WO2014106386A1 - 用于头部成像的超导磁体系统 - Google Patents

用于头部成像的超导磁体系统 Download PDF

Info

Publication number
WO2014106386A1
WO2014106386A1 PCT/CN2013/081715 CN2013081715W WO2014106386A1 WO 2014106386 A1 WO2014106386 A1 WO 2014106386A1 CN 2013081715 W CN2013081715 W CN 2013081715W WO 2014106386 A1 WO2014106386 A1 WO 2014106386A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
superconducting magnet
superconducting
main magnetic
helium
Prior art date
Application number
PCT/CN2013/081715
Other languages
English (en)
French (fr)
Inventor
王秋良
胡新宁
倪志鹏
李兰凯
严陆光
李毅
戴银明
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院电工研究所 filed Critical 中国科学院电工研究所
Priority to US14/759,261 priority Critical patent/US9666344B2/en
Publication of WO2014106386A1 publication Critical patent/WO2014106386A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • This invention relates to the field of nuclear magnetic resonance, and more particularly to a superconducting magnet system for head imaging. Background technique
  • Magnetic resonance imaging is a high-tech imaging based on the performance characteristics of a magnetic core (hydrogen nuclei) in a magnetic field.
  • MRI Magnetic resonance imaging
  • Magnetic resonance imaging (MRI) systems are primarily composed of magnet systems, systems, computer systems, and image display systems. Magnet systems are the most important and costly components of magnetic resonance imaging systems. The most important and costly part of the magnet system is the main magnet.
  • the main magnet acts to create a uniform magnetic field that causes the hydrogen nuclei in the human body to be magnetized to form a magnetization vector.
  • the main magnetic field of the magnetic resonance imaging apparatus has a high field strength (>0 ⁇ 5 ⁇ ) and a high uniformity (1 to 10 ppm).
  • the whole body imaging magnetic resonance apparatus is required to accommodate the entire body, and therefore, the uniform area is large, the magnet is difficult to manufacture, and the cost is high.
  • the human head function imaging system has been widely used in medical diagnosis and research.
  • the uniform magnetic field required for head imaging is small, and only needs to surround the entire head.
  • the diameter of the magnet does not need to be too large, and the inner diameter of the end wire is suitable for the shoulder to pass smoothly.
  • the quality of magnetic resonance imaging is related to the uniformity of the magnetic field.
  • the magnetic field is uniform and the imaging quality is better.
  • the magnetic field of the imaging system currently used is relatively low, usually at the level of 1-3T, and the construction cost and construction degree above 3T are greatly increased.
  • high magnetic field magnet systems are necessary for brain imaging.
  • High magnetic fields provide higher resolution and signal-to-noise ratio, resulting in sharper images.
  • the superconducting magnet system manufactured by using NbTi superconducting wire produces a magnetic field strength of 1.5-3 T. Since the magnetic field strength of the superconducting magnet of the high magnetic field imaging system continues to increase, it is necessary to study Higher magnetic field, high uniformity superconducting magnets to meet application needs. At the same time, in the prior art, a large amount of liquid helium is consumed. Summary of the invention
  • An object of the present invention is to provide a superconducting magnet system for head imaging that cools a helium gas in a high pressure helium vessel by using a refrigerator to provide a cooling capacity.
  • the temperature of the magnet is made uniform by passing the cold amount directly to the entire superconducting magnet through the self-exciting heat pipe.
  • a superconducting magnet system for head imaging comprising a main magnetic field superconducting wire and a compensating superconducting wire, and further comprises a refrigerator, a high pressure helium vessel and a self-exciting heat pipe;
  • the secondary cold head of the refrigerator is connected to the high pressure helium vessel, and the cold air in the secondary cold head of the refrigerator is used to cool the helium gas in the high pressure helium vessel to form a liquid helium, and the cold amount is directly sent to the superconducting magnet through the heat pipe.
  • the heat pipe is uniformly wound around the outer surface of the superconducting magnet; the two ports of the self-exciting heat pipe are connected to the high pressure helium vessel to generate a closed loop cooling circuit; and the superconducting magnet is cooled by a self-excited heat pipe.
  • the first main magnetic field superconducting wire is located at one end of the inner layer of the superconducting magnet, and the third main magnetic field superconducting wire is located at the other end of the inner layer of the superconducting magnet; the outer layer of the third main magnetic field superconducting wire is arranged fourth The main magnetic field superconducting wire ⁇ ; outside the fourth main magnetic field superconducting wire ,, the fourth compensating superconducting wire ⁇ and the third compensating superconducting wire ⁇ are arranged in the axial direction toward the center of the superconducting magnet; in the superconducting magnet a fifth compensation superconductor ⁇ is disposed in the inner layer of the third main magnetic field superconductor ⁇ ; in the outer layer of the first main magnetic field superconducting ⁇ , a sixth compensating superconductor is arranged from the center of the superconducting magnet to the end of the magnet ⁇ And a seventh compensating superconductor and a second main magnetic superconductor, and disposing
  • the first main magnetic field superconductor and the third main magnetic field superconductor are disposed in the inner layer of the superconducting magnet, and the Nb 3 Sn wire is wound on the outer layer of the superconducting magnet.
  • the magnetic field superconductor ⁇ and the fourth main magnetic field superconductor ⁇ use bTi wire, the ratio of the third main magnetic field superconducting wire ⁇ to the radius of the first main magnetic field superconducting wire is 1.3-1.35, and the room temperature hole of the superconducting magnet is realized in the axial direction.
  • the diameter of the self-heating tube is less than 0.5-1 mm; and 3-5 standard atmospheric pressure helium gas is enclosed in the heat pipe.
  • the thermal perturbation in the superconducting magnet causes the helium gas and the liquid helium to exist simultaneously in the heat pipe, and the heat-induced flow is generated due to the expansion of the helium gas, resulting in helium gas and liquid helium in the self-exciting heat pipe. Interaction, vibration of liquid crystal, improving the heat transfer efficiency of the heat pipe.
