WO2014101728A1 - 一种压力精密调节装置 - Google Patents

一种压力精密调节装置 Download PDF

Info

Publication number
WO2014101728A1
WO2014101728A1 PCT/CN2013/090202 CN2013090202W WO2014101728A1 WO 2014101728 A1 WO2014101728 A1 WO 2014101728A1 CN 2013090202 W CN2013090202 W CN 2013090202W WO 2014101728 A1 WO2014101728 A1 WO 2014101728A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
processor
sensitive element
value
elastic
Prior art date
Application number
PCT/CN2013/090202
Other languages
English (en)
French (fr)
Inventor
孙晓君
Original Assignee
Sun Xiaojun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Xiaojun filed Critical Sun Xiaojun
Publication of WO2014101728A1 publication Critical patent/WO2014101728A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure

Definitions

  • the invention relates to the field of industrial control, and in particular to a pressure precision adjusting device. Background technique
  • Pressure measurement plays an important role in industrial process control.
  • the performance of the pressure calibration device determines the calibration accuracy, efficiency and cost of the pressure gauge.
  • the automatic pressure calibrator is gradually replacing the traditional piston pressure gauge due to its high precision, wide application range, easy operation, functional integration and compact size. It is widely used in electric power, petroleum, petrochemical, metallurgy and pharmaceutical. And other fields.
  • the automatic pressure calibrator is mainly divided into a gas pressure calibrator and a hydraulic calibrator according to the different instruments to be inspected.
  • Pneumatic calibrators use non-corrosive gases as the working medium and are often used to calibrate pressure gauges with relatively small ranges.
  • the conventional air pressure calibrator uses the opening/closing of the solenoid valve to control the amount of intake air and the amount of air in the pressure generating chamber, and then achieves the purpose of adjusting the pressure.
  • the structure is as shown in Fig. 1C.
  • the hydraulic calibrator uses non-conductive liquid such as transformer oil, sebacate, deionized water as the working medium, and is often used to calibrate pressure gauges with relatively large ranges.
  • the conventional hydraulic calibrator uses a motor or gas to push the piston to move in the cylinder, change the volume of the working medium in the cylinder, and then achieve the purpose of regulating the pressure, as shown in Fig. 1A and Fig. 1B.
  • the pressure accuracy of fully automatic pressure calibrators is mainly limited by the performance of pressure sensors and actuators.
  • the processing accuracy of the actuator, the consistency of components and the cost of processing and procurement determine the performance of the actuator.
  • the response time of the solenoid valve is mostly 10 to 30 ms, and the better is 5 to 10 ms, and the price is relatively expensive, and the consistency is difficult to guarantee.
  • Solenoid valve minimum switching interval The gas flow rate often determines the accuracy of the gas pressure regulation. By reducing the pressure difference across the solenoid valve in order to reduce the gas flow at the minimum switching interval, the complexity of the system is often increased, resulting in increased costs. Reducing the diameter of the solenoid valve, while reducing the gas flow rate at the minimum switching interval, also increases the adjustment time. Increasing the volume of the pressure generating chamber will increase the oscillation of the gas due to the cavity effect and increase the adjustment time.
  • an embodiment of the present invention provides a pressure precision adjusting device, including: an actuator (1) including an elastic sensing component (3), elastic deformation conversion a device (4), a stepping motor and a driver (5), a coarse pressure adjusting mechanism (6), and a pressure forming chamber (11), wherein the pressure generating chamber (11) communicates with a cavity of the elastic sensing member (3) The internal pressure of the cavity is equal;
  • the control mechanism (2) includes a processor (7), a touch screen (8), an analog to digital converter (9), a pressure sensor (10), and the pressure sensor (10) sensing station Describe the pressure in the pressure chamber (11), output an electrical signal, and the electrical signal is converted by the analog-to-digital converter (9), and then solved by the processor (7) to obtain the current pressure value.
  • the processor (7) compares the error value of the pressure set value and the current value of the pressure input by the user through the touch screen (8), After the error value is compared with the set error threshold, the actuator (1) is double closed-loop controlled to adjust the pressure in the pressure generating chamber (11).
  • the double closed loop control further includes: when the error value is outside the set error threshold interval, the processor (7) starts the inner loop, and controls The coarse pressure adjusting mechanism (6) quickly performs coarse pressure adjustment; when the error value is within the set error threshold interval, the processor (7) activates an outer ring, and controls the stepping motor and The steering, angle of the actuator (5) is changed by the elastic deformation converting means (4) to adjust the volume of the cavity of the elastic sensing element (3) to adjust the pressure in the pressure generating chamber (11).
