CN110471469B - 一种基于pi算法的自适应温控方法 - Google Patents

一种基于pi算法的自适应温控方法 Download PDF

Info

Publication number
CN110471469B
CN110471469B CN201910916150.XA CN201910916150A CN110471469B CN 110471469 B CN110471469 B CN 110471469B CN 201910916150 A CN201910916150 A CN 201910916150A CN 110471469 B CN110471469 B CN 110471469B
Authority
CN
China
Prior art keywords
temperature
digital quantity
value
temperature control
converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910916150.XA
Other languages
English (en)
Other versions
CN110471469A (zh
Inventor
向前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Original Assignee
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials filed Critical Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority to CN201910916150.XA priority Critical patent/CN110471469B/zh
Publication of CN110471469A publication Critical patent/CN110471469A/zh
Application granted granted Critical
Publication of CN110471469B publication Critical patent/CN110471469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Abstract

本发明公开了一种基于PI算法的自适应温控方法,涉及惯组产品的温控技术。所述基于PI算法的自适应温控方法,将模拟量的温度采样值转换成数字量,再通过PI算法得到输出控制量,输出控制量被转换成模拟量或PWM来控制加温梯度,实现了温度敏感器件温度的自动控制,该方法可以通过软件程序来实现温度的自动控制,避免了纯硬件调试周期长和调试工作量大的问题;该方法中输出控制量需要与阈值比较后再转换成模拟量或PWM来控制加温电流,阈值通过PI控制方式实时调节来限制加温梯度,避免了加温梯度过大而达不到温度敏感器件所需加温精度,提高了加温精度。

