WO2014107051A1 - 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2014107051A1
WO2014107051A1 PCT/KR2014/000058 KR2014000058W WO2014107051A1 WO 2014107051 A1 WO2014107051 A1 WO 2014107051A1 KR 2014000058 W KR2014000058 W KR 2014000058W WO 2014107051 A1 WO2014107051 A1 WO 2014107051A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
pucch
cell
dci format
identifier
Prior art date
Application number
PCT/KR2014/000058
Other languages
English (en)
French (fr)
Inventor
양석철
안준기
서동연
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/759,170 priority Critical patent/US9584300B2/en
Priority to EP19163948.3A priority patent/EP3522669B1/en
Priority to EP14735251.2A priority patent/EP2943020B1/en
Priority to EP19163947.5A priority patent/EP3550897A1/en
Publication of WO2014107051A1 publication Critical patent/WO2014107051A1/ko
Priority to US15/352,403 priority patent/US9867138B2/en
Priority to US15/643,089 priority patent/US9980234B2/en
Priority to US15/935,901 priority patent/US10172096B2/en
Priority to US16/196,968 priority patent/US10531398B2/en
Priority to US16/593,538 priority patent/US10887841B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting an uplink signal in a carrier aggregation (CA) -based wireless communication system.
  • CA carrier aggregation
  • Wireless communication systems have been widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include
  • CDMA Code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC single carrier frequency division multiple access
  • An object of the present invention is to provide a method and apparatus for efficiently transmitting / receiving an uplink signal in a CA-based wireless communication system. Specifically, the present invention provides a method and apparatus for efficiently transmitting / receiving an uplink signal in an inter-site carrier aggregat ion (CA).
  • CA inter-site carrier aggregat ion
  • a method for controlling uplink power by a user equipment in a wireless communication system comprising: configuring a first set of UL SFCUpl ink Subirame and a second set of UL SF; Receiving a Down Ink Control Informat ion (DCI) format including a bitmap indicating a TPC transmit power control for a plurality of terminals; And controlling transmission power of an uplink channel using the TPC information of the terminal in the bitmap, wherein the DCI format has a first identifier, wherein the TPC information is in the first set of UL SFs. Used to control the transmit power of the uplink channel transmitted in the UE, and when the DCI format has a second identifier, the TPC information is used to control the
  • a terminal configured to control uplink power in a wireless communication system includes: a radio frequency (RF) unit; And a processor, wherein the processor includes a bitmap that configures a first set of UL SFCUpl ink subframes) and a second set of UL SFs, and indicates a TPCCTransmit Power Control for a plurality of terminals).
  • RF radio frequency
  • the processor includes a bitmap that configures a first set of UL SFCUpl ink subframes) and a second set of UL SFs, and indicates a TPCCTransmit Power Control for a plurality of terminals).
  • the TPC information is stored in the first map.
  • the TPC information is transmitted power of an uplink channel transmitted in the second set of UL SFs.
  • a terminal used to control the terminal is provided.
  • the DCI format may be DCI format 3 or DCI format 3A.
  • the DCI format includes a Cyclic Redundancy Check (CRC), and the first identifier or the second identifier may be scrambled in the CRC.
  • CRC Cyclic Redundancy Check
  • the first identifier may be a first Radio Network Temporary Identifier (RNTI), and the second identifier may be a second RNTI.
  • RNTI Radio Network Temporary Identifier
  • the TPC information is N bits
  • the TPC information is M bits and N and M may be different from each other.
  • an uplink signal can be efficiently transmitted / received in a CA-based wireless communication system.
  • an uplink signal may be efficiently transmitted / received in an intersite CA.
  • Figures 1A-1B illustrate CACCarrier Aggregation) -based wireless communication system.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • FIG. 5 illustrates an Enhanced Physical Downlink Control Channel (EPDCCH).
  • EPDCCH Enhanced Physical Downlink Control Channel
  • FIG. 6 illustrates a scheduling method when a plurality of cells are configured.
  • Figure 7 illustrates the structure of an uplink subframe.
  • PUCCH Physical Uplink Control Channel
  • FIG. 9 illustrates a slot level structure of PUCCH format 2.
  • FIG. 11 illustrates a method of transmitting uplink control information through a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • MAC PDU medium access control protocol data unit
  • Figure 13 shows a power headroom (PH) MAC CE.
  • FIG 14 illustrates an inter-site carrier aggregat ion (CA).
  • CA carrier aggregat ion
  • Figure 15 illustrates UL power control according to an embodiment of the present invention.
  • FIG. 16 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as UTRACUniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobile Communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRAC Evolved UTRA.
  • UTRA is part of the UMTS Jniversal Mobile Telecxranunications System.
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs 0FDMA in downlink and SC-FDMA in uplink as part of EvolvedUMTS (E-UMTS) using E—UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • HARQ-ACK Hybrid Automatic Repeat reQuest Acknowledgement
  • Received response result for downlink transmission that is, ACK / NACK (Negative ACK) / DTX (Discontinuous Transmission) response (simply, ACK / NACK ), AC / NAK (answer), A / N (answer).
  • An ACK / NACK answer means ACK, NACK, DTX, or NACK / DTX.
  • the downlink transmission that requires HARQ-ACK feedback includes, for example, a Physical Downlink Shared Channel (PDSCH) and an SPS release PDCCH (Sem i-Persistent Scheduling release Physical Downlink Control Channel).
  • PDSCH Physical Downlink Shared Channel
  • SPS release PDCCH Sem i-Persistent Scheduling release Physical Downlink Control Channel
  • HARQ-ACK for a cell Represents an ACK / NACK response for downlink transmission scheduled in a corresponding cell.
  • PDSCH Includes PDSCH and Semi-Persistent Scheduling (SPS) PDSCH for DL grant PDCCH.
  • SPS Semi-Persistent Scheduling
  • the PDSCH may be replaced with a transport block or a codeword.
  • SPS PDSCH transmitted using a resource semi-statically set by the SPS.
  • the SPS PDSCH has no DL grant PDCCH to be treated.
  • SPS PDSCH is commonly used with PDSCH w / o (without) PDCCH.
  • SPS release PDCCH PDCCH indicating SPS release.
  • the UE feeds back ACK / NACK information on the SPS release PDCCH.
  • FIG. 1A-1B illustrate an existing carrier aggregation (CA) -based wireless communication system.
  • the LTE system supports only one DL / UL frequency block, but the LTE ⁇ A system merges a plurality of UL / DL frequency blocks to provide a wider frequency band.
  • Each frequency block is transmitted using a component carrier (CC).
  • CC represents a carrier frequency (or center carrier, center frequency) of a frequency block.
  • a plurality of DL / UL CCs managed by one base station may be merged into one UE.
  • CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each CC can be determined independently.
  • Asymmetrical carrier merging with different number of ULCCs and number of DLCCs is also possible.
  • the frequency band that can be used by a specific terminal may be limited to L ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific or UE-specific manner. Meanwhile, the control information may be set to be transmitted and received only through a specific CC.
  • This specific CC may be referred to as a primary CC (PCC) (or anchor CC), and the remaining CC may be referred to as a secondary CCX Secondary CC (SCC).
  • PCC primary CC
  • SCC Secondary CC
  • LTE uses the concept of a cell (cell) for the management of radio resources.
  • a cell is defined as a combination of DL and UL resources, and UL resources are not required. Accordingly, the cell may be configured of DL resource alone, or DL resource and UL resource. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the DL resource and the carrier frequency (or UL CC) of the UL resource may be indicated by system information.
  • a cell operating on the primary frequency (or PCC) may be referred to as a primary cell (PCell), and a cell operating on the secondary frequency (or SCC) may be referred to as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the PCell is used by the terminal to perform an initial RRC connection establishment process or an RRC connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the Radio Resource Control (RC) connection is established between the base station and the terminal and can be used to provide additional radio resources.
  • RC Radio Resource Control
  • CC may be replaced with terms such as a serving CC, a serving carrier, a cell, and a serving cell.
  • FIG. 2 illustrates a radio frame structure
  • a radio frame includes a plurality of subframes (e.g., 10 subframes).
  • SF includes a plurality of (example 2) slots in the time domain.
  • the SF length may be lms, and the slot length may be 0.5 ms.
  • the slot includes a plurality of OFDM / SC-FDMA symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • the type 2 radio frame includes two half frames, and the half frame includes five SFs. SF includes two slots.
  • Table 1 illustrates UL-DL configuration (Up-link-Down 1 ink Configuration, UD-cfg) of subframes in a radio frame in TDD.
  • UD-cfg is signaled through system information (eg, System Information Block, SIB).
  • SIB System Information Block
  • SIB-cfg configured through SIB for a TDD cell.
  • D represents a downlink subframe (DL SF)
  • U represents an uplink subframe (UL SF)
  • S represents an S SFCSpecial Subframe (SFC).
  • Special SFs include DwPTSiDownHnk Pilot TimeSlot, Guard Per iod, and UpPTSCUpl ink Pi lot TimeSlot.
  • DwPTS is a time interval for DL transmission
  • UpPTS is a time interval for UL transmission.
  • FIG. 3 illustrates a resource grid of a DL slot.
  • the DL slot includes a plurality of 0FDMA symbols in the time domain.
  • the DL slot may include 7 (6) 0 FDMA symbols according to the cyclic prefix (CP) length, and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • RB contains 12X7 (6) REs It is.
  • the number N RBs of the RBs included in the DL slot depends on the DL transmission band.
  • the structure of the UL slot is the same as that of the DL slot except that the 0FDMA symbol is replaced by the SC-FDMA symbol.
  • FIG. 4 illustrates a structure of a DL subframe.
  • up to three (4) 0FDMA symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining 0FDMA symbol corresponds to a data region to which a Physical Downlink Shared CHance (PDSCH) is allocated.
  • the DL control channel includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH).
  • PCFICH is transmitted in the first 0FDMA symbol of a subframe and carries information on the number of 0FDMA symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ-ACK signal in response to a UL transmission.
  • the PDCCH includes transmission format and resource allocation information of a downlink shared channel (DL-SCH), transmission format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel.
  • Paging information on (Paging CHannel, PCH) Paging CHannel, PCH
  • system information on DL-SCH resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, It carries Tx power control command and activation instruction information of Voice over IP (VoIP).
  • VoIP Voice over IP
  • DCI Downlink Control Information
  • DCI format 0/4 (hereinafter ULDCI format) for UL scheduling (or UL grant), DCI format 1 / 1A / 1B / 1C / 1D / 2 / 2A / 2B / 2C (hereafter DL) for DL scheduling DCI format) is defined.
  • the UL / DL DCI format includes a hopping flag, RB allocation information, Modular ion Coding Scheme (MCS), Redundancy Version (NDV), NDKNe Data Indicator (TPC), Transmit Power Control (TPC), and DeModulation Reference Signal (DMRS).
  • MCS Modular ion Coding Scheme
  • NDV Redundancy Version
  • TPC NDKNe Data Indicator
  • TPC Transmit Power Control
  • DMRS DeModulation Reference Signal
  • TPC DCI format DCI format 3 / 3A (hereinafter, TPC DCI format) is defined for power control of an uplink signal.
  • the TPC DCI format includes bitmap information for a plurality of UEs, and each 2 bit (DCI format 3) or 1 bit (DCI format 3A) information in the bitmap indicates a TPC command for PUCCH and PUSCH of the corresponding UE. Instruct
  • a plurality of PDCCHs may be transmitted in the control region, and the UE monitors the plurality of PDCCHs in every subframe to identify the PDCCH indicated to the UE.
  • the PDCCH is transmitted through one or more CCEs.
  • the PDCCH coding rate may be adjusted through the number of CCEs (ie, CCE aggregation level) used for PDCCH transmission.
  • CCE includes a Resource Element Group (REG).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a CRCCCyclic Redundancy Check) to the control information.
  • the CRC is masked with an identifier (eg, Radio Network Temporary Identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a UE identifier eg, Cell-RNTI (C-RNTI)
  • C-RNTI Cell-RNTI
  • P-RNTI paging identifier
  • P-RNTI Pag ig-RNTI
  • SIB system information block
  • SI -RNTI System Information RNTI
  • RA-RNTI random access-RNTI
  • Figure 5 illustrates the EPDCCH.
  • EPDCCH is a channel further introduced in LTE-A.
  • a control region (see FIG. 4) of a subframe may be allocated a PDCCH (Legacy PDCCH, L-PDCCH) according to existing LTE.
  • the L-PDCCH region means a region to which an L ⁇ PDCCH can be allocated.
  • a PDCCH may be additionally allocated in a data region (eg, a resource region for PDSCH).
  • the PDCCH allocated to the data region is called an EPDCCH.
  • the EPDCCH carries a DCI.
  • the EPDCCH may carry downlink scheduling information and uplink scheduling information.
  • the terminal may receive the EPDCCH and receive data / control information through the PDSCH that is performed on the EPDCCH.
  • the terminal receives the EPDCCH and the PUSCH through the devoted to the EPDCCH Data / control information can be sent.
  • EPDCCH / PDSCH may be allocated from the first OFDM symbol of the subframe.
  • Non-cross-carrier scheduling is not the same as the scheduling scheme in LTE. same.
  • the DL grant PDCCH may be transmitted on the DL CC # 0, and the corresponding PDSCH may be transmitted on the DL CC # 2.
  • the UL grant PDCCH may be transmitted on DL CC # 0, and the PUSCH to be transmitted may be transmitted on UL CC # 4.
  • the CIF Carrier Indicator Field (CIF) is used.
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and terminal-specific (or terminal group-specific) manner by higher layer signaling (eg, RRC signaling).
  • the scheduling according to the CIF configuration may be arranged as follows.
  • a PDCCH on a DL CC allocates a PDSCH or PUSCH resource on a specific DL / UL CC among a plurality of merged DL / UL CCs using the CIF
  • the base station may allocate one or more PDCCH monitoring DLCC (hereinafter, Monitoring CC, MCC) to the terminal.
  • the UE may perform detection / decoding of the PDCCH only in the MCC. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only on the MCC.
  • the MCC may be configured in a UE-specific, UE-group-specific, or cell-specific manner.
  • MCC includes PCC.
  • Figure 6 illustrates cross-carrier scheduling. Although the figure illustrates DL scheduling, the illustrated applies equally to UL scheduling.
  • DL CC A may be configured as a PDCCH monitoring DL CC (ie, MCC).
  • DL CC A may transmit PDCCH scheduling PDSCH of another CC as well as PDCCH scheduling PDSCH of DL CC A using CIF.
  • PDCCH is not transmitted in DLCCB / C.
  • FIG. 7 illustrates a structure of a UL subframe.
  • a subframe 500 having a length of 1 ms includes two 0.5 ms slots 501.
  • the slot may include a different number of SOFDMA symbols according to the CP length. For example, in the case of a normal CP, a slot is composed of seven SOFDMA symbols, and in the case of an extended CP, a slot is composed of six SC-FDMA symbols.
  • the RB 503 is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
  • the structure of the uplink subframe is divided into a data region 504 and a control region 505 in frequency.
  • the data area includes a PUSCH (Physical Uplink Shared Channel) and is used to transmit data signals such as voice.
  • PUSCH Physical Uplink Shared Channel
  • the control region includes a PUCCH (Physica I Uplink Control Channel) and is used for transmitting the UPC (Upl Ink Control Informat ion).
  • PUCCH includes the (R es0 urce Block) pair (RB pair) RB located on both ends of the data region on the frequency axis, and the slot-hopping as a boundary.
  • the Sounding Reference Signal (SRS) is transmitted in the last SC-FDMA symbol of the subframe.
  • the SRS may be transmitted periodically or aperiodically upon request of the base station.
  • SRS periodic transmission is defined by cell-specific parameters and terminal-specific parameters.
  • the Sal-specific parameter indicates the total set of subframes (hereinafter, cell-specific SRS subframe set) capable of SRS transmission in the sal, and the UE-specific parameter is a subframe subset actually assigned to the UE within the total subframe set. (Hereinafter, referred to as UE-specific SRS subframe set).
  • PUCCH may be used to transmit the following control information.
  • SR Stcheduling Request
  • HARQ-ACK This is a received voice response signal for a DL signal (eg, PDSCH, SPS release PDCCH). For example, in response to a single DL codeword . ACK / NACK1 bits are transmitted, and ACK / NACK 2 bits are transmitted in response to two DL codewords.
  • I CS I Channel Status Information
  • CSI includes Channel Quality Information (CQI), RKRank Indicator), PMKPrecoding Matrix Indicator), PTKPrecoding Type Indicator), and the like.
  • CSI means periodic CSI (p-CSI).
  • Aperiodic CSI (a-CSI) transmitted at the request of the base station is transmitted through the PUSCH.
  • Table 2 shows the relationship between the PUCCH format (PF) and UCI in LTE (-A).
  • the ACK / NAK signals of different terminals are composed of different CS CycHc Shift (frequency domain code) and 0rthogonal Cover Code (CCC) time domain spreading codes (CG) in the CG— CAZ X Computer-Generated Constant Amplitude Zero Auto Correlation It is transmitted through other resources.
  • 0CC contains Walsh / DFT orthogonal codes.
  • ACK / NACK signals of 18 terminals may be multiplexed in the same Physicai Resource Block (PRB).
  • PRB Physical Resource Block
  • ACK / NA is replaced with SR in the structure of PUCCH format la / lb.
  • the PUCCH format 2 includes 5 QPSK data symbols and 2 RS symbols at a slot level.
  • the PUCCH format 2 / 2a / 2b includes 5 QPSK data symbols and 1 RS symbol at the slot level.
  • the RS symbol is located in the fourth SC-FDMA symbol in each slot.
  • PUCCH format 2 can carry a total of 10 QPSK data symbols.
  • Each QPSK symbol is spread in the frequency domain by CS and then mapped to the corresponding SC ⁇ FDMA symbol.
  • RS may be multiplexed by Code Division MuU iplexing (CDM) using CS.
  • CDM Code Division MuU iplexing
  • a / N transmission and CSI transmission may be required in the same subframe.
  • only A / N transmission is performed using PUCCH format la / lb.
  • CSI transmission is dropped.
  • a / N and CSI are transmitted together through PUCCH format 2 / 2a / 2b.
  • a / N is embedded in the second RS of each slot in the PUCCH format 2a / 2b (eg, RS is multiplied by A / N).
  • a / N and CSI are jointly coded and then transmitted through PUCCH format 2.
  • PUCCH format 1 3 3 is used to transmit a plurality of ACK / NACK information and may transmit CSI and / or SR together.
  • one symbol sequence is transmitted over a frequency domain, and a 0CC based time-domain spreading is applied to a corresponding symbol sequence.
  • five SC-FDMA symbols i.e., UCI data parts
  • the symbol sequence ( ⁇ dl, d2,. ⁇ ) May mean a modulation symbol sequence or a codeword bit sequence
  • the symbol sequence ( ⁇ dl, (12, 7)) may be a joint. It may be generated from a plurality of ACK / NACK information through coding (eg, Reed-Muller code, Tail-biting convolutional code, etc.), Block-spreading, and SC-FDMA modulation.
  • coding eg, Reed-Muller code, Tail-biting convolutional code, etc.
  • FIG. 11 illustrates a method for transmitting the UCI on the PUSCH.
  • the UCI may be transmitted through the PUSCH (PUSCH piggyback).
  • PUSCH data ie, UL-SCH data
  • information eg, coded symbols
  • ACK / NACK is inserted through puncturing into a part of the SC-FDMA resource to which the UL-SCH data is mapped.
  • the UCI may be scheduled to be transmitted on the PUSCH without UL-SCH data.
  • the last SC-FOMA symbol of the second slot is not used for PUCCH transmission. Do not.
  • the PUCCH format in which all SC-FDMA symbols in a subframe are used for PUCCH transmission is referred to as a normal PUCCH format
  • the last SC-FDMA symbol in the second slot shortens the PUCCH format in which no PUCCH transmission is used. Referred to as (shortened) PUCCH format.
  • PUSCH data ie, UL-SCH data
  • PUSCH data information eg, encoded symbols
  • a PUSCH in which all SC-FDMA symbols in a subframe are used for PUSCH transmission is generally referred to as a normal PUSCH
  • a PUSCH in which the last SC-FDMA symbol in the second slot is not used is referred to as a rate-matched PUSCH. do .
  • the MAC PDU is transmitted through the Down Ink Shared Channel (DL-SCH) and the Uplink Shared Channel (UL-SCH).
  • DL-SCH Down Ink Shared Channel
  • UL-SCH Uplink Shared Channel
  • a MAC PDU includes a MAC header, zero or more MAC Service Data Units (MAC SDUs), and zero or more MAC Control Elements (MAC CEs).
  • the MAC PDU subheader has the same order as the MAC SDU and MAC CE.
  • the MAC CE is located in front of the MAC SDU.
  • MAC CE is used to carry various MAC control information.
  • the MAC CE includes SCell activation / deactivation information, TAC information, BSR (Buffer Status Report) information, and PHR (Power Headroom Report) information.
  • FIG. 13 shows Power Headroom (CE) MAC CE.
  • FIG. 13 shows an extended PH MAC CE, and may inform the user equipment of the PH of all the merged cells.
  • the fields of PH MAC CE are as follows.
  • [81]-Ci Indicates whether there is a PH field for the SCell having the SCell Index i. C; The field is set to 1 if the PH field for the SCell with SCelllndex i is reported, otherwise it is set to 0.
  • [82]-R Reserved bit. It is set to zero.
  • V Indicates whether the PH value is based on the actual transmission or reference format.
  • ⁇ PH Shows the power headroom level.
  • [85]-P informs the UE whether to apply the power backoff for power management.
  • a plurality of cells merged into one UE are considered to be managed by one base station (Intra-site CA) (see FIG. 1).
  • intra-site CA all cells are managed by one base station, so signaling related to RRC setup / report and MMXMedium Access Control (MMXMedium Access Control) command / message can be performed through any cell among the merged cells. For example, adding or removing a specific SCell to a set of CA cells, changing a transmission mode (TM) of a specific cell, performing a Radio Resource Management (RRM) measurement report associated with a specific cell, and the like.
  • the accompanying signaling can be performed through any cell in the CA cell set.
  • signaling associated with a specific SCell all activation / deactivation process and a Buffer Status Report (BSR) for UL buffer management may be performed through any cell in the CA cell set.
  • BSR Buffer Status Report
  • cell-specific PHR Power Headroom Report
  • TAGCiming Advance Group TAGC
  • a plurality of cells with small coverage may be arranged in cells with a large coverage (eg, macro cells) for traffic optimization.
  • a macro cell and a micro cell may be merged for one terminal, the macro cell is mainly used for mobility management (eg, PCell), and the micro cell is mainly used for through foot boosting (eg, SCell).
  • PCell mobility management
  • SCell through foot boosting
  • cells merged into one terminal may have different coverages, and each cell may be geographically separated. It can be managed by different base stations (black, nodes (e.g. relays)), which are spaced apart from each other (inter-site CA).
  • FIG. 14 illustrates an inter-site CA.
  • radio resource control and management eg, all of RRC and some functions of a MAC
  • a terminal are in charge of a base station managing a PCell (eg, CC1), and each cell (ie, CCl, CC2).
  • the data scheduling and feedback process e.g., the entire function of the PHY and the MAC
  • inter-site CA requires information / data exchange / transmission between cells (ie, between base stations).
  • inter-site CA information / data exchange / transmission may be performed through a backhaul (BH) (eg, a wired X2 interface or a wireless backhaul link).
  • BH backhaul
  • the existing scheme is applied as it is, cell management stability, resource control efficiency, and data transmission acuity may be greatly reduced due to latency caused in the signaling process between base stations.
  • an interlinked PCell eg, CC1 (group) and SCell (eg, CC2) (group), which are merged to one terminal, are managed by the base station -1 and the base station -2, respectively.
  • the base station ie, base station-1) managing the PCell manages / manages the RRC function associated with the corresponding terminal.
  • the RRM Radio Resource Management
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the terminal may perform an RRC reset command.
  • the confirmation response may be transmitted through an SCell (eg, via PUSCH) rather than a PCell.
  • the base station # 2 may need to deliver the confirmation answer back to the base station -1 through the BH.
  • significant latency may be involved in the inter-cell (ie inter-base station) signaling process. This results in a mismatch between the base station and the terminal for CA cell set interpretation. (misalignment) may occur, and stable / efficient cell resource management and control may not be easy.
  • cell-specific power headroom (PHR) of all cells may be transmitted through a PCell (eg, via PUSCH).
  • the base station-1 which manages the PCell
  • the base station-2 which manages the SCell
  • the base station-2 may have to transmit the PHR corresponding to the entire PHR black to the base station-1 through the BH.
