WO2012163069A1 - 开放式传导冷却核磁共振超导磁体系统 - Google Patents

开放式传导冷却核磁共振超导磁体系统 Download PDF

Info

Publication number
WO2012163069A1
WO2012163069A1 PCT/CN2011/083971 CN2011083971W WO2012163069A1 WO 2012163069 A1 WO2012163069 A1 WO 2012163069A1 CN 2011083971 W CN2011083971 W CN 2011083971W WO 2012163069 A1 WO2012163069 A1 WO 2012163069A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
superconducting wire
wire
skeleton
helium gas
Prior art date
Application number
PCT/CN2011/083971
Other languages
English (en)
French (fr)
Inventor
王秋良
王晖
胡新宁
严陆光
戴银明
汪建华
王厚生
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院电工研究所 filed Critical 中国科学院电工研究所
Publication of WO2012163069A1 publication Critical patent/WO2012163069A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a nuclear magnetic resonance imaging magnet system, and more particularly to an open conduction cooled nuclear magnetic resonance superconducting magnet system. Background technique
  • Magnetic resonance imaging magnet systems require a high uniform magnetic field, ie the magnetic field inhomogeneities in the 40 cm sphere is less than 1 ppm (1( ⁇ 6 ). Due to the characteristic magnetic field of the permanent magnet material, the magnetic field usually runs at 0.35 ⁇ The magnetic field is above 0.5 ,, and the cost and weight of the magnet system are close to the limit. Therefore, new techniques and methods need to be invented to overcome this problem.
  • a magnet of a novel structure that is, a magnet system of an open superconducting C-shaped structure with an iron yoke shield can be formed.
  • the new structure of the magnet has a smaller weight and a compact structure.
  • the symmetrical distribution of superconducting turns in the system produces tens of tons of interaction force between the upper and lower iron yokes, and the magnet uses an external support structure to ensure the stability of the system.
  • the object of the present invention is to overcome the shortcomings of prior art using liquid helium immersion refrigeration, complicated operation, high cost, and the like, and an open C-shaped structure high-pressure xenon conduction cooling superconducting magnet system with iron yoke shielding is proposed.
  • the superconducting magnet system of the invention can provide a magnetic field of 0.7 ⁇ or more, has a compact structure, does not require liquid helium cooling, and is light in weight, and is particularly suitable for use in Medical diagnosis and interventional therapy.
  • the nuclear magnetic resonance superconducting magnet system of the invention comprises a refrigerator, a low temperature vacuum vessel, a heat radiation shield, a high pressure helium gas container, a helium gas cooling heat exchanger, an upper superconductor crucible, an upper crucible skeleton, a magnet transmission heat exchanger, and a wire crucible.
  • the refrigerator of the nuclear magnetic resonance superconducting magnet system of the invention is installed at the upper end of the low temperature vacuum vessel, the first cold head of the refrigerator is connected with the heat radiation shield, the secondary cold head of the refrigerator is connected with the high pressure helium gas container, and the secondary cold of the refrigerator is cooled.
  • the helium gas cooling heat exchanger is further arranged on the lower end surface of the head, and the low temperature vacuum vessel and the high pressure helium gas container are respectively closed one cavity, and the high pressure helium gas container is installed inside the low temperature vacuum vessel, and is symmetrically up and down in the high pressure helium gas container.
  • the upper superconducting wire and the lower superconducting wire are arranged.
  • An inner support rod is arranged between the upper superconductor and the lower superconductor, and the inner support rod supports the upper superconductor and the lower superconductor, and receives the upper superconductor and the lower superconductor.
  • the upper ⁇ skeleton and the lower ⁇ skeleton are made of aluminum alloy material.
  • a magnet transfer heat exchanger is welded on the surface of the upper crucible skeleton and the surface of the lower crucible skeleton, and the magnet transfer heat exchanger adopts a copper tube structure, and a certain pressure heat transfer gas flows in the copper tube.
  • the copper tube is spliced one by one on the upper skeleton and the lower skeleton.
  • the upper superconducting wire and the lower superconducting wire are made of a high pressure helium gas container as an outer support and a stress support skeleton.
  • the upper ⁇ stress support structure and the lower ⁇ stress support structure are circumferentially arranged on the outer wall of the high pressure helium gas container.
  • the upper ⁇ stress support structure is used to support the electromagnetic force in the radial direction of the superconducting wire.
  • the lower wire ⁇ stress support structure is used to support the electromagnetic force in the radial direction of the lower super wire.
