WO2014106503A2 - Verfahren zur herstellung einer elektrisch leitfähigen struktur auf einem nichtleitenden trägermaterial sowie ein hierzu bestimmtes additiv und trägermaterial - Google Patents

Verfahren zur herstellung einer elektrisch leitfähigen struktur auf einem nichtleitenden trägermaterial sowie ein hierzu bestimmtes additiv und trägermaterial Download PDF

Info

Publication number
WO2014106503A2
WO2014106503A2 PCT/DE2013/100412 DE2013100412W WO2014106503A2 WO 2014106503 A2 WO2014106503 A2 WO 2014106503A2 DE 2013100412 W DE2013100412 W DE 2013100412W WO 2014106503 A2 WO2014106503 A2 WO 2014106503A2
Authority
WO
WIPO (PCT)
Prior art keywords
additive
region
metal compound
metal
laser
Prior art date
Application number
PCT/DE2013/100412
Other languages
English (en)
French (fr)
Other versions
WO2014106503A3 (de
Inventor
Robin Alexander KRÜGER
Bernd Rösener
Wolfgang John
Arne Schnoor
Roman Ostholt
Original Assignee
Lpkf Laser & Electronics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lpkf Laser & Electronics Ag filed Critical Lpkf Laser & Electronics Ag
Priority to EP13836252.0A priority Critical patent/EP2912210A2/de
Priority to CN201380069097.5A priority patent/CN104884670A/zh
Priority to KR1020157018645A priority patent/KR20150095834A/ko
Priority to US14/655,056 priority patent/US20160002791A1/en
Priority to JP2015551125A priority patent/JP2016507650A/ja
Publication of WO2014106503A2 publication Critical patent/WO2014106503A2/de
Publication of WO2014106503A3 publication Critical patent/WO2014106503A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2467/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0236Plating catalyst as filler in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/0999Circuit printed on or in housing, e.g. housing as PCB; Circuit printed on the case of a component; PCB affixed to housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction

Definitions

  • the invention relates to a method for producing an electrically conductive structure, in particular a conductor track, on a non-conductive carrier material which contains an additive with at least one metal compound, wherein the carrier material partially
  • MID Molded Interconnect Devices
  • MID technology combines electrical and mechanical functions in one component.
  • the conductive structure is integrated into the housing and thus substitutes the conventional circuit board to reduce weight, space and installation costs.
  • LDS laser direct structuring
  • carrier materials are injection-molded in one-component injection molding with specially additized plastic granules as molded parts.
  • the additives can be reacted in a spatially selective manner in a physico-chemical reaction to catalytically active nuclei, which in a subsequent chemical
  • Metallizing bath selectively deposits metal at the sites treated in this way.
  • the laser has the task of creating a micro-rough surface in order to ensure adequate adhesion of the metal layer on the plastic substrate
  • the LDS process allows circuit layouts to be adjusted or changed in no time at all without tool conversions. This circumstance and the commercial availability of various LDS-enabled plastics has ultimately led to the LDS process being the leading technology in MID manufacturing.
  • nanoscale non-conductive metal compounds are used whose particles have nanodimensions with characteristic sizes below 200 nm. This preserves the transparency of the support material and the function of the non-conductive metal compound.
  • WO 2012/056385 A1 describes a method with an improved electroless plating performance of LDS materials.
  • the type of additive essentially determines which wavelength the laser radiation to use can have and how efficiently it is absorbed.
  • Laser irradiation is converted into catalytically active nuclei, as it would cause the additive alone.
  • the additive contains, in addition to a first region formed by, for example, inorganic metal compounds, at least a second region having a different chemical composition, and the oxidation state of the metal in the additive is reduced by the laser activation.
  • a second area as substance with different chemical
  • a reactive microenvironment is created for the additive and the chemical reaction with the carrier material substantially reduced or completely avoided. Since such a procedure makes the process of converting the additive into catalytically active nuclei more efficient, the
  • the additive-shell hybrid provides all the necessary for the required chemical-physical reaction substances, at the same time eliminates the limitation to certain
  • Plastics or plastic groups For example, this makes a carrier material suitable with a substantial proportion of material of a PTFE for carrying out the method according to the invention, when the additive provided with the second region is mixed.
  • such a second region for example as a coating, in some cases not only can significantly reduce the agglomeration, but also has an advantageous effect on the subsequent chemical metallization. more accurate
  • An essential advantage of the invention results in particular from the fact that the additive can be supplied to any carrier materials and therefore the desired laser activation is reliably achieved without consideration of the special properties of the carrier material. In particular, it is thus possible to dispense with the aids previously required for adaptation to different properties of the carrier material.
  • the additive can also be supplied or admixed only in the shaping process, so that the additive does not have to be present in the carrier material before processing.
  • the second range also leads to significantly improved mechanical properties when it contains substantially organic compounds.
  • the second region at the interface between the second region and the carrier material, in each case essentially organic components meet one another.
  • the second region leads to far less disturbances in the structure of the plastic than the carrier material of the additive.
  • the second region may preferably be applied to the additive as a coating over its full area so as to achieve a separation of the additive from the carrier material.
  • the coating thickness is selected so that it has a sufficient adhesive strength to the additive and so in particular when mixing the additive provided with the coating in the carrier material is not separated from the additive or the
  • the coating with an amount corresponding to the stoichiometric ratio between at least one in the Coating contained active ingredient and the additive applied to the additive, so that the amount of substance required for the reduction of the additive in the coating is available. As a result, an interaction or a chemical reaction of the additive with the carrier material is largely prevented.
  • the invention is a
  • the additive could be in an aqueous solution which is in liquid form in the
  • Carrier material is introduced. Particularly promising, however, is one
  • Embodiment of the invention in which the additive provided with the second region in a strewable or free-flowing form, in particular powdered, prepared and in the
  • Carrier material is mixed. This simplifies the manufacturing process as well as the system requirements for making the mixture. In particular, the desired mixture can be monitored in a simple manner on the basis of the mass ratios.
  • Another embodiment of the invention which is also particularly promising, is achieved by introducing an absorber in the second region, which converts the laser energy for laser activation into that contained in the additive
  • Laser radiation introduced energy into the required activation energy, which is used to trigger the reaction between those in the second area on the one hand and the
  • additive particles contained on the other hand required reactants is implemented in an optimal manner and thus increases the efficiency.
  • These substances acting as absorbers in the second region therefore also allow the desired activation in a particularly advantageous manner if the second region or the additive is transparent to the wavelength of the laser radiation. According to the invention, it is thus also possible to use those additives which can not be activated per se with the selected laser, by the reaction being effected by corresponding reaction partners in the second region and the resulting interaction of those contained in the second region
  • the additive is largely decoupled from the selection of the laser.
  • the absorber is on the wavelength tuned by the laser. For example, absorbers in the IR wavelength range are suitable for this purpose.
  • the carrier material contains as a substantial proportion of material a semiconductor material, ceramic and / or glass, so that the inventive method for selective activation and subsequent metallization can also be carried out in conjunction with such carrier materials, which themselves are not chemically reducing to the Can act additive. Furthermore, the chemical reaction of the additive with its second region substantially reduces a change in the chemical or physical properties of the carrier material.
  • a portion of copper (II) oxide powder (Sigma-Aldrich) is dried in a vacuum oven at 150 ° C and in a twin-screw extruder (Collin) with a part
  • Polybutylene terephthalate (Lanxess) processed into a homogeneous granules.
  • the granules are first in a fine impact mill (Hosokawa / Alpine) to a fine impact mill (Hosokawa / Alpine) to a fine impact mill (Hosokawa / Alpine) to a fine impact mill (Hosokawa / Alpine) to a fine impact mill (Hosokawa / Alpine) to a
  • thermosetting copper (I) oxide-polyester hybrid is then compounded at eight percent by weight in polyethylene (LyondellBasell) and injection molded into workpieces.
  • Fig. 2 shows an additive with a coating on one, a core forming, first
  • FIG. 3 shows an additive with a second region forming a core.
  • the additive 1 contains at least one metal compound forming a first region 2.
  • this metal compound is preferably selectively activated, whereby catalytically active nuclei form in the areas thus laser-activated, which are subsequently metallized.
  • the additive 1 contains, in addition to the metal compound, a second region 3 with one or more substances of a different chemical composition from the metal compound, so that the oxidation state of the metal in the additive 1 is reduced by the laser activation.
  • the additive 1 has a further, matched to the metal compound substance with different chemical composition, this is a
  • the process of converting the metal compound into catalytically active nuclei is thereby carried out much more efficiently, independently of the carrier material, while at the same time reducing the required amount in the carrier material.
  • additive 1 also eliminates the limitation to certain plastics or plastic groups.
  • an irregular mixture of the two regions 2, 3 is used for this purpose, which, above all, permits simple production, for example also during the shaping process.
  • the metal connection can completely enclose the second area 3, if, for example, at certain temperatures
  • the second region 3 is to support only the chemical reaction.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer elektrisch leitfähigen Struktur, insbesondere einer Leiterbahn, auf einem nichtleitenden Trägermaterial, welches ein Additiv (1) mit zumindest einer Metallverbindung enthält. Das Trägermaterial wird hierzu mittels eines Lasers bestrahlt, um so die in dem Additiv (1) enthaltenen, beispielsweise anorganischen Metallverbindungen selektiv zu aktivieren. Die durch die Aktivierung gebildeten Metallkeime werden anschließend metallisiert, um so die elektrisch leitfähige Struktur auf dem Trägermaterial zu schaffen. Indem das Additiv (1) vor dem Einbringen in das Trägermaterial mit einer insbesondere vollflächigen Beschichtung versehen wird, sodass durch die Laseraktivierung das Additiv (1) reduziert wird und die Beschichtung oxidiert wird, werden die für die erforderliche chemische Reaktion mit dem Additiv (1) notwendigen Reaktionspartner durch die Beschichtung bereitgestellt. Aufgrund der dadurch wesentlich reduzierten Wechselwirkung mit dem Trägermaterial entfällt zugleich auch die Limitierung auf bestimmte Kunststoffe bzw. Kunststoffgruppen.