  • PHR power headroom
  • DL / UL data scheduling and UCI may be performed for each cell (group) belonging to the same base station.
  • UCI eg, ACK / NACK, CSI, SR
  • a PCell and a SCell merged into one UE belong to BS-1 and BS-2, respectively, a DL / UL grant and a corresponding DL / UL for scheduling DL / UL data transmitted through the PCell.
  • ACK / NACK feedback for data is transmitted through PCell
  • ACK / NACK feedback for corresponding DL / UL data can be transmitted through SCell.
  • aperiodic CSI (a-CSI) / periodic CSI 'p-CSI (periodic CSI' p-CSI) reporting and SR signaling for the PCell is transmitted through the PCell
  • CSI reporting and SR signaling for the SCell is transmitted through the SCell.
  • the present invention proposes to set whether to allow simultaneous transmission of a plurality of PUCCHs through higher layer signaling (eg, RC signaling).
  • simultaneous transmission of a plurality of PUCCHs means simultaneous transmission of a plurality of PUCCHs in a plurality of cells (that is, a plurality of per-cells).
  • a parameter indicating whether to simultaneously transmit PUCCH is defined as “muiti-PUCCH.”
  • multi-PUCCH When multi-PUCCH is set to ON, the UE may perform simultaneous transmission of multiple PUCCHs in one UL subframe.
  • the UE when the multi-PUCCH is set to OFF, the UE cannot perform multiple PUCCH transmission operations in one UL subframe, that is, when the multi-PUCCH is OFF, a plurality of PUCCHs simultaneously in one UL subframe. Transmission is not allowed and only a single PUCCH transmission (on a single cell) may be allowed within one UL subframe.
  • whether to allow simultaneous transmission of SRS and UCI for each cell (group) may be independently configured through higher layer signaling (eg, RRC signaling). If simultaneous transmission of SRS and UCI is allowed, the shortened PUCCH format is used. If simultaneous transmission of SRS and UCI is not allowed, the normal PUCCH format may be used.
  • higher layer signaling eg, RRC signaling
  • an additional terminal operation / process may be required to support multi-PUCCH ON / OFF configuration in an inter-site
  • a situation black is similar CA structure.
  • multi-PUCCH ON a plurality of PUCCHs may be simultaneously transmitted in one UL subframe, and in case of a maximum power limitation situation (for example, the transmission power of the terminal is the maximum power allowance of the terminal). If exceeded), proper UL power adjustment between multiple PUCCHs is required.
  • multi-PUCCH OFF since only one PUCCH may be transmitted in one UL subframe, PUCCH transmission for each cell should be performed at different times. As a result, the UCI (eg, ACK / NACK) transmission timing for each cell is modified.
  • a UL power control method for inter-site CA and multi-channel PUCCH ON / OFF situation is proposed.
  • two cell groups are merged into one UE.
  • the cell group includes one or more cells. Therefore, a cell group may consist of only one cell or a plurality of cells.
  • each cell group may belong to a different base station.
  • the PCell group and the SCell group may be merged into one UE, the PCell group may belong to the base station-1 (eg, macro base station), and the SCell group may belong to base station-2 (eg, micro base station).
  • the PCell group represents a cell group including the PCell.
  • the PCell group consists of the PCell alone or includes a PCell and one or more SCells.
  • SCell group represents a sal group consisting of only SCell and includes one or more SCells.
  • the present invention is a situation in which a plurality of cell groups are merged into one UE and a plurality of UL transmissions (eg, UCI, PUCCH, PUSCH, PRACH, SRS, etc.) are performed in the plurality of cell groups.
  • a UL power control method eg, UCI, PUCCH, PUSCH, PRACH, SRS, etc.
  • the PUCCH may be transmitted through the PCell in the PCell group, and the PUCCH may be configured to be transmitted through one specific SCell all in the SCell group.
  • the SCell configured to transmit the PUCCH in the SCell group is called an ACell.
  • the PCell group and the SCell group may belong to different base stations (eg, PCell-macro base station, SCell-micro base station), or (ii) the PCell group and the SCell group may belong to the same base station.
  • the start index of an implicit PUCCH resource linked to the EPDCCH set (the ECCE resource constituting it), or the PUCCH index offset that can be inferred from it, is different from the ACell (unlike the existing setting for the EPDCCH set configured in the PCell). It is also proposed to set the EPDCCH set configured in the following.
  • signaling information necessary for controlling / determining A / N transmission PUCCH resources through a specific field (eg, TPC / AR0) in the DL grant EPDCCH. It is also proposed to provide / activate a DL grant EPDCCH transmitted to the ACell.
  • information signaled through a TPC / AR0 field in a DL grant EPDCCH according to a frame structure type (FDD or TDD) and an A / N feedback transmission scheme (PF3 or CHsel) may be configured as follows for each cell.
  • SCell may refer to a normal SCell other than PCell and ACell.
  • any cell group is set to be transmitted through a specific ACell (where the cell group may include an ACell), for the cell group (that is, the cell group).
  • All DL grant EPDCCHs that are scheduled all the time and / or transmitted through the corresponding cell group and / or ARIs signaled on all DL grant PDCCHs (to be applied at the same A / N transmission time point) may all have the same value.
  • the UE may operate in a state where it is assumed / assumed that all ARIs in all DL grant PDCCHs have the same value. In this case, the ARI may have an independent value for each cell group.
  • the ARI for the cell group to which the PCell belongs (for the same A / N transmission time point) and the ARI for the cell group to which the ACell belongs may have the same or different values.
  • a power control method in the case where there are a plurality of UL transmissions in a plurality of cells (groups) will be described in detail.
  • the sal may be extended to a cell group.
  • FIG. 15 illustrates a UL power control method according to an embodiment of the present invention.
  • the UL transmission of the PCell (group) and / or SCell (group) may be controlled or controlled. Transmission can be abandoned. Specifically, transmission times of the following channel AJCIs may overlap in one UL subframe.
  • PUCCH with X means PUCCH through which UCI X is transmitted
  • USCH with Y means PUSCH with UCI Y piggyback.
  • the present invention proposes a channel / UCI protection priority for determining a channel / UCI to reduce power or abandon transmission in a maximum power limit situation.
  • the UE maximum power (hereinafter, P max , UE ), cell group maximum power (hereinafter, P max , cgP ), and cell maximum power (hereinafter, P raax , c ) may be set for one terminal.
  • the maximum power limitation situation may be that the transmit power of the corresponding channel / UCI (s) is any one of the terminal total power (P max , UE ), the cell group maximum power (P raax , cgP ), and the cell maximum power (Pmax.c). Can occur when exceeded.
  • the specific UL power adjustment process is as follows: 1) First within one cell per cell Adjust the sum of channel / signal transmit powers to be less than or equal to each cell maximum power (P max , c ), and then 2) the sum of channel / signal transmit powers within one cell group for each cell group after the adjustment is less than or equal to the maximum power (P max, cgp), 3 ) Finally, all the cells (group), the sum of the channel / signal transmission power in the adjustment such that the terminal a total less than or equal to the maximum power (P max, UE) It may consist of steps.
  • the UE may perform a UL power adjustment process by reducing power first or giving up transmission on the channel / UCI having a lower protection priority.
  • Various methods can be used to reduce the transmit power of the channel / UCI with lower protection priority. For example, suppose that the transmission power P A of the channel / UCI with high protection priority is P A and the transmission power P B of the channel / UCI with low protection priority is assumed. In this case, when a situation where P A + P B > P ffl ax , uE occurs, the UE may reduce PB to PB 'or set it to zero. ' May be in the form of ⁇ * PB, PB ⁇ or ⁇ * ⁇ ⁇ ⁇ ⁇ .
  • the unit of the power value may be a linear-scale value or log-scale, where 0 ⁇ ⁇ 1, and ⁇ is a positive real number.
  • the ⁇ value can be determined to satisfy the ⁇ ⁇ + Q * PB ⁇ P MAX, UE.
  • priority refers to channel / UCI protection priority.
  • the priority is 1) when multi-PUCCH ON is configured for a UE having a simultaneous transmission capability of multiple PUCCHs (on multiple cells / carriers), power is reduced or abandoned transmission in a maximum power limit situation.
  • Channel / UCI protection priority for determining the channel / UCI to be transmitted, or 2) when multi-PUCCH OFF is set for a terminal having the simultaneous transmission capability of a plurality of PUCCHs or a terminal having no simultaneous transmission capability of the multiple PUCCHs. In this case, this may mean the channel / UCI protection priority for determining the channel / UCI to give up transmission.
  • power adjustment / transmission abandonment may be determined based on the priority of the highest priority UCI. Specifically, when simultaneous transmission of multiple PUCCHs is required in one UL subframe, the highest priority Power reduction or transmission abandonment may be applied to the PUCCH with a low priority of UCl. If the priority of the highest priority UCI is the same between PUCCHs, reduce the power of each PUCCH at the same rate (ie equal scaling), or lower the priority of the 2nd (or 3rd additional) UCI. Power reduction or abandonment of transmission can be applied first.
  • Power reduction or abandon transmission may be applied first to a PUCCH having a high power value, or conversely, power reduction or abandon transmission may be applied to a PUCCH having a low power value. Or, first apply power reduction or abandon transmission for the PUCCH of the cell (or group of cells) with the highest maximum power allowance, or conversely, first reduce the PUCCH of the cell (or group of cells) with the lower maximum power tolerance, or Transfer abandonment can be applied.
  • the priority of PUCCH format 3 may be set higher than that of other PUCCH formats (eg, 2 / 2a / 2b, 1 / la / lb).
  • the priority of the PUCCH format, 1 series (eg, 1 / la / lb) may be set higher than the priority of the PUCCH format 2 series (eg, 2 / 2a / 2b).
  • the priority of the PUCCH format (eg, 1 / la / lb, 2a / 2b) in which A / N or SR is transmitted may be set higher than the priority of the PUCCH format (eg, 2) in which only CSI is transmitted.
  • the priority of the PUCCH format 2 series (eg 2a / 2b) in which CSI and A / N are simultaneously transmitted is determined by the priority of the PUCCH format 1 series (eg 1 / la / lb) in which A / N and / or SR are transmitted. Can be set higher than priority.
  • the priority of the shortened PUCCH format set / used for SRS transmission / protection is set higher than that of the normal PUCCH format, or conversely, the priority of the normal PUCCH format is shortened. You can set a higher format priority.
  • Power reduction or transmission abandonment may be applied to PUCCH transmitting fewer UCI bits or fewer A / N (and / or SR) bits. In addition, power reduction or transmission abandonment may be applied to a PUCCH transmitting A / N that is performed on a small number of cells or a small number of TB transport blocks.
  • a power reduction or abandon transmission may be applied to a PUCCH transmitting a low priority CSI type.
  • the priority between CSI types may be, for example, in the order of CSI types 3, 5, 6, 2a > CSI types 2, 2b, 2c, 4> CSI types 1, la, and the like.
  • power reduction or abandonment of transmission may be applied to a PUCCH transmitting CSI for a small number of cells or a PUCCH transmitting CSI for a cell having a low priority.
  • the priority between cells may be designated in advance or may be set through RRC signaling. Information fed back according to the CSI type is as follows.
  • [160]-CSI type 1 CQI for UE-selected subband.
  • [165]-CSI type 4 wideband CQI.
  • [166]-CSI type 5 RI and wideband PMI.
  • CSI type 6 RI and PTK Precoding Type Indicator).
  • a priority of the PUCCH transmitted through the FDD cell may be set higher than the priority of the PUCCH transmitted through the TDD cell.
  • the priority of the PUCCH transmitted through the TDD cell may be set higher than the priority of the PUCCH transmitted through the FDD cell.
  • the priority of the PUCCH transmitted through the cell configured as the extended CP may be set higher than the priority of the PUCCH transmitted through the cell configured as the normal CP.
  • normal CP The priority of the PUCCH transmitted through the sal set as may be set higher than the priority of the PUCCH transmitted through the sal set as the extended CP.
  • Cell protection priority may be applied (when UCI priority is the same between PUCCHs).
  • the cell protection priority may be specified in advance (eg, PCell> SCell) or may be set through RRC signaling.
  • a / N transmission corresponding to DL data reception at PCell (or seal group to which PCell belongs) and A / N transmission corresponding to DL data reception at SCell (or SC group consisting of SCell) are the same point in time.
  • the PUCCH corresponding to the SCell A / N may preferentially enjoy power or give up transmission.
  • each cell (group) may be transmitted, and a plurality of SRs transmitted through a plurality of cells (group) may be configured to have 1) the same timing / period. , 2) may be set to have independent timing / periods.
  • Rule 1-1-1-8 may be used alone or in combination. In this case, it is possible to specify in advance which rule or which rule combination is applied or set through RRC signaling.
  • the priority is 1) for a UE having a simultaneous transmission capability of a plurality of PUSCHs (on multiple cells / carriers) to determine a channel / UCI for reducing power or giving up transmission in a maximum power limitation situation. It may mean the channel / UCI protection priority, or 2) in the case of a terminal having no simultaneous transmission capability of a plurality of PUSCH, it may mean a channel / UCI protection priority for determining the channel / UCI to abandon the transmission.
  • power adjustment / transmission abandonment may be determined based on the priority of the highest priority UCI. Specifically, when simultaneous transmission of multiple PUSCHs is required in one IL subframe, power reduction or abandonment of transmission is first performed for a PUSCH having a lower priority of the highest priority UCI.
  • the priority of the highest priority UCI is the same between the PUSCHs, reduce the power of each PUSCH at the same rate, or first reduce the power or give up transmission for the PUSCH with the lower priority of the 2nd (or 3rd) highest priority UCI. Can be applied.
  • Power reduction or transmission abandonment may be applied first to a PUSCH having a high power value, or conversely, power reduction or transmission abandonment may be applied to a PUSCH having a low power value.
  • power reduction or transmission abandonment is first applied to a PUSCH of a cell having a high maximum power allowance (black cell group), or conversely, a power reduction or transmission is first applied to a PUSCH of a cell (or cell group) having a low maximum power allowance. Waiver may apply.
  • the low UCI bit black may first apply power reduction or abandon transmission for the PUSCH transmitting the small A / N (and / or SR) bits.
  • power reduction or abandon transmission may be applied to a PUSCH transmitting A / N for a small number of cells or A / N for a small number of TBs.
  • power reduction or abandon transmission may be applied to a PUSCH transmitting a low priority CSI type.
  • the priority of the CSI type may follow, for example, CSI types 3, 5, 6, and 2a> CSI types 2, 2b, 2c, and 4> CSI types 1 and l a .
  • a small number of cells The PUSCH black that transmits the CSI for may first apply power reduction or abandon transmission to the PUSCH that transmits the CSI for the low priority cell.
  • the priority between cells may be predefined or set through RC signaling.
  • the priority of the PUSCH transmitted through the FDD cell is set higher than the priority of the PUSCH transmitted through the TDD cell, or conversely, the priority of the PUSCH transmitted through the TDD cell is the priority of the PUSCH transmitted through the FDD cell. Can be set higher than the rank.
  • Priority of the PUSCH transmitted through the cell configured as the extended CP is set higher than the priority of the PUSCH transmitted through the cell configured as the normal CP or, conversely, the priority of the PUSCH transmitted through the cell configured as the normal CP. May be set higher than the priority of the PUSCH transmitted through the cell configured as the extended CP.
  • Sal protection priority may be applied (when UCI priority is the same between PUSCHs).
  • the cell protection priority may be specified in advance (for example, PCell> SCell) or may be set through RRC signaling.
  • a / N transmission corresponding to DL data reception at a PCell (or a cell group to which the PCell belongs) and A / N transmission corresponding to DL data reception at a SCell (or a SC group consisting of SCells) are the same point in time.
  • the PUSCH including SCell A / N may be preferentially reduced in power or abandoned in transmission.
  • Rule 2-2 power level
  • Rule 2-3 rate-matching
  • Rule 2-6 may also be used in the case of stratification between PUSCH w / o UCIs (ie PUSCHs transmitted without UCI piggyback). FDD vs. TDD) and / or Rule 2-7 (CP length).
  • the priority is the cell (within that particular cell group) to which the UCI to be piggybacked (for that particular cell group) will be piggybacked. Alternatively, it may be used for selecting a PUSCH.
  • Rule 2-1-2-8 may be used alone or in combination. In this case, you can specify in advance which rule or which rule combination is applied or set through RRC signaling.
  • the priority is 1) in the case of maximum power limitation, when simultaneous PUCCH / PUSCH transmission is configured / allowed for a UE having simultaneous transmission capability for PUCCH / PUSCH (on multiple cells / carriers).
  • UCI priority may follow the scheme defined in Rule 1-1 and 2-1, and channel priority may follow PUCCH> PUSCH.
  • the channel priority can be applied. For example, if the UCI priority is the same or the priority of the UCI transmitted in the PUSCH is lower, the power reduction or abandon transmission is applied to the PUSCH first, and if the priority of the UCI transmitted in the PUCCH is lower, the PUCCH is applied to the PUCCH. Power reduction or abandonment of transmission may be applied first.
  • the channel priority may follow PUCCH ⁇ PUSCH.
  • the power reduction or abandon transmission is applied to the PUSCH first, and when the UCI protection priority is the same or the protection priority of the UCI transmitted on the PUCCH is higher. In the low case, power reduction or transmission abandonment may be applied to the PUCCH first.
  • Power reduction or abandon transmission may be applied first to a channel having a high power value, or conversely, power reduction or abandon transmission may be applied to a channel having a low power value. Or for a channel in a cell with a high maximum power allowance (black Sal group) First, power reduction or abandon transmission may be applied, or conversely, power reduction or abandonment may be applied to a channel of a cell (or group of cells) having a low maximum power allowance.
  • a priority of the PUCCH format 3 may be set higher than that of the PUSCH.
  • the priority of the PUCCH format 2 series (for example, 2a / 2b) that performs simultaneous transmission of CSI and A / N may be set higher than that of PUSCH with A / N.
  • the priority of the PUSCH with A / N to which the rate-matching is applied is set higher than that of the PUCCH, and / or the priority of the PUSCH with A / N to which the rate-matching is not applied is set to the PUCCH (with A / N). It can be set lower than priority. It is also possible to apply priority in reverse (ie, non-rate—matched PUSCH with A / N> PUCCH, and / or PUCCH (with A / N)> rate-matched PUSCH with A / N).
  • the priority of the shortened PUCCH format with A / N may be set higher than the priority of the PUSCH and / or the priority of the normal PUCCH format with A / N may be set lower than the priority of the PUSCH (with A / N). It is also possible to apply priorities on the contrary (ie usually PUCCH format with A / N> PUSCH, and / or PUSCH (with A / N)> shortened PUCCH format with A / N).
  • the low UCI bit black may apply power reduction or abandon transmission first for the channel transmitting the small A / N (and / or SR) bits.
  • power reduction or abandonment of transmission may be applied to a channel transmitting A / N for a small number of cells or A / N for a small number of TBs.
  • Power reduction or transmission abandonment may be applied to a channel transmitting a low priority CSI type first.
  • the priority of the CSI type may follow, for example, CSI types 3, 5, 6, and 2a> CSI types 2, 2b, 2c, and 4> CSI types 1 and la.
  • a channel transmitting CSI for a small number of cells or a channel transmitting CSI for a low priority cell may be used.
  • Power reduction or transmission abandonment may be applied first. Inter-cell priority may be specified in advance or may be set through RRC signaling.
  • the priority of the channel transmitted through the FDD cell is set higher than the priority of the channel transmitted through the TDD cell, or conversely, the priority of the channel transmitted through the TDD cell is prioritized. Can be set higher than the rank.
  • Priority of a channel transmitted through a cell configured as an extended CP is set higher than a priority of a channel transmitted through a cell configured as a normal CP, or vice versa May be set higher than the priority of a channel transmitted through a cell configured as an extended CP.
  • Cell protection priority may be applied (when UCI priority is the same between channels).
  • the cell protection priority may be predefined or set through RRC signaling or the like. For example, A / N transmission for DL data reception on the PCell (or group of cells belonging to the PCell) and A / N transmission for DL data reception on the SCell (or SC group consisting of only SCells) are the same. In case of collision at the time point, the channel carrying the SCell A / N may be preferentially enjoyed power or abandoned transmission.
  • Rule 3-1-3-8 may be used alone or in combination. In this case, it is possible to specify in advance which rule or which rule combination is applied or set through RRC signaling.
  • the transmission time points of the P ACH and / or SRS may overlap in the same subframe, or the transmission time points of the PRACH and / or SRS and the transmission time points of the PUCCH and / or PUSCH may overlap in the same subframe.
  • the priority may follow PRACH> PUCCH / PUSCH> SRS.
  • the priority of the PUCCH / PUSCH may be determined by Rule 3-1 to 3 ⁇ 8.
  • each power is enjoyed at the same ratio, or Rule 3-2 (power level), Rule 3-6 (FDD vs.
  • the PRACH format having a larger (or smaller) OFDMA / SC-FDMA symbol duration is set higher or the priority of the retransmitted PRACH is initially transmitted. It can be set higher than the priority of.
  • Power control using the DCI format is applicable even when a single cell is configured.
  • DCI format 3 / 3A mainly illustrates DCI format 3 / 3A, but the following description may be applied to the DCI format including the TPC field.
  • the same TPC command value and / or false number was applied to all cells.
  • the conventional TPC command has a total of four values (that is, a 2-bit TPC field size) of ⁇ 1 ⁇ 0, 1, 3 dB.
  • an independent TPC command value and / or a number of values eg
  • setting / applying an independent TPC field size could be considered.
  • a TPC command value and / or a number eg, a TPC field size in a DL grant
  • the payload size of DCI format 3 / 3A may vary depending on the type of cell in which DCI format 3 / 3A is transmitted.
  • the UE should attempt blind decoding assuming a different payload size of DCI format 3 / 3A according to the type of cell (eg, PCell, ACell) to receive DCI format 3 / 3A, and DCI format 3 / 3A.
  • the payload interpretation of must also be different.
  • the TPC command value and / or the number of bits eg, the TPC field size in the UL grant
  • applied to the PUSCH transmission of the cell (group) 1 and the PUSCH transmission of the cell (group) 2 may be set differently. .
  • Whether to set the TPC command value and / or number of parameters independently by cell (group) is explicitly indicated through higher layer signals (e.g., RRC signals) or indirectly using other information (or parameters). Can be.
  • the TPC command value and / or the number of bits is independent of the cell (group). Whether or not to be set may be indirectly indicated / set using inter-site CA operation / setting or multi-PUCCH ON / OFF. Specifically, when the inter-site CA is operated / set, when multi-PUCCH is set to ON, the TPC command value and / or the number of pieces may be independently set according to a cell (group).
  • the TPC command of DCI format 3 / 3A used for UE group power control has been previously applied only to PCell PUCCH / PUSCH transmission.
  • time-varying interference due to inter-cell interference control (and / or different DL / UL resource configuration) in an environment (or similar cell environment) composed of clusters in a region where (micro) cells are localized.
  • the TPC command application / accumulation operation for a specific cell may be set to be performed independently for each UL SF (set). For example, when a ULSF capable of PUCCH transmission is divided into two SF sets (for example, SF sets 1 and 2), a TPC command signaled through a DL grant of a DL SF corresponding to SF set 1 is set in SF set 1. Applicable / cumulative only for PUCCH transmission.
  • the TPC command signaled through the DL grant of the DL SF for the SF set 2 may be applied / accumulated only to the PUCCH transmission of the SF set 2.
  • a TPC command signaled through a UL grant that schedules SF set 1 may transmit a PUSCH of SF set 1. Only applicable / can be accumulated.
  • a TPC command signaled through a UL grant scheduling SF set 2 may be applied / accumulated only to PUSCH transmission of SF set 2.
  • the TPC command value and / or the number may be independently set / applied for each SF (set).
  • a TPC command value and / or a hypothesis e.g., signaled through a DL grant that is signaled to the PUCCH transmission of SF set 1 (eg A / N) and the PUCCH transmission of SF set 2 (eg A / N).
  • TPC field size can be set differently.
  • a TPC command value and / or a number (eg, TPC field size) signaled through a UL grant that schedules PUSCH transmission of SF set 1 and PUSCH transmission of SF set 2 may be set differently.
  • UL SF to which the TPC command of DCI format 3 / 3A is applied may be determined as follows.
  • the TPC command may be applied to PUCCH / PUSCH transmission of all UL SFs (sets).
  • the TPC command may be automatically assigned to be applied to PUCCH / PUSCH transmission of a specific UL SF (set).
  • a specific ULSF (set) includes a UL SF (set) with the smallest (set) index (on top layer (eg RRC) signaling / set).
  • Method 2 It is possible to designate which UL SF (set) the TPC command is applied to PUCCH / PUSCH transmission through higher layer signaling (eg, RRC signaling).
  • higher layer signaling eg, RRC signaling
  • TPC command may be applied to PUCCH / PUSCH transmission of a specific UL SF set) when the DL grant timing and / or UL grant timing for scheduling a specific UL SF set).
  • the following options can be considered.
  • Option i) apply method 0), 1) or 2), or before or after option ii) 3 / 3A-TPC timing (and / or when a specific SF offset is added to 3 / 3A-TPC timing).
  • the TPC command may be applied to the PUCCH / PUSCH transmission of the nearest SF set, or the hi) TPC command may not be applied to any SF set.
  • the UE may operate in the state where it is assumed that the DCI format 3 / 3A (TPC command) is not transmitted / received at all times that do not belong / attach to a specific SF set. For example, the UE may omit the blind decoding for the DCI format 3 / 3A at a time point not belonging to / attached to a specific SF set.
  • Method 4 RNTIs (eg, TPC-PUSCH-RNTI and TPC-PUCCH-RNTI) used for (CRC) scrambling of DCI format 3 / 3A may be allocated for each SF (set).
  • the UE may attempt blind decoding for DCI format 3 / 3A using a plurality of RNTIs, and may apply a TPC command to PUCCH / PUSCH transmission of SF (set) in response to the detected RNTI.
  • Method 5 A plurality of TPC command fields (eg, TPC command numbers) applied to each of a plurality of SFs (sets) in one DCI format 3 / 3A may be allocated.
  • the plurality of TPC command fields in the DCI format may be arranged in the SF (set) index order, or may include information indicating SF (set) to which the TPC field is applied.
  • the UE may apply a plurality of TPC commands allocated to itself in the detected DCI format 3 / 3A to PUCCH / PUSCH transmission of a plurality of SFs (set) respectively.
  • Whether or not a plurality of R TI and / or multiple TPC commands are used / assigned for DCI format 3 / 3A is determined through an upper tradeoff signal (eg, RRC signal) and L1 / L2 signal (eg, PDCCH signal). It may be indicated explicitly or indirectly using other information (black is a parameter). For example, whether multiple R TI and / or multiple TPC commands are used / assigned for DCI format 3 / 3A is indirectly indicated using inter-site CA operation / configuration or mu i-PUCCH ON / OFF.
  • RRC signal eg, RRC signal
  • L1 / L2 signal eg, PDCCH signal
  • / Can be set when the inter-site CA is operated / configured and / or the multi-PUCCH is set to ON, a plurality of RNTI and / or multiple TPC commands may be used / assigned for the DCI format 3 / 3A.
  • each cell (group) reflected when PHR is determined during PHR transmission in order to more appropriately and maneuver UL power control / management in a situation in which cells (groups) belonging to different base stations are merged in one UE. It is proposed to report additional information related to the UL transmission. Here, additional information about UL transmission of each cell (group) may be reported through the corresponding PHR or separately from the corresponding PHR.
  • UL transmission information of each cell (group) may include UL transmission of each cell (group), type of UL signal / channel transmitted through each cell (group) (eg, PUCCH, PUSCH, PRACH, SRS), type of UCI transmitted through each cell (group) (eg A / N, SR, CSI), resource information used (eg RB index / area), modulation scheme applied (eg QPSK, 16-) QAM, 64-QAM), a specific parameter value applied (eg, Maximum Power Reduction (MPR), Additional-MPR (A-MPR)).
  • the PHR type eg, Type 1 reflecting only PUSCH power and Type 2 reflecting both PUCCH / PUSCH power
  • PHR type may be independently configured for each cell (group).
  • additional information about UL transmission of each cell (group) may be obtained.
  • the PHR type type set in may be further included.
  • information additionally reported at the time of PHR reporting may be limited to UL transmission information of other cell groups except for its own cell group. For example, in a situation in which two cell groups 1 and 2 are merged in one UE, the UE reports PHR for the entire cell group and the UL transmission related information for cell group 2 as cell group 1, and the cell group. 2 may report the PHR for the entire cell group and the UL transmission related information for the cell group 1.
  • the presence and / or allow simultaneous transmission of PUCCH and PUSCH may be set for each SF (set).
  • whether to allow simultaneous transmission of CSI and A / N and / or related information eg, PUCCH resource allocation for periodic CSI transmission
  • whether to allow simultaneous transmission of SRS and A / N and / or related information eg, SRS transmission band / area allocation, related parameter setting, etc.
  • the presence or absence of PUCCH transmission setting using multiple antennas and / or related information (eg, PUCCH resource allocation, ' power control (offset) parameter setting, etc.)' may be set for each SF (set).
  • FIG. 16 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • the base station or the terminal may be replaced by a relay.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • RF Net 126 is coupled to processor 122 and transmits and / or receives wireless signals.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • a base station may, in some cases, be performed by an upper node thereof. That is, in a network consisting of a plurality of network nodes including a base station, various operations performed for communication with a terminal may be performed by a base station or other network 3 nodes other than the base station.
  • Self-explanatory A base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as UEOJser Equipment (MSO), MSCMobile Station (MSC), and MobiIe Subscriber Station (MSS).
  • an embodiment of the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more appli cation specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable logic gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs appli cation specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable logic gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 무선 통신 시스템에서 단말이 상향링크 전력을 제어하는 방법 및 장치에 있어서, 제1 세트의 UL SF(Uplink Subframe)와 제2 세트의 UL SF를 구성하는 단계; 복수의 단말에 대한 TPC(Transmit Power Control)를 지시하는 비트맵을 포함하는 DCI(Downlink Control Information) 포맷을 수신하는 단계; 및 상기 비트맵 중에서 상기 단말에 대한 TPC 정보를 이용하여 상향링크 채널의 전송 전력을 제어하는 단계를 포함하되, 상기 DCI 포맷이 제1 식별자를 가지는 경우, 상기 TPC 정보는 상기 제1 세트의 UL SF에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되고, 상기 DCI 포맷이 제2 식별자를 가지는 경우, 상기 TPC 정보는 상기 제2 세트의 UL SF에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되는 방법 및 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 캐리어 병합 (Carrier Aggregation, CA)-기반 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치에 관한 것이다.
【배경기술】
[2] 무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스 를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용 한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는
CDMA (code division multiple access) 시스템, FDMA( frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, 0FDMA( orthogonal frequency division multiple access) 시.스템, SC—FDMA( single carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3] 본 발명의 목적은 CA-기반 무선 통신 시스템에서 상향링크 신호를 효율적으 로 전송 /수신하는 방법 및 이를 위한 장치를 제공하는데 있다. 구체적으로, 본 발 명은 인터—사이트 CA(inter-site carrier aggregat ion)에서 상향링크 신호를 효율적 으로 전송 /수신하는 방법 및 이를 위한 장치를 제공하는데 있다.
[4] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속 하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. 【기술적 해결방법】 [5] 본 발명의 일 양상으로, 무선 통신 시스템에서 단말이 상향링크 전력을 제어 하는 방법에 있어서 , 제 1 세트의 UL SFCUpl ink Subirame)와 제 2 세트의 UL SF 를 구 성하는 단계 ; 복수의 단말에 대한 TPC Transmit Power Control )를 지시하는 비트맵 을 포함하는 DCI (Downl ink Control Informat ion) 포맷을 수신하는 단계 ; 및 상기 비 트맵 중에서 상기 단말에 대한 TPC 정보를 이용하여 상향링크 채널의 전송 전력을 제어하는 단계를 포함하되, 상기 DCI 포맷이 제 1 식별자를 가지는 경우, 상기 TPC 정보는 상기 제 1 세트의 UL SF 에서 전송되는 상향링크 채널의 전송 전력을 제어하 는데 사용되고, 상기 DCI 포맷이 제 2 식별자를 가지는 경우, 상기 TPC 정보는 상기 제 2 세트의 UL SF 에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되는 방법 이 제공된다 .
[6] 본 발명의 다른 양상으로, 무선 통신 시스템에서 상향링크 전력을 제어하도 록 구성된 단말에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛 ; 및 프로세서를 포함하고, 상기 프로세서는 제 1 세트의 UL SFCUpl ink Subframe)와 제 2 세트의 UL SF 를 구성하고 복수의 단말에 대한 TPCCTransmit Power Control )를 지시하는 비트맵 을 포함하는 DCKDownl ink Control Informat ion) 포맷을 수신하며, 상기 비트맵 중 에서 상기 단말에 대한 TPC 정보를 이용하여 상향링크 채널의 전송 전력을 제어하 도록 구성되며, 상기 DCI 포맷이 제 1 식별자를 가지는 경우 , 상기 TPC 정보는 상기 제 1 세트의 UL SF 에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되고 , 상기 DCI 포맷이 제 2 식별자를 가지는 경우, 상기 TPC 정보는 상기 제 2 세트의 UL SF 에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되는 단말이 제공된 다.
[7] 바람직하게, 상기 DCI 포맷은 DCI 포맷 3 또는 DCI 포맷 3A 일 수 있다 .
[8] 바람직하게, 상기 DCI 포맷은 CRC(Cycl ic Redundancy Check)를 포함하고, 상 기 제 1 식별자 또는 상기 제 2 식별자는 상기 CRC 에 스크램블 될 수 있다 .
[9] 바람직하게 , 상기 제 1 식별자는 제 1 RNTI (Radio Network Temporary Ident i ty) 이고, 상기 제 2 식별자는 제 2 RNTI 일 수 있다 . [10] 바람직하게, 상기 DCI 포맷이 제 1 식별자를 가지는 경우 상기 TPC 정보는 N 비트이고, 상기 DCI 포맷이 제 2식별자를 가지는 경우 상기 TPC 정보는 M비트이며 N과 M은 서로 다를 수 있다.
【유리한 효과】
[11] 본 발명에 의하면, CA-기반 무선 통신 시스템에서 상향링크 신호를 효율적으 로 전송 /수신할 수 있다. 구체적으로, 인터ᅳ사이트 CA에서 상향링크 신호를 효율적 으로 전송 /수신할수 있다.
[12] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으 며, 언급하지 않은 또 다른 효과돌은 아래의 기재로부터 본 발명이 속하는 기술분 야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[13] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도 면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사 상을 설명한다.
[14] 도 1A~1B는 CACCarrier Aggregation)—기반무선 통신 시스템을 예시한다.
[15] 도 2는 무선 프레임 (radio frame)의 구조를 예시한다.
[16] 도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
[17] 도 4는 하향링크 서브프레임의 구조를 예시한다.
[18] 도 5는 EPDCCH(Enhanced Physical Downlink Control Channel)를 예시한다.
[19] 도 6은 복수의 셀이 구성된 경우의 스케줄링 방법을 예시한다.
[20] 도 7은 상향링크 서브프레임의 구조를 예시한다.
[21] 도 έ은 PUCCH(Physical Uplink Control Channel) 포맷 la/lb의 슬롯 레벨 구 조를 예시한다. =>묵시적 방법은 묻어서 기술 or 도면 없이 정리
[22] 도 9는 PUCCH포맷 2의 슬롯 레벨 구조를 예시한다.
[23] 도 10은 PUCCH포맷 3의 슬롯 레벨 구조를 예시한다. => 명시적 방법은 묻어 서 기술 [24] 도 11 은 PUSCH(Physical Uplink Shared Channel)를 통해 상향링크 제어 정보 를 전송하는 방법을 예시한다.
[25] 도 12는 MAC PDU(Medium Access Control Protocol Data Unit)를 나타낸다.
[26] 도 13은 PH(Power Headroom) MAC CE를 나타낸다 .
[27] 도 14는 인터-사이트 CA( inter-site carrier aggregat ion)를 예시한다.
[28] 도 15는 본 발명의 실시예에 따른 UL 전력 제어를 예시한다.
[29] 도 16은 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
【발명을 실시를 위한 형태】
[30] 이하의 기술은 CDMA(code division multiple access) , FDMA( frequency division multiple access) , TDMA(time division multiple access) , 0FDMA( orthogonal frequency division multiple access) , SCᅳ FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA 는 UTRACUniversal Terrestrial Radio Access)나 CDMA2000 과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA 는 GSM(Global System for Mobile co隱 uni cat ions) /GPRS (General Packet Radio Service)/ EDGE ( Enhanc ed Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRAC Evolved UTRA) 등과 같은 무선 기술로 구 현될 수 있다. UTRA는 UMTS Jniversal Mobile Telecxranunications System)의 일부이 다. 3GPP(3rd Generation Partnership Project) LTE( long term evolution)는 E— UTRA 를 사용하는 E-UMTS(EvolvedUMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향 링크에서 SC-FDMA를 채용한다. LTE-A( Advanced)는 3GPP LTE의 진화된 버전이다.
[31] 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정
(特定) 용어들은 본 발명의 이해를 돕기 위해 제공된 것이며, 이러한 특정 용어는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[32] 먼저, 본 명세서에서 사용되는 용어에 대해 정리한다. [33] · HARQ-ACK( Hybrid Automatic Repeat reQuest Acknowledgement): 하향링크 전 송에 대한 수신웅답결과, 즉, ACK/NACK(Negative ACK)/DTX(Discontinuous Transmission) 웅답 (간단히, ACK/NACK (웅답), AC /NAK (웅답), A/N (웅답))을 나타 낸다. ACK/NACK웅답은 ACK, NACK, DTX또는 NACK/DTX를 의미한다. 여기서, HARQ-ACK 피드백이 필요한 하향링크 전송은 예를 들어 PDSCH(Physical Downlink Shared Channel ) 및 SPS 해제 PDCCH ( Sem i -Per s i s t ent Scheduling release Physical Downlink Control Channel)를 포함한다.
[34] · 셀 (또는 CXXComponent Carrier))에 대웅하는 HARQ-ACK: 해당 셀에 스케줄 링된 하향링크 전송에 대한 ACK/NACK웅답을 나타낸다.
[35] · PDSCH: DL 그랜트 PDCCH 에 대웅하는 PDSCH 및 SPS(Semi -Persistent Scheduling) PDSCH를 포함한다. PDSCH는 전송블록 (transport block) 흑은 코드워드 (codeword)로 대체될 수 있다.
[36] · SPS PDSCH: SPS 에 의해 반-정적으로 설정된 자원을 이용하여 전송되는
PDSCH 를 의미한다. SPS PDSCH 는 대웅되는 DL 그랜트 PDCCH 가 없다. SPS PDSCH 는 PDSCH w/o(without) PDCCH와흔용된다 .
[37] · SPS 해제 (release) PDCCH: SPS 해제를 지시하는 PDCCH를 의미한다. 단말은 SPS 해제 PDCCH에 대한 ACK/NACK 정보를 피드백한다 .
[38] 도 1A~1B는 기존의 캐리어 병합 (Carrier Aggregation, CA)-기반 무선 통신 시 스템을 예시한다. LTE 시스템은 하나의 DL/UL 주파수 블록만을 지원하지만, LTEᅳ A 시스템은 복수의 UL/DL 주파수 블록을 병합하여 더 넓은 주파수 대역을 제공한다. 각 주파수 블록은 콤포넌트 캐리어 (Component Carrier, CC)를 이용해 전송된다. CC 는 주파수 블록의 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)를 나타낸다.
[39] 도 1A~1B를 참조하면, 하나의 기지국에 의해 관리되는 복수의 DL/UL CC가 하 나의 단말에게 병합될 수 있다. CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 CC의 대역폭은 독립적으로 정해질 수 있다. ULCC의 개수와 DLCC의 개 수가다른 비대칭 캐리어 병합도 가능하다. 또한, 시스템 전체 대역이 N 개의 CC로 구성되더라도 특정 단말이 사용할 수 있는 주파수 대역은 L(<N)개의 CC 로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 셀 특정 (cell-specific), 단말 그 룹 특정 (UE group-specific) 또는 단말 특정 (UE-specif ic) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC 를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특 정 CC를 프라이머리 CC(Primary CC, PCC) (또는 앵커 CC)로 지칭하고, 나머지 CC 를 세컨더리 CCXSecondary CC, SCC)로 지칭할 수 있다. PCC 에서만 UCI 가 전송되므로, 복수의 UL CC 에서 복수 PUCCH 의 동시 전송 상황은 발생하지 않으며, 단말의 전력 관리 등을 위해 PCC 에서의 복수의 PUCCH 전송도 허용되지 않는다. 따라서, 기존의 CA시스템에서는 하나의 UL 서브프레임에서 하나의 PUCCH 전송만 가능하다.
[40] LTE(-A)는 무선 자원의 관리를 위해 셀 (cell)의 개념을 사용한다. 셀은 DL 자원과 UL 자원의 조합으로 정의되며, UL 자원은 필수 요소는 아니다. 따라서, 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원으로 구성될 수 있다. 캐리어 병합이 지원되 는 경우, DL 자원의 캐리어 주파수 (또는, DL CC)와 UL 자원의 캐리어 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수 (또는 PCC) 상에서 동작하는 셀을 프라이머리 샐 (Primary Cell, PCell)로 지 칭하고, 세컨더리 주파수 (또는 SCC) 상에서 동작하는 셀을 세컨더리 셀 (Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 RRC 연결 설정 (initial Radio Resource Control connection establishment) 과정 또는 RRC 연결 재—설정 과정을 수 행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수 있다. SCell 은 기지국과 단말간에 R C(Radio Resource Control) 연결이 설정된 이후에 구성 가 능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell 과 SCell 은 서빙 셀로 통칭될 수 있다.
[41] 별도로 언급하지 않는 한, 이하의 설명은 복수의 CC (또는 셀)가 병합된 경우 에 각각의 CC (또는 셀)에 적용될 수 있다. 또한, 이하의 설명에서 CC 는 서빙 CC, 서빙 캐리어, 셀, 서빙 셀 등의 용어로 대체될 수 있다.
[42] 도 2는 무선 프레임 (radio frame) 구조를 예시한다.
[43] 도 2(a)는 FDD Frequency Division Duplex)를 위한 타입 1 무선 프레임 구조 를 예시한다. 무선 프레임은 복수 (예, 10 개)의 서브프레임 (Subframe, SFᅳ)을 포함하 고, SF는 시간 영역에서 복수 (예 2개)의 슬롯을 포함한다. SF 길이는 lms, 슬롯 길 이는 0.5ms 일 수 있다. 슬롯은 시간 영역에서 복수의 OFDM/SC-FDMA심볼을 포함하 고, 주파수 영역에서 복수의 자원블록 (Resource Block, RB)을 포함한다.
[44] 도 2(b)는 TDD(Time Division Duplex)를 위한 타입 2무선 프레임 구조를 예 시한다. 타입 2무선 프레임은 2개의 하프 프레임 (half frame)을 포함하고, 하프 프 레임은 5개의 SF를 포함한다. SF는 2개의 슬롯을 포함한다.
[45] 표 1은 TDD에서 무선 프레임 내 서브프레임들의 UL-DL구성 (Up link-Down 1 ink Configuration, UD-cfg)을 예시한다. UD-cfg는 시스템 정보 (예, System Information Block, SIB)를 통해 시그널링 된다. 편의상, TDD 셀에 대해 SIB 를 통해 설정되는 UD-cfg를 SIB-cfg라고 지칭한다.
【표 II
Figure imgf000009_0001
[46] 표 1에서, D는 DL SF(Downlink Subframe)을, U는 UL SF(Uplink Subframe)을, S 는 S SFCSpecial Subframe)를 나타낸다. 스페셜 SF 는 DwPTSiDownHnk Pilot TimeSlot), GP(Guard Per iod) , UpPTSCUpl ink Pi lot TimeSlot)을 포함한다. DwPTS는 DL 전송을 위한 시간 구간이며 , UpPTS는 UL 전송을 위한 시간 구간이다.
[47] 도 3은 DL슬릇의 자원 그리드를 예시한다.
[48] £ 3을 참조하면, DL슬롯은 시간 도메인에서 복수의 0FDMA심볼을 포함한다. DL슬롯은 CP(Cyclic Prefix) 길이에 따라 7(6)개의 0FDMA심볼을 포함하고, 자원블 록은 주파수 도메인에서 12 개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소는 자원 요소 (Resource Element, RE)로 지칭된다. RB는 12X7(6)개의 RE를 포 함한다. DL슬롯에 포함되는 RB의 개수 NRB는 DL 전송 대역에 의존한다. UL슬롯의 구조는 DL슬롯의 구조와 동일하되, 0FDMA심볼이 SC-FDMA심볼로 대체된다.
[49] 도 4는 DL서브프레임의 구조를 예시한다.
[50] 도 4 를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞에 위치한 최대 3(4)개 의 0FDMA 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 남은 0FDMA 심볼은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. DL 제어 채널은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel)를 포함 한다. PCFICH는 서브프레임의 첫 번째 0FDMA심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 0FDMA심볼의 개수에 관한 정보를 나른다 .PHICH는 UL 전송에 대한 웅답으로 HARQ-ACK신호를 나른다.
[51] PDCCH는 하향링크 공유 채널 (Downlink Shared CHannel , DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (Uplink Shared CHannel , UL-SCH)의 전송 포 맷 및 자원 할당 정보, 페이징 채널 (Paging CHannel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 웅답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등올 나른다.
[52] PDCCH를 통해 DCI (Downlink Control Information)가 전송된다. UL스케줄링 (또 는 UL그랜트)을 위해 DCI 포맷 0/4(이하, ULDCI 포맷), DL스케줄링을 위해 DCI 포 맷 1/1A/1B/1C/1D/2/2A/2B/2C (이하, DL DCI 포맷)가 정의된다. UL/DL DCI 포맷은 호 핑 플래그 (hopping flag), RB 할당 정보, MCS(Modulat ion Coding Scheme) , RV( Redundancy Version), NDKNe Data Indicator) , TPC (Transmit Power Control ) , DMRS(DeModulation Reference Signal) 사이클릭 쉬프트 둥의 정보를 용도에 따라 선 택적으로 포함한다. 또한, 상향링크 신호의 전력 조절을 위해 DCI 포맷 3/3A (이하, TPC DCI 포맷)이 정의된다. TPC DCI 포맷은 복수의 단말을 위한 비트맵 정보를 포함 하며, 비트맵 내에서 각각의 2 비트 (DCI 포맷 3) 또는 1 비트 (DCI 포맷 3A) 정보는 해당 단말의 PUCCH 및 PUSCH에 대한 TPC커맨드를 지시한다 .
8 [53] 제어 영역 내에서 복수의 PDCCH 가 전송될 수 있고, 단말은 자신에게 지시된 PDCCH를 확인하기 위해 매 서브프레임마다 복수의 PDCCH를 모니터링 한다. PDCCH는 하나 이상의 CCE(Control Channel Element)를 통해 전송된다. PDCCH 전송에 사용되 는 CCE 개수 (즉, CCE 병합 레벨 (aggregation level))를 통해 PDCCH 코딩 레이트를 조절할 수 있다. CCE는 REG(Resource Element Group)를 포함한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI 에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRCCCyclic Redundancy Check)를 부가한 다. CRC는 PDCCH 의 소유ᅳ자또는 사용 목적에 따라 식별자 (예, RNTI (Radio Network Temporary Identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 단말 식별자 (예, Cell-RNTI (C-RNTI))가 CRC 에 마스킹 될 수 있다. PDCCH 가 페이징 메시지를 위한 것일 경우, 페이징 식별자 (예, Pag ig-RNTI (P-RNTI))가 CRC 에 마스킹 될 수 있다. PDCCH 가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (System Information Block, SIB))를 위한 것일 경우, SI -RNTI (System Information RNTI)가 CRC 에 마스킹 될 수 있다. PDCCH 가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI (Random Access-RNTI)가 CRC에 마스킹 될 수 있다 .
[54] 도 5는 EPDCCH를 예시한다 . EPDCCH는 LTE-A에서 추가로 도입된 채널이다.