  • the processor (7) activates the outer ring, and controls the stepping motor and Steering, angle of the driver (5), changing the volume of the cavity of the elastic sensing element (3) by the elastic deformation converting device (4) to adjust the pressure in the pressure generating chamber (11), further comprising: Reducing the volume of the cavity of the elastic sensing element (3) when it is required to increase the pressure in the pressure generating chamber (11); increasing when it is necessary to reduce the pressure in the pressure generating chamber (11) The volume of the cavity of the elastic sensitive element (3).
  • the elastic sensing component when it is required to increase the pressure in the pressure generating chamber (11); increasing when it is necessary to reduce the pressure in the pressure generating chamber (11) The volume of the cavity of the elastic sensitive element (3).
  • (1 0 ) is a silicon piezoresistive pressure sensor, a resonant pressure sensor, and a capacitive pressure sensor.
  • the analog-to-digital converter (9) is a sigma-delta analog-to-digital converter.
  • the present invention has the following advantages and positive effects as compared with the prior art:
  • the invention adopts the conventional pressure regulating mechanism of the inner ring and the outer ring elastic sensitive element mechanism to work together, and realizes the high-precision pressure stability adjustment by changing the volume of the elastic sensitive element cavity, and is applicable to both pneumatic and hydraulic pressures.
  • the present invention adopts a double closed loop PI control method, so that the coarse pressure adjusting mechanism and the elastic sensitive element mechanism work together to quickly reach a stable set pressure. That is, when the error value is outside the set error threshold interval, the coarse pressure regulating mechanism is started to quickly adjust pressure; when the error value is within the set error threshold interval, the elastic sensitive component mechanism is activated to perform precise pressure regulation.
  • the inner and outer PI links when the error value is outside the respective set error threshold interval, the adjusting mechanism adjusts the voltage at the highest adjustment speed. Once the error value enters the set error threshold interval, the parameter self-tuning is used.
  • the PI control method regulates pressure.
  • the PI control method greatly shortens the response time and improves the anti-interference ability
  • the structural unit of the invention has flexible design of the elastic sensitive component mechanism, and has low manufacturing precision and consistency requirements for the conventional pressure regulating mechanism, and also reduces the cost, and has certain marketing potential.
  • Figure 1A is a diagram of a hydraulic adjustment mechanism that uses a motor to push a piston
  • Figure 1B is a diagram of a hydraulic adjustment mechanism for pushing a piston with a gas
  • FIG. 1C is a diagram of a gas pressure adjusting mechanism for controlling an intake air amount and an air output amount by using a solenoid valve
  • FIG. 2 is a structural block diagram of a pressure precision adjusting device according to an embodiment of the present invention
  • 3A is a schematic view of an elastic sensing element and an elastic deformation conversion device thereof according to an embodiment of the present invention
  • 3B is a schematic view of an elastic sensing element and an elastic deformation conversion device thereof according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of implementing a processor in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the principle of the processor using parameter self-tuning PI control in the embodiment of the present invention. detailed description
  • an embodiment of the present invention provides a pressure precision adjusting device, which can be seen from the figure.
  • the device comprises: an actuator (1) comprising an elastic sensing element (3), an elastic deformation conversion device (4), a stepping motor and a driver (5), a coarse pressure adjusting mechanism (6), and a pressure generating chamber (11)
  • the pressure generating chamber (11) communicates with the cavity of the elastic sensing element (3), and the internal pressure of the cavity is equal
  • the control mechanism (2) includes a processor (7), a touch screen (8), and an analog a digitizer (9), a pressure sensor (10), the pressure sensor (10) sensing a pressure in the pressure generating chamber (11), outputting an electrical signal, and the electrical signal is passed through the analog-to-digital converter ( 9)
  • the processor (7) solves the solution, and after obtaining the current pressure value, the processor (7) compares the pressure setting value input by the user through the touch screen (8) with the current value of the pressure.
  • An error value after comparing the error value with a set
  • the embodiment of the present invention provides a device for finely adjusting pressure using deformation of an elastic sensitive component, wherein the elastic sensing component 3, the elastic deformation conversion device 4, the stepping motor, and the driver 5 constitute a core Precision Regulating Actuator:
  • the drive controls the steering and torque of the stepper motor 5, and the deformation of the spring tube is changed by the deformation conversion device, which in turn changes the volume of the spring tube cavity and the working medium.