Description

一种基于PI算法的自适应温控方法
技术领域
本发明属于惯组产品的温控技术,尤其涉及一种基于PI算法的自适应温控方法。
背景技术
捷联惯性导航产品中多种器件(尤其是惯性器件)对温度比较敏感,为了减少温漂,提高测试精度,一般设置温度敏感器件工作在一个超过环境温度且相对恒定的温度环境中。
前期的温度控制一般使用纯硬件电路实现,但在实践中,该电路有很多特性不能达到系统要求,如加温梯度过大、在不同外部热环境中工作时的一致性及重复性较差(实测某型号惯组硬件电路实现的温控电路在工作全温度范围内温控点误差将近1℃)等,并且因为设置电压值是通过精密电阻串并联进行分压实现,存在硬件调试周期长、调配阻值工作量大等问题。
发明内容
针对现有技术中,惯导产品温度敏感器件在温控过程中采用纯硬件调试周期长、调配阻值工作量大以及加温梯度过大的问题,本发明提供一种基于PI算法的自适应温控方法,采用PI算法进行温度调节,并通过阈值限制加温梯度,实现温度的自动控制,提高温控速度,并防止过大的加温梯度损失温度敏感器件。
本发明是通过如下的技术方案来解决上述技术问题的:一种基于PI算法的自适应温控方法,包括以下步骤:
步骤1:将温度采样值转换成某一值域内单调线性的电压值,所述某一值域是根据AD转换器的输入电压域范围来确定的;
步骤2:将所述步骤1中的电压值转换成数字量,采用PI算法对该数字量进行计算处理得到对应的输出数字量;
步骤3:将所述步骤2中的输出数字量转换成模拟量或PWM来控制加温电流,实现温度控制的目的。
本发明的自适应温控方法,将模拟量的温度采样值转换成数字量,再通过PI算法得到输出控制量,输出控制量被转换成模拟量或PWM来控制加温电流,实现了温度敏感器件温度的自动控制,该方法可以通过软件程序来实现温度的自动控制,避免了纯硬件调试周期长和调试工作量大的问题。
进一步地,所述步骤2中,PI算法的计算公式为:
output=outputbuf+kp1×(Ek-Ek,buf)+kI1×Ek
式中,output表示当前输出数字量,outputbuf表示上一次输出数字量,Ek表示当前温度采样值对应数字量与预设量之间的差值,Ek,buf表示上一次温度采样值对应数字量与预设量之间的差值,kp1表示第一比例系数,kI1表示第一积分系数。
进一步地,所述第一比例系数kp1和第一积分系数kI1是通过在线调整来确定的固定值,在线调整的具体操作为:先设kI1为0,在线调整kp1的值,当温控曲线收敛时,确定kp1的值,再增加kI1的值,温控曲线加速收敛,直到满足性能需求,确定kI1的值。
进一步地,所述步骤3中,输出数字量与阈值比较后再转换成模拟量或PWM;如果输出数字量在阈值范围内,则将输出数字量转换成模拟量或PWM,如果输出数字量超过阈值范围,则将对应的阈值的最大值或最小值转换成模拟量或PWM。
通过阈值来限制输出数字量,从而控制加温梯度,实现了温度敏感器件温度的自动控制,同时也在提高温控速度的前提下避免了加温梯度过大对温度敏感器件的损伤。
进一步地,所述阈值的最大值通过PI控制方式实现实时调节,具体的阈值最大值计算公式为:
Max=Maxbuf+kp2×(VT-VT,buf)+kI2×VT
式中,Max表示当前阈值最大值对应数字量,Maxbuf表示上一次阈值最大值对应数字量,VT表示当前温升速率对应数字量,VT,buf表示上一次温升速率对应数字量,kp2表示第二比例系数,kI2表示第二积分系数。
进一步地,所述阈值的最大值采用试验法来确定,试验法的具体操作为:
将工作温度分段,通过试验获取不同工作温度段内温度敏感器件允许温升条件下的最大加温电流;
将产品置于温控箱内,温控箱的温度设为某个工作温度段对应的温度,待产品温度与温控箱温度一致后,从小到该工作温度段对应的最大加温电流调节加热片的电流,同时测试温度敏感器件的最大温升,选取与温度敏感器件允许加温梯度最接近且不超过温度敏感器件允许加温梯度作为该工作温度段的最大加温值,即为该工作温度段内阈值的最大值。
在不同的工作温度段采用不同的阈值最大值,适用于加温时间充裕但对加温梯度要求高的系统。
相应的,一种基于PI算法的自适应温控系统,包括:
温度传感器,与温度敏感器件连接,用于将温度敏感器件的温度变化转换成阻值的变化;
测温电桥,与温度传感器连接,用于将阻值变化转换成电压变化;
差分放大器,与测温电桥连接,用于将电压变化转换成某一值域内单调线性的电压值;
AD转换器,与差分放大器连接,用于将电压值转换成数字量;
信号处理单元,与AD转换器连接,用于对数字量进行PI算法处理得到输出数字量,并将输出数字量与阈值比较后转换成模拟量或PWM信号;
放大驱动电路,与信号处理单元连接,用于放大模拟量或PWM信号,驱动加热片进行加热;
加热片,与放大驱动电路连接,且加热片设于温度敏感器件上,用于加热以实现产品温控要求。
有益效果
与现有技术相比,本发明所提供的基于PI算法的自适应温控方法,将模拟量的温度采样值转换成数字量,再通过PI算法得到输出控制量,输出控制量被转换成模拟量或PWM来控制加温电流,实现了温度敏感器件温度的自动控制,该方法可以通过软件程序来实现温度的自动控制,避免了纯硬件调试周期长和调试工作量大的问题;该方法中输出控制量需要与阈值比较后再转换成模拟量或PWM来控制加温电流,阈值的最大值通过PI控制方式实时调节来实时调节加温梯度,提高了温控系统的环境适应性,保证了低温下温度敏感器件的温控速度,同时也避免了过大的加温梯度对器件寿命及精度造成的影响。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一个实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中温控系统的功能框图。