[55] 도 5 를 참조하면, 서브프레임의 제어 영역 (도 4 참조)에는 기존 LTE 에 따른 PDCCH (편의상, Legacy PDCCH, L-PDCCH)가 할당될 수 있다. 도면에서 L-PDCCH 영역은 Lᅳ PDCCH가 할당될 수 있는 영역을 의미한다. 한편, 데이터 영역 (예, PDSCH를 위한 자원 영역) 내에 PDCCH 가 추가로 할당될 수 있다. 데이터 영역에 할당된 PDCCH 를 EPDCCH라고 지칭한다. 도시된 바와 같이, EPDCCH를 통해 제어 채널 자원을 추가 확 보함으로써, L-PDCCH 영역의 제한된 제어 채널 자원으로 인한 스케줄링 제약을 완화 할 수 있다. L-PDCCH와마찬가지로, EPDCCH는 DCI를 나른다 . 예를 들어, EPDCCH는 하향링크 스케줄링 정보, 상향링크 스케줄링 정보를 나를 수 있다. 예를 들어, 단 말은 EPDCCH를 수신하고 EPDCCH에 대웅되는 PDSCH를 통해 데이터 /제어 정보를 수신 할수 있다. 또한, 단말은 EPDCCH를 수신하고 EPDCCH에 대웅되는 PUSCH를 통해 데 이터 /제어 정보를 송신할 수 있다. 셀 타입에 따라 EPDCCH/PDSCH 는 서브프레임의 첫 번째 OFDM 심볼부터 할당될 수 있다.
[56] 다음으로 복수의 CC (또는 셀)가 구성된 경우의 스케줄링에 대해 설명한다. 복수의 (X 가 구성된 경우, 크로스ᅳ캐리어 스케줄링과 논-크로스—캐리어 스케줄링 (또는 셀프 스케줄링)이 사용될 수 있다. 논-크로스-캐리어 스케줄링 (또는 샐프 스 케줄링 )은 기존 LTE에서의 스케줄링 방식과 동일하다.
[57] 크로스-캐리어 스케줄링이 적용될 경우, DL 그랜트 PDCCH 는 DL CC#0 상에서 전송되고, 대응되는 PDSCH는 DL CC#2 상에서 전송될 수 있다. 유사하게, UL 그랜트 PDCCH는 DL CC#0상에서 전송되고, 대웅되는 PUSCH는 UL CC#4 상에서 전송될 수 있 다. 크로스-캐리어 스케즐링을 위해, CIF Carrier Indicator Field, CIF)가 사용된 다. PDCCH내에서 CIF의 존재 여부는 상위 계층 시그널링 (예, RRC 시그널링 )에 의해 반 -정적 및 단말 -특정 (또는 단말 그룹-특정) 방식으로 설정될 수 있다.
[58] CIF 설정에 따른 스케줄링은 다음과 같이 정리될 수 있다.
[59] - CIF 디스에이블드 (disabled): DL CC 상의 PDCCH는 동일한 DL CC상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH 자원을 할당
[60] - CIF 이네이블드 (enabled): DL CC 상의 PDCCH 는 CIF를 이용하여 복수의 병 합된 DL/UL CC 중에서 특정 DL/UL CC 상의 PDSCH또는 PUSCH자원을 할당
[61] CIF가 존재할 경우, 기지국은 단말에게 하나 이상의 PDCCH 모니터링 DLCC (이 하, Monitoring CC, MCC)를 할당할 수 있다. 단말은 MCC 에서만 PDCCH 의 검출 /디코 딩을 수행할 수 있다. 즉, 기지국이 단말에게 PDSCH/PUSCH 를 스케줄링 할 경우, PDCCH 는 MCC 상에서만 전송된다. MCC 는 단말 -특정 (UE-specific), 단말 -그룹 -특정 또는 셀 -특정 (ceU-specific) 방식으로 설정될 수 있다. MCC는 PCC를 포함한다.
[62] 도 6은 크로스-캐리어 스케줄링을 예시한다. 도면은 DL 스케줄링을 예시하고 있지만, 예시된 사항은 UL 스케줄링에도 동일하게 적용된다.
[63] 도 6을 참조하면, 단말에게 3개의 DL CC가 구성되고, DL CC A가 PDCCH 모니 터링 DL CC (즉, MCC)로 설정될 수 있다. CIF 가 디스에이블 된 경우, 각각의 DL CC 는 LTE PDCCH규칙에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송 할 수 있다. 반면, CIF가 이네이블 된 경우, DL CC A (즉, MCC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른 CC의 PDSCH를 스케줄링 하 는 PDCCH도 전송할 수 있다. 본 예에서, DLCCB/C에서는 PDCCH가 전송되지 않는다.
[64] 도 7은 UL서브프레임의 구조를 예시한다.
[65] 도 7을 참조하면, 1ms 길이의 서브프레임 (500)은 두 개의 0.5ms 슬롯 (501)으 로 구성된다. 슬롯은 CP 길이에 따라 다른 수의 SOFDMA 심블을 포함할 수 있다. 예를 들어, 보통 CP의 경우 슬롯은 7개의 SOFDMA심블로 구성되고, 확장 CP의 경 우 슬롯은 6개의 SC-FDMA심볼로 구성된다. RB(503)는 주파수 영역에서 12 개의 부 반송파, 시간 영역에서 한 슬롯에 해당되는 자원 할당 단위이다. 상향링크 서브프 레임의 구조는 주파수 상에서 데이터 영역 (504)과 제어 영역 (505)으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared Channel)를 포함하고 음성 등의 데이 터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(PhysicaI Uplink Control Channel)를 포함하고 UCI (Upl ink Control Informat ion)를 전송에 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양 끝 부분에 위치한 RB(Res0urce Block) 쌍 (RB pair) 을 포함하며 슬롯을 경계로 호핑한다. SRS(Sounding Reference Signal)는 서브프레 임의 마지막 SC-FDMA 심볼에서 전송된다. SRS 는 주기적으로 전송되거나, 기지국의 요청에 따라 비주기적으로 전송될 수 있다. SRS 주기적 전송은 셀ᅳ특정 파라미터와 단말 -특정 파라미터에 의해 정의된다. 샐 -특정 파라미터는 샐 내에서 SRS 전송이 가능한 총 서브프레임 세트 (이하, 셀 -특정 SRS 서브프레임 세트)를 알려주고, 단말 -특정 파라미터는 총 서브프레임 세트 내에서 실제로 단말에게 할당된 서브프레임 서브 세트 (이하, 단말 -특정 SRS서브프레임 세트)를 알려준다.
[66] PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
[67] - SR( Scheduling Request): UL-SCH(Shared Channel) 자원을 요청하는데 사용 되는 정보이다. 00 (0n-0ff Keying) 방식을 이용하여 전송된다.
[68] -HARQ-ACK: DL신호 (예, PDSCH, SPS 해제 PDCCH)에 대한 수신 웅답 신호이다. 일 예로, 하나의 DL코드워드에 대한 웅답으로. ACK/NACK1비트가 전송되고, 두 개의 DL코드워드에 대한응답으로 ACK/NACK 2비트가 전송된다. [69] ᅳ CS I (Channel Status Information): DL 채널에 대한 피드백 정보이다. CSI는 CQI (Channel Quality Information) , RKRank Indicator) , PMKPrecoding Matrix Indicator), PTKPrecoding Type Indicator) 등을 포함한다. 여기서, CSI 는 주기적 CSI (per iodic CSI, p-CSI)를 의미한다. 기지국의 요청에 따라 전송되는 비주기적 CSI (aperiodic CSI, a-CSI)는 PUSCH를 통해 전송된다.
[70] 표 2는 LTE(-A)에서 PUCCH포맷 (PUCCH format , PF)과 UCI의 관계를 나타낸다. 【표 2)
PUCCH 포 ' ¾ 상향 ¾크 제어 정보 (Uplink Control Information, UCI)
포¾ 1 SR(Scheduling Request) (비변조된 파형)
포¾ la 1ᅳ비트 HARQ ACK/NACK (SR존재 /비존재)
포 lb 2-비트 !IARQ ACK/NACK (SR 존재 /비즌재)
1 ¾ 2 CSI (20개의 코딩된 비트)
포¾ 2 CSI 및 卜 또는 2-비트 HAJ¾ ACK/NACK (20비트) (확장 CP만 해당)
포맷 2a CSI 및 1-비트 HARQ ACK/NACK (20+ᅵ개의 코딩된 비트)
포' 2b CSI 및 2—비트 HARQ ACK/NACK (20+2개의 코¾된 비트〉
포맷 3 (LTE-A) HARQ ACK/NACK + SR (48개의 코딩된 비트)
[71] 도 8 은 슬롯 레벨에서 PUCCH 포맷 la/lb 의 구조를 나타낸다. PUCCH 포맷 la/lb 에서는 동일 내용의 제어 정보가 서브프레임 내에서 슬롯 단위로 반복된다. 서로 다른 단말의 ACK/NAK신호는 CG— CAZ XComputer-Generated Constant Amplitude Zero Auto Correlation) 시퀀스의 서로 다른 CS CycHc Shift) (주파수 도메인 코드) 와 0CC(0rthogonal Cover Code) (시간 도메인 확산 코드)로 구성된 서로 다른 자원을 통해 전송된다. 0CC는 왈쉬 (Walsh)/DFT직교 코드를 포함한다. CS의 개수가 6개이 고 0C 의 개수가 3 개인 경우, 18 개 단말의 ACK/NACK신호가 동일한 PRB(Physicai Resource Block) 안에 다중화 될 수 있다. PUCCH포맷 1에서는 PUCCH포맷 la/lb의 구조에서 ACK/NA 이 SR로 대체된다 .
[72] 도 9는 슬롯 레벨에서 PUCCH포맷 2의 구조를 나타낸다.
[73] 도 9를 참조하면, 보통 CP가 구성된 경우 PUCCH포맷 2는 슬롯 레벨에서 5 개의 QPSK 데이터 심볼과 2 개의 RS 심볼을 포함한다. 확장 CP 가 구성된 경우, PUCCH포맷 2/2a/2b는 슬롯 레벨에서 5 개의 QPSK 데이터 심볼과 1 개의 RS 심볼을 포함한다. 확장 CP가 구성된 경우, RS 심볼은 각 슬롯에서 4 번째 SC-FDMA 심볼에 위치한다. 따라서 , PUCCH포맷 2 는 총 10 개의 QPSK 데이터 심볼을 나를 수 있다. 각각의 QPSK 심볼은 CS 에 의해 주파수 도메인에서 확산된 뒤 해당 SCᅳ FDMA 심볼로 맵핑된다. RS는 CS를 이용하여 CDM(Code Division MuU iplexing)에 의해 다중화 될 수 있다. A/N전송과 CSI 전송이 동일 서브프레임에서 요구될 수 있다. 이 경우, 상 위 계층에서 A/N+CSI 동시 전송 비-허용으로 설정되면 ("Simultaneous-AN-and-CQI" 파라미터 =0FF), A/N전송만 PUCCH포맷 la/lb를 이용하여 수행되고, CSI 전송은 드 랍된다. 반면, A/N+CQI 동시 전송 허용으로 설정되면 ("Simultaneous-AN-and-CQI" 파 라미터 =0N), A/N과 CSI는 PUCCH포맷 2/2a/2b를 통해 함께 전송된다. 구체적으로, 보통 CP인 경우, A/N은 PUCCH포맷 2a/2b에서 각슬롯의 두 번째 RS에 임베디드 (예, RS에 A/N을 곱함) 된다. 확장 CP인 경우 , A/N과 CSI는 조인트 코딩된 뒤 PUCCH포 맷 2를 통해 전송된다.
[74] 도 10은 슬롯 레벨의 PUCCH포맷 3구조를 예시한다ᅳ PUCCH포1 ¾ 3은 복수의 ACK/NACK정보를 전송하는데 사용되며, CSI 및 /또는 SR을 함께 전송할 수 있다.
[75] 도 10 을 참조하면, 하나의 심볼 시퀀스가 주파수 영역에 걸쳐 전송되고, 해 당 심블 시뭔스에 0CC 기반의 시간-도메인 확산이 적용된다. 구체적으로, 길이 -5 (또는 길이 -4)의 0CC(C1~C5)를 이용해 하나의 심볼 시퀀스({(11,(12, })로부터 5 개 의 SC-FDMA 심볼 (즉, UCI 데이터 파트)이 생성된다. 여기서, 심볼 시퀀스 ({dl,d2, .})는 변조 심볼 시퀀스 또는 코드워드 비트 시뭔스를 의미할 수 있다. 심볼 시뭔스 ({dl, (12,···})는 조인트 코딩 (예, Reed-Muller code, Tail-biting convolutional code등), 블톡 -확산 (Block-spreading), SC-FDMA변조를 거쳐 복수의 ACK/NACK정보로부터 생성될 수 있다.
[76] 도 11은 PUSCH를 통해 UCI를 전송하는 방법을 예시한다. UCI 전송이 요구되 는 서브프레임에 PUSCH 할당이 있는 경우, UCI 는 PUSCH 를 통해 전송될 수 있다 (PUSCH 피기백). 구체적으로, CSI/PMI 및 RI 의 피기백을 위해, PUSCH 데이터 (즉, UL-SCH 데이터) 정보 (예, 부호화된 심볼)는 CSI/PMI 및 RI 의 양을 고려하여 레이트 -매칭 (rate-matching)된다. 한편, ACK/NACK 은 UL-SCH 테이터가 맵핑된 SC-FDMA 의 자원의 일부에 펑처링을 통해 삽입된다. 또한, UCI 는 UL-SCH 데이터 없이 PUSCH상 에서 전송되도록 스케줄링 될 수 있다. [77] 한편, 각 단말은 자신 /다른 단말의 SRS 를 보호하기 위해, 샐—특정 SRS 서브 프레임 세트에서 PUCCH 를 전송해야 하는 경우, 두 번째 슬롯의 마지막 SC— FOMA 심 볼을 PUCCH 전송에 사용하지 않는다. 편의상, 서브프레임의 모든 SC-FDMA 심볼이 PUCCH 전송에 사용되는 PUCCH 포맷을 보통 (normal) PUCCH 포맷이라고 지칭하고, 두 번째 슬롯의 마지막 SC-FDMA 심볼이 PUCCH 전송에 사용되지 않는 PUCCH 포맷을 쇼 튼드 (shortened) PUCCH 포맷이라고 지칭한다. 동일한 이유로, 셀 -특정 SRS 서브프레 임 세트에 PUSCH가 할당된 경우, 각 단말은 두 번째 슬롯의 마지막 SC-FDMA 심볼을 PUSCH 전송에 사용하지 않는다. 구체적으로, PUSCH 데이터 (즉, UL-SCH 데이터) 정보 (예, 부호화된 심볼)는 마지막 SC-FDMA 심블의 자원 양을 고려하여 레이트-매칭된 다. 편의상, 서브프레임의 모든 SC-FDMA 심볼이 PUSCH 전송에 사용되는 PUSCH를 보 통 (normal) PUSCH 라고 지칭하고, 두 번째 슬롯의 마지막 SC-FDMA 심볼이 사용되지 않는 PUSCH를 레이트-매칭된 PUSCH라고 지칭한다 .
[78] 도 12는 MAC PDU를 나타낸다. MAC PDU는 DL-SCH(Downl ink Shared Channel) 및 UL-SCH(Uplink Shared Channel)를 통해 전송된다.
[79] 도 12를 참조하면, MAC PDU는 MAC 헤더, 0 이상의 MAC SDU(MAC Service Data Unit), 0 이상의 MAC CE(MAC Control Element)를 포함한다. MAC PDU서브헤더는 대 웅하는 MAC SDU, MAC CE와 동일한 순서를 갖는다. MAC CE는 MAC SDU의 앞에 위치한 다. MAC CE 는 다양한 MAC 제어 정보를 나르는데 사용된다. 예를 들어, MAC CE 는 SCell 활성화 /비활성화 정보, TAC정보, BSR(Buffer Status Report) 정보, PHR(Power Headroom Report) 정보를 포함한다.
[80] 도 13은 PH(Power Headroom) MAC CE를 나타낸다. 도 13은 확장 (Extended) PH MAC CE를 나타내며 , 단말에게 병합된 전체 샐에 대한 PH를 알려줄 수 있다. PH MAC CE의 필드는 다음과 같다.
[81] - Ci: SCell Index i를 갖는 SCell에 대한 PH 필드가 존재하는지 알려준다. C; 필드는 SCelllndex i를 갖는 SCell에 대한 PH 필드가 보고되는 경우 1로 세팅되고, 그렇지 않은 경우 0으로 세팅된다.
[82] - R: 예비 비트 (Reserved bit). 0으로 세팅된다. [83] ᅳ V: PH 값이 실제 전송 또는 기준 포맷 (reference format)에 기초한 것인지 알려준다.
[84] ᅳ PH: 파워 헤드룸 레벨을 알려준다.
[85] - P: 단말이 전력 관리를 위해 파워 백오프를 적용하는지 알려준다.
[86] - PCMC,C: 앞에 위치하는 PH 필드의 값을 계산하는데 사용된 셀 별 최대 파워 에 관한 정보를 알려준다.
[87] 실시예: 인터-사이트 CA에서의 전력 조정
[88] 기존의 LTE-A 에서는 한 단말에게 병합되는 복수 셀들은 모두 하나의 기지국 에서 관리하는 것을 고려한다 (인트라—사이트 CA) (도 1 참조). 인트라ᅳ사이트 CA 에 서는 모든 샐을 하나의 기지국이 관리하므로 RRC 설정 /리포트 및 MMXMedium Access Control) 커맨드 / 메시지 등에 관련된 시그널링은 병합된 모든 셀 중 어떤 셀을 통 해서도 수행될 수 있다. 예를 들어, 특정 SCell 을 CA 셀 세트에 추가하거나 해제하 는 과정 특정 셀의 전송 모드 (Transmission Mode, TM)를 변경하는 과정, 특정 셀에 연관된 RRM(Radio Resource Management) 측정 리포트를 수행하는 과정 등에 수반되 는 시그널링은 CA 셀 세트 내 어떤 셀을 통해서도 수행 가능하다. 다른 예로, 특정 SCell 올 활성화 /비활성화시키는 과정, UL 버퍼 관리를 위한 BSR(Buffer Status Report) 등에 수반되는 시그널링도 CA 셀 세트 내 어떤 셀을 통해서도 수행 가능하 다. 또 다른 예로, UL 전력 제어를 위한 셀-별 PHR(Power Headroom Report), UL 동 기 제어를 위한 TAGC iming Advance Group)-별 TACCTiming Advance Co醒 and) 등도 CA 셀 세트 내 어떤 셀을 통해서도 시그널링 될 수 있다.
[89] 한편, LTE-A 이후 차기 시스템에서는 트래픽 최적화 등을 위해 커버리지가 큰 샐 (예, 매크로 셀) 내에 커버리지가 작은 다수 샐 (예, 마이크로 셀)들이 배치될 수 있다. 예를 들어, 한 단말에 대해 매크로 셀과 마이크로 셀이 병합될 수 있고, 매 크로 셀은 주로 이동성 관리 용도 (예, PCell)로 사용되고, 마이크로 셀은 주로 쓰루 풋 부스팅 용도 (예, SCell)로 사용되는 상황을 고려할 수 있다. 이 경우 하나의 단 말에게 병합되는 셀들은 서로 다른 커버리지를 가질 수 있고, 각각의 셀은 지리적 으로 떨어진 서로 다른 기지국 (흑은, 이에 상웅하는 노드 (예, 릴레이))에 의해 각 각 관리될 수 있다 (인터-사이트 CA).
[90] 도 14는 인터—사이트 CA를 예시한다. 도 14를 참조하면, 단말에 대한 무선 자원 제어 및 관리 (예, RRC전체 및 MAC의 일부 기능) 등은 PCell (예, CC1)을 관리 하는 기지국에서 담당하고, 각 셀 (즉, CCl, CC2)에 대한 데이터 스케즐링 및 피드백 과정 (예, PHY 전체 및 MAC의 주요 기능) 등은 해당 샐을 관리하는 각 기지국에서 담 당하는 방식을 고려할 수 있다. 따라서, 인터-사이트 CA에서는 셀간 (즉, 기지국간) 정보 /데이터 교환 /전달이 요구된다. 기존 시그널링 방식을 고려 시, 인터-사이트 CA에서 샐간 (즉, 기지국간) 정보 /데이터 교환 /전달은 백홀 (Backhaul, BH) (예, 유선 X2 인터페이스 흑은 무선 백홀 링크)를 통해 수행될 수 있다. 그러나, 기존 방식을 그대로 적용 시, 기지국간 시그널링 과정에서 유발되는 레이턴시 등으로 인해 셀 관리 안정성, 자원 제어 효율성, 데이터 전송 적웅성 등이 크게 감소될 수 있다.
[91] 일 예로, 도 14 와 같이, 한 단말에게 병합된 PCell (예, CC1) (그룹)과 SCell (예, CC2) (그룹)이 각각 기지국 -1과 기지국 -2에 의해 관리되고 있는 인터-사 이트 CA상황을 가정할 수 있다. 또한, PCell을 관리하는 기지국 (즉, 기지국 -1)에서 해당 단말에 연관된 RRC기능을 관리 /담당한다고 가정한다. 이 때, SCell 과 연관된 RRM( Radio Resource Management ) 즉정 (예, RSRP( Reference Signal Received Power), RSRQ(Reference Signal Received Quality)) 리포트가 PCell 이 아닌 SCell (예, via PUSCH)을 통해 전송된다면, 기지국 -2는 RRM측정 리포트를 BH을 통해 기지국 -1에게 전달해야 할 수 있다. 또한, RRM 리포트에 기초하여, 예를 들어 기지국ᅳ1 이 SCell 올 CA 셀 세트에서 해제시키는 RRC 재설정 명령을 PCell (예, via PDSCH)을 통해 단 말에게 지시한 경우, 단말은 RRC 재설정 명령에 대한 컨펌 웅답 (confirmation response)을 PCell이 아닌 SCell (예, via PUSCH)을 통해 전송할 수 있다. 이 경우, 기지국ᅳ2는 컨펌 웅답을 다시 BH등을 통해 기지국 -1에게 전달해야 할 수 있다. 따 라서, 인터-사이트 CA에서는 셀간 (즉, 기지국간) 시그널링 과정에서 상당한 레이턴 시가 수반될 수 있다. 이로 인해 CA 셀 세트 해석에 대한 기지국과 단말간 불일치 (misalignment)가 발생할 수 있고, 안정 /효율적인 셀 자원 관리 및 제어가 용이하 지 않을 수 있다.
[92] 다른 예로, 위와 동일한 인터-사이트 CA 상황에서 모든 셀의 셀-별 PHR(Power Headroom)이 PCell (예, via PUSCH)을 통해 전송될 수 있다. 이 경우, (PCell 을 관리하는) 기지국 -1은 전체 PHR흑은 SCell 에 해당되는 PHR을 BH등을 통해 (SCell을 관리하는) 기지국 -2로 전달해야 할 수 있다. 반대로, 모든 샐의 셀- 별 PHR이 SCell을 통해 전송되는 경우, 기지국 -2는 전체 PHR흑은 PCell에 해당되 는 PHR을 BH둥을 통해 기지국 -1에게 전달해야 할수 있다. 이 때도 기지국간 시그 널링에 수반되는 레이턴시로 인해 안정 /효율적인 UL 전력 제어 및 이를 기반으로 한 적응적인 UL 데이터 스케줄링 /전송이 용이하지 않을 수 있다.
[93] 이로 인해, 인터-사이트 CA 상황에서는 DL/UL 데이터 스케출링 및 UCI (예, ACK/NACK, CSI, SR) 전송이 동일 기지국에 속한 셀 (그룹) 별로 수행될 수 있다. 예 를 들어, 한 단말에게 병합된 PCell과 SCell 이 각각 기지국 -1과 기지국 -2에 속한 상황을 가정하면, PCell을 통해 전송되는 DL/UL 데이터를 스케줄링 하는 DL/UL그랜 트 및 해당 DL/UL 데이터에 대한 ACK/NACK피드백은 PCell 을 통해 전송되고, SCell 을 통해 전송되는 DL/UL 데이터를 스케줄링 하는 DL/UL 그랜트 및 해당 DL/UL 데이 터에 대한 ACK/NACK피드백은 SCell 을 통해 전송될 수 있다. 또한, PCell 에 대한 비주기적 CSK aperiodic CSI, a-CSI)/주기적 GSI (per iodic CSI ' p-CSI) 보고 및 SR 시그널링은 PCell 을 통해 전송되고, SCell 에 대한 CSI 보고 및 SR 시그널링은 SCell을 통해 전송될 수 있다. 따라서 , 인터-사이트 CA (혹은 이와 유사한 CA구조) 에서는 기존과 달리 복수 셀에서 PUCCH 동시 전송 동작이 수반 /허용돼야 할 수 있 다. 그러나, 복수 샐에서 PUCCH 동시 전송을 허용하는 것은 단말의 상황 /조건 (예, 하드웨에 위치) 등에 따라 UL 신호의 단일 반송파 특성을 열화시켜 UL 성능 손실 을 야기할 수 있다.
