WO2011109929A1 - 一种产生旋转磁场的超导磁体 - Google Patents

一种产生旋转磁场的超导磁体 Download PDF

Info

Publication number
WO2011109929A1
WO2011109929A1 PCT/CN2010/002186 CN2010002186W WO2011109929A1 WO 2011109929 A1 WO2011109929 A1 WO 2011109929A1 CN 2010002186 W CN2010002186 W CN 2010002186W WO 2011109929 A1 WO2011109929 A1 WO 2011109929A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
axis
axis direction
magnetic field
pair
Prior art date
Application number
PCT/CN2010/002186
Other languages
English (en)
French (fr)
Inventor
王秋良
胡新宁
戴银明
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院电工研究所 filed Critical 中国科学院电工研究所
Publication of WO2011109929A1 publication Critical patent/WO2011109929A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils

Definitions

  • the present invention relates to a superconducting magnet, and more particularly to a superconducting magnet that generates a rotating magnetic field. Background technique
  • Rotating magnetic fields have important applications in material growth and physical property measurement.
  • high magnetic field superconducting magnets provide specific background magnetic fields for the growth of special crystal materials, magneto-optic effects, physical properties of metal materials, growth of gradient materials, and related physical properties for changing materials, which can effectively convert magnetic field energy.
  • the molecules and atoms that are transferred to the substance without contact, and the magnitude of the rotation of the magnetic field and the size of the spatial range are changed according to the size of the sample.
  • superconducting magnets that rotate magnetic fields in a specific direction are also important instruments for studying the characteristics of quantum devices.
  • the superconducting magnets currently used for the growth of special crystal structures mainly adjust the amplitude of the magnetic field rotation by mechanical moving parts.
  • Conventional permanent magnets mainly use a rotating magnet.
  • Superconducting magnets that generate a rotating magnetic field are used in extreme conditions where multiple physics interact with physical properties such as materials and magneto-optical effects, and the rotating magnetic field needs to be constantly adjusted and changed.
  • the electromagnetic structure of such a superconducting magnet is complicated in structure compared with a conventional magnet, and the most remarkable feature is that the magnet has a continuously adjustable high magnetic field.
  • High-field superconducting magnets that generate a rotating magnetic field in space can be used for material growth and material physical properties Research, applied in scientific instruments and scientific devices for extreme conditional research. Summary of the invention
  • the object of the present invention is to overcome the shortcomings of the existing rotary superconducting magnets, and to propose a new superconducting magnet which can provide a rotating magnetic field of any speed.
  • the superconducting magnet structure of the present invention has the advantages of low running cost and convenience.
  • the present invention proposes three superconducting magnet structures that generate a rotating magnetic field.
  • the superconducting magnet of the present invention includes a Helmoltz ⁇ pair in the X-axis direction, a Helmoltz ⁇ pair in the y-axis direction, and a Helmoltz coil pair in the z-axis direction when a lower magnetic field such as a central magnetic field of 5 to 6 T is generated.
  • the x-axis direction The Helmoltz line provides a magnetic field in the X direction by series supply, the y-axis direction Helmoltz line provides a magnetic field in the y direction by series supply, and the Helmoltz line in the z-axis provides a z-direction magnetic field through series supply.
  • the X-axis direction The Helmoltz line pair is arranged on the X-axis, the y-axis direction Helmoltz line pair is arranged on the y-axis, and the z-axis direction Helmoltz line pair is arranged on the z-axis.
  • the X-axis, the y-axis, and the z-axis intersect each other perpendicularly to the origin in space.
  • X-axis direction Helmoltz line pair, y-axis direction Helmoltz coil pair and z-axis direction Helmoltz coil pair is made of NbTi superconducting filament wire.
  • the three pairs of coils are separately powered, and the currents of the coils Ix, Iy and Iz are controlled by the computer and the direction of the current can be obtained at the center of the superconducting magnet.
  • the superconducting wire constituting the superconducting magnet is made of NbTi superconducting filament wire, and the superconducting wire is immersed and cooled by liquid helium.
  • the superconducting magnet of the present invention adds a z-axis superconducting main line ⁇ based on the scheme 1-3 of the Helmoltz coil.
  • the superconducting main line in the z-axis direction provides a higher background magnetic field, and the other three pairs of Helmoltz turns provide a magnetic field that can vary in space. Change the magnetic with a certain timing current change The spatial orientation of the field direction and the magnitude of the magnetic field strength.
  • the superconducting main line in the Z-axis direction produces a constant background magnetic field.
  • a superconducting main line Z in the Z- axis direction is arranged on the Z-axis, and a Helmoltz line ⁇ pair in the z-axis direction is arranged along the z-axis outside the superconducting main coil in the Z- axis direction.
  • the Helmoltz coil pair in the X-axis direction is arranged on the X-axis
  • the Helmoltz coil pair in the y-axis direction is arranged on the y-axis.
  • the X- axis, the y-axis, and the z-axis intersect each other perpendicularly to the origin in space.
  • a three-dimensionally adjustable rotating magnetic field can be obtained in space by changing the current of the three pairs of Helmoltz coils.
  • the generated central magnetic field is higher than 10T
  • the superconducting main line in the x-axis direction is a combination of NbTi and Nb 3 Sn wires
  • the other three pairs of Helmoltz wires are NbTi super wires.
  • the superconducting magnet of the present invention uses a z-axis direction superconducting main line to generate a main magnetic field, and uses two pairs of runways or saddle-shaped turns to distribute the z-axis superconducting main line. Outside the crucible, a magnetic field that changes direction uniformly. Since the racetrack or the saddle coil has a certain length, the direction of the superconducting main coil in the Z-axis direction can obtain a uniform magnetic field in a large range.
  • the superconducting magnet of the present invention comprises a superconducting main wire z in the z-axis direction, a Helmoltz wire pair in the z-axis direction, a pair of track-shaped super-wires in the X-direction, and a pair of track-shaped super-wires in the y-direction.
  • the superconducting main coil in the z-axis direction provides a strong background magnetic field
  • the Helmoltz line in the z-axis direction provides a magnetic field that changes in the z-axis direction
  • the X-direction track-shaped superconducting wire provides a magnetic field in the X-direction
  • the y-direction track-shaped superconducting The coil pair provides a magnetic field that varies in the y direction.
  • a superconducting main line z in the z-axis direction is arranged on the z-axis
  • a Helmoltz coil pair in the z-axis direction is arranged along the z-axis outside the superconducting main line z in the z-axis direction.
  • An x-direction racetrack-shaped superconducting coil pair is arranged on the x-axis, and a y-direction racetrack-shaped superconducting coil pair is arranged on the y-axis.
  • the X-axis, the y-axis, and the z-axis intersect each other perpendicularly to the origin in space.
  • the Helmoltz wire pair in the z-axis direction, the track-shaped super-wire pair in the X-direction, and the track-shaped super-wire in the y-direction are NbTi superconducting filament wires.
  • the superconducting main coil in the x-axis direction is a NbTi superconducting filament wire. If the central magnetic field is greater than 10 T And less than 20T, the superconducting main coil in the z-axis direction uses a combination of NbTi and Nb 3 Sn turns. If the center magnetic field is greater than 20 T, the superconducting main wire in the z-axis direction is a combination of low temperature and high temperature coils. Superconducting magnets are cooled using a chiller and liquid helium.
  • the z-axis direction superconducting main wire ⁇ is a combination of a low temperature superconducting wire and a high temperature superconducting wire
  • other wires may be NbTi or high temperature superconducting wire.
  • the superconducting main line in the z-axis direction produces a higher central magnetic field, and the runway or saddle-shaped line placed outside and the other pair of Helmoltz lines change the current at a certain timing to obtain a rotating magnetic field.
  • the superconducting magnet of the present invention has the characteristics of continuous adjustment of the magnetic field orientation, and the superconducting magnet has a simple and compact structure.
  • the superconducting magnet can be directly cooled by a refrigerator.
  • the invention can greatly improve the utilization efficiency of the superconducting coil and reduce the distance of some separation gaps.
  • FIG. 1 shows a structural view of a superconducting magnet having three pairs of Helmoltz coils according to a first embodiment of the present invention
  • FIG. 2 is a structural view showing a superconducting magnet having a high magnetic field strength rotating magnetic field according to a second embodiment of the present invention
  • Fig. 3 is a view showing the structure of a superconducting magnet having a rotating magnetic field having a relatively large area according to a third embodiment of the present invention. detailed description
  • the first embodiment of the present invention is a structure suitable for a superconducting magnet which generates a lower magnetic field.
  • the X-axis direction Helmoltz line ⁇ pair 1 provides the x-direction magnetic field by series power supply
  • the y-axis direction Helmoltz line ⁇ pair 2 provides the y-direction magnetic field by series power supply
  • the z-axis direction Helmoltz line ⁇ pair 3 provides the z-direction magnetic field by series power supply.
  • three For Helmoltz coil pairs 1, 2 and 3 can be made using very fine NbTi low temperature superconducting wire.
  • the currents passed through the three pairs of Helmoltz coils 1, 2 and 3 are / x , / y and / z , and the three pairs of coils are each powered by a separate power source.
  • the desired rotating magnetic field can be obtained at the center of the superconducting magnet by controlling the magnitude of the currents ⁇ , I y and / 2 and the direction of the current through the computer.
  • the X-axis direction Helmoltz line ⁇ pair 1 is arranged on the X-axis
  • the y-axis direction Helmoltz coil pair 2 is arranged on the y-axis
  • the z-axis direction Helmoltz line ⁇ pair 3 is arranged on the z-axis
  • the x-axis, y-axis and z-axis are Spaces intersect perpendicularly to each other at the origin.
  • the superconducting magnet structure of the second embodiment of the present invention is the basis of the first embodiment.
  • a z-axis direction superconducting main coil 4 is added at the center of the Helmoltz line ⁇ pair 3 in the z-direction in the z-direction.
  • the superconducting main line z 4 in the z-axis direction provides a higher constant background magnetic field, and the other three pairs of Helmoltz lines ⁇ 1, 2 and 3 provide a magnetic field that can vary in space.
  • the z-axis direction superconducting main line ⁇ 4 is arranged on the z-axis, and the z-axis direction Helmoltz line ⁇ is arranged along the z-axis in the z-axis direction.
  • the x-axis direction Helmoltz coil pair 1 is placed on the X-axis, and the y-axis direction Helmoltz line ⁇ pair 2 is placed on the y-axis.
  • the X-axis, the y-axis, and the z-axis intersect each other perpendicularly to the origin in space.
  • a three-dimensionally adjustable rotating magnetic field is obtained in space by varying the currents of the three pairs of Helmoltz turns ⁇ 1, 2 and 3.
  • the z-axis direction superconducting coil 4 is combined with NbTi and Nb 3 Sn superconducting coils, or a combination of low temperature and high temperature superconducting wires is used to provide higher magnetic field strength, and the other three pairs of Helmoltz coils use NbTi superconducting wires.
  • the third embodiment of the present invention is a superconducting magnet structure having a high magnetic field and a large uniform region rotating magnetic field.
  • the superconducting main line ⁇ 4 in the z-axis direction provides a strong background magnetic field, and the coil 4 is combined using NbTi and Nb 3 Sn wires. If a magnetic field of 20 T or more is to be generated, the superconducting main coil 4 in the z-axis direction is combined with a low temperature and high temperature superconducting wire.
  • the Helmoltz coil pair z in the z-axis direction provides a magnetic field that varies in the z-axis direction. Runway shaped superconductor in x direction 10 002186
  • the circle pair 5 provides a magnetic field that varies in the x direction
  • the y direction racetrack shaped superconductor pair 6 provides a magnetic field that changes in the y direction.
  • the z-axis direction superconducting main coil 4 is arranged on the z-axis
  • the z-axis direction Helmoitz line ⁇ pair 3 is arranged along the z-axis outside the superconducting main coil 4 in the z-axis direction.
  • An X-direction racetrack-shaped superconducting coil pair 5 is arranged on the x-axis
  • a y-direction racetrack-shaped superconducting wire pair 6 is arranged on the y-axis.
  • the X-axis, the y-axis, and the z-axis intersect each other perpendicularly to the origin in space.
  • the three pairs of wires are each powered by a separate power source.
  • the desired rotating magnetic field can be obtained at the center of the superconducting magnet by computer controlling the magnitudes of the currents I x , / y and / 2 of the x, y, z-turns and the direction of the current.
  • the superconducting main line ⁇ 4 in the z-axis direction is powered by another power source to provide a stable background magnetic field.
  • the superconducting magnet of the present invention may be in the form of a chiller coolant or direct cooling.
  • the wire of the superconducting wire may be a high temperature superconducting wire, or a combination of Nb 3 Sn and a high temperature superconductor, or a combination of NbTi or Nb 3 Sn wire turns, or a combination of three materials to form a higher magnetic field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

一种产生旋转磁场的超导磁休 技术领域
本发明涉及一种超导磁体,特别涉及一种产生旋转磁场的超 导磁体。 背景技术
旋转磁场在材料生长和物理特性测定等方面具有重要的应 用。 目前高磁场超导磁体为特殊晶体材料生长、 磁光效应、 金属 材料的物理特性改变、 梯度材料的生长以及用于改变材料的相关 物理属性等方面提供特定的背景磁场, 能够有效地将磁场能量无 接触地传递给物质的分子和原子, 并且根据样品大小的不同来改 变磁场的旋转幅度和空间范围的大小。 此外旋转特定方向的磁场 的超导磁体也是研究量子器件特性的重要仪器。 目前用于特种晶 体结构生长的超导磁体主要通过机械运动部件进行磁场旋转幅度 变化的调节。 常规的永磁体主要采用旋转磁体的方式, 这种方法 对于制作磁体本身的技术难度较小, 但是磁场强度较低。 采用铌 钛 (NbTi )和铌三锡 (Nb3Sn )超导体研制的超导磁体可以产生 较高的磁场, 如果采用旋转磁体的方法, 一方面磁体处于低温容 器内部, 旋转磁体使得低温系统较为复杂, 另一方面系统的运行 成本较高。 目前工业和科学仪器使用的高磁场超导磁体系统的发 展趋势是结构简单, 系统运行费用低廉和操作方便。
产生旋转磁场的超导磁体应用在极端条件下多物理场共同 作用于材料、 磁光效应等物理特性研究等场合, 需要旋转磁场不 断调节改变。这种超导磁体的电磁结构与普通磁体相比结构复杂, 最显著的特点是磁体具有一个连续可调的高磁场。 在空间产生旋 转磁场的高磁场超导磁体能够用于材料生长和材料物理特性研 究, 应用在科学仪器以及极端条件研究的科学装置中。 发明内容
本发明的目的是克服现有的旋转超导磁体结构复杂的缺点, 提出一种新的可提供任意速度旋转磁场的超导磁体。 本发明的超 导磁体结构筒单, 具有运行费用低廉和方便的优点。
根据磁场强度大小和磁场可利用的均匀区范围,本发明提出 三种产生旋转磁场的超导磁体结构。
方案一:
在产生较低的磁场例如 5〜6T的中心磁场时, 本发明的超导 磁体包括 X轴方向 Helmoltz线圏对、 y轴方向 Helmoltz线圏对和 z轴方向 Helmoltz线圈对。 x轴方向 Helmoltz线圏对通过串联供 电提供 X方向的磁场, y轴方向 Helmoltz线圏对通过串联供电提 供 y方向的磁场, z轴方向 Helmoltz线圏对通过串联供电提供 z 方向的磁场。 X轴方向 Helmoltz线圏对布置于 X轴上, y轴方向 Helmoltz线圏对布置于 y轴上, z轴方向 Helmoltz线圏对布置于 z轴上。 X轴、 y轴和 z轴在空间上相互垂直相交于原点。 X轴方 向 Helmoltz线圏对、 y轴方向 Helmoltz线圈对和 z轴方向 Helmoltz 线圈对使用 NbTi超导细丝线材制成。 三对线圏对分别单独供电, 通过计算机控制线圈的电流 Ix, Iy和 Iz的幅值和电流的方向可以 在超导磁体中心取得所需要的旋转磁场。 构成超导磁体的超导线 圏采用 NbTi超导细丝线材, 超导线圏使用液氦浸泡冷却。
方案二:
对于高磁场小均勾区旋转磁场,本发明的超导磁体在方案一 三对 Helmoltz线圏的基础上, 增加一个 z轴方向超导主线圏。 该 z轴方向超导主线圏提供较高的背景磁场, 其它三对 Helmoltz线 圏提供在空间可以变化的磁场。 以一定的时序电流变化来改变磁 场方向的空间取向和磁场强度的幅值大小。 Z 轴方向超导主线圏 产生恒定的背景磁场。 在 Z轴上布置 Z轴方向超导主线圏, 在 Z 轴方向超导主线圈的外部沿 z轴布置 z轴方向 Helmoltz线圏对。
X轴方向 Helmoltz线圈对布置于 X轴上, y轴方向 Helmoltz线圏 对布置于 y轴上。 X轴、 y轴和 z轴在空间上相互垂直相交于原点。 通过改变所述的三对 Helmoltz 线圈的电流可以在空间中获得三 维方向可调的旋转磁场。产生的中心磁场高于 10T, ζ轴方向超导 主线圏采用 NbTi和 Nb3Sn线圏的组合, 其它三对 Helmoltz线圏 使用 NbTi超导线。
方案三:
对于高磁场大均勾区旋转磁场,本发明的超导磁体采用一个 z 轴方向超导主线圏产生主磁场, 使用两对跑道或马鞍形的线圏 分布在所述的 z轴方向超导主线圏的外面, 产生均匀变化方向的 磁场。 由于跑道或马鞍形线圈有一定的长度, 因此, 在 Z轴方向 超导主线圈的方向可以在较大的范围内获得均匀的磁场。 本发明 的超导磁体包括 z轴方向超导主线圏, z轴方向 Helmoltz线圏对, X方向跑道形超导线圏对, y方向跑道形超导线圏对。 z轴方向超 导主线圈提供较强的背景磁场, z轴方向 Helmoltz线圏对提供 z 轴方向变化的磁场, X方向跑道形超导线圏对提供 X方向变化的 磁场, y方向跑道形超导线圈对提供 y方向变化的磁场。 在 z轴 上布置 z轴方向超导主线圏, 在 z轴方向超导主线圏的外部沿 z 轴布置 z轴方向 Helmoltz线圈对。在 x轴上布置 x方向跑道形超 导线圈对, 在 y轴上布置 y方向跑道形超导线圈对。 X轴、 y轴和 z轴在空间上相互垂直相交于原点。 z轴方向 Helmoltz线圏对、 X 方向跑道形超导线圏对和 y 方向跑道形超导线圏对采用 NbTi 超导细丝线材。如果本发明超导磁体的中心磁场小于 10T, ζ轴方 向超导主线圈采用 NbTi超导细丝线材。 如果中心磁场大于 10 T 并小于 20T,z轴方向超导主线圈釆用 NbTi和 Nb3Sn线圏的组合。 如果中心磁场大于 20 T, z轴方向超导主线圏采用低温和高温线 圈组合。 超导磁体使用制冷机和液氦冷却。
当本发明所述的 z轴方向超导主线圏采用低温超导线圏和高 温超导线圏组合的方式时, 其他线圏采用 NbTi或高温超导线圏 均可。 z 轴方向超导主线圏产生较高的中心磁场, 外面放置的跑 道形或马鞍形线圏与另外一对 Helmoltz 线圏以一定时序改变电 流从而得到旋转磁场。
本发明的超导磁体具有磁场取向连续调节的特点, 并且超导 磁体结构简单紧凑。 超导磁体可以采用制冷机直接冷却的方式。 本发明可以极大提高超导线圈的利用效率, 减小一些分离间隙的 距离。 附图说明
图 1示出根据本发明第一实施例的具有三对 Helmoltz线圈的 超导磁体结构图;
图 2示出根据本发明第二实施例的具有高磁场强度旋转磁场 超导磁体结构图;
图 3示出根据本发明第三实施例的具有较大均匀区域的旋转 磁场的超导磁体结构图。 具体实施方式
以下结合附图和具体实施方式进一步说明本发明。
如图 1所示, 本发明第一实施例为适用于产生较低磁场的超 导磁体的结构。 X轴方向 Helmoltz线圏对 1通过串联供电提供 x方向 的磁场, y轴方向 Helmoltz线圏对 2通过串联供电提供 y方向的磁 场, z轴方向 Helmoltz线圏对 3通过串联供电提供 z方向的磁场。 三 对 Helmoltz线圈对 1、 2和 3均可以使用极细的 NbTi低温超导线材制 成。 三对 Helmoltz线圈 1、 2和 3中通过的电流为 /x, /y和 /z, 三对线 圈分别使用独立的电源供电。 通过计算机控制线圏的电流^, Iy 和 /2的幅值和电流的方向, 可以在超导磁体中心取得所需要的旋 转磁场。 X轴方向 Helmoltz线圏对 1布置于 X轴上, y轴方向 Helmoltz 线圈对 2布置于 y轴上, z轴方向 Helmoltz线圏对 3布置于 z轴上, x 轴、 y轴和 z轴在空间上相互垂直相交于原点。
如图 2所示, 为了进一步提高超导磁体的背景磁场以便适合 于高磁场应用, 同时适当增加磁场均匀区的范围, 本发明第二实 施例的超导磁体结构为在第一实施例的基础上, 在 z方向上位于 z轴方向 Helmoltz线圏对 3的中心处增加一个 z轴方向超导主线 圈 4。 z轴方向超导主线圏 4提供较高的恒定的背景磁场, 其它三 对 Helmoltz线圏 1、 2和 3提供在空间中可以变化的磁场。 在 z 轴上布置 z轴方向超导主线圏 4, 在 z轴方向超导主线圈 4的外 部沿 z轴布置 z轴方向 Helmoltz线圏对 3。 x轴方向 Helmoltz线 圈对 1布置于 X轴上, y轴方向 Helmoltz线圏对 2布置于 y轴上。
X轴、 y轴和 z轴在空间上相互垂直相交于原点。 通过改变所述的 三对 Helmoltz线圏 1、 2和 3的电流在空间中获得三维方向可调 的旋转磁场。 z轴方向超导线圈 4使用 NbTi和 Nb3Sn超导线圈组 合, 或者使用低温和高温超导线材组合以提供更高的磁场强度, 其它三对 Helmoltz线圏使用 NbTi超导线。
如图 3所示, 为了进一步提高线圏的使用效率, 同时提供较 大均匀区域的范围, 本发明第三实施例为一个高磁场大均匀区旋 转磁场的超导磁体结构。 z轴方向超导主线圏 4提供较强的背景磁 场, 该线圈 4使用 NbTi和 Nb3Sn线材组合。 如果要产生 20T以上的 磁场, z轴方向超导主线圈 4使用低温和高温超导线材组合。 z轴方 向 Helmoltz线圈对 3提供 z轴方向变化的磁场。 x方向跑道形超导线 10 002186
圈对 5提供 x方向变化的磁场, y方向跑道形超导线圏对 6提供 y方向 变化的磁场。 在 z轴上布置 z轴方向超导主线圈 4, 在 z轴方向超导 主线圈 4的外部沿 z轴布置 z轴方向 Helmoitz线圏对 3。 在 x轴上布置 X方向跑道形超导线圈对 5, 在 y轴上布置 y方向跑道形超导线圏对 6。 X轴、 y轴和 z轴在空间上相互垂直相交于原点。 三对线圏分别 使用独立的电源供电。 通过计算机控制所述的 x、 y、 z线圏的电流 Ix, /y和 /2的幅值和电流的方向, 可以在所述的超导磁体中心取得 所需要的旋转磁场。 z轴方向超导主线圏 4由另外一电源供电提供 稳定的背景磁场。
以上结合具体实施例描述了本发明,但这些实施例仅仅是为 了示例的目的, 而不是旨在限制本发明的范围。 例如, 本发明的 超导磁体可以采用制冷机冷却液氦或直接冷却的方式。 超导线圏 的线材可以是高温超导线材, 或是 Nb3Sn与高温超导体的组合, 或 NbTi或 Nb3Sn线圏的组合, 或三种材料的组合, 以形成更高的 磁场。 在不脱离本发明的精神和范围的情况下, 还可以对此处描 述的实施例做出各种变型、 替换和改变。 所附权利要求书旨在涵 盖落入本发明的范围和精神内的这些变型、 替换和改变。

Claims

权 利 要 求
1、 一种产生旋转磁场的超导磁体, 其特征在于包括: X轴方 向 Helmoltz线圈对 (1) 、 y轴方向 Helmoltz线圏对 (2) 和 z轴方 向 Helmoltz线圈对(3); 其中 x轴方向 Helmoltz线圏对(1)通过 串联供电提供 X方向的磁场, y轴方向 Helmoltz线圏对(2)通过串 联供电提供 y方向的磁场, z轴方向 Helmoltz线圈对(3)通过串联 供电提供 z方向的磁场; X轴方向 Helmoltz线圏对 (1) 布置于 x轴 上、 y轴方向 Helmoltz线圏对(2)布置于 y轴上, z轴方向 Helmoltz 线圈对(3)布置于 z轴上, X轴、 y轴和 z轴相互垂直并在空间上相 交于原点; 所述的 x、 y、 z三个方向的三对 Helmoltz线圈对分别被 独立供电,通过计算机控制线圏的电流 Ix, Iy和 Iz的幅值和电流的 方向, 在所述的超导磁体中心取得所需要的旋转磁场。
2、 按照权利要求 1所述的超导磁体, 其中所述超导磁体所产 生的中心磁场为 5-6 Τ, X轴方向 Helmoltz线圈对 (1) 、 y轴方向 Helmoltz线圏对(2)和 z轴方向 Helmoltz线圏对(3)使用 NbTi超 导细丝线材制成。
3、 一种产生旋转磁场的超导磁体, 其特征在于, 所述的超导 磁体包括三对 Helmoltz线圈 (1) - (3)和一个 z轴方向超导主 线圏 (4) , 所述的 z轴方向超导主线圏 (4)提供恒定的背景磁 场, 其它三对 Helmoltz线圈 (1) - (3)提供在空间中变化的磁 场; 在 z轴上布置 z轴方向超导主线圏 (4) , 在 z轴方向超导主 线圏 (4) 的外部沿 z轴布置 z轴方向 Helmoltz线圈对(3) , 在 X轴上布置 X轴方向 Helmoltz线圏对( 1 )、在 y轴上布置 y轴方 向 Helmoltz线圈对(2) , x轴、 y轴和 z轴在空间上相互垂直相 交于原点; 通过改变所述的三对 Helmoltz线圏 (1) - (3) 的电 流在空间中获得三维方向可调的旋转磁场。
4、 按照权利要求 3所述的超导磁体,其中所述超导磁体产生 的中心磁场高于 ΙΟΤ,ζ轴方向超导主线圏(4)采用 NbTi和 Nb3Sn 线圏的组合, 其它三对 Helmoltz线圏 (1) - (3)使用 NbTi超导 细丝线材绕制。
5、 一种产生旋转磁场的超导磁体, 其特征在于包括: z轴方 向超导主线圈 (4) , z轴方向 Hehnoltz线圈对 (3) , x方向跑 道形超导线圏对 (5) , y 方向跑道形超导线圈对(6) ; 其中 z 轴方向超导主线圈 (4)提供较强的背景磁场, z轴方向 Helmoltz 线圈对(3)提供 z轴方向变化的磁场, X方向跑道形超导线圈对
(5)提供 X方向变化的磁场, y方向跑道形超导线圏对 (6)提 供 y方向变化的磁场; 在 z轴上布置 z轴方向超导主线圈 (4) , 在 z轴方向超导主线圏(4)的外部沿 z轴布置 z轴方向 Helmoltz 线圏对(3) , 在 X轴上布置 X方向跑道形超导线圏对 (5) , 在 y轴上布置 y方向跑道形超导线圏对(6) , X轴、 y轴和 z轴在 空间上相互垂直相交于原点。
6、 根据权利要求 5的超导磁体,其中所述超导磁体的中心磁 场小于 10T, z轴方向 Helmoltz线圈对(3) 、 x方向跑道形超导 线圈对 (5)和 y方向跑道形超导线圈对(6)釆用 NbTi超导细 丝线材绕制, z轴方向超导主线圏 (4)釆用 NbTi超导细丝线材 绕制。
7、 根据权利要求 5的超导磁体,其中所述超导磁体产生的中 心磁场大于 10T并小于 20T, ζ轴方向 Helmoltz线圈对(3) 、 x 方向跑道形超导线圈对 (5) 和 y方向跑道形超导线圈对 (6) 釆 用 NbTi超导细丝线材绕制, z轴方向超导主线圏 (4)采用 NbTi 和 Nb3Sn线圏的组合。
8、 根据权利要求 5的超导磁体,其中所述超导磁体产生的中 心磁场大于 20 T, z轴方向 Helmoltz线圏对(3)、 x方向跑道形 超导线圈对 (5)和 y方向跑道形超导线團对(6)采用 NbTi超 导细丝线材绕制, z轴方向超导主线圏 (4)采用低温和高温超导 线圏组合。
9、 根据权利要求 5的超导磁体,其中所述超导磁体使用制冷 机和液氦冷却。
10、 按照权利要求 5-9中任何一项所述的超导磁体, 其中所述 的 z轴方向 Helmoltz线圈对 (3) 、 x方向跑道形超导线圏对 (5) 和 y方向跑道形超导线圏对 (6)分别被独立供电; 通过计算机控 制线圏的电流 Ix, Iy和 Iz的幅值和电流的方向,在所述超导磁体中 心取得所需要的旋转磁场; z轴方向超导主线圏 (4) 由一台电源 单独供电。
PCT/CN2010/002186 2010-03-12 2010-12-28 一种产生旋转磁场的超导磁体 WO2011109929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010123272.2 2010-03-12
CN2010101232722A CN101794653B (zh) 2010-03-12 2010-03-12 一种产生旋转磁场的超导磁体

Publications (1)

Publication Number Publication Date
WO2011109929A1 true WO2011109929A1 (zh) 2011-09-15

Family

ID=42587267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002186 WO2011109929A1 (zh) 2010-03-12 2010-12-28 一种产生旋转磁场的超导磁体

Country Status (2)

Country Link
CN (1) CN101794653B (zh)
WO (1) WO2011109929A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794653B (zh) * 2010-03-12 2012-02-29 中国科学院电工研究所 一种产生旋转磁场的超导磁体
CN108575042B (zh) * 2017-03-09 2021-04-09 北京北方华创微电子装备有限公司 一种线圈、介质筒和等离子体腔室
CN110129890B (zh) * 2018-03-30 2021-02-02 杭州慧翔电液技术开发有限公司 一种用于磁控直拉单晶的线圈结构及磁控直拉单晶的方法
CN109765510B (zh) * 2019-02-20 2021-04-27 中国科学院电工研究所 一种带有圆角的径向超导匀场线圈设计方法
CN111212490B (zh) * 2020-02-17 2022-02-01 中国科学院电工研究所 一种多工件同时加热的超导感应加热装置
CN112735732B (zh) * 2020-12-10 2022-09-06 中国科学院深圳先进技术研究院 混合磁场装置、混合磁场系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741208A (zh) * 2004-08-27 2006-03-01 中国科学院电工研究所 磁外科手术用的超导磁体及其线圈绕制方法
WO2007032472A1 (ja) * 2005-09-16 2007-03-22 Japan Science And Technology Agency 超電導マグネット並びにそれを用いた電磁撹拌装置、電動機及び発電機
CN101266863A (zh) * 2008-01-17 2008-09-17 华北电力大学 磁场大小和方向能够连续变化的磁体装置
JP2009240061A (ja) * 2008-03-27 2009-10-15 Sumitomo Electric Ind Ltd 超電導アクチュエータ
CN101794653A (zh) * 2010-03-12 2010-08-04 中国科学院电工研究所 一种产生旋转磁场的超导磁体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814707A (en) * 1987-06-17 1989-03-21 Texas Instruments Incorporated Scalar magnetometer with vector capabilities
JPH06181902A (ja) * 1992-12-16 1994-07-05 Toshiba Corp Mri用磁石
JP4937196B2 (ja) * 2008-06-17 2012-05-23 株式会社東芝 超電導コイル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741208A (zh) * 2004-08-27 2006-03-01 中国科学院电工研究所 磁外科手术用的超导磁体及其线圈绕制方法
WO2007032472A1 (ja) * 2005-09-16 2007-03-22 Japan Science And Technology Agency 超電導マグネット並びにそれを用いた電磁撹拌装置、電動機及び発電機
CN101266863A (zh) * 2008-01-17 2008-09-17 华北电力大学 磁场大小和方向能够连续变化的磁体装置
JP2009240061A (ja) * 2008-03-27 2009-10-15 Sumitomo Electric Ind Ltd 超電導アクチュエータ
CN101794653A (zh) * 2010-03-12 2010-08-04 中国科学院电工研究所 一种产生旋转磁场的超导磁体

Also Published As

Publication number Publication date
CN101794653A (zh) 2010-08-04
CN101794653B (zh) 2012-02-29

Similar Documents

Publication Publication Date Title
WO2011109929A1 (zh) 一种产生旋转磁场的超导磁体
Hull et al. Applications of bulk high-temperature superconductors
WO2012075663A1 (zh) 高磁场高均匀度核磁共振超导磁体系统
CN103077797B (zh) 用于头部成像的超导磁体系统
Ozturk et al. The effect of magnetic field distribution and pole array on the vertical levitation force properties of HTS maglev systems
CN106059394B (zh) 一种采用闭环恒流高温超导线圈实现磁悬浮状态的方法
JP2014078560A (ja) 絶縁材料およびその製造方法
Tomków et al. Improvement of the homogeneity of magnetic field by the attenuation of a selected component with an open superconducting shield made of commercial tapes
Legl et al. Vibrating coil magnetometer for milli-Kelvin temperatures
Yokoyama et al. Improvement of trapped magnetic field of a REBCO bulk magnet activated by pulsed field magnetization in a high-cooling power two-stage GM-type refrigerator
CN109526132A (zh) 一种异型大尺寸高温超导磁铁
Jiang et al. Trapped field and levitation performance of a YBCO superconductor magnetized in different external magnetic fields
Zhao et al. Cryogenic spectroscopic imaging scanning tunnelling microscope in a water-cooled magnet down to 1.7 K
Shi et al. Compensation effect of superconducting hybrid trapped field magnet
Wang et al. Recent developments of the high temperature superconducting maglev at ASCLab
CN114743750A (zh) 一种磁通泵系统控制方法以及可控磁通泵系统
Li et al. Static Levitation force and its thickness dependence in HTS tape stack system
Li et al. Experiments and simulation of electromagnetic properties in an HTS knitted tape stack
Kim et al. Shape optimization of the stacked HTS double pancake coils for compact NMR relaxometry operated in persistent current mode
Jiang et al. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields
Liu et al. Levitation performance of the magnetized bulk high-Tc superconducting magnet with different trapped fields
Zhu et al. Numerical analysis on hysteresis loss of HTS bitter magnet
Li et al. Numerical Simulation of High-Temperature Superconducting Stacked-Tape Magnetic Lens via H-$\phi $ Model
Lu et al. Magnetic force investigation of high-Tc superconducting bulk over permanent magnet railway under different lateral offsets with experimental methods
Sharma et al. Other Applications of Superconducting Magnets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847188

Country of ref document: EP

Kind code of ref document: A1