS 심볼을 포함한다. 확장 CP 가 구성된 경우, RS 심볼은 각 슬롯에서 4 번째 SC-FDMA 심볼에 위치한다. 따라서, PUCCH 포맷 2 는 총 10 개의 QPSK 데이터 심볼을 나를 수 있다. 각각의 QPSK 심볼은 CS 에 의해 주파수 도메인에서 확산된 뒤 해당 SC-FDMA 심볼로 맵핑된다. RS는 CS를 이용하여 CDM(Code Division Multiplexing)에 의해 다중화 될 수 있다. A/N 전송과 CSI 전송이 동일 서브프레임에서 요구될 수 있다. 이 경우, 상 위 계층에서 A/N+CSI 동시 전송 비-허용으로 설정되면 ("Simultaneous-AN-and-CQI" 파라미터 =0FF),A/N 전송만 PUCCH포맷 la/lb를 이용하여 수행되고, CSI 전송은 드 랍된다. 반면, A/N+CQI 동시 전송 허용으로 설정되면 ("Simultaneous-AN-and-CQI" 파 라미터 =0N),A/N과 CSI는 PUCCH포맷 2/2a/2b를 통해 함께 전송된다. 구체적으로, 보통 CP인 경우, A/N은 PUCCH포맷 2a/2b에서 각 슬롯의 두 번째 RS에 임베디드 (예, RS에 A/N을 곱함) 된다. 확장 CP인 경우, A/N과 CSI는 조인트 코딩된 뒤 PUCCH 포 맷 2를 통해 전송된다.
[76] 도 10은 슬롯 레벨의 PUCCH포맷 3 구조를 예시한다. PUCCH포맷 3은 복수의 ACK/NACK 정보를 전송하는데 사용되며, CSI 및 /또는 SR을 함께 전송할 수 있다.
[77] 도 10 을 참조하면, 하나의 심볼 시퀀스가 주파수 영역에 걸쳐 전송되고, 해 당 심볼 시뭔스에 0CC 기반의 시간-도메인 확산이 적용된다. 구체적으로, 길이 -5 (또는 길이— 4)의 0CC(C1~C5)를 이용해 하나의 심볼 시퀀스 ({dl, 02,···})로부터 5 개 의 SC-FDMA 심볼 (즉, UCI 데이터 파트)이 생성된다. 여기서, 심볼 시뭔스 ({dl,d2,."})는 변조 심볼 시뭔스 또는 코드워드 비트 시퀀스를 의미할 수 있다. 심볼 시퀀스 ({dl,d2,"'})는 조인트 코딩 (예, Reed-Muller code, Tail -biting convolutional code등), 블톡 -확산 (Block-spreading), SC-FDMA 변조를 거쳐 복수의 ACK/NACK정보로부터 생성될 수 있다.
[78] 도 11은 PUSCH를 통해 UCI를 전송하는 방법을 예시한다. UCI 전송이 요구되 는 서브프레임에 PUSCH 할당이 있는 경우ᅳ UCI 는 PUSCH 를 통해 전송될 수 있다 (PUSCH 피기백). 구체적으로, CSI/PMI 및 RI 의 피기백을 위해, PUSCH 데이터 (즉, UL-SCH 데이터) 정보 (예, 부호화된 심볼)는 CSI/PMI 및 RI 의 양을 고려하여 레이트 -매칭 (rate— matching)된다. 한편, ACK/NACK 은 UL-SCH 데이터가 맵핑된 SC-FDMA 의 자원의 일부에 평처링을 통해 삽입된다. 또한, UCI 는 UL— SCH 데이터 없이 PUSCH 상 에서 전송되도록 스케줄링 될 수 있다.
[79] 한편, 각 단말은 자신 /다른 단말의 SRS 를 보호하기 위해, 셀 -특정 SRS 서브 프레임 세트에서 PUCCH 를 전송해야 하는 경우, 두 번째 슬롯의 마지막 SC-FDMA 심 볼을 PUCCH 전송에 사용하지 않는다. 편의상, 서브프레임의 모든 SC-FDMA 심볼이 PUCCH 전송에 사용되는 PUCCH 포맷을 보통 (normal) PUCCH 포맷이라고 지칭하고, 두 번째 슬롯의 마지막 SC-FDMA 심볼이 PUCCH 전송에 사용되지 않는 PUCCH 포맷을 쇼 른드 (shortened) PUCCH 포맷이라고 지칭한다. 동일한 이유로, 셀 -특정 SRS 서브프레 임 세트에 PUSCH 가 할당된 경우, 각 단말은 두 번째 슬롯의 마지막 SC-FDMA 심볼을 PUSCH 전송에 사용하지 않는다. 구체적으로, PUSCH 데이터 (즉, UL-SCH 데이터 ) 정보 (예, 부호화된 심볼)는 마지막 SC— FDMA 심볼의 자원 양을 고려하여 레이트-매칭된 다. 편의상, 서브프레임의 모든 SC-FDMA 심볼이 PUSCH 전송에 사용되는 PUSCH 를 보 통 (normal) PUSCH 라고 지칭하고, 두 번째 슬롯의 마지막 SC-FDMA 심볼이 사용되지 않는 PUSCH를 레이트-매칭된 PUSCH라고 지칭한다 .
[80] 이하, 도 12~17 을 참조하여 , ACK/NACK 전송 과정 및 그에 따른 신호 전송 타 이밍에 대해 설명한다. 도 12~17 은 TDD CC(혹은 셀)을 기준으로 예시하고 있으며, FDD CC (혹은 셀)에 대한 타이밍에 대해서는 추가로 설명한다.
[81] 도 12~13은 ACK/NACK(A/N) 타이밍 (혹은 HARQ 타이밍)을 나타낸다.
[82] 도 12 를 참조하면, 단말은 M 개의 DL 서브프레임 (SuMrame, SF) 상에서 하나 이상의 PDSCH 신호를 수신할 수 있다 (S502_0~S502_M-1)(M>1). 각칵의 PDSCH 신호 는 전송 모드에 따라 하나 또는 복수 (예, 2 개)의 전송블록 (Transport Block, TB)을 포함할 수 있다. 도시하지는 않았지만, 단계 S502_0~S502_M-1 에서 SPS 해제를 지시 하는 PDCCH 신호도 수신될 수 있다. M개의 DL 서브프레임에 PDSCH 신호 및 /또는 SPS 해제 PDCCH 신호가 존재하면, 단말은 ACK/NACK 전송을 위한 과정 (예, ACK/NACK (페 이로드) 생성, ACK/NACK자원 할당 등)을 거쳐, M개의 DL 서브프레임에 대웅하는 하 나의 UL 서브프레임을 통해 ACK/NACK 을 전송한다 (S504). ACK/NACK 은 단계 S502_0~S502_M-1 의 PDSCH 신호 및 /또는 SPS 해제 PDCCH 신호에 대한 수신 웅답 정 보를 포함한다. ACK/NACK은 기본적으로 PUCCH를 통해 전송되지만, ACK/NACK 전송 시 점에 PUSCH 할당이 있는 경우 PUSCH 를 통해 전송된다. 단말에게 복수의 CC 가 구성 된 경우, PUCCH 는 PCC상에서만 전송되고, PUSCH 는 스케줄링 된 (X상에서 전송된 다. ACK/NACK 전송을 위해 표 2 의 다양한 PUCCH 포맷이 사용될 수 있다. ACK/NACK 비트 수를 줄이기 위해 ACK/NACK 번들링 (bundling), ACK/NACK 채널 선택 (Channel selection, CHsel)과 같은 다양한 방법이 사용될 수 있다.
[83] FDD에서 M=l이고, TDD에서 M은 1 이상의 정수이다. TDD에서 M개의 DL 서브 프레임과 A/N 이 전송되는 UL 서브프레임의 관계는 DASKDownlink Association Set Index)에 의해 주어진다.
[84] 표 3은 LTE(-A)에 정의된 DASKK^ko.kfku- )를 나타낸다. 서브프레임 n-k (keK)에 PDSCH 전송 및 /또는 SPS 해제 (Semi -Persistent Scheduling release)를 지 시하는 PDCCH가 있는 경우, 단말은 서브프레임 n에서 ACK/NACK을 전송한다. FDD에 서 DASI (편의상, dF)=4이다.
【표 3】
Figure imgf000018_0001
[85] TDD 방식으로 동작 시 , 단말은 M 개의 DL SF 를 통해 수신한 하나 이상의 DL 전송 (예, PDSCH)에 대한 A/N 신호를 하나의 ULSF를 통해 전송해야 한다. 복수의 DL SF에 대한 A/N을 하나의 UL SF를 통해 전송하는 방식은 다음과 같다. [86] 1) A/N 번들링 (A/N bundling): 복수의 데이터 유닛 (예, PDSCH, SPS 해제 PDCCH 등)에 대한 A/N 비트가 논리 연산 (예, 논리 -AND 연산)에 의해 결합된다. 예를 들어, 모든 데이터 유닛이 성공적으로 복호되면, 수신단 (예, 단말)은 ACK 신호를 전송한 다. 반면, 데이터 유닛 중 하나라도 복호 (또는 검출)가 실패하면, 수신단은 NACK 신호를 전송하거나 아무것도 전송하지 않는다.
[87] 2) 채널 선택 (Channel selection, CHsel): 복수의 데이터 유닛 (예, PDSCH, SPS 해제 PDCCH 둥)을 수신하는 단말은 A/N 전송을 위해 복수의 PUCCH 자원들을 점유한 다. 복수의 데이터 유닛에 대한 A/N 웅답은 실제 A/N 전송에 사용된 PUCCH 자원과 전송된 A/N 내용 (예, 비트 값, QPSK 심볼 값)의 조합에 의해 식별된다. 채널 선택 방식은 A/N 선택 방식ᅳ PUCCH 선택 방식으로도 지칭된다.
[88] 다음으로, L-PDCCH 기반 스케줄링의 경우, ACK/NACK 전송 자원을 결정하는 방 법에 대해 설명한다. A/N 전송을 위해 PUCCH포맷 la/lb (이하, PF1)가 설정된 경우, DL 그랜트 L— PDCCH 에 의해 스케줄링 된 DL 데이터에 대한 ACK/NACK 전송 자원은 DL 그랜트 L-PDCCH 를 구성하는 특정 ECCE 인덱스 (예, 최소 ECCE 인덱스)에 링크된 PUCCH 자원으로 결정될 수 있다 (묵시적 (implicit PUCCH 자원)) . 구체적으로, LTE/LTE— A에서 PF1 자원 인텍스는 다음과 같이 정해진다.
[89] 【수학식 1】
n puccHᅳ nccE 十 I PUCCH
[90] 여기에서, n(1) PUCCH는 ACK/NACK/DTX을 전송하기 위한 PF1의 자원 인덱스를 나 타내고, N(1) PUCCH는 상위 계층 (예, Radio Resource Control, RRC)으로부터 전달받는 시 그널링 값을 나타내며, nCCE는 L-PDCCH 전송에 사용된 CCE 인덱스 중에서 가장 작은 값을 나타낸다. n(1) PUCCH로부터 PF1을 위한 CS(Cyclic Shift), 0C(0rthogonal Code) 및 PRB(Physical Resource Block)가 얻어진다.
[91] A/N 전송을 위해 PUCCH포맷 3 (PF3)이 설정된 경우, 상위 계층 (예, RRC)에 의 해 할당된 복수 PF3 자원 인덱스 (n(3) PUCCH) 중 특정 하나의 PF3 자원 인덱스가 DL 그 랜트 L-PDCCH 의 ARI (ACK/NACK Resource Indicator) 값에 의해 지시될 수 있다 (명시 적 (explicit PUCCH 자원)) . ARI는 SCell 의 PDSCH를 스케줄링 하는 L-PDCCH의 TPC 필드를 통해 전송된다. n(3) PUCCH로부터 PF3을 위한 0C 및 PRB가 얻어진다.
[92] 한편, EPDCCH 기반 스케줄링의 경우에도, DL 그랜트 EPDCCH 에 의해 스케줄링 된 DL 데이터에 대한 ACK/NACK 전송 자원은 DL 그랜트 EPDCCH 를 구성하는 특정 ECCE 인덱스 (예, 최소 ECCE 인덱스) 혹은 여기에 특정 오프셋 값이 추가된 ECCE 인 덱스에 링크된 PUCCH 자원으로 결정될 수 있다. 또한, ACK/NACK 피드백 전송 자원은 DL 그랜트 EPDCCH 를 구성하는 특정 ECCE 인덱스 (예, 최소 ECCE 인덱스)에 링크된 PUCCH 자원 혹은 여기에 특정 오프셋 값이 추가된 PUCCH 자원으로 결정될 수 있다. 여기서, 특정 오프셋 값은 DL 그랜트 EPDCCH 내 ARO(ACK/NACK Resource Offset) 필 드를 통해 직접 시그널링 되는 값 및 /또는 AP(Antenna Port) 별로 전용 (dedicated) 으로 지정되는 값 등에 의해 결정될 수 있다. 구체적으로, 프레임 구조 타입 (예, FDD 또는 TDD) 및 A/N 피드백 전송 방식 (예, PF3 또는 CHsel)에 따라 DL 그랜트 EPDCCH 내의 TPC 필드 및 AR0 필드를 통해 시그널링 되는 정보는 다음과 같이 구성 될 수 있다. 편의상, PUCCH 전력 제어를 위한 TPC 커맨드를 "TPC 값 ", 묵시적 PUCCH 인덱스 결정 시 추가되는 오프셋 값을 "AR0 값", RRC로 할당된 복수 PF3 인덱스 혹 은 복수 PF1 인덱스 (그룹) 중 특정 하나를 지시하는 ARI 를 "ARI 값1'이라고 정의한 다. 또한, 아무런 정보를 포함하지 않고 (가상 CRC 등의 용도를 위해) 삽입되는 고 정된 값 (예, '0')을 "고정 값 (fixed value)"이라고 정의한다.
[93] 1) FDD with PF3
[94] A. TPC 필드
[95] i. PCell을 스케줄링 하는 DL 그랜트: TPC 값
[96] ii. SCell을 스케줄링 하는 DL 그랜트: ARI 값
[97] B. AR0 필드
[98] i. PCell을 스케줄링 하는 DL 그랜트: AR0 값
[99] ii. SCell을 스케줄링 하는 DL 그랜트: 고정 값
[100] 2) FDD with CHsel
[101] A. TPC 필드 [102] i. PCell을 스케줄링 하는 DL 그랜트: TPC 값
[103] ii. SCell을 스케줄링 하는 DL 그랜트: ARI 값
[104] B. AR0필드
[105] i. PCell을 통해 전송되는 DL 그랜트: AR0값
[106] ii. SCell을 통해 전송되는 DL 그랜트: 고정 값
[107] 3) TDD with PF3
[108] A. TPC 필드
[109] i. PCell을 스케줄링 하는 DL 그랜트: TPC 값
[110] ii. SCell을 스케줄링 하는 DL 그랜트: ARI 값
[111] B. AR0 필드
[112] i. PCell을 스케줄링 하면서 DAI = 1에 대웅되는 DL 그랜트: AR0값
[113] ii. PCell을 스케줄링 하면서 DAI = 1에 대웅되지 않는 DL 그랜트: ARI 값
[114] iii. SCell을 스케줄링 하는 DL그랜트: 고정 값
[115] 4) TDD with CHsel
[116] A. TPC 필드
[117] i. PCell을 스케줄링 하는 DL 그랜트: TPC 값
[118] ii. SCell을 스케줄링 하는 DL 그랜트: ARI 값
[119] B. AR0 필드
[120] i. PCell을 통해 전송되는 DL 그랜트: AR0 값
[121] ii. SCell을 통해 전송되는 DL 그랜트: 고정 값
[122] 도 13 은 UL-DL 구성 #1 이 설정된 CC 에 적용되는 A/N 타이밍을 예시한다. SF#0~#9 및 SF#10~#19 는 각각 무선 프레임에 대웅한다. 박스 내 숫자는 DL 서브프 레임 관점에서 자신과 연관된 UL서브프레임을 나타낸다. 예를 들어, SF#5의 PDSCH 에 대한 ACK/NACK은 SF#5+7(=SF#12)에서 전송되고, SF#6의 PDSCH에 대한 ACK/NACK 은 SF#6+6(=SF#12)에서 전송된다. 즉, SF#5/SF#6에 대한 ACK/NACK은 모두 SF#12에 서 전송된다. SF#14의 PDSCH에 대한 ACK/NACK은 SF#14+4(=SF#18)에서 전송된다. [123] 도 14~15 는 PHICH/UL 그랜트 (UL grant , UG) -PUSCH 타이밍을 나타낸다. PUSCH 는 PDCCH (UL 그랜트) 및 /또는 PHICH (NACK)에 대응하여 전송될 수 있다.
[124] 도 14를 참조하면, 단말은 PDCCH (UL 그랜트) 및 /또는 PHICH (NACK)를 수신할 수 있다 (S702). 여기서, NACK은 이전의 PUSCH 전송에 대한 ACK/NACK웅답에 해당한 다. 이 경우, 단말은 PUSCH 전송을 위한 과정 (예, TB 부호화, TB-CT 스와핑 , PUSCH 자원 할당 등)을 거쳐 서브프레임 이후에 PUSCH를 통해 하나 또는 복수의 전송블 록 (TB)을 초기 /재전송할 수 있다 (S704). 본 예는 PUSCH 가 일회 전송되는 보통 (normal) HARQ 동작을 가정한다. 이 경우, PUSCH 전송에 대웅되는 PHICH/UL 그랜트 는 동일 서브프레임에 존재한다. 다만, PUSCH 가 복수의 서브프레임을 통해 여러 번 전송되는 서브프레임 번들링의 경우, PUSCH 전송에 대웅되는 PHICH/UL 그랜트는 서 로 다른 서브프레임에서 존재할 수 있다.
[125] 표 4는 LTE(-A)에 PUSCH 전송을 위한 UAI (Up 1 ink Association Index)(k)를 나 타낸다. 표 4 는 PHICH/UL 그랜트가 검출된 DL 서브프레임 입장에서 자신과 연관된 UL 서브프레임과의 간격을 나타낸다. 구체적으로, 서브프레임 n 에서 PHICH/UL 그랜 트가 검출되면, 단말은 서브프레임 n+k 에서 PUSCH 를 전송할 수 있다. FDD 에서 UAI (즉, k)=4이다.
【표 4】
Figure imgf000022_0001
[126] 도 15 는 UL-DL 구성 #1 이 설정된 경우의 PUSCH 전송 타이밍을 예시한다. SF#0~#9 및 SF#10~#19 는 각각 무선 프레임에 대응한다. 도면에서 박스 내의 숫자는 DL 서브프레임 관점에서 자신과 연관된 UL 서브프레임을 나타낸다. 예를 들어, SF#6 의 PHICH/UL 그랜트에 대한 PUSCH 는 SF#6+6(=SF#12)에서 전송되고, SF#14 의 PHICH/UL 그랜트에 대한 PUSCH는 SF#14+4(=SF#18)에서 전송된다.
[127] 도 16~17은 UL 그랜트 (UG)/PHICH 타이밍을 나타낸다. PHICH는 DL ACK/NACK을 전송하는데 사용된다. 여기서, DL ACK/NACK은 UL 데이터 (예, PUSCH)에 대한 웅답으 로 하향링크로 전송되는 ACK/NACK을 의미한다.
[128] 도 16 을 참조하면 단말은 기지국으로 PUSCH 신호를 전송한다 (S902). 여기서 PUSCH 신호는 전송 모드에 따라 하나 또는 복수 (예, 2 개)의 전송블록 (TB)을 전송하 는데 사용된다. PUSCH 전송에 대한 웅답으로, 기지국은 ACK/NACK 을 전송하기 위한 과정 (예, ACK/NACK 생성, ACK/NACK 자원 할당 등)을 거쳐, k 서브프레임 이후에 PHICH 를 통해 ACK/NACK 을 단말에게 전송할 수 있다 (S904). ACK/NACK 은 단계 S902 의 PUSCH 신호에 대한 수신 응답 정보를 포함한다. 또한, PUSCH 전송에 대한 웅답이 NACK 일 경우, 기지국은 k서브프레임 이후에 PUSCH 재전송을 위한 UL 그랜트 PDCCH 를 단말에게 전송할 수 있다 (S904). 본 예는 PUSCH 가 일회 전송되는 보통 HARQ 동 작을 가정한다. 이 경우, PUSCH 전송에 대웅되는 UL 그랜트 /PHICH 는 동일 서브프레 임에서 전송될 수 있다. 다만, 서브프레임 번들링의 경우, PUSCH 전송에 대웅되는 UL 그랜트 /PHICH는 서로 다른 서브프레임에서 전송될 수 있다.
[129] 표 5는 TDD에 정의된 PHICH 타이밍을 나타낸다. 서브프레임 #n의 PUSCH 전송 에 대해, 단말은 서브프레임 #(n+kPHICH)에서 대웅되는 PCHIH 자원을 결정한다. FDD 에서 kPHICH=4이다.
【표 5】
Figure imgf000024_0001
[130] 도 17 은 UL-DL 구성 #1 이 설정된 경우의 UL 그랜트 /PHICH 전송 타이밍을 예 시한다. SF#0~#9 및 SF#10~#19 는 각각 무선 프레임에 대웅한다. 박스 내 슷자는 UL 서브프레임 관점에서 자신과 연관된 DL 서브프레임을 나타낸다. 예를 들어, SF#2 의 PUSCH에 대한 PHICH/UL 그랜트는 SF#2+4(=SF#6)에서 전송되고, SF#8의 PUSCH에 대 한 UL 그랜트 /PHICH는 SF#8+6(=SF#14)에서 전송된다.
[131] TDD로 설정된 CC (혹은 셀)에 대해 , 단말이 기지국으로 ACK/NACK신호를 전송 할 때에 다음 문제가 발생할 수 있다: 복수의 서브프레임 구간 동안 기지국이 보낸
PDCCH (들) 중 일부를 단말이 놓친 경우, 단말은 놓친 PDCCH에 해당되는 PDSCH가 자 신에게 전송된 사실도 알 수 없으므로 ACK/NACK 생성 시에 오류가 발생할 수 있다.