  • the deformation conversion device which in turn changes the volume of the spring tube cavity and the working medium.
  • the drive controls the stepper motor 5 to push or pull the movable lever through the lead screw, which in turn changes the volume of the bellows cavity and the working medium.
  • the movable lever When the movable lever is moved to the left, the bellows is compressed, and the cavity is reduced, and the pressure becomes large.
  • the movable lever member When the movable lever member is moved to the right, the bellows is stretched, and the cavity is enlarged, and the pressure is reduced.
  • the control mechanism composed of the pressure sensor 10, the analog-to-digital converter 9, and the processor 7, or the control circuit, can control the coarse pressure adjusting mechanism 6 through the double closed loop PI control method, and simultaneously control the drive to drive the stepping motor 5, which is changed.
  • the deformation of the elastic sensing element 3 enables the two to work in harmony to achieve stable and rapid pressure regulation.
  • the elastic sensing member of the present invention may be a spring tube as shown in Fig. 3A, a bellows as shown in Fig. 3B or an elastic diaphragm, etc., supplemented by an elastic deformation conversion device of the cartridge.
  • the processor 7 can control the deformation of the elastic sensing element by the stepping motor and the driver.
  • the cavity volume of the elastic sensitive component should be coordinated with the total volume of the entire build-up circuit. If it is too small, the pressure regulation range is too small, and if it is too large, the precision voltage regulation cannot be achieved. At the same time, the pressure regulation resolution of the coarse pressure adjustment mechanism should also be considered.
  • the processor 7 of the present invention receives the pressure setting value set by the user through the touch screen 8, and the pressure value in the pressure sensing chamber 1 is detected by the analog to digital converter 9 by the processor. 7 solves the current value of the pressure.
  • the processor 7 compares the pressure set point with the current value of the pressure to obtain an error value. When the error value is outside the set error threshold interval, the processor 7 activates the coarse pressure adjusting mechanism 6 of the inner ring to quickly adjust the pressure by the parameter self-tuning PI control method, and the elastic sensitive element 3 mechanism of the outer ring does not work; When the value is within the set error threshold interval, the processor 7 passes the parameter self-tuning PI.
  • the control method activates the pressure sensitive element 3 mechanism of the outer ring to achieve precise pressure regulation, and the coarse pressure adjusting mechanism 6 of the inner ring does not work. The above closed loop control method is cycled until a stable set pressure is reached.
  • the processor 7 controls the pressure by using a double closed loop parameter self-tuning PI control method.
  • the processor adjusts the proportional coefficient Kp and the integral coefficient Ki of the PI link according to the error value by the PI control algorithm.
  • the output of the Kp control is proportional to the input error value for fast response; the output of the Ki control is proportional to the integral of the error value and is used to eliminate the steady-state error.
  • Kp when the absolute value of the error is large (in the present invention, it is greater than 20% of the input value of the inner and outer rings), Kp takes a larger value (25 in the present invention), Ki takes zero, and the coarse pressure adjusting mechanism 6 or elasticity
  • the sensitive component 3 mechanism quickly adjusts or rapidly deforms, and reduces the absolute value of the error as soon as possible; when the absolute value of the error is medium (in the present invention, more than 10% of the input value of the inner and outer rings is smaller than the input values of the inner and outer rings) 20%), Kp takes a medium value (20 in the present invention), and Ki takes a smaller value (0.0005 in the present invention), at which time the coarse pressure adjusting mechanism 6 or the elastic sensing element 3 mechanism reduces the speed of the pressure regulation or deformation, preventing Overshoot; When the absolute value of the error continues to decrease (the invention takes more than 5% of the input value of the inner and outer rings is less than 10% of the input value of the inner and outer rings), Kp should take a smaller value (the present
  • the pressure sensor 10 in the embodiment of the present invention can be implemented according to the precision and performance requirements, and is selected by a common digital signal processor or ARM, such as: TMS320F28335.
  • the electrical signal outputted by the pressure sensor 10 is generally a small signal of uA, mV level, and the pressure signal in the pressure generating chamber 1 1 does not change for a short time. Therefore, a high-resolution, high signal-to-noise ratio, highly integrated sigma-delta analog-to-digital converter 9, such as the AD7714, is recommended.
  • the set pressure input by the user can be realized by a touch screen or a button of a single button or a digital tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Fluid Pressure (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