[94] 따라서, 본 발명에서는 먼저 복수 PUCCH의 동시 전송 허용 여부를 상위 계층 시그널링 (예, R C 시그널링)을 통해 설정할 것을 제안한다. 여기서, 복수 PUCCH 의 동시 전송은 복수 샐에서 복수 PUCCH 의 동시 전송 (즉, 복수의 셀-별 (Per-cell) PUCCH 동시 전송)을 포함한다. 편의상, PUCCH 동시 전송 여부를 지시하는 파라미터 를 "muiti -PUCCH' '라고 정의한다. multi-PUCCH 가 ON으로 설정된 경우, 단말은 하나 의 UL 서브프레임 내에서 복수 PUCCH 의 동시 전송을 수행할 수 있다. 반면, multi-PUCCH 가 OFF 로 설정된 경우, 단말은 하나의 UL 서브프레임에서 복수 PUCCH 전송 동작올 수행할 수 없다. 즉, multi-PUCCH 가 OFF 인 경우, 하나의 UL 서브프레 임 내에서 복수 PUCCH 동시 전송이 허용되지 않고, 하나의 UL 서브프레임 내에서는 (단일 셀 상에서) 단일 PUCCH 전송만이 허용될 수 있다.
[95] 한편, (i) 서로 다른 샐 상에서 주기적 CSI 와 주기적 /비주기적 SRS 의 동시 전송, (ii) 서로 다른 샐 상에서 주기적 CSI와 비주기적 CSI의 동시 전송, (iii) 서 로 다른 샐 상에서 복수의 비주기적 CSI 들의 동시 전송, 및 /또는 (iv) 서로 다른 셀 상에서 SR와주기적 /비주기적 SRS의 동시 전송에 대해서도 허용 여부를 상위 계 층 시그널링 (예, RRC 시그널링)을 통해 설정할 수 있다. 또한ᅳ 서로 다른 셀 상에서 HARQ-ACK 과 주기적 /비주기적 SRS 의 동시 전송에 대해서도 허용 여부를 상위 계층 시그널링 (예, RRC 시그널링)을 통해 설정할 수 있다.
[96] 또한, 셀 (그룹) 별로 SRS와 UCI의 동시 전송 허용 여부를 상위 계층 시그널 링 (예, RRC 시그널링)을 통해 독립적으로 설정할 수 있다. SRS 와 UCI 의 동시 전송 이 허용되는 경우 쇼튼드 (shortened) PUCCH포맷이 사용되고, SRS와 UCI의 동시 전 송이 허용되지 않는 경우 보통 (normal) PUCCH 포맷이 사용될 수 있다.
[97] 한편, 인터-사이트 A 상황 (흑은 유사한 CA 구조)에서 multi-PUCCH ON/OFF 설정을 지원하기 위해 추가적인 단말 동작 /과정이 요구될 수 있다. 예를 들어, multi-PUCCH ON 에서는 하나의 UL 서브프레임에서 복수 PUCCH가 동시 전송될 수 있 는데, 최대 전력 제한 (maximum power limitation) 상황인 경우 (예, 단말의 전송 전 력이 단말 최대 전력 허용치를 초과한 경우), 복수 PUCCH 간에 적절한 UL 전력 조정 (power adjustment)이 필요하다. 또한, multi-PUCCH OFF 에서는 하나의 UL서브프레 임에서 하나의 PUCCH 만이 전송될 수 있으므로 셀 별 PUCCH 전송이 서로 다른 시점 에 수행되어야 한다. 이에 따라, 셀 별 UCI (예, ACK/NACK) 전송 타이밍도 변형되어 야 할수 있다. 이하에서는 인터-사이트 CA 및 multiᅳ PUCCH ON/OFF상황 (혹은 이와 유사한 구조)를 위한 UL 전력 제어 방법에 대해 제안한다.
[98] 발명의 이해를 돕기 위해, 이하에서는 하나의 단말에게 2 개 셀 그룹이 병합 된 상황을 가정한다. 예를 들어 , 하나의 단말에게 셀 그룹 1과 셀 그룹 2가 병합된 상황을 가정한다. 여기서, 셀 그룹은 하나 이상의 샐을 포함한다. 따라서, 셀 그룹 은 하나의 셀만으로 구성되거나, 복수의 셀로 구성될 수 있다ᅳ 여기서, 각각의 셀 그룹은 서로 다른 기지국에 속할 수 있다. 구체적으로, 하나의 단말에게 PCell 그 룹과 SCell 그룹이 병합되고, PCell 그룹은 기지국 -1(예, 매크로 기지국)에 속하고, SCell 그룹은 기지국 -2(예, 마이크로 기지국)에 속할 수 있다. 여기서, PCell 그룹 은 PCell을 포함하는 셀 그룹을 나타낸다. PCell 그룹은 PCell 단독으로 구성되거나, PCell과 하나 이상의 SCell을 포함한다. SCell 그룹은 SCell만으로 구성된 샐 그룹 을 나타내며 하나 이상의 SCell 을 포함한다. 그러나, 이는 예시로서, 본 발명은 하 나의 단말에게 3 개 이상의 샐 그룹 (예, 하나의 PCell 그룹과 둘 이상의 SCell 그룹) 이 병합된 상황에도 동일 /유사하게 적용될 수 있다.
[99] 또한, 본 발명은 하나의 단말에게 복수의 셀 그룹이 병합되고, 복수의 셀 그 룹에서 복수의 UL 전송 (예, UCI, PUCCH, PUSCH, PRACH, SRS 등)이 수행되는 상황에 서의 UL 전력 제어 방법에 대해 제안한다. 따라서, 이하에서, 서로 다른 기지국에 속하는 복수의 셀 그룹이 하나의 단말에게 병합된 경우를 위주로 설명하지만, 이는 예시로서 본 발명은 하나의 기지국에 속하는 복수의 셀 그룹이 하나의 단말에게 병 합된 경우에도 동일 /유사하게 적용될 수 있다.
[100] 한편, 하나의 단말에게 PCell 그룹과 SCell 그룹이 병합된 경우, PCell 그룹 에서 PUCCH는 PCell을 통해 전송되고, SCell 그룹에서 PUCCH는 하나의 특정 SCell 올 통해 전송되도록 설정될 수 있다. 편의상, SCell 그룹에서 PUCCH를 전송하도록 설정된 SCell을 ACell이라고 지칭한다. 여기서, (i) PCell 그룹과 SCell 그룹은 서 로 다른 기지국에 속하거나 (예, PCell - 매크로 기지국, SCell - 마이크로 기지국), (ii) PCell 그룹과 SCell 그룹은 동일한 기지국에 속할 수 있다. [101] ACell을 통해 PUCCH를 사용한 A/N 전송이 수행되도록 설정되는 경우, EPDCCH 기반의 스케줄링과 연동되는 특정 PUCCH 파라미터 및 DCI 시그널링 등이 ACell 에도 제공되어야 할 수 있다. 따라서, EPDCCH 세트 (이를 구성하는 ECCE자원)에 링크되 는 묵시적 PUCCH 자원의 시작 인텍스 혹은 이를 유추할 수 있는 PUCCH 인텍스 오프 셋을, (PCell 에 구성되는 EPDCCH 세트에 대해서만 설정하는 기존과는 달리) ACell 에 구성되는 EPDCCH세트에 대해서도 설정하는 것을 제안한다.
[102] 또한, DL그랜트 EPDCCH내의 특정 필드 (예, TPC/AR0)를 통해 A/N전송 PUCCH 자원의 제어 /결정에 필요한 정보 (예, TPC/ARO/ARI 값)를 시그 ί링 하는 것을, ACell 에 대웅 /전송되는 DL 그랜트 EPDCCH 에 대해서도 제공 /활성화하는 것을 제안한다. 세부적으로, 프레임 구조 타입 (FDD또는 TDD) 및 A/N 피드백 전송 방식 (PF3 또는 CHsel)에 따라 DL 그랜트 EPDCCH 내의 TPC/AR0 필드를 통해 시그널링 되는 정보는 셀 별로 다음과 같이 구성될 수 있다. 여기서, SCell 은, PCell 및 ACell 을 제외한 나머지 보통 SCell을 의미할 수 있다.
[103] 1) FDD with PF3
[104] A. TPC필드
[105] i. PCell 혹은 ACell을 스케줄링 하는 DL 그랜트: TPC 값
[106] ii. SCell을 스케즐링 하는 DL그랜트: ARI 값
[107] B. AR0필드
[108] i. PCell 흑은 ACell을 스케줄링 하는 DL그랜트: AR0값
[109] ii. SCell을 스케줄링 하는 DL그랜트: 고정 값 (fixed value)
[110] 2) FDD with CHsel
[111] A. TPC필드
[112] i. PCell 혹은 ACell을 스케줄링 하는 DL 그랜트: TPC 값
[113] ii. SCell을 스케줄링 하는 DL그랜트: ARI 값
[114] B. AR0필드
[115] i. PCell 혹은 ACell을 통해 전송되는 DL그랜트: AR0값
[116] ii. SCeU을 통해 전송되는 DL그랜트: 고정 값 [117] 3) TDD with PF3
[118] A. TPC필드
[119] i. PCell 혹은 ACell을 스케줄링 하는 DL그랜트: TPC 값
[120] ii. SCell을 스케줄링 하는 DL 그랜트: ARI 값
[121] B. ARO필드
[122] i. PCell 혹은 ACell을 스케줄링 하면서 DAI = 1에 대웅되는 DL 그랜트: AR0값
[123] ii. PCell 흑은 ACell을 스케줄링 하면서 DAI = 1에 대응되지 않는 DL그 랜트: ARI 값
[124] iii. SCell을 스케줄링 하는 DL 그랜트: 고정 값
[125] 4) TDD with CHsel
[126] A. TPC필드
[127] i. PCell 흑은 ACell을 스케줄링 하는 DL그랜트: TPC값
[128] ii. SCell을 스케즐링 하는 DL그랜트: ARI 값
[129] B. AR0필드
[130] i. PCell 혹은 ACell을 통해 전송되는 DL그랜트: AR0값
[131] ii. SCell을 통해 전송되는 DL그랜트: 고정 값
[132] 또한, 임의의 샐 그룹에 대한 A/N 피드백이 특정 ACell 을 통해 전송되도록 설정된 경우 (이때, 해당 셀 그룹은 ACell 을 포함할 수 있음), 해당 셀 그룹에 대한 (즉, 해당 셀 그룹올 스케줄링 하는 및 /또는 해당 셀 그룹을 통해 전송되는) 모든 DL 그랜트 EPDCCH 및 /또는 모든 DL 그랜트 PDCCH 를 통해 시그널링 되는 (동일한 A/N 전송 시점에 적용될) ARI는 모두 동일한 값을 가지도록 할 수 있다. 즉, 단말은 모든 DL 그랜트 PDCCH 내의 ARI 가 모두 동일한 값을 갖는다고 가정 /간주한 상태에 서 동작할 수 있다. 이때, ARI는 셀 그룹별로 독립적인 값을 가질 수 있다. 일 예로, (동일한 A/N전송 시점에 대하여) PCell이 속한 셀 그룹에 대한 ARI와 ACell 이 속 한 셀 그룹에 대한 ARI는 동일하거나서로 다른 값을 가질 수 있다. [1333 이하, 복수의 샐 (그룹)에서 복수의 UL 전송이 있는 경우의 전력 조절 방법 에 대해 구체적으로 설명한다. 이하에세 샐은 셀 그룹으로 확장될 수 있다.
[134] 도 15 는 본 발명의 일 실시예에 따른 UL 전력 제어 방법을 예시한다. 도 15 를 참조하면, PCell (group)와 SCell (group)에서 동시에 UL 전송이 있고, 최대 전 력 제한 상황인 경우, PCell (group) 및 /또는 SCell (group)의 UL 전송은 전력이 제 어되거나 전송 포기될 수 있다. 구체적으로, 다음의 채널 AJCI 들의 전송 시점이 하 나의 UL서브프레임에서 겹칠 수 있다. 여기서, "PUCCH with X"는 UCI X가 전송되는 PUCCH를 의미하고, USCH with Y"는 UCI Y가 피기백 된 PUSCH를 각각 의미한다. "Z
+ W"는 UCI Z와 UCI W가 함께 전송되는 경우를 의미한다.
[135] 1) PUCCH with A/N
[136] 2) PUCCH with p-CSI
[137] 3) PUCCH with SR
[138] 4) PUCCH with A/N + p-CSI
[139] 5) PUCCH with A/N + SR
[140] 6) PUCCH with A/N + p-CSI + SR
[141] 7) PUSCH with A/N
[142] 8) PUSCH with p-CSI
[143] 9) PUSCH with a-CSI
[144] 10) PUSCH with A/N + p-CSI
[145] 11) PUSCH with A/N + a-CSI
[146] 본 발명에서는 최대 전력 제한 상황에서 전력을 줄이거나 전송을 포기하 채널 /UCI 를 결정하기 위한 채널 /UCI 보호 우선순위에 대하여 제안한다. 하나의 단 말에 대해 단말 총 최대 전력 (이하, Pmax,UE), 셀 그룹 최대 전력 (이하, Pmax,cgP), 셀 최대 전력 (이하, Praax,c)이 설정될 수 있다. 최대 전력 제한 상황은 해당 채널 /UCI (들) 의 전송 전력이 단말 총 최대 전력 (Pmax,UE), 셀 그룹 최대 전력 (Praax,cgP) 및 셀 최대 전력 (Pmax.c) 중 어느 하나라도 초과한 경우에 발생할 수 있다. 이와 같은 최대 전력 이 주어진 상황에서 구체적인 UL 전력 조정 과정은, 1) 먼저 셀 별로 하나의 셀 내 에서의 채널 /신호 전송 전력의 합이 각 샐 최대 전력 (Pmax,c) 이하가 되도록 조정한 다음, 2) 셀 그룹별로 하나의 셀 그룹 내에서의 채널 /신호 전송 전력의 총합이 각 셀 그룹 최대 전력 (Pmax,cgp) 이하가 되도록 조정한 후, 3) 마지막으로 전체 셀 (그룹) 내에서의 채널 /신호 전송 전력의 총합이 단말 총 최대 전력 (Pmax,UE) 이하가 되도록 조정하는 단계로 구성될 수 있다.
[147] 이 경우, 단말은 보호 우선순위가 더 낮은 채널 /UCI 에 대하여 먼저 전력을 줄이거나, 전송을 포기하는 방식으로 UL 전력 조정 과정을 수행할 수 있다. 보호 우선순위가 더 낮은 채널 /UCI 의 전송 전력을 줄이기 위해 다양한 방법이 사용될 수 있다. 예를 들어, 보호 우선 순위가 높은 채널 /UCI 의 전송 전력올 PA라고 하고, 보 호 우선 순위가 낮은 채널 /UCI의 전송 전력올 PB라고 가정한다. 이 경우, PA + PB > Pfflax,uE인 상황이 발생하면, 단말은 PB를 PB'로 줄이거나 0으로 할 수 있다. '는 α *PB, PBᅳ 또는 α*ΡΒ士 β 형태일 수 있다. 여기서, 전력 값의 단위는 선형-스케일 값또는 로그-스케일일 수 있고, 0< α<1이며, β는 양의 실수이다. 예를 들어 , ΡΑ + Q*PB ≤ PMAX,UE를 만족하는 α 값이 결정될 수 있다. 이하에서, 다르게 언급하지 않 는 한, 우선순위는 채널 /UCI 보호 우선순위를 지칭한다.
[148] < PUCCH간충돌 >
[149] 본 방법에서 우선순위는, 1) (복수 셀 /캐리어 상에서) 복수 PUCCH 의 동시 전 송 능력이 있는 단말에게 multi-PUCCH ON 이 설정된 경우, 최대 전력 제한 상황에서 전력을 줄이거나 전송을 포기하는 채널 /UCI 을 결정하기 위한 채널 /UCI 보호 우선순 위를 의미하거나, 2) 복수 PUCCH 의 동시 전송 능력이 있는 단말에게 multi-PUCCH OFF가 설정되는 경우 또는 복수 PUCCH의 동시 전송 능력이 없는 단말의 경우, 전송 을 포기하는 채널 /UCI을 결정하기 위한 채널 /UCI 보호 우선순위를 의미할 수 있다.
[150] A. Rule 1-1: UCI 우선순위 (priority)
[151] UCI 우선순위는 A/N>SR>p-CSI 흑은 A/N = SR > p— CSI로 정해질 수 있다. 하 나의 PUCCH 를 통해 복수의 UCI 가 전송되는 경우, 최 우선순위 (highest priority) UCI 의 우선순위를 기준으로 전력 조정 /전송 포기를 결정할 수 있다. 구체적으로, 하나의 UL 서브프레임에서 복수 PUCCH 의 동시 전송이 요구되는 경우, 최 우선순위 UCl 의 우선순위가 낮은 PUCCH 에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다 . PUCCH 간 최 우선순위 UCI 의 우선순위가 동일한 경우에는 동일 비율 (즉, equal scal ing)로 각 PUCCH 의 전력을 줄이거나, 2nd (혹은 , 추가로 3rd) 최 우선순 위 UCI 의 우선순위가 낮은 PUCCH 에 대하여 먼저 전력 감소 또는 전송 포기를 적용 할 수 있다 . PUCCH 에 전송되는 UCI 수가 다르면서 1st 및 /또는 2nd 최 우선순위 UCI 의 우선순위가 모두 동일한 경우에는 UCI 개수가 작은 PUCCH 에 대해 먼저 전력 감 소 또는 전송 포기를 적용할 수 있다 . 예를 들어, (A/N + p-CSI + SR) > (A/N + SR) > (A/N + p-CSI) > A/N >= SR > p-CSI 순서로 우선순위를 적용할 수 있다.
[152] B. Rule 1-2: 전력 레벨
[153] 높은 전력 값올 갖는 PUCCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용하 거나, 반대로 낮은 전력 값을 갖는 PUCCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있다 . 또는, 최 대 전력 허용치가 높은 샐 (혹은 셀 그룹)의 PUCCH 에 대 해 먼저 전력 감소 또는 전송 포기를 적용하거나ᅳ 반대로 최 대 전력 허용치가 낮은 셀 (혹은 셀 그룹)의 PUCCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있 다 .
[154] Rule 1—3 : PUCCH 포맷
[155] PUCCH 포맷 3 의 우선순위를 다른 PUCCH 포맷 ( 예, 2/2a/2b, 1/la/lb)의 우선순 위보다 높게 설정할 수 있다. 또한 , PUCCH 포맷 , 1 계열 (예, 1/la/lb)의 우선순위를 PUCCH 포맷 2 계열 (예 , 2/2a/2b)의 우선순위보다 높게 설정할 수 있다 . 또한, A/N 또는 SR 이 전송되는 PUCCH 포맷 (예 , 1/la/lb, 2a/2b)의 우선순위를 CSI 만 전송되는 PUCCH 포맷 ( 예, 2)의 우선순위보다 높게 설정할 수 있다. 또한, CSI 와 A/N 이 동시 전송되는 PUCCH 포맷 2 계열 (예, 2a/2b)의 우선순위를 A/N 및 /또는 SR 이 전송되는 PUCCH 포맷 1 계열 (예, 1/la/lb)의 우선순위보다 높게 설정할 수 있다 . 또한 , (동일 PUCCH 포맷에 대하여 ) SRS 전송 /보호 등을 위해 설정 /사용되는 쇼튼드 PUCCH 포맷의 우선순위를 보통 PUCCH 포맷의 우선순위보다 높게 설정하거나, 반대로 보통 PUCCH 포맷의 우선순위를 쇼튼드 PUCCH 포맷의 우선순위보다 높게 설정할 수 있다 .
[156] Rule 1-4: UCI 사이즈 [157] 적은 UCI 비트 혹은 적은 A/N (및 /또는 SR) 비트를 전송하는 PUCCH에 대해 먼 저 전력 감소 또는 전송 포기를 적용할 수 있다. 또한, 적은 수의 셀 또는 적은 수 의 TB Transport Block)에 대웅되는 A/N을 전송하는 PUCCH에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있다.
[158] Rule 1-5: CSI 타입 /사이즈
[159] 낮은 우선순위의 CSI 타입을 전송하는 PUCCH에 대해 먼저 전력 감소 또는 전 송 포기를 적용할 수 있다. CSI 타입간 우선순위는 예를 들어 CSI 타입 3, 5, 6, 2a >CSI 타입 2, 2b, 2c, 4>CSI 타입 1, la등의 순서를 따를 수 있다. 또한, 적은 수 의 셀에 대한 CSI를 전송하는 PUCCH혹은 우선순위가낮은 셀에 대한 CSI를 전송하 는 PUCCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. 샐 간 우선순 위는 미리 지정되거나, RRC 시그널링 등을 통해 설정될 수 있다. CSI 타입에 따라 피드백 되는 정보는 다음과 같다.
[160] - CSI 타입 1: 단말 -선택 서브밴드 (UE-selected subband)에 대한 CQI.
[161] - CSI 타입 la: 서브밴드 CQI 및 second PMKPrecoding Matrix Index)
[162] - CSI 타입 2, 2b, 2c: 와이드밴드 CQI 및 PMI.
[163] - CSI 타입 2a: 와이드밴드 PMI.
[164] - CSI 타입 3: RKRand Indicator).
[165] - CSI 타입 4: 와이드밴드 CQI.
[166] - CSI 타입 5:RI 및 와이드밴드 PMI.
[167] - CSI 타입 6: RI 및 PTKPrecoding Type Indicator).
[168] Rule 1-6: FDD vs. TDD
[169] FDD 셀을 통해 전송되는 PUCCH 의 우선순위를 TDD 셀을 통해 전송되는 PUCCH 의 우선순위보다 높게 설정할 수 있다. 반대로, TDD 셀을 통해 전송되는 PUCCH의 우 선순위를 FDD 셀을 통해 전송되는 PUCCH의 우선순위보다 높게 설정할 수 있다.
[170] Rule 1-7: CP길이
[171] 확장 CP로 설정된 샐을 통해 전송되는 PUCCH의 우선순위를 보통 CP로 설정된 셀을 통해 전송되는 PUCCH 의 우선순위보다 높게 설정할 수 있다. 반대로, 보통 CP 로 설정된 샐을 통해 전송되는 PUCCH의 우선순위를 확장 CP로 설정된 샐을 통해 전 송되는 PUCCH의 우선순위보다 높게 설정할 수 있다.
[172] Rule 1-8: 셀 우선순위
[173] (PUCCH 간에 UCI 우선순위 등이 동일한 경우) 셀 보호 우선순위를 적용할 수 있다. 셀 보호 우선순위는 미리 지정되거나 (예, PCell > SCell), RRC시그널링 등을 통해 설정될 수 있다. 일 예로, PCell (혹은 PCell 이 속한 씰 그룹)에서의 DL 데이 타 수신에 대웅되는 A/N 전송과 SCell (혹은 SCell 로만 구성된 샐 그룹)에서의 DL 데이타 수신에 대응되는 A/N전송이 동일 시점에 충돌하는 경우, SCell A/N에 대응 되는 PUCCH에 대해 우선적으로 전력을 즐이거나 전송을 포기할 수 있다.
[174] SR의 경우, 각 셀 (그룹) 별로 전송될 수 있으며, 복수 샐 (그룹)을 통해 전 송되는 복수의 SR은, 1) 모두 동일한 하나의 타이밍 /주기 (period)를 가지도록 설정 되거나, 2) 각각 서로 독립적인 타이밍 /주기 (period)를 가지도록 설정될 수 있다.
[175] Rule 1-1-1-8은 단독으로 사용되거나조합되어 사용될 수 있다. 이 경우, 어 떤 Rule 혹은 어떤 Rule 조합이 적용되는지를 미리 지정해두거나 RRC 시그널링 등 을 통해 설정할 수 있다.
[176] < PUSCH간 층돌 >
[177] 본 방법에서 우선순위는, 1) (복수 셀 /캐리어 상에서) 복수 PUSCH의 동시 전 송 능력이 있는 단말이 최대 전력 제한 상황에서 전력을 줄이거나 전송을 포기하는 채널 /UCI를 결정하기 위한 채널 /UCI 보호 우선순위를 의미하거나, 2) 복수 PUSCH의 동시 전송 능력이 없는 단말의 경우, 전송을 포기하는 채널 /UCI 를 결정하기 위한 채널 /UCI 보호 우선순위를 의미할 수 있다.