  • the invention provides a chiller, a high pressure helium vessel, a self-excited heat pipe and a superconducting magnet in a superconducting magnet system for head imaging, and a secondary cold head of the refrigerator is connected with a high pressure helium vessel for use in a high pressure helium vessel
  • the helium gas is converted into liquid helium
  • the two ports of the self-exciting heat pipe are respectively connected with the high pressure helium vessel, thereby forming a closed loop cooling circuit, so that the liquid in the high pressure helium vessel can be circulated and flowed through the heat pipe;
  • On the outer surface of the superconducting magnet cooling is performed by a superconducting magnet, wherein when a part of the liquid helium in the heat pipe is converted into helium due to thermal disturbance of the superconducting magnet, the helium gas and the liquid helium interact to generate a liquid. ⁇ Vibration.
  • Figure 1 is a schematic illustration of one embodiment of a superconducting magnet system of the present invention.
  • FIG. 2 is a schematic view of one embodiment of a superconducting magnet of the present invention.
  • Fig. 3 is a diagram showing the distribution of magnetic field equipotential lines generated in the imaging region of the superconducting magnet of the present invention.
  • Figure 4 is a spatial distribution diagram of the magnetic field strength generated by the superconducting magnet in the imaging region of the present invention. detailed description
  • FIG. 1 is a schematic illustration of one embodiment of a superconducting magnet system of the present invention.
  • a superconducting magnet system for head imaging includes a refrigerator 1, a high pressure helium vessel 2, a self-excited heat pipe 3, and a superconducting magnet 4. among them:
  • the secondary cold head of the refrigerator 1 is connected to the high pressure helium vessel 2 for converting the helium gas in the high pressure helium vessel 2 into liquid helium; the two ports of the heat pipe 3 are respectively connected to the high pressure helium vessel 2, thereby forming a closed loop cooling.
  • the self-heating tube 3 is uniformly wound around the outer surface of the superconducting magnet 4, and is cooled by the superconducting magnet 4, wherein the self-excited heat pipe 3 is cooled
  • the helium gas interacts with the liquid 3 ⁇ 4f to generate liquid helium vibration.
  • helium gas in the high pressure helium vessel is cooled by using a refrigerator to supply a cooling amount, thereby making it liquid helium.
  • the magnet temperature is evened by passing the cold directly from the 3 ⁇ 4 L heat pipe to the entire superconducting magnet.
  • the diameter of the self-excited heat pipe 3 is less than 1 mm to ensure self-excited heat transfer.
  • the self-exciting heat pipe 3 may have a diameter of less than 0.5 mm.
  • the self-exciting heat pipe 3 can be made of a high-strength, high thermal conductivity material, and the helium gas is enclosed in the self-exciting heat pipe 3 by 3-5 atm (standard atmospheric pressure), thereby increasing the cooling effect and reducing the overall cooling weight of the system.
  • FIG. 2 is a schematic view of one embodiment of a superconducting magnet of the present invention.
  • the first main magnetic field superconducting wire 41 is located at the first end inside the superconducting magnet 4
  • the third main magnetic field superconducting wire 43 is located at the second end of the superconducting magnet 4 inside.
  • the corresponding region between the first main magnetic field superconducting wire 41 and the third main magnetic field superconducting wire 43 is the imaging region 5.
  • a sixth compensation superconducting wire ⁇ 56, a seventh compensating superconducting wire ⁇ 57 and a second main magnetic field superconducting wire ⁇ 42 are arranged in sequence; in the outer layer of the second main magnetic field superconducting wire ⁇ 42 , according to the center from the superconducting magnet 4 In the direction of the first end, the first compensation superconducting wire 51 and the second compensating superconducting wire 52 are arranged in this order.
  • a third compensation superconducting wire ⁇ 53 and a fourth compensation superconducting wire ⁇ 54 are disposed, and in the inner layer of the third main magnetic field superconducting wire ⁇ 43, a fifth compensation superconducting wire ⁇ 55 is disposed.
  • first to fourth main magnetic field superconducting wires are used to provide magnetic field strength
  • first to seventh compensating superconducting wires are used to ensure "field uniformity”.
  • the radius ratio between the third main magnetic field superconducting wire 43 and the first main magnetic field superconducting wire 41 is in the range of 1.3-1.35.
  • the room temperature pores of the superconducting material have a room temperature pore structure having different pore diameters in the axial direction. Since the superconducting wire used in the present invention adopts radial current density grading, the utilization rate of the superconducting wire is improved.
  • a super-structured structure superconducting magnet is constructed using asymmetrical radii of different axes with respect to the axis of the magnet.
  • the material of the first main magnetic field superconductor 41 and the third main magnetic field superconducting wire 43 is Nb 3 Sn
  • the material of the second main magnetic field superconducting wire 42 and the fourth main magnetic field superconducting wire 44 is bTio
  • the main magnetic field superconducting wire with different radii has a higher current carrying capacity at a magnetic field higher than 10T.
  • the material of the first compensating superconductor to the seventh compensating superconductor is also NbTio
  • Figure 4 is a spatial distribution diagram of the magnetic field strength generated by the superconducting magnet in the imaging region of the present invention. As shown in Figure 4, the center point magnetic field strength is 9.4T.
  • the magnetic field distribution map and the magnetic field intensity maps given in Figs. 3 and 4 show that the present invention satisfies the requirements for realizing the head field of the center magnetic field of 9.4 ⁇ .
  • the present invention can obtain a magnet of a novel structure by combining a multi-wire ⁇ structure with a magnet system in which NbTi and Nb 3 Sn are combined to form an ultra-high magnetic field.
  • the superconducting magnet has the characteristics of large opening, high magnetic field and relatively compact structure, and has a good application prospect.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Electromagnetism (AREA)