[132] 이러한 문제를 해결하기 위해, TDD CC 를 위한 DL 그랜트 PDCCH/SPS 해제 PDCCH는 DAI 필드 (즉, DL DAI 필드)를 포함한다. DL DAI 필드의 값은 DL 서브프레임 (들) n-k (keK) 내에서 현재 서브프레임까지 PDSCH (들)에 대응하는 PDCCH (들) 및 하향링크 SPS 해제를 지시하는 PDCCH (들)의 누적 값 (즉, 카운팅 값)을 나타낸다. 예를 들어, 3개의 DL 서브프레임이 하나의 UL서브프레임이 대응되는 경우, 3개의 DL 서브프레임 구간에 전송되는 PDSCH 에 순차적으로 인덱스를 부여 (즉 순차적으로 카 운트)하여 PDSCH를 스케줄링 하는 PDCCH에 실어 보낸다. 단말은 PDCCH에 있는 DAI 정보를 보고 이전의 PDCCH를 제대로 수신했는지 알 수 있다.
[133] 도 18은 DL DAI를 이용한 ACK/NACK 전송을 예시한다. 본 예는 3 DL 서브프레 임 : 1 UL 서브프레임으로 구성된 TDD 시스템을 가정한다. 편의상, 단말은 PUSCH 자원 을 이용하여 ACK/NACK을 전송한다고 가정한다. LTE 에서는 PUSCH 를 통해 ACK/NACK 을 전송하는 경우 1비트 또는 2비트 번들링된 ACK/NACK을 전송한다.
[134] 도 18을 참조하면, 첫 번째 예시 (예 1)와 같이 2번째 PDCCH를 놓친 경우, 단 말은 세 번째 PDCCH의 DL DAI 값과 그때까지 검출된 PDCCH의 수가 다르므로 2번째 PDCCH를 놓친 것을 알 수 있다. 이 경우, 단말은 2번째 PDCCH에 대한 ACK/NACK 웅 답을 NACK (혹은 NACK/DTX)으로 처리할 수 있다. 반면, 두 번째 예시 (예 2)와 같이 마지막 PDCCH를 놓친 경우, 단말은 마지막으로 검출한 PDCCH 의 DAI 값과 그때까지 검출된 PDCCH 수가 일치하므로 마지막 PDCCH를 놓친 것을 인식할 수 없다 (즉, DTX) · 따라서, 단말은 DL 서브프레임 구간 동안 2 개의 PDCCH 만을 스케즐링 받은 것으로 인식한다. 이 경우, 단말은 처음 2개의 PDCCH에 대응하는 ACK/NACK만을 번들링하므 로 ACK/NACK 피드백 과정에서 오류가 발생한다. 이러한 문제를 해결하기 위해, UL 그랜트 PDCCH도 DAI 필드 (즉, UL DAI 필드)를 포함한다. UL DAI 필드는 2비트 필드 이며, UL DAI 필드는 스케줄링 된 PDCCH의 개수에 관한 정보를 알려준다.
[135] 표 6 은 DCI 포맷 내의 DAI 필드가 지시하는 값 (VDL DAI, V AI)을 나타낸다. VDLDAI는 DL DAI 값을 나타내고, VUL DAI는 UL DAI 값을 나타낸다. VDL DAi는 UL-DL 구성 #1-6 인 경우에 DCI 포맷 1/1A/1B/1D/2/2A/2B/2C/2D 내의 DAI 필드의 값을 나타낸다. VULDAI는 (i) UL-DL 구성 #1-6 인 하나의 CC (흑은 셀)가 구성되거나, (ii) 단말이 PUCCH 포맷 3 를 사용하지 않도록 설정된 경우에 DCI 포맷 0/4 내의 DAI 필드의 값 을 나타낸다.
【표 6】
Figure imgf000025_0001
MSB: Most significant bit . LSB: Least significant bit .
[136] 표 7 은 DCI 포맷 0/4 내의 DAI 필드가 지시하는 값 ( ^^^을 나타낸다. WUL DAI 는 (i) UL-DL 구성 #1ᅳ 6인 복수의 CC (흑은 셀)가 구성되거나, (ii) UL-DL 구성 #1-6 인 하나의 CC (혹은 샐)가 구성되고 PUCCH 포맷 3 을 사용하도록 설정된 경우에 DCI 포맷 0/4 내의 DAI 필드의 값을 나타낸다.
【표 7】
Figure imgf000026_0002
MSB: Most significant bit . LSB: Least significant bit .
[137] 편의상, 다르게 언급하지 않는 한, DL DAI는 V, UL DAI는 W라고 지칭한다.
[138] DAI는 ACK/NACK 전송을 위한 과정에서 다양하게 사용된다. 예를 들어 , DAI는 도 18 을 참조하여 예시한 바와 같이 DTX 검출에 사용되거나, ACK/NACK 페이로드 생 성 과정 (예, ACK/NACK 페이로드 사이즈 결정, ACK/NACK 페이로드 내에서 ACK/NACK 정보의 위치 등)에 사용되거나, ACK/NACK자원 할당 과정에 사용될 수 있다.
[139] 먼저 , DAI를 이용한 DTX 검출 예를 설명한다. 도 1을 다시 참조하면, 단말은
Figure imgf000026_0001
경우, 적어도 하나의 DL 할당이 손실됐다고 가정하고 (즉, DTX 발생), 번들링 과정에 따라 모든 코드워드에 대해 NACK을 생성한 다. UDAI는 서브프레임 n-k (keK) (표 3 참조)에서 검출된 DL 그랜트 PDCCH 및 SPS 해제 PDCCH의 총 개수를 나타낸다. NSPS는 SPS PDSCH의 개수이다 (0 또는 1).
[140] 다음으로 , DAI 를 이용한 ACK/NACK 페이로드 생성 예를 설명한다ᅳ 편의상, PUCCH 포맷 3이 설정된 경우에 대해 설명한다. PUCCH 포맷 3을 위한 ACK/NACK 페이 로드는 셀 별로 구성된 뒤, 셀 인텍스 순서에 따라 연접된다. 구체적으로, c-번째
ACK ^ACK ^ CK
Oc Q Oc l ,...,0 CK
서빙 셀 (혹은 DL CC)을 위한 HARQ-ACK 피드백 비트는 ' ᅳ W — !로 주어 진다 (c≥0). O^c는 c-번째 서빙 셀을 위한 HARQ-ACK 페이로드의 비트 수 (즉, 사이 즈)를 나타낸다. c-번째 서빙 셀에 대해, 단일 전송블록 전송을 지원하는 전송모드 가 설정되거나 공간 번들링이 적용되는 경우, Ο^κ^Β1^으로 주어질 수 있다. [141] 반면, c-번째 서빙 셀에 대해, 복수 (예, 2)의 전송블록 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, O^Kc^B^c으로 주어질 수 있다. HARQ-ACK 피드백 비트가 PUCCH 를 통해 전송되거나, HARQ-ACK 피드백 비트가 PUSCH 를 통해 전송되지만 상기 PUSCH 에 대웅되는 W 가 존재하지 않는 경우 (예, SPS 방식 기반의 PUSCH), BDL C=M으로 주어진다. M은 표 3에 정의된 K 세트 내의 원소 개수를 나타낸다. TDDUL-DL 구성이 #1, #2, #3, #4, # 6이고, HARQ-ACK 피드백 비트가 PUSCH 를 통해 전송되는 경우, BDL^W^DM로 주어진다. /^!는 UL 그랜트 PDCCH 내의 UL DAI 필드가 지시하는 값을 나타내며 (표 7), 간단히 W 로 표시한다. TDD UL-DL 구성이 #5 인 경우, DAi " ϋ 로 주어진다. 여기서, U는 Uc들 중 최대 값 을 나타내고 Uc 는 c-번째 서빙 셀에서 서브프레임 n-k 에서 수신된 PDSCH (들) 및 (하향링크) SPS 해제를 지시하는 PDCCH 의 총 수를 나타낸다. 서브프레임 n 은
HARQ-ACK 피드백 비트가 전송되는 서브프레임이다. I I 는 을림 함수 (ceiling function)를 나타낸다.
[142] c—번째 서빙 셀에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되 거나 공간 번들링이 적용되는 경우, 해당 서빙 셀의 HARQ-ACK 페이로드 내에서 각
QACK , ,
ACK/NACK의 위치는 ' ^ 소' 1로 주어진다. DAI(k)는 DL 서브프레임 n-k에서 검 출된 PDCCH의 DL DAI 값을 나타낸다. 반면, c_번째 서빙 셀에 대해 , 복수 (예, 2개) 의 전송블록 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, 해당 서빙 셀의 HARQ— ACK 페이로드 내에서 각 ACK/NACK 의 위치는
ACK "ACK ACK
°c,2DAI(k)-2 및 "c,2Di/( )-l로 주어진다 0c,2DAI l< — ^는 코드워드 0 을 nACK
위한 HARQ-ACK을 나타내고, "c,2D/i/( :)ᅳ 1는 코드워드 丄을 위한 HARQ-ACK을 나 타낸다. 코드워드 0과 코드워드 1은 스와핑에 따라 각각 전송블록 0과 1, 또는 전 송블록 1과 0에 대응된다. SR 전송을 위해 설정된 서브프레임에서 PUCCH 포맷 3가 전송되는 경우, PUCCH 포맷 3은 ACK/NACK 비트와 SR 1-비트를 함께 전송한다,
[143] 실시예: 인터-사이트 CA에서의 UCI 전송 [144] 기존의 LTE-A 에서는 한 단말에게 병합되는 복수 셀들은 모두 하나의 기지국 에서 관리하는 것을 고려한다 (인트라-사이트 CA) (도 1 참조). 인트라-사이트 CA 에 서는 모든 셀을 하나의 기지국이 관리하므로 RRC 설정 /리포트 및 MACXMedium Access Control) 커맨드 / 메시지 등에 관련된 시그널링은 병합된 모든 샐 중 어떤 셀을 통 해서도 수행될 수 있다. 예를 들어, 특정 SCell 을 CA 셀 세트에 추가하거나 해제하 는 과정, 특정 셀의 전송 모드 (Transmission Mode, TM)를 변경하는 과정, 특정 셀에 연관된 RRM(Radio Resource Management) 측정 리포트를 수행하는 과정 등에 수반되 는 시그널링은 CA 셀 세트 내 어떤 셀을 통해서도 수행 가능하다. 다른 예로, 특정 SCell 을 활성화 /비활성화시키는 과정, UL 버퍼 관리를 위한 BSR(Buffer Status Report) 등에 수반되는 시그널링도 CA 셀 세트 내 어떤 셀을 통해서도 수행 가능하 다. 또 다른 예로, UL 전력 제어를 위한 셀-별 PHR(Power Headroom Report), UL 동 기 제어를 위한 TAGCTiming Advance Group)-별 TACCTiming Advance Co誦 and) 등도 CA 셀 세트 내 어떤 셀을 통해서도 시그널링 될 수 있다.
[145] 한편, LTE-A 이후 차기 시스템에서는 트래픽 최적화 등을 위해 커버리지가 큰 셀 (예, 매크로 셀) 내에 커버리지가 작은 다수 셀 (예, 마이크로 셀)들이 배치될 수 있다. 예를 들어, 한 단말에 대해 매크로 셀과 마이크로 셀이 병합될 수 있고, 매 크로 셀은 주로 이동성 관리 용도 (예, PCell)로 사용되고, 마이크로 셀은 주로 쓰루 풋 부스팅 용도 (예, SCell)로 사용되는 상황을 고려할 수 있다. 이 경우, 하나의 단 말에게 병합되는 셀들은 서로 다른 커버리지를 가질 수 있고, 각각의 셀은 지리적 으로 떨어진 서로 다른 기지국 (혹은, 이에 상응하는 노드 (예, 릴레이))에 의해 각 각 관리될 수 있다 (인터-사이트 CA).
[146] 도 19 는 인터-사이트 CA를 예시한다. 도 19 를 참조하면 , 단말에 대한 무선 자원 제어 및 관리 (예, RRC 전체 및 MAC 의 일부 기능) 등은 PCell (예, CC1)을 관리 하는 기지국에서 담당하고, 각 셀 (즉, CCl, CC2)에 대한 데이터 스케줄링 및 피드백 과정 (예, PHY 전체 및 MAC의 주요 기능) 등은 해당 샐을 관리하는 각 기지국에서 담 당하는 방식을 고려할 수 있다. 따라서, 인터-사이트 CA 에서는 셀간 (즉, 기지국간) 정보 /데이터 교환 /전달이 요구된다. 기존 시그널링 방식을 고려 시, 인터-사이트 CA에서 샐간 (즉, 기지국간) 정보 /데이터 교환 /전달은 백홀 (Backhaul, BH) (예, 유선 X2 인터페이스 흑은 무선 백홀 링크)를 통해 수행될 수 있다. 그러나, 기존 방식을 그대로 적용 시, 기지국간 시그널링 과정에서 유발되는 레이턴시 등으로 인해 셀 관리 안정성, 자원 제어 효율성, 데이터 전송 적웅성 등이 크게 감소될 수 있다.
[147] 일 예로, 도 19 와 같이, 한 단말에게 병합된 PCelK예, CC1) (그룹)과 SCell (예, CC2) (그룹)이 각각 기지국 -1과 기지국 -2에 의해 관리되고 있는 인터ᅳ사 이트 CA상황을 가정할 수 있다. 또한, PCell을 관리하는 기지국 (즉, 기지국 -1)에서 해당 단말에 연관된 RRC 기능을 관리 /담당한다고 가정한다. 이 때, SCell 과 연관된 R M(Radio Resource Management ) 즉정 (예, RSRP(Reference Signal Received Power), RSRQCReference Signal Received Quality)) 리포트가 PCell 이 아닌 SCelK예, via PUSCH)을 통해 전송된다면, 기지국 -2는 RRM측정 리포트를 BH을 통해 기지국 -1에게 전달해야 할 수 있다. 또한, RRM 리포트에 기초하여, 예를 들어 기지국 -1 이 SCell 을 CA 셀 세트에서 해제시키는 RRC 재설정 명령을 PCell (예, via PDSCH)을 통해 단 말에게 지시한 경우, 단말은 RRC 재설정 명령에 대한 컨펌 웅답 (confirmation response)을 PCell이 아닌 SCell (예, via PUSCH)을 통해 전송할 수 있다. 이 경우, 기지국—2는 컨펌 응답을 다시 BH등을 통해 기지국ᅳ1에게 전달해야 할 수 있다. 따 라서, 인터-사이트 CA에서는 셀간 (즉, 기지국간) 시그널링 과정에서 상당한 레이턴 시가 수반될 수 있다. 이로 인해 CA 셀 세트 해석에 대한 기지국과 단말간 불일치 (misalignment)가 발생할 수 있고, 안정 /효율적인 셀 자원 관리 및 제어가 용이하 지 않을 수 있다.
[148] 다른 예로, 위와 동일한 인터-사이트 CA 상황에서 모든 셀의 셀-별 PHR( Power Headroom)이 PCelK예, via PUSCH)을 통해 전송될 수 있다. 이 경우, (PCell 을 관리하는) 기지국 -1은 전체 PHR혹은 SCell 에 해당되는 PHR을 BH등을 통해 (SCell을 관리하는) 기지국 -2로 전달해야 할 수 있다. 반대로, 모든 셀의 셀- 별 PHR이 SCell을 통해 전송되는 경우, 기지국 -2는 전체 PHR혹은 PCell에 해당되 는 PHR을 BH등을 통해 기지국 -1에게 전달해야 할 수 있다. 이 때도 기지국간 시그 널링에 수반되는 레이턴시로 인해 안정 /효율적인 UL 전력 제어 및 이를 기반으로 한 적웅적인 UL 데이터 스케줄링 /전송이 용이하지 않을 수 있다.
[149] 이로 인해, 인터-사이트 CA 상황에서는 DL/UL 데이터 스케줄링 및 UCI (예, AC /NACK, CSI, SR) 전송이 동일 기지국에 속한 셀 (그룹) 별로 수행될 수 있다. 예 를 들어, 한 단말에게 병합된 PCell과 SCell 이 각각 기지국 -1과 기지국 -2에 속한 상황을 가정하면, PCell을 통해 전송되는 DL/UL 데이터를 스케줄링 하는 DL/UL그랜 트 및 해당 DL/UL 데이터에 대한 ACK/NACK피드백은 PCell 을 통해 전송되고, SCell 을 통해 전송되는 DL/UL 데이터를 스케줄링 하는 DL/UL 그랜트 및 해당 DL/UL 데이 터에 대한 ACK/NACK 피드백은 SCell 을 통해 전송될 수 있다. 또한, PCell 에 대한 비주기적 CSKaperiodic CSI, a-CSI)/주기적 CSKperiodic CSI, p-CSI) 보고 및 SR 시그널링은 PCell 을 통해 전송되고, SCell 에 대한 CSI 보고 및 SR 시그널링은 SCell을 통해 전송될 수 있다. 따라서, 인터-사이트 CA (혹은 이와 유사한 CA구조) 에서는 기존과 달리 복수 셀에서 PUCCH 동시 전송 동작이 수반 /허용돼야 할 수 있 다. 그러나, 복수 셀에서 PUCCH 동시 전송을 허용하는 것은 단말의 상황 /조건 (예, 하드웨어, 위치) 등에 따라 UL 신호의 단일 반송파 특성올 열화시켜 UL 성능 손실 을 야기할 수 있다.
[150] 따라서, 본 발명에서는 먼저 복수 PUCCH의 동시 전송 허용 여부를 상위 계층 시그널링 (예, RRC 시그널링)을 통해 설정할 것을 제안한다. 여기서, 복수 PUCCH 의 동시 전송은 복수 셀에서 복수 PUCCH 의 동시 전송 (즉, 복수의 셀-별 (Per-cell) PUCCH 동시 전송)을 포함한다. 편의상, PUCCH 동시 ,전송 여부를 지시하는 파라미터 를 "multi-PUCCH' '라고 정의한다. multi-PUCCH가 ON으로 설정된 경우, 단말은 하나 의 UL 서브프레임 내에서 복수 PUCCH 의 동시 전송을 수행할 수 있다. 반면, multi-PUCCH 가 OFF 로 설정된 경우, 단말은 하나의 UL 서브프레임에서 복수 PUCCH 전송 동작을 수행할 수 없다. 즉, multi-PUCCH가 OFF 인 경우, 하나의 UL서브프레 임 내에서 복수 PUCCH 동시 전송이 허용되지 않고, 하나의 UL 서브프레임 내에서는 (단일 셀 상에서) 단일 PUCCH 전송만이 허용될 수 있다. [151] 한편, (i) 서로 다른 셀 상에서 주기적 CSI 와 주기적 /비주기적 SRS 의 동시 전송, (ii) 서로 다른 셀 상에서 주기적 CSI와 비주기적 CSI의 동시 전송, (iii) 서 로 다른 셀 상에서 복수의 비주기적 CSI 들의 동시 전송, 및 /또는 (iv) 서로 다른 셀 상에서 SR와 주기적 /비주기적 SRS의 동시 전송에 대해서도 허용 여부를 상위 계 층 시그널링 (예 , RRC 시그널링 )을 통해 설정할 수 있다. 또한, 서로 다른 셀 상에서 HARQ-ACK 과 주기적 /비주기적 SRS 의 동시 전송에 대해서도 허용 여부를 상위 계층 시그널링 (예, RRC 시그널링)을 통해 설정할 수 있다.
[152] 또한 셀 혹은 샐 그룹 별로 SRS와 UCI (예 , A/N, SR)의 동시 전송 허용 여부 를 상위 계층 시그널링 (예, RRC 시그널링)을 통해 독립적으로 설정할 수 있다. SRS 와 UCI 의 동시 전송이 허용되는 경우 쇼튼드 (shortened) PUCCH 포맷이 사용되고, SRS 와 UCI 의 동시 전송이 허용되지 않는 경우 보통 (normal) PUCCH 포맷이 사용될 수 있다.
[153] 한편, 인터-사이트 CA 상황 (흑은 유사한 CA 구조)에서 mult i -PUCCH ON/OFF 설정을 지원하기 위해 추가적인 단말 동작 /과정이 요구될 수 있다. 예를 들어, multi -PUCCH OFF에서는 셀-별 (Per-Cel 1 ) PUCCH 전송이 서로 다른 시점에 수행되도록, 즉 TDM 방식으로 샐-별 PUCCH 가 전송되도록 설정될 수 있다. 이 경우, 셀-별 PUCCH 전송 시점의 설정에 따라, 셀-별 UCI 전송 타이밍 (예 , ACK/NACK 전송 타이밍)도 변 형되어야 할 수 있다. 이 경우, 셀-별 UCI 전송 타이밍은 CA 를 구성하는 샐의 프레 임 구조 타입 (즉, FDD 또는 TDD), 서브프레임 구성 형태 (예, UD-cfg) 등에 따라 달 라질 수 있다. 이하에서는 ACK/NACK 에 초점을 맞추어 CA 구성에 따른 ACK/NACK 전 송 타이밍 설정 방법 및 ACK/NACK 피드백 구성 /전송 방법에 대해 제안한다.
[154] 발명의 이해를 돕기 위해, 이하에서는 하나의 단말에게 2 개 셀 그룹이 병합 된 상황을 가정한다. 예를 들어 , 하나의 단말에게 셀 그룹 1과 셀 그룹 2가 병합된 상황을 가정한다. 여기서, 셀 그룹은 하나 이상의 셀을 포함한다. 따라서, 셀 그룹 은 하나의 셀만으로 구성되거나, 복수의 셀로 구성될 수 있다. 여기서, 각각의 샐 그룹은 서로 다른 기지국에 속할 수 있다. 구체적으로, 하나의 단말에게 PCell 그 룹과 SCell 그룹이 병합되고, PCell 그룹은 기지국 -1(예, 매크로 기지국)에 속하고, SCell 그룹은 기지국 -2(예, 마이크로 기지국)에 속할 수 있다. 여기서, PCell 그룹 은 PCell을 포함하는 샐 그룹을 나타낸다. PCell 그룹은 PCell 단독으로 구성되거나, PCell과 하나 이상의 SCell을 포함한다. SCell 그룹은 SCell만으로 구성된 셀 그룹 을 나타내며 하나 이상의 SCell 을 포함한다. 그러나, 이는 예시로서, 본 발명은 하 나의 단말에게 3개 이상의 셀 그룹 (예, 하나의 PCell 그룹과 둘 이상의 SCell 그룹) 이 병합된 상황에도 동일 /유사하게 적용될 수 있다.