一种压力精密调节装置,所述装置包括:弹性敏感元件(3)、弹性形变转换装置(4)、步进电机及驱动器(5)、粗压调节机构(6)、处理器(7)、触摸屏(8)、模拟数字转换器(9)、压力传感器(10)、造压腔(11)。造压腔(11)和弹性敏感元件(3)的腔体相通,腔体内部压力相等。压力传感器(10)敏感造压腔(11)内的压力,输出的电信号经模拟数字转换器(9)采集,再由处理器(7)解算,得到实时的压力值。处理器(7)通过比较由触摸屏(8)输入的压力设定值与实时检测的压力当前值的误差值,采用双闭环PI控制算法,先控制内环的粗压调节机构(6)快速进行粗压调节,之后控制外环的步进电机的转向、角度,通过弹性形变转换装置(4)改变弹性敏感元件(3)的腔体体积,继而达到精密调节压力的作用。该压力调节控制系统精度高,调节时间短,成本低廉,适用性较广。

Description

一种压力精密调节装置
技术领域
本发明涉及一种工业控制领域, 具体涉及一种压力精密调节装置。 背景技术
压力测量在工业过程控制中占有重要地位, 压力校准装置的性能决定 了压力仪表的校准精度、 效率及成本。 全自动压力校验仪因其精度高, 适 用范围广, 易于操作, 功能集成化, 体积小巧等众多优点, 正逐步取代传 统的活塞式压力计, 广泛应用于电力、 石油、 石化、 冶金、 制药等领域。
全自动压力校验仪根据被检仪表的不同, 主要分为气压校验仪和液压 校验仪。 气压校验仪以非腐蚀性气体为工作介质, 往往用来校准量程相对 较小的压力仪表。常规的气压校验仪利用电磁阀的开 /断来控制造压腔内的 进气量和出气量, 继而达到调节压力的目的, 其结构如图 1 C所示。 液压 校验仪以变压器油、 癸二酸脂、 去离子水等非导电液体为工作介质, 往往 用来校准量程相对较大的压力仪表。 常规的液压校验仪利用电机或者气体 推动活塞在油缸里运动, 改变油缸内工作介质的体积, 继而达到调节压力 的目的, 见图 1 A和图 1 B。
目前, 全自动压力校验仪的造压精度主要受制于压力传感器和执行机 构的性能。 执行机构的加工精度, 元器件的一致性和加工采购成本, 决定 了执行机构性能的好坏。
传统的气压系统中, 电磁阀的响应时间大多在 1 0~30ms , 好一些的也 要 5~1 0ms , 而且价格较为昂贵, 一致性难以保证。 电磁阀最小开关间隔 的气体流量往往决定了气压调节的精度。 通过降低电磁阀两端的压差以期 减小最小开关间隔的气体流量, 往往会增加系统的复杂性, 造成成本的提 高。 减小电磁阀的通径, 虽然可以减小最小开关间隔的气体流量, 但同时 也增大了调节时间。 增大造压腔体的容积, 则会因为容腔效应, 加剧气体 的振荡, 也会增大调节时间。 传统的液压系统中, 对于靠电机推动活塞的 造压系统而言, 传动丝杠的加工精度会影响电机单位步长下活塞的位移, 继而影响调压的分辨力。 而高精度的丝杠往往价格昂贵, 不易加工。 与之 配套的电机也需选择高分辨率、 扭矩稳定、 发热较小的步进电机或者伺服 电机, 进一步提高系统的成本。 对于气推液的造压系统, 则存在与气压系 统相似的难题。 发明内容
有鉴于此, 本发明的目的是提供了一种利用弹性敏感元件的形变进行 压力精密调节的控制系统, 以降低对常规调节机构的性能要求, 筒化系统 结构, 提高造压精度。
为实现上述目的, 本发明采用了如下的技术特征: 一方面, 本发明实施例提供了一种压力精密调节装置, 包括: 执行机构( 1 ) , 其包括弹性敏感元件( 3 )、 弹性形变转换装置( 4 )、 步进电机及驱动器 (5) 、 粗压调节机构 (6) 以及造压腔(11 ) , 所述造 压腔 (11 ) 和所述弹性敏感元件 (3) 的腔体相通, 腔体内部压力相等; 控制机构 (2) , 其包括处理器 (7) 、 触摸屏 (8) 、 模拟数字转换 器(9)、 压力传感器( 10) , 所述压力传感器( 10)感测所述造压腔( 11 ) 内的压力, 输出电信号, 所述电信号经所述模拟数字转换器 (9) 转换后, 由所述处理器 (7)解算, 获取当前压力值后, 所述处理器 (7)通过比较 用户通过所述触摸屏 (8) 输入的压力设定值与压力当前值的误差值, 将 所述误差值与设定误差阈值比较后, 对所述执行机构 ( 1 ) 进行双闭环控 制, 调节所述造压腔 (11 ) 内的压力。 