  • the high-pressure helium gas container, the upper superconducting wire and the lower superconducting wire are mounted inside the low-temperature vacuum vessel by the support of the lifting rod.
  • the lower superconducting wire is wound on the lower wire truss skeleton, and the lower wire ⁇ stress supporting structure is used to support the electromagnetic force in the radial direction of the lower superconducting wire.
  • the upper magnetic pole and the lower magnetic pole are made of a ferromagnetic material of high magnetic permeability and are respectively disposed at upper and lower ends of the low temperature vacuum vessel to provide the nuclear magnetic resonance
  • the uniform magnetic field of the superconducting magnet system, one side of the upper magnetic pole and the lower magnetic pole are connected by a support beam of a C-shaped structure made of a ferromagnetic material, which supports the weight of the entire nuclear magnetic resonance superconducting magnet system.
  • the upper magnetic pole, the lower magnetic pole, and the C-shaped structural support beam together with the low temperature vacuum vessel form an open C-shaped structure of the conduction cooled nuclear magnetic resonance superconducting magnet system of the present invention.
  • the copper tube of the magnet transfer heat exchanger of the superconducting magnet system of the invention is filled with helium gas for heat exchange, and the pressure of the helium gas in the tube is about 0.1 Mpa, and the magnet heat transfer heat exchanger is equipped with a copper tube with a spiral structure, copper.
  • the tube is welded to the upper bobbin skeleton and the lower bobbin skeleton in order to increase the heat exchange efficiency between the magnet transfer heat exchanger and the upper superconducting wire and the lower superconducting wire.
  • the superconducting wire and the lower superconducting wire are all transferred by the helium gas in the heat transfer heat exchanger of the magnet, and the high pressure helium gas container is divided into upper and lower parts, and the upper and lower parts are connected by the inner support rod between the hollow wires.
  • the magnet transfer heat exchanger is divided into upper and lower parts, and the upper and lower parts are connected by a magnet heat exchanger connecting pipe, and the magnet heat exchanger connecting pipe passes through the inner hole of the inner support rod between the turns, and the high pressure ⁇ The cold volume in the upper part of the gas container is conducted to the lower superconducting wire, providing a low temperature environment in which the lower superconducting wire is in normal operation.
  • the superconducting wire and the lower superconducting wire are formed by winding a ⁇ 3 ⁇ 4 ⁇ /or a superconducting wire, and a magnetic field circuit of a C-shaped structure is formed together with an upper magnetic pole and a lower magnetic pole formed of a ferromagnetic material, so that the superconducting magnet system structure of the present invention It becomes simple.
  • the superconducting magnet of the invention uses a circulating current of 0.1 Mpa helium gas circulation and a high pressure helium gas container to cool the upper and lower superconducting wires.
  • a GM chiller is used to provide the system's cooling source, which is compact and requires no liquid helium.
  • the upper and lower boring skeletons of the present invention adopt a high-strength 6061-T6 aluminum alloy structure to provide structural support of the system, and the time-out heating coil enthalpy can improve the quench propagation speed. At the same time, the heat exchanger can transfer heat to the skeleton well, thereby improving the cooling efficiency of the superconducting wire.
  • FIG. 1 is a schematic view showing the structure of a main body of an open superconducting magnet according to an embodiment of the present invention.
  • FIG. 2 is a partial schematic view of a thermally conductive structure of a superconducting wire and a cryogenic vessel in accordance with one embodiment of the present invention.
  • Figure 3 is an outline view of one embodiment of an open conduction cooled nuclear magnetic resonance superconducting magnet system. detailed description
  • Figure 1 shows an open nuclear magnetic resonance superconducting magnet system of the present invention.
  • the open nuclear magnetic resonance superconducting magnet system of the present invention comprises a refrigerator 1, a low temperature vacuum vessel 2, a heat radiation shield 3, a high pressure helium gas container 4, a helium gas cooling heat exchanger 5, and an upper superconducting wire.
  • the refrigerator 1 is installed at the upper end of the low temperature vacuum vessel 2, the first stage cold head of the refrigerator 1 is connected to the heat radiation shield 3, the secondary cold head of the refrigerator 1 is connected to the high pressure helium gas container 4, and the second of the refrigerator 1
  • the lower end surface of the cold head is equipped with a helium gas cooling heat exchanger 5, and the low temperature vacuum vessel 2 and the high pressure helium gas container 4 are each a closed chamber, and the high pressure helium gas container 4 is installed inside the low temperature vacuum vessel 2 at a high pressure.