Description

Verfahren zur Herstellung einer elektrisch leitfähigen Struktur auf einem nichtleitenden Trägermaterial sowie ein hierzu bestimmtes Additiv und Trägermaterial
Die Erfindung betrifft ein Verfahren zur Herstellung einer elektrisch leitfähigen Struktur, insbesondere einer Leiterbahn, auf einem nichtleitenden Trägermaterial, welches ein Additiv mit zumindest einer Metallverbindung enthält, wobei das Trägermaterial partiell
Laserstrahlung ausgesetzt wird und die in dem Additiv enthaltenen Metallverbindungen aktiviert werden, wodurch sich in den so laseraktivierten Bereichen katalytisch aktive Keime bilden, die anschließend in einem außenstromlosen Metallisierungsbad metallisiert werden, und dadurch die elektrisch leitfähige Struktur auf dem nichtleitenden Trägermaterial geschaffen wird.
Räumliche, spritzgegossene Schaltungsträger sind in der Praxis unter der Bezeichnung MID (Molded Interconnect Devices) bekannt und bereits vielfach im Einsatz. Die MID-Technologie vereint elektrische und mechanische Funktionen in einem Bauteil. Die leitfähige Struktur wird hierbei in das Gehäuse integriert und substituiert so die konventionelle Leiterplatte, um Gewicht, Bauraum und Montagekosten zu reduzieren.
Besondere Bedeutung kommt dabei der sogenannten Laser-Direktstrukturierung (LDS) zu. Beim LDS-Verfahren werden Trägermaterialien im Einkomponenten-Spritzguss mit speziell additiviertem Kunststoffgranulat als Formteile spritzgegossen. Mittels Laser können die Additive ortsselektiv in einer physikalisch-chemischen Reaktion zu katalytisch wirksamen Keimen umgesetzt werden, wobei sich in einem anschließenden chemischen
Metallisierungsbad an den so behandelten Stellen gezielt Metall abscheidet.
Neben der Aktivierung hat der Laser die Aufgabe, eine mikroraue Oberfläche zu erzeugen, um eine ausreichende Haftung der Metallschicht auf dem Kunststoffsubstrat zu
gewährleisten. Da der Bereich, der der Laserstrahlung ausgesetzt wird, mittels Computersoftware gesteuert wird, können beim LDS-Verfahren in kürzester Zeit und ohne Umbau von Werkzeugen Schaltungslayouts angepasst oder geändert werden. Dieser Umstand und die kommerzielle Verfügbarkeit verschiedener LDS-fähiger Kunstoffe haben letztendlich dazu geführt, dass das LDS-Verfahren die führende Technologie bei der Herstellung von MID ist.
In der DE 101 32 092 A1 werden Leiterbahnstrukturen auf einem elektrisch nichtleitenden Trägermaterial beschrieben, die aus Metallkeimen und einer nachfolgend auf diese aufgebrachten Metallisierung bestehen, wobei die Metallkeime durch Aufbrechen von feinstverteilt in dem Trägermaterial enthaltenen elektrisch nichtleitenden anorganischen Metallverbindungen durch elektromagnetische Strahlung entstanden sind.
Die DE 10 2004 021 747 A1 beschreibt ebenfalls derartige Leiterbahnstrukturen, wobei die Metallkeime durch Aufbrechen von feinstverteilt in dem Trägermaterial enthaltenen nanoskaligen Metallverbindungen durch elektromagnetische Strahlung entstanden sind. Um die Transparenz des Trägermaterials zu erhalten, die eine Lichtleitung ermöglicht und damit die Kombination von Leiterbahnstrukturen und lichtleitenden Trägerstoffen zur
optoelektronischen Nutzung gestattet, werden nanoskalige nichtleitende Metallverbindungen eingesetzt, deren Partikel Nanodimensionen mit charakteristischen Größen unter 200 nm aufweisen. Dadurch bleiben die Transparenz des Trägermaterials und die Funktion der nichtleitenden Metallverbindung erhalten.
Ferner wird in der WO 2012/056385 A1 ein Verfahren mit einer verbesserten stromlosen Plattierungsleistung von LDS-Materialien beschreiben.
Aufgrund technologischer Begrenzungen können heutzutage Spurweiten von minimal 150 μηι verlässlich mittels LDS-Verfahren hergestellt werden. Um die gewünschte
Miniaturisierung der MID weiter voranzutreiben, ist es unumgänglich, diese Beschränkung weiter zurückzudrängen. Zu diesem Zweck werden zum einen große Anstrengungen betrieben, die Laserstrahlung weiter zu fokussieren und präziser über die Oberfläche des Formteils zu führen. Zum anderen ist die Größe der Additive zu verringern, um eine bessere Kantenschärfe der Laserstrukturierung zu gewährleisten. Dabei muss allerdings
berücksichtigt werden, dass diesem Vorgehen Grenzen gesetzt sind, da die Neigung der Additive zu agglomerieren im Compoundier- oder Spritzgussprozess bei abnehmender Teilchengröße im Allgemeinen zunimmt.
Dabei sind drei Aspekte von besonderer Bedeutung: 1) Die physikalischen Eigenschaften des Basispolymers und der daraus hergestellten Werkstücke, wie zum Beispiel Schlagzähigkeit und Bruchfestigkeit, werden durch Menge, Größe, Form und Art des Additivs beeinflusst.
2) Die Art des Additivs bestimmt im Wesentlichen, welche Wellenlänge die zu verwendende Laserstrahlung haben kann und wie effizient diese absorbiert wird.