[178] Rule 2-1: UCI 우선순위
[179] UCI 우선순위는 A/N > aᅳ CSI > p-CSI 흑은 'A/N > a-CSI = p-CSI로 정해질 수 있 다. 하나의 PUSCH 를 통해 복수의 UCI 가 전송되는 경우, 최 우선순위 (highest priority) UCI의 우선순위를 기준으로 전력 조정 /전송 포기를 결정할 수 있다. 구체 적으로, 하나의 IL 서브프레임에서 복수 PUSCH 의 동시 전송이 요구되는 경우, 최 우선순위 UCI의 우선순위가 낮은 PUSCH에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. PUSCH 간 최 우선순위 UCI 의 우선순위가 동일한 경우에는 동일한 비율로 각 PUSCH의 전력을 줄이거나, 2nd (혹은, 추가로 3rd) 최 우선순위 UCI의 우 선순위가 낮은 PUSCH 에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. PUSCH에 전송되는 UCI 수가 다르면서 1st 및 /또는 2nd 최 우선순위 UCI의 우선순위 가 모두 동일한 경우에는 UCI 수가 작은 PUSCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용한다. 예를 들어, (A/N + a-CSI) >= (A/N + p-CSI) > A/N > a-CSI >= p-CSI 순서로 우선순위를 적용할 수 있다.
[180] Rule 2-2: 전력 레벨
[181] 높은 전력 값을 갖는 PUSCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용하 거나, 반대로 낮은 전력 값을 갖는 PUSCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. 또는, 최대 전력 허용치가 높은 셀 (흑은 셀 그룹)의 PUSCH 에 대 해 먼저 전력 감소 또는 전송 포기를 적용하거나, 반대로 최대 전력 허용치가 낮은 셀 (혹은 셀 그룹)의 PUSCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있 다.
[182] Rule 2-3: 레이트 -매칭 (rate—matching)
[183] (SRS 전송 /보호 등을 위해) 레이트-매칭이 적용된 PUSCH 의 우선순위를 그렇 지 않은 PUSCH 의 우선순위보다 높게 설정하거나, 반대로 레이트-매칭이 적용된 PUSCH의 우선순위를 그렇지 않은 PUSCH의 우선순위보다 낮게 설정할 수 있다.
[184] Rule 2-4: UCI 사이즈
[185] 적은 UCI 비트 흑은 적은 A/N (및 /또는 SR) 비트를 전송하는 PUSCH 에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. 또한, 적은 수의 셀에 대웅되는 A/N 혹은 적은 수의 TB에 대웅되는 A/N을 전송하는 PUSCH에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다.
[186] Rule 2-5: CSI 타입 /사이즈
[187] 낮은 우선순위의 CSI 타입을 전송하는 PUSCH 에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. CSI 타입의 우선순위는 예를 들어 CSI 타입 3, 5, 6, 2a > CSI 타입 2, 2b, 2c, 4 > CSI 타입 1, la를 따를 수 있다. 또한, 적은 수의 셀 에 대한 CSI 를 전송하는 PUSCH 흑은 우선순위가 낮은 셀에 대한 CSI 를 전송하는 PUSCH 에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. 샐 간 우선순위 는 미리 지정되거나, R C 시그널링 등을 통해 설정될 수 있다.
[188] Rule 2-6: FDD vs. TDD
[189] FDD 셀을 통해 전송되는 PUSCH 의 우선순위를 TDD 셀을 통해 전송되는 PUSCH 의 우선순위보다 높게 설정하거나, 반대로 TDD 샐올 통해 전송되는 PUSCH 의 우선순 위를 FDD 셀을 통해 전송되는 PUSCH의 우선순위보다높게 설정할 수 있다.
[190] Rule 2-7: CP 길이
[191] 확장 CP로 설정된 셀을 통해 전송되는 PUSCH의 우선순위를 보통 CP로 설정된 샐을 통해 전송되는 PUSCH 의 우선순위보다높게 설정하거나, 반대로 보통 CP로 설 정된 셀을 통해 전송되는 PUSCH 의 우선순위를 확장 CP로 설정된 셀을 통해 전송되 는 PUSCH의 우선순위보다 높게 설정할 수 있다.
[192] Rule 2-8: 셀 우선순위
[193] (PUSCH 간에 UCI 우선순위 등이 동일한 경우) 샐 보호 우선순위를 적용할 수 있다. 셀 보호 우선순위는 미리 지정되거나 (예, PCell > SCell), RRC시그널링 등을 통해 설정될 수 있다. 일 예로, PCell (혹은 PCell 이 속한 셀 그룹)에서의 DL 데이 타 수신에 대웅되는 A/N 전송과 SCell (혹은 SCell 로만 구성된 샐 그룹)에서의 DL 데이타 수신에 대응되는 A/N 전송이 동일 시점에 층돌하는 경우 SCell A/N을 포함 하는 PUSCH에 대해 우선적으로 전력을 줄이거나 전송을 포기할 수 있다.
[194] 또한, PUSCH w/o UCI (즉, UCI 피기백 없이 전송되는 PUSCH)들간 층돌의 경우 에도 Rule 2-2 (전력 레벨), Rule 2-3 (레이트-매칭), Rule 2-6 (FDD vs. TDD) 및 / 또는 Rule 2-7 (CP 길이) 방식 등을 적용할 수 있다. 또한, Rule 2-2, 2-3, 2-6 또 는 2-7 에서 우선순위는 (하나 이상의 셀로 구성된) 특정 셀 그룹에 대한 /대웅되는 UCI 가 피기백 될 (해당 특정 셀 그룹 내) 셀 혹은 PUSCH 를 선택하기 위한 용도로 사용될 수 있다. [195] Rule 2-1-2-8 은 단독으로 사용되거나 조합되어 사용될 수 있다 . 이 경우, 어 떤 Rule 혹은 어떤 Rule 조합이 적용되는지를 미리 지정해두거나 RRC 시그널링 등 을 통해 설정할 수 있다 .
[196] < PUCCH/PUSCH 간 층돌 >
[197] 본 방법에서 우선순위는 , 1) (복수 셀 /캐리어 상에서 ) PUCCH/PUSCH 에 대한 동 시 전송 능력이 있는 단말에 게 PUCCH/PUSCH 동시 전송이 설정 /허용된 경우, 최대 전력 제한 상황에서 전력을 줄이거나 전송을 포기하는 채널 /UCI 을 결정하기 위한 채널 /UCI 보호 우선순위를 의미하거나, 2) PUCCH/PUSCH 에 대한 동시 전송 능력 이 있 는 단말에 게 PUCCH/PUSCH 동시 전송이 설정 /허용되지 않은 경우 또는 PUCCH/PUSCH 에 대한 동시 전송 능력이 없는 단말의 경우, 전송을 포기하는 채널 /UCI 을 결정하 기 위 한 채널 /UCI 보호 우선순위를 의미할 수 있다 .
[198] Rule 3-1: UCI/채널 우선순위
[199] UCI 우선순위는 Rule 1-1 및 2-1 에 정의된 방식을 따르고, 채널 우선순위는 PUCCH > PUSCH 를 따를 수 있다 . UCI 우선순위를 적용한 뒤, 채널 우선순위를 적용할 수 있다 . 일 예로 , UCI 우선순위가 동일하거나 PUSCH 로 전송되는 UCI 의 우선순위가 더 낮은 경우에는 PUSCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용하고, PUCCH 로 전송되는 UCI 의 우선순위가 더 낮은 경우에는 PUCCH 에 대해 먼저 전력 감소 또 는 전송 포기를 적용할 수 있다. 다른 예로, 채널 우선순위는 PUCCH < PUSCH 를 따를 수 있다 . 이 경우, PUSCH 로 전송되는 UCI 의 보호 우선순위가 더 낮은 경우에는 PUSCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용하고, UCI 보호 우선순위가 동 일한 경우 혹은 PUCCH 로 전송되는 UCI 의 보호 우선순위가 더 낮은 경우에는 PUCCH 에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있다 .
[200] Rule 3-2: 전력 레벨
[201] 높은 전력 값을 갖는 채널에 대해 먼저 전력 감소 또는 전송 포기를 적용하 거나, 반대로 낮은 전력 값을 갖는 채널에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있다 . 또는, 최대 전력 허용치가 높은 셀 (흑은 샐 그룹)의 채널에 대해 먼저 전력 감소 또는 전송 포기를 적용하거나, 반대로 최대 전력 허용치가 낮은 셀 (혹은 셀 그룹)의 채널에 대해 먼저 전력 감소 또는 전송포기를 적용할 수 있다.
[202] Rule 3-3: 채널 포맷
[203] PUCCH포맷 3 의 우선순위를 PUSCH 의 우선순위보다 높게 설정할 수 있다. 또 한, PUSCH with A/N 의 우선순위를 PUCCH 포맷 1 계열 (예, 1/la/lb)의 우선순위 및 / 또는 PUCCH 포맷 2 계열 (예, 2/2a/2b)의 우선순위보다 높게 설정할 수 있다. 또한, CSI 와 A/N 의 동시 전송을 수행하는 PUCCH 포떳 2 계열 (예, 2a/2b)의 우선순위를 PUSCH with A/N의 우선순위보다 높게 설정할 수 있다. 또한, 레이트-매칭이 적용된 PUSCH with A/N의 우선순위를 PUCCH의 우선순위보다 높게 설정하고 /하거나 레이트- 매칭이 적용되지 않은 PUSCH with A/N의 우선순위를 PUCCH (with A/N)의 우선순위보 다 낮게 설정할 수 있다. 또한, 반대로 우선순위를 적용하는 것도 가능하다 (즉, 논 -레이트—매칭된 PUSCH with A/N > PUCCH, 및 /또는 PUCCH (with A/N) > 레이트 -매칭 된 PUSCH with A/N). 또한, 쇼튼드 PUCCH 포맷 with A/N 의 우선순위를 PUSCH 의 우 선순위보다 높게 설정하고 /하거나 보통 PUCCH 포맷 with A/N 의 우선순위를 PUSCH (with A/N)의 우선순위보다 낮게 설정할 수 있다. 또한, 반대로 우선순위를 적용하 는 것도 가능하다 (즉, 보통 PUCCH포맷 with A/N > PUSCH, 및 /또는 PUSCH (with A/N) >쇼튼드 PUCCH포맷 with A/N).
[204] Rule 3-4: UCI 사이즈
[205] 적은 UCI 비트 흑은 적은 A/N (및 /또는 SR) 비트를 전송하는 채널에 대해 먼 저 전력 감소 또는 전송 포기를 적용할 수 있다. 또한, 적은 수의 셀에 대웅되는 A/N혹은 적은 수의 TB 에 대웅되는 A/N을 전송하는 채널에 대하여 먼저 전력 감소 또는 전송 포기를 적용할 수 있다.
[206] Rule 3-5: CSI 타입 /사이즈
[207] 낮은 우선순위의 CSI 타입을 전송하는 채널에 대해 먼저 전력 감소 또는 전 송 포기를 적용할 수 있다. CSI 타입의 우선순위는 예를 들어 CSI 타입 3, 5, 6, 2a >CSI 타입 2, 2b, 2c, 4>CSI 타입 1, la를 따를 수 있다. 또한, 적은 수의 셀에 대 한 CSI 를 전송하는 채널 혹은 우선순위가 낮은 셀에 대한 CSI 를 전송하는 채널에 대해 먼저 전력 감소 또는 전송 포기를 적용할 수 있다. 셀 간 우선순위는 미리 지 정되거나, RRC 시그널링 등을 통해 설정될 수 있다.
[208] Rule 3—6: FDD vs. TDD
[209] FDD 셀을 통해 전송되는 채널의 우선순위를 TDD 셀을 통해 전송되는 채널의 우선순위보다 높게 설정하거나, 반대로 TDD 샐을 통해 전송되는 채널의 우선순위를 FDD 샐을 통해 전송되는 채널의 우선순위보다높게 설정할 수 있다.
[210] Rule 3-7: CP 길이
[211] 확장 CP로 설정된 셀을 통해 전송되는 채널의 우선순위를 보통 CP로 설정된 셀을 통해 전송되는 채널의 우선순위보다 높게 설정하거나, 반대로 보통 CP로 설정 된 셀을 통해 전송되는 채널의 우선순위를 확장 CP 로 설정된 샐을 통해 전송되는 채널의 우선순위보다 높게 설정할 수 있다.
[212] Rule 3-8: 셀 우선순위
[213] (채널간에 UCI 우선순위 등이 동일한 경우) 셀 보호 우선순위를 적용할 수 있다. 샐 보호 우선순위는 미리 지정되거나 (예, PCell > SCell), RRC 시그널링 등을 통해 설정될 수 있다. 일 예로, PCell (혹은 PCell 이 속한 셀 그룹)에서의 DL 데이 타수신에 대웅되는 A/N 전송과 SCell (혹은 SCell로만 구성된 샐 그룹)에서의 DL 데 이타수신에 대웅되는 A/N 전송이 동일 시점에 충돌하는 경우, SCell A/N 을 나르는 채널에 대하여 우선적으로 전력을 즐이거나 전송을 포기할 수 있다.
[214] Rule 3-1-3-8 은 단독으로 사용되거나 조합되어 사용될 수 있다. 이 경우, 어 떤 Rule 혹은 어떤 Rule 조합이 적용되는지를 미리 지정해두거나 RRC 시그널링 등 을 통해 설정할 수 있다.
[215] 한편, P ACH 및 /또는 SRS 의 전송 시점이 동일 서브프레임에서 겹치거나, PRACH 및 /또는 SRS의 전송 시점과 PUCCH 및 /또는 PUSCH의 전송 시점이 동일 서브프 레임에서 겹칠 수 있다. 이 경우, 우선순위는 PRACH > PUCCH/PUSCH > SRS를 따를 수 있다. PUCCH/PUSCH의 우선순위는 Rule 3-1~3ᅳ8에 의해 결정될 수 있다. 또한, PRACH 간층돌 및 SRS간 층돌 시에는 동일한 비율로 각각의 전력을 즐이거나, Rule3— 2 (전 력 레밸), Rule 3—6 (FDD vs. TDD), Rule 3-7 (CP 길이) 및 /또는 Rule 3-8 (셀 우선 순위) 방식 등을 적용하거나, (미리 지정되거나 R C시그널링 등을 통해 설정된) 셀 간 보호 우선순위에 따른 전력 감소 /전송 포기를 적용할 수 있다. 또한, PRACH들간 충돌 시에는 더 큰 (혹은, 더 작은) OFDMA/SC-FDMA 심볼 구간 (duration)을 갖는 PRACH 포맷의 우선순위를 더 높게 설정하거나, 재전송되는 PRACH 의 우선순위를 초 기 전송되는 PRACH의 우선순위보다 높게 설정할 수 있다.
[216] 다음으로 DCI 포맷을 이용한 전력 제어에 대해 설명한다. DCI 포맷 (예, TPC 커맨드를 포함하는 DL/UL 그랜트 DCI 포맷 및 /또는 UE 그룹 전력 제어용 DCI 포떳 3/3A)을 이용한 전력 제어는 단일 셀이 구성된 경우에도 적용 가능하다. 편의상, 이하의 설명은 DCI 포맷 3/3A를 위주로 예시하지만, 이하의 설명은 TPC 필드를 포 함하는 DCI 포맷에 동일 /유사하게 적용될 수 있다. 구체적으로, 기존에는 모든 샐 에 대해 동일한 TPC 커맨드 값 및 /또는 가짓수가 적용되었다. 일 예로, 기존의 TPC 커맨드는 -1ᅳ 0, 1, 3 dB의 총 4가지 값 (즉, 2-비트의 TPC 필드 사이즈)을 가졌다. 한편, 매크로 셀과 마이크로 셀이 병합된 CA 상황 (혹은, 여타의 다른 CA)에서 셀 간 커버리지 차이 및 /또는 상이한 간섭 환경 등을 감안하여 셀 (그룹)별로 독립적 인 TPC 커맨드 값 및 /또는 가짓수 (예, 독립적인 TPC 필드 사이즈)를 설정 /적용하 는 것을 고려할 수 었다. 일 예로, PCell 에서의 PUCCH 전송과 특정 ACell 에서의 PUCCH전송에 적용되는 TPC 커맨드 값 및 /또는 가짓수 (예, DL그랜트 내의 TPC필드 사이즈)를 달리 설정할 수 있다. 이로 인해, DCI 포맷 3/3A 의 페이로드 사이즈는 DCI 포맷 3/3A 가 전송되는 샐의 타입에 따라 달라질 수 있다. 따라서, 단말은 DCI 포맷 3/3A를 수신하고자 하는 셀의 타입 (예, PCell, ACell)에 따라 DCI 포맷 3/3A 의 페이로드 사이즈를 다르게 가정하고 블라인드 디코딩을 시도해야 하고, DCI 포맷 3/3A 의 페이로드 해석도 다르게 하여야 한다. 또한, 셀 (그룹) 1 의 PUSCH 전송과 샐 (그룹) 2의 PUSCH 전송에 적용되는 TPC 커맨드 값 및 /또는 가짓수 (예, UL 그랜 트 내의 TPC필드 사이즈)를 달리 설정할 수 있다.. TPC 커맨드 값 및 /또는 가짓수를 셀 (그룹)에 따라 독립적으로 설정할지 여부는 상위 계층 신호 (예, RRC 신호)를 통 해 명시적으로 지시되거나, 다른 정보 (혹은 파라미터)를 이용하여 간접적으로 지시 될 수 있다. 예를 들어, TPC 커맨드 값 및 /또는 가짓수를 셀 (그룹)에 따라 독립적 으로 설정할지 여부는 인터-사이트 CA 동작 /설정 여부, multi-PUCCH ON/OFF 를 이용 하여 간접적으로 지시 /설정될 수 있다. 구체적으로, 인터-사이트 CA가 동작 /설정된 경우, multi-PUCCH가 ON으로 설정된 경우, TPC 커맨드 값 및 /또는 가짓수를 샐 (그 룹)에 따라 독립적으로 설정될 수 있다.
[217] 또한, 단말 그룹 전력 제어에 사용되는 DCI 포맷 3/3A 의 TPC 커맨드는 기존 에는 PCell PUCCH/PUSCH 전송에만 적용되었다. 그러나, 본 발명에서는 DCI 포떳 3/3A의 TPC 커맨드가 어느 샐 (그룹)의 PUCCH 전송 및 /또는 PUSCH 전송에 적용되는 지를 상위 계층 시그널링 (예, RRC 시그널링)을 통해 지정하는 것도 가능하다.
[218] 한편, (마이크로) 셀이 국한된 지역 내에 밀집된 클러스터 형태로 구성되는 환경 (혹은, 유사한 샐 환경)에서 셀 간 간섭 제어 (및 /또는 상이한 DL/UL 자원 구 성 ) 등으로 인해 시변하는 간섭 상황을 감안하여 , 특정 셀에 대한 TPC 커맨드 적용 /누적 (accumulation) 동작을 UL SF (세트) 별로 독립적으로 수행하도록 설정할 수 있다. 일 예로, PUCCH 전송이 가능한 ULSF를 2개의 SF 세트 (예, SF 세트 1, 2)로 나 눈 상태에서, SF 세트 1 에 대응되는 DL SF 의 DL 그랜트를 통해 시그널링 되는 TPC 커맨드는 SF 세트 1의 PUCCH 전송에만 적용 /누적할 수 있다. 또한, SF 세트 2에 대 웅되는 DL SF 의 DL 그랜트를 통해 시그널링 되는 TPC 커맨드는 SF 세트 2 의 PUCCH 전송에만 적용 /누적할 수 있다. 다른 예로, PUSCH 전송이 가능한 UL SF를 2개의 SF 세트 (예, SF 세트 1, 2)로 나눈 상태에서, SF 세트 1 을 스케즐링 하는 UL 그랜트를 통해 시그널링 되는 TPC 커맨드는 SF 세트 1 의 PUSCH 전송에만 적용 /누적할 수 있 다. 또한, SF 세트 2 를 스케줄링 하는 UL 그랜트를 통해 시그널링 되는 TPC 커맨드 는 SF 세트 2 의 PUSCH 전송에만 적용 /누적할 수 있다. 이 경우, TPC 커맨드 값 및 / 또는 가짓수 (예, 독립적인 TPC 필드 사이즈)를 SF (세트) 별로 독립적으로 설정 /적 용할 수 있다. 예를 들어, SF 세트 1 의 PUCCH 전송 (예, A/N)과 SF 세트 2 의 PUCCH 전송 (예, A/N)에 대웅되는 DL 그랜트를 통해 시그널링 되는 TPC 커맨드 값 및 /또는 가짓수 (예, TPC 필드 사이즈)를 다르게 설정할 수 있다. 또한, SF 세트 1 의 PUSCH 전송과 SF 세트 2 의 PUSCH 전송을 스케즐링 하는 UL 그랜트를 통해 시그널링 되는 TPC 커맨드 값 및 /또는 가짓수 (예, TPC 필드 사이즈)를 다르게 설정할 수 있다. [219] 또한, DCI 포맷 3/3A 의 TPC 커맨드가 적용되는 UL SF 는 다음과 같이 결정될 수 있다.
[220] 방법 0) TPC 커맨드는 모든 UL SF (세트)의 PUCCH/PUSCH 전송에 적용될 수 있 다.
[221] 방법 1) TPC 커맨드는 특정 UL SF (세트)의 PUCCH/PUSCH 전송에 적용되는 것 으로 자동 지정될 수 있다. 예를 들어, 특정 ULSF (세트)는 (상위 계층 (예, RRC) 시 그널링 /설정 상)가장 작은 (세트) 인덱스를 가지는 UL SF (세트)를 포함한다.
[222] 방법 2) TPC 커맨드가 어느 UL SF (세트) 의 PUCCH/PUSCH 전송에 적용되는지 를 상위 계층 시그널링 (예, RRC 시그널링)을 통해 지정할 수 있다.
[223] 방법 3) TPC 커맨드의 전송 /수신 시점 (이하, 3/3A-TPC 타이밍)이 특정 UL SF 세트에 속하거나 결부되는 경우 (예, 3/3A-TPC 타이밍이 특정 UL SF 세트에 대웅되는 DL 그랜트 타이밍 및 /또는 특정 UL SF 세트를 스케줄링 하는 UL 그랜트 타이밍과 일 치하는 경우), TPC 커맨드는 특정 UL SF 세트의 PUCCH/PUSCH 전송에 적용될 수 있다. 한편 그렇지 않은 경우 (즉, 3/3A-TPC타이밍이 특정 SF 세트에 속하지 /결부되지 않 는 경우), 다음의 옵션을 고려할 수 있다. 옵션 i) 방법 0), 1) 또는 2)를 적용하거 나, 옵션 ii) 3/3A-TPC 타이밍 (및 /또는 3/3A-TPC 타이밍에 특정 SF 오프셋이 더해 진 시점)의 이전 또는 이후에 가장 인접한 SF 세트의 PUCCH/PUSCH 전송에 TPC 커맨 드가 적용되거나, 읍션 Hi) 어떠한 SF 세트에 대해서도 TPC 커맨드가 적용되지 않 을 수 있다. 옵션 i 의 구현 예로, 단말은 특정 SF 세트에 속하지 /결부되지 않는 시점올 통해서는 DCI 포맷 3/3A (TPC 커맨드)가 전송 /수신되지 않는다고 간주 /가정 한 상태에서 동작할 수 있다. 예를 들어, 단말은 특정 SF 세트에 속하지 /결부되지 않는 시점에서는 DCI 포맷 3/3A에 대한 블라인드 디코딩을 생략할 수 있다.
[224] 방법 4) DCI 포맷 3/3A 의 (CRC) 스크램블링에 사용되는 RNTI (예, TPC-PUSCH-RNTI , TPC-PUCCH-RNTI)를 SF (세트) 별로 할당할 수 있다. 단말은 복수의 RNTI 를 이용하여 DCI 포맷 3/3A 에 대해 블라인드 디코딩을 시도하고, 검출된 RNTI 에 대웅하는 SF (세트)의 PUCCH/PUSCH 전송에 TPC 커맨드를 적용할 수 있다. [225] 방법 5) 하나의 DCI 포맷 3/3A 내에 복수 SF (세트) 각각에 대웅 /적용되는 복 수의 TPC 커맨드 필드 (예, TPC command number)를 할당할 수 있다. 이 경우, DCI 포 맷 내에서 복수의 TPC 커맨드 필드는 SF (세트) 인덱스 순서에 대웅되게 배열되거나, TPC 필드가 적용되는 SF (세트)를 지시하는 정보를 포함할 수 있다. 단말은 검출된 DCI 포맷 3/3A 내에서 자신에게 할당된 복수 TPC 커맨드를 각각 대웅되는 복수 SF (세트)의 PUCCH/PUSCH 전송에 적용할 수 있다.