  • the upper superconducting wire ⁇ 6 and the lower superconducting wire ⁇ 11 are vertically arranged in the gas container 4.
  • an inner support rod 9 is connected between the turns of the upper and lower superconducting wires ⁇ 11, and the inner support rod 9 supports the superconducting wire ⁇ 6 between the turns And the lower superconducting wire ⁇ 11, which is subjected to the electromagnetic repulsive force between the upper superconducting wire ⁇ 6 and the lower superconducting wire ⁇ 11 in the axial direction.
  • the upper ⁇ skeleton 7 and the lower ⁇ skeleton 12 are used 6061-T6 Made of an aluminum alloy material, a magnet transfer heat exchanger 8 is welded to the surface of the upper crucible skeleton 7 and the surface of the lower crucible skeleton 12.
  • the magnet transfer heat exchanger 8 adopts a copper tube structure, and a certain pressure heat transfer gas helium gas flows through the copper tube.
  • the copper tube is spliced one by one on the upper bobbin skeleton 7 and the lower bobbin skeleton 12.
  • the upper superconducting wire ⁇ 6 and the lower superconducting wire ⁇ 11 are used as an outer support and a stress support skeleton by the high pressure helium gas container 4.
  • the high pressure helium gas container 4, the upper superconducting wire 6 and the lower superconducting wire 11 are supported inside the low temperature vacuum vessel 2 by the lifting rod 10.
  • the upper wire ⁇ stress support structure 13 is used to support the electromagnetic force in the radial direction of the upper super wire ⁇ 6.
  • the lower superconducting wire ⁇ 11 is wound on the lower wire truss skeleton 12, and the lower wire ⁇ stress support structure 17 is used to support the lower superconducting wire ⁇ 11 to withstand the electromagnetic force in the radial direction of the lower superconducting wire ⁇ 11.
  • the upper magnetic pole 14 and the lower magnetic pole 15 are made of a ferromagnetic material of high magnetic permeability and are respectively disposed at upper and lower ends of the low temperature vacuum vessel 2 to provide a uniform magnetic field of the system.
  • One side of the upper magnetic pole 14 and the lower magnetic pole 15 is connected by a support beam 16 of a C-shaped structure made of a ferromagnetic material, and the support beam 16 of the C-type structure supports the weight of the entire system, the support of the upper magnetic pole, the lower magnetic pole, and the C-shaped structure.
  • the beam and the low temperature vacuum vessel 2 together form an open C-shaped structure of the conduction cooled nuclear magnetic resonance superconducting magnet system of the present invention.
  • the upper superconducting wire ⁇ 6 of the superconducting magnet of the present invention and the upper wire truss skeleton 7, the lower superconducting wire ⁇ 11 and the lower wire truss frame 12 are separated from each other by an insulating insulation layer 18 between the wires and the skeleton.
  • the insulating spacer 18 between the skeleton and the bobbin is an intermediate layer having a smooth structure, which ensures that the coil is subjected to an electromagnetic force, and the structural deformation does not cause an interaction force with the support structure.
  • the upper ⁇ stress support structure 13 supports the upper superconducting wire ⁇ 6, and the upper ⁇ stress support structure 13 and the lower ⁇ stress support structure 17 support the lower superconducting wire ⁇ 11, thereby improving the support strength of the wire truss skeleton and reducing the wire ⁇ deformation.
  • the upper superconducting wire ⁇ 6 and the lower superconducting wire ⁇ 17 are passed through the magnet transfer heat exchanger 8 to deliver cooling cooling. Since the copper tube of the magnet transfer heat exchanger 8 has a helium gas with a pressure of about 0.1 Mpa, the cold amount in the high pressure helium gas container 4 can be effectively transmitted to the upper superconducting wire ⁇ 6.
  • the upper and lower portions of the high pressure helium gas container 4 are communicated by the inner support rods 9 between the hollow turns, and the magnet transfer heat exchanger 8 is divided into upper and lower portions, and the upper and lower portions are separated by magnets.
  • the heat exchanger connecting pipe 19 is connected, and the magnet heat exchanger connecting pipe 19 passes through the inner hole of the inner support rod 9 between the turns, and the cold amount of the upper portion of the high pressure helium gas container 4 is transmitted to the lower superconducting wire ,11, providing The lower superconducting wire ⁇ 11 is in a low temperature environment in normal operation.
  • the embodiment of the open conduction cooled nuclear magnetic resonance superconducting magnet system of the present invention uses a GM refrigerator 1 to provide a cold source of the system, which is compact and does not require liquid helium. Light weight, especially suitable for medical diagnosis and interventional treatment.