依照本发明较佳实施例所述的压力精密调节装置, 所述双闭环控制进 一步包括: 当误差值处于所述设定误差阈值区间之外时, 所述处理器 (7) 启动 内环, 控制所述粗压调节机构 (6) 快速进行粗压调节; 当所述误差值处于所述设定误差阈值区间之内时, 所述处理器 (7) 启动外环, 控制所述步进电机及驱动器 (5) 的转向、 角度, 通过所述弹 性形变转换装置 (4) 改变所述弹性敏感元件 (3) 的腔体体积, 以调节所 述造压腔 ( 11 ) 内的压力。 依照本发明较佳实施例所述的压力精密调节装置, 当所述误差值处于 所述设定误差阈值区间之内时, 所述处理器 (7) 启动外环, 控制所述步 进电机及驱动器 (5) 的转向、 角度, 通过所述弹性形变转换装置 (4) 改 变所述弹性敏感元件 (3) 的腔体体积, 以调节所述造压腔 ( 11 ) 内的压 力, 进一步包括: 在需要升高所述造压腔( 11 )内的压力时,减小所述弹性敏感元件( 3 ) 的腔体体积; 在需要降低所述造压腔( 11 )内的压力时,增大所述弹性敏感元件( 3 ) 的腔体体积。 依照本发明较佳实施例所述的压力精密调节装置, 所述弹性敏感元件
(3) 为弹簧管、 波纹管或弹性膜片。 依照本发明较佳实施例所述的压力精密调节装置, 所述压力传感器
( 1 0 ) 为硅压阻式压力传感器、 谐振式压力传感器、 电容式压力传感器。
依照本发明较佳实施例所述的压力精密调节装置, 所述模拟数字转换 器 (9 ) 为∑-Δ型模拟数字转换器。
由于采用了以上的技术特征, 使得本发明相比于现有技术, 具有如下 的优点和积极效果:
本发明与现有技术相比的优点在于:
( 1 ) 本发明采用内环常规的调压机构和外环弹性敏感元件机构协同 工作,通过改变弹性敏感元件腔体的体积, 实现了高精度的压力稳定调节, 同时适用于气压和液压两种系统;
( 2 )本发明采用双闭环 PI控制方法, 使粗压调节机构和弹性敏感元 件机构协同工作, 快速达到稳定的设定压力。 即当误差值处于设定误差阈 值区间之外时, 启动粗压调节机构快速调压; 当误差值处于设定误差阈值 区间之内时,启动弹性敏感元件机构进行精密调压。在内、外两个 PI环节, 当误差值处于各自的设定误差阈值区间之外时, 调节机构以最高调节速度 调压, 一旦误差值进入设定误差阈值区间之内, 则使用参数自整定 PI 控 制方法调压。 为提高闭环控制系统的性能, 缩短响应时间, 使造压系统尽 快达到稳定的设定压力, 在内、 外两环, 根据误差值大小, 适当调整 PI 控制器各环节的系数,相比于普通的 PI控制方法,极大地缩短了响应时间, 提高了抗干扰能力;
( 3 ) 本发明结构筒单, 弹性敏感元件机构设计灵活, 对与之配合的 常规调压机构制造精度、 一致性要求较低, 同时也降低了成本, 具有一定 的市场推广潜力。 附图说明
图 1 A为利用电机推动活塞的液压调节机构图; 图 1B为利用气体推动活塞的液压调节机构图;
图 1C为利用电磁阀控制进气量、 出气量的气压调节机构图; 图 2为本发明实施例提供的压力精密调节装置的结构框图;
图 3A为本发明一种实施例中的弹性敏感元件及其弹性形变转换装置 的示意图;
图 3B为本发明另一种实施例中的弹性敏感元件及其弹性形变转换装 置的示意图;
图 4为本发明实施例中处理器实现流程图;
图 5为本发明的实施例中处理器采用参数自整定 PI控制的原理示意 图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 以下结合附图, 对本发明实施例做进一步详细叙述。
如图 2所示,本发明实施例提供了一种压力精密调节装置,由图可见。 所述装置包括: 执行机构( 1 ) , 其包括弹性敏感元件( 3 )、 弹性形变转换装置( 4 )、 步进电机及驱动器 (5) 、 粗压调节机构 (6) 以及造压腔(11 ) , 所述造 压腔 (11 ) 和所述弹性敏感元件 (3) 的腔体相通, 腔体内部压力相等; 控制机构 (2) , 其包括处理器 (7) 、 触摸屏 (8) 、 模拟数字转换 器(9)、 压力传感器( 10) , 所述压力传感器( 10)感测所述造压腔( 11 ) 内的压力, 输出电信号, 所述电信号经所述模拟数字转换器 (9) 转换后, 由所述处理器 (7)解算, 获取当前压力值后, 所述处理器 (7)通过比较 用户通过所述触摸屏 (8) 输入的压力设定值与压力当前值的误差值, 将 所述误差值与设定误差阈值比较后, 对所述执行机构 ( 1 ) 进行双闭环控 制, 调节所述造压腔 (1 1 ) 内的压力。
更具体地说, 本发明实施例提供的是一种利用弹性敏感元件的形变进 行压力精密调节的装置, 其中, 弹性敏感元件 3、 弹性形变转换装置 4、 步进电机及驱动器 5组成了核心的精密调压执行机构: 如图 3A,驱动器控 制步进电机 5的转向和力矩, 通过形变转换装置改变弹簧管的形变, 继而 改变了弹簧管腔体和工作介质的体积。 电机轴顺时针转动, 腔体减小, 则 压力变大。 电机轴逆时针转动, 腔体增大, 则压力变小。 如图 3B , 驱动器 控制步进电机 5通过丝杠推或拉活动杆件, 继而改变了波纹管腔体和工作 介质的体积。 当推动活动杆件向左运动时, 波纹管被压缩, 腔体减小, 则 压力变大。 当拉动活动杆件向右运动时, 波纹管被拉伸, 腔体增大, 则压 力减小。 压力传感器 1 0、 模拟数字转换器 9、 处理器 7组成的控制机构, 或称控制电路, 可以通过双闭环 PI控制方法, 控制粗压调节机构 6 , 同时 控制驱动器带动步进电机 5, 改变的弹性敏感元件 3的形变, 使二者协调 工作, 实现稳定、 快速地调压。
本发明的弹性敏感元件可选用如图 3A所示的弹簧管、 如图 3B所示 的波纹管或者弹性膜片等, 辅以筒单的弹性形变转换装置。 处理器 7可以 通过步进电机及驱动器控制弹性敏感元件的形变。 弹性敏感元件的腔体体 积应该与整个造压回路的总体积相协调, 太小则调压范围偏小, 太大则起 不到精密调压的作用。 同时也要考虑到粗压调节机构的调压分辨力。
如图 4所示,本发明的处理器 7通过触摸屏 8接收用户设置的压力设 定值, 压力传感器 1 0敏感造压腔 1 1 内的压力值, 经过模拟数字转换器 9 采集, 由处理器 7解算得到压力当前值。
处理器 7将压力设定值与压力当前值比较, 得到误差值。 当误差值处 于设定误差阈值区间之外时,处理器 7通过参数自整定的 PI控制方法启动 内环的粗压调节机构 6快速调压, 外环的弹性敏感元件 3机构不工作; 当 误差值处于设定误差阈值区间之内时, 处理器 7 则通过参数自整定的 PI 控制方法启动外环的压力敏感元件 3机构实现精密调压, 内环的粗压调节 机构 6不工作。 将上述的闭环控制方法循环执行, 直到达到稳定的设定压 力。
如图 5所示, 本发明实施例中处理器 7采用双闭环参数自整定 PI控 制方法对压力进行控制。 处理器通过 PI控制算法, 根据误差值大小, 调整 PI环节的比例系数 Kp和积分系数 Ki。 Kp控制的输出与输入误差值成正比 关系, 用来快速响应; Ki控制的输出与误差值的积分成正比关系, 用来消 除稳态误差。 即当误差绝对值较大 (本发明中取大于内、 外环输入值的 20% ) 时, Kp取较大值 (本发明取 25 ) , Ki取零, 此时粗压调节机构 6 或弹性敏感元件 3机构快速调压或快速形变, 尽快使误差绝对值减小; 当 误差绝对值为中等大小 (本发明中取大于内、 外环输入值的 1 0%小于内、 外环输入值的 20% ) 时, Kp取中等值(本发明取 20 ) , Ki取较小值(本 发明取 0.0005 ) , 此时粗压调节机构 6或弹性敏感元件 3机构降低调压或 形变的速度, 防止超调; 当误差绝对值继续减小 (本发明取大于内、 外环 输入值的 5%小于内、 外环输入值的 1 0% )时, Kp应取较小值(本发明取 5 ) , Ki取中等值 (本发明取 0.01 ) , 此时緩慢调节粗压执行机构 6或者 弹性敏感元件 3的形变; 当误差绝对值达到最小 (本发明取小于外环输入 值的 5% ) 时, Kp应取中等值 (本发明取 1 0 ) , Ki取最大值 (本发明取 0.02 ) , 此时主要是细微地调节弹性敏感元件 3的形变, 达到精密调压的 作用。 以上过程使得内、 外两环迅速响应, 从而使双闭环系统能够更快达 到稳定的设定压力, 该方法比传统的 PI控制方法响应速度更快。