[155] 또한, 본 발명은 하나의 단말에게 복수의 샐 그룹이 병합되고, 셀 그룹별로 UCI 전송이 수행되는 상황 (즉, 각 셀 그룹에 대한 /대웅되는 UCI 가 해당 셀 그룹 내 특정 셀을 통하여 전송되는 구조) (흑은 셀-별 PUCCH 전송)에서의 ACK/NACK 전송 타 이밍 설정 및 ACK/NACK 피드백 구성 /전송 방법에 대해 제안한다. 따라서, 이하에서, 서로 다른 기지국에 속하는 복수의 셀 그룹이 하나의 단말에게 병합된 경우를 위주 로 설명하지만, 이는 예시로서 본 발명은 하나의 기지국에 속하는 복수의 셀 그룹 이 하나의 단말에게 병합된 경우에도 동일 /유사하게 적용될 수 있다. 예를 들어, 하나의 단말에게 PCell 그룹과 SCell 그룹이 병합된 경우, 본 발명에 따르면, PCell 그룹에서 PUCCH 는 PCell 을 통해 전송되고, SCell 그룹에서 PUCCH 는 하나의 특정 SCell을 통해 전송되도록 설정될 수 있다. 편의상, SCell 그룹에서 PUCCH를 전송하 도록 설정된 SCell을 ACell이라고 지칭한다. 여기서, (i) PCell 그룹과 SCell 그룹 은 서로 다른 기지국에 속하거나 (예, PCell - 매크로 기지국, SCell - 마이크로 기 지국), (ii) PCell 그룹과 SCell 그룹은 동일한 기지국에 속할 수 있다. ACell은 하 나의 샐 그룹 내에서 (크로스 -CC스케줄링 설정을 통해) PDCCH/EPDCCH를 전송하도록 (즉, 스케줄링 샐로) 설정된 셀 중 가장 낮은 셀 인덱스 (예, ServCell 인덱스 또는 SCell인덱스)를 갖는 셀로 결정될 수 있다.
[156] 한편, ACell 을 통해 PUCCH를 사용한 A/N 전송이 수행되도록 설정되는 경우, EPDCCH 기반의 스케줄링과 연동되는 특정 PUCCH 파라미터 및 DCI 시그널링 등이 ACell에도 제공되어야 할 수 있다. 따라서, EPDCCH세트 (이를 구성하는 ECCE자원) 에 링크되는 묵시적 PUCCH 자원의 시작 인덱스 혹은 이를 유추할 수 있는 PUCCH 인 덱스 오프셋올, (PCell에 구성되는 EPDCCH세트에 대해서만 설정하는 기존과는 달리) ACell에 구성되는 EPDCCH세트에 대해서도 설정하는 것을 제안한다.
[157] 또한, DL 그랜트 EPDCCH내의 특정 필드 (예, TPC/AR0)를 통해 A/N전송 PUCCH 자원의 제어 /결정에 필요한 정보 (예, TPC/ARO/ARI 값)를 시그널링 하는 것을, ACell 에 대웅 /전송되는 DL 그랜트 EPDCCH 에 대해서도 제공 /활성화하는 것을 제안한다. 세부적으로, 프레임 구조 타입 (FDD또는 TDD) 및 A/N 피드백 전송 방식 (PF3 또는 CHsel)에 따라 DL 그랜트 EPDCCH 내의 TPC/AR0 필드를 통해 시그널링 되는 정보는 셀 별로 다음과 같이 구성될 수 있다. 여기서, SCell 은, PCell 및 ACell 을 제외한 나머지 보통 SCell올 의미할 수 있다.
[158] 1) FDD with PF3
[159] A. TPC 필드
[160] i. PCell 혹은 ACell을 스케줄링 하는 DL 그랜트: TPC 값
[161] ii. SCell을 스케줄링 하는 DL그랜트: ARI 값
[162] B. AR0필드
[163] i. PCell 혹은 ACell을 스케줄링 하는 DL 그랜트: AR0 값
[164] ii. SCell을 스케줄링 하는 DL 그랜트: 고정 값 (fixed value)
[165] 2) FDD with CHsel
[166] A. TPC필드
[167] i. PCell 혹은 ACell을 스케줄링 하는 DL 그랜트: TPC 값
[168] ii. SCell을 스케줄링 하는 DL그랜트: ARI 값
[169] B. AR0 필드
[170] i. PCell 혹은 ACell을 통해 전송되는 DL 그랜트: AR0 값
[171] ii. SCell을 통해 전송되는 DL 그랜트: 고정 값
[172] 3) TDD with PF3
[173] A. TPC 필드
[174] i. PCell 혹은 ACell을 스케줄링 하는 DL 그랜트: TPC 값
[175] ii. SCell을 스케줄링 하는 DL 그랜트: ARI 값 [176] B. A O필드
[177] i. PCell 혹은 ACell을 스케줄링 하면서 DAI = 1에 대응되는 DL 그랜트: AR0값
[178] ii. PCell 혹은 ACell을 스케줄링 하면서 DAI = 1에 대웅되지 않는 DL 그 랜트: ARI 값
[179] iii. SCell을 스케줄링 하는 DL그랜트: 고정 값
[180] 4) TDD with CHsel
[181] A. TPC 필드
[182] i. PCell 혹은 ACell을 스케줄링 하는 DL 그랜트: TPC 값
[183] ii. SCell을 스케즐링 하는 DL 그랜트: ARI 값
[184] B. AR0 필드
[185] i. PCell 혹은 ACell을 통해 전송되는 DL 그랜트: AR0값
[186] ii. SCell을 통해 전송되는 DL 그랜트: 고정 값
[187] 또한, 임의의 셀 그룹에 대한 A/N 피드백이 특정 ACell 을 통해 전송되도록 설정된 경우 (이때, 해당 셀 그룹은 ACell 을 포함할 수 있음), 해당 셀 그룹에 대한 (즉, 해당 샐 그룹을 스케줄링 하는 및 /또는 해당 셀 그룹을 통해 전송되는) 모든 DL 그랜트 EPDCCH 및 /또는 모든 DL 그랜트 PDCCH 를 통해 시그널링 되는 (동일한 A/N 전송 시점에 적용될) ARI는 모두 동일한 값을 가지도록 할 수 있다. 즉, 단말은 모든 DL 그랜트 PDCCH 내의 ARI 가 모두 동일한 값을 갖는다고 가정 /간주한 상태에 서 동작할 수 있다. 이때, ARI는 셀 그룹별로 독립적인 값을 가질 수 있다. 일 예로, (동일한 A/N 전송 시점에 대하여) PCell 이 속한 셀 그룹에 대한 ARI와 ACell이 속 한 셀 그룹에 대한 ARI는 동일하거나 서로 다른 값을 가질 수 있다. 또한, ACell이 속한 셀 그룹에 대해 PUCCH 포떳 3 을 사용한 ACK/NACK 피드백 전송이 설정되는 경 우, PUCCH포맷 3 내 A/N페이로드는 ACell에 대응되는 A/N비트를 MSB쪽에 배치하 는 방식으로 구성될 수 있다.
[188] 이하에서, "PUCCH 포맷 3"를 사용한 ACK/NACK 피드백 전송 방식을 TF3' '라고 지칭하고, "PUCCH 포맷 lb with 채널 선택' '에 따른 ACK/NACK 피드백 전송 방식을 "CHsel"라고 지칭한다. 또한, "PUCCH 포맷 la/lb"를 사용한 ACK/NACK 피드백 전송 방식을 TF1"이라고 지칭한다. 또한, PDCCH는 L-PDCCH 및 EPDCCH를 모두 포함한다. 또한, A/N타이밍은 DL 데이터 (즉, PDSCH또는 SPS release PDCCH) 타이밍과 이에 대 응되는 HARH-ACK타이밍의 관계를 의미한다 (도 12~13 참조). 또한, A/N관점에서 스 페셜 SF도 DLSF와 동일하게 간주될 수 있으므로, A/N관점에서 DLSF는 DL SF 및 스 페셜 SF를 모두 포함한다 .
[189] 이하ᅳ 복수의 셀 그룹이 병합된 경우에 UCI 전송 셀들 (즉, PCell, ACell)의 조합 /설정을 위주로 ACK/NACK 전송 타이밍 설정 및 ACK/NACK 피드백 구성 /전송 방 법에 대해 설명한다. 이하의 설명에서 셀은 ¾ 그룹으로 확장될 수 있다.
[190] < FDD + FDD >
[191] FDD 셀들의 CA 상황에서 셀 간 TDM 기반 A/N 전송 방식을 고려하면 다음과 같다. 셀 1과 샐 2을 가정하면, N개의 UL SF [예, SF #k - SF #(k+N-l)] (이하, First part_ul)에서는 셀 1에 대응되는 A/N이 셀 1을 통해 전송되고, 다음 M개의 UL SF [예, SF #(k+N) ~ SF #(k+N+M-l)] (이하, Second part_ul)에서는 셀 2에 대웅되는 A/N 이 샐 2를 통해 전송되도록 설정될 수 있다 (N≥l, M>1). N과 M은, 최대 A/N페이 로드 사이즈를 적절히 제한하고 /하거나 A/N 피드백 전송에 사용되지 못하는 SF 를 최소화 하기 위해 dF (예, 4) 이하의 값으로 설정될 수 있으며, 바람직하게는 dF 이 하의 동일 값 (예, N = M < dF)으로 설정될 수 있다.
[192] 이때, SF #k - SF #(k+N-l) (즉, First part_ul)에서는 셀 1을 통해 셀 1에 대 웅되는 A/N 전송만 허용되므로, 셀 2에서 First part_ul에 대웅되는 DL SF [즉, SF #(k-dF) ~ SF #(k+N-l-dF)] (이하, First part_dl]에서의 DL 데이터 스케줄링 및 이에 대웅되는 A/N에 대한 처리 동작이 필요하다. 유사하게 , 샐 1에서는 Second part_ul 에 대응되는 DL SF [즉, SF #(k+N-dF) ~ SF #(k+N+M— l-dF)] (이하, Second part_dl)에 서의 DL 데이터 스케줄링 및 이에 대웅되는 A/N 에 대한 처리 동작이 필요하다. 여 기서, dF는 FDD A/N타이밍을 나타낸다 (예 dF=4).
[193] 다음의 3 가지 방법을 고려할 수 있다. 위와 같이, First part_ul 과 Second partᅳ ul이 구성됐다고 가정한다. 추가로, Second partᅳ dl의 첫 번째 DL SF [즉, SF #(k+N-dF)]를 "Last SF"라고 정의한다. 또한, First part_dl + Last SF [즉, SF #(k-dF) ~ SF #(k+N-dF)]를 "Entire duration"이라고 정의한다. 여기서, First part_ul 와 Second part_ul 는 각각 복수의 연속하는 SF로 구성된 경우를 예시하고 있으나, 이 들은 복수의 불연속하는 SF로 구성될 수도 있다
[194] A. Sol 1: no DL 데이터 스케줄링
[195] 단말은 First partᅳ dl [즉, DL SF #(k-dF) - DL SF #(k+N-l— dF)]에서는 셀 2 에 대한 DL 데이터 스케줄링 /전송이 허용되지 않거나 없다고 간주한 상태에서 동작 할 수 있다. 예를 들어, 단말은 DL SF #(k-dF) ~ DL SF #(k+N-l_dF)에서는 셀 2의 DL 데이터를 스케줄링 하는 DLDCI 포맷을 나르는 PDCCH에 대한 모니터링 (예 , 블라인드 디코딩)을 수행하지 않거나, DL DCI 포맷을 나르는 PDCCH가 검출된 경우 무시할 수 있다 (PDSCH 디코딩 과정을 수행하지 않음). 한편, 단말은 UL DCI 포맷에 대해서는 정상적으로 동작 (예, PDCCH모니터링 및 PUSCH 전송)을 수행할 수 있다. 이에 따라, 셀 2에서는 First part_dl에 대웅되는 A/N피드백 및 타이밍이 정의 /설정되지 않을 수 있다. 따라서 , Second part_ul [즉, UL SF #(k+N) ~ UL SF #(k+N+M-l)]에서는 Second part_dl [즉, DL SF #(k+N-dF) ~ DL SF #(k+N+M_l-dF)]에서 샐 2를 통해 수신된 DL 데 이터에 대웅되는 A/N만이 셀 2를 통해 FDD A/N타이밍 기반으로 각각 전송될 수 있 다.
[196] B. Sol 2: SF-기반 PF3/CHsej
[197] 단말은 First part.dl + Last SF [즉, SF #(k-dF)― SF #(k+N-l-dF) + SF #(k+N-dF)] 에서 셀 2를 통해 수신된 DL 데이터에 대웅되는 A/N에 대해 복수 SF 기반의 PF3 혹 은 CHsel 방식을 적용할 수 있다. 여기서, 복수 SF 기반의 PF3 혹은 CHsel 방식은 복수의 SF에서 수신된 DL 데이터에 대한 복수의 A/N정보를 PF3를 통해 전송하거나, CHsel 을 이용하여 전송하는 것을 의미한다. 최종적으로, First partᅳ dl + Last SF 에 대웅하는 복수의 A/N 정보가 PF3/CHsel 방식에 기반하여 Second par t_ul의 첫 번 째 UL SF [즉, UL SF #(k+N)]에서 샐 2를 통해 전송될 수 있다.
[198] 먼저, PF3 적용 시, LastSF를 통해서만 DL 데이터를 수신한 경우에는 해당 DL 데이터를 스케줄링 한 DL 그랜트 PDCCH에 링크된 묵시적 PF1 자원을 사용하여 해당 DL 데이터에 대웅되는 A/N 만을 전송할 수 있다 (즉, 싱글 A/N 폴백). 한편, First partᅳ dl 을 통해 DL 데이터를 수신한 경우에는 해당 DL 데이터를 스케줄링 한 DL 그 랜트 PDCCH로부터 지시되는 PF3자원을 사용하여 전체 Entire duration에 대웅되는 A/N피드백을 전송할 수 있다. 이 경우, Last SF를 스케줄링 하는 DL 그랜트 PDCCH 에서는 PUCCH 전력 제어를 위한 TPC 커맨드가 시그널링 되고, First part_dl을 스케 줄링 하는 DL 그랜트 PDCCH 에서는 PF3 자원을 지시하는 ARI 값이 시그널링 될 수 있다. First partᅳ dl을 스케줄링 하는 DL 그랜트 PDCCH가 복수인 경우, ARI 값은 모 두 동일하게 설정될 수 있다. PF3 내 A/N 비트 배치는 SF 순서 (예, 빠른 혹은 느린 SF 에 대응되는 A/N 비트를 MSB쪽에 배치)를 따를 수 있다. 만약, 셀 2 가 복수의 셀로 구성된 셀 그룹 중 특정 셀 (예, PCell 또는 ACell)인 경우, First part— dl + Last SF구간 중에 셀 2의 Last SF에서만 하나의 DL 데이터가 검출되면, 해당 DL 데 이터를 스케줄링 한 DL 그랜트 PDCCH 에 링크된 묵시적 PF1 자원을 사용하여 해당 DL 데이터에 대응되는 A/N만을 전송할 수 있다. 그 외의 경우, 위와 같이 PF3을 이 용하여 A/N이 전송될 수 있다. 이에 따라, 셀 2 (예, PCell 또는 ACell)가 속한 셀 그룹 내 다른 샐의 경우에는 First partᅳ dl과 Last SF를 스케줄링 하는 모든 DL 그 랜트 PDCCH에 PF3자원을 지시하는 ARI 값이 시그널링 될 수 있다.
[199] 다음으로, CHsel 적용 시 Last SF 에 대웅되는 PUCCH자원은 해당 SF를 스케 줄링 하는 DL 그랜트 PDCCH 에 링크된 묵시적 PF1 자원이 할당될 수 있다. First partᅳ dl 에 대응되는 PUCCH 자원은 RRC 시그널링을 통해 예약된 명시적 PF1 자원이 할당될 수 있다. 이 경우, Last SF를 스케줄링 하는 DL 그랜트 PDCCH 에서는 PUCCH 전력 제어를 위한 TPC 커맨드가 시그널링 되고, First part_dl 올 스케줄링 하는 DL 그랜트 PDCCH 에서는 명시적 PF1 자원을 지시하는 ARI 값이 시그널링 될 수 있다. A/N 상태 (state) 내 A/N 웅답 배치는 SF 순서 (예, 빠른 혹은 느린 SF 에 대응되는 A/N웅답을 MSB쪽에 배치)를 따를 수 있다.
[200] C Sol 3: SF 및 /또는 CW 번들링
[201] Entire duration [즉, SF #(k-dF) ~ SF #(k+N-dF)]에서 셀 2를 통해 수신된 DL 데이터에 대웅되는 A/N 에 대하여 SF 번들링 및 /또는 CW 번들링을 적용할 수 있다. 여기서, SF 번들링은 각 DL CC 에서 모든 혹은 일부 DL 서브프레임에 대해 A/N 번들 링을 적용하는 것을 의미한다. CW 번들링은 각 DL SF 에서 DL CC 별로 A/N 번들링을 적용하는 것을 의미한다. A/N 번들링은 A/N 결과들의 논리ᅳ AND 연산을 의미한다. 최 종적으로, ULSF#(k+N)에서 번들링 기반 A/N 피드백이 샐 2를 통해 전송될 수 있다. 번들링된 A/N 피드백은 Entire duration 내 마지막으로 수신된 DL 데이터를 스케줄 링 하는 DL 그랜트 PDCCH에 링크된 묵시적 PF1 자원이나, RRC 시그널링을 통해 예약 된 명시적 PF1 자원을 이용해 전송될 수 있다. 이를 위해, Entire duration을 스케 줄링 하는 DL 그랜트 PDCCH 에는 스케줄링된 DL 데이터 (혹은 DL 그랜트)의 시간 순 서 (흑은 누적 값)를 알려주는 DAI 및 /또는 명시적 PF1 자원을 지시하는 ARI 값이 시그널링 될 수 있다.
[202] 도 20은 Sol 2~3에 따른 A/N 전송 방법을 예시한다. 이해를 돕기 위해, dF=0 으로 가정하였다. SF 인덱스가 SF #0 ~ SF #9로 주어진다고 가정하면, First partᅳ dl = [SF #0, SF #1, SF #3, SF #6, SF #7, SF #9]이고, Second part_dl = [SF #2, SF #4, SF #5, SF #8]이다. 셀 1의 경우 Last SF = [SF #3, SF #6, SF #9]이고, 셀 2의 경 우 Last SF = [SF #2, SF #4, SF #8]이다. 따라서, 셀 1의 경우, Entire duration = [{SF #2, SF #3}, {SF #4, SF #5, SF #6}, {SF #8, SF #9}]이고, 셀 2의 경우, Entire duration = [{SF #0, SF #1, SF #2}, {SF #3, SF #4}, {SF #6, SF #7, SF #8}]이다 (점 선 원). 이 경우, 각 셀에서 Entire duration에 대웅하는 A/N은 Last SF에 대응하 는 UL SF (즉, Last SF + dF)에서 PF3, CHsel , 번들링 등을 통해 전송될 수 있다.
[203] 한편, 한 단말에게 병합되는 복수의 셀에서 UL 전송에 적용되는 TACTiming Advance) 값 (즉, DL 무선 프레임 대비 UL 무선 프레임의 UL 전송 타이밍)가 셀 간에 상이하게 설정될 수 있다. 이 경우, 셀 간 TA 차이로 인해, 인접한 UL SF 에 설정된 서로 다른 셀의 A/N 전송 신호 (예, PUCCH)가 동일 시점에 층돌할 수 있다. 또한, UL 에 대한 CA 능력 /동작이 지원 /허용되지 않는 단말 (즉, UL 논 -CA 단말)올 고려 시, 셀 간 TDM 기반의 A/N (PUCCH) 전송 방법을 적용하기 위해 인접 UL SF 간에 UL 동작 주파수를 동적으로 스위칭 해야 할 수 있다. 이 경우 UL 스위칭 시간으로 인해 인 접 UL SF에 설정된 서로 다른 셀의 A/N 전송 신호 (예, PUCCH)가 동일 시점에 층돌할 수 있다. 따라서, UL신호의 단일 반송파 특성을 유지하기 위해, 인접하게 설정되는 서로 다른 셀의 A/N 전송 SF 타이밍 사이에 SF 갭을 둘 것을 제안한다. 여기서, SF 갭은 UL 전송이 제한되는 SF 를 의미한다. 예를 들어, SF 갭에서는 UCI (예, A/N), PUCCH, PUSCH, SRS 및 PRACH중 적어도 하나의 전송이 수행 /정의되지 않을 수 있다. 일 구현 예로, SF 갭은, UCI (예, A/N) 및 /또는 PUCCH 전송이 수행 /정의되지 않는 SF 로 지정 /설정되거나, (UL논 -CA단말의 경우) IL 데이터 및 /또는 PUSCH스케줄링 /전 송이 수행 /정의되지 않는 SF로 지정 /설정될 수 있다.
[204] 예를 들에 셀 1과 셀 2을 가정하면, N개의 UL SF [예 , SF #k ~ SF #(k+N— 1)] (First part_ul)에서는 셀 1 에 대응되는 A/N 피드백이 셀 1 을 통해 전송되고, 그 다음 1개의 ULSF [예, SF#(k+N)]은 SF 갭으로 설정되고, 그 다음 M개의 UL SF [예 , SF #(k+N+l) ~ SF #(k+N+M)] (Second part_ul)에서는 셀 2에 대응되는 A/N피드백이 셀 2를 통해 전송되고, 그 다음 1 개의 UL SF [예, SF #(k+N+M+l)]은 다시 SF 갭으 로 설정될 수 있다. 이에 따라, A/N 타이밍 관점에서, SF 갭에 대응되는 DL SF 를 First part_dl 또는 Second part_dl를 구성하는 마지막 SF로 추가한 상태에서 상기 제안 방법 (Sol 1~3)을 적용할 수 있다. 위 예의 경우, DL SF #(k+N-dF)는 First part-dl에 추가되고, DL SF #(k+N+M+l-dF))는 Second part-dl에 추가될 수 있다.
[205] 한편, 앞에서 설명한 SF 갭 기반 방식은 FDD 셀과 TDD 셀이 병합된 경우에 FDD 셀에 대해 동일 /유사하게 적용될 수 있다.
