CN105630033B - 基于自适应模糊pid的水温控制方法及其控制系统 - Google Patents

基于自适应模糊pid的水温控制方法及其控制系统 Download PDF

Info

Publication number
CN105630033B
CN105630033B CN201610111850.8A CN201610111850A CN105630033B CN 105630033 B CN105630033 B CN 105630033B CN 201610111850 A CN201610111850 A CN 201610111850A CN 105630033 B CN105630033 B CN 105630033B
Authority
CN
China
Prior art keywords
water
temperature
resistance
pins
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610111850.8A
Other languages
English (en)
Other versions
CN105630033A (zh
Inventor
段书凯
郭秀珍
何真承
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201610111850.8A priority Critical patent/CN105630033B/zh
Publication of CN105630033A publication Critical patent/CN105630033A/zh
Application granted granted Critical
Publication of CN105630033B publication Critical patent/CN105630033B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

本发明提供了一种基于自适应模糊PID的水温控制方法及其控制系统,采用模糊控制与PID算法中的PI算法相结合构成的模糊PID控制器对水温进行实时监测和调整,即通过微处理器实时采集冷水温度、热水温度及混合后温水的出水温度,将混合后温水的出水温度与预设温度进行对比,利用模糊PID算法控制冷水和热水的流速,从而使其混合后温水的出水温度恒定。该发明调温反应快速且精确度高。