Abstract

本发明提供一种用于头部成像的超导磁体系统。其中超导磁体系统包括制冷机、高压氦容器、自激发热管和超导磁体。制冷机的二级冷头与高压氦容器连接,用于将高压氦容器内的氦气转换为液氦;自激发热管的两个端口分别与高压氦容器连接,从而形成闭环冷却回路,以便使高压氦容器内的液氦在自激发热管中循环流动;自激发热管均匀缠绕在超导磁体的外表面,以便对超导磁体进行冷却,其中自激发热管中的部分液氦因超导磁体的热扰动而转换为氦气时,氦气与液氦相互作用而产生液氦振动。从而节省了液氮消耗,提高了散热效果及温度均匀性。

Description

用于头部成像的超导磁体系统 技术领域
本发明涉及核磁共振领域, 特别是涉及一种用于头部成像的超 导磁体系统。 背景技术
磁共振成像 ( magnetic resonance imaging, 简称: MRI )是根 据生物体磁性核(氢核)在磁场中的表现特性成像的高新技术。 近 二十年来, 随着磁体技术, 超导技术、 低温技术、 电子技术和计算 机等相关技术的 ^ϋΙΙ, MRI技术得到了飞遽 LIL MRI以其自身技 术上的特点和功能上的优势, 已成为临床影像诊断中不可缺少的现 代化诊断设备。 磁共振成像(MRI ) 系统主要由磁体系统、 系 统、 计算机系统和图像显示系统几部分組成, 其中磁体系统是磁共 振成像系统最重要、 成本最高的部件。 而磁体系统中最重要、 成本 最高的部分是主磁体。 主磁体的作用是产生一个均匀的磁场, 使处 于磁场中的人体内氢原子核被磁化而形成磁化强度矢量。 磁共振成 像装置的主磁 求具有高场强( >0·5Τ )和高均匀度( 1 ~ lOppm )。
人体成像中,有用于全身成像的磁共振装置和身体某一局部成像 的装置。 全身成像的磁共振装置要求能够容纳整个身体, 因此, 均 匀区较大, 磁体制造难度大, 成本高。 人体的头部功能成像系统已 经广泛应用于医学诊断和研究。头部成像所需要均匀磁场区域较小, 只需要包围整个头部即可, 磁体孔径也不需要太大, 端部线圏内径 以能让肩部顺利通过为宜。 但由于头部組织多样, 结构细密, 成像 要求高。 磁共振成像质量与磁场均匀度相关, 磁场均匀 高, 成 像质量越好, 所以在诊断头部所需的球体空间中, 磁场均匀度比全 身成像装置要高。 头部所需的磁体设计核心问题是非对称磁体的线 圏分布。 在现有的文献中, 美国专利 US6, 064,290, SHORT BORE-LENGTH ASYMMETRIC ELECTROMAGNETS FOR MAGNETIC RESONANCE IMAGING提供了一种基于最小耗能的 非对称磁体线圏参数设计方法; US6, 140, 900A1, ASSYMETRIC SUPERCONDUCTING MAGNETS FOR MAGNETIC RESONANCE IMAGING提出了基于电流密度分布和非线性优化 获得最终的线圏分布。
目前所使用的成像系统的磁场相对较低, 通常在 1-3T的水平, 3T以上的建造成本和建^度都大大增加。为适用功能成像系统和 医学研究的应用需要, 特别是神经科学和认知科学研究的需要, 高 磁场磁体系统应用于脑部成像是非常必要的。 高磁场能够带来较高 的分辨率和信噪比, 从而使得图像更加清晰。 目前使用 NbTi超导 线材制造的超导磁体系统产生功能成 ^磁共振系统的磁场强度在 1.5-3 T , 由于需求高磁场成像系统的超导磁体的磁场强度持续提 高, 因此, 需要研究能够产生更高磁场、 高均匀度的超导磁体以满 足应用需要。 同时, 在现有技术中, 会消耗大量的液氦。 发明内容
本发明的目的是: 提供一种用于头部成像的超导磁体系统, 通过利用制冷机提供冷量来冷却高压氦容器内的氦气, 使之成为液 氦。 通过自激发热管将冷量直接传至整个超导磁体, 从而使磁体温 度均匀。
根据本发明的一个方面,提供一种用于头部成像的超导磁体系 统, 其中超导磁体包括主磁场超导线圏和补偿超导线圏, 还包括制 冷机、 高压氦容器和自激发热管; 制冷机的二级冷头连接高压氦容 器上, 利用制冷机二级冷头的冷量来冷却高压氦容器内的氦气形成 液氦, 通过自 ^ L热管将冷量直 给超导磁体, 自 ^ L热管均匀 缠绕在超导磁体的外表面; 自激发热管的两个端口连接到高压氦容 器上,产生闭环冷却回路; 所述的超导磁体采用自激发热管来冷却。 优选的, 第一主磁场超导线圏位于超导磁体内层的一端, 第三 主磁场超导线圏位于超导磁体内层的另一端; 第三主磁场超导线圏 的外层布置有第四主磁场超导线圏;在第四主磁场超导线圏的外部, 在轴向方向上向超导磁体中心方向依次布置第四补偿超导线圏和第 三补偿超导线圏; 在超导磁体的内层, 在第三主磁场超导线圏的内 层布置第五补偿超导线圏; 在第一主磁场超导线圏的外层, 从超导 磁体中心到磁体端部依次布置第六补偿超导线圏、 第七补偿超导线 圏和第二主磁场超导线圏, 在第二主磁场超导线圏的外层从磁体中 心到磁体端部依次布置第二补偿超导线圏和第一补偿超导线圏。
优选的, 位于所述的超导磁体内层的第一主磁场超导线圏和第 三主磁场超导线圏采用的 Nb3Sn导线绕制, 位于所述的超导磁体外 层的第二主磁场超导线圏和第四主磁场超导线圏采用 bTi导线, 第三主磁场超导线圏与第一主磁场超导线圏的半径之比为 1.3-1.35, 实现超导磁体的室温孔在轴向上具有不同孔径的室温孔结构。
优选的, 自 热管的直径小于 0.5-1 mm; 自^ L热管内封闭 3-5个标准大气压的氦气。
优选的, 通过所述的超导磁体内的热扰动使自 ^ L热管内有氦 气和液氦同时存在, 由于氦气的膨胀产生热感应流动, 导致自激发 热管内的氦气和液氦相互作用, 以 ^ L液氦振动, 提高自 ^ L热管 传热效率。
本发明通过在用于头部成像的超导磁体系统中设置制冷机、 高 压氦容器、 自激发热管和超导磁体, 制冷机的二级冷头与高压氦容 器连接, 用于将高压氦容器内的氦气转换为液氦; 自激发热管的两 个端口分别与高压氦容器连接, 从而形成闭环冷却回路, 以便使高 压氦容器内的液^ 自 ^ L热管中循环流动; 自 热管均匀缠绕 在超导磁体的外表面, 以^ 超导磁体进行冷却, 其中自 ^ L热管 中的部分液氦因超导磁体的热扰动而转换为氦气时, 氦气与液氦相 互作用而产生液氦振动。 从而提高了散热效果及温度均匀性, 并节 省了液氮消耗。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本 申请的一部分,本发明的示意性实施例及其说明用于解幹本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为本发明超导磁体系统一个实施例的示意图。
图 2为本发明超导磁体一个实施例的示意图。
图 3 为本发明超导磁体在成像区域内产生的磁场等位线分布 图。
图 4为本发明超导磁体在成像区域内产生的磁场强度的空间分 布图。 具体实施方式
以下结合附图和实施例对本发明做进一步的详细说明。
图 1为本发明超导磁体系统一个实施例的示意图。如图 1所示, 用于头部成像的超导磁体系统包括制冷机 1、 高压氦容器 2、 自激发 热管 3和超导磁体 4。 其中:
制冷机 1的二级冷头与高压氦容器 2连接, 用于将高压氦容器 2 内的氦气转换为液氦; 自 热管 3的两个端口分别与高压氦容 器 2连接, 从而形成闭环冷却回路, 以便使高压氦容器 2内的液氦 在自 热管 3中循环流动; 自 热管 3均匀缠绕在超导磁体 4 的外表面, 以^ 超导磁体 4进行冷却, 其中自激发热管 3中的部 分液氦因超导磁体 4的热扰动而转换为氦气时, 氦气与液 ¾f互作 用而产生液氦振动。
基于本发明上述实施例提供的超导磁体系统, 通过利用制冷机 提供冷量来冷却高压氦容器内的氦气, 使之成为液氦。 通过自 ¾ L 热管将冷量直接传至整个超导磁体, 从而使磁体温度均匀。 同时利 用自 热管中的液氦振动。 从而提高了散热效果, 并避免了液氮 消耗。
优选的, 自激发热管 3的直径小于 lmm, 以保证实现自激发传 热功能。在一个优选实施例中, 自激发热管 3的直径可小于 0.5mm。
优选的, 自激发热管 3可采用高强度、 高热导率材料制作, 自 激发热管 3内封闭有 3-5atm (标准大气压 )的氦气, 从而可增加冷 却效果, 并减小系统整体冷却重量。
图 2为本发明超导磁体一个实施例的示意图。 如图 2所示, 在 超导磁体 4中,第一主磁场超导线圏 41位于超导磁体 4内侧的第一 端, 第三主磁场超导线圏 43位于超导磁体 4内侧的第二端, 第一主 磁场超导线圏 41和第三主磁场超导线圏 43之间对应的区域为成像 区域 5。
在第一主磁场超导线圏 41的外层,按照从超导磁体 4的中心到 第一端的方向 (即在超导磁体 4轴向方向上 导磁体 4的中心到 第一端的方向), 依次布置第六补偿超导线圏 56、 第七补偿超导线 圏 57和第二主磁场超导线圏 42;在第二主磁场超导线圏 42的外层, 按照从超导磁体 4的中心到第一端的方向, 依次布置第一补偿超导 线圏 51、 第二补偿超导线圏 52。
在第四主磁场超导线圏 44的外层,按照从超导磁体 4的中心到 第二端的方向 (即在超导磁体 4轴向方向上 导磁体 4的中心到 第二端的方向), 依次布置第三补偿超导线圏 53、 第四补偿超导线 圏 54, 在第三主磁场超导线圏 43的内层, 设置第五补偿超导线圏 55。
其中, 第一至第四主磁场超导线圏用于提供磁场强度, 第一至 第七补偿超导线圏用于保"^场均匀度。
优选的, 第三主磁场超导线圏 43与第一主磁场超导线圏 41之 间半径比的范围是 1.3-1.35。从而实现超导材料的室温孔在轴向上具 有不同孔径的室温孔结构。 由于本发明采用的超导线圏采用径向电流密度分级, 从而提高 了超导线的利用率。 使用不同半径的相对于磁体轴线的非对称结构 超导线圏, 构成脑部功能成像结构超导磁体。
优选的, 第一主磁场超导线圏 41与第三主磁场超导线圏 43的 材料为 Nb3Sn, 第二主磁场超导线圏 42与第四主磁场超导线圏 44 的材料为 bTio从而,不同半径的主磁场超导线圏在高于 10T的磁 场下具有较高的电流载流能力。
例如, 超导磁体 4产生的中心磁场可达 9.4T, 其可利用的磁场 范围中心成像区域 5的空间尺寸大小可为 r=280mm, z=160mm。
优选的, 第一补偿超导线圏至第七补偿超导线圏的材料也为 NbTio
图 3 为本发明超导磁体在成像区域内产生的磁场等位线分布 图。如图 3所示,中心区域小于 0.05 m范围的磁场均匀度小于 5ppm, 其中 lppm=106
图 4为本发明超导磁体在成像区域内产生的磁场强度的空间分 布图。 如图 4所示, 中心点磁场强度为 9.4T。
通过图 3和图 4给出的磁场分布图和磁场强度图, 表明本发明 可满足实现中心磁场 9.4Τ的头部成^场的要求。
本发明通过以多线圏结构配合以 NbTi和 Nb3Sn结合形成超高 磁场的磁体系统将可以获得新型结构的磁体。 这种超导磁体具有较 大开口、 较高的磁场和较为紧凑的结构的特点, 具有很好的应用前 景。
本发明的描述是为了示例和描述起见而给出的, 而并不是无遗 漏的或者将本发明限于所公开的形式。 很多修改和变化对于本领域 的普通技术人员而言^ ^然的。 选# ^描述实施例是为了更: ¾m明 本发明的原理和实际应用, 并且 本领域的普通技术人员能够理解 本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims

权 利 要 求
1.一种用于头部成像的超导磁体系统, 其特征在于, 包括制冷 机(1)、 高压氦容器(2)、 自激发热管(3)和超导磁体(4), 其中: 制冷机(1)的二级冷头与高压氦容器(2)连接, 用于将高压 氦容器(2) 内的氦气转换为液氦; 自 ¾ L热管 (3)的两个端口分 别与高压氦容器(2)连接, 从而形成闭环冷却回路, 以便使高压氦 容器(2)内的液氦在自 热管(3)中循环流动; 自 热管(3) 均匀缠绕在超导磁体(4)的外表面, 以^) "超导磁体(4)进行冷 却, 其中自激发热管 (3) 中的部分液氦因超导磁体(4)的热扰动 而转换为氦气时, 氦气与液氦相互作用而产生液氦振动。
2.根据权利要求 1所述的超导磁体系统, 其特征在于, 自 热管 (3)的直径小于 lmm。
3.根据权利要求 2所述的超导磁体系统, 其特征在于, 自 热管 (3) 内封闭有 3-5atm的氦气。
4.根据权利要求 1-3中任一项所述的超导磁体系统, 其特征在 于, 在超导磁体(4) 中:
第一主磁场超导线圏 (41)位于超导磁体(4) 内侧的第一端, 第三主磁场超导线圏(43)位于超导磁体(4)内侧的第二端, 第一 主磁场超导线圏 l)和第三主磁场超导线圏 3)之间对应的区 域为成像区域;
在第一主磁场超导线圏 i)的外层, 按照从超导磁体 )的 中心到第一端的方向, 依次布置第六补偿超导线圏(56)、 第七补偿 超导线圏(57)和第二主磁场超导线圏(42); 在第二主磁场超导线 圏(42)的外层, 按照 导磁体(4)的中心到第一端的方向, 依 次布置第一补偿超导线圏 (51)、 第二补偿超导线圏 (52);
在第四主磁场超导线圏(44)的外层, 按照从超导磁体 )的 中心到第二端的方向, 依次布置第三补偿超导线圏(53)、 第四补偿 超导线圏(54), 在第三主磁场超导线圏(43)的内层, 设置第五补 偿超导线圏 (55)。
5.根据权利要求 4所述的超导磁体系统, 其特 于, 第三主磁场超导线圏 3)与第一主磁场超导线圏 l)之间 半径比的范围是 1.3-1.35。
6.根据权利要求 4所述的超导磁体系统, 其特征在于, 第一主 磁场超导线圏 l)与第三主磁场超导线圏(43)的材料为 b3Sn, 第二主磁场超导线圏 (42)与第四主磁场超导线圏 (44)的材料为 NbTio
7.根据权利要求 4所述的超导磁体系统, 其特征在于, 第一补 偿超导线圏至第七补偿超导线圏的材料为 bTio
PCT/CN2013/081715 2013-01-06 2013-08-19 用于头部成像的超导磁体系统 WO2014106386A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/759,261 US9666344B2 (en) 2013-01-06 2013-08-19 Superconducting magnet system for head imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310003130.6A CN103077797B (zh) 2013-01-06 2013-01-06 用于头部成像的超导磁体系统
CN201310003130.6 2013-01-06

Publications (1)

Publication Number Publication Date
WO2014106386A1 true WO2014106386A1 (zh) 2014-07-10

Family

ID=48154300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081715 WO2014106386A1 (zh) 2013-01-06 2013-08-19 用于头部成像的超导磁体系统

Country Status (3)

Country Link
US (1) US9666344B2 (zh)
CN (1) CN103077797B (zh)
WO (1) WO2014106386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215411B2 (en) 2016-10-17 2022-01-04 Electric Horsepower Inc. Induction heater and vaporizer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077797B (zh) * 2013-01-06 2016-03-30 中国科学院电工研究所 用于头部成像的超导磁体系统
CN103950206B (zh) * 2014-04-03 2016-08-17 江苏美时医疗技术有限公司 一种磁共振超导磁体拉杆的制造方法
CN106662625B (zh) * 2014-08-18 2019-12-03 马格内蒂卡有限责任公司 用于头和手足成像的磁体
EP3362812A4 (en) * 2015-10-16 2019-06-26 Synaptive Medical (Barbados) Inc. MAGNETIC RESONANCE GAUGING SYSTEM WITH ABILITY FOR QUICK FIELD RAMPING
CN106782998A (zh) * 2016-12-29 2017-05-31 中国科学院电工研究所 开放式自屏蔽磁共振成像超导磁体
US11237234B2 (en) 2017-03-24 2022-02-01 Victoria Link Limited MRI magnet and apparatus
CN109285646B (zh) * 2018-11-30 2020-08-25 合肥中科离子医学技术装备有限公司 一种用于冷屏快速降温的结构及方法
CN109712773B (zh) * 2018-12-26 2021-10-01 中国科学院电工研究所 一种极高场核磁共振超导磁体
CN112712959B (zh) * 2020-12-22 2022-08-16 中国科学院合肥物质科学研究院 一种液氦浸泡式大孔径实验类密绕高场复合超导磁体
CN114551026B (zh) * 2022-03-02 2024-02-02 中国科学院电工研究所 一种低温强磁场综合物性测量用超导磁体及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726199A (en) * 1984-09-17 1988-02-23 Kabushiki Kaisha Toshiba Superconducting apparatus
CN1885448A (zh) * 2005-06-20 2006-12-27 西门子公司 产生脉冲磁场的设备
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统
CN102136337A (zh) * 2010-12-08 2011-07-27 中国科学院电工研究所 高磁场高均匀度核磁共振超导磁体系统
CN103077797A (zh) * 2013-01-06 2013-05-01 中国科学院电工研究所 用于头部成像的超导磁体系统