[206] < FDD + TDD >
[207] FDD 셀과 TDD 셀이 병합된 경우에 셀 간 TDM 기반 A/N 전송을 위하여 다음의 2가지 방식을 제안한다 .
[208] A. Alt 1-1: keeping original timing for TDD cell
[209] TDD 셀의 경우, 자신의 UD— cfg 에 정의된 A/N 타이밍을 그대로 적용하여 A/N 피드백 구성 /전송을 수행할 수 있다. 한편, FDD 셀의 경우, TDD 셀에서 A/N 전송 SF 로 설정된 SF 구간을 FDD 샐에서 A/N 전송 SF 로 설정되지 않은 SF 구간 즉 First part_ul 로 간주하여 Sol 1~3 방법을 적용할 수 있다. 본 예의 경우, TDD 셀의 원래 A/N 타이밍을 그대로 유지함으로써 TDD 셀에 대한 A/N 피드백 딜레이 /사이즈의 증 가를 피할 수 있다. 도 21에 본 방식에 따른 A/N 전송 방법을 예시하였다. 도 21을 참조하면 , TDD 셀에는 SIB-cfg에 따른 A/N 타이밍이 적용되고, FDD 샐에는 TDD 셀의 UL SF 구간을 First part_ul로 간주한 상태에서 Sol 2가 적용된다.
[210] 한편, 기존 CA 상황 (예 하나의 단말에 병합된 셀들이 동일한 기지국에 속하 는 경우)을 고려하면, TDD 샐은 자신의 UD-cfg 에 정의된 A/N 타이밍을 적용하고, FDD 셀도 FDDA/N 딜레이 dF를 기반으로 한 원래 A/N 타이밍을 그대로 적용할 수 있 다. 이 경우, 모든 (FDD 및 /또는 TDD) 샐에 대한 A/N을, TDD 셀의 A/N 전송 타이밍 으로 지정된 SF에서는 TDD 셀을 통해 전송하고 나머지 SF (즉, TDD 셀의 A/N 전송 타 이밍이 아닌 SF)에서는 FDD 셀을 통해 전송하는 방식을 고려할 수 있다. 일 예로, 하나의 TDD 셀과 하나의 FDD 셀 간 CA 를 가정하면, TDD 셀의 A/N 전송 타이밍으로 지정된 SF 에서는 FDD 셀과 TDD 셀 모두에 대한 A/N 이 TDD 셀을 통해 전송되고, 나 머지 SF (즉, TDD 셀의 A/N 전송 타이밍이 아닌 SF)에서는 FDD 셀에 대한 A/N 만이 FDD 샐을 통해 전송될 수 있다.
[211] B. Alt 1-2: applying DL super set -cfg for TDD cell
[212] 본 방식은, Alt 1-1 에서 FDD 셀에 발생되는 First part_ul 의 사이즈 /빈도수 를 줄임으로써 FDD 샐에 대한 A/N 피드백 딜레이 /사이즈를 완화하는 방식이다. 본 방식에 따르면, TDD 셀의 경우, DL superset-cfg 에 정의된 A/N 타이밍을 적용하여 A/N 피드백 구성 /전송을 수행할 수 있다. 여기서, DL superset-cfg는 SIB—cfg를 구 성하는 DL SF의 슈퍼세트 (superset)에 대하여 DL SF가 설정된 UD-cfg (즉, SIB-cfg 의 DLSF를 포함하면서 SIB-cfg보다 많은 수의 DL SF가 설정된 UD-cfg)를 의미한다 (표 1 참조). DL superset-cfg 는 UL subset-cfg 와 등가이다. UL subset-cfg 는 SIB-cfg를 구성하는 ULSF의 서브세트에 대하여 ULSF이 설정된 UD-cfg (즉, SIB-cfg 의 ULSF에 포함되면서 SIB-cfg보다 적은 수의 ULSF가 설정된 UD-cfg)를 의미한다. 한편, FDD 셀의 경우, DL superset-cfg에서 A/N 전송 SF로 설정된 SF 구간을 First part_ul로 간주하여 Sol 1-3 방법을 적용할 수 있다.
[213] 도 22 에 본 방식에 따른 A/N 전송 방법을 예시하였다. 도 22 를 참조하면, TDD 셀에는 DL superset-cfg 에 따른 A/N 타이밍이 적용되고, FDD 셀에는 DL superset-cfg에 따른 UL SF 구간을 First part_ul로 간주한 상태에서 Sol 2가 적용 된다. 구체적으로, TDD 셀의 SIB-cfg가. UD-cfg #1인 경우를 고려하면 , TDD 샐의 경 우 UD-cfg #1 의 DL superset-cfg 인 UD-cfg #2, #4, #5 중 하나에 정의된 A/N 타이 밍을 적용하여 A/N 피드백 구성 /전송을 수행할 수 있다. 만약 DL superset-cfg 이 UD-cfg #2로 설정되면, FDD 샐의 경우 UD-cfg #2에서 A/N 전송 SF로 설정된 SF #2 와 SF #7을 각각 First part.ul로 간주하여 Sol 1-3 방법을 적용할 수 있다. 한편 , Alt 1-2 를 기반으로 TDD 셀에 A/N 타이밍을 적용할 경우, TDD 셀의 DL SF (즉, SIB-cfg 내 DL SF (및 S SF))에 대해서만 DL superset-cfg의 A/N 타이밍을 적용 (및 DL 데이터 검출 /수신 동작을 수행) 및 대웅되는 A/N 신호 /비트를 구성하도록 정의 / 설정될 수 있다. 다시 말해, TDD 셀의 UL SF (즉, SIB-cfg 내 UL SF)에 대해서는 DL superset-cfg 의 A/N 타이밍 (및 DL 데이터 검출 /수신 동작) 및 대웅되는 A/N 신호 / 비트 구성이 설정 /적용되지 않을 수 있다. 예를 들어, TDD 셀의 경우, 서브프레임 #n-k에서 DL 데이터가 검출된 경우, 서브프레임 #n에서 A/N을 전송할 수 있다 (kc Kc). 여기서, Kc는 1 ^1^의 값을 포함하되 서브프레임 #n-ksp가 실제로 TDD 셀에 서 DL SF 또는 S SF에 대응되는 ksp 값만을 포함한다. Ksp는 DL supersetᅳ cfg의 DASI 값을 나타낸다 (표 3 참조).
[214] 한편, DL superset-cfg 에 정의된 A/N 타이밍과 TDD 셀의 SIB-cfg 에 정의된 A/N 타이밍이 다를 수 있다. 이로 인해, SIB-cfg의 A/N 타이밍에 기반한 묵시적 PF1 링키지 (즉, DL SF에 링크된 묵시적 PF1 자원 인텍스)를 그대로 적용하지 못할 수 있 다. 이러한 문제를 해결하기 위해, CHsel 에는 RRC 시그널링을 통해 예약된 명시적 PF1 자원들만이 사용될 수 있다. 또한, A/N 전송을 위해 PF3 이 설정된 경우, 싱글 A/N 폴백에 대웅하는 DL 데이터 (즉, DAI 초기값 (예, 1)을 갖는 PDCCH에 대웅되는 데 이터, 또는 DAI 초기값 (예, 1)을 갖는 SPS 해제 PDCCH)만을 수신한 경우, A/N 전송 을 위해 RRC 시그널링을 통해 예약된 명시적 PF1 자원이 사용될 수 있다. 또한, A/N 전송을 위해 CHsel 이 설정된 경우, 모든 DL 그랜트 PDCCH 에 명시적 PF1 자원을 지 시하는 ARI가 시그널링 될 수 있다. 또한, A/N 전송을 위해 PF3이 설정된 경우, DAI 초기값 (예, 1)을 갖는 DL 그랜트 PDCCH 에 명시적 PF1 자원올 지시하는 ARI 가 시그 널링 될 수 있다.
[215] < Same TDD UD-cfg >
[216] 동일한 UD-cfg를 갖는 TDD 샐들이 병합된 상황에서 셀 간 TDM 기반 A/N 전송 을 위해 다음 방식을 제안한다. 셀 1과 셀 2를 가정하면, 셀 1의 경우 Alt 1-2 방 식을 기반으로 샐 1의 SIB-cfg에 대한 DLsuperset-cfgl에 정의된 A/N 타이밍을 그 대로 적용하여 A/N 피드백 구성 /전송을 수행할 수 있다. 한편, 샐 2 의 경우, 샐 2 의 SIB-cfg에 대한 DL superset— cfg 2에 정의된 A/N 타이밍에 기반하여 A/N 피드백 구성 /전송을 수행할 수 있다 . DL superset-cfg 2의 UL SF 타이밍은 셀 1과 샐 2의 A/N 전송 시점이 서로 다르도록 (사이클릭) SF-shift 될 수 있다. 편의상, UL SF 타 이밍이 SFᅳ shift된 DL superset-cfg를 SF-shifted DL supersetᅳ cfg라고 지칭한다.
[217] 여기서 , DL superset-cfg 1과 DL superset-cfg 2는 서로 동일 흑은 상이하게 설정될 수 있다. 바람직하게는 DL superset-cfg 1 과 SF-shifted DL superset-cfg 2 를 기반으로 결정되는 UL SF 타이밍 (즉, A/N 전송 시점 )이 서로 다르도록 샐 별 DL superset-cfg 가 설정될 수 있다. 일 예로, SIB-cfg 가 UD-cfg #1 인 경우, DL superset-cfg은 UD-cfg #2, #4, #5이다. 이 경우, 다음 조합이 가능하다.
[218] - [DL superset-cfg 1 = UD-cfg #2, DL superset-cfg 2 = #2 또는 #5],
[219] - [DL superset-cfg 1 = UD-cfg #4, DL superset-cfg 2 = #4 또는 #5],
[220] - [DL superset-cfg 1 = UD-cfg #5, DL superset-cfg 2 = #2 또는 #4또는 #5].
[221] 다른 예로, SIB-cfg이 UD-cfg #3인 경우, DL superset-cfg은 UD-cfg #4, #5 이다. 이 경우, 다음 조합이 가능하다.
[222] - [DL superset-cfg 1 = UD-cfg #4, DL superset-cfg 2 = #5] ,
[223] - [DL superset-cfg 1 = UD-cfg #5, DL superset-cfg 2 = #4 또는 #5].
[224] SF-shifted DL superset-cfg 적용 방식에 대해 보다 구체적으로 설명하면 다 음과 같다. 2개 셀의 SIB-cfg가 모두 UD-cfg #1로 주어졌다고 가정한다. 이 때, 셀 1의 경우, UDᅳ cfg #1에 대한 DL superset-cfg 1인 UD-cfg #2에 정의된 A/N 타이밍 을 그대로 적용하여 A/N 피드백 구성 /전송을 수행할 수 있다 (즉, SF #2 와 SF #7 이 셀 1 에서의 A/N 전송 SF으로 설정됨). 한편, 셀 2 의 경우, DL superset-cfg 2 인 UD-cfg #2에서 UL SF타이밍이 우측으로 1 SF-shift된 형태를 기반으로 A/N타이밍 적용, A/N피드백 구성 /전송을 수행할 수 있다. 이 경우, 셀 2에서는 SF#2와 SF#7 이 아닌 다른 SF (즉, SF #3와 SF #8)가 A/N 전송 SF로 설정될 수 있다.
[225] 한편 , SF-shi f ted DL superset-cfg 적용 시ᅳ A/N 타이밍을 결정하는 DASI는 다 음의 2가지 방법으로 결정될 수 있다.
[226] A. Opt 1: keeping original DASI
[227] SF-shift 적용 전의 (표 3 기반) 원래 DASI를 SF-shift된 UL SF에 그대로 적 용하는 방법이다. 일 예로, (k개 SF 만큼) SF-shift 적용 전 UL SF #n에 대웅되는 DASI를 SF-shift된 ULSF#(n+k)에 그대로 적용할 수 있다. 상기 예에서 셀 1의 경 우, UD-cfg #2의 SF#2에 정의된 DASI 값을 SF #2에 적용하고, 셀 2의 경우 UD-cfg #2의 SF #2에 정의된 DASI 값을 SF #3에 적용할 수 있다. 도 23에 본 방식에 따른 A/N 전송 방법을 예시하였다.
[228] B. Opt 2: applying SF-shifted DASI
[229] (표 3 기반의) 원래 DASI 에 shift 되는 SF수 (k (SF))를 더한 값을 shift 된 UL SF에 적용하는 방법이다. 일 예로, SF-shift 적용 전 UL SF #n에 대웅되는 DASI 에 k를 더한 값을 SF-shift된 ULSF#(n+k)에 적용할 수 있다. 상기 예에서 셀 1의 경우, UD-cfg #2의 SF #2에 정의된 DASI 값을 SF #2에 적용할 수 있다. 한편, 샐 2 의 경우, UD-cfg #2의 SF#2에 정의된 DASI 값에 우측 1 SF-shift에 부합하는 SF오 프셋 (즉, +1)을 더한 값 (즉, DASI+1)올 SF #3에 적용할 수 있다. 만약, (DASI+SF오 프셋)이 (10+dp) 이상인 경우 (DASI+SF오프셋 -10)을 적용할 수 있다 (예, dF = 4) .
[230] 한편, SF-shifted DL superset-cfg를 기반으로 TDD 셀에 A/N타이밍을 적용하 는 경우 (예, Opt 1 또는 Opt 2), TDD 셀의 DL SF (즉, SIB-cfg 내 DL SF)에만 SF-shifted DL superset-cfg의 A/N타이밍을 적용 (및 DL 데이터 검출 /수신 동작을 수행) 및 대웅되는 A/N신호 /비트를 구성하도록 정의 /설정될 수 있다. 즉, TDD 셀의 UL SF (즉, SIB-cfg내 UL SF)에는 SF-shifted DL superset-cfg의 A/N타이밍 (및 DL 데이터 검출 /수신 동작) 및 대웅되는 A/N 신호 /비트 구성이 설정 /적용되지 않을 수 있다. 예를 들어 , 서브프레임 #n-k에서 DL 데이터가 검출된 경우, 서브프레임 #1에 서 A/N을 전송할 수 있다 (kcKc). 여기서 , Kc 는 1¾)〔{^의 값을 포함하되, 서브프 레임 #n-ksp가 실제로 TDD 셀에서 DL SF 또는 S SF에 대웅되는 ksp 값만이 포함한다. Ksp는 DL superset-cfg의 DASI 값을 나타낸다 (표 3 참조).
[231] 한편, SF-shiited DL superset-cfg 에 정의된 A/N 타이밍과 TDD 셀의 SIB-cfg 에 정의된 A/N 타이밍이 다를 수 있다. 이로 인해, SIB-cig 의 A/N 타이밍에 기반한 묵시적 PF1 링키지 (즉 DLSF에 링크된 묵시적 PF1 자원 인덱스)를 그대로 적용하지 못할 수 있다. 이러한 문제를 해결하기 위해, CHsel 에는 RRC 시그널링을 통해 예약 된 명시적 PF1 자원들만이 사용될 수 있다. 또한, A/N 전송을 위해 PF3이 설정된 경 우, 싱글 A/N 폴백에 대웅하는 DL 데이터 (즉, DAI 초기값 (예, 1)을 갖는 PDCCH에 대 응되는 데이터, 또는 DAI 초기값 (예, 1)을 갖는 SPS 해제 PDCCH)만을 수신한 경우, A/N 전송을 위해 RRC 시그널링을 통해 예약된 명시적 PF1 자원이 사용될 수 있다. 또한, A/N 전송을 위해 CHsel 이 설정된 경우, 모든 DL 그랜트 PDCCH 에 명시적 PF1 자원을 지시하는 ARI가 시그널링 될 수 있다. 또한, A/N 전송을 위해 PF3이 설정된 경우, DAI 초기값 (예, 1)을 갖는 DL 그랜트 PDCCH 에 명시적 PF1 자원을 지시하는 ARI가 시그널링 될 수 있다.
[232] 한편, 한 단말에게 병합되는 복수의 셀에서 UL 전송에 적용되는 TA 값이 셀 간에 상이하게 설정될 수 있다. 이 경우, 셀 간 TA 차이로 인해 , 인접한 I SF에 설 정된 서로 다른 셀의 A/N 전송 신호 (예, PUCCH)가 동일 시점에 층돌할 수 있다. 또 한, UL 논 -CA 단말을 고려 시, 셀 간 TDM 기반의 A/N (PUCCH) 전송 방법을 적용하기 위해 인접 ULSF간에 UL 동작 주파수를 동적으로 스위칭 해야 할 수 있다. 이 경우, UL 스위칭 시간으로 인해 인접 UL SF 에 설정된 서로 다른 셀의 A/N 전송 신호 (예, PUCCH)가 동일 시점에 층돌할 수 있다.
[233] 따라서, UL 신호의 단일 반송파 특성을 유지하기 위해, 서로 다른 셀의 A/N 전송 SF 타이밍이 무선 프레임 전반부 (예, SF #0 ~ SF #4)와 후반부 (예, SF #5 ~ SF #9)에 분리 설정되도록 DL superset-cfg 및 /또는 SF— shifted DL superset-cfg을 선 택 /적용할 것을 제안한다. 예를 들어, 셀 1 과 셀 2 의 SIB— cfg 가 동일하게 UD-cfg #1으로 주어진 경우를 가정한다. 이 경우, 셀 1의 경우 DL superset-cfg 1 = UD-cfg #4 에 정의된 A/N 타이밍을 그대로 적용하여 A/N 피드백 구성 /전송을 수행할 수 있 다. 한편, 셀 2 의 경우 DL superset-cfg 2 = UD-cfg #4 혹은 #5 에서 UL SF 타이밍 이 우측으로 5SF-shift된 형태를 기반으로 A/N 타이밍, A/N 피드백 구성 /전송을 수 행할 수 있다. 본 예에 따르면, 무선 프레임 전반부에 해당하는 SF#2와 SF#3은 셀 1의 A/N 전송 SF로 설정되고, 무선 프레임 후반부에 해당하는 SF #7 및 /또는 SF #8 은 셀 2의 A/N 전송 SF로 설정된다.
[234] 만약, 병합되는 셀이 모두 무선 프레임 전반부에만 ULSF로 구성되는 SIB-cfg 를 갖는 경우에는, 서로 다른 셀의 A/N 전송 SF 타이밍 사이에 UL SF 갭 (예: A/N 피 드백 (및 /또는 UCI/PUCCH 및 /또는 UL 데이터 /PUSCH) 전송이 수행 /정의되지 않는 SF) 를 둘 수 있도록 적합한 DL superset-cfg 및 /또는 SF-shifted DL superset-cfg을 선 택 /적용할 수 있다.
[235] 한편, 서로 다른 UD-cfg 를 갖는 TDD 셀들이 병합된 경우에도 앞에서 제안한 방법 (예, SF 갭 기반 방식, 무선 프레임 전 /후반부 분리 방식)과 동일 /유사한 원리 / 방법이 적용될 수 있다.
[236] < Different TDD UD-cfg >
[237] 서로 다른 UD-cfg 를 갖는 TDD 셀들이 병합된 상황에서 셀 간 TDM 기반 A/N 전송을 위해 다음의 2가지 방식을 제안한다.
[238] A. Alt 2-1: kee ing original timing for one eel 1
[239] 셀 1 의 경우, 자신의 SIB-cfg 에 정의된 A/N 타아밍을 그대로 적용하여 A/N 피드백 구성 /전송을 수행할 수 있다. 한편, 셀 2 의 경우에는 자신의 SIB-cfg 에 대 한 DL superset— cfg을 기반으로 A/N 타이밍 적용 및 A/N 피드백 구성 /전송을 수행할 수 있다. DL superset-cfg의 UL SF 타이밍은 셀 1과 셀 2의 A/N 전송 시점이 서로 다르도록 (사이클릭) SF-shift 될 수 있다. 본 방식의 경우, 특정 셀의 원래 A/N 타 이밍을 그대로 유지함으로써 특정 셀에 대한 A/N 피드백 딜레이 /사이즈의 증가를 피할 수 있다. 도 25에 본 방식에 따른 A/N 전송 방법을 예시하였다. 도 25를 참조 하면, TDD 셀 1 에는 SIB-cfg 에 따른 A/N 타이밍이 적용되고, TDD 셀 2 에는 SF-shifted DL supersetᅳ cfg에 따른 A/N 타이밍이 적용된다.
[240] 여기서, 셀 1의 SIB-cfg와 셀 2의 DL superset-cfg는 서로 동일 혹은 상이 하게 설정될 수 있다. 바람직하게는 셀 1 의 SIB-cfg 와 셀 2 의 SF-shifted DL superset-cfg를 기반으로 결정되는 UL SF 타이밍 (즉, A/N 전송 시점)이 서로 달라지 도록 셀 2의 DL superset— cfg가 제한될 수 있다. 일 예로, 셀 1과 셀 2의 SIB-cfg 가 각각 UD-cfg #4, #1인 경우, 셀 2의 DL superset-cfg은 UD-cfg #4 또는 #5로 제 한될 수 있다. 다른 예로, 셀 1과 셀 2의 SIB-cfg가 각각 UD-cfg #4, #3인 경우, 셀 2의 DL superset-cfg은 UD-cfg #5로 제한될 수 있다.
[241] 한편, 기존 CA 상황 (예, 한 단말에 병합된 셀들이 동일한 기지국에 속하는 경우)을 고려하면, 셀 1과 셀 2 모두 각각 해당 셀의 SIB-cfg에 정의된 A/N 타이밍 을 적용한 상태에서 , 모든 셀 (셀 1 및 /또는 셀 2)에 대한 A/N을 특정 셀 (예, 셀 1) 의 A/N 전송 타이밍으로 지정된 SF 에서는 특정 셀 (예, 셀 1)을 통해 전송하고, 나 머지 SF (즉, 특정 셀의 A/N 전송 타이밍이 아닌 SF)에서는 다른 셀 (예 셀 2)을 통 해 전송하는 방식을 고려할 수 있다. 특정 셀은 예를 들어 PCell, ACell 혹은 A/N 전송 타이밍으로 지정된 SF 가 더 적은 /많은 셀 등으로 설정될 수 있다. 예를 들어, 셀 1과 셀 2가 병합되고, 셀 1이 특정 셀로 설정된 경우, 셀 1의 A/N 전송 타이밍 으로 지정된 SF에서는 (SF에 따라) 셀 1에 대한 A/N만 혹은 셀 1과 셀 2 모두에 대한 A/N이 (셀 1을 통해) 전송될 수 있다. 한편, 나머지 SF (즉, 셀 1의 A/N 전송 타이밍이 아닌 SF)에서는 셀 2에 대한 A/N만이 (셀 2를 통해) 전송될 수 있다.