Description

基于自适应模糊PID的水温控制方法及其控制系统
技术领域
本发明涉及水温控制领域,具体涉及一种基于自适应模糊PID的水温控制方法及其控制系统。
背景技术
传统浴室的水温调节一般是安装一个冷、热水调节装置,目前常见的有手动调控和自动调控两种,手动调控是通过控制冷、热水的水阀阀门的开度来调整混合后水的温度,这种控制方式浪费水资源,且水温波动很大。自动调控普遍采用温度传感器作为测量装置,且对测量量的偏差信号采用PID控制来实现水温控制。目前的控制器所采用的控制策略是在已知被控对象精确数学模型的基础上实现的。这种方法在系统稳定之后有较好的控制性能,但在无法获取被控对象准确数学描述时具有很强的局限性,因而存在一定的不适应性,也因此影响了水温控制的精度及其可行性。
发明内容
本申请通过提供一种基于自适应模糊PID的水温控制方法及其控制系统,采用模糊控制与PID算法中的PI算法相结合构成的模糊PID控制器对水温进行实时监测和调整,以解决目前手动调节或者自动调节热水器水温,不仅会造成水资源的浪费,且控制精度不高,使得实际水温与预期水温值误差较大的技术问题。
为解决上述技术问题,本申请采用以下技术方案予以实现:
一种基于自适应模糊PID的水温控制方法,采用模糊控制与PID算法中的PI算法相结合构成的模糊PID控制器对水温进行实时监测和调整,具体包括如下步骤:
S1:获取预设水温T0,获取第一温度传感器检测的冷水温度T1,获取第二温度传感器检测的热水温度T2,获取第三温度传感器检测的混合后温水的出水温度T3
S2:计算误差E=T3-T0,误差变化率Ec=dE/dt;
S3:由模糊PID控制器的模糊算法整定PID参数中的比例参数Kp和积分参数Ki
S4:计算Kp′=Kp*(T2-T1),Ki′=Ki*(T2-T1);
S5:将Kp′作为新的比例参数,Ki′作为新的积分参数,计算出比例输出Up=Kp′*E,积分输出Ui=Ui-1+Ki′*(E-Ep),式中,Ep为前一次的误差;
S6:计算输出OUT=Up+Ui
S7:判断OUT是否小于0,如果是,则表示需要升温,进入步骤S8,否则,则表示不需要升温,进入步骤S9:
S8:设定冷水流速V1=0.3,热水流速V2=0.3+|OUT|;
S9:设定热水流速V2=0.7,冷水流速V1=0.7-|OUT|;
S10:根据冷水流速V1和热水流速V2调整第一电磁阀的PWM占空比和第二电磁阀的PWM占空比,来调整冷水和热水的流速,从而将水温调整到预设水温T0
进一步地,步骤S3中模糊PID控制器的输入变量为误差E和误差变化率Ec,输出变量为比例参数Kp和积分参数Ki,输入变量和输出变量均采用高斯型隶属度函数,模糊论域为[-6,6],采用重心法进行解模糊化运算。
一种基于自适应模糊PID的水温控制方法的控制系统,包括微处理器、设置在冷水箱出水管的第一温度传感器、第一电磁阀和第一水流传感器、设置在热水箱出水管的第二温度传感器、第二电磁阀和第二水流传感器,设置在混合水箱中的第三温度传感器,其中,第一温度传感器、第二温度传感器、第三温度传感器、第一水流传感器以及第二水流传感器连接所述微处理器的输入端,所述微处理器的输出端连接第一电磁阀驱动电路来调整第一电磁阀的PWM占空比,所述微处理器的输出端连接第二电磁阀驱动电路来调整第二电磁阀的PWM占空比,从而实现对冷水和热水流速的控制;
所述微处理器采用STC12C5A60S2芯片,所述第一温度传感器和第二温度传感器均采用DS18B20数字温度传感器,所述第三温度传感器采用PT100铂电阻,该控制系统有24V和5V两种电压源。
进一步地,该第一电磁阀驱动电路包括PMOS管和光耦芯片P521,其中,PMOS管的栅极一方面通过电阻R44连接光耦芯片P521的4引脚,另一方面通过电阻R42连接PMOS管的源极,PMOS管的漏极通过电容C13接地,光耦芯片P521的3引脚接地,1引脚通过电阻R43连接5V电源,2引脚连接STC12C5A60S2芯片的CP2引脚,24V电源一方面连接PMOS管的源极,另一方面通过并联的电容C12和C14接地,第二电磁阀驱动电路与第一电磁阀驱动电路的电路结构相同。