3) Die chemisch-physikalische Umwandlung des Additivs in katalytisch wirksame Keime wird durch unterschiedliche Materialien unterschiedlich stark gefördert und kann in manchen Materialien ausbleiben.
Der Erfindung liegt die Aufgabe zugrunde, ein Additiv in geeigneter Art und Weise so auszuführen, dass der Additiv-Hülle-Hybrid weniger negative Auswirkungen auf die physikalischen Eigenschaften des Basispolymers hat und wirkungsvoller durch
Laserbestrahlung in katalytisch wirksame Keime umgesetzt wird, als es das Additiv allein bewirken würde.
Diese Aufgabe wird erfindungsgemäß mit einem Verfahren gemäß den Merkmalen des Anspruchs 1 gelöst. Die weitere Ausgestaltung der Erfindung ist den Unteransprüchen zu entnehmen.
Erfindungsgemäß ist also ein Verfahren vorgesehen, bei dem das Additiv neben einem durch die beispielsweise anorganischen Metallverbindungen gebildeten ersten Bereich zumindest einen zweiten Bereich mit unterschiedlicher chemischer Zusammensetzung enthält und durch die Laseraktivierung die Oxidationsstufe des Metalls im Additiv reduziert wird. Indem das Additiv einen zweiten Bereich als Substanz mit unterschiedlicher chemischer
Zusammensetzung aufweist, wird für das Additiv eine reaktionsfähige Mikroumgebung geschaffen und die chemische Reaktion mit dem Trägermaterial wesentlich verringert oder gänzlich vermieden. Da durch solch ein Vorgehen der Prozess der Umwandlung des Additivs in katalytisch wirksame Keime effizienter ausgeführt werden kann, wird auch die
erforderliche Dosierung des Additivs und damit der erforderliche Mengenanteil in dem Trägermaterial reduziert. Die erfindungsgemäß reduzierten Mindestmengen des Additivs führen somit direkt zu geringeren Einflüssen auf die Eigenschaften des Trägermaterials. Da der Additiv-Hülle-Hybrid alle für die erforderliche chemisch-physikalische Reaktion notwendigen Stoffe bereitstellt, entfällt zugleich auch die Limitierung auf bestimmte
Kunststoffe bzw. Kunststoffgruppen. Beispielsweise eignet sich dadurch ein Trägermaterial mit einem wesentlichen Materialanteil eines PTFE zur Durchführung des erfindungsgemäßen Verfahrens, wenn das mit dem zweiten Bereich versehene Additiv eingemischt wird.
Selbstverständlich ist erfindungsgemäß nicht ausgeschlossen, dass zusätzlich auch in das Additiv Stoffe als zweiter Bereich eingemischt werden.
Es hat sich gezeigt, dass ein solcher zweiter Bereich beispielsweise als eine Beschichtung in einigen Fällen nicht nur die Agglomeration deutlich zurückdrängen kann, sondern sich auch vorteilhaft auf die sich anschließende chemische Metallisierung auswirkt. Genauere
Betrachtungen haben ergeben, dass einige Hüllsubstanzen die chemisch-physikalische Umwandlung der Additive in katalytisch wirksame Keime besser fördern als die sie umgebende Kunststoffmatrix des Trägermaterials.
Ein wesentlicher Vorteil der Erfindung ergibt sich vor allem dadurch, dass das Additiv beliebigen Trägermaterialien zugeführt werden kann und daher ohne Berücksichtigung der speziellen Eigenschaften des Trägermaterials die gewünschte Laseraktivierung zuverlässig erreicht wird. Insbesondere kann also auf die bisher zur Anpassung an unterschiedliche Eigenschaften des Trägermaterials erforderlichen Hilfsmittel verzichtet werden. Somit kann das Additiv auch erst im formgebenden Prozess zugeführt bzw. beigemischt werden, sodass das Additiv nicht schon vor der Verarbeitung in dem Trägermaterial vorhanden sein muss.
Der zweite Bereich führt aber auch grundsätzlich zu deutlich verbesserten mechanischen Eigenschaften, wenn dieser im Wesentlichen organische Verbindungen enthält. Hierdurch treffen an der Grenzfläche zwischen dem zweiten Bereich und dem Trägermaterial jeweils im Wesentlichen organische Anteile aufeinander. Durch den zweiten Bereich kommt es zu weit geringeren Störungen in der Struktur des Kunststoffs als Trägermaterial des Additivs.
Insbesondere können durch einen die Metallverbindung einschließenden zweiten Bereich vorhandene Partikelkanten nivelliert werden, sodass die beim Stand der Technik nicht zuverlässig auszuschließenden Kerbwirkungen des Additivs in dem Trägermaterial verringert oder sogar vermieden werden.
Der zweite Bereich kann als Beschichtung bevorzugt vollflächig auf das Additiv aufgebracht werden, um so eine Trennung des Additivs gegenüber dem Trägermaterial zu erreichen. Hierzu wird die Beschichtungsstärke so gewählt, dass diese eine ausreichende Haftfestigkeit auf dem Additiv aufweist und so insbesondere beim Einmischen des mit der Beschichtung versehenen Additivs in das Trägermaterial nicht von dem Additiv getrennt bzw. die