[242] B. Alt 2-2: applying DL superset-cfg for both cells
[243] 본 방식은, Alt 2-1 에서 셀 2 에만 발생되는 A/N 피드백 딜레이 /사이즈 증가 를 완화시키는 방식이다. 셀 1의 경우, 셀 1의 SIB-cfg에 대한 DL superset-cfg 1 에 정의된 A/N 타이밍을 적용하여 A/N 피드백 구성 /전송을 수행할 수 있다. 한편, 셀 2의 경우, 샐 2의 SIB-cfg에 대한 DL superset-cfg 2에 정의된 A/N 타이밍에 기 반하여 A/N 피드백 구성 /전송을 수행할 수 있다. DL superset-cfg 2의 UL SF 타이밍 은 셀 1과 셀 2의 A/N 전송 시점이 서로 다르도록 (사이클릭) SF-shift될 수 있다. 도 26에 본 방식에 따른 A/N 전송 방법을 예시하였다. 도 26을 참조하면 , TDD 셀 1 에는 DL superset-cfg에 따른 A/N 타이밍이 적용되고, TDD 샐 2에는 SF_shifted DL superset-cfg에 따른 A/N 타이밍이 적용된다.
[244] DL superset-cfg 1과 DL superset-cfg 2는 서로 동일 혹은 상이하게 설정될 수 있다. 바람직하게는 DL superset-cfg 1 과 SF-shifted DL superset-cfg 2 를 기반으 로 결정되는 UL SF 타이밍 (즉, A/N 전송 시점)이 서로 다르도록 셀 별 DL superset-cfg가 제한될 수 있다. 일 예로, 셀 1과 셀 2의 SIB-cfg가 각각 UD-cfg #3, #1으로 주어진 경우 )L superset-cfg 1은 UD-cfg #4, #5가 가능하다. 이 경우, 다음 조합이 가능하다.
[245] - [DL superset-cfg 1 = UD-cfg #4, DL superset-cfg 2 = #4 또는 #5],
[246] - [DL superset-cfg 1 = UD-cfg #5, DL superset-cfg 2 = #2, #4 또는 #5].
[247] 한편, 앞에서 설명한 DL superset-cfg 및 SF-shifted DL superset-cfg 적용을 위한 A/N 타이밍 설정 방법 및 PUCCH 자원 할당 방법 및 DASI 결정 방법 (Opt 1 또는 Opt 2) 등은 본 예에도 동일 /유사한 원리를 기반으로 적용될 수 있다.
[248] 앞에서는 SF (그룹) 단위의 셀 간 TDM 기반 A/N 전송 방식 (SF (그룹) 기반 방 법)에 대해 설명하였다. 한편, 다른 방안으로, 셀 별로 정의된 원래 A/N 타이밍을 최대한 그대로 적용시키기 위해 셀 별 A/N 전송 SF 구간을 무선 프레임 혹은 무선 프레임의 배수 단위로 설정할 수 있다. 여기서, 셀 별 A/N 전송 SF 구간 단위가 되 는 하나 혹은 하나 이상의 무선 프레임을 무선 프레임 그룹 (Radio Frame Group, RFG) 라고 정의한다. 또한, (UL 논 -CA 단말의 경우) PUSCH 전송을 위한 UL HARQ 프로세스 /타임라인 (예, UL grant-to-PUSCH, PUSCH-to-PHICH)을 고려하여 셀 별 A/N 전송 SF 구간 (흑은, UCI/PUCCH 및 /또는 UL 데이터 /PUSCH 전송 /스케줄링이 수행 /정의되는 SF 구간)을 FG 단위로 설정할 수 있다. 여기서, RFG를 구성하는 무선 프레임 수는 FDD 의 경우 4개, TDD의 경우 UD-cfg #1부터 #5까지는 5개, UD— cfg #6은 6개, UD—cfg #0 은 7 개로 각각 지정 /설정될 수 있다. 이 경우, 최소 4 번까지의 PUSCH 재전송을 지원 /허용하면서, 하나의 UL HARQ프로세스를 구성하는 첫 번째 UL SF 의 번호 /인덱 스와 마지막 UL SF의 번호 /인덱스를 일치시킬 수 있다. [249] 구체적으로, N개 RFG는 샐 1, 그 다음 M개 RFG는 셀 2, 그 다음 L개 RFG는 다시 셀 1 에 대응되는 A/N 전송 SF 구간이 되도록 RFG 기반의 A/N 전송 SF 구간을 셀들 간에 교대로 설정할 수 있다 (N≥l, M>1, L>1). 이 경우, 각 셀에 대웅되는 A/N 전송 SF (RFG) 구간에서는 각 셀에 정의된 원래 A/N 타이밍이 적용될 수 있다.
[250] 또는, N개 RFG는 셀 1에 대웅되는 A/N 전송 SF 구간으로 설정하고, 그 다음 M개 RFG는 앞에서 제안한 SF (그룹) 단위의 셀 별 A/N 전송 SF 구간으로 설정하며 , 그 다음 L개 RFG는 다시 셀 1 (혹은, 셀 2)에 대웅되는 A/N 전송 SF 구간으로 설정 하는 방식으로 RFG 기반 방법과 SF (그룹) 기반 방법을 교대로 적용할 수 있다. 이 경우, SF (그룹) 기반 방법이 적용되는 SF (RFG) 구간을 제외한 나머지 RFG 구간에 서는 해당 RFG에 A/N 전송이 설정된 셀의 원래 A/N 타이밍이 적용될 수 있다.
[251] 또는 , N개 RFG는 셀 1에 대웅되는 A/N 전송 SF 구간으로 설정하고, 그 다음 M개 RFG는 셀 1과 셀 2 모두에 대웅되는 A/N 전송 SF 구간으로 설정하고, 그 다음 L 개 RFG 는 다시 셀 1 (혹은, 셀 2)에 대웅되는 A/N 전송 SF 구간으로 설정하는 방 식으로 셀 -전용 A/N 전송 RFG 구간과 셀 -공통 A/N 전송 RFG 구간을 교대로 운영할 수 있다. 이 경우, 셀 모두에 공통적으로 대웅되는 A/N 전송 RFG 구간에서는 각 셀 에 정의된 원래 A/N 타이밍이 그대로 적용될 수 있고, 이로 인해 발생될 수 있는 셀 별 A/N PUCCH 간 층돌은 기지국에서의 적절한 스케줄링을 통해 방지 /완화되는 것 이 바람직할 수 있다. 또는 단말은 셀 -공통 A/N 전송 RFG 구간 내 하나의 SF 를 통 해서는 동시에 (복수 셀에 대웅되는 및 /또는 복수 셀 상에서) 복수 A/N PUCCH 전송 이 요구되지 않는다고 가정 /간주한 상태에서 동작할 수 있다. 예를 들어 샐 -공통 A/N 전송 RFG 구간에서 하나의 SF 를 통해 복수의 PUCCH 전송이 요구되는 경우, 단 말은 특정 규칙 (예, UCI 우선순위)에 따라 하나의 PUCCH 만 전송하고 나머지 PUCCH 의 전송을 드랍하거나, 복수의 PUCCH 전송을 모두 드랍할 수 있다.
[252] 한편, 상기 방식들 (흑은, 여타의 다른 방식 등)을 적용할 경우, 셀 별 A/N 타이밍이 원래 타이밍 (FDD의 경우 dF, TDD의 경우 SIB-cfg에 따른 DASI)과 다르게 설정될 수 있다. 이 경우, RRC 시그널링 등을 수반하는 각종 재설정 구간에서 A/N 타이밍에 대한 기지국과 단말간 불일치가 발생될 수 있다. 이를 위해, 임의의 셀에 서 특정 SF, 특정 서치 스페이스 (해당 영역이 점유하는 CCE 자원), 특정 PDCCH 후 보 및 /또는 특정 DCI 포맷을 통해 스케줄링 되는 DL 데이터에 대웅되는 A/N 피드백 의 경우에만 (예외적으로), 해당 셀의 원래 A/N 타이밍을 적용할 것을 제안한다. 특정 서치 스페이스는 공통 서치 스페이스일 수 있고, 특정 DCI 포맷은 DCI 포맷 1A일 수 있다.
[253] 또한, 복수 PUCCH 의 동시 전송 혹은 복수 셀에서의 PUCCH 동시 전송을 피하 기 위해, 샐-별 PUCCH 전송 타이밍은 상기 방식들을 토대로 결정되는 셀-별 A/N 전 송 시점들 내에서만 설정될 수 있다. 다시 말해, p-CSI, SR등의 셀 별 UCI 전송 타 이밍을 상기 방식들을 기반으로 결정되는 샐 별 A/N 전송 SF (혹은, 이의 서브세트) 과 동일하게 설정할 수 있다. 이 경우 주기적 UCI (예, p-CSI, SR)의 전송 시점이 셀-별 A/N 전송 시점에 해당하지 않는 경우, 주기적 UCI 의 전송은 드랍될 수 있다. 또한, 셀 (그룹)별, SF (그룹)별, 셀 (그룹) /SF (그룹)의 조합 별, 및 /또는 프레임 구조 타입 (예, FDD또는 TDD) 별로 A/N피드백 전송 방식 (예 , PF3또는 CHsel)을 독 립적으로 설정할 수 있다.
[254] 다른 방안으로, 본 발명에서의 제안 방법 (혹은, 여타의 다른 방법)을 적용 하여 각 셀에 대웅되는 (A/N등의 ) UCI를 포함하는 PUCCH를 TDM 방식으로 전송하는 경우, 특정 셀에 대응되는 UCI PUCCH 를 해당 셀의 UL 을 통해 각각 전송하는 상기 제안 방식과는 달리 각 셀에 대응되는 UCIPUCCH를 기존처럼 모두 PCell의 UL을 통 해서만 전송하는 방법 또한 고려할 수 있다. 예를 들어, SF #N이 PCell에 대웅되는 UCI PUCCH 전송 시점으로 설정되고, SF #(N+k)가 SCell 에 대웅되는 UCI PUCCH 전송 시점으로 각각 설정될 수 있다. 이 경우, SF #N에서는 PCell의 UL을 통해 PCell에 대웅되는 UCI PUCCH 를 전송하고 (해당 SF 를 "PCell UCI -PUCCH SF"이라 정의), SF #(N+k)에서는 PCell의 UL을 통해 SCell에 대웅되는 UCIPUCCH를 전송할 수 있다 (해 당 SF를 "SCell UCI -PUCCH SF"이라 정의). 이는, 단말 관점에서의 SCell을 관리 /제 어하는 기지국이 해당 단말의 PCell 에 대웅되는 캐리어, 즉 주파수 대역을 통해 자 신 즉 해당 SCell 에 대웅되는 UCI PUCCH 를 오버히어 (overhear) , 즉 검출 /수신할 능력올 갖추고 있을 가능성이 있기 때문이다. 한편, 이를 위해, (PCell 에 대웅되는 A/N 전송 PUCCH 자원은 해당 PCell 을 스케줄링 하는 DL 그랜트에 링크된 묵시적 PUCCH로 할당될 수 있는 반면) SCell 에 대웅되는 A/N 전송 PUCCH자원의 경우에는 (RRC시그널링 등을 통해) 미리 지정된 명시적 PUCCH가 사용될 수 있다.
[255] 이러한 동작을 감안하면, SCell UCI-PUCCH SF에서 PCell의 UL을 통해 SCell 에 대응되는 UCI PUCCH를 전송하는 경우에는 해당 SCell 에 설정된 TA 값을 적용하 거나 (단말 관점에서 해당 SCell에 대웅되는 UL이 존재하지 않을 경우) SCell에 대 웅되는 UCI PUCCH 전송에만 적용될 별도의 TA 값을 설정할 수 있다. 또한, PCell 올 스케줄링 하는 DL그랜트를 통해 시그널링 되는 TPC는 PCell UCI-PUCCH SF에만 적 용되고, SCell 을 스케즐링 하는 DL 그랜트를 통해 시그널링 되는 TPC 는 SCell UCI-PUCCH SF에만 적용될 수 있다.
[256] 한편, 인터-사이트 CA 상황에서 UCI 가 PUSCH 로 피기백 되는 경우, 특정 셀 (그룹)에 대웅되는 UCI 는 해당 셀 (그룹)을 통해 전송되는 PUSCH에만 피기백 되는 것이 바람직할 수 있다. 따라서 , SCell UCI-PUCCH SF (일반화하여, SCell에 대웅되는 UCI PUCCH 가 전송되는 시점으로 설정된 SF)에서 PCell 을 통해 전송되는 PUSCH 만 /PUSCH가 스케줄링 된 경우에는 다음의 방법을 고려할 수 있다.
[257] 방식 1) PUSCH로의 UCI 피기백 없이 SCell에 대웅되는 UCI PUCCH와 PCell에 스케줄링 된 해당 PUSCH의 동시 전송을 허용하거나,
[258] 방식 2) PCell에 스케줄링 된 PUSCH의 전송을 포기 /생략하고 SCell에 대응되 는 UCI PUCCH만을 전송하거나,
[259] 방식 3) SCell에 대응되는 UCI PUCCH의 전송을 포기 /생략하고, PCell에 스케 줄링 된 PUSCH만을 전송하거나,
[260] 방식 4) SCell UCI-PUCCH SF에서는 PCell을 통해 전송되는 PUSCH의 스케줄링 이 지원 /허용되지 않거나 (즉, 단말은 SCell UCI-PUCCH SF에서는 PCell을 통해 전송 되는 PUSCH가 스케줄링 되지 않는다고 가정 /간주한 상태에서 동작할 수 있음),
[261] 방식 5) 단말은 SCell 에 대웅되는 UCI-PUCCH 전송과 PCell 을 통한 PUSCH 전 송이 동시에 하나의 UL SF (예, SCell UCI-PUCCH SF)를 통해 수행되도록 스케줄링 /설 정되지 않는다고 가정 /간주한 상태에서 동작할 수 있다. [262] 여기서, SCell에 대웅되는 UCI가 A/N흑은 SR인 경우에는 방식 2)를 적용하 고, 해당 UCI가 CSI인 경우에는 방식 3)을 적용할 수 있다. 또한, SCell 에 대응되 는 A/N이 모두 NACK흑은 DTX로만 구성되거나, SR이 네가티브 (negative)인 경우에 는 방식 3)을, SCell에 대응되는 CSI가 RI 정보를 포함하는 경우에는 방식 2)를 예 외적으로 적용할 수 있다. 한편, SCell UCI-PUCCH SF 에서 SCell 을 통해 전송되는 PUSCH가 스케줄링 된 경우 해당 UCI는 SCell에 스케줄링 된 PUSCH에 피기백 될 수 있다. 한편, PCell 과 SCell 이 각각 서로 다른 임의의 셀 (그룹) 1 과 셀 (그룹) 2 로 대체된 상태에서 위와 동일한 동작 /방법이 적용될 수 있으며, 방식 1)~5)의 경 우 복수 UL 채널 (예, PUCCH 및 PUSCH)의 동시 전송에 대한 허용 여부에 따라 서로 다 른 방식이 적용될 수 있다.
[263] 다른 방법으로, 기존 PUCCH (즉, 레가시 PUCCH) 자원을 구성하는 각 SC-FDMA 심볼 내 부반송파 (즉, RE 에 대웅)를 짝수 인덱스 (즉 짝수-콤 (even-comb))와 홀수 인덱스 (즉, 홀수-콤 (odd-comb))로 나누어 각 셀 (해당 샐의 UCI)에 대웅되는 PUCCH 를 서로 다른 콤을 사용하여 전송하는 것도 가능하다. 일 예로, 레가시 PUCCH 자원 영역에서 셀 1 (해당 셀의 UCI)에 대웅되는 PUCCH 는 짝수ᅳ콤을 사용하고, 셀 2 (해 당 셀의 UCI)에 대응되는 PUCCH 는 홀수 -콤을 사용할 수 있다. 다른 방법으로, 레가 시 PUCCH 자원올 구성하는 SC-FDMA 심볼을 짝수 인덱스 (즉, 짝수 -심볼 (even-sym)) 와 홀수 인덱스 (즉, 홀수 -심볼 (odd-sym))로 나누어 각 셀 (해당 샐의 UCI)에 대웅 되는 PUCCH 를 서로 다른 심볼을 사용하여 전송하는 것도 가능하다. 일 예로, 레가 시 PUCCH 자원 영역에서 셀 1 (해당 셀의 UCI)에 대웅되는 PUCCH는 짝수-심볼을 사 용하고, 셀 2 (해당 샐의 UCI)에 대응되는 PUCCH는 홀수—심볼을 사용할 수 있다. 상 기 방법은 DMRS 가 전송되는 SC-FDMA 심볼에만 적용되거나 (즉, 나머지 SC-FDAM 심볼 은 레가시 PUCCH 에서와 동일하게 구성), DMRS 전송 여부에 상관없이 모든 SOFDMA 심볼에 적용될 수 있다. 상기 방법을 이용하여, 샐 간 TDM 없이 각 셀 별로 정의된 원래 A/N 타이밍을 그대로 적용하면서 오버히어 (overhear) 경우처럼 하나의 셀을 통해 복수 PUCCH 동시 전송을 수행하거나, 복수의 셀을 통해 복수 PUCCH 동시 전송 을 수행할 수 있다. [264] 도 26은 본 발명에 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 릴 레이를 포함하는 시스템의 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
[265] 도 26을 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)을 포함한다. 기지국 (110)은 프로세서 (112), 메모리 (114) 및 무선 주파수 (Radio Frequency, RF) 유닛 (116)을 포함한다. 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연 결되고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF유닛 (116)은 프 로세서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (120)은 프로세 서 (122), 메모리 (124) 및 RF 유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다 . 메모리 (124)는 프로세 서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF유 닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
[266] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적 인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결 합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결 합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명 되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음 은 자명하다.
[267] 본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기 지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에 서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다 른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNode B(eNB) , 억세스 포인트 (access point) 등의 용어에 의해 대 체될 수 있다. 또한, 단말은 UEOJser Equipment), MS(Mobile Station), MSS (Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
[268] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (finnware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어 에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(appl icat ion specific integrated circuits) , DSPs(digital signal processors) DSPDs(digital signal processing devices) , PLDs (programmable logic devices) , FPGAsCfield progra誦 able gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[269] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있 다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양 한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[270] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구 체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에 서 제한적으로 해석되어서는 아나되고 예시적인 갓으로 고려되어야 한다. 본 발명 의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가 적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
[271] 본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다.