[226] DCI 포맷 3/3A 에 대해 복수의 R TI 및 /또는 복수 TPC 커맨드가 사용 /할당되 는지 여부는 상위 계충 신호 (예, RRC 신호), L1/L2 신호 (예, PDCCH신호)를 통해 명 시적으로 지시되거나, 다른 정보 (흑은 파라미터)를 이용하여 간접적으로 지시될 수 있다. 예를 들어, DCI 포맷 3/3A에 대해 복수의 R TI 및 /또는 복수 TPC 커맨드가사 용 /할당되는지 여부는 인터-사이트 CA동작 /설정 여부, mu i-PUCCH ON/OFF 를 이용 하여 간접적으로 지시 /설정될 수 있다. 구체적으로, 인터-사이트 CA 가 동작 /설정되 거나 /되고, multi-PUCCH가 ON으로 설정된 경우, DCI 포맷 3/3A에 대해 복수의 RNTI 및 /또는 복수 TPC 커맨드가사용 /할당될 수 있다.
[227] 한편, 하나의 단말에게 서로 다른 기지국에 속하는 샐 (그룹)들이 병합된 A 상황에서 보다 적절하고 적웅적인 UL 전력 제어 /관리를 위해, PHR 전송 시에 PHR 결 정시 반영된 각 셀 (그룹)의 UL 전송 관련 정보를 추가로 보고하는 것을 제안한다. 여기서, 각 샐 (그룹)의 UL 전송에 관한 추가 정보는 해당 PHR을 통해 보고되거나, 해당 PHR과 별도로 보고될 수 있다. 예를 들어, 각 셀 (그룹)의 UL 전송 관련 정보 는 각 셀 (그룹)의 UL 전송 유무, 각 셀 (그룹)을 통해 전송된 UL 신호 /채널의 종 류 (예, PUCCH, PUSCH, PRACH, SRS), 각 셀 (그룹)을 통해 전송된 UCI의 종류 (예, A/N, SR, CSI), 사용된 자원 정보 (예, RB 인덱스 /영역), 적용된 변조 기법 (예, QPSK, 16-QAM, 64-QAM) , 적용된 특정 파라미터 값 (예, MPR(Maximum Power Reduction), A-MPR(Additional-MPR)) 중 적어도 하나를 포함할 수 있다. 또한, PHR 타입 (예, PUSCH 전력만을 반영한 Type 1, PUCCH/PUSCH 전력 모두를 반영한 Type 2)의 경우 각 셀 (그룹)별로 독립적으로 설정될 수 있다. 이에 따라, (복수 셀 (그룹)에 대한 PHR 이 동시 전송되는 경우), 각 셀 (그룹)의 UL 전송에 관한 추가 정보는 각 셀 (그룹) 에 설정된 PHR타입 종류가 더 포함할 수 있다ᅳ 여기서, PHR보고 시에 추가 보고되 는 정보는 자기 샐 그룹을 제외한 다른 셀 그룹의 UL 전송 정보로 제한될 수 있다. 일 예로, 하나의 단말에 2개의 셀 그룹 1과 2가 병합된 상황에서 해당 단말은, 셀 그룹 1로는 전체 셀 그룹에 대한 PHR과 셀 그룹 2에 대한 상기 UL 전송 관련 정보 를 보고하고, 셀 그룹 2로는 전체 셀 그룹에 대한 PHR과 셀 그룹 1에 대한 상기 UL 전송 관련 정보를 보고할 수 있다.
[228] 한편, 상이한 커버리지를 가지는 셀 /TP Transmission Point)간 TDM 기반 UL 전송 및 (이로 인해) 시변하는 UL 채널 /간섭 상황, UL 전송 신호 왜곡 /열화 등을 고 려하여, 복수 PUCCH 동시 전송 허용 유무 및 /또는 PUCCH와 PUSCH의 동시 전송 허용 유무가 SF (세트) 별로 설정될 수 있다. 또한, CSI와 A/N의 동시 전송 허용 유무 및 /또는 이와 관련된 정보 (예, 주기적 CSI 전송용 PUCCH 자원 할당 등)가 SF (세트) 별로 설정될 수 있다. 또한, SRS와 A/N 의 동시 전송 허용 유무 및 /또는 이와 관련 된 정보 (예, SRS 전송 대역 /영역 할당, 관련 파라미터 설정 등)도 SF (세트) 별로 설정될 수 있다. 또한, 복수 안테나를 사용한 (TxD 기반의) PUCCH 전송 설정 유무 및 /또는 이와 관련된 정보 (예, PUCCH자원 할당, '전력 제어 (오프셋) 파라미터 설정 등)도 SF (세트) 별로 설정될 수 있다.
[229] 도 16 은 본 발명에 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 릴 레이를 포함하는 시스템의 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
[230] 도 16을 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)올 포함한다. 기지국 (110)은 프로세서 (112), 메모리 (114) 및 무선 주파수 (Radio Frequency, RF) 유닛 (116)을 포함한다. 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연 결되고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (116)은 프 로세서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (120)은 프로세 서 (122), 메모리 (124) 및 RF 유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (124)는 프로세 서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF 유 닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
[231] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적 인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결 합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결 합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명 되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들올 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음 은 자명하다.
[232] 본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기 지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에 서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다 른 네트워 3 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNode B(eNB) , 억세스 포인트 (access point) 등의 용어에 의해 대 체될 수 있다. 또한, 단말은 UEOJser Equipment), MSCMobile Station), MSS(MobiIe Subscriber Station) 등의 용어로 대체될 수 있다.
[233] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (fir賺 are), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어 에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(appl icat ion specific integrated circuits) , DSPs(digital signal processors) DSPDs(digital signal processing devices) , PLDs( programmable logic devices) , FPGAs(field progra隱 able gate arrays), 프로세서, 콘트를러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[234] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있 다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양 한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[235] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구 체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에 서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명 의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가 적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
[236] 본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있 다.

Claims

【청구의 범위 1
【청구항 II
무선 통신 시스템에서 단말이 상향링크 전력을 제어하는 방법에 있어서 , 제 1 세트의 UL SF(Upl ink Subframe)와 제 2 세트의 UL SF를 구성하는 단계 ; 복수의 단말에 대한 TKXTransmit Power Control )를 지시하는 비트맵을 포함 하는 DCI (Downl ink Control Informat ion) 포맷을 수신하는 단계 ; 및
상기 비트맵 중에서 상기 단말에 대한 TPC 정보를 이용하여 상향링크 채 널의 전송 전력을 제어 하는 단계를 포함하되,
상기 DCI 포맷이 제 1 식별자를 가지는 경우, 상기 TPC 정보는 상기 제 1 세트 의 UL SF에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되고 ,
상기 DCI 포맷이 제 2 식별자를 가지는 경우, 상기 TPC 정보는 상기 계 2 세트 의 UL SF에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되는 방법 .
【청구항 2]
제 1항에 있어세
상기 DCI 포맷은 DCI 포맷 3 또는 DCI 포맷 3A인 방법 .
【청구항 3】
제 1항에 있어서,
상기 DCI 포맷은 CRC Cycl ic Redundancy Check)를 포함하고, 상기 제 1 식별자 또는 상기 제 2 식별자는 상기 CRC에 스크램블 되는 방법 .
【청구항 41
제 3항에 있어서,
상기 제 1 식별자는 제 1 RNTKRadio Network Temporary Ident ity)이고 , 상기 제 2 식 별자는 제 2 RNTI인 방법 .
【청구항 5]
겨 U항에 있어서,
상기 DCI 포맷이 제 1 식별자를 가지는 경우 상기 TPC 정보는 N 비트이고, 상 기 DCI 포맷이 제 2 식별자를 가지는 경우 상기 TPC 정보는 M 비트이며 , N과 M은 서 로 다른 방법 .
【청구항 6】
무선 통신 시스템에서 상향링크 전력을 제어하도록 구성된 단말에 있어서, 무선 주파수 (Radio Frequency, RF) 유닛; 및
프로세서를 포함하고,
상기 프로세서는 제 1 세트의 ULSF(UplinkSubframe)와 제 2세트의 UL SF를 구 성하고, 복수의 단말에 대한 TPC(Transmit Power Control)를 지시하는 비트맵을 포 함하는 DCKDownlink Control Information) 포맷을 수신하며, 상기 비트맵 중에서 상기 단말에 대한 TPC 정보를 이용하여 상향링크 채널의 전송 전력을 제어하도록 구성되며,
상기 DCI 포맷이 제 1 식별자를 가지는 경우, 상기 TPC 정보는 상기 제 1 세트 의 UL SF에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되고,
상기 DCI 포맷이 제 2 식별자를 가지는 경우, 상기 TPC 정보는 상기 제 2 세트 의 UL SF에서 전송되는 상향링크 채널의 전송 전력을 제어하는데 사용되는 단말.
【청구항 7】
제 6항에 있어서,
상기 DCI 포맷은 DCI 포맷 3또는 DCI 포맷 3A인 단말.
【청구항 8】
제 6항에 있어서,
상기 DCI 포맷은 CRCCCyclic Redundancy Check)를 포함하고, 상기 제 1식별자 또는 상기 제 2식별자는 상기 CRC에 스크램블 되는 단말.
【청구항 9】
제 8항에 있어서,
상기 제 1식별자는 제 1 RNTI (Radio Network Temporary Identity)이고, 상기 제 2식별자는 제 2 RNTI인 단말.
【청구항 10】
제 6항에 있어서, 상기 DCI 포맷이 제 1 식별자를 가지는 경우 상기 TPC 정보는 N 비트이고, 상 기 DCI 포맷이 제 2 식별자를 가지는 경우 상기 TPC 정보는 M 비트이며, N과 M은 서 로 다른 단말 .
PCT/KR2014/000058 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 WO2014107051A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/759,170 US9584300B2 (en) 2013-01-03 2014-01-03 Configuring uplink subframes and controlling power in a carrier aggregation system when the DCI format has first or second identifiers
EP19163948.3A EP3522669B1 (en) 2013-01-03 2014-01-03 Method, processor and user equipment for transmitting uplink signals in wireless communication system
EP14735251.2A EP2943020B1 (en) 2013-01-03 2014-01-03 Method and apparatus for transmitting uplink signals in wireless communication system
EP19163947.5A EP3550897A1 (en) 2013-01-03 2014-01-03 Method and apparatus for transmitting uplink signals in wireless communication system
US15/352,403 US9867138B2 (en) 2013-01-03 2016-11-15 Method and apparatus for transmitting uplink signals in wireless communication system with determined transmission powers
US15/643,089 US9980234B2 (en) 2013-01-03 2017-07-06 Managing transmission power of a random access channel for first and second cell groups
US15/935,901 US10172096B2 (en) 2013-01-03 2018-03-26 Managing transmission power for a random access channel for first and second cell groups
US16/196,968 US10531398B2 (en) 2013-01-03 2018-11-20 Method and apparatus for transmitting uplink signals in wireless communication system
US16/593,538 US10887841B2 (en) 2013-01-03 2019-10-04 Method and apparatus for transmitting uplink signals in wireless communication system

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US201361748720P 2013-01-03 2013-01-03
US61/748,720 2013-01-03
US201361750307P 2013-01-08 2013-01-08
US61/750,307 2013-01-08
US201361808614P 2013-04-04 2013-04-04
US61/808,614 2013-04-04
US201361817341P 2013-04-30 2013-04-30
US61/817,341 2013-04-30
US201361836176P 2013-06-18 2013-06-18
US61/836,176 2013-06-18
US201361838350P 2013-06-24 2013-06-24
US61/838,350 2013-06-24
US201361866555P 2013-08-16 2013-08-16
US61/866,555 2013-08-16
US201361872858P 2013-09-03 2013-09-03
US61/872,858 2013-09-03
US201361890347P 2013-10-14 2013-10-14
US61/890,347 2013-10-14
US201361897202P 2013-10-29 2013-10-29
US61/897,202 2013-10-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/759,170 A-371-Of-International US9584300B2 (en) 2013-01-03 2014-01-03 Configuring uplink subframes and controlling power in a carrier aggregation system when the DCI format has first or second identifiers
US15/352,403 Continuation US9867138B2 (en) 2013-01-03 2016-11-15 Method and apparatus for transmitting uplink signals in wireless communication system with determined transmission powers

Publications (1)

Publication Number Publication Date
WO2014107051A1 true WO2014107051A1 (ko) 2014-07-10

Family

ID=51062330

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2014/000059 WO2014107052A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000060 WO2014107053A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000057 WO2014107050A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000058 WO2014107051A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/KR2014/000059 WO2014107052A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000060 WO2014107053A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
PCT/KR2014/000057 WO2014107050A1 (ko) 2013-01-03 2014-01-03 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치

Country Status (7)

Country Link
US (14) US9813219B2 (ko)
EP (7) EP2943020B1 (ko)
JP (3) JP6027270B2 (ko)
KR (2) KR20150105353A (ko)
CN (2) CN104904154B (ko)
ES (1) ES2797398T3 (ko)
WO (4) WO2014107052A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132295A (zh) * 2018-04-13 2020-05-08 Oppo广东移动通信有限公司 一种上行功率控制方法、终端设备及网络设备
CN112655250A (zh) * 2018-10-31 2021-04-13 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525523A1 (en) * 2011-11-04 2019-08-14 Interdigital Patent Holdings, Inc. Method and apparatus for power control for wireless transmissions on multiple component carriers associated with multiple timing advances
EP2943020B1 (en) 2013-01-03 2019-05-01 LG Electronics Inc. Method and apparatus for transmitting uplink signals in wireless communication system
EP2944133B1 (en) * 2013-01-10 2022-09-07 Telefonaktiebolaget LM Ericsson (publ) A user equipment and a method for power control of uplink transmissions
CN103929800B (zh) * 2013-01-11 2017-09-29 电信科学技术研究院 一种pucch功率控制方法及装置
US9271242B2 (en) * 2013-01-14 2016-02-23 Intel IP Corporation Energy-harvesting devices in wireless networks
CN104956749B (zh) 2013-01-29 2019-08-16 太阳专利托管公司 基站、终端以及通信方法
US10326569B2 (en) 2013-02-12 2019-06-18 Altiostar Networks, Inc. Inter-site carrier aggregation with physical uplink control channel monitoring
WO2014127054A1 (en) 2013-02-12 2014-08-21 Altiostar Networks, Inc. Long term evolution radio access network
US9820278B2 (en) * 2013-03-14 2017-11-14 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, communication method and integrated circuit
WO2014163163A1 (ja) * 2013-04-04 2014-10-09 シャープ株式会社 端末装置、通信方法および集積回路
CN104244349B (zh) * 2013-06-18 2021-06-15 索尼公司 通信装置和通信方法
US9559817B2 (en) * 2013-07-19 2017-01-31 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation
US10237020B2 (en) 2013-07-19 2019-03-19 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation
CN104519561B (zh) * 2013-09-26 2019-02-12 中兴通讯股份有限公司 上行功率削减处理方法、装置、终端及基站
CN110831137B (zh) 2013-10-31 2022-11-01 日本电气株式会社 无线电站、无线电终端、及其控制方法
WO2015079971A1 (ja) * 2013-11-29 2015-06-04 シャープ株式会社 端末装置、基地局装置、集積回路、および、通信方法
US9900844B2 (en) * 2014-01-13 2018-02-20 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity
KR102284453B1 (ko) * 2014-01-29 2021-08-02 삼성전자 주식회사 셀룰러 이동 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US9985756B2 (en) * 2014-01-29 2018-05-29 Samsung Electronics Co., Ltd. Multicarrier-based data transmission method and apparatus in mobile communication system
EP3100529B1 (en) * 2014-01-31 2020-05-27 Nokia Solutions and Networks Oy Method, apparatus and computer program
US9706532B2 (en) * 2014-02-21 2017-07-11 Blackberry Limited TDD and FDD joint carrier aggregation enhancements in LTE-advanced
JP2015179993A (ja) * 2014-03-19 2015-10-08 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
KR102184585B1 (ko) * 2014-03-21 2020-11-30 후아웨이 테크놀러지 컴퍼니 리미티드 이중 연결을 고려한 전력 제한 상황에서의 pusch/pucch 전력 스케일링 방법 및 그 장치
KR102298357B1 (ko) 2014-03-21 2021-09-07 삼성전자 주식회사 무선통신 시스템에서 다중 기지국과 랜덤 엑세스 수행 방법 및 장치
JP6193481B2 (ja) * 2014-05-09 2017-09-06 株式会社Nttドコモ ユーザ装置、及び送信制御方法
US10142945B2 (en) * 2014-06-05 2018-11-27 Samsung Electronics Co., Ltd. Power control for transmission of uplink control information on two cells in carrier aggregation
JP6272483B2 (ja) * 2014-07-11 2018-01-31 株式会社Nttドコモ ユーザ端末および無線通信方法
US9769771B2 (en) * 2014-07-18 2017-09-19 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
US10033505B2 (en) 2014-07-31 2018-07-24 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band
JP6586091B2 (ja) * 2014-08-04 2019-10-02 シャープ株式会社 端末装置および方法
JP2017175174A (ja) * 2014-08-08 2017-09-28 シャープ株式会社 端末装置、基地局装置および方法
US9420584B2 (en) * 2014-09-17 2016-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Uplink sounding reference signals for machine type communications (MTC) user equipment (UE)
JP2017208582A (ja) * 2014-09-26 2017-11-24 シャープ株式会社 端末装置、基地局装置、および通信方法
WO2016049821A1 (zh) * 2014-09-29 2016-04-07 华为技术有限公司 无线通信方法、处理器及无线终端
EP3217747B1 (en) * 2014-11-06 2022-11-23 Ntt Docomo, Inc. User terminal, wireless base station, wireless communication system, and wireless communication method for ack/nack transmission and reception
CN106063346A (zh) * 2014-12-30 2016-10-26 华为技术有限公司 一种控制信息的传输方法和装置
WO2016108674A1 (ko) 2014-12-31 2016-07-07 엘지전자 주식회사 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2016111599A1 (ko) 2015-01-09 2016-07-14 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US20170366306A1 (en) * 2015-01-16 2017-12-21 Lg Electronics Inc. Method for selecting pucch transmission in a carrier aggregation system and a device therefor
CN105871525B (zh) * 2015-01-19 2020-09-15 夏普株式会社 基站、用户设备及其方法
US9906337B2 (en) * 2015-01-20 2018-02-27 Htc Corporation Network apparatus and communication device for aggregated component carriers
CN107155408B (zh) * 2015-01-20 2019-11-19 华为技术有限公司 一种信息传输方法、设备及系统
CA2975306C (en) 2015-01-29 2019-10-08 Huawei Technologies Co., Ltd. Pucch configuration method and apparatus
EP3734891B1 (en) * 2015-01-30 2023-06-07 Telefonaktiebolaget LM Ericsson (publ) Communicating control data in a wireless communication network
KR101987525B1 (ko) * 2015-03-09 2019-06-12 주식회사 케이티 채널상태정보 전송 방법 및 그 장치
US9871572B2 (en) * 2015-03-09 2018-01-16 Ofinno Technologies, Llc Uplink control channel in a wireless network
US20160301513A1 (en) * 2015-04-08 2016-10-13 Intel IP Corporation Systems, methods, and devices for component carrier management in carrier aggregation systems
CN106257856B (zh) 2015-06-19 2021-02-02 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
CN112615707B (zh) 2015-06-19 2024-04-23 北京三星通信技术研究有限公司 一种传输上行控制信息的方法
CN107113820B (zh) * 2015-09-22 2020-10-16 华为技术有限公司 载波聚合下的上行控制信息传输方法及装置
JP6125590B2 (ja) * 2015-09-24 2017-05-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106817769B (zh) * 2015-11-27 2019-09-17 普天信息技术有限公司 无线通信系统上行多子带资源分配方法、装置及用户设备
WO2017106711A1 (en) * 2015-12-17 2017-06-22 Altiostar Networks, Inc. Inter-site carrier aggregation with physical uplink control channel monitoring
WO2017119921A1 (en) * 2016-01-04 2017-07-13 Intel IP Corporation Determination of an advanced physical uplink channel resource
WO2017123064A1 (ko) * 2016-01-15 2017-07-20 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
US10177875B2 (en) * 2016-02-01 2019-01-08 Ofinno Technologies, Llc Downlink control signaling for uplink transmission in a wireless network
JP2019054314A (ja) * 2016-02-02 2019-04-04 シャープ株式会社 端末装置および方法
US10009856B2 (en) * 2016-02-08 2018-06-26 Motorola Mobility Llc Method and apparatus for transmitting PUCCH with a lower A-MPR
WO2017150944A1 (ko) * 2016-03-03 2017-09-08 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10499413B2 (en) 2016-04-08 2019-12-03 Altiostar Networks, Inc. Wireless data priority services
US10791481B2 (en) 2016-04-08 2020-09-29 Altiostar Networks, Inc. Dual connectivity
JP6759695B2 (ja) * 2016-05-11 2020-09-23 ソニー株式会社 端末装置、基地局装置、通信方法、及びプログラム
US10757687B2 (en) * 2016-05-12 2020-08-25 Qualcomm Incorporated Techniques for communicating feedback in low latency wireless communications
JP2019125821A (ja) * 2016-05-13 2019-07-25 シャープ株式会社 端末装置および方法
RU2705227C1 (ru) * 2016-06-15 2019-11-06 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для передачи и приема беспроводного сигнала в системе беспроводной связи
RU2722419C1 (ru) 2016-07-07 2020-05-29 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Передача данных в системе беспроводной связи с уменьшенной задержкой
CN107682923B (zh) * 2016-08-01 2023-05-12 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备
EP3499992A4 (en) * 2016-08-10 2020-03-25 NTT DoCoMo, Inc. USER DEVICE, AND COMMUNICATION METHOD
CN107769896B (zh) * 2016-08-18 2020-10-16 上海诺基亚贝尔股份有限公司 无线网络中向用户设备提供接收反馈的方法、装置和基站
US11483805B2 (en) * 2016-08-18 2022-10-25 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving uplink control information in wireless communication system
US20190200349A1 (en) * 2016-09-09 2019-06-27 Ntt Docomo, Inc. User terminal and radio communication method
CN109716698A (zh) * 2016-09-16 2019-05-03 株式会社Ntt都科摩 用户终端以及无线通信方法
US11265132B2 (en) 2016-09-21 2022-03-01 Kyocera Corporation Enhancing utilization efficiency of radio resources in MBMS
CN107889247B (zh) * 2016-09-30 2022-12-30 中兴通讯股份有限公司 上行控制信息传输/配置指示方法、装置、终端及基站
US11234220B2 (en) 2016-10-05 2022-01-25 Nokia Solutions And Networks Oy Allocation of resources in physical uplink control channels
EP3319252A1 (en) * 2016-11-04 2018-05-09 Panasonic Intellectual Property Corporation of America Efficient multiplexing of control information in transport block
US11240785B2 (en) * 2016-11-16 2022-02-01 Kt Corporation Method and apparatus for transmitting and receiving uplink control data in next generation wireless network
US10624034B2 (en) 2016-12-13 2020-04-14 Altiostar Networks, Inc. Power control in wireless communications
KR102188152B1 (ko) * 2017-01-07 2020-12-07 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 상기 방법을 이용하는 통신 장치
CN108306720B (zh) 2017-01-13 2022-06-21 北京三星通信技术研究有限公司 一种传输uci信息的方法和设备
WO2018131937A1 (en) * 2017-01-13 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uci in wireless communication system
US10530528B2 (en) * 2017-02-05 2020-01-07 Lg Electronics Inc. Method of transmitting uplink control information by user equipment in wireless communication system and device for supporting same
CN117042177A (zh) * 2017-03-22 2023-11-10 索尼公司 终端设备、基站设备、通信方法和存储介质
CN108632966B (zh) * 2017-03-23 2022-05-06 华为技术有限公司 发射功率控制方法、装置、设备和存储介质
US20190239215A1 (en) * 2017-03-24 2019-08-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd Communication method, terminal and network device
US11206646B2 (en) 2017-04-01 2021-12-21 Lg Electronics Inc. Method and apparatus for transmitting or receiving uplink signal for terminal supporting short TTI in wireless communication system
EP3596984B1 (en) 2017-04-17 2022-07-20 Samsung Electronics Co., Ltd. Method and device for uplink power control
CN109219120B (zh) * 2017-07-03 2021-10-26 北京三星通信技术研究有限公司 一种上行功率控制的方法和设备
EP4096141A1 (en) * 2017-04-17 2022-11-30 Samsung Electronics Co., Ltd. Method and device for uplink power control