本发明实施例中的压力传感器 1 0可根据精度、 性能需要, 选择常见 的数字信号处理器或者 ARM等实现, 如: TMS320F28335等。
在一种可能的实施方式中, 考虑到压力传感器 1 0输出的电信号一般 为 uA、 mV级的微小信号, 且造压腔 1 1 内的压力信号不会短时间突变, 故推荐采用高分辨率、 高信噪比、 高集成度的∑-Δ型模拟数字转换器 9 , 例 如 AD7714。
用户输入的设定压力可以通过触摸屏或者筒单的按键、 数码管实现。 以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种压力精密调节装置, 其特征性在于, 包括: 执行机构( 1 ) , 其包括弹性敏感元件( 3 )、 弹性形变转换装置( 4 )、 步进电机及驱动器 (5) 、 粗压调节机构 (6) 以及造压腔(11 ) , 所述造 压腔 (11 ) 和所述弹性敏感元件 (3) 的腔体相通, 腔体内部压力相等; 控制机构 (2) , 其包括处理器 (7) 、 触摸屏 (8) 、 模拟数字转换 器(9)、 压力传感器( 10) , 所述压力传感器( 10)感测所述造压腔( 11 ) 内的压力, 输出电信号, 所述电信号经所述模拟数字转换器 (9) 转换后, 由所述处理器 (7)解算, 获取当前压力值后, 所述处理器 (7)通过比较 用户通过所述触摸屏 (8) 输入的压力设定值与压力当前值的误差值, 将 所述误差值与设定误差阈值比较后, 对所述执行机构 ( 1 ) 进行双闭环控 制, 调节所述造压腔 (11 ) 内的压力。
2、 如权利要求 1 所述的压力精密调节装置, 其特征在于, 所述双闭 环控制进一步包括: 当误差值处于所述设定阈值区间之外时, 所述处理器(7)启动内环, 控制所述粗压调节机构 (6) 快速进行粗压调节; 当所述误差值处于所述误差阈值区间之内时, 所述处理器 (7) 启动 外环, 控制所述步进电机及驱动器 (5) 的转向、 角度, 通过所述弹性形 变转换装置 (4) 改变所述弹性敏感元件 (3) 的腔体体积, 以调节所述造 压腔 ( 11 ) 内的压力。
3、 如权利要求 2所述的压力精密调节装置, 其特征在于, 所述当所 述误差值处于所述误差阈值区间之内时, 所述处理器 (7) 启动外环, 控 制所述步进电机及驱动器 (5) 的转向、 角度, 通过所述弹性形变转换装 置( 4 )改变所述弹性敏感元件( 3 )的腔体体积, 以调节所述造压腔(11 ) 内的压力, 进一步包括: 在需要升高所述造压腔( 11 ) 内的压力时, 减小 所述弹性敏感元件 (3) 的腔体体积; 在需要降低所述造压腔 (11 ) 内的 压力时, 增大所述弹性敏感元件 (3) 的腔体体积。
4、 如权利要求 1 所述的压力精密调节装置, 其特征在于, 所述弹性 敏感元件 (3) 为弹簧管、 波纹管或弹性膜片。
5、 如权利要求 1-4任一项所述的压力精密调节装置, 其特征在于, 所述压力传感器 ( 10) 为硅压阻式压力传感器、 谐振式压力传感器、 电容 式压力传感器。
6、 如权利要求 1-5任一项所述的压力精密调节装置, 其特征在于, 所述模拟数字转换器 (9) 为∑-Δ型模拟数字转换器 (9) 。
PCT/CN2013/090202 2012-12-31 2013-12-23 一种压力精密调节装置 WO2014101728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210586305.6A CN103092222B (zh) 2012-12-31 2012-12-31 一种压力精密调节装置
CN201210586305.6 2012-12-31