Claims

【청구의 범위】
【청구항 1]
캐리어 병합 (carrier aggregat ion)-기반 무선 통신 시스템에서 단말이 ACK/NAC (Acknowledgement/Negat i ve ACK) 정보를 전송하는 방법에 있어서,
제 1 UD 구성 (Uplink Downlink configuration)을 갖는 제 1 TDD(Time Division Duplex) 셀과 상기 제 1 UD 구성을 갖는 계 2 TDD 셀을 병합하는 단계 ;
상기 제 1 TDD 셀에 대웅하는 ACK/NACK 정보는 상기 제 1 TDD 셀 상의 UL SF(Subframe)을 통해 전송하는 단계; 및
상기 제 2 TDD 셀에 대웅하는 ACK/NACK 정보는 상기 제 2 TDD 셀 상의 UL SF을 통해 전송하는 단계를 포함하고,
상기 제 1 TDD 셀 상의 UL SF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세트로 주어지고, 상기 제 2 TDD 셀 상의 UL SF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세 트에 속하는 서브세트에 기반하여 주어지며,
UD구성에 따른 SF 구성은 다음과 같은
Figure imgf000054_0001
Figure imgf000054_0002
여기서, D는 DL SF이고, U는 UL SF이며, S는 스페셜 SF이다.
【청구항 2]
제 1항에 있어서,
상기 서브세트는 제 2 UD 구성에 따른 UL SF 세트이며, 상기 제 2 UD 구성은 상 기 제 1 UD구성에 따른 DL SF 세트를 포함하고 상기 제 1 UD 구성보다 더 많은 DL SF 를 가진 UD구성인 방법 .
【청구항 3】 제 2항에 있어서,
상기 제 2 TDD 셀 상의 UL SF타이밍은 상기 서브세트를 시간 축 상에서 SF 단 위로 쉬프트 함으로써 결정되는 방법.
【청구항 4]
제 3항에 있어서,
상기 제 2 TDD 셀 상에서 ACK/NACK정보가 UL SF #n을 통해 전송되는 경우, UL SF #n에는 DL SF #n-k+a가 대응하며, k는 아래와 같이 주어지는 방법 :
Figure imgf000055_0001
여기서, a는 SF단위의 쉬프트 값을 나타낸다.
【청구항 5】
제 1항에 있어서,
상기 제 1 TDD 셀은 제 1 기지국에 속하고, 상기 제 2 TDD 샐은 상기 제 1 기지국 과 다른 제 2 기지국에 속하는 방법.
【청구항 6】
캐리어 병합 (carrier aggregation)-기반 무선 통신 시스템에서
ACK/NACK(Acknowledgement/Negat ive ACK) 정보를 전송하도록 구성된 단말에 있어서ᅳ 무선 주파수 (Radio Frequency, RF) 유닛; 및
프로세서를 포함하고,
상기 프로세서는 제 1 UD 구성 (Uplink Downlink conf igurat ion)을 갖는 제 1 TDDCTime Division Du lex) 셀과 상기 제 1 UD 구성을 갖는 제 2 TDD 셀을 병합하고, 상기 제 1 TDD 셀에 대응하는 ACK/NACK 정보는 상기 제 1 TDD 셀 상의 UL SF(Subf rame) 을 통해 전송하며, 상기 제 2 TDD 셀에 대웅하는 ACK/NACK 정보는 상기 제 2 TDD 샐 상의 UL SF을 통해 전송하도록 구성되며,
상기 게 1 TDD 샐 상의 UL SF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세트로 주어지고, 상기 제 2 TDD 셀 상의 UL SF 타이밍은 상기 제 1 UD 구성에 따른 UL SF 세 트에 속하는 서브세트에 기반하여 주어지며,
UD 구성에 따른 SF 구성은 다음과 같은 단말:
Figure imgf000056_0001
여기서, D는 DL SF이고, U는 UL SF이며, S는 스페셜 SF이다.
【청구항 7】
제 6항에 있어서,
상기 서브세트는 제 2 UD 구성에 따른 UL SF 세트이몌 상기 제 2 UD 구성은 상 기 제 1 UD 구성에 따른 DL SF 세트를 포함하고 상기 제 1 UD 구성보다 더 많은 DL SF 를 가진 UD 구성인 단말.
【청구항 8】
제 7항에 있어서,
상기 제 2 TDD 셀 상의 UL SF 타이밍은 상기 서브세트를 시간 축 상에서' SF 단 위로 쉬프트 함으로써 결정되는 단'말.
【청구항 9】 . 제 8항에 있어서,
상기 제 2 TDD 셀 상에서 ACK/NACK 정보가 UL SF 을 통해 전송되는 경우, UL SF #n에는 DL SF #n-k+a가 대응하며, k는 아래와 같이 주어지는 단말:
Figure imgf000057_0001
여기서, a는 SF 단위의 쉬프트 값을 나타낸다.
【청구항 10]
제 6항에 있어서,
상기 제 1 TDD 셀은 제 1 기지국에 속하고 상기 제 2 TDD 셀은 상기 제 1 기지국 과 다른 제 2 기지국에 속하는 단말.
PCT/KR2014/000060 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 WO2014107053A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14735347.8A EP2942896A4 (en) 2013-01-03 2014-01-03 METHOD AND APPARATUS FOR TRANSMITTING UPLINK SIGNALS IN WIRELESS COMMUNICATION SYSTEM
US14/759,161 US9820237B2 (en) 2013-01-03 2014-01-03 Method and apparatus for transmitting uplink signals in wireless communication system