Beschichtung beschädigt wird. Besonders bevorzugt wird die Beschichtung mit einer Menge entsprechend dem stöchiometrischen Verhältnis zwischen zumindest einem in der Beschichtung enthaltenen Wirkstoff und dem Additiv auf das Additiv aufgebracht, sodass die für die Reduktion des Additivs erforderliche Stoffmenge in der Beschichtung verfügbar ist. Hierdurch wird eine Wechselwirkung bzw. eine chemische Reaktion des Additivs mit dem Trägermaterial weitgehend unterbunden. In der Praxis wird erfindungsgemäß eine
Beschichtungsstärke zwischen 5 nm und 2 μηι aufgebracht.
Das Additiv könnte in einer wässrigen Lösung vorliegen, die in flüssiger Form in das
Trägermaterial eingebracht wird. Besonders Erfolg versprechend ist hingegen eine
Ausgestaltung der Erfindung, bei der das mit dem zweiten Bereich versehene Additiv in einer streu- oder rieselfähigen Form, insbesondere Pulverform, hergestellt und in das
Trägermaterial eingemischt wird. Hierdurch werden der Herstellungsprozess und zudem die Systemvoraussetzungen zur Herstellung der Mischung vereinfacht. Insbesondere lässt sich die gewünschte Mischung in einfacher Weise anhand der Masseverhältnisse überwachen.
Indem erfindungsgemäß eine Wechselwirkung des Additivs mit dem Trägermaterial weitgehend entfällt, weil die für das Additiv bestimmten Reaktionspartner in dem zweiten Bereich enthalten sind, entfällt bei der Auswahl des Trägermaterials die Beschränkung auf solche für die chemische Reaktion geeignete Kunststoffmaterialien. Dadurch eignen sich auch solche Trägermaterialien zur Durchführung des Verfahrens, die reaktionsträge oder -unfähig sind.
Eine andere, ebenfalls besonders Erfolg versprechende Ausgestaltung der Erfindung wird dadurch erreicht, dass in dem zweiten Bereich ein Absorber eingebracht wird, welcher die Umwandlung der Laserenergie zur Laseraktivierung der in dem Additiv enthaltenen
Metallverbindungen begünstigt. Hierdurch wird die Umwandlung der mittels der
Laserstrahlung eingebrachten Energie in die erforderliche Aktivierungsenergie, die zum Auslösen der Reaktion zwischen den in dem zweiten Bereich einerseits und den
Additivpartikeln andererseits enthaltenen Reaktionspartnern erforderlich ist, in optimaler Weise umgesetzt und so der Wirkungsgrad gesteigert. Diese als Absorber wirkenden Substanzen in dem zweiten Bereich ermöglichen daher in besonders vorteilhafter Weise auch dann die gewünschte Aktivierung, wenn der zweite Bereich bzw. das Additiv für die Wellenlänge der Laserstrahlung transparent ist. Erfindungsgemäß können also auch solche Additive eingesetzt werden, die mit dem ausgewählten Laser an sich nicht aktivierbar sind, indem die Reaktion durch entsprechende Reaktionspartner in dem zweiten Bereich und dem daraus resultierenden Zusammenwirken der in dem zweiten Bereich enthaltenen
Substanzen und des Additivs realisierbar sind. Hierdurch wird also das Additiv von der Auswahl des Lasers weitgehend entkoppelt. Der Absorber wird hierzu auf die Wellenlänge des Lasers abgestimmt. Beispielsweise eignen sich hierzu Absorber im IR- Wellenlängenbereich.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung enthält das Trägermaterial als einen wesentlichen Materialanteil ein Halbleitermaterial, Keramik und/oder Glas, sodass das erfindungsgemäße Verfahren zur selektiven Aktivierung und nachfolgenden Metallisierung auch in Verbindung mit solchen Trägermaterialien durchgeführt werden kann, die selbst nicht chemisch reduzierend auf das Additiv wirken können. Weiterhin wird durch die chemische Reaktion des Additivs mit seinem zweiten Bereich eine Änderung der chemischen oder physikalischen Eigenschaften des Trägermaterials wesentlich verringert.
Ausführungsbeispiel 1
Ein Teil Kupfer(ll)oxid-Pulver (Firma Sigma-Aldrich) wird im Vakuumtrockenschrank bei 150 °C getrocknet und in einem Zweischneckenextruder (Firma Collin) mit einem Teil
Polybutylenterephthalat (Firma Lanxess) zu einem homogenen Granulat verarbeitet. Das Granulat wird zunächst in einer Feinprallmühle (Firma Hosokawa/Alpine) zu einer
Partikelgröße von 0,5 mm vermählen und anschließend in einer Planetenkugelmühle
(Pulverisette 7 Premium Line/1 mm Zirkonoxid-Kugeln/Zirkonoxid-Mahlbecher, Firma Fritsch) auf eine Endfeinheit von etwa 1 μηι vermählen. Der so erhaltene Kupfer(ll)oxid- Polybutylenterephthalat-Hybrid wird sodann mit zehn Gewichtsprozenten in Polypropylen (Firma Ensinger) eincompoundiert und zu Werkstücken spritzgegossen. Diese so erhaltenen Werkstücke können mittels Laser ortsselektiv für eine außenstromlose Metallisierung aktiviert werden. Im Vergleich zu Probekörpern, die lediglich nicht modifiziertes Kupfer(ll)oxid enthalten, weisen die so erhaltenen Polypropylen-Werkstücke eine um ein Vielfaches erhöhte Performance bezüglich der Metallisierung auf.
Ausführungsbeispiel 2