进一步地,PT100铂电阻的温度采集电路包括双运算放大器LM358和稳压源TL431,其中,PT100的1引脚一方面通过串联的电阻R4和R1接5V电源,另一方面通过电阻R11接双运算放大器LM358的3引脚,PT100的2引脚接地,双运算放大器LM358的4引脚接地,电阻R9的一端连接可调电阻R18的一端,可调电阻R18的另一端接地,电阻R9的另一端一方面连接双运算放大器LM358的2引脚,另一方面通过电阻R5连接双运算放大器LM358的1引脚,电阻R16的一端接地,另一端连接双运算放大器LM358的3引脚,双运算放大器LM358的5引脚连接电阻R14的一端,电阻R14的另一端一方面连接STC12C5A60S2芯片的AMI引脚,另一方面通过电阻R19接地,双运算放大器LM358的6引脚通过串联电阻R12和R7连接双运算放大器LM358的7引脚,双运算放大器LM358的8引脚接5V电源,稳压源TL431的阴极和参考极通过电阻R1连接5V电源,稳压源TL431的阳极接地。
进一步地,所述微处理器的输入端还连接有设置按钮,所述微处理器的输出端还连接有显示屏。
与现有技术相比,本申请提供的技术方案,具有的技术效果或优点是:基于自适应模糊PID的水温控制方法及其控制系统,调温反应快速且精确度高。
附图说明
图1为水温控制方法流程图;
图2为模糊PID控制器的结构模型;
图3为模糊控制输入输出关系图;
图4为水温控制系统结构框图;
图5为电磁阀驱动电路图;
图6为DS18B20温度采集电路图;
图7为PT100铂电阻的温度采集电路图;
图8为仿真结果对比图。
具体实施方式
本申请实施例通过提供一种基于自适应模糊PID的水温控制方法及其控制系统,采用模糊控制与PID算法中的PI算法相结合构成的模糊PID控制器对水温进行实时监测和调整,以解决目前手动调节或者自动调节热水器水温,不仅会造成水资源的浪费,且控制精度不高,使得实际水温与预期水温值误差较大的技术问题。为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式,对上述技术方案进行详细的说明。
实施例
一种基于自适应模糊PID的水温控制方法,采用模糊控制与PID算法中的PI算法相结合构成的模糊PID控制器对水温进行实时监测和调整。PID算法是一种应用非常广泛的控制方法,对于一个线性系统,PID参数可以通过指定闭环极点的方法获得。在本发明中,由于使用的是机械式电磁阀,难以保证电磁阀开关的精确度,那么PID的微分环节会受到精确度低的影响而干扰系统的稳定性,因而本发明的水温控制方法舍弃微分环节,使用PI算法控制水温。
如图1所示,具体包括如下步骤:
S1:获取预设水温T0,获取第一温度传感器检测的冷水温度T1,获取第二温度传感器检测的热水温度T2,获取第三温度传感器检测的混合后温水的出水温度T3
S2:计算误差E=T3-T0,误差变化率Ec=dE/dt;
S3:由模糊PID控制器的模糊算法整定PID参数中的比例参数Kp和积分参数Ki
S4:计算Kp′=Kp*(T2-T1),Ki′=Ki*(T2-T1);
S5:将Kp′作为新的比例参数,Ki′作为新的积分参数,计算出比例输出Up=Kp′*E,积分输出Ui=Ui-1+Ki′*(E-Ep),式中,Ep为前一次的误差;
S6:计算输出OUT=Up+Ui
S7:判断OUT是否小于0,如果是,则表示需要升温,进入步骤S8,否则,则表示不需要升温,进入步骤S9:
S8:设定冷水流速V1=0.3,热水流速V2=0.3+|OUT|;
S9:设定热水流速V2=0.7,冷水流速V1=0.7-|OUT|;
S10:根据冷水流速V1和热水流速V2调整第一电磁阀的PWM占空比和第二电磁阀的PWM占空比,来调整冷水和热水的流速,从而将水温调整到预设水温T0
模糊PID控制器的结构模型如图2所示,模糊控制的输入变量为误差E和误差变化率Ec,输出变量为比例参数Kp和积分参数Ki,如图3所示。各变量的模糊子集都是NB负方向大的偏差,NM负方向中的偏差,NS负方向小的偏差,ZO近于0的偏差,PS正方向小的偏差,PM正方向中的偏差,PB正方向大的偏差,模糊论域为[-6,6],输入输出变量均采用高斯型隶属度函数,采用重心法进行解模糊化运算,模糊控制规则如表1所示。
表1模糊控制规则