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US201361748720P 2013-01-03 2013-01-03
US61/748,720 2013-01-03
US201361750307P 2013-01-08 2013-01-08
US61/750,307 2013-01-08
US201361808614P 2013-04-04 2013-04-04
US61/808,614 2013-04-04
US201361817341P 2013-04-30 2013-04-30
US61/817,341 2013-04-30
US201361836176P 2013-06-18 2013-06-18
US61/836,176 2013-06-18
US201361838350P 2013-06-24 2013-06-24
US61/838,350 2013-06-24
US201361866555P 2013-08-16 2013-08-16
US61/866,555 2013-08-16
US201361872858P 2013-09-03 2013-09-03
US61/872,858 2013-09-03
US201361890347P 2013-10-14 2013-10-14
US61/890,347 2013-10-14
US201361897202P 2013-10-29 2013-10-29
US61/897,202 2013-10-29

Publications (1)

Publication Number Publication Date
WO2014107053A1 true WO2014107053A1 (ko) 2014-07-10

Family

ID=51062330

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2014/000060 WO2014107053A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000059 WO2014107052A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000058 WO2014107051A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000057 WO2014107050A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/KR2014/000059 WO2014107052A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000058 WO2014107051A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000057 WO2014107050A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치

Country Status (7)

Country Link
US (14) US9813219B2 (ko)
EP (7) EP3522669B1 (ko)
JP (3) JP6027270B2 (ko)
KR (2) KR102254896B1 (ko)
CN (2) CN104904154B (ko)
ES (1) ES2797398T3 (ko)
WO (4) WO2014107053A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576162B2 (en) 2017-05-31 2023-02-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for radio communication

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931242B (zh) * 2011-11-04 2018-10-23 交互数字专利控股公司 用于在与多个定时提前关联的多个分量载波上无线传输的功率控制的方法和装置
EP3522669B1 (en) 2013-01-03 2021-09-08 LG Electronics Inc. Method, processor and user equipment for transmitting uplink signals in wireless communication system
US9872256B2 (en) * 2013-01-10 2018-01-16 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and a method for power control of uplink transmissions
CN103929800B (zh) * 2013-01-11 2017-09-29 电信科学技术研究院 一种pucch功率控制方法及装置
US9271242B2 (en) * 2013-01-14 2016-02-23 Intel IP Corporation Energy-harvesting devices in wireless networks
US9565669B2 (en) 2013-01-29 2017-02-07 Sun Patent Trust Base station, terminal, transmission method, and reception method
US10326569B2 (en) 2013-02-12 2019-06-18 Altiostar Networks, Inc. Inter-site carrier aggregation with physical uplink control channel monitoring
US10009803B2 (en) 2013-02-12 2018-06-26 Altiostar Networks, Inc. Long term evolution radio access network
WO2014141965A1 (ja) * 2013-03-14 2014-09-18 シャープ株式会社 端末装置、基地局装置、通信システム、通信方法および集積回路
JP6693741B2 (ja) * 2013-04-04 2020-05-13 シャープ株式会社 端末装置、通信方法および集積回路
CN113411852A (zh) * 2013-06-18 2021-09-17 索尼公司 通信装置
US10237020B2 (en) 2013-07-19 2019-03-19 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation
US9559817B2 (en) * 2013-07-19 2017-01-31 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation
CN104519561B (zh) * 2013-09-26 2019-02-12 中兴通讯股份有限公司 上行功率削减处理方法、装置、终端及基站
EP3496495B1 (en) 2013-10-31 2020-11-25 Nec Corporation Radio communication system, base station apparatus, and method
WO2015079971A1 (ja) * 2013-11-29 2015-06-04 シャープ株式会社 端末装置、基地局装置、集積回路、および、通信方法
US9900844B2 (en) * 2014-01-13 2018-02-20 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity
KR102391770B1 (ko) 2014-01-29 2022-04-29 삼성전자 주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
KR102284453B1 (ko) * 2014-01-29 2021-08-02 삼성전자 주식회사 셀룰러 이동 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
WO2015113624A1 (en) * 2014-01-31 2015-08-06 Nokia Solutions And Networks Oy Method, apparatus and computer program
US9706532B2 (en) * 2014-02-21 2017-07-11 Blackberry Limited TDD and FDD joint carrier aggregation enhancements in LTE-advanced
JP2015179993A (ja) * 2014-03-19 2015-10-08 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
KR102298357B1 (ko) 2014-03-21 2021-09-07 삼성전자 주식회사 무선통신 시스템에서 다중 기지국과 랜덤 엑세스 수행 방법 및 장치
KR102184585B1 (ko) * 2014-03-21 2020-11-30 후아웨이 테크놀러지 컴퍼니 리미티드 이중 연결을 고려한 전력 제한 상황에서의 pusch/pucch 전력 스케일링 방법 및 그 장치
JP6193481B2 (ja) * 2014-05-09 2017-09-06 株式会社Nttドコモ ユーザ装置、及び送信制御方法
US10142945B2 (en) * 2014-06-05 2018-11-27 Samsung Electronics Co., Ltd. Power control for transmission of uplink control information on two cells in carrier aggregation
JP6272483B2 (ja) * 2014-07-11 2018-01-31 株式会社Nttドコモ ユーザ端末および無線通信方法
WO2016010123A1 (ja) * 2014-07-18 2016-01-21 シャープ株式会社 端末装置、基地局装置、および通信方法
US10033505B2 (en) * 2014-07-31 2018-07-24 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band
US10959193B2 (en) * 2014-08-04 2021-03-23 Sharp Kabushiki Kaisha Terminal device, base station device, and method
JP2017175174A (ja) * 2014-08-08 2017-09-28 シャープ株式会社 端末装置、基地局装置および方法
US9420584B2 (en) * 2014-09-17 2016-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Uplink sounding reference signals for machine type communications (MTC) user equipment (UE)
JP2017208582A (ja) * 2014-09-26 2017-11-24 シャープ株式会社 端末装置、基地局装置、および通信方法
EP3193540B1 (en) * 2014-09-29 2019-07-17 Huawei Technologies Co., Ltd. Wireless communication method, processor and wireless terminal
WO2016072217A1 (ja) * 2014-11-06 2016-05-12 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
RU2665879C1 (ru) 2014-12-30 2018-09-04 Хуавей Текнолоджиз Ко., Лтд. Способ передачи управляющей информации и устройство
US10264560B2 (en) * 2014-12-31 2019-04-16 Lg Electronics Inc. Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station
US10673556B2 (en) 2015-01-09 2020-06-02 Lg Electronics Inc. Method for transmitting control information, and apparatus therefor
WO2016114579A1 (en) * 2015-01-16 2016-07-21 Lg Electronics Inc. Method for selecting pucch transmission in a carrier aggregation system and a device therefor
CN105871525B (zh) * 2015-01-19 2020-09-15 夏普株式会社 基站、用户设备及其方法
US9906337B2 (en) * 2015-01-20 2018-02-27 Htc Corporation Network apparatus and communication device for aggregated component carriers
US10237038B2 (en) * 2015-01-20 2019-03-19 Huawei Technologies Co., Ltd. Information transmission method, device, and system
CA2975306C (en) 2015-01-29 2019-10-08 Huawei Technologies Co., Ltd. Pucch configuration method and apparatus
ES2947835T3 (es) 2015-01-30 2023-08-21 Ericsson Telefon Ab L M Comunicación de datos de control en una red de comunicación inalámbrica
US9871572B2 (en) 2015-03-09 2018-01-16 Ofinno Technologies, Llc Uplink control channel in a wireless network
KR101987525B1 (ko) * 2015-03-09 2019-06-12 주식회사 케이티 채널상태정보 전송 방법 및 그 장치
US20160301513A1 (en) * 2015-04-08 2016-10-13 Intel IP Corporation Systems, methods, and devices for component carrier management in carrier aggregation systems
CN112615707B (zh) 2015-06-19 2024-04-23 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
CN106257856B (zh) * 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
BR112018005458A2 (pt) * 2015-09-22 2018-10-09 Huawei Technologies Co., Ltd. método e aparelho para transmissão de informações de controle de enlace ascendente em agregação de portadora
JP6125590B2 (ja) * 2015-09-24 2017-05-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106817769B (zh) * 2015-11-27 2019-09-17 普天信息技术有限公司 无线通信系统上行多子带资源分配方法、装置及用户设备
WO2017106711A1 (en) * 2015-12-17 2017-06-22 Altiostar Networks, Inc. Inter-site carrier aggregation with physical uplink control channel monitoring
WO2017119921A1 (en) * 2016-01-04 2017-07-13 Intel IP Corporation Determination of an advanced physical uplink channel resource
US11006440B2 (en) 2016-01-15 2021-05-11 Lg Electronics Inc. Method for transmitting/receiving signals, and device for same
US10177875B2 (en) * 2016-02-01 2019-01-08 Ofinno Technologies, Llc Downlink control signaling for uplink transmission in a wireless network
JP2019054314A (ja) * 2016-02-02 2019-04-04 シャープ株式会社 端末装置および方法
US10009856B2 (en) * 2016-02-08 2018-06-26 Motorola Mobility Llc Method and apparatus for transmitting PUCCH with a lower A-MPR
US10673579B2 (en) * 2016-03-03 2020-06-02 Lg Electronics Inc. Method and apparatus for transreceiving wireless signal in wireless communication system based on downlink scheduling information including different time unit types
WO2017177224A1 (en) 2016-04-08 2017-10-12 Altiostar Networks, Inc. Wireless data priority services
US10791481B2 (en) 2016-04-08 2020-09-29 Altiostar Networks, Inc. Dual connectivity
JP6759695B2 (ja) * 2016-05-11 2020-09-23 ソニー株式会社 端末装置、基地局装置、通信方法、及びプログラム
US10757687B2 (en) * 2016-05-12 2020-08-25 Qualcomm Incorporated Techniques for communicating feedback in low latency wireless communications
JP2019125821A (ja) * 2016-05-13 2019-07-25 シャープ株式会社 端末装置および方法
AU2017284729B2 (en) * 2016-06-15 2020-03-05 Lg Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
JP6800439B2 (ja) 2016-07-07 2020-12-16 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 待ち時間が低減された、無線通信システムにおけるデータ送信
CN107682923B (zh) * 2016-08-01 2023-05-12 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备
CN109565792B (zh) * 2016-08-10 2024-03-08 株式会社Ntt都科摩 终端、基站、系统及通信方法
CN107769896B (zh) * 2016-08-18 2020-10-16 上海诺基亚贝尔股份有限公司 无线网络中向用户设备提供接收反馈的方法、装置和基站
WO2018034520A1 (ko) * 2016-08-18 2018-02-22 삼성전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보를 송수신하는 방법 및 장치
CN109716844A (zh) * 2016-09-09 2019-05-03 株式会社Ntt都科摩 用户终端以及无线通信方法
JP7183043B2 (ja) * 2016-09-16 2022-12-05 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11265132B2 (en) 2016-09-21 2022-03-01 Kyocera Corporation Enhancing utilization efficiency of radio resources in MBMS
CN115866783A (zh) * 2016-09-30 2023-03-28 中兴通讯股份有限公司 上行控制信息传输方法及装置
US11234220B2 (en) 2016-10-05 2022-01-25 Nokia Solutions And Networks Oy Allocation of resources in physical uplink control channels
EP3319252A1 (en) * 2016-11-04 2018-05-09 Panasonic Intellectual Property Corporation of America Efficient multiplexing of control information in transport block
WO2018093180A1 (ko) * 2016-11-16 2018-05-24 주식회사 케이티 차세대 무선 네트워크에서 상향링크 제어정보를 송수신하는 방법 및 그 장치
US10624034B2 (en) 2016-12-13 2020-04-14 Altiostar Networks, Inc. Power control in wireless communications
KR102188152B1 (ko) 2017-01-07 2020-12-07 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 상기 방법을 이용하는 통신 장치
WO2018131937A1 (en) * 2017-01-13 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uci in wireless communication system
CN108306720B (zh) 2017-01-13 2022-06-21 北京三星通信技术研究有限公司 一种传输uci信息的方法和设备
CN110235396B (zh) 2017-02-05 2024-01-23 Lg 电子株式会社 无线通信系统中终端发送上行链路控制信息的方法和支持该方法的设备
CN110402606B (zh) * 2017-03-22 2023-09-05 索尼公司 终端设备、基站设备、通信方法和存储介质
CN108632966B (zh) * 2017-03-23 2022-05-06 华为技术有限公司 发射功率控制方法、装置、设备和存储介质
CN109644449B (zh) * 2017-03-24 2020-06-12 Oppo广东移动通信有限公司 通信方法、终端和网络设备
EP3907924A1 (en) 2017-04-01 2021-11-10 LG Electronics Inc. Method for transmitting or receiving uplink signal for terminal supporting short transmission time interval in wireless communication system, and apparatus therefor
EP4181450A1 (en) * 2017-04-17 2023-05-17 Samsung Electronics Co., Ltd. Method and device for dynamic resource allocation
CN109219120B (zh) * 2017-07-03 2021-10-26 北京三星通信技术研究有限公司 一种上行功率控制的方法和设备
EP3596984B1 (en) 2017-04-17 2022-07-20 Samsung Electronics Co., Ltd. Method and device for uplink power control
US11696287B2 (en) * 2017-04-27 2023-07-04 Ntt Docomo, Inc. User terminal and radio communication method
US20200068598A1 (en) * 2017-05-02 2020-02-27 Ntt Docomo, Inc. User terminal and radio communication method
CN110832915B (zh) 2017-05-04 2020-12-04 Lg电子株式会社 在无线通信系统中发送上行链路信号的方法和用于该方法的装置
CN110034861B (zh) * 2018-01-11 2024-06-14 北京三星通信技术研究有限公司 一种harq-ack信息反馈方法和设备
US10959247B2 (en) * 2017-06-08 2021-03-23 Qualcomm Incorporated Transmission of uplink control information in new radio
CN109257150B (zh) * 2017-07-14 2021-08-17 维沃移动通信有限公司 资源映射方法、网络设备、终端及计算机可读存储介质
CN109392168B (zh) * 2017-08-04 2021-04-02 维沃移动通信有限公司 一种数据传输方法及终端
KR102369471B1 (ko) 2017-08-07 2022-03-03 삼성전자 주식회사 무선 통신 시스템에서 추가적인 상향링크 주파수를 지원하기 위한 방법 및 장치
US10959181B2 (en) 2017-08-09 2021-03-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink transmission method and terminal device
JPWO2019030931A1 (ja) * 2017-08-10 2020-08-27 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108134659B (zh) * 2017-08-11 2021-01-15 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点
EP3668199A4 (en) * 2017-08-11 2021-04-28 LG Electronics Inc. METHOD AND DEVICE FOR A TERMINAL DEVICE FOR ADJUSTING THE TRANSMIT POWER FOR SEVERAL CCS DURING THE CARRIER AGGREGATION IN A WIRELESS COMMUNICATION SYSTEM
PL3713314T3 (pl) 2017-09-07 2023-08-14 Beijing Xiaomi Mobile Software Co., Ltd. Zarządzanie wiązką łącza wysyłania
WO2019050368A1 (ko) * 2017-09-08 2019-03-14 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN110868755B (zh) * 2017-09-30 2020-11-10 华为技术有限公司 信息传输方法和装置
US10681652B2 (en) * 2017-11-28 2020-06-09 Qualcomm Incorporated Power control for dual radio access technology (RAT) communication
US11265923B2 (en) * 2017-12-29 2022-03-01 Nokia Technologies Oy Method and device for NPRACH detection
CN110034900B (zh) * 2018-01-12 2021-07-20 华为技术有限公司 一种通信方法及装置
CN114401550A (zh) * 2018-01-12 2022-04-26 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备
CN110035544B (zh) * 2018-01-12 2020-09-25 中国信息通信研究院 一种上行控制信息传输方法及设备
WO2019143131A1 (ko) * 2018-01-17 2019-07-25 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호를 송신하는 방법 및 장치
US10973038B2 (en) * 2018-01-19 2021-04-06 Qualcomm Incorporated UCI transmission for overlapping uplink resource assignments with repetition
US11706766B2 (en) 2018-02-15 2023-07-18 Sharp Kabushiki Kaisha PUCCH collision handling for multi-slot long PUCCH in 5G NR
WO2019164309A1 (ko) * 2018-02-21 2019-08-29 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호를 송수신하는 방법 및 이를 위한 장치
CN110225587B (zh) * 2018-03-01 2022-05-10 大唐移动通信设备有限公司 上行控制信息的传输方法、接收方法、终端、基站及装置
KR20190139274A (ko) * 2018-04-05 2019-12-17 가부시키가이샤 엔티티 도코모 유저장치 및 기지국장치
CN111132295B (zh) 2018-04-13 2021-03-09 Oppo广东移动通信有限公司 一种上行功率控制方法、终端设备及网络设备
WO2019205137A1 (zh) * 2018-04-28 2019-10-31 北京小米移动软件有限公司 上行传输的方法及装置
KR20190129674A (ko) 2018-05-11 2019-11-20 삼성전자주식회사 무선 통신 시스템에서 이중 접속을 위한 단말의 상향 전송 전력 제어 방법 및 장치
WO2019216612A1 (ko) * 2018-05-11 2019-11-14 삼성전자 주식회사 무선 통신 시스템에서 이중 접속을 위한 단말의 상향 전송 전력 제어 방법 및 장치
WO2020008645A1 (ja) * 2018-07-06 2020-01-09 株式会社Nttドコモ ユーザ端末及び基地局
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling
WO2020032758A1 (ko) 2018-08-10 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
CN112567801A (zh) * 2018-08-13 2021-03-26 上海诺基亚贝尔股份有限公司 装置、方法和计算机程序
CN110858996B (zh) * 2018-08-23 2022-02-25 维沃移动通信有限公司 一种功率控制方法、终端及网络设备
CN209462415U (zh) * 2018-09-07 2019-10-01 Oppo广东移动通信有限公司 移动终端
US20210306960A1 (en) * 2018-09-20 2021-09-30 Ntt Docomo, Inc. User equipment and transmission power control method
US20220124760A1 (en) * 2018-09-21 2022-04-21 Lg Electronics Inc. Method and apparatus for transmitting or receiving wireless signal in wireless communication system
CN110958589B (zh) * 2018-09-26 2021-08-03 华为技术有限公司 数据传输方法、装置及存储介质
EP3857998A1 (en) * 2018-09-27 2021-08-04 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Location management with dynamic tal for high mobility
WO2020087353A1 (zh) * 2018-10-31 2020-05-07 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2020146499A1 (en) 2019-01-08 2020-07-16 Hua Zhou Power saving mechanism
US11172495B2 (en) * 2019-01-11 2021-11-09 Qualcomm Incorporated Collision handling
KR102595154B1 (ko) * 2019-02-11 2023-10-27 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보 송수신 방법 및 장치
CN111585722B (zh) * 2019-02-15 2022-05-24 大唐移动通信设备有限公司 物理上行共享信道的传输方法、终端及网络设备
CN111586844B (zh) * 2019-02-15 2024-01-05 华为技术有限公司 一种通信方法及装置
CN111756508B (zh) * 2019-03-29 2023-04-18 华为技术有限公司 一种通信方法及装置
CN111278057B (zh) * 2019-04-26 2022-03-25 维沃移动通信有限公司 上行传输方法、终端和网络侧设备
WO2020220254A1 (en) * 2019-04-30 2020-11-05 Lenovo (Beijing) Limited Apparatus and method of pucch transmission and reception
US11490398B2 (en) * 2019-05-02 2022-11-01 Qualcomm Incorporated Cell-based transmission priority
EP4005316A4 (en) * 2019-07-26 2023-08-23 Fg Innovation Company Limited METHODS AND APPARATUS FOR DEMAND RESOURCE PRIORITIZATION PLANNING FOR BEAM FAILURE RECOVERY
CN110880963B (zh) * 2019-11-07 2022-03-11 北京紫光展锐通信技术有限公司 上行控制信息的传输方法及相关装置
JP7482907B2 (ja) 2020-01-21 2024-05-14 株式会社Nttドコモ 端末、基地局、通信システム、及び通信方法
US11546864B2 (en) * 2020-02-14 2023-01-03 Samsung Electronics Co., Ltd. Uplink power control in dual connectivity
CN115669044A (zh) * 2020-03-19 2023-01-31 株式会社Ntt都科摩 终端、无线通信方法以及基站
JP2022063065A (ja) * 2020-10-09 2022-04-21 Kddi株式会社 非アクティブ状態のセカンダリセルにおける上りリンクのタイミング制御を行う端末装置、基地局装置、制御方法、およびプログラム
KR20220094594A (ko) * 2020-12-29 2022-07-06 삼성전자주식회사 전자 장치 및 캐리어 어그리게이션을 지원하는 전자 장치에서 송신 전력을 제어하는 방법
CN113489566B (zh) * 2021-03-31 2022-11-25 上海移远通信技术股份有限公司 一种用于无线通信的节点中的方法和装置
WO2023030349A1 (zh) * 2021-09-02 2023-03-09 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
WO2023053098A1 (en) * 2021-10-01 2023-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced pucch power control when mixing uci of different priorities