具体实施方式
下面结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所提供的一种基于PI算法的自适应温控方法,包括以下步骤:
1、将温度采样值转换成某一值域内单调线性的电压值,某一值域是根据AD转换器的输入电压域范围来确定的。
一般差分放大器的值域与放大器类型有关,双电源供电的差分放大器的输出值域为[-V+1.5,+V+1.5],单电源供电的差分放大器的输出值域为[0,+V+1.5],V表示差分放大器的供电电源,但在与AD转换器连接时还需要考虑与AD转换器的匹配问题,本实施例中,信号处理单元采用型号为ADUC841的单片机,该单片机自带十六路十二位AD转换,差分放大器选用型号为F124的单电源四运算放大器,四运算放大器的供电电源为5V,设单片机自带AD的基准电压为2.5V,但在极端情况下,四运算放大器的输出超过2.5V,超出了AD量程。为了与AD转换器匹配,差分放大器的有效值域由AD转换器的输入电压域来决定,通过调整差分放大器的输入电阻、反馈电阻以及基准电压,将阻值变化引起的电压变化转换成差分放大器有效值域内单调线性的电压值。
2、将步骤1中的电压值转换成数字量,采用PI算法对该数字量进行计算处理得到对应的输出数字量。
PI算法的计算公式为:
output=outputbuf+kp1×(Ek-Ek,buf)+kI1×Ek (1)
式中,output表示当前输出数字量,outputbuf表示上一次输出数字量,Ek表示当前温度采样值对应数字量与预设量之间的差值,Ek,buf表示上一次温度采样值对应数字量与预设量之间的差值,kp1表示第一比例系数,kI1表示第一积分系数。预设量为根据温度敏感器件的温控要求来设定的温度对应数字量。
第一比例系数kp1和第一积分系数kI1是通过在线调整来确定的固定值,在线调整的具体操作为:先设kI1为0,在线调整kp1的值,当温控曲线收敛时,确定kp1的值,此时再增加kI1的值,温控曲线加速收敛,直到满足性能需求,确定kI1的值。对于同一套惯组,kp1和kI1调整并确定好之后不需要再调整,确定好kp1和kI1的值需要在全温度范围内进行试验,以满足工作温度范围内的性能需求。
3、将步骤2中的输出数字量转换成模拟量或PWM来控制加温电流,实现温度控制的目的。
输出数字量与阈值比较后再转换成模拟量或PWM;如果输出数字量在阈值范围内,则将输出数字量转换成模拟量或PWM,如果输出数字量超过阈值的最大值,则将阈值的最大值转换成模拟量或PWM,如果输出数字量小于阈值的最小值,则将阈值的最小值转换成模拟量或PWM。阈值的最小值根据经验设定,而阈值的最大值有多种方法可以确定,阈值的最大值是限制和调节加温梯度的关键参数。
本实施例中,阈值的最大值有两种确认方法,第一种就是,阈值的最大值通过PI控制方式实现实时调节,具体的阈值最大值计算公式为:
Max=Maxbuf+kp2×(VT-VT,buf)+kI2×VT (2)
式中,Max表示当前阈值最大值对应数字量,Maxbuf表示上一次阈值最大值对应数字量,VT表示当前温升速率对应数字量,VT,buf表示上一次温升速率对应数字量,kp2表示第二比例系数,kI2表示第二积分系数。设采样周期为100ms,在温控过程中根据两次温度采样值之间的差值和采样周期来获取温升速率。kp2和kI2是根据经验来设定的,两者的设定精度要求不高。
由于加温点一般为温度敏感器件外壳或温控箱内表面,而测温点一般为温度敏感器件内部或外部适合粘接温度传感器的部位,加温点与测温点的不一致导致了温控系统存在较大的时滞性,通过PI控制方式实时调节阈值的最大值,可以在温度敏感器件允许温升条件下缩短加温区间时间(从开始加温到目标温度到达预设量的时间),但在温控过程中可能出现加温梯度略超过要求的情况,所以该阈值最大值调节方式适用于加温梯度要求不高的温度敏感器件升温。
第二种确认方法就是:阈值的最大值通过试验法来确定,温度控制时,检测到当前温度,自动调用当前温度的阈值最大值进行温度控制,阈值最大值试验法的具体操作为:
将产品的工作温度分段,通过试验获取不同工作温度段内温度敏感器件允许温升条件下的最大加温电流;
将产品置于温控箱内,温控箱的温度设为某个工作温度段对应的温度,待产品温度与温控箱温度一致后,从小到该工作温度段对应的最大加温电流调节加热片的电流,同时测试温度敏感器件的最大温升,选取与温度敏感器件允许加温梯度最接近且不超过温度敏感器件允许加温梯度作为该工作温度段的最大加温值,即为该工作温度段内阈值的最大值。在不同的工作温度段采用不同的阈值最大值,更加严苛的限制的加温梯度,适用于加温时间充裕但对加温梯度要求高的系统。
如图1所示,一种基于PI算法的自适应温控系统,包括:
温度传感器,与温度敏感器件连接,用于将温度敏感器件的温度变化转换成阻值的变化;测温电桥,与温度传感器连接,用于将阻值变化转换成电压变化;差分放大器,与测温电桥连接,用于将电压变化转换成某一值域内单调线性的电压值;AD转换器,与差分放大器连接,用于将电压值转换成数字量;信号处理单元,与AD转换器连接,用于对数字量进行PI算法处理得到输出数字量,并将输出数字量与阈值比较后转换成模拟量或PWM信号;放大驱动电路,与信号处理单元连接,用于放大模拟量或PWM信号,驱动加热片进行加热;加热片,与放大驱动电路连接,且加热片设于温度敏感器件上,用于加热以实现产品温控要求。