一种基于自适应模糊PID的水温控制方法的控制系统,如图4所示,包括微处理器、设置在冷水箱出水管的第一温度传感器、第一电磁阀和第一水流传感器、设置在热水箱出水管的第二温度传感器、第二电磁阀和第二水流传感器,设置在混合水箱中的第三温度传感器,其中,第一温度传感器、第二温度传感器、第三温度传感器、第一水流传感器以及第二水流传感器连接所述微处理器的输入端,所述微处理器的输出端连接第一电磁阀驱动电路来调整第一电磁阀的PWM占空比,所述微处理器的输出端连接第二电磁阀驱动电路来调整第二电磁阀的PWM占空比,从而实现对冷水和热水流速的控制;所述微处理器采用STC12C5A60S2芯片,所述第一温度传感器和第二温度传感器均采用DS18B20数字温度传感器,所述第三温度传感器采用PT100铂电阻,该控制系统有24V和5V两种电压源。
该系统选用24V常闭型电磁阀用于对水流进行开关控制,主控芯片通过调制电磁阀的PWM占空比来实现对水流速度的控制。考虑到电磁阀工作时会产生较大的电磁干扰,因此在电路上进行了隔离处理,本实施例采用光耦芯片P521对电磁阀进行隔离。
如图5所示,该第一电磁阀驱动电路包括PMOS管和光耦芯片P521,其中,PMOS管的栅极一方面通过电阻R44连接光耦芯片P521的4引脚,另一方面通过电阻R42连接PMOS管的源极,PMOS管的漏极通过电容C13接地,光耦芯片P521的3引脚接地,1引脚通过电阻R43连接5V电源,2引脚连接STC12C5A60S2芯片的CP2引脚,24V电源一方面连接PMOS管的源极,另一方面通过并联的电容C12和C14接地,第二电磁阀驱动电路与第一电磁阀驱动电路的电路结构相同。
本系统冷水温度和热水温度采用DS18B20数字温度传感器来检测,DS18B20是常用的温度传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点,图6为DS18B20温度采集电路。
由于DS18B20导热速度较慢,而系统要求出水温度具有高响应速度,因而本系统采用实时性更高的PT100铂电阻进行温度采集。图7为PT100温度采集应用电路,电路使用TL431提供2.5V的基准电压,通过桥式电路实现对PT100铂电阻的采样,然后将采样的电压值通过LM358运放芯片进行放大处理,再将放大后的信号AMI输出给主控芯片进行AD转换,最后主控芯片通过查表法得到测量温度值。
PT100铂电阻的温度采集电路包括双运算放大器LM358和稳压源TL431,其中,PT100的1引脚一方面通过串联的电阻R4和R1接5V电源,另一方面通过电阻R11接双运算放大器LM358的3引脚,PT100的2引脚接地,双运算放大器LM358的4引脚接地,电阻R9的一端连接可调电阻R18的一端,可调电阻R18的另一端接地,电阻R9的另一端一方面连接双运算放大器LM358的2引脚,另一方面通过电阻R5连接双运算放大器LM358的1引脚,电阻R16的一端接地,另一端连接双运算放大器LM358的3引脚,双运算放大器LM358的5引脚连接电阻R14的一端,电阻R14的另一端一方面连接STC12C5A60S2芯片的AMI引脚,另一方面通过电阻R19接地,双运算放大器LM358的6引脚通过串联电阻R12和R7连接双运算放大器LM358的7引脚,双运算放大器LM358的8引脚接5V电源,稳压源TL431的阴极和参考极通过电阻R1连接5V电源,稳压源TL431的阳极接地。
进一步地,所述微处理器的输入端还连接有设置按钮,所述微处理器的输出端还连接有显示屏。
为了进一步验证基于自适应模糊PID的水温控制方法及其控制系统的调温反应快速且精确度高,本实施例对常规PID温度控制和模糊PID温度控制分别进行了仿真,如图8所示。由图8可知,自适应模糊PID控制器相对于传统的线性PID控制器而言能够根据E和Ec的变化在线整定PID参数,所得到的系统动态响应曲线较好,超调量小,稳定精度高。
表2所示,为实验室测定结果。
表2实验测定结果
本申请的上述实施例中,通过提供一种基于自适应模糊PID的水温控制方法及其控制系统,采用模糊控制与PID算法中的PI算法相结合构成的模糊PID控制器对水温进行实时监测和调整,即通过微处理器实时采集冷水温度、热水温度及混合后温水的出水温度,将混合后温水的出水温度与预设温度进行对比,利用模糊PID算法控制冷水和热水的流速,从而使其混合后温水的出水温度恒定。该发明调温反应快速且精确度高。
应当指出的是,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改性、添加或替换,也应属于本发明的保护范围。

Claims (6)

1.一种基于自适应模糊PID的水温控制方法,其特征在于,采用模糊控制与PID算法中的PI算法相结合构成的模糊PID控制器对水温进行实时监测和调整,具体包括如下步骤:
S1:获取预设水温T0,获取第一温度传感器检测的冷水温度T1,获取第二温度传感器检测的热水温度T2,获取第三温度传感器检测的混合后温水的出水温度T3
S2:计算误差E=T3-T0,误差变化率Ec=dE/dt;
S3:由模糊PID控制器的模糊算法整定PID参数中的比例参数Kp和积分参数Ki
S4:计算Kp′=Kp*(T2-T1),Ki′=Ki*(T2-T1);
S5:将Kp′作为新的比例参数,Ki′作为新的积分参数,计算出比例输出Up=Kp′*E,积分输出Ui=Ui-1+Ki′*(E-Ep),式中,Ep为前一次的误差;
S6:计算输出OUT=Up+Ui
S7:判断OUT是否小于0,如果是,则表示需要升温,进入步骤S8,否则,则表示不需要升温,进入步骤S9:
S8:设定冷水流速V1=0.3,热水流速V2=0.3+|OUT|;
S9:设定热水流速V2=0.7,冷水流速V1=0.7-|OUT|;
S10:根据冷水流速V1和热水流速V2调整第一电磁阀的PWM占空比和第二电磁阀的PWM占空比,来调整冷水和热水的流速,从而将水温调整到预设水温T0
2.根据权利要求1所述的基于自适应模糊PID的水温控制方法,其特征在于,步骤S3中模糊PID控制器的输入变量为误差E和误差变化率Ec,输出变量为比例参数Kp和积分参数Ki,输入变量和输出变量均采用高斯型隶属度函数,模糊论域为[-6,6],采用重心法进行解模糊化运算。
3.如权利要求1所述的基于自适应模糊PID的水温控制方法的控制系统,其特征在于,包括微处理器、设置在冷水箱出水管的第一温度传感器、第一电磁阀和第一水流传感器、设置在热水箱出水管的第二温度传感器、第二电磁阀和第二水流传感器,设置在混合水箱中的第三温度传感器,其中,第一温度传感器、第二温度传感器、第三温度传感器、第一水流传感器以及第二水流传感器连接所述微处理器的输入端,所述微处理器的输出端连接第一电磁阀驱动电路来调整第一电磁阀的PWM占空比,所述微处理器的输出端连接第二电磁阀驱动电路来调整第二电磁阀的PWM占空比,从而实现对冷水和热水流速的控制;
所述微处理器采用STC12C5A60S2芯片,所述第一温度传感器和第二温度传感器均采用DS18B20数字温度传感器,所述第三温度传感器采用PT100铂电阻,该控制系统有24V和5V两种电压源。
4.根据权利要求3所述的基于自适应模糊PID的水温控制方法的控制系统,其特征在于,该第一电磁阀驱动电路包括PMOS管和光耦芯片P521,其中,PMOS管的栅极一方面通过电阻R44连接光耦芯片P521的4引脚,另一方面通过电阻R42连接PMOS管的源极,PMOS管的漏极通过电容C13接地,光耦芯片P521的3引脚接地,1引脚通过电阻R43连接5V电源,2引脚连接STC12C5A60S2芯片的CP2引脚,24V电源一方面连接PMOS管的源极,另一方面通过并联的电容C12和C14接地,第二电磁阀驱动电路与第一电磁阀驱动电路的电路结构相同。
5.根据权利要求3所述的基于自适应模糊PID的水温控制方法的控制系统,其特征在于,PT100铂电阻的温度采集电路包括双运算放大器LM358和稳压源TL431,其中,PT100的1引脚一方面通过串联的电阻R4和R1接5V电源,另一方面通过电阻R11接双运算放大器LM358的3引脚,PT100的2引脚接地,双运算放大器LM358的4引脚接地,电阻R9的一端连接可调电阻R18的一端,可调电阻R18的另一端接地,电阻R9的另一端一方面连接双运算放大器LM358的2引脚,另一方面通过电阻R5连接双运算放大器LM358的1引脚,电阻R16的一端接地,另一端连接双运算放大器LM358的3引脚,双运算放大器LM358的5引脚连接电阻R14的一端,电阻R14的另一端一方面连接STC12C5A60S2芯片的AMI引脚,另一方面通过电阻R19接地,双运算放大器LM358的6引脚通过串联电阻R12和R7连接双运算放大器LM358的7引脚,双运算放大器LM358的8引脚接5V电源,稳压源TL431的阴极和参考极通过电阻R1连接5V电源,稳压源TL431的阳极接地。
6.根据权利要求3所述的基于自适应模糊PID的水温控制方法的控制系统,其特征在于,所述微处理器的输入端还连接有设置按钮,所述微处理器的输出端还连接有显示屏。
CN201610111850.8A 2016-02-29 2016-02-29 基于自适应模糊pid的水温控制方法及其控制系统 Expired - Fee Related CN105630033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610111850.8A CN105630033B (zh) 2016-02-29 2016-02-29 基于自适应模糊pid的水温控制方法及其控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610111850.8A CN105630033B (zh) 2016-02-29 2016-02-29 基于自适应模糊pid的水温控制方法及其控制系统

Publications (2)

Publication Number Publication Date
CN105630033A CN105630033A (zh) 2016-06-01
CN105630033B true CN105630033B (zh) 2017-11-17

Family

ID=56045085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610111850.8A Expired - Fee Related CN105630033B (zh) 2016-02-29 2016-02-29 基于自适应模糊pid的水温控制方法及其控制系统

Country Status (1)

Country Link
CN (1) CN105630033B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106820980A (zh) * 2017-01-23 2017-06-13 浙江大学 一种可以调节温度和出水量的智能饮水机
CN107329509B (zh) * 2017-07-21 2020-05-05 广东美的环境电器制造有限公司 电暖器及其温度控制方法和温度控制装置
CN107479364B (zh) * 2017-09-13 2021-08-31 西安科技大学 一种基于双闭环pid算法的流体混合控制系统
CN109062285A (zh) * 2018-09-14 2018-12-21 贵阳中医学院 一种智能洗浴控制方法及系统
CN109060964A (zh) * 2018-09-17 2018-12-21 北京云率数据科技有限公司 一种用于钢轨探伤车探轮的耦合液循环加注装置及方法
CN111189231A (zh) * 2018-11-15 2020-05-22 青岛经济技术开发区海尔热水器有限公司 燃气热水器恒温控制方法及燃气热水器
CN109270843B (zh) * 2018-11-23 2020-10-27 西安交通大学 一种跨临界二氧化碳系统的水路模糊pid控制方法
CN109827073B (zh) * 2019-01-28 2020-08-04 中国石油天然气集团有限公司 一种天然气管道自动分输实现方法
CN110069086A (zh) * 2019-04-23 2019-07-30 东北大学秦皇岛分校 中药多糖提取温度自动控制系统、方法及中药多糖提取系统
CN111227105A (zh) * 2020-01-15 2020-06-05 北京中科凯而健康科技有限公司 一种抗疲劳小分子肽粉生产设备
CN114246478B (zh) * 2020-09-23 2024-06-04 杭州九阳净水系统有限公司 一种即热机及其控制方法
CN112921343B (zh) * 2021-02-20 2022-11-15 河北建投新能源有限公司 一种冷热氢联供系统及控制方法
CN112979433A (zh) * 2021-03-11 2021-06-18 临沭县华盛化工有限公司 原甲酸三乙酯合成工艺中的控制方法
CN112984823A (zh) * 2021-03-16 2021-06-18 济南大学 一种基于模糊规则控制的恒温可控淋浴器
CN113253779A (zh) * 2021-04-12 2021-08-13 南通大学 一种基于粒子群模糊pid算法的热泵温度控制系统
CN114935953A (zh) * 2022-05-24 2022-08-23 浙江朗诗德健康饮水设备股份有限公司 一种恒温水的控制方法、装置及介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055372A (ja) * 1983-09-06 1985-03-30 Fuji Xerox Co Ltd 複写機の定着装置
CN102997265B (zh) * 2012-12-07 2015-11-18 广东中节能环保有限公司 烟气余热回收设备的冷源温度控制方法及装置
CN203174691U (zh) * 2013-04-11 2013-09-04 蔡子豪 一种水箱
CN103472874B (zh) * 2013-09-16 2016-11-02 东莞市唯成节能科技有限公司 一种即热式水温调节方法及其装置
CN103616905B (zh) * 2013-11-29 2015-09-30 哈尔滨工程大学 基于80c552型单片机的模糊水温控制器及控制方法
EP2937760A1 (en) * 2014-04-23 2015-10-28 Kohler Mira Limited Systems and methods for programming and controlling water delivery devices
CN204536947U (zh) * 2015-04-20 2015-08-05 河南科技大学 一种淋浴水温调节控制装置

Also Published As

Publication number Publication date
CN105630033A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN105630033B (zh) 基于自适应模糊pid的水温控制方法及其控制系统
CN105929683B (zh) 一种微分可调pid控制器参数工程整定模型及方法
CN104898433B (zh) 一种基于模糊pid控制的高炉冷却强度控制方法
CN101859097B (zh) 一种基于保持型仿人pid的系统控制方法
CN102207322A (zh) 冰水主机的冰水温度动态调整方法
CN107942648A (zh) 一种超大空间温度场pid控制器参数整定方法
CN103321022A (zh) 一种洗衣机水温调控装置及方法
CN108731195A (zh) 一种水温控制方法及装置
CN205809732U (zh) 一种蛋白分析仪的温控装置
CN104535257B (zh) 一种硅压阻温度补偿评估方法
CN105626948B (zh) 平衡阀
CN105353811B (zh) 一种用于液氮低温装置的智能温度控制系统及其控制方法
Kicsiny et al. Real-time nonlinear global state observer design for solar heating systems
CN107678462B (zh) 定速槽及定速槽用定速降温系统及定速槽定速降温方法
CN106642536B (zh) 一种空调器负荷智能匹配方法
CN205861173U (zh) 一种智能活塞体积管检定装置的控制装置
CN204515573U (zh) 一种采暖散热器热工性能检测水温、流量控制系统
KR20150075897A (ko) 에너지 절약형 항온항습기의 냉동기 제어장치
CN103869694A (zh) 调节器以及操作量输出方法
CN113110635B (zh) 半导体设备及外点火装置的温度控制系统、方法及控制器
CN107543141A (zh) 升温升压过程中蒸汽发生器模拟体给水系统及控制方法
CN209086768U (zh) 用于电学检测系统的pwm式温度控制器
CN203337515U (zh) 腐蚀污垢测试仪
CN106200721A (zh) 基于特征模型的自适应温度控制器
CN101968664A (zh) 一种表面温度信号快速发生装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171117

Termination date: 20180229

CF01 Termination of patent right due to non-payment of annual fee