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110268045A1 (en) * 2010-04-30 2011-11-03 Youn Hyoung Heo System and method for uplink control information transmission in carrier aggregation
US20120039280A1 (en) * 2010-08-16 2012-02-16 Qualcomm Incorporated Ack/nack transmission for multi-carrier operation with downlink assignment index
US20120113910A1 (en) * 2010-05-06 2012-05-10 Yu-Chih Jen Method of Handling a Physical Uplink Control Channel Transmission and Related Communication Device
WO2012128513A2 (en) * 2011-03-18 2012-09-27 Lg Electronics Inc. Method of transmitting control information in a wireless communication system and apparatus thereof
US20120269179A1 (en) * 2011-04-22 2012-10-25 Samsung Electronics Co. Ltd. Method and apparatus for transmitting acknowledgement/nonacknowledgement signals in a wireless communication system

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412541B (en) * 2004-02-11 2006-08-16 Samsung Electronics Co Ltd Method of operating TDD/virtual FDD hierarchical cellular telecommunication system
WO2009116754A2 (en) 2008-03-16 2009-09-24 Lg Electronics Inc. Method of performing hybrid automatic repeat request (harq) in wireless communication system
KR20100073992A (ko) 2008-12-23 2010-07-01 엘지전자 주식회사 반송파 집성 환경에서의 상향링크 전송
US9247532B2 (en) 2009-01-02 2016-01-26 Lg Electronics Inc. Effective method for transmitting control information during the combination of multiple carriers for wideband support
KR101674940B1 (ko) * 2009-01-29 2016-11-10 엘지전자 주식회사 전송 전력을 제어하는 방법 및 이를 위한 장치
JP5302417B2 (ja) 2009-01-29 2013-10-02 エルジー エレクトロニクス インコーポレイティド 伝送電力を制御する方法及び伝送電力を制御する装置
TW201603611A (zh) 2009-02-09 2016-01-16 內數位專利控股公司 利佣多載波無線傳送器/接收器單元之上鏈功率控制裝置及方法
KR101607333B1 (ko) 2009-03-05 2016-03-30 엘지전자 주식회사 중계국의 제어신호 전송 방법 및 장치
US8305986B2 (en) 2009-03-09 2012-11-06 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmissions and CQI reports with carrier aggregation
KR101616155B1 (ko) 2009-03-10 2016-04-27 샤프 가부시키가이샤 무선 통신 장치 및 제어 방법
US20100254329A1 (en) 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
CN201780605U (zh) * 2009-04-22 2011-03-30 万信电子科技有限公司 服装试穿系统
EP2244515A1 (en) 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
WO2011120716A1 (en) * 2010-04-01 2011-10-06 Panasonic Corporation Transmit power control for physical random access channels
KR101701444B1 (ko) 2009-10-02 2017-02-03 인터디지탈 패튼 홀딩스, 인크 하나보다 많은 컴포넌트 캐리어 상의 전송의 전송 전력을 제어하기 위한 방법 및 장치
US9763197B2 (en) 2009-10-05 2017-09-12 Qualcomm Incorporated Component carrier power control in multi-carrier wireless network
US20120224553A1 (en) 2009-10-29 2012-09-06 Dong Cheol Kim Apparatus and method for transceiving uplink transmission power control information in a multi-carrier communication system
EP2317815A1 (en) 2009-11-02 2011-05-04 Panasonic Corporation Power-limit reporting in a communication system using carrier aggregation
US8478258B2 (en) 2010-03-05 2013-07-02 Intel Corporation Techniques to reduce false detection of control channel messages in a wireless network
US8873439B2 (en) 2010-03-25 2014-10-28 Qualcomm Incorporated Subframe dependent physical uplink control channel (PUCCH) region design
CN101827444B (zh) 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
EP3358890B1 (en) 2010-04-01 2021-03-03 Sun Patent Trust Transmit power control for physical random access channels
KR101697597B1 (ko) 2010-04-01 2017-01-18 엘지전자 주식회사 송신 파워를 제어하는 방법 및 이를 위한 장치
CN105007148B (zh) * 2010-04-01 2018-07-20 Lg电子株式会社 无线接入系统中报告/接收功率上升空间值的方法和装置
US8855131B2 (en) 2010-04-05 2014-10-07 Panasonic Intellectual Property Corporation Of America Transmission device, transmission power control method and transmission determination method
JP5165721B2 (ja) 2010-04-09 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ ユーザ端末及び基地局装置
US8489100B2 (en) 2010-04-13 2013-07-16 Qualcomm Incorporated Uplink power control in long term evolution networks
KR101829831B1 (ko) 2010-05-06 2018-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US8965442B2 (en) * 2010-05-07 2015-02-24 Qualcomm Incorporated Uplink power control in aggregated carrier communication systems
EP2453605B1 (en) 2010-06-16 2021-01-13 LG Electronics Inc. Method for transmitting control information and device therefor
KR101430501B1 (ko) 2010-07-16 2014-08-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 장치
JP4852166B1 (ja) 2010-08-04 2012-01-11 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
US8958370B2 (en) 2010-08-10 2015-02-17 Lg Electronics Inc. Method and apparatus for controlling transmission power in wireless communication system
CN102377542A (zh) * 2010-08-19 2012-03-14 宏达国际电子股份有限公司 处理上链路回报触发及组态的方法及其通信装置
KR101470265B1 (ko) 2010-09-17 2014-12-05 엘지전자 주식회사 무선통신 시스템에서 복수의 수신 확인 정보 전송 방법 및 장치
WO2012041422A2 (en) 2010-09-30 2012-04-05 Panasonic Corporation Timing advance configuration for multiple uplink component carriers
EP2634947B1 (en) 2010-10-28 2017-10-18 LG Electronics Inc. Method and apparatus for transmitting control information
WO2012057578A2 (ko) * 2010-10-28 2012-05-03 엘지전자 주식회사 사운딩 참조 신호 전송 방법 및 장치
JP5388369B2 (ja) 2010-11-08 2014-01-15 株式会社Nttドコモ 移動端末装置及び通信制御方法
US8582518B2 (en) * 2010-11-09 2013-11-12 Telefonaktiebolaget L M Ericsson (Publ) Power control for ACK/NACK formats with carrier aggregation
US8675558B2 (en) 2011-01-07 2014-03-18 Intel Corporation CQI definition for transmission mode 9 in LTE-advanced
US8861391B1 (en) 2011-03-02 2014-10-14 Marvell International Ltd. Channel feedback for TDM scheduling in heterogeneous networks having multiple cell classes
EP2684402B1 (en) 2011-03-08 2020-02-05 Panasonic Intellectual Property Corporation of America Propagation delay difference reporting for multiple component carriers
WO2012124980A2 (ko) * 2011-03-14 2012-09-20 엘지전자 주식회사 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
US9191180B2 (en) * 2011-03-21 2015-11-17 Lg Electronics Inc. Method and device for executing HARQ in TDD-based wireless communication system
JP2012216968A (ja) 2011-03-31 2012-11-08 Ntt Docomo Inc 移動局及び無線通信システムに使用される方法
WO2012131612A1 (en) 2011-03-31 2012-10-04 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
KR101931944B1 (ko) * 2011-05-12 2018-12-24 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
KR101820742B1 (ko) * 2011-05-30 2018-01-22 삼성전자 주식회사 이동 통신 시스템 및 그 시스템에서 데이터 전송 방법
WO2012169859A2 (ko) 2011-06-10 2012-12-13 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
RU2602811C2 (ru) 2011-06-17 2016-11-20 Телефонактиеболагет Л М Эрикссон (Пабл) Беспроводное устройство, сетевой узел и способы для них
US9137804B2 (en) 2011-06-21 2015-09-15 Mediatek Inc. Systems and methods for different TDD configurations in carrier aggregation
KR20140045988A (ko) 2011-07-29 2014-04-17 엘지전자 주식회사 상향링크 전송 전력을 제어하는 단말 장치 및 그 방법
WO2013025005A2 (ko) 2011-08-12 2013-02-21 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 채널을 위한 자원을 획득하는 방법 및 장치
CN102938693B (zh) 2011-08-15 2015-09-23 普天信息技术研究院有限公司 Lte-a tdd不同上下行配比的反馈方法
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
CN102348269B (zh) * 2011-09-27 2015-01-28 电信科学技术研究院 一种上行功率控制的方法和设备
KR101306377B1 (ko) 2011-09-29 2013-09-09 엘지전자 주식회사 상향링크 전송 방법 및 장치
JP5813444B2 (ja) 2011-09-30 2015-11-17 シャープ株式会社 基地局、端末、通信システムおよび通信方法
JP5990815B2 (ja) 2011-11-07 2016-09-14 シャープ株式会社 基地局、端末、通信システムおよび通信方法
WO2013070040A1 (ko) 2011-11-12 2013-05-16 엘지전자 주식회사 무선 통신 시스템에서 단말이 상향링크 송신 전력을 결정하는 방법 및 이를 위한 장치
KR101867314B1 (ko) 2011-11-15 2018-06-15 주식회사 골드피크이노베이션즈 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법
US8902842B1 (en) 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
CN103312470B (zh) 2012-03-09 2016-05-11 电信科学技术研究院 一种harq反馈的实现方法及装置
CN103368707B (zh) * 2012-03-26 2016-07-20 电信科学技术研究院 一种harq反馈的实现方法、上行子帧分配方法及装置
US8989128B2 (en) * 2012-04-20 2015-03-24 Ofinno Technologies, Llc Cell timing in a wireless device and base station
US9210664B2 (en) 2012-04-17 2015-12-08 Ofinno Technologies. LLC Preamble transmission in a wireless device
US9125096B2 (en) 2012-05-04 2015-09-01 Qualcomm Incorporated Method and apparatus for reducing interference in a wireless system
CN103384188B (zh) * 2012-05-04 2017-03-01 电信科学技术研究院 载波聚合反馈方法、装置及系统
CN103516499B (zh) 2012-06-19 2017-06-13 电信科学技术研究院 一种ack/nack反馈比特数确定方法及装置
US9615360B2 (en) 2012-07-27 2017-04-04 Futurewei Technologies, Inc. System and method for multiple point communications
KR102057868B1 (ko) 2012-08-01 2019-12-20 엘지전자 주식회사 제어 정보를 시그널링 하는 방법 및 이를 위한 장치
EP3767870B1 (en) 2012-08-02 2022-04-20 BlackBerry Limited Uplink control channel resource allocation for an enhanced downlink control channel of a mobile communication system
KR20150047570A (ko) 2012-08-23 2015-05-04 인터디지탈 패튼 홀딩스, 인크 물리 계층 자원들을 상이한 서빙 사이트들에 제공하는 방법
US9801163B2 (en) 2012-09-10 2017-10-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Uplink configuration and transmission control in inter-site carrier aggregation
CN104641577B (zh) 2012-09-19 2018-03-02 Lg电子株式会社 发送上行链路控制信息的方法和装置
US9398480B2 (en) 2012-11-02 2016-07-19 Telefonaktiebolaget L M Ericsson (Publ) Methods of obtaining measurements in the presence of strong and/or highly varying interference
US9503216B2 (en) 2012-11-02 2016-11-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices related to effective measurements
US9220070B2 (en) 2012-11-05 2015-12-22 Google Technology Holdings LLC Method and system for managing transmit power on a wireless communication network
EP3522669B1 (en) 2013-01-03 2021-09-08 LG Electronics Inc. Method, processor and user equipment for transmitting uplink signals in wireless communication system
CN105210403B (zh) 2013-01-10 2019-04-05 韩国电子通信研究院 用于增强小小区的方法
US9986511B2 (en) 2014-01-22 2018-05-29 Lg Electronics Inc. Method and device for transmitting uplink signal in wireless communication system
KR102391770B1 (ko) * 2014-01-29 2022-04-29 삼성전자 주식회사 이동 통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
US20150327243A1 (en) * 2014-05-08 2015-11-12 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation
US10142945B2 (en) * 2014-06-05 2018-11-27 Samsung Electronics Co., Ltd. Power control for transmission of uplink control information on two cells in carrier aggregation
CN106416390B (zh) * 2014-06-20 2020-02-14 夏普株式会社 终端装置、基站装置以及通信方法
US10959193B2 (en) * 2014-08-04 2021-03-23 Sharp Kabushiki Kaisha Terminal device, base station device, and method
US9867146B2 (en) * 2014-08-06 2018-01-09 Sharp Kabushiki Kaisha Systems and methods for dual-connectivity operation
US9424012B1 (en) 2016-01-04 2016-08-23 International Business Machines Corporation Programmable code fingerprint
JP6774367B2 (ja) 2017-04-11 2020-10-21 富士フイルム株式会社 ヘッドマウントディスプレイの制御装置とその作動方法および作動プログラム、並びに画像表示システム
US10582454B2 (en) 2017-09-27 2020-03-03 Ofinno, Llc Power control for uplink control channel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110268045A1 (en) * 2010-04-30 2011-11-03 Youn Hyoung Heo System and method for uplink control information transmission in carrier aggregation
US20120113910A1 (en) * 2010-05-06 2012-05-10 Yu-Chih Jen Method of Handling a Physical Uplink Control Channel Transmission and Related Communication Device
US20120039280A1 (en) * 2010-08-16 2012-02-16 Qualcomm Incorporated Ack/nack transmission for multi-carrier operation with downlink assignment index
WO2012128513A2 (en) * 2011-03-18 2012-09-27 Lg Electronics Inc. Method of transmitting control information in a wireless communication system and apparatus thereof
US20120269179A1 (en) * 2011-04-22 2012-10-25 Samsung Electronics Co. Ltd. Method and apparatus for transmitting acknowledgement/nonacknowledgement signals in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2942896A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576162B2 (en) 2017-05-31 2023-02-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for radio communication

Also Published As

Publication number Publication date
JP2016506199A (ja) 2016-02-25
JP6078661B2 (ja) 2017-02-08
EP2942896A1 (en) 2015-11-11
JP2017085652A (ja) 2017-05-18
EP2942896A4 (en) 2016-08-24
EP2943022A4 (en) 2016-08-31
US11076362B2 (en) 2021-07-27
EP3522669B1 (en) 2021-09-08
US9801141B2 (en) 2017-10-24
US20190090203A1 (en) 2019-03-21
US10142941B2 (en) 2018-11-27
WO2014107050A1 (ko) 2014-07-10
US10531398B2 (en) 2020-01-07
CN104885534B (zh) 2018-09-14
US10887841B2 (en) 2021-01-05
US9584300B2 (en) 2017-02-28
EP3550897A1 (en) 2019-10-09
US9820237B2 (en) 2017-11-14
EP2943022B1 (en) 2020-03-11
JP6027270B2 (ja) 2016-11-16
US9520984B2 (en) 2016-12-13
US20170303205A1 (en) 2017-10-19
EP3522669A1 (en) 2019-08-07
CN104885534A (zh) 2015-09-02
ES2797398T3 (es) 2020-12-02
EP2942897A1 (en) 2015-11-11
US20170064639A1 (en) 2017-03-02
US20150341865A1 (en) 2015-11-26
CN104904154B (zh) 2018-06-19
JP2016510529A (ja) 2016-04-07
US20200037257A1 (en) 2020-01-30
US20150341156A1 (en) 2015-11-26
EP2942897B1 (en) 2019-03-06
US10455515B2 (en) 2019-10-22
US10172096B2 (en) 2019-01-01
EP2943020B1 (en) 2019-05-01
US10736047B2 (en) 2020-08-04
US20180220375A1 (en) 2018-08-02
US20200351793A1 (en) 2020-11-05
KR102254896B1 (ko) 2021-05-24
EP2943022A1 (en) 2015-11-11
US9813219B2 (en) 2017-11-07
WO2014107051A1 (ko) 2014-07-10
WO2014107052A1 (ko) 2014-07-10
CN104904154A (zh) 2015-09-09
KR20150105353A (ko) 2015-09-16
US9867138B2 (en) 2018-01-09
US20180007637A1 (en) 2018-01-04
US20190090204A1 (en) 2019-03-21
EP3598809B1 (en) 2021-03-03
US20200045639A1 (en) 2020-02-06
US20150341864A1 (en) 2015-11-26
EP2943020A4 (en) 2016-08-31
US20150341923A1 (en) 2015-11-26
EP2943020A1 (en) 2015-11-11
EP3598809A1 (en) 2020-01-22
EP2942897A4 (en) 2016-08-24
KR20150105352A (ko) 2015-09-16
JP6306224B2 (ja) 2018-04-04
US9980234B2 (en) 2018-05-22
US20170064640A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6766224B2 (ja) 無線通信システムにおける信号送信方法及び装置
JP6027270B2 (ja) 無線通信システムにおいて上りリンク信号を送信する方法及び装置
KR102008819B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
KR101931944B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
JP6243387B2 (ja) 制御情報を送信する方法及びそのための装置
JP5933753B2 (ja) 無線通信システムにおいて制御情報の送信方法及び装置
US9014173B2 (en) Method and apparatus for transmitting control information
KR102091598B1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2015147543A1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2015170885A1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2012015216A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2014011007A1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14735347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014735347

Country of ref document: EP