Publications (1)

Publication Number Publication Date
WO2014101728A1 true WO2014101728A1 (zh) 2014-07-03

Family

ID=48204920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090202 WO2014101728A1 (zh) 2012-12-31 2013-12-23 一种压力精密调节装置

Country Status (3)

Country Link
CN (1) CN103092222B (zh)
CA (1) CA2837786A1 (zh)
WO (1) WO2014101728A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981556A (zh) * 2017-03-24 2017-07-25 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种可精密调节间距的扩膜机及其调节方法
CN110579329A (zh) * 2019-06-27 2019-12-17 中国空气动力研究与发展中心低速空气动力研究所 一种亚/跨音速射流噪声研究试验装置
CN112850207A (zh) * 2021-01-06 2021-05-28 内蒙古蒙维科技有限公司 一种控制粉体缓冲稳流仓仓重仓压的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092222B (zh) * 2012-12-31 2016-01-27 孙晓君 一种压力精密调节装置
CN103116370B (zh) * 2013-01-04 2015-06-03 北京银谷科讯信息技术有限公司 一种压力调节装置
CN111381614B (zh) * 2020-03-26 2023-09-12 杭州汇健科技有限公司 一种原位采集压力微控装置及其控制方法
CN112032380B (zh) * 2020-08-25 2022-03-22 中车青岛四方车辆研究所有限公司 一种减压装置及其压力输出调节的闭环控制方法
CN112945461B (zh) * 2021-02-02 2022-05-20 同济大学 多功能的压力表自动化测试系统、方法及装置
US11964271B2 (en) 2022-07-27 2024-04-23 Pilot Gene Technology (hangzhou) Co., Ltd. Drop preparation device and drop preparation method
CN115254217B (zh) * 2022-07-27 2023-12-01 领航基因科技(杭州)有限公司 液滴制备装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941148A (en) * 1975-04-17 1976-03-02 Sun Oil Company Of Pennsylvania Control valve drive
US4575313A (en) * 1983-02-02 1986-03-11 Halliburton Company Digital pressure controller
CN101256417A (zh) * 2008-02-25 2008-09-03 周德海 比例阀门对精密气压控制装置
CN201886370U (zh) * 2010-12-16 2011-06-29 河南省中分仪器有限公司 智能气体流量和压力控制器
CN102385397A (zh) * 2011-09-29 2012-03-21 北京振兴计量测试研究所 基于高速电磁阀的高精度压力控制系统
CN103092222A (zh) * 2012-12-31 2013-05-08 孙晓君 一种压力精密调节装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941148A (en) * 1975-04-17 1976-03-02 Sun Oil Company Of Pennsylvania Control valve drive
US4575313A (en) * 1983-02-02 1986-03-11 Halliburton Company Digital pressure controller
CN101256417A (zh) * 2008-02-25 2008-09-03 周德海 比例阀门对精密气压控制装置
CN201886370U (zh) * 2010-12-16 2011-06-29 河南省中分仪器有限公司 智能气体流量和压力控制器
CN102385397A (zh) * 2011-09-29 2012-03-21 北京振兴计量测试研究所 基于高速电磁阀的高精度压力控制系统
CN103092222A (zh) * 2012-12-31 2013-05-08 孙晓君 一种压力精密调节装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, CONGLI ET AL.: "High-precision pressure generation based on stepmotor", TECHNIQUES OF AUTOMATION AND APPLICATIONS, vol. 26, no. 11, 30 November 2007 (2007-11-30), pages 57 - 59 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981556A (zh) * 2017-03-24 2017-07-25 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种可精密调节间距的扩膜机及其调节方法
CN110579329A (zh) * 2019-06-27 2019-12-17 中国空气动力研究与发展中心低速空气动力研究所 一种亚/跨音速射流噪声研究试验装置
CN110579329B (zh) * 2019-06-27 2024-04-19 中国空气动力研究与发展中心低速空气动力研究所 一种亚/跨音速射流噪声研究试验装置
CN112850207A (zh) * 2021-01-06 2021-05-28 内蒙古蒙维科技有限公司 一种控制粉体缓冲稳流仓仓重仓压的方法

Also Published As

Publication number Publication date
CA2837786A1 (en) 2014-06-30
CN103092222B (zh) 2016-01-27
CN103092222A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2014101728A1 (zh) 一种压力精密调节装置
US10619761B2 (en) Valve and a method of operating a valve
JP3595554B2 (ja) 圧力フィードバック、動的補正、および診断機能を備えたバルブ位置制御装置
WO2014106437A1 (zh) 一种压力调节装置
WO2013161186A1 (ja) 可変オリフィス型圧力制御式流量制御器
CN102797906B (zh) 电磁阀式阀门定位器及其控制方法
US7070159B2 (en) Vacuum regulating valve
WO2019059043A1 (ja) バルブ装置、流量調整方法、流体制御装置、流量制御方法、半導体製造装置および半導体製造方法
US3586027A (en) Automatic pressure controller
TWI683069B (zh) 閥系統、調整資訊產生方法、調整資訊產生裝置、流量調整方法、流體控制裝置、流量控制方法、半導體製造裝置及半導體製造方法
JPS6320603A (ja) 自動設定減圧弁
CN112945542A (zh) 基于智能定位器的气动阀门特性参数检测装置及方法
CN114370521B (zh) 一种电比例溢流阀滞环补偿控制方法及其系统
CN112415933B (zh) 一种进气自动调节辅助定位装置及方法
CN107005178A (zh) 压电定位装置以及使用这样的压电定位装置的定位方法
JP2771953B2 (ja) シリンダ形比例制御弁
JP6737669B2 (ja) 真空圧力制御システム及び真空圧力制御用コントローラ
JP2007278514A (ja) 流量制御弁の制御方法
CN112268654B (zh) 一种用于气动阀应力测试校准的方法
CN117148709B (zh) 一种真空蝶阀控制方法、系统、电子设备及存储介质
CN115648196A (zh) 气动供压系统及其驱动方法、软体机器人
US20050204824A1 (en) Device and system for pressure sensing and control
JPH03238510A (ja) 自己調整弁の圧力調整装置
JP6295220B2 (ja) ポジショナ
CN114721444A (zh) 一种压力控制器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.09.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13868810

Country of ref document: EP

Kind code of ref document: A1