WO2014106437A1 - 一种压力调节装置 - Google Patents

一种压力调节装置 Download PDF

Info

Publication number
WO2014106437A1
WO2014106437A1 PCT/CN2013/090206 CN2013090206W WO2014106437A1 WO 2014106437 A1 WO2014106437 A1 WO 2014106437A1 CN 2013090206 W CN2013090206 W CN 2013090206W WO 2014106437 A1 WO2014106437 A1 WO 2014106437A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
temperature
processor
chamber
value
Prior art date
Application number
PCT/CN2013/090206
Other languages
English (en)
French (fr)
Inventor
郑德智
丁伟
Original Assignee
北京银谷科讯信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京银谷科讯信息技术有限公司 filed Critical 北京银谷科讯信息技术有限公司
Publication of WO2014106437A1 publication Critical patent/WO2014106437A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/002Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/002Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
    • G01L27/005Apparatus for calibrating pressure sensors

Definitions

  • the invention relates to the field of industrial control, in particular to a double closed loop PI control method for controlling a cavity volume change of a conventional rough pressure regulating mechanism and a high thermal expansion coefficient material pressure vessel, so that the two work together to realize the pressure Precision adjustment.
  • Pressure measurement plays an important role in industrial process control.
  • the performance of the pressure calibration device determines the calibration accuracy, efficiency and cost of the pressure gauge.
  • the automatic pressure calibrator is gradually replacing the traditional piston pressure gauge due to its high precision, wide application range, easy operation, functional integration and compact size. It is widely used in electric power, petroleum, petrochemical, metallurgy and pharmaceutical. And other fields.
  • the automatic pressure calibrator is mainly divided into a gas pressure calibrator and a hydraulic calibrator according to the different instruments to be inspected.
  • Pneumatic calibrators use non-corrosive gases as the working medium and are often used to calibrate pressure gauges with relatively small ranges.
  • the conventional air pressure calibrator uses the opening/closing of the solenoid valve to control the amount of intake air and the amount of air in the pressure generating chamber, and then achieves the purpose of adjusting the pressure, as shown in Fig. 1C.
  • Hydraulic calibrators use non-conductive liquids such as transformer oil, sebacate, deionized water as working medium, and are often used to calibrate pressure gauges with relatively large ranges.
  • the conventional hydraulic calibrator uses a motor or gas to push the piston to move in the cylinder, change the volume of the working medium in the cylinder, and then achieve the purpose of regulating the pressure, as shown in Fig. 1A and Fig. 1B.
  • the pressure accuracy of fully automatic pressure calibrators is mainly limited by the performance of pressure sensors and actuators.
  • the processing accuracy of the actuator, the consistency of components and the cost of processing and procurement determine the performance of the actuator.
  • the response time of the solenoid valve is mostly 10 to 30 ms, and some are better. It takes 5 ⁇ 1 0ms, and the price is more expensive, and the consistency is difficult to guarantee.
  • the gas flow rate of the solenoid valve at the minimum switching interval often determines the accuracy of the air pressure adjustment. By reducing the pressure difference across the solenoid valve in order to reduce the gas flow at the minimum switching interval, the complexity of the system is often increased, resulting in increased costs. Reducing the diameter of the solenoid valve, while reducing the gas flow rate at the minimum switching interval, also increases the adjustment time. Increasing the volume of the pressure generating chamber will increase the oscillation of the gas due to the cavity effect and increase the adjustment time.
  • an embodiment of the present invention provides a pressure adjusting device, the device comprising: an actuator (1), which includes a temperature sensing chamber (3), a temperature control device (4), and a coarse pressure adjusting mechanism.
  • the control mechanism (2) includes a processor (6), touch screen (7), analog to digital conversion (8), a pressure sensor (9), the pressure sensor (9) senses the pressure in the pressure generating chamber (10), outputs an electrical signal, and after collecting the electrical signal through an analog-to-digital converter (8), Calculated by the processor (6) to obtain a real-time pressure value, and the processor (6) compares the error value of the pressure set value and the current pressure value input by the user through the touch screen (7) After comparing the error value with the set error threshold, the actuator (1) is double closed-loop controlled to adjust the pressure in the pressure generating chamber (10).
  • the double closed loop control further includes: when the error value is outside the set error threshold interval, the processor (6) starts the inner loop, and the control center