Abstract

一种开放式传导冷却核磁共振超导磁体系统,其上、下超导线圈(6、11)之间装有线圈之间内支撑杆(9)。上、下线圈骨架(7、12)上焊有磁体传热交换器(8)。上、下超导线圈(6、11)以高压氦气容器(4)作为外支撑和应力支撑骨架。高压氦气容器(4)和上、下超导线圈(6、11)安装在低温真空容器(2)内,上、下超导线圈(6、11)上下对称布置在高压氦气容器(4)内。上线圈应力支撑结构(13)支撑上超导线圈(6),下线圈应力支撑结构(17)支撑下超导线圈(11)。上、下线圈应力支撑结构环向布置在低温容器的外壁上。C形结构支撑梁支撑整体重量。

Description

开放式传导冷却核磁共振超导磁体系统 技术领域
本发明涉及一种核磁共振成像磁体系统, 特别涉及具有开放 式传导冷却核磁共振超导磁体系统。 背景技术
与圆柱形封闭式的核磁共振磁体系统相比较, 开放式核磁共 振磁体系统具有适合于医疗诊断和介入治疗的优点, 减小病人产 生幽闭症的风险。磁共振成像磁体系统要求产生较高的均匀磁场, 即在 40 cm球形范围内磁场的不均匀度小于 l ppm ( 1(Γ6 )。 由于 永磁材料特征磁场的限制, 磁场通常运行在 0.35 Τ, 磁场在 0.5Τ 以上, 其磁体系统造价和重量已经接近极限程度, 因此需要发明 新的技术和方法来克服这种问题。
随着新型超导材料和低温技术的发展, 使用传导冷却技术取 代现有的液氦浸泡冷却技术, 使用超导磁体技术取代永磁磁体技 术, 同时使用铁轭来校正、 屏蔽磁场和提供磁场回路, 可以形成 新型结构的磁体, 即具有铁轭屏蔽的开放式超导 C形结构的磁体 系统。 新型结构的磁体的重量较小、 结构较为紧凑。 系统内对称 分布的超导线圏与上下铁轭之间产生几十吨的相互作用力, 磁体 使用外支撑结构保证系统的稳定性。 发明内容
本发明的目的是克服现有技术采用液氦浸泡制冷、操作复杂, 成本高等缺点, 提出一种具有铁轭屏蔽的开放式 C形结构的高压 氦气传导冷却超导磁体系统。 本发明超导磁体系统可提供 0.7 Τ 以上的磁场, 结构紧凑, 不需要液氦制冷, 重量轻, 特别适用于 医学诊断和介入治疗。
本发明核磁共振超导磁体系统包括制冷机, 低温真空容器, 防热辐射屏, 高压氦气容器, 氦气冷却热交换器, 上超导线圏, 上线圏骨架, 磁体传热交换器, 线圏之间内支撑杆, 吊装拉杆, 下超导线圏, 下线圏骨架, 上线圏应力支撑结构, 下线圏应力支 撑结构, 上磁极, 下磁极, C形结构支撑梁。
本发明核磁共振超导磁体系统的制冷机安装在低温真空容器 上端, 制冷机的一级冷头连接防热辐射屏, 制冷机的二级冷头连 接高压氦气容器, 制冷机的二级冷头下端面上还装有氦气冷却热 交换器,低温真空容器和高压氦气容器均为各自封闭的一个腔体, 高压氦气容器安装在低温真空容器内部, 在高压氦气容器内上下 对称布置有上超导线圏和下超导线圏。 上超导线圏和下超导线圏 之间装有线圏之间内支撑杆, 所述的线圏之间内支撑杆支撑上超 导线圏和下超导线圏, 承受上超导线圏和下超导线圏在轴向方向 上相互之间的电磁排斥力。 上线圏骨架和下线圏骨架采用铝合金 材料制作。 上线圏骨架的表面和下线圏骨架的表面上均焊接有磁 体传热交换器, 磁体传热交换器采用铜管结构, 铜管内流通有一 定压强传热气体。 铜管一圏一圏地烊接在上线圏骨架和下线圏骨 架上。 