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924198A (en) * 1988-07-05 1990-05-08 General Electric Company Superconductive magnetic resonance magnet without cryogens
US5092130A (en) * 1988-11-09 1992-03-03 Mitsubishi Denki Kabushiki Kaisha Multi-stage cold accumulation type refrigerator and cooling device including the same
US5613367A (en) * 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
CA2210540A1 (en) * 1996-07-19 1998-01-19 Sumitomo Electric Industries, Ltd. Cooling method and energizing method of superconductor
US5991647A (en) * 1996-07-29 1999-11-23 American Superconductor Corporation Thermally shielded superconductor current lead
US5701744A (en) * 1996-10-31 1997-12-30 General Electric Company Magnetic resonance imager with helium recondensing
US5801609A (en) * 1997-04-25 1998-09-01 General Electric Company MRI head magnet
US6029458A (en) * 1998-05-07 2000-02-29 Eckels; Phillip William Helium recondensing magnetic resonance imager superconducting shield
US5918470A (en) * 1998-07-22 1999-07-06 General Electric Company Thermal conductance gasket for zero boiloff superconducting magnet
US6064290A (en) 1999-05-21 2000-05-16 The Board Of Trustees Of The Leland Stanford Junior University Short bore-length asymmetric electromagnets for magnetic resonance imaging
AUPQ198899A0 (en) 1999-08-03 1999-08-26 University Of Queensland, The A method of magnet design and magnet configuration
US6735848B1 (en) * 1999-09-24 2004-05-18 Fsu Research Foundation, Inc. Method of manufacturing a superconducting magnet
US6289681B1 (en) * 1999-11-17 2001-09-18 General Electric Company Superconducting magnet split cryostat interconnect assembly
DE10137552C1 (de) * 2001-08-01 2003-01-30 Karlsruhe Forschzent Einrichtung mit einem Kryogenerator zur Rekondensation von tiefsiedenden Gasen des aus einem Flüssiggas-Behälter verdampfenden Gases
US6783059B2 (en) * 2002-12-23 2004-08-31 General Electric Company Conduction cooled passively-shielded MRI magnet
US20050062473A1 (en) * 2003-09-24 2005-03-24 General Electric Company Cryogen-free high temperature superconducting magnet with thermal reservoir
JP4494027B2 (ja) * 2004-01-26 2010-06-30 株式会社神戸製鋼所 極低温装置
GB0401835D0 (en) * 2004-01-28 2004-03-03 Oxford Instr Superconductivity Magnetic field generating assembly
GB0408312D0 (en) * 2004-04-14 2004-05-19 Oxford Instr Superconductivity Cooling apparatus
JP2005344991A (ja) * 2004-06-02 2005-12-15 Yokogawa Electric Corp 極低温クライオスタット
DE102004034729B4 (de) * 2004-07-17 2006-12-07 Bruker Biospin Ag Kryostatanordnung mit Kryokühler und Gasspaltwärmeübertrager
US7170377B2 (en) * 2004-07-28 2007-01-30 General Electric Company Superconductive magnet including a cryocooler coldhead
DE102004037173B3 (de) * 2004-07-30 2005-12-15 Bruker Biospin Ag Vorrichtung zur kryogenverlustfreien Kühlung einer Kryostatanordnung
DE102004037172B4 (de) * 2004-07-30 2006-08-24 Bruker Biospin Ag Kryostatanordnung
DE102004060832B3 (de) * 2004-12-17 2006-06-14 Bruker Biospin Gmbh NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
DE102004061869B4 (de) 2004-12-22 2008-06-05 Siemens Ag Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
GB0504345D0 (en) * 2005-03-02 2005-04-06 Oxford Instr Superconductivity Cryostat assembly
DE102005029151B4 (de) * 2005-06-23 2008-08-07 Bruker Biospin Ag Kryostatanordnung mit Kryokühler
CN101213468B (zh) * 2005-06-28 2012-06-27 皇家飞利浦电子股份有限公司 用于磁共振成像的铁磁屏蔽罩
DE102005041383B4 (de) * 2005-09-01 2007-09-27 Bruker Biospin Ag NMR-Apparatur mit gemeinsam gekühltem Probenkopf und Kryobehälter und Verfahren zum Betrieb derselben
US7665312B2 (en) * 2006-01-25 2010-02-23 Koninklijke Philips Electronics N.V. Method of using a system including an assembly exposed to a cryogenic region
JP2008057924A (ja) * 2006-09-01 2008-03-13 Sumitomo Heavy Ind Ltd 蓄冷式冷凍機およびそのシリンダ、並びに、クライオポンプ、再凝縮装置、超電導磁石装置、および半導体検出装置
DE102006046688B3 (de) * 2006-09-29 2008-01-24 Siemens Ag Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
US7414401B1 (en) * 2007-03-26 2008-08-19 General Electric Company System and method for shielded dynamic shimming in an MRI scanner
JP2010525892A (ja) * 2007-05-04 2010-07-29 カリフォルニア インスティテュート オブ テクノロジー 低磁場squid−mri装置、コンポーネント、及び方法
US7449889B1 (en) * 2007-06-25 2008-11-11 General Electric Company Heat pipe cooled superconducting magnets with ceramic coil forms
US7498814B1 (en) * 2007-10-31 2009-03-03 General Electric Company Magnet assembly for magnetic resonance imaging system
US8291717B2 (en) * 2008-05-02 2012-10-23 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler with cross-axial actuation
JP5746626B2 (ja) * 2008-09-09 2015-07-08 コーニンクレッカ フィリップス エヌ ヴェ 極低温再液化冷凍機用の水平フィンによる熱交換器
US9640308B2 (en) * 2008-10-14 2017-05-02 General Electric Company High temperature superconducting magnet
CN101552077B (zh) * 2008-12-11 2010-10-27 中国科学院电工研究所 一种用于产生高磁场高均匀度的超导磁体系统
US20100242502A1 (en) * 2009-03-31 2010-09-30 General Electric Company Apparatus and method of superconducting magnet cooling
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
US20110015078A1 (en) * 2009-04-20 2011-01-20 Erzhen Gao Cryogenically cooled superconductor rf head coil array and head-only magnetic resonance imaging (mri) system using same
DE102009046321B4 (de) * 2009-11-03 2013-10-17 Bruker Biospin Ag Kühlvorrichtung zur kryogenen Kühlung eines NMR-Detektionssystems mit Hilfe eines mit kryogenen Fluid gefüllten Behälters
CN101728051B (zh) * 2010-02-03 2011-08-10 中国科学院电工研究所 具有大分离间隙的高磁场超导磁体系统
CN101794655B (zh) * 2010-03-12 2011-09-14 中国科学院电工研究所 具有高屏蔽特性的低电阻超导接头的制作方法
CN101819845B (zh) * 2010-04-16 2012-07-04 中国科学院电工研究所 用于高功率微波源聚焦与回旋电子装置的超导磁体系统
US8973378B2 (en) * 2010-05-06 2015-03-10 General Electric Company System and method for removing heat generated by a heat sink of magnetic resonance imaging system
US8797131B2 (en) * 2010-05-19 2014-08-05 General Electric Company Thermal shield and method for thermally cooling a magnetic resonance imaging system
US8676282B2 (en) * 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
US8598881B2 (en) * 2011-01-11 2013-12-03 General Electric Company Magnetic resonance imaging system with thermal reservoir and method for cooling
US20120309630A1 (en) * 2011-05-31 2012-12-06 General Electric Company Penetration tube assemblies for reducing cryostat heat load
US9389290B2 (en) * 2011-06-13 2016-07-12 General Electric Company System and method for insulating a cryogen vessel
CN102360690A (zh) * 2011-06-14 2012-02-22 中国科学院电工研究所 一种自屏蔽开放式磁共振成像超导磁体
WO2013038960A1 (ja) * 2011-09-14 2013-03-21 株式会社 日立メディコ 磁気共鳴イメージング装置、その運転方法およびクエンチ防止装置
KR101367142B1 (ko) * 2011-10-12 2014-02-26 삼성전자주식회사 초전도 전자석 장치
US20130104570A1 (en) * 2011-10-31 2013-05-02 General Electric Company Cryogenic cooling system
CN102545725B (zh) * 2012-02-02 2014-04-30 中国科学院电工研究所 一种无液氦挥发的超导磁悬浮装置
KR101362772B1 (ko) * 2012-02-06 2014-02-13 삼성전자주식회사 냉동 시스템 및 이를 채용한 초전도 자석 장치
US9182464B2 (en) * 2012-07-27 2015-11-10 General Electric Company Retractable current lead
CN102866431B (zh) * 2012-09-13 2015-09-09 中国科学院电工研究所 测量重力的低温超导装置
EP3069159B1 (en) * 2013-11-13 2022-09-07 Koninklijke Philips N.V. Superconducting magnet system including thermally efficient ride-through system and method of cooling superconducting magnet system
GB201321088D0 (en) * 2013-11-29 2014-01-15 Oxford Instr Nanotechnology Tools Ltd Cryogenic cooling apparatus and system
US20150168079A1 (en) * 2013-12-17 2015-06-18 General Electric Company System and method for transferring heat between two units
US10184711B2 (en) * 2014-05-19 2019-01-22 General Electric Company Cryogenic cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726199A (en) * 1984-09-17 1988-02-23 Kabushiki Kaisha Toshiba Superconducting apparatus
CN1885448A (zh) * 2005-06-20 2006-12-27 西门子公司 产生脉冲磁场的设备
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统
CN102136337A (zh) * 2010-12-08 2011-07-27 中国科学院电工研究所 高磁场高均匀度核磁共振超导磁体系统
CN103077797A (zh) * 2013-01-06 2013-05-01 中国科学院电工研究所 用于头部成像的超导磁体系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215411B2 (en) 2016-10-17 2022-01-04 Electric Horsepower Inc. Induction heater and vaporizer

Also Published As

Publication number Publication date
US9666344B2 (en) 2017-05-30
CN103077797B (zh) 2016-03-30
CN103077797A (zh) 2013-05-01
US20150348689A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
WO2014106386A1 (zh) 用于头部成像的超导磁体系统
WO2012075663A1 (zh) 高磁场高均匀度核磁共振超导磁体系统
JP2016034509A (ja) 無冷媒型磁石のための管状の熱スイッチ
JP2004202245A (ja) 伝導冷却式受動シールドmriマグネット
JP5738893B2 (ja) 低雑音冷却装置
JP2009000517A5 (zh)
CN101118798A (zh) 超导磁铁装置以及磁共振成像装置
JPH0511642B2 (zh)
JP2016083018A (ja) 超電導磁石およびmri装置、nmr装置
US20170052237A1 (en) Superconducting Magnet Device or Magnetic Resonance Imaging Apparatus
WO2012163069A1 (zh) 开放式传导冷却核磁共振超导磁体系统
US8917153B2 (en) Supported pot magnet for magnetic resonance system
JP6668350B2 (ja) 超電導線、超電導コイル、mri及びnmr
WO2013175928A1 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング装置用の磁石
WO2011109929A1 (zh) 一种产生旋转磁场的超导磁体
US7271590B2 (en) MRI magnet apparatus for vertically and circularly suppressing the magnetic fringe field
CN106449003A (zh) 一种用于实验室的磁共振成像的超导磁体
CN211698154U (zh) 一种超导磁体结构及磁共振设备
CN210535437U (zh) 一种传导冷却磁控拉单晶超导磁体装置
CN106710778B (zh) 一种直接冷却的超导线圈及冷却方法
Wang et al. Design, construction and performance testing of a 1.5 T cryogen-free low-temperature superconductor whole-body MRI magnet
JP2008028146A (ja) 超電導磁石用熱シールド、超電導磁石装置および磁気共鳴イメージング装置
US10381142B2 (en) Cryogen recondensing system and superconducting magnet apparatus including the same
US8694065B2 (en) Cryogenic cooling system with wicking structure
JP2011131009A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14759261

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13869892

Country of ref document: EP

Kind code of ref document: A1