  • the coarse pressure adjusting mechanism (5) quickly performs coarse pressure adjustment; when the error value is within the set error threshold interval, the processor (6) activates the outer ring to control the temperature control device (4)
  • the temperature of the temperature sensing chamber (3) is changed to change the volume of the cavity of the temperature sensing chamber (3).
  • the temperature sensing chamber is a pressure vessel having a high thermal expansion coefficient of aluminum, copper or iron.
  • the temperature control device is composed of a power resistor, a Pt thermocouple, a heat sink and a power source.
  • the pressure sensor (9) is a silicon piezoresistive pressure sensor, a resonant pressure sensor, and a capacitive pressure sensor.
  • a pressure regulating device according to a preferred embodiment of the present invention, the analog to digital converter
  • the invention adopts the conventional pressure regulating mechanism of the inner ring and the outer ring temperature control device to work together, and changes the temperature of the temperature sensing chamber, and then changes the volume thereof, thereby realizing high-precision pressure stability adjustment, and is suitable for air pressure and hydraulic pressure.
  • the present invention adopts a double closed loop P I control method, so that the coarse pressure adjusting mechanism and the temperature control device work together to quickly reach a stable set pressure. That is, when the error value is outside the set error threshold interval, the coarse pressure regulating mechanism is started to quickly adjust pressure; when the error value is within the set error threshold interval, the temperature control device is activated to perform precise voltage regulation.
  • the inner and outer PI links when the error value is outside the respective set error threshold interval, the adjusting mechanism adjusts the voltage at the highest adjustment speed. Once the error value enters the set error threshold interval, the parameter self-tuning is used.
  • the PI control method regulates pressure.
  • the PI control method greatly shortens the response time and improves the anti-interference ability
  • Figure 1A is a schematic diagram of a hydraulic adjustment mechanism that uses a motor to push a piston
  • Figure 1B is a schematic view of a hydraulic adjustment mechanism that uses a gas to push a piston
  • Fig. 1 C is a gas pressure adjusting mechanism for controlling the intake air amount and the air output amount by using a solenoid valve
  • FIG. 2 is a structural block diagram of a pressure adjusting device according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of a temperature sensing chamber and a temperature control device thereof according to the present invention.
  • FIG. 5 is a structural diagram of a parameter self-tuning PI control of the present invention. detailed description
  • an embodiment of the present invention provides a pressure regulating device for precise pressure regulation using temperature control, the device comprising an actuator (1) and a control mechanism (2).
  • An actuator (1) comprising a temperature sensing chamber (3), a temperature control device (4), a coarse pressure adjusting mechanism (5), and a pressure generating chamber (10), the pressure generating chamber (10) and the The temperature sensing chambers (3) communicate with each other, and the internal pressure of the chamber is equal;
  • the control mechanism (2) includes a processor (6), a touch screen (7), an analog to digital converter (8), and a pressure sensor (9).
  • the control mechanism composed of the pressure sensor 9, the analog-to-digital converter 8, and the processor 6 is also called a control circuit, and controls the cavity volume of the temperature sensing chamber 3 controlled by the coarse pressure adjusting mechanism 5 and the temperature control device 4 by the double closed loop PI control method. Change, so that the two work together to achieve stable and rapid pressure regulation.
  • the temperature sensing chamber of the present invention can be selected from a pressure vessel having a high thermal expansion coefficient material such as aluminum, copper or iron.
  • the principle of the temperature control device is generally composed of a power resistor, a Pt thermocouple, a heat sink and a power source.
  • the processor controls the temperature of the temperature sensing chamber through the temperature control device, and then changes the volume of the cavity: when the pressure needs to be increased, the voltage modulation duty ratio of the power resistor in the temperature control device is lowered, and then the temperature of the power resistor is lowered.
  • the surface area of the heat sink can be selected to be larger. If necessary, the heat sink fan can be used to reduce the temperature of the temperature sensing chamber.
  • the volume of the cavity of the temperature sensing chamber is cold contracted.
  • the temperature is raised.
  • the voltage modulation duty ratio of the power resistor in the control device, and then the temperature of the power resistor is raised, and if the cooling fan is installed, the temperature should be turned off, so that the temperature of the temperature sensing chamber is increased, and the cavity volume of the temperature sensing chamber is increased. Inflate with heat. Because the temperature sensing chamber communicates with the pressure generating chamber, the pressure in the chamber is equal.