上超导线圏和下超导线圏由高压氦气容器作为外支撑和应 力支撑骨架。 上线圏应力支撑结构和下线圏应力支撑结构均环向 布置在高压氦气容器的外壁上。 上线圏应力支撑结构用于支撑上 超导线圏径向方向的电磁力。 下线圏应力支撑结构用于支撑下超 导线圏径向方向的电磁力。 高压氦气容器、 上超导线圏和下超导 线圏通过吊装拉杆的支撑, 安装在低温真空容器内部。 下超导线 圏绕制在下线圏骨架上, 下线圏应力支撑结构用于支撑下超导线 圏径向方向的电磁力。 上磁极和下磁极由高磁导率的铁磁材料制 成, 分别布置在低温真空容器的上下两端, 提供所述的核磁共振 超导磁体系统的均匀磁场, 上磁极和下磁极的一侧由铁磁材料制 成的 C型结构的支撑梁连接, 所述的支撑梁支撑整个核磁共振超 导磁体系统的重量。 上磁极、 下磁极、 C型结构支承梁与低温真 空容器一起形成本发明传导冷却核磁共振超导磁体系统的开放式 C形结构。
本发明超导磁体系统的磁体传热交换器的铜管内充有氦气进 行换热, 管内氦气的压强大约为 O.lMpa,磁体传热交换器内装有 采用螺旋结构的铜管, 铜管一圏一圏地焊接在上线圏骨架和下线 圏骨架上, 用于增大磁体传热交换器和上超导线圏、 下超导线圏 之间的热交换效率。
本发明上超导线圏和下超导线圏均通过磁体传热交换器内的 氦气进行传热, 高压氦气容器分为上下两部分, 上下两部分由空 心的线圏之间内支撑杆连通。 磁体传热交换器分为上下两部分, 上下两部分由磁体热交换器连接管连接, 磁体热交换器连接管从 所述的线圏之间内支撑杆的内孔中穿过, 将高压氦气容器上部的 冷量传导到下超导线圏, 提供下超导线圏正常运行的低温环境。
本发明上超导线圏和下超导线圏使用 Λ¾Γ/或 超导线材 绕制形成, 与铁磁材料构成的上磁极和下磁极共同形成 C形结构 的磁场回路, 使本发明超导磁体系统结构变得简单。
本发明超导磁体采用环流 0.1 Mpa氦气循环和高压氦气容器 冷却上、 下超导线圏。 使用一台 GM制冷机提供系统的冷源, 结 构紧凑, 无需液氦。
本发明的上、下线圏骨架采用高强度的 6061-T6铝合金结构, 提供系统的结构支撑, 失超时加热线圏, 可提高失超传播速度。 同时热交换器可以很好对骨架传热, 从而提高超导线圏的冷却效 附图说明
图 1为根据本发明一个实施例的开放式超导磁体的主体结构 的示意图。
图 2为根据本发明一个实施例的超导线圏和低温容器导热结 构的局部示意图。
图 3为开放式传导冷却核磁共振超导磁体系统的一个实施例 的外形图。 具体实施方式
以下结合附图及具体实施方式进一步说明本发明。
图 1所示为本发明开放式核磁共振超导磁体系统。 如图 1所 示, 本发明开放式核磁共振超导磁体系统包括制冷机 1 , 低温真 空容器 2, 防热辐射屏 3, 高压氦气容器 4, 氦气冷却热交换器 5, 上超导线圏 6, 上线圏骨架 7, 磁体传热交换器 8, 线圏之间内支 撑杆 9, 吊装拉杆 10, 下超导线圏 11 , 下线圏骨架 12, 上线圏应 力支撑结构 13, 上磁极 14, 下磁极 15, C形结构支撑梁 16, 下 线圏应力支撑结构 17。