Zwei Teile Kupfer(l)oxid werden in einen Teil Polyesterharz (Firma Presto) eingemischt und zu dünnen Platten vergossen. Nach vollständigem Aushärten der Platten werden diese zunächst mechanisch vorzerkleinert. Anschließend wird das Granulat in einer Feinprallmühle (Firma Hosokawa/Alpine) zu einer Partikelgröße von 0,5 mm vermählen und abschließend in einer Planetenkugelmühle (Pulverisette 7 Premium Line/1 mm Zirkonoxid-Kugeln/Zirkonoxid- Mahlbecher, Firma Fritsch) auf eine Endfeinheit von etwa 1 μηι vermählen. Der so erhaltene duroplastische Kupfer(l)oxid-Polyester-Hybrid wird sodann mit acht Gewichtsprozenten in Polyethylen (Firma LyondellBasell) eincompoundiert und zu Werkstücken spritzgegossen. Diese so erhaltenen Werkstücke können mittels Laser ortsselektiv für eine außenstromlose Metallisierung aktiviert werden. Im Vergleich zu Probekörpern, die lediglich nicht modifiziertes Kupfer(l)oxid enthalten, weisen die so erhaltenen Polyethylen-Werkstücke eine um ein Vielfaches erhöhte Performance bezüglich der Metallisierung auf.
Ausführungsbeispiel 3
Zwei Teile Eisen(lll)oxid werden bei 130 °C getrocknet und in einem Zweischneckenextruder (Firma Collin) mit einem Teil Liquid Crystal Polymer (Firma Ticona) zu einem homogenen Granulat verarbeitet. Das Granulat wird zunächst in einer Feinprallmühle (Firma
Hosokawa/Alpine) zu einer Partikelgröße von 0,5 mm vermählen und anschließend in einer Planetenkugelmühle (Pulverisette 7 Premium Line/1 mm Zirkonoxid-Kugeln/Zirkonoxid- Mahlbecher, Firma Fritsch) auf eine Endfeinheit von etwa 1 μηι vermählen. Das so modifizierte Eisen(lll)oxid wird sodann mit zwölf Gewichtsprozenten in ein Polyurethan (Firma SLM Solutions) eingearbeitet und im Vakuumgießverfahren zu Werkstücken abgeformt. Diese so erhaltenen Werkstücke können mittels Laser ortsselektiv für eine außenstromlose Metallisierung aktiviert werden. Im Vergleich zu Probekörpern, die lediglich nicht modifiziertes Eisen(lll)oxid enthalten, weisen die so erhaltenen Polyurethan- Werkstücke eine um ein Vielfaches erhöhte Performance bezüglich der Metallisierung auf.
Die Erfindung lässt verschiedene Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt jeweils in einer geschnittenen Prinzipdarstellung in
Fig. 1 ein Additiv mit unregelmäßiger Verteilung eines ersten und zweiten Bereichs;
Fig. 2 ein Additiv mit einem als Beschichtung auf einem, einen Kern bildenden, ersten
Bereich ausgeführten zweiten Bereich;
Fig. 3 ein Additiv mit einem, einen Kern bildenden, zweiten Bereich.
Das erfindungsgemäße Additiv zur Herstellung einer elektrisch leitfähigen Struktur auf einem nicht gezeigten Trägermaterial wird nachstehend noch anhand der Figuren 1 bis 3 näher erläutert. Hierzu enthält das Additiv 1 zumindest eine, einen ersten Bereich 2 bildende Metallverbindung. Durch eine Bestrahlung mittels eines Lasers wird diese Metallverbindung vorzugsweise selektiv aktiviert, wodurch sich in den so laseraktivierten Bereichen katalytisch wirksame Keime bilden, die anschließend metallisiert werden. Zusätzlich enthält das Additiv 1 neben der Metallverbindung noch einen zweiten Bereich 3 mit einer oder verschiedenen Substanzen von der Metallverbindung abweichender chemischer Zusammensetzung, sodass durch die Laseraktivierung die Oxidationsstufe des Metalls im Additiv 1 reduziert wird. Indem das Additiv 1 eine weitere, auf die Metallverbindung abgestimmte Substanz mit unterschiedlicher chemischer Zusammensetzung aufweist, wird für diese eine
reaktionsfähige Mikroumgebung geschaffen und die chemische Reaktion mit dem
Trägermaterial wesentlich verringert oder gänzlich vermieden. Der Prozess der Umwandlung der Metallverbindung in katalytisch wirksame Keime erfolgt dadurch unabhängig von dem Trägermaterial wesentlich effizienter, wobei zugleich der erforderliche Mengenanteil in dem Trägermaterial reduziert wird. Indem das Additiv 1 alle für die erforderliche chemischphysikalische Reaktion notwendigen Stoffe bereitstellt, entfällt zugleich auch die Limitierung auf bestimmte Kunststoffe bzw. Kunststoffgruppen.
Bei einer in der Figur 1 gezeigten Variante des Additivs 1 wird hierzu eine unregelmäßige Mischung der beiden Bereiche 2, 3 eingesetzt, welche vor allem eine einfache Herstellung beispielsweise auch während des formgebenden Verfahrens ermöglicht.
Demgegenüber kann durch eine in Figur 2 dargestellte Variante, bei welcher der zweite Bereich 3 als Beschichtung vollflächig auf die Metallverbindung aufgebracht ist, eine Trennung des Additivs 1 gegenüber dem Trägermaterial erreicht werden, um so eine unerwünschte chemische Reaktion des Trägermaterials mit der Metallverbindung zu verhindern.
Weiterhin kann bei der in Figur 3 gezeigten Variante, die Metallverbindung den zweiten Bereich 3 vollständig einschließen, wenn beispielsweise bei bestimmten
Anwendungszwecken eine Reaktion des Additivs 1 mit dem Trägermaterial erwünscht ist und der zweite Bereich 3 lediglich die chemische Reaktion unterstützen soll.

Claims

PATE N TAN SP RÜ C H E
1. Verfahren zur Herstellung einer elektrisch leitfähigen Struktur, insbesondere einer Leiterbahn, auf einem nichtleitenden Trägermaterial, welches ein Additiv (1) mit zumindest einer Metallverbindung enthält, wobei das Trägermaterial mittels eines Lasers bestrahlt wird und die in dem Additiv (1) enthaltenen Metallverbindungen dadurch selektiv aktiviert werden, wodurch sich in den so laseraktivierten Bereichen katalytisch wirksame Keime bilden, die anschließend metallisiert werden, und dadurch die elektrisch leitfähige Struktur auf dem nichtleitenden Trägermaterial geschaffen wird, dadurch gekennzeichnet, dass das Additiv (1) neben einem durch die Metallverbindung gebildeten ersten Bereich (2) zumindest einen zweiten Bereich (3) mit unterschiedlicher chemischer Zusammensetzung enthält und durch die Laseraktivierung die Oxidationsstufe des Metalls im Additiv (1) reduziert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Metallverbindung den Kern des Additivs (1) bildet und zumindest abschnittsweise vom zweiten Bereich (3), insbesondere als eine Beschichtung umgeben ist.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Metallverbindung zumindest abschnittsweise durch den zweiten Bereich (3) durchdrungen ist.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Metallverbindung zumindest abschnittsweise den zweiten Bereich (3) umgibt.
5. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass das Additiv (1) zumindest in einer Dimension kleiner als 5 μηι ist.
6. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass der zweite Bereich (3) im Wesentlichen eine organische Verbindung ist.
7. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Bereich (3) im Wesentlichen eine reduzierende
Metallverbindung ist.
8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der zweite Bereich (3) mit einer Stärke zwischen 5 nm und 2 μηι aufgebracht ist.
9. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass im zweiten Bereich (3) ein Absorber eingebracht wird, welcher die Umwandlung der Laserenergie zur Laseraktivierung der in dem Additiv (1) enthaltenen Metallverbindung begünstigt.
10. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die im Additiv (1) enthaltene Metallverbindung ein Metalloxid enthält.
11. Ein zur Herstellung einer elektrisch leitfähigen Struktur auf einem nichtleitenden
Trägermaterial bestimmtes Additiv (1), welches zumindest eine Metallverbindung als einen ersten Bereich (2) enthält, dadurch gekennzeichnet, dass das Additiv einen insbesondere als Beschichtung des ersten Bereichs (2) ausgeführten zweiten Bereich (3) mit
unterschiedlicher chemischer Zusammensetzung enthält und durch die Laseraktivierung die Oxidationsstufe des Metalls im Additiv (1) reduzierbar ist.
12. Trägermaterial mit einem Additiv (1) zur Herstellung einer elektrisch leitfähigen Struktur, insbesondere einer Leiterbahn, auf dem Trägermaterial nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trägermaterial als einen wesentlichen Materialanteil ein Polymer, Halbleitermaterial, Keramik, Holz und/oder Glas enthält.
PCT/DE2013/100412 2013-01-02 2013-12-06 Verfahren zur herstellung einer elektrisch leitfähigen struktur auf einem nichtleitenden trägermaterial sowie ein hierzu bestimmtes additiv und trägermaterial WO2014106503A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13836252.0A EP2912210A2 (de) 2013-01-02 2013-12-06 Verfahren zur herstellung einer elektrisch leitfähigen struktur auf einem nichtleitenden trägermaterial sowie ein hierzu bestimmtes additiv und trägermaterial
CN201380069097.5A CN104884670A (zh) 2013-01-02 2013-12-06 在非导电性的基底材料上制造导电结构的方法以及用于此的特定添加物和基底材料
KR1020157018645A KR20150095834A (ko) 2013-01-02 2013-12-06 비전도성 기판재료 상에 전기 전도성 구조를 제조하기 위한 방법, 및 이를 위한 소정 첨가제와 기판재료
US14/655,056 US20160002791A1 (en) 2013-01-02 2013-12-06 Method for producing an electrically conductive structure on a non-conductive substrate material, and additive and substrate material intended therefor
JP2015551125A JP2016507650A (ja) 2013-01-02 2013-12-06 非導電性基板材料上に導電性構造体を製造する方法並びにそのための特定の添加剤及び基板材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013100016.9A DE102013100016A1 (de) 2013-01-02 2013-01-02 Verfahren zur Herstellung einer elektrisch leitfähigen Struktur auf einem nichtleitenden Trägermaterial sowie ein hierzu bestimmtes Additiv und Trägermaterial
DE102013100016.9 2013-01-02

Publications (2)

Publication Number Publication Date
WO2014106503A2 true WO2014106503A2 (de) 2014-07-10
WO2014106503A3 WO2014106503A3 (de) 2014-10-30

Family

ID=50276878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/100412 WO2014106503A2 (de) 2013-01-02 2013-12-06 Verfahren zur herstellung einer elektrisch leitfähigen struktur auf einem nichtleitenden trägermaterial sowie ein hierzu bestimmtes additiv und trägermaterial

Country Status (7)

Country Link
US (1) US20160002791A1 (de)
EP (1) EP2912210A2 (de)
JP (1) JP2016507650A (de)
KR (1) KR20150095834A (de)
CN (1) CN104884670A (de)
DE (1) DE102013100016A1 (de)
WO (1) WO2014106503A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014114987A1 (de) * 2014-10-15 2016-04-21 Lpkf Laser & Electronics Ag Verfahren zur Herstellung einer elektrisch leitfähigen Struktur sowie ein mit diesem Verfahren hergestelltes Trägermaterial
CN109790361B (zh) 2016-09-26 2021-10-01 东丽株式会社 液晶性聚酯树脂组合物、成型品及成型品的制造方法
CN106862564B (zh) * 2017-01-12 2019-11-12 南京航空航天大学 基于激光选区烧结技术的结构电路一体化部件的制作方法
DE102019133955B4 (de) 2019-12-11 2021-08-19 Lpkf Laser & Electronics Aktiengesellschaft Verfahren zur Herstellung einer Verbundstruktur aus mindestens einer leitfähigen Struktur
CN114069196A (zh) * 2020-07-30 2022-02-18 Oppo广东移动通信有限公司 壳体组件及其制备方法、天线组件和电子设备
CN112420300A (zh) * 2020-11-11 2021-02-26 昆山丰景拓电子有限公司 一种新型电阻及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132092A1 (de) 2001-07-05 2003-01-23 Lpkf Laser & Electronics Ag Leiterbahnstrukturen und Verfahren zu ihrer Herstellung
DE102004021747A1 (de) 2004-04-30 2005-11-17 Kickelhain, Jörg, Dr. Leiterbahnstrukturen
WO2012056385A1 (en) 2010-10-25 2012-05-03 Sabic Innovative Plastics Ip B.V. Improved electroless plating performance of laser direct structuring materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344513A1 (de) * 2003-09-24 2005-04-28 Mitsubishi Polyester Film Gmbh Mehrschichtige, orientierte, mittels elektromagnetischer Strahlung strukturierbare Folie aus thermoplastischem Polyester zur Herstellung selektiv metallisierter Folien
US7547849B2 (en) * 2005-06-15 2009-06-16 E.I. Du Pont De Nemours And Company Compositions useful in electronic circuitry type applications, patternable using amplified light, and methods and compositions relating thereto
FR2944982B1 (fr) * 2009-04-30 2011-10-14 Commissariat Energie Atomique Procede de preparation d'un substrat metallise,ledit substrat et ses utilisations
CN102770491B (zh) * 2009-12-21 2015-11-25 三菱化学欧洲合资公司 芳族聚碳酸酯组合物
CN103249572B (zh) * 2010-10-26 2016-06-22 沙特基础全球技术有限公司 具有全部颜色性能的激光直接结构化材料
US20130168133A1 (en) * 2011-03-18 2013-07-04 Mitsubishi Chemical Europe Gmbh Process for producing a circuit carrier
JP5340513B1 (ja) * 2012-03-23 2013-11-13 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物、樹脂成形品、及びメッキ層付樹脂成形品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132092A1 (de) 2001-07-05 2003-01-23 Lpkf Laser & Electronics Ag Leiterbahnstrukturen und Verfahren zu ihrer Herstellung
DE102004021747A1 (de) 2004-04-30 2005-11-17 Kickelhain, Jörg, Dr. Leiterbahnstrukturen
WO2012056385A1 (en) 2010-10-25 2012-05-03 Sabic Innovative Plastics Ip B.V. Improved electroless plating performance of laser direct structuring materials

Also Published As

Publication number Publication date
DE102013100016A1 (de) 2014-07-03
JP2016507650A (ja) 2016-03-10
KR20150095834A (ko) 2015-08-21
EP2912210A2 (de) 2015-09-02
WO2014106503A3 (de) 2014-10-30
CN104884670A (zh) 2015-09-02
US20160002791A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
EP2912210A2 (de) Verfahren zur herstellung einer elektrisch leitfähigen struktur auf einem nichtleitenden trägermaterial sowie ein hierzu bestimmtes additiv und trägermaterial
DE112015006047B4 (de) Herstellungsverfahren für eine räumliche leiterplatte, räumliche leiterplatte und substrat für eine räumliche leiterplatte
EP1383360A1 (de) Spritzgegossener Leiterträger und Verfahren zu seiner Herstellung
DE102014008963A1 (de) Additiv für LDS-Kunststoffe
DE102017106913A1 (de) Verfahren zur Herstellung von elektrisch leitenden Strukturen auf einem Trägermaterial
WO2018141769A1 (de) Additiv für lds-kunststoffe
DE102016204905A1 (de) Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
EP2499314B1 (de) Verfahren zur herstellung eines kraftfahrzeugtürschlosses und zugehöriges kraftfahrzeugtürschloss
DE3539509A1 (de) Emi-abschirmungszusammensetzungen
EP2287240B1 (de) Verfahren zum Einbringen von Kohlenstoffteilchen in eine Polycarbonat-Oberflächenschicht
DE19835613C2 (de) Elektrisch leitfähige Harzzusammensetzung und deren Verwendung zur Herstellung von Harzformteilen
DE102019106134A1 (de) Konzept zum Herstellen eines Dreidimensionalen Schaltungsträgers
DE102016120391A1 (de) Oberflächenbeleuchtung für Fahrzeuginnenverkleidung
DE102017216740A1 (de) Leitender Kunststoffkörper, Fahrzeug-Erdungsstruktur und Verfahren zum Herstellen des leitenden Kunststoffkörpers
DE102005015455B4 (de) Kunststoffgehäuse und Halbleiterbauteil mit derartigem Kunststoffgehäuse sowie ein Verfahren zur Herstellung eines Kunststoffgehäuses
EP3360693A1 (de) Personalisierbarer datenträger
DE102018107562A1 (de) Verfahren zur Herstellung eines Bauteils mittels pulverbasiertem 3D-Druck sowie ein solches Bauteil
EP1045627B1 (de) Herstellen von Leiterbahnen auf Kunststoffen durch Laserenergie
WO2007093290A2 (de) Verfahren zur herstellung einer schicht auf einem formkörper und dessen verwendung
DE10301516B3 (de) Verfahren zur Herstellung von Leiterstrukturen auf Isoliersubstraten aus polymerem Schaumstoff
DE69920892T2 (de) Verfahren zum Plattieren von Kunstoffen unter Verwendung eines katalitischen Fuellstoffes
DE102004052303A1 (de) Verfahren zur Herstellung von Funktionselementstrukturen
DE102019133955B4 (de) Verfahren zur Herstellung einer Verbundstruktur aus mindestens einer leitfähigen Struktur
DE102019006445B4 (de) Verfahren zur Herstellung eines Bauteils
DE102006060801B4 (de) Verfahren zur Herstellung eines Chipkartenmoduls und Chipkartenmodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836252

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013836252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14655056

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015551125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018645

Country of ref document: KR

Kind code of ref document: A