US11696287B2 (en) * 2017-04-27 2023-07-04 Ntt Docomo, Inc. User terminal and radio communication method
WO2018203401A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11012944B2 (en) 2017-05-04 2021-05-18 Lg Electronics Inc. Method for transmitting uplink signal in wireless communication system and device therefor
CN110034861A (zh) * 2018-01-11 2019-07-19 北京三星通信技术研究有限公司 一种harq-ack信息反馈方法和设备
KR20220051415A (ko) 2017-05-31 2022-04-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법 및 디바이스
US10959247B2 (en) * 2017-06-08 2021-03-23 Qualcomm Incorporated Transmission of uplink control information in new radio
CN109257150B (zh) * 2017-07-14 2021-08-17 维沃移动通信有限公司 资源映射方法、网络设备、终端及计算机可读存储介质
CN109392168B (zh) * 2017-08-04 2021-04-02 维沃移动通信有限公司 一种数据传输方法及终端
KR102369471B1 (ko) 2017-08-07 2022-03-03 삼성전자 주식회사 무선 통신 시스템에서 추가적인 상향링크 주파수를 지원하기 위한 방법 및 장치
SG11201911377UA (en) * 2017-08-09 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Uplink transmission method and terminal device
EP3668170A4 (en) * 2017-08-10 2021-03-24 Ntt Docomo, Inc. USER TERMINAL DEVICE AND RADIO COMMUNICATION PROCEDURES
WO2019031950A1 (ko) * 2017-08-11 2019-02-14 엘지전자 주식회사 무선통신시스템에서 carrier aggregation 전송 시 단말이 복수의 cc에 대하여 송신 전력을 설정하는 방법 및 장치
CN108134659B (zh) * 2017-08-11 2021-01-15 中兴通讯股份有限公司 参数配置、功率确定方法及装置、通信节点
US10873912B2 (en) 2017-09-07 2020-12-22 Ofinno, Llc Uplink beam management
US11043993B2 (en) * 2017-09-08 2021-06-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
CN117651335A (zh) * 2017-09-30 2024-03-05 华为技术有限公司 信息传输方法和装置
US10681652B2 (en) * 2017-11-28 2020-06-09 Qualcomm Incorporated Power control for dual radio access technology (RAT) communication
US11265923B2 (en) * 2017-12-29 2022-03-01 Nokia Technologies Oy Method and device for NPRACH detection
CN114885419A (zh) * 2018-01-12 2022-08-09 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备
CN110034900B (zh) * 2018-01-12 2021-07-20 华为技术有限公司 一种通信方法及装置
CN110035544B (zh) * 2018-01-12 2020-09-25 中国信息通信研究院 一种上行控制信息传输方法及设备
US11399388B2 (en) * 2018-01-17 2022-07-26 Lg Electronics Inc. Method and device for transmitting uplink signal in wireless communication system
US10973038B2 (en) * 2018-01-19 2021-04-06 Qualcomm Incorporated UCI transmission for overlapping uplink resource assignments with repetition
CN111955025A (zh) * 2018-02-15 2020-11-17 夏普株式会社 用于5g nr中的多时隙长pucch的pucch冲突处理
JP6878694B2 (ja) * 2018-02-21 2021-06-02 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるサウンディング参照信号を送受信する方法及びその装置
CN110225587B (zh) * 2018-03-01 2022-05-10 大唐移动通信设备有限公司 上行控制信息的传输方法、接收方法、终端、基站及装置
WO2019194228A1 (ja) * 2018-04-05 2019-10-10 株式会社Nttドコモ ユーザ装置及び基地局装置
JP7313376B2 (ja) 2018-04-28 2023-07-24 北京小米移動軟件有限公司 アップリンク伝送方法及び装置
WO2019216612A1 (ko) * 2018-05-11 2019-11-14 삼성전자 주식회사 무선 통신 시스템에서 이중 접속을 위한 단말의 상향 전송 전력 제어 방법 및 장치
KR20190129674A (ko) 2018-05-11 2019-11-20 삼성전자주식회사 무선 통신 시스템에서 이중 접속을 위한 단말의 상향 전송 전력 제어 방법 및 장치
WO2020008645A1 (ja) * 2018-07-06 2020-01-09 株式会社Nttドコモ ユーザ端末及び基地局
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling
EP3820231A4 (en) * 2018-08-10 2021-09-08 LG Electronics Inc. METHOD AND APPARATUS FOR SENDING OR RECEIVING A SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
WO2020034066A1 (en) * 2018-08-13 2020-02-20 Nokia Shanghai Bell Co., Ltd. Apparatus, method and computer program
CN110858996B (zh) * 2018-08-23 2022-02-25 维沃移动通信有限公司 一种功率控制方法、终端及网络设备
CN209462415U (zh) * 2018-09-07 2019-10-01 Oppo广东移动通信有限公司 移动终端
CN112703780A (zh) * 2018-09-20 2021-04-23 株式会社Ntt都科摩 用户装置以及发送功率控制方法
WO2020060365A1 (ko) * 2018-09-21 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN110958589B (zh) * 2018-09-26 2021-08-03 华为技术有限公司 数据传输方法、装置及存储介质
WO2020064651A1 (en) * 2018-09-27 2020-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Location management with dynamic tal for high mobility
CA3122297A1 (en) * 2019-01-08 2020-07-16 Ofinno, Llc Power saving mechanism
US11172495B2 (en) * 2019-01-11 2021-11-09 Qualcomm Incorporated Collision handling
KR102595154B1 (ko) * 2019-02-11 2023-10-27 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보 송수신 방법 및 장치
CN111585722B (zh) * 2019-02-15 2022-05-24 大唐移动通信设备有限公司 物理上行共享信道的传输方法、终端及网络设备
CN111586844B (zh) * 2019-02-15 2024-01-05 华为技术有限公司 一种通信方法及装置
CN111756508B (zh) * 2019-03-29 2023-04-18 华为技术有限公司 一种通信方法及装置
CN111278057B (zh) * 2019-04-26 2022-03-25 维沃移动通信有限公司 上行传输方法、终端和网络侧设备
US20220201680A1 (en) * 2019-04-30 2022-06-23 Lenovo (Beijing) Limited Apparatus and method of pucch transmission and reception
US11490398B2 (en) * 2019-05-02 2022-11-01 Qualcomm Incorporated Cell-based transmission priority
US11240829B2 (en) * 2019-07-26 2022-02-01 Hannibal Ip Llc Methods and apparatuses for scheduling request resource prioritization for beam failure recovery
CN110880963B (zh) * 2019-11-07 2022-03-11 北京紫光展锐通信技术有限公司 上行控制信息的传输方法及相关装置
US11546864B2 (en) 2020-02-14 2023-01-03 Samsung Electronics Co., Ltd. Uplink power control in dual connectivity
CN115669044A (zh) * 2020-03-19 2023-01-31 株式会社Ntt都科摩 终端、无线通信方法以及基站
JP2022063065A (ja) * 2020-10-09 2022-04-21 Kddi株式会社 非アクティブ状態のセカンダリセルにおける上りリンクのタイミング制御を行う端末装置、基地局装置、制御方法、およびプログラム
KR20220094594A (ko) * 2020-12-29 2022-07-06 삼성전자주식회사 전자 장치 및 캐리어 어그리게이션을 지원하는 전자 장치에서 송신 전력을 제어하는 방법
CN113489566B (zh) * 2021-03-31 2022-11-25 上海移远通信技术股份有限公司 一种用于无线通信的节点中的方法和装置
CN116325969A (zh) * 2021-09-02 2023-06-23 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
WO2023053098A1 (en) * 2021-10-01 2023-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced pucch power control when mixing uci of different priorities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011053056A2 (ko) * 2009-10-29 2011-05-05 엘지전자 주식회사 복수의 캐리어를 지원하는 통신 시스템에서 상향링크 전송 파워 제어 정보를 송수신하기 위한 장치 및 그 방법
US20110275403A1 (en) * 2010-05-07 2011-11-10 Qualcomm Incorporated Uplink power control in aggregated carrier communication systems
KR20120090081A (ko) * 2009-10-05 2012-08-16 콸콤 인코포레이티드 멀티-캐리어 무선 네트워크에서 컴포넌트 캐리어 전력 제어

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412541B (en) * 2004-02-11 2006-08-16 Samsung Electronics Co Ltd Method of operating TDD/virtual FDD hierarchical cellular telecommunication system
EP2248294B1 (en) 2008-03-16 2018-05-02 LG Electronics Inc. Method of performing hybrid automatic repeat request (harq) in wireless communication system
KR20100073992A (ko) 2008-12-23 2010-07-01 엘지전자 주식회사 반송파 집성 환경에서의 상향링크 전송
US9247532B2 (en) 2009-01-02 2016-01-26 Lg Electronics Inc. Effective method for transmitting control information during the combination of multiple carriers for wideband support
JP5302417B2 (ja) 2009-01-29 2013-10-02 エルジー エレクトロニクス インコーポレイティド 伝送電力を制御する方法及び伝送電力を制御する装置
KR101674940B1 (ko) * 2009-01-29 2016-11-10 엘지전자 주식회사 전송 전력을 제어하는 방법 및 이를 위한 장치
RU2565030C2 (ru) 2009-02-09 2015-10-10 Интердиджитал Пэйтент Холдингз, Инк. Устройство и способ управления мощностью восходящей линии связи для беспроводного приемопередатчика, использующего множество несущих
KR101607333B1 (ko) 2009-03-05 2016-03-30 엘지전자 주식회사 중계국의 제어신호 전송 방법 및 장치
US8305986B2 (en) * 2009-03-09 2012-11-06 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmissions and CQI reports with carrier aggregation
EP2408129B1 (en) * 2009-03-10 2021-05-19 Sharp Kabushiki Kaisha Radio communication system, radio transmission device and radio transmission method
US20100254329A1 (en) 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
CN201780605U (zh) 2009-04-22 2011-03-30 万信电子科技有限公司 服装试穿系统
EP2244515A1 (en) 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
KR101753029B1 (ko) 2009-10-02 2017-07-03 인터디지탈 패튼 홀딩스, 인크 하나보다 많은 컴포넌트 캐리어 상의 전송의 전송 전력을 제어하기 위한 방법 및 장치
EP2317815A1 (en) 2009-11-02 2011-05-04 Panasonic Corporation Power-limit reporting in a communication system using carrier aggregation
US8478258B2 (en) 2010-03-05 2013-07-02 Intel Corporation Techniques to reduce false detection of control channel messages in a wireless network
US8873439B2 (en) 2010-03-25 2014-10-28 Qualcomm Incorporated Subframe dependent physical uplink control channel (PUCCH) region design
CN101827444B (zh) 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
KR101366335B1 (ko) 2010-04-01 2014-03-12 엘지전자 주식회사 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치
CA2793703C (en) * 2010-04-01 2020-06-30 Panasonic Corporation Transmit power control for physical random access channels
KR101697597B1 (ko) 2010-04-01 2017-01-18 엘지전자 주식회사 송신 파워를 제어하는 방법 및 이를 위한 장치
LT2760241T (lt) 2010-04-01 2018-09-10 Sun Patent Trust Perduodamos galios valdymas fiziniams atsitiktinės prieigos kanalams
WO2011125319A1 (ja) 2010-04-05 2011-10-13 パナソニック株式会社 送信装置、送信電力制御方法及び送信判定方法
JP5165721B2 (ja) 2010-04-09 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ ユーザ端末及び基地局装置
US8489100B2 (en) * 2010-04-13 2013-07-16 Qualcomm Incorporated Uplink power control in long term evolution networks
US20110268045A1 (en) 2010-04-30 2011-11-03 Youn Hyoung Heo System and method for uplink control information transmission in carrier aggregation
US20120113910A1 (en) 2010-05-06 2012-05-10 Yu-Chih Jen Method of Handling a Physical Uplink Control Channel Transmission and Related Communication Device
KR101829831B1 (ko) 2010-05-06 2018-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
ES2910368T3 (es) 2010-06-16 2022-05-12 Lg Electronics Inc Método para transmitir información de control y dispositivo para el mismo
US20130114562A1 (en) * 2010-07-16 2013-05-09 Lg Electronics Inc. Method and apparatus for controlling uplink transmission power in wireless communication system
JP4852166B1 (ja) 2010-08-04 2012-01-11 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
WO2012020990A2 (ko) 2010-08-10 2012-02-16 엘지전자 주식회사 무선 통신 시스템에서 전송 전력 제어 방법 및 장치
US9106419B2 (en) 2010-08-16 2015-08-11 Qualcomm Incorporated ACK/NACK transmission for multi-carrier operation with downlink assignment index
EP2421191A3 (en) 2010-08-19 2012-08-08 HTC Corporation Method of handling uplink reporting trigger and configuration and related communication device
KR101470265B1 (ko) * 2010-09-17 2014-12-05 엘지전자 주식회사 무선통신 시스템에서 복수의 수신 확인 정보 전송 방법 및 장치
EP2622915B1 (en) 2010-09-30 2018-04-25 Panasonic Intellectual Property Corporation of America Timing advance configuration for multiple uplink component carriers
AU2011321124B2 (en) 2010-10-28 2013-11-14 Lg Electronics Inc. Method and apparatus for transmitting control information
CN103190100B (zh) 2010-10-28 2016-06-15 Lg电子株式会社 发送探测基准信号的方法和设备
JP5388369B2 (ja) * 2010-11-08 2014-01-15 株式会社Nttドコモ 移動端末装置及び通信制御方法
US8582518B2 (en) 2010-11-09 2013-11-12 Telefonaktiebolaget L M Ericsson (Publ) Power control for ACK/NACK formats with carrier aggregation
US8675558B2 (en) * 2011-01-07 2014-03-18 Intel Corporation CQI definition for transmission mode 9 in LTE-advanced
US8861391B1 (en) 2011-03-02 2014-10-14 Marvell International Ltd. Channel feedback for TDM scheduling in heterogeneous networks having multiple cell classes
WO2012119626A1 (en) 2011-03-08 2012-09-13 Panasonic Corporation Propagation delay difference reporting for multiple component carriers
CN103444118B (zh) 2011-03-14 2016-05-18 Lg电子株式会社 在无线通信系统中发射ack/nack的方法和设备
KR101925030B1 (ko) * 2011-03-18 2018-12-04 엘지전자 주식회사 무선통신 시스템에서의 제어정보의 전송 방법 및 장치
KR101548067B1 (ko) 2011-03-21 2015-08-27 엘지전자 주식회사 Tdd 기반 무선 통신 시스템에서 harq 수행 방법 및 장치
JP2012216968A (ja) 2011-03-31 2012-11-08 Ntt Docomo Inc 移動局及び無線通信システムに使用される方法
WO2012131612A1 (en) * 2011-03-31 2012-10-04 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
CN102752089B (zh) 2011-04-22 2017-02-08 北京三星通信技术研究有限公司 反馈ack/nack的方法
EP2709299B1 (en) * 2011-05-12 2016-04-13 LG Electronics Inc. Method for transmitting control information and apparatus therefor
KR101820742B1 (ko) 2011-05-30 2018-01-22 삼성전자 주식회사 이동 통신 시스템 및 그 시스템에서 데이터 전송 방법
KR101556174B1 (ko) 2011-06-10 2015-10-13 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
EP2721881A1 (en) 2011-06-17 2014-04-23 Telefonaktiebolaget LM Ericsson (PUBL) A wireless device, a network node and methods therein
US9137804B2 (en) 2011-06-21 2015-09-15 Mediatek Inc. Systems and methods for different TDD configurations in carrier aggregation
US9144035B2 (en) 2011-07-29 2015-09-22 Lg Electronics Inc. Terminal equipment and method for controlling uplink transmission power
WO2013025005A2 (ko) 2011-08-12 2013-02-21 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 채널을 위한 자원을 획득하는 방법 및 장치
CN102938693B (zh) * 2011-08-15 2015-09-23 普天信息技术研究院有限公司 Lte-a tdd不同上下行配比的反馈方法
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
CN102348269B (zh) * 2011-09-27 2015-01-28 电信科学技术研究院 一种上行功率控制的方法和设备
KR101306404B1 (ko) 2011-09-29 2013-09-09 엘지전자 주식회사 상향링크 전송 방법 및 이를 이용한 무선기기
JP5813444B2 (ja) 2011-09-30 2015-11-17 シャープ株式会社 基地局、端末、通信システムおよび通信方法
JP5990815B2 (ja) 2011-11-07 2016-09-14 シャープ株式会社 基地局、端末、通信システムおよび通信方法
CN103959868B (zh) 2011-11-12 2018-04-06 Lg电子株式会社 用于在无线通信系统中允许终端确定上行链路传输功率的方法及其装置
KR101867314B1 (ko) 2011-11-15 2018-06-15 주식회사 골드피크이노베이션즈 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법
US8902842B1 (en) 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
CN103312470B (zh) 2012-03-09 2016-05-11 电信科学技术研究院 一种harq反馈的实现方法及装置
CN103368707B (zh) * 2012-03-26 2016-07-20 电信科学技术研究院 一种harq反馈的实现方法、上行子帧分配方法及装置
US8971280B2 (en) 2012-04-20 2015-03-03 Ofinno Technologies, Llc Uplink transmissions in a wireless device
US8958342B2 (en) 2012-04-17 2015-02-17 Ofinno Technologies, Llc Uplink transmission power in a multicarrier wireless device
CN103384188B (zh) * 2012-05-04 2017-03-01 电信科学技术研究院 载波聚合反馈方法、装置及系统
US9125096B2 (en) 2012-05-04 2015-09-01 Qualcomm Incorporated Method and apparatus for reducing interference in a wireless system
CN103516499B (zh) * 2012-06-19 2017-06-13 电信科学技术研究院 一种ack/nack反馈比特数确定方法及装置
US9615360B2 (en) 2012-07-27 2017-04-04 Futurewei Technologies, Inc. System and method for multiple point communications
KR102088022B1 (ko) 2012-08-01 2020-03-11 엘지전자 주식회사 제어 정보를 시그널링 하는 방법 및 이를 위한 장치
WO2014022690A2 (en) * 2012-08-02 2014-02-06 Blackberry Limited Uplink control channel resource allocation for an enhanced downlink control channel of a mobile communication system
US9699779B2 (en) 2012-08-23 2017-07-04 Interdigital Patent Holdings, Inc. Physical layer operation for multi-layer operation in a wireless system
EP2893747B1 (en) 2012-09-10 2019-12-04 Avago Technologies International Sales Pte. Limited Uplink configuration and transmission control in inter-site carrier aggregation
WO2014046374A1 (ko) 2012-09-19 2014-03-27 엘지전자 주식회사 상향링크 제어정보 전송 방법 및 장치
US9398480B2 (en) * 2012-11-02 2016-07-19 Telefonaktiebolaget L M Ericsson (Publ) Methods of obtaining measurements in the presence of strong and/or highly varying interference
US9503216B2 (en) 2012-11-02 2016-11-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices related to effective measurements
US9220070B2 (en) * 2012-11-05 2015-12-22 Google Technology Holdings LLC Method and system for managing transmit power on a wireless communication network
EP2943020B1 (en) 2013-01-03 2019-05-01 LG Electronics Inc. Method and apparatus for transmitting uplink signals in wireless communication system
CN110086588B (zh) * 2013-01-10 2021-11-02 韩国电子通信研究院 载波聚合方法
US9986511B2 (en) 2014-01-22 2018-05-29 Lg Electronics Inc. Method and device for transmitting uplink signal in wireless communication system
US9985756B2 (en) * 2014-01-29 2018-05-29 Samsung Electronics Co., Ltd. Multicarrier-based data transmission method and apparatus in mobile communication system
US20150327243A1 (en) * 2014-05-08 2015-11-12 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation
US10142945B2 (en) * 2014-06-05 2018-11-27 Samsung Electronics Co., Ltd. Power control for transmission of uplink control information on two cells in carrier aggregation
EP3160195B1 (en) * 2014-06-20 2019-11-13 Sharp Kabushiki Kaisha Terminal device, base-station device, and communication method
JP6586091B2 (ja) * 2014-08-04 2019-10-02 シャープ株式会社 端末装置および方法
US9867146B2 (en) * 2014-08-06 2018-01-09 Sharp Kabushiki Kaisha Systems and methods for dual-connectivity operation
US9424012B1 (en) 2016-01-04 2016-08-23 International Business Machines Corporation Programmable code fingerprint
JP6774367B2 (ja) 2017-04-11 2020-10-21 富士フイルム株式会社 ヘッドマウントディスプレイの制御装置とその作動方法および作動プログラム、並びに画像表示システム
US10582454B2 (en) * 2017-09-27 2020-03-03 Ofinno, Llc Power control for uplink control channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120090081A (ko) * 2009-10-05 2012-08-16 콸콤 인코포레이티드 멀티-캐리어 무선 네트워크에서 컴포넌트 캐리어 전력 제어
WO2011053056A2 (ko) * 2009-10-29 2011-05-05 엘지전자 주식회사 복수의 캐리어를 지원하는 통신 시스템에서 상향링크 전송 파워 제어 정보를 송수신하기 위한 장치 및 그 방법
US20110275403A1 (en) * 2010-05-07 2011-11-10 Qualcomm Incorporated Uplink power control in aggregated carrier communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2943020A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132295A (zh) * 2018-04-13 2020-05-08 Oppo广东移动通信有限公司 一种上行功率控制方法、终端设备及网络设备
US10880838B2 (en) 2018-04-13 2020-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of uplink power control, terminal device and network device
CN111132295B (zh) * 2018-04-13 2021-03-09 Oppo广东移动通信有限公司 一种上行功率控制方法、终端设备及网络设备
CN112655250A (zh) * 2018-10-31 2021-04-13 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN112655250B (zh) * 2018-10-31 2023-06-27 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Also Published As

Publication number Publication date
US20200351793A1 (en) 2020-11-05
US20190090204A1 (en) 2019-03-21
US20170064640A1 (en) 2017-03-02
US20180007637A1 (en) 2018-01-04
US20170064639A1 (en) 2017-03-02
JP2017085652A (ja) 2017-05-18
CN104904154A (zh) 2015-09-09
EP3522669B1 (en) 2021-09-08
EP3550897A1 (en) 2019-10-09
EP2942896A4 (en) 2016-08-24
US11076362B2 (en) 2021-07-27
KR20150105353A (ko) 2015-09-16
EP2942897A1 (en) 2015-11-11
WO2014107052A1 (ko) 2014-07-10
EP2942896A1 (en) 2015-11-11
US10531398B2 (en) 2020-01-07
US20150341923A1 (en) 2015-11-26
JP2016510529A (ja) 2016-04-07
EP2943022A4 (en) 2016-08-31
EP2943022B1 (en) 2020-03-11
ES2797398T3 (es) 2020-12-02
EP3598809B1 (en) 2021-03-03
US9813219B2 (en) 2017-11-07
US10455515B2 (en) 2019-10-22
WO2014107053A1 (ko) 2014-07-10
US9584300B2 (en) 2017-02-28
US10172096B2 (en) 2019-01-01
US10887841B2 (en) 2021-01-05
EP2943020A4 (en) 2016-08-31
US20180220375A1 (en) 2018-08-02
US20150341156A1 (en) 2015-11-26
EP3522669A1 (en) 2019-08-07
JP6306224B2 (ja) 2018-04-04
US10736047B2 (en) 2020-08-04
KR102254896B1 (ko) 2021-05-24
JP2016506199A (ja) 2016-02-25
EP2943020A1 (en) 2015-11-11
US20150341865A1 (en) 2015-11-26
KR20150105352A (ko) 2015-09-16
US20170303205A1 (en) 2017-10-19
JP6078661B2 (ja) 2017-02-08
US20200045639A1 (en) 2020-02-06
US20200037257A1 (en) 2020-01-30
US9801141B2 (en) 2017-10-24
US9980234B2 (en) 2018-05-22
EP3598809A1 (en) 2020-01-22
WO2014107050A1 (ko) 2014-07-10
US20150341864A1 (en) 2015-11-26
JP6027270B2 (ja) 2016-11-16
US20190090203A1 (en) 2019-03-21
EP2942897A4 (en) 2016-08-24
EP2942897B1 (en) 2019-03-06
US9867138B2 (en) 2018-01-09
US9820237B2 (en) 2017-11-14
US9520984B2 (en) 2016-12-13
CN104904154B (zh) 2018-06-19
CN104885534B (zh) 2018-09-14
EP2943022A1 (en) 2015-11-11
CN104885534A (zh) 2015-09-02
EP2943020B1 (en) 2019-05-01
US10142941B2 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
US10887841B2 (en) Method and apparatus for transmitting uplink signals in wireless communication system
US11564215B2 (en) Method for signaling control information, and apparatus therefor
US9986511B2 (en) Method and device for transmitting uplink signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14735251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759170

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014735251

Country of ref document: EP