所述的制冷机 1安装在低温真空容器 2的上端, 制冷机 1的 一级冷头连接防热辐射屏 3, 制冷机 1的二级冷头连接高压氦气 容器 4, 制冷机 1的二级冷头下端面上装有氦气冷却热交换器 5, 低温真空容器 2和高压氦气容器 4均为各自封闭的一个腔体, 高 压氦气容器 4安装在低温真空容器 2内部, 在高压氦气容器 4内 上下对称布置有上超导线圏 6和下超导线圏 11。 上超导线圏 6和 下超导线圏 11之间装有连接上、 下超导线圏 11的线圏之间内支 撑杆 9, 所述的线圏之间内支撑杆 9支撑上超导线圏 6和下超导 线圏 11 , 承受上超导线圏 6和下超导线圏 11在轴向方向上相互 之间的电磁排斥力。 上线圏骨架 7和下线圏骨架 12采用 6061-T6 铝合金材料制作,上线圏骨架 7的表面和下线圏骨架 12的表面上 焊接有磁体传热交换器 8。 磁体传热交换器 8采用铜管结构, 铜 管内流通有一定压强传热气体氦气。 铜管一圏一圏地烊接在上线 圏骨架 7和下线圏骨架 12上。 上超导线圏 6和下超导线圏 11由 高压氦气容器 4作为外支撑和应力支撑骨架。 高压氦气容器 4、 上超导线圏 6和下超导线圏 11通过吊装拉杆 10支撑在低温真空 容器 2内部。上线圏应力支撑结构 13用于支撑上超导线圏 6径向 方向的电磁力。 下超导线圏 11绕制在下线圏骨架 12上, 下线圏 应力支撑结构 17用于支撑下超导线圏 11 , 承受下超导线圏 11径 向方向的电磁力。 上磁极 14和下磁极 15由高磁导率的铁磁材料 制成, 分别布置在低温真空容器 2的上下两端, 提供系统的均匀 磁场。 上磁极 14和下磁极 15的一侧由铁磁材料制成的 C型结构 的支撑梁 16连接, C型结构的支撑梁 16支撑整个系统的重量, 上磁极、 下磁极、 C型结构的支承梁与低温真空容器 2—起形成 本发明传导冷却核磁共振超导磁体系统的开放式 C形结构。
如图 2所示, 本发明超导磁体的上超导线圏 6和上线圏骨架 7,下超导线圏 11和下线圏骨架 12之间有线圏与骨架之间的绝缘 隔离层 18, 线圏与骨架之间的绝缘隔离层 18是具有光滑结构的 中间层, 可保证所述线圏在受电磁力作用, 产生结构形变时不会 与支撑结构之间产生相互作用力。上线圏应力支撑结构 13支承上 超导线圏 6, 上线圏应力支撑结构 13和下线圏应力支撑结构 17 支撑下超导线圏 11, 提高线圏骨架的支撑强度, 减小线圏变形。 上超导线圏 6和下超导线圏 17通过磁体传热交换器 8来传递冷量 冷却。 由于磁体传热交换器 8的铜管内有 O.lMpa左右压强的氦 气, 因此能够有效将高压氦气容器 4 内的冷量传到上超导线圏 6 上。 高压氦气容器 4的上下部分由空心的线圏之间内支撑杆 9连 通, 磁体传热交换器 8分为上下两部分, 上下两部分之间由磁体 热交换器连接管 19连接, 磁体热交换器连接管 19从线圏之间内 支撑杆 9的内孔中穿过, 将高压氦气容器 4上部的冷量传导到下 超导线圏 11 , 提供下超导线圏 11正常运行的低温环境。
如图 3所示, 本发明开放式传导冷却核磁共振超导磁体系统 实施例使用一台 GM制冷机 1提供系统的冷源, 结构紧凑, 无需 液氦。 重量轻, 特别适用于医学诊断和介入治疗。
附图标记列表
1 制冷机
2 低温真空容器
3 防热辐射屏
4高压氦气容器
5氦气冷却热交换器
6 上超导线圏
7上线圏骨架
8磁体传热交换器
9 线圏之间内支撑杆
10吊装拉杆
11下超导线圏
12下线圏骨架
13上线圏应力支撑结构
14 上磁极
15 下磁极
16 C形结构支撑梁
17下线圏应力支撑结构
18线圏与骨架之间的绝缘隔离层
19磁体热交换器连接管

Claims

1. 一种开放式传导冷却核磁共振超导磁体系统, 包括超导磁体、 制冷机(1), 低温真空容器(2), 防热辐射屏(3), 所述的制冷机 ( 1 )安装在低温真空容器( 2 )的上端, 制冷机 ( 1 )的一级冷头连 接防热辐射屏(3), 其特征在于,
所述的超导磁体系统还包括高压氦气容器(4)、 氦气冷却热交 换器(5)、上超导线圏(6)、上线圏骨架(7)、磁体传热交换器(8)、 线圏之间内支撑杆(9)、 吊装拉杆(10)、 下超导线圏 (11)、 下线 圏骨架( 12 )、上线圏应力支撑结构( 13 )、上磁极( 14 )、下磁极( 15 )、 C形结构支撑梁(16)和下线圏应力支撑结构(17);
制冷机 ( 1 ) 的二级冷头连接高压氦气容器( 4 ), 制冷机 ( 1 ) 的二级冷头下端面上还装有氦气冷却热交换器(5);
上超导线圏( 6 )和下超导线圏( 11 )之间安装有线圏之间内支 撑杆(9);
上线圏骨架(7)和下线圏骨架(12)的表面上絆接有磁体传热 交换器( 8 );
上超导线圏 (6)和下超导线圏 (11) 由高压氦气容器(4)作 为外支撑和应力支撑骨架;
高压氦气容器(4)、 上超导线圏 (6)和下超导线圏 (11)通过 吊装 t (10)支撑, 安装在低温真空容器(2) 内部, 高压氦气容 器(4) 内上下对称布置有上超导线圏 (6)和下超导线圏 (11);
上超导线圏 (6)绕制在上线圏骨架(7)上, 上线圏应力支撑 结构(13)用于支撑上超导线圏 (6); 下超导线圏 (11)绕制在下 线圏骨架(12)上, 下线圏应力支撑结构(17)用于支撑下超导线 圏 (11); 上线圏应力支撑结构(13)和下线圏应力支撑结构(17) 均环向布置在高压氦气容器(4) 的外壁上; 上磁极 ( 14 )和下磁极 ( 15 )分别布置在低温真空容器( 2 )的 上下两端, 上磁极 (14)和下磁极 (15) 的一侧由铁磁材料制成的 C型结构支撑梁( 16 )连接,上磁极、下磁极、 C型结构支撑梁( 16 ) 与低温真空容器(2)共同形成所述的超导磁体系统的开放式 C形 结构。
2. 按照权利要求 1 所述的开放式传导冷却核磁共振超导磁体系 统, 其特征在于, 所述的磁体传热交换器(8)装有采用螺旋结构的 铜管,铜管一圏一圏地絆接在上线圏的骨架(7)和下线圏的骨架( 12) 上, 磁体传热交换器(8)的铜管内充有氦气进行换热。
3. 按照权利要求 1 所述的开放式传导冷却核磁共振超导磁体系 统, 其特征在于, 所述的上超导线圏 (6)和下超导线圏 (11)采用 Λ¾Γ/或 超导线材绕制形成; 所述的上线圏骨架(7)和下线圏 骨架( 12 )采用铝合金材料制作; 所述的上磁极 ( 14 )和下磁极 ( 15 ) 由铁磁材料制成。
4. 按照权利要求 1 所述的开放式传导冷却核磁共振超导磁体系 统, 其特征在于, 所述磁体传热交换器(8)的上下部分由磁体热交 换器连接管(22)从线圏之间内支撑杆(9)的内孔中穿过, 将高压 氦气容器(4)上部的冷量传导到下超导线圏 (11), 提供下超导线 圏 ( 11 )正常运行的低温环境。
PCT/CN2011/083971 2011-06-02 2011-12-14 开放式传导冷却核磁共振超导磁体系统 WO2012163069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110147584.1 2011-06-02
CN 201110147584 CN102360689B (zh) 2011-06-02 2011-06-02 开放式传导冷却核磁共振超导磁体系统

Publications (1)

Publication Number Publication Date
WO2012163069A1 true WO2012163069A1 (zh) 2012-12-06

Family

ID=45585988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083971 WO2012163069A1 (zh) 2011-06-02 2011-12-14 开放式传导冷却核磁共振超导磁体系统

Country Status (2)

Country Link
CN (1) CN102360689B (zh)
WO (1) WO2012163069A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117144B (zh) * 2013-03-15 2015-03-18 中国科学院电工研究所 一种传导冷超导磁体的冷却系统
CN103606430B (zh) * 2013-11-14 2016-09-28 安徽万瑞冷电科技有限公司 高温超导磁体低温氦气自循环冷却系统
CN107134339A (zh) * 2017-04-15 2017-09-05 山东佳田医学影像股份有限公司 环形多单元环形箱梁装置
CN108037473B (zh) * 2017-12-08 2021-03-16 上海联影医疗科技股份有限公司 磁共振成像系统及其低温保持器结构
JP7022035B2 (ja) * 2018-08-31 2022-02-17 ジャパンスーパーコンダクタテクノロジー株式会社 超伝導マグネット装置
CN111913143B (zh) * 2020-06-30 2023-08-22 上海联影医疗科技股份有限公司 扫描设备及磁共振成像系统
CN114512295A (zh) * 2022-01-27 2022-05-17 中国科学院电工研究所 一种高均匀磁场传导冷却超导磁体系统
CN115762953B (zh) * 2023-01-10 2023-06-02 苏州八匹马超导科技有限公司 超导磁体冷却装置及超导磁体设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606786A (zh) * 2001-12-21 2005-04-13 皇家飞利浦电子股份有限公司 核磁共振成像系统的冷却
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统
CN101017722A (zh) * 2006-01-05 2007-08-15 株式会社日立制作所 超导磁铁装置及核磁共振成像装置
CN102062843A (zh) * 2010-11-23 2011-05-18 中国科学院电工研究所 一种可自抵消电磁力的有铁芯开放式超导mri磁体系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103498B (zh) * 1985-05-20 1987-05-06 中国科学院电工研究所 高均匀度磁场的永磁磁体
CN1121801A (zh) * 1994-08-16 1996-05-08 王魁武 高均匀度无涡流平板式核磁共振成像仪用永磁磁体
CN1183873C (zh) * 2001-07-25 2005-01-12 北京泰杰燕园医学工程技术有限公司 全开放磁共振成像仪
CN101825692A (zh) * 2009-03-02 2010-09-08 绵阳西磁磁电有限公司 一种高场强聚焦核磁共振磁场及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606786A (zh) * 2001-12-21 2005-04-13 皇家飞利浦电子股份有限公司 核磁共振成像系统的冷却
CN101017722A (zh) * 2006-01-05 2007-08-15 株式会社日立制作所 超导磁铁装置及核磁共振成像装置
CN1959874A (zh) * 2006-09-30 2007-05-09 中国科学院电工研究所 用于回旋管的传导冷却超导磁体系统
CN102062843A (zh) * 2010-11-23 2011-05-18 中国科学院电工研究所 一种可自抵消电磁力的有铁芯开放式超导mri磁体系统

Also Published As

Publication number Publication date
CN102360689A (zh) 2012-02-22
CN102360689B (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2012163069A1 (zh) 开放式传导冷却核磁共振超导磁体系统
US8934950B2 (en) Superconducting magnet system for nuclear magnetic resonance with high magnetic field and high degree of homogeneity of magnetic field
US11802924B2 (en) Magnetic resonance imaging superconducting magnet system
US7053740B1 (en) Low field loss cold mass structure for superconducting magnets
JP4468388B2 (ja) 磁場発生器
JP6378039B2 (ja) 超電導磁石およびmri装置、nmr装置
CN105590715B (zh) 超导磁体冷却的设备和方法
JP2010245524A (ja) 超伝導マグネットアセンブリを冷却するための装置及び方法
JP2009000517A5 (zh)
US20180286551A1 (en) Support structures for hts magnets
EP2878903B1 (en) Cryogenic cooling apparatus and system
US6289681B1 (en) Superconducting magnet split cryostat interconnect assembly
US6323749B1 (en) MRI with superconducting coil
CN107003373A (zh) 用于冷却磁共振成像装置的系统和方法
US11929203B2 (en) Superconducting magnet assembly
CN114512295A (zh) 一种高均匀磁场传导冷却超导磁体系统
CN102360692B (zh) 一种用于磁共振成像系统的高温超导磁体
CN102062843A (zh) 一种可自抵消电磁力的有铁芯开放式超导mri磁体系统
CN111223631B (zh) 超导磁体冷却设备及磁共振成像设备
CN102809240A (zh) 用于减小低温恒温器热负荷的穿透管组件
CN104900370B (zh) 一种包含真空腔的超导磁体液氦容器
Wang et al. Development of high magnetic field superconducting magnet technology and applications in China
JP2010232432A (ja) 磁場発生装置及びその利用方法
CN113436825A (zh) 一种用于传导冷却磁控拉单晶超导磁体及其冷却方法
JP5920924B2 (ja) 超電導磁石装置及び磁気共鳴撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866828

Country of ref document: EP

Kind code of ref document: A1