  • the volume of the cavity of the temperature sensing chamber should be coordinated with the total volume of the entire pressure-making circuit. If it is too small, the pressure regulation range is too small. If it is too large, it will not be able to adjust the pressure. At the same time, the pressure regulation resolution of the coarse pressure adjustment mechanism should also be considered.
  • the processor 6 of the present invention receives the pressure set value set by the user through the touch screen 7, and the pressure in the pressure generating chamber 10 is sensitive to the pressure generated by the analog digital converter 8 and is solved by the processor 6. Calculate the current value of the pressure. Processor 6 will set the pressure and pressure to the current The values are compared and the error value is obtained.
  • the processor 6 activates the coarse pressure regulating mechanism 5 of the inner ring to quickly adjust the pressure by the parameter self-tuning PI control method, and the temperature control device 4 of the outer ring does not work;
  • the temperature control device 4 of the outer ring is activated by the parameter self-tuning PI control method to achieve precise pressure regulation, and the inner ring coarse pressure adjusting mechanism 5 does not operate. Cycle through until a stable set pressure is reached.
  • the processor 6 controls the pressure by using a double closed loop parameter self-tuning P I control method.
  • the processor adjusts the proportional coefficient Kp and the integral coefficient Ki of the P I link according to the error value by the PI control algorithm.
  • the output of the Kp control is proportional to the input error value for fast response; the output of the Ki control is proportional to the integral of the error value and is used to eliminate the steady-state error.
  • Kp when the absolute value of the error is large (in the present invention, it is greater than 20% of the input value of the inner and outer rings), Kp takes a larger value (30 in the present invention), Ki takes zero, and the coarse pressure adjusting mechanism 5 or sense The temperature chamber 3 is quickly regulated or rapidly ramped up, and the absolute value of the error is reduced as soon as possible; when the absolute value of the error is medium (in the present invention, more than 10% of the input values of the inner and outer rings are smaller than the input values of the inner and outer rings) 20%), Kp takes a medium value (25 in the present invention), Ki takes a smaller value (the present invention takes 0.0005), and at this time, the coarse pressure adjusting mechanism 5 or the temperature sensing chamber 3 reduces the speed of the pressure regulation or the temperature rise and fall, preventing Overshoot; When the absolute value of the error continues to decrease (the invention takes more than 5% of the input value of the inner and outer rings is less than 10% of the input value of the inner and outer rings), Kp should take a smaller value (
  • the pressure sensor 9 can select common silicon piezoresistive pressure sensors, resonant pressure sensors, and capacitive pressure sensors according to accuracy and performance requirements.
  • the electrical signal output by the pressure sensor 9 is generally a small signal of the uA, mV level, and The pressure signal in the pressure chamber 10 is not abruptly changed for a short time, so a high-resolution, high signal-to-noise ratio, highly integrated sigma-delta analog-to-digital converter 8, such as the AD771 4, is recommended.
  • the processor 6 can be implemented by a common digital signal processor or ARM, such as: TMS320F28335.
  • the set pressure input by the user can be realized by a touch screen or a button of a single button or a digital tube.
  • the principle of the invention utilizes the conventional coarse pressure adjusting mechanism and the cavity volume change of the pressure vessel of the high thermal expansion coefficient material to make the two work together, and realizes the rapid and stable pressure generation through the double closed loop PI control method.
  • the function In terms of actuators, the requirements for the performance of conventional coarse-pressure adjustment mechanisms are reduced, and only for coarse pressure adjustment.
  • the temperature control device is activated to work, and the temperature of the temperature sensing chamber is changed, and then the volume of the cavity of the temperature sensing chamber is changed to achieve the purpose of precise pressure regulation.
  • the software adopts the double closed loop PI control method.
  • the parameters of the PI link are self-tuned, and the adjustment time is greatly reduced. Firstly, the coarse pressure adjusting mechanism of the inner ring is controlled to quickly adjust to the set error threshold interval, and then the inner ring is stopped, and the temperature control device for controlling the outer ring is quickly and stably adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

一种压力调节装置包括:感温腔(3)、温控装置(4)、粗压调节机构(5)、处理器(6)、触摸屏(7)、模拟数字转换器(8)、压力传感器(9)、造压腔(10)。压力传感器(9)敏感造压腔(10)内的压力,输出的电信号经模拟数字转换器(8)采集,再由处理器(6)解算,得到实时的压力值。处理器(6)通过比较由触摸屏(7)输入的压力设定值与实时检测的压力当前值的误差值,采用双闭环PI控制算法,先控制内环的粗压调节机构(5)快速进行粗压调节,之后控制外环的温控装置(4),通过控制温度改变感温腔(3)的腔体体积,继而达到精密调节压力的作用。该压力调节控制系统精度高,结构简单,成本低廉,适用性较广。

Description

一种压力调节装置
技术领域
本发明涉及工业控制领域, 具体涉及一种采用双闭环 P I控制方法,控 制常规的粗压调节机构与高热膨胀系数材料的耐压容器的腔体体积变化, 使二者协同工作, 实现了压力的精密调节。 背景技术
压力测量在工业过程控制中占有重要地位, 压力校准装置的性能决定 了压力仪表的校准精度、 效率及成本。 全自动压力校验仪因其精度高, 适 用范围广, 易于操作, 功能集成化, 体积小巧等众多优点, 正逐步取代传 统的活塞式压力计, 广泛应用于电力、 石油、 石化、 冶金、 制药等领域。
全自动压力校验仪根据被检仪表的不同, 主要分为气压校验仪和液压 校验仪。 气压校验仪以非腐蚀性气体为工作介质, 往往用来校准量程相对 较小的压力仪表。常规的气压校验仪利用电磁阀的开 /断来控制造压腔内的 进气量和出气量, 继而达到调节压力的目的, 见图 1 C。 液压校验仪以变压 器油、 癸二酸脂、 去离子水等非导电液体为工作介质, 往往用来校准量程 相对较大的压力仪表。 常规的液压校验仪利用电机或者气体推动活塞在油 缸里运动, 改变油缸内工作介质的体积, 继而达到调节压力的目的, 见图 1 A和图 1 B。
目前, 全自动压力校验仪的造压精度主要受制于压力传感器和执行机 构的性能。 执行机构的加工精度, 元器件的一致性和加工采购成本, 决定 了执行机构性能的好坏。
传统的气压系统中, 电磁阀的响应时间大多在 1 0~30ms , 好一些的也 要 5~ 1 0ms , 而且价格较为昂贵, 一致性难以保证。 电磁阀最小开关间隔 的气体流量往往决定了气压调节的精度。 通过降低电磁阀两端的压差以期 减小最小开关间隔的气体流量, 往往会增加系统的复杂性, 造成成本的提 高。 减小电磁阀的通径, 虽然可以减小最小开关间隔的气体流量, 但同时 也增大了调节时间。 增大造压腔体的容积, 则会因为容腔效应, 加剧气体 的振荡, 也会增大调节时间。 传统的液压系统中, 对于靠电机推动活塞的 造压系统而言, 传动丝杠的加工精度会影响电机单位步长下活塞的位移, 继而影响调压的分辨力。 而高精度的丝杠往往价格昂贵, 不易加工。 与之 配套的电机也需选择高分辨率、 扭矩稳定、 发热较小的步进电机或者伺服 电机, 进一步提高系统的成本。 对于气推液的造压系统, 则存在与气压系 统相似的难题。 发明内容
本发明的技术解决的问题是: 克服现有技术的不足, 提供了一种利用 高热膨胀系数材料(铝、 铜、 铁等) 的耐压容器的形变进行压力精密调节 的控制系统, 配合常规的粗压调节机构 (液压油缸或者气动电磁阀) , 采 用双闭环 P I控制方法, 降低了对常规调节机构的性能要求, 筒化了系统结 构, 降低了系统的元器件成本和一致性影响, 并在一定程度上提高了造压 精度。 为实现上述目的, 本发明实施例一方面提供了一种压力调节装置, 所 述装置包括: 执行机构 (1 ) , 其包括感温腔 (3 ) 、 温控装置 (4 ) 、 粗压调节机 构 (5 ) 、 造压腔(1 0 ) , 所述造压腔( 10 )和所述感温腔(3 ) 的腔体相 通, 腔体内部压力相等; 控制机构 (2 ) , 其包括处理器 (6 ) 、 触摸屏 (7 ) 、 模拟数字转换 器 (8) 、 压力传感器 (9) , 所述压力传感器 (9)感知所述造压腔( 10) 内的压力, 输出电信号, 经模拟数字转换器 (8) 采集所述电信号后, 由 所述处理器 (6)解算, 得到实时的压力值, 所述处理器 (6)通过比较用 户通过所述触摸屏 (7) 输入的压力设定值与压力当前值的误差值, 将所 述误差值与设定误差阈值比较后, 对所述执行机构 ( 1 ) 进行双闭环控制, 调节所述造压腔 (10) 内的压力。 依照本发明较佳实施例所述的压力调节装置, 所述双闭环控制进一步 包括: 当误差值处于所述设定误差阈值区间之外时, 所述处理器 (6) 启动 内环, 控制所述粗压调节机构 (5) 快速进行粗压调节; 当所述误差值处于所述设定误差阈值区间之内时, 所述处理器 (6) 启动外环, 控制所述温控装置 (4) , 改变所述感温腔(3) 的温度, 以改 变所述感温腔 (3) 的腔体体积。 依照本发明较佳实施例所述的压力调节装置, 所述的感温腔为铝制、 铜质或铁质的高热膨胀系数的耐压容器。 依照本发明较佳实施例所述的压力调节装置, 所温控装置由功率电 阻、 Pt热电偶、 散热片和电源构成。
依照本发明较佳实施例所述的压力精密调节装置, 所述压力传感器 (9) 为硅压阻式压力传感器、 谐振式压力传感器、 电容式压力传感器。
依照本发明较佳实施例所述的压力调节装置, 所述模拟数字转换器
(8) 为∑-Δ型模拟数字转换器。
由于采用了以上的技术特征, 使得本发明与现有技术相比的优点在 于: ( 1 ) 本发明采用内环常规的调压机构和外环温控装置协同工作, 通 过改变感温腔的温度, 继而改变其体积, 实现了高精度的压力稳定调节, 同时适用于气压和液压两种系统;
( 2 )本发明采用双闭环 P I控制方法, 使粗压调节机构和温控装置协 同工作, 快速达到稳定的设定压力。 即当误差值处于设定误差阈值区间之 外时, 启动粗压调节机构快速调压; 当误差值处于设定误差阈值区间之内 时, 启动温控装置进行精密调压。 在内、 外两个 P I环节, 当误差值处于各 自的设定误差阈值区间之外时, 调节机构以最高调节速度调压, 一旦误差 值进入设定误差阈值区间之内, 则使用参数自整定 P I 控制方法调压。 为 提高闭环控制系统的性能, 缩短响应时间, 使造压系统尽快达到稳定的设 定压力, 在内、 外两环, 根据误差值大小, 适当调整 P I控制器各环节的系 数, 相比于普通的 P I控制方法, 极大地缩短了响应时间, 提高了抗干扰能 力;
( 3 ) 本发明结构筒单, 温控装置和感温腔制作筒单, 对与之配合的 常规调压机构制造精度、 一致性要求较低, 同时也降低了成本, 具有一定 的市场推广潜力。 附图说明
图 1 A为利用电机推动活塞的液压调节机构示意图;
图 1 B为利用气体推动活塞的液压调节机构示意图;
图 1 C为利用电磁阀控制进气量、 出气量的气压调节机构;
图 2为本发明实施例提供的压力调节装置的结构框图;
图 3为本发明感温腔及其温控装置的示意图;
图 4为本发明处理器实现流程图;
图 5为本发明的参数自整定 PI控制结构图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 如图 2所示, 本发明实施例提供的是一利用温度控制进行压力精密调 节的压力调节装置, 所述装置包括执行机构(1 )和控制机构 (2)。 执行机构 (1 ) , 其包括感温腔 (3 ) 、 温控装置 (4 ) 、 粗压调节机构 (5 ) 和造压腔 ( 1 0 ) , 所述造压腔(1 0 )和所述感温腔(3 )相通, 腔体内部压力相等; 控制机构 (2) , 其包括处理器(6 ) 、 触摸屏(7 ) 、 模拟数字转换器 (8 ) 、 压力传感器 (9 ) 。 压力传感器 9、 模拟数字转换器 8、 处理器 6组成的控 制机构也称控制电路,通过双闭环 PI控制方法,控制粗压调节机构 5和温 控装置 4控制的感温腔 3的腔体体积变化, 使二者协同工作, 实现稳定、 快速地调压。
如图 3所示, 本发明的感温腔可选用常见的铝、 铜、 铁等高热膨胀系 数材料的耐压容器。 温控装置原理筒单, 一般由功率电阻、 Pt热电偶、 散 热片和电源构成。 处理器通过温控装置控制感温腔的温度, 继而改变其腔 体体积: 当需要升高压力时, 则降低温控装置中对功率电阻的电压调制占 空比, 继而降低功率电阻的温度, 散热片的表面积可选择大一些的, 如有 必要可辅以散热风扇, 使感温腔的温度随之降低, 则感温腔的腔体体积遇 冷收缩; 当需要降低压力时, 则提高温控装置中对功率电阻的电压调制占 空比, 继而升高功率电阻的温度, 如加装了散热风扇则应关闭, 使感温腔 的温度随之升高, 则感温腔的腔体体积遇热膨胀。 因为感温腔与造压腔相 通, 则二者腔体内压力相等。 感温腔的腔体体积应该与整个造压回路的总 体积相协调, 太小则调压范围偏小, 太大则起不到精密调压的作用。 同时 也要考虑到粗压调节机构的调压分辨力。
如图 4所示,本发明的处理器 6通过触摸屏 7接收用户设置的压力设 定值, 压力传感器 9敏感造压腔 1 0 内的压力, 经过模拟数字转换器 8采 集, 由处理器 6解算得到压力当前值。 处理器 6将压力设定值与压力当前 值比较, 得到误差值。 当误差值处于设定误差阈值区间之外时, 处理器 6 通过参数自整定的 P I控制方法启动内环的粗压调节机构 5快速调压,外环 的温控装置 4不工作; 当误差值处于设定误差阈值区间之内时, 则通过参 数自整定的 P I控制方法启动外环的温控装置 4实现精密调压,内环的粗压 调节机构 5不工作。 循环执行, 直到达到稳定的设定压力。
如图 5所示, 本发明实施例中处理器 6采用双闭环参数自整定 P I控 制方法对压力进行控制。 处理器通过 PI控制算法, 根据误差值大小, 调整 P I环节的比例系数 Kp和积分系数 Ki。 Kp控制的输出与输入误差值成正比 关系, 用来快速响应; Ki控制的输出与误差值的积分成正比关系, 用来消 除稳态误差。 即当误差绝对值较大 (本发明中取大于内、 外环输入值的 20% ) 时, Kp取较大值 (本发明取 30 ) , Ki取零, 此时粗压调节机构 5 或感温腔 3快速调压或快速升降温, 尽快使误差绝对值减小; 当误差绝对 值为中等大小 (本发明中取大于内、 外环输入值的 1 0%小于内、 外环输入 值的 20% )时, Kp取中等值(本发明取 25 ), Ki取较小值(本发明取 0.0005 ), 此时粗压调节机构 5或感温腔 3降低调压或升降温的速度, 防止超调; 当 误差绝对值继续减小 (本发明取大于内、 外环输入值的 5%小于内、 外环 输入值的 1 0% ) 时, Kp应取较小值 (本发明取 5 ) , Ki取中等值(本发 明取 0.02 ) , 此时緩慢调节粗压执行机构 5或者感温腔 3的温度; 当误差 绝对值达到最小(本发明取小于内环输入值的 5% )时, Kp应取中等值(本 发明取 20 ) , Ki取最大值 (本发明取 0.02 ) , 此时主要是细微地调节感 温腔 3的温度, 达到精密调压的作用。 以上过程使得内外两环迅速响应, 从而使闭环系统能够更快达到稳定的设定压力,该方法比传统的 P I控制方 法响应速度更快。
压力传感器 9可根据精度、 性能需要, 选择常见的硅压阻式压力传感 器、 谐振式压力传感器、 电容式压力传感器。
考虑到压力传感器 9输出的电信号一般为 uA、 mV级的微小信号, 且 造压腔 1 0 内的压力信号不会短时间突变, 故推荐采用高分辨率、 高信噪 比、 高集成度的∑-Δ型模拟数字转换器 8 , 例如 AD771 4。
处理器 6 可以选用常见的数字信号处理器或者 ARM 等实现, 如: TMS320F28335等。
用户输入的设定压力可以通过触摸屏或者筒单的按键、 数码管实现。 本发明的原理: 本发明借助常规的粗压调节机构与高热膨胀系数材料 的耐压容器的腔体体积变化,使二者协同工作,通过双闭环的 P I控制方法, 实现了快速、 稳定造压的功能。 在执行机构方面, 降低了对常规的粗压调 节机构的性能的要求, 仅用于粗压调节。 当误差值处于设定误差阈值区间 之内时, 启动温控装置工作, 通过改变感温腔的温度, 继而改变感温腔的 腔体体积, 达到精密调压的目的。 软件方面采用了双闭环的 P I控制方法, 通过比较压力传感器实时读取的压力当前值和用户设定值之间的误差值, 根据其大小, 自整定 P I环节的参数, 大大减小了调节时间。 先控制内环的 粗压调节机构快速调压至设定误差阈值区间之内, 然后停止内环调节, 控 制外环的温控装置快速、 稳定地进行精密调压。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种压力调节装置, 其特征性在于, 包括: 执行机构 (1 ) , 其包括感温腔 (3) 、 温控装置 (4) 、 粗压调节机 构 ( 5 ) 、 造压腔( 10 ) , 所述造压腔( 10 )和所述感温腔( 3 ) 的腔体相 通, 腔体内部压力相等; 控制机构 (2) , 其包括处理器 (6) 、 触摸屏 (7) 、 模拟数字转换 器 (8) 、 压力传感器 (9) , 所述压力传感器 (9)感知所述造压腔( 10) 内的压力, 输出电信号, 经模拟数字转换器 (8) 采集所述电信号后, 由 所述处理器 (6)解算, 得到实时的压力值, 所述处理器 (6)通过比较用 户通过所述触摸屏 (7) 输入的压力设定值与压力当前值的误差值, 将所 述误差值与设定误差阈值比较后, 对所述执行机构 ( 1 ) 进行双闭环控制, 调节所述造压腔 (10) 内的压力。
2、 如权利要求 1 所述的压力精密调节装置, 其特征在于, 所述双闭 环控制进一步包括: 当误差值处于所述设定误差阈值区间之外时, 所述处理器 (6) 启动 内环, 控制所述粗压调节机构 (5) 快速进行粗压调节; 当所述误差值处于所述误设定误差阈值区间之内时, 所述处理器(6) 启动外环, 控制所述温控装置 (4) , 改变所述感温腔(3) 的温度, 以改 变所述感温腔 (3) 的腔体体积。
3、 如权利要求 1 所述的压力调节装置, 其特征在于, 所述的感温腔 为铝制、 铜质或铁质的高热膨胀系数的耐压容器。
4、 如权利要求 1-3任一项所述的压力调节装置, 其特征在于, 所述 温控装置由功率电阻、 Pt热电偶、 散热片和电源构成。
5、 如权利要求 1-4任一项所述的压力精密调节装置, 其特征在于, 所 述压力传感器 (9) 为硅压阻式压力传感器、 谐振式压力传感器、 电容式 压力传感器。
6、 如权利要求 1-5任一项所述的压力调节装置, 其特征在于, 所述模 拟数字转换器 (8) 为∑-Δ型模拟数字转换器 (8) 。
PCT/CN2013/090206 2013-01-04 2013-12-23 一种压力调节装置 WO2014106437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310000145.7A CN103116370B (zh) 2013-01-04 2013-01-04 一种压力调节装置
CN201310000145.7 2013-01-04

Publications (1)

Publication Number Publication Date
WO2014106437A1 true WO2014106437A1 (zh) 2014-07-10

Family

ID=48414779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090206 WO2014106437A1 (zh) 2013-01-04 2013-12-23 一种压力调节装置

Country Status (3)

Country Link
CN (1) CN103116370B (zh)
CA (1) CA2838390A1 (zh)
WO (1) WO2014106437A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471469A (zh) * 2019-09-26 2019-11-19 湖南航天机电设备与特种材料研究所 一种基于pi算法的自适应温控方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596566A (zh) * 2018-10-29 2019-04-09 中国科学院合肥物质科学研究院 一种气体检测吸收腔体内部温度和压力一体化控制装置
CN111288296A (zh) * 2020-02-13 2020-06-16 蓝箭航天技术有限公司 一种氮气置换设备的控制装置和方法
CN113220045B (zh) * 2021-05-10 2023-03-31 南京英锐创电子科技有限公司 气压控制装置和方法
CN114483695A (zh) * 2022-01-30 2022-05-13 北京康斯特仪表科技股份有限公司 液体压力校验装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269034A (ja) * 1985-09-24 1987-03-30 Hitachi Ltd 温調装置
US5174326A (en) * 1991-02-08 1992-12-29 Dragerwerk Aktiengesellschaft Temperature-compensated pressure regulator
CN2168275Y (zh) * 1992-12-30 1994-06-08 郭福玲 密封容器内部压力自动调节装置
US20070280722A1 (en) * 2006-06-02 2007-12-06 Fujifilm Corporation Liquid storage apparatus and image forming apparatus
CN201466727U (zh) * 2009-05-26 2010-05-12 长沙矿山研究院 一种深海压力补偿器
CN201886370U (zh) * 2010-12-16 2011-06-29 河南省中分仪器有限公司 智能气体流量和压力控制器
CN102385397A (zh) * 2011-09-29 2012-03-21 北京振兴计量测试研究所 基于高速电磁阀的高精度压力控制系统
CN103092222A (zh) * 2012-12-31 2013-05-08 孙晓君 一种压力精密调节装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050087238A1 (en) * 2003-10-22 2005-04-28 Wilson Robert E. Compressed air control system refinements
CN102103381B (zh) * 2009-12-16 2014-06-25 上海神开石油化工装备股份有限公司 电子压力控制器
CN102677024A (zh) * 2012-05-28 2012-09-19 上海华力微电子有限公司 腔体压力调节方法及腔体压力调节装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269034A (ja) * 1985-09-24 1987-03-30 Hitachi Ltd 温調装置
US5174326A (en) * 1991-02-08 1992-12-29 Dragerwerk Aktiengesellschaft Temperature-compensated pressure regulator
CN2168275Y (zh) * 1992-12-30 1994-06-08 郭福玲 密封容器内部压力自动调节装置
US20070280722A1 (en) * 2006-06-02 2007-12-06 Fujifilm Corporation Liquid storage apparatus and image forming apparatus
CN201466727U (zh) * 2009-05-26 2010-05-12 长沙矿山研究院 一种深海压力补偿器
CN201886370U (zh) * 2010-12-16 2011-06-29 河南省中分仪器有限公司 智能气体流量和压力控制器
CN102385397A (zh) * 2011-09-29 2012-03-21 北京振兴计量测试研究所 基于高速电磁阀的高精度压力控制系统
CN103092222A (zh) * 2012-12-31 2013-05-08 孙晓君 一种压力精密调节装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471469A (zh) * 2019-09-26 2019-11-19 湖南航天机电设备与特种材料研究所 一种基于pi算法的自适应温控方法
CN110471469B (zh) * 2019-09-26 2021-03-16 湖南航天机电设备与特种材料研究所 一种基于pi算法的自适应温控方法

Also Published As

Publication number Publication date
CN103116370A (zh) 2013-05-22
CN103116370B (zh) 2015-06-03
CA2838390A1 (en) 2014-07-04

Similar Documents

Publication Publication Date Title
WO2014101728A1 (zh) 一种压力精密调节装置
WO2014106437A1 (zh) 一种压力调节装置
US10619761B2 (en) Valve and a method of operating a valve
US6882924B2 (en) Valve flow control system and method
CN105630033B (zh) 基于自适应模糊pid的水温控制方法及其控制系统
US5884894A (en) Inner-loop valve spool positioning control apparatus
JP4822464B2 (ja) 圧力レギュレータ及び除振装置
CN113324605B (zh) 气体质量流量控制器和气体质量流量控制方法
CN112272809A (zh) 流量控制方法以及流量控制装置
CN104165661B (zh) 一种低压损差压式流量计及其标定方法和流量计量方法
CN105183024B (zh) 一种流量-压力双闭环气体压力控制方法及装置
CN114370521B (zh) 一种电比例溢流阀滞环补偿控制方法及其系统
JP2771953B2 (ja) シリンダ形比例制御弁
JP6737669B2 (ja) 真空圧力制御システム及び真空圧力制御用コントローラ
CN107748511B (zh) 基于四开关阀同开策略的气动位置控制系统
Xu et al. Research on Control System of Intelligent Valve Positioner
JP2007278514A (ja) 流量制御弁の制御方法
Chang et al. Design of Gas Pressure Control System With the Silicon Resonant Pressure Sensor
CN211718768U (zh) 一种电子流量控制系统
CN202772414U (zh) 采用逻辑智能控制技术设计的激光器控制系统
CN115648196A (zh) 气动供压系统及其驱动方法、软体机器人
Giunta et al. Capabilities of a new pressure controller for gas-controlled heat pipes
RU2289156C2 (ru) Исполнительное устройство для регулирования газовых потоков в трубопроводах
Song et al. An accurate loading experimental measurement device for superplastic free bulging
JPS62114003A (ja) 高速応答制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13869982

Country of ref document: EP

Kind code of ref document: A1