本实施例中,信号处理单元采用型号为ADUC841的单片机,该单片机自带十六路十二位AD转换,因此可以不用单独的AD转换器,差分放大器采用型号为F124的单电源四运算放大器,温度传感器采用正温度系数的铂电阻,温度敏感器件为被控温的对象。
以某种型号的惯组产品为例来说明本发明的自适应温控方法。
1、技术要求
1.1同时对三路加表、一路IF板进行温度控制,同时采集十三路温度信息传送给信号处理单元;
1.2温控要求:加表路58℃±2℃,IF板路60℃±3℃;
1.3 30min后温控精度要求:加表路±0.2℃,IF板路±0.5℃。
2、实施方案
2.1信号处理单元采用型号为ADUC841的单片机,该单片机自带十六路十二位AD转换,两路十二位DA输出,两路十六位PWM输出,因此,温控系统的信号处理单元可以直接与差分放大器连接,而无需AD转换器;
2.2电压基准选用AD780,输出电压2.5V±1mV,温漂3ppm/℃;该电压基准可以作为测温电桥、差分放大器以及AD转换器的电压基准;
2.3为了获得更高的温控精度,温控系统中测温电路采用四路独立的差分放大器,值域范围[35℃,70℃];测温系统中测温电路采用十六位多路开关CC4067进行切换,共用一路差分放大器,值域范围涵盖全测试温度,为[-15℃,85℃];温控系统如图1所示,测温系统在温控系统的基础上增加了多路开关,用于实现十六路采样,测温系统还包括通讯单元,用于与上位机进行数据通讯,且无放大驱动电路;
2.4温度传感器采用正温度系数3.85的1kΩ标称铂电阻;
2.5软件或程序采用C语言编制,编译器为Keil2。
3、效果分析
某型号惯组采用该自适应温控方法的温控板,实测各路加温梯度均小于5℃/min,加电30min后温控各路精度均优于0.05℃,同一环境温度下重复性各路均优于0.05℃,温控全工作温度范围内([-10℃,50℃])一致性各路均优于0.1℃。
以上所揭露的仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或变型,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种基于PI算法的自适应温控方法,其特征在于,包括以下步骤:
步骤1:将温度采样值转换成某一值域内单调线性的电压值,所述某一值域是根据AD转换器的输入电压域范围来确定的;
步骤2:将所述步骤1中的电压值转换成数字量,采用PI算法对该数字量进行计算处理得到对应的输出数字量;
步骤3:将所述步骤2中的输出数字量转换成模拟量或PWM来控制加温电流,实现温度控制的目的;
所述输出数字量与阈值比较后再转换成模拟量或PWM;如果输出数字量在阈值范围内,则将输出数字量转换成模拟量或PWM,如果输出数字量超过阈值范围,则将对应的阈值的最大值或最小值转换成模拟量或PWM;所述阈值的最大值通过PI控制方式实现实时调节。
2.如权利要求1所述的自适应温控方法,其特征在于,所述步骤2中,PI算法的计算公式为:
output=outputbuf+kp1×(Ek-Ek,buf)+kI1×Ek
式中,output表示当前输出数字量,outputbuf表示上一次输出数字量,Ek表示当前温度采样值对应数字量与预设量之间的差值,Ek,buf表示上一次温度采样值对应数字量与预设量之间的差值,kp1表示第一比例系数,kI1表示第一积分系数。
3.如权利要求2所述的自适应温控方法,其特征在于,所述第一比例系数kp1和第一积分系数kI1是通过在线调整来确定的固定值,在线调整的具体操作为:先设kI1为0,在线调整kp1的值,当温控曲线收敛时,确定kp1的值,再增加kI1的值,温控曲线加速收敛,直到满足性能需求,确定kI1的值。
4.如权利要求1所述的自适应温控方法,其特征在于,具体的阈值最大值计算公式为:
Max=Maxbuf+kp2×(VT-VT,buf)+kI2×VT
式中,Max表示当前阈值最大值对应数字量,Maxbuf表示上一次阈值最大值对应数字量,VT表示当前温升速率对应数字量,VT,buf表示上一次温升速率对应数字量,kp2表示第二比例系数,kI2表示第二积分系数。
5.一种利用权利要求1-4任一所述的方法进行自适应温控的系统,其特征在于,包括:
温度传感器,与温度敏感器件连接,用于将温度敏感器件的温度变化转换成阻值的变化;
测温电桥,与温度传感器连接,用于将阻值变化转换成电压变化;
差分放大器,与测温电桥连接,用于将电压变化转换成某一值域内单调线性的电压值;
AD转换器,与差分放大器连接,用于将电压值转换成数字量;
信号处理单元,与AD转换器连接,用于对数字量进行PI算法处理得到输出数字量,并将输出数字量与阈值比较后转换成模拟量或PWM信号;
放大驱动电路,与信号处理单元连接,用于放大模拟量或PWM信号,驱动加热片进行加热;
加热片,与放大驱动电路连接,且加热片设于温度敏感器件上,用于加热以实现产品温控要求。
CN201910916150.XA 2019-09-26 2019-09-26 一种基于pi算法的自适应温控方法 Active CN110471469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910916150.XA CN110471469B (zh) 2019-09-26 2019-09-26 一种基于pi算法的自适应温控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910916150.XA CN110471469B (zh) 2019-09-26 2019-09-26 一种基于pi算法的自适应温控方法

Publications (2)

Publication Number Publication Date
CN110471469A CN110471469A (zh) 2019-11-19
CN110471469B true CN110471469B (zh) 2021-03-16

Family

ID=68516869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910916150.XA Active CN110471469B (zh) 2019-09-26 2019-09-26 一种基于pi算法的自适应温控方法

Country Status (1)

Country Link
CN (1) CN110471469B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065286A (zh) * 2009-11-17 2011-05-18 航天信息股份有限公司 基于运动矢量的视频水印嵌入和提取方法
CN102403953A (zh) * 2011-12-21 2012-04-04 中国东方电气集团有限公司 一种电动车交流异步驱动电机的柔性控制系统和方法
CN102662397A (zh) * 2012-05-23 2012-09-12 东方电气集团东风电机有限公司 一种基于can总线的电机控制器参数修改系统及方法
CN103532418A (zh) * 2013-04-18 2014-01-22 中国矿业大学 一种基于mmc的svg子模块电容预充电策略
CN103793705A (zh) * 2014-03-11 2014-05-14 哈尔滨工业大学 基于迭代随机抽样一致性算法和局部掌纹描述符的非接触掌纹认证方法
WO2014106437A1 (zh) * 2013-01-04 2014-07-10 北京银谷科讯信息技术有限公司 一种压力调节装置
JP2015221592A (ja) * 2014-05-22 2015-12-10 株式会社デンソー 車両用衝突検知装置
CN105741310A (zh) * 2016-03-21 2016-07-06 东北大学 一种心脏左心室图像分割系统及方法
CN105897377A (zh) * 2016-03-30 2016-08-24 北京邮电大学 一种认知网络中接收端解码方法及装置
CN109755971A (zh) * 2019-03-21 2019-05-14 东南大学 一种基于虚拟集群的有源配电网电压控制方法和系统
CN109980669A (zh) * 2019-04-11 2019-07-05 湖南工业大学 基于动态设定和协调优化的城轨超级电容储能系统控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298701A (ja) * 1988-10-05 1990-04-11 Toshiba Corp 制御装置
CN101428246B (zh) * 2008-11-28 2012-05-30 东北大学 中储式钢球磨煤机负荷切换控制方法
US8450962B2 (en) * 2011-02-28 2013-05-28 Deere & Company System for controlling a motor
JP6285329B2 (ja) * 2014-09-12 2018-02-28 アスモ株式会社 車両用ブロアモータ制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065286A (zh) * 2009-11-17 2011-05-18 航天信息股份有限公司 基于运动矢量的视频水印嵌入和提取方法
CN102403953A (zh) * 2011-12-21 2012-04-04 中国东方电气集团有限公司 一种电动车交流异步驱动电机的柔性控制系统和方法
CN102662397A (zh) * 2012-05-23 2012-09-12 东方电气集团东风电机有限公司 一种基于can总线的电机控制器参数修改系统及方法
WO2014106437A1 (zh) * 2013-01-04 2014-07-10 北京银谷科讯信息技术有限公司 一种压力调节装置
CN103532418A (zh) * 2013-04-18 2014-01-22 中国矿业大学 一种基于mmc的svg子模块电容预充电策略
CN103793705A (zh) * 2014-03-11 2014-05-14 哈尔滨工业大学 基于迭代随机抽样一致性算法和局部掌纹描述符的非接触掌纹认证方法
JP2015221592A (ja) * 2014-05-22 2015-12-10 株式会社デンソー 車両用衝突検知装置
CN105741310A (zh) * 2016-03-21 2016-07-06 东北大学 一种心脏左心室图像分割系统及方法
CN105897377A (zh) * 2016-03-30 2016-08-24 北京邮电大学 一种认知网络中接收端解码方法及装置
CN109755971A (zh) * 2019-03-21 2019-05-14 东南大学 一种基于虚拟集群的有源配电网电压控制方法和系统
CN109980669A (zh) * 2019-04-11 2019-07-05 湖南工业大学 基于动态设定和协调优化的城轨超级电容储能系统控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An All-solid-state Laser with High Stability Output Power;Wang Jun-li.etc;《Chinese Journal of Luminescence》;20120831;第32卷(第8期);830-833 *
中长期地震危险性概率预测中的统计检验方法I :Molchan 图表法;蒋长胜等;《地震》;20110430;第31卷(第2期);106-113 *

Also Published As

Publication number Publication date
CN110471469A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
RU2594623C1 (ru) Датчик, контролирующий температуру процесса производства, оснащенный сенсорным устройством диагностики ее колебаний
EP2998803A1 (en) Simulation method, recording medium wherein simulation program is stored, simulation device, and system
US9256216B2 (en) Process variable compensation in a process transmitter
CN101334457B (zh) 一种多通道多参数电测量仪表检定系统和全自动检定方法
KR102326384B1 (ko) 전자부품 핸들링 장치 및 전자부품 시험장치
CN116643600B (zh) 基于动态指令算法的惯导温度控制方法及系统
CN104199488A (zh) 一种全自动生化分析仪的比色杯反应液恒温控制装置及方法
CN110471469B (zh) 一种基于pi算法的自适应温控方法
CN104460469A (zh) 一种环境传感器和一种环境参数测量和预测方法
CN112461489B (zh) 用于低压测量的电子扫描阀参考压力控制系统及应用方法
CN109933031B (zh) 一种根据化验数据自动校正软测量仪表的系统及方法
CN109724748A (zh) 气压计校准系统
CN115102275A (zh) 一种电力系统数据采集通道自适应调整方法及装置
KR101047131B1 (ko) 다채널 신호조절 회로의 교정데이터 자동생성 장치
KR20230134695A (ko) 온도 제어기의 pid 제어 장치 및 방법
CN210242686U (zh) 一种桥梁位移检测装置
KR102013644B1 (ko) 계측기 자동교정장비의 오차저감 장치
CN100392543C (zh) 一种全自动生化仪温育温度自动控制器及温度控制方法
JP2021188962A (ja) センサドリフト診断装置、センサドリフト診断方法およびセンサドリフト診断プログラム
CN113552863B (zh) 一种变压器绕组温控器的附加温升检定装置及方法
CN115420307B (zh) 一种实时自校准自诊断低温漂数据采集系统
CN104864897B (zh) 一种调零系统及方法
KR0129135B1 (ko) 송신 출력장치 및 방법
US11995617B2 (en) Maintenance method for zirconia-type oxygen analyzer, maintenance system, and zirconia-type oxygen analyzer
CN210072357U (zh) 一种高温敏感型压力传感控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant