WO2014104103A1 - 燃料組成物 - Google Patents

燃料組成物 Download PDF

Info

Publication number
WO2014104103A1
WO2014104103A1 PCT/JP2013/084684 JP2013084684W WO2014104103A1 WO 2014104103 A1 WO2014104103 A1 WO 2014104103A1 JP 2013084684 W JP2013084684 W JP 2013084684W WO 2014104103 A1 WO2014104103 A1 WO 2014104103A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
gtl
fuel composition
fuel
light oil
Prior art date
Application number
PCT/JP2013/084684
Other languages
English (en)
French (fr)
Inventor
高石 龍夫
淳一郎 辛島
Original Assignee
株式会社大島造船所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大島造船所 filed Critical 株式会社大島造船所
Publication of WO2014104103A1 publication Critical patent/WO2014104103A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents

Definitions

  • the present invention relates to a fuel composition used for a diesel engine, particularly a marine diesel engine.
  • C heavy oils 3 types of heavy oils defined in JISK2205, so-called C heavy oils, are widely used as fuel for marine diesel engines.
  • C heavy oil is inexpensive, it contains a large amount of sulfur because it is mainly made from residual oil obtained by subjecting crude oil to room temperature distillation. Therefore, when C heavy oil is burned, there is a drawback that a large amount of so-called SOx (sulfur oxide) is generated. Since SOx causes acid rain and the like, suppression of emission is required. Therefore, the IMO (International Maritime Organization) sets an upper limit for the sulfur concentration of fuel oil that can be used in each sea area.
  • SOx sulfur oxide
  • IMO sets the upper limit of the sulfur concentration of fuel oil that can be used in general sea areas to 3.5%.
  • ECA emission Control Areas
  • the upper limit is set to 1. 0%. Since the C heavy oil has a sulfur concentration of about 3.0%, even at the present time, C heavy oil cannot be used in ECA. In the near future, the regulation of sulfur concentration in fuel will be further strengthened. In 2015, the upper limit in ECA will be reduced to 0.1%. By around 2025 at the latest, the upper limit in the general sea area will be lowered to 0.5%. Therefore, in the future, C heavy oil cannot be used as a fuel for marine diesel engines in all sea areas.
  • the secondary treatment of the residual oil is generally performed by the following process using a vacuum distillation apparatus and a fluid catalytic cracker (FCC). That is, the residual oil discharged from the room temperature distillation apparatus is distilled under reduced pressure by a reduced pressure distillation apparatus and fractionated into a reduced pressure light oil and a reduced pressure residual oil.
  • the vacuum gas oil is desulfurized by an indirect desulfurization apparatus and sent to the FCC, and is contacted with a silica alumina catalyst or a zeolite catalyst to be decomposed to produce gasoline (decomposed gasoline).
  • FCC about 60% of vacuum gas oil is extracted as cracked gasoline.
  • the vacuum residue is directly desulfurized by a desulfurizer and then sent to another FCC to extract cracked gasoline.
  • FCC residual oil residual oil
  • LCO light oil or light cycle oil
  • HCO heavy cycle oil
  • CLO clarified oil
  • FCC residual oil especially LCO, has a low sulfur concentration, a large calorific value, and excellent low-temperature fluidity, and thus has attracted attention as an alternative fuel candidate.
  • LCO has a problem that it is difficult to use as a fuel for diesel engines because it has many aromatic components and has a low cetane number, that is, self-ignitability is poor. This is because it is difficult to start a diesel engine with a fuel having poor self-ignitability, and even if it can be started, it will cause a diesel knock and cannot continue operation.
  • a two-type fuel engine operated with a low cetane main fuel and a high cetane sub fuel has been proposed.
  • a two-type fuel engine disclosed in Patent Document 1 includes a control device and a control valve that feed auxiliary fuel pressurized by a fuel pump to a fuel injection valve at an appropriate amount and timing.
  • the non-self-ignitable fuel (main fuel) and the good self-ignitable fuel (sub fuel) can be injected in an orderly manner, and the quantity ratio of both can be freely controlled.
  • main fuel main fuel
  • sub fuel good self-ignitable fuel
  • the implementation of the invention is not easy.
  • Patent Document 2 discloses a diesel light oil composition containing 60 to 95% by volume of straight-run gas oil and 5 to 40% by volume of cracked light oil.
  • the diesel light oil composition described in Patent Document 2 has a content of cracked light oil of 40% by volume at the maximum. Therefore, there is a problem that cracked light oil whose supply increases with the spread of FCC cannot be fully utilized. In addition, there is a problem that an alternative fuel to replace C heavy oil cannot be sufficiently supplied.
  • an object of the present invention is to provide a fuel composition that can be used in an existing diesel engine instead of C heavy oil, has a high content of cracked light oil, and has a low sulfur concentration. .
  • the fuel composition according to the present invention is a mixture of GTL light oil produced by liquefying natural gas and FCC residual oil.
  • the FCC residual oil may be a cracked light oil.
  • the FCC residual oil may be heavy cycle oil.
  • the heavy cycle oil may be clarified oil.
  • the fuel composition containing the clarified oil 25% by weight or more of GTL gas oil may be contained.
  • the fuel composition containing the clarified oil 50% by weight or more of GTL gas oil may be contained.
  • a fuel composition having excellent self-ignitability can be obtained.
  • GTL diesel oil does not contain any sulfur content and FCC residual oil has a low sulfur content
  • a fuel composition with a low sulfur content can be obtained as a whole, so that the sulfur content required for marine engine fuels in the future will be obtained.
  • the regulation value of concentration can be cleared sufficiently. If the content ratio of GTL light oil is set to 60% by weight or more, the regulation value of sulfur concentration required in ECA can be sufficiently cleared after 2015.
  • the content ratio of FCC residual oil can be increased in general sea areas, it is possible to effectively utilize FCC residual oil that is expected to increase in supply. As a result, a fuel composition suitable as a marine engine fuel or a suitable alternative to C heavy oil can be obtained.
  • the fuel composition according to the present invention is manufactured by mixing GTL diesel oil with FCC residual oil, but in this embodiment, it is manufactured by mixing GTL diesel oil with cracked diesel oil (LCO), which is a type of FCC residual oil.
  • LCO cracked diesel oil
  • the fuel composition is illustrated. Therefore, the properties of cracked light oil (LCO) will be described first, and then the properties of GTL light oil will be described.
  • Decomposed light oil (LCO) is obtained by subjecting crude oil to fractional distillation using an atmospheric distillation unit, and distilling the residual oil (normal pressure residual oil) under reduced pressure using a vacuum distillation unit. It is produced by desulfurizing diesel oil and further catalytic cracking. In this embodiment, cracked light oil (LCO) having properties as shown in Table 1 is used as a raw material for the fuel composition.
  • cracked diesel oil has a lower cetane index than ordinary diesel oil (fractionated diesel oil) (fractionated diesel oil has a cetane index of about 45 to 50) and is a fuel with poor self-ignitability. is there.
  • the sulfur concentration is small (the maximum sulfur content of C heavy oil is 3.5%), and the amount of SOx generated during combustion is small.
  • GTL diesel oil is produced by using a steam methane reforming process in which natural gas (methane) and water (steam) are reacted under a metal catalyst in a high temperature environment to obtain hydrogen molecules and carbon monoxide, and a Fischer-Tropsch process.
  • FT synthesis process that synthesizes a large hydrocarbon molecule with many carbon atoms connected from the molecule and carbon oxide, and by hydrogenation, a large chain of hydrocarbon molecules is cut into fragments of the required length, and the fragments are elongated by distillation.
  • a GTL gas oil having a desired property can be obtained by adjusting the length of a chain fragment of a hydrocarbon molecule.
  • the GTL light oil used in this embodiment has properties as shown in Table 2.
  • this GTL diesel oil has a large cetane index and is excellent in self-ignitability. Therefore, when this GTL light oil is mixed with cracked light oil (LCO), the self-ignitability of the fuel composition is improved.
  • LCO cracked light oil
  • FIG. 1 shows the relationship between the content ratio of GTL light oil and the sulfur concentration in the fuel composition according to the present invention, and the relationship between the content ratio of GTL light oil and the fuel price.
  • the concentration of sulfur in the fuel composition is 0.25% or less. It can be used as a fuel for marine engines after 2025. It can be seen that if the content ratio of GTL light oil is 60% by weight or more, the sulfur concentration can be 0.1% or less. That is, it can be understood that if the content ratio of GTL diesel oil is 60% by weight or more, it can be used after 2015 as a fuel for marine engines in ECA.
  • Test engine The performance of the fuel composition was confirmed using a diesel engine (hereinafter referred to as “test engine”) in which fuel is injected into the cylinder at the timing shown in FIG.
  • the horizontal axis indicates the crank angle, and when the crank angle is 0 °, the piston is at top dead center.
  • the vertical axis represents the fuel injection rate. Therefore, according to FIG. 2, the engine under test injects fuel from 8 ° before top dead center (crank angle ⁇ 8 °) until it reaches 21 ° beyond top dead center. .
  • LCO cracked light oil
  • GTL5 A fuel composition that contains 5% by weight of GTL gas oil and the remainder is composed of cracked gas oil (LCO).
  • GTL10 A fuel composition containing 10% by weight of GTL gas oil and the balance being cracked gas oil (LCO).
  • GTL20 A fuel composition containing 20% by weight of GTL gas oil and the balance being cracked gas oil (LCO).
  • GTL30 A fuel composition containing 30% by weight of GTL gas oil, and the remainder composed of cracked gas oil (LCO).
  • FIG. 3 shows the results of a combustion test performed using the GTL5 to GTL30 and a pure cracked light oil LCO100 containing no GTL.
  • the horizontal axis indicates the crank angle
  • the vertical axis indicates the heat generation rate and the heat generation amount.
  • the heat generation rate curve of the LCO 100 it can be seen that there is a prominent peak indicating the start of combustion around a crank angle of 3 °. That is, the LCO 100 indicates that fuel injection starts from a crank angle of -8 °, but combustion does not start unless the crank angle reaches 3 °. That is, it shows that the ignition delay has occurred.
  • a prominent peak indicates that explosive combustion occurs. Explosive combustion is undesirable because it causes diesel knock.
  • the content ratio of GTL light oil is arbitrary.
  • the content ratio can be selected so that the desired ignition delay can be improved or the sulfur concentration can be obtained.
  • the content ratio of the GTL light oil is set to 15% by weight or more, a practically sufficient improvement in ignition delay can be expected.
  • the content ratio of GTL light oil is set to 60% by weight or more, the upper limit value of the sulfur content concentration of marine engine fuel in ECA after 2015 can be cleared.
  • the fuel composition formed by mixing cracked light oil (LCO) and GTL light oil is exemplified, but the fuel composition according to the present invention is an FCC residual oil other than cracked light oil (LCO), that is, heavy fuel oil. It may be a mixture of cycle oil and GTL light oil.
  • LCO cracked light oil
  • clarified oil (CLO) obtained by removing particles such as silica-alumina catalyst contained in heavy cycle oil is a kind of heavy cycle oil. That is, the fuel composition according to the present invention may be a mixture of clarified oil and GTL diesel oil. Therefore, an example of a fuel composition obtained by mixing GTL light oil with clarified oil will be described.
  • Clarified oil (CLO) and GTL light oil were mixed in the following proportions to obtain a fuel composition according to the present invention.
  • GCL10 A fuel composition containing 10% by weight of GTL gas oil and the balance being made of clarified oil (CLO).
  • GCL25 A fuel composition containing 25% by weight of GTL gas oil and the balance being made of clarified oil (CLO).
  • GCL50 A fuel composition containing 50% by weight of GTL gas oil, and the remainder being composed of clarified oil (CLO).
  • FIG. 4 shows the results of a combustion test conducted using GCL10 to GCL50 and pure clarified oil CLO100 containing no GTL light oil, following the first embodiment.
  • the horizontal axis represents the crank angle
  • the vertical axis represents the heat generation rate and the heat generation amount.
  • the heat release rate curve of CLO 100 it can be seen that there is a prominent peak around the crank angle of 13 °. That is, it can be seen that a large ignition delay has occurred.
  • the peak of the heat generation rate occurs near the crank angle of 5 ° in GCL10, near the crank angle of 2 ° in GCL25, and near the crank angle of 0 ° in GCL50. That is, it can be seen that the ignition delay is suppressed when GTL light oil is added to the clarified oil (CLO).
  • the ignition delay can be sufficiently suppressed practically by adding GTL light oil to the clarified oil (CLO) so that the mixing ratio of GTL light oil is 25 weight percent or more of the entire fuel composition. It can also be seen that if the GTL diesel oil is added to the clarified oil (CLO) so that the mixing ratio of the GTL diesel oil is 50 weight percent or more of the entire fuel composition, the ignition delay can be suppressed almost completely.
  • FIG. 5 shows the result of a combustion test using the engine under test for the following fuel composition obtained by mixing ordinary marine light oil (MGO) and cracked light oil (LCO) instead of GTL light oil.
  • MGO5 A fuel composition containing 5% by weight of marine light oil (MGO) and the balance being cracked light oil (LCO).
  • MGO10 A fuel composition containing 10% by weight of marine diesel oil (MGO), and the remainder composed of cracked diesel oil (LCO).
  • MGO20 A fuel composition containing 20% by weight of marine light oil (MGO), with the remainder being composed of cracked light oil (LCO).
  • MGO30 A fuel composition containing 30% by weight of marine light oil (MGO), and the remainder composed of cracked light oil (LCO).
  • the ignition delay is improved as in the case of adding GTL diesel oil, and the risk of diesel knock generation can be reduced.
  • the rate of improvement with respect to the marine diesel oil (MGO) content ratio is smaller than the rate of improvement with respect to the GTL gas oil content ratio.
  • the ignition delay of the MGO 30 is almost the same as that of the GTL 15. That is, if GTL light oil is mixed into cracked light oil (LCO), the ignition delay can be improved with a smaller amount of mixing than when marine light oil (MGO) is mixed. That is, the fuel composition according to the present invention can contain more cracked light oil (LCO).
  • a fuel composition having a low sulfur content and excellent ignitability can be obtained, so that a fuel that replaces C heavy oil can be provided. Further, since the self-ignitability can be improved by adding a relatively small amount of GTL light oil, the content ratio of the FCC residual oil can be increased, and the FCC residual oil can be effectively utilized.
  • the diesel engine does not require any special modification, it is very easy to use it in an existing ship or an existing ship engine.
  • the fuel composition according to the present invention has fluidity even at room temperature, a heater installed in a fuel tank for C heavy oil is not required. Therefore, in a ship that uses the fuel composition according to the present invention, it is possible to simplify the fitting of the fuel tank and the piping of the fuel transfer system.
  • the said embodiment is an illustration of the specific embodiment of this invention, Comprising:
  • the technical scope of this invention is not limited by description of the said embodiment.
  • the present invention can be freely modified or improved within the scope of the technical idea described in the claims.
  • the raw material of the fuel composition according to the present invention is not limited to the cracked light oil (LCO) and GTL light oil shown in Tables 1 and 2.
  • Various cracked light oils (LCO) and GTL light oils can be used as raw materials.
  • a plurality of cracked light oils (LCO) having different properties may be mixed, or a plurality of GTL light oils having different properties may be mixed.
  • the fuel composition formed by mixing cracked light oil (LCO) and GTL light oil was illustrated, the fuel composition which concerns on this invention is FCC residual oil other than cracked light oil (LCO), ie, A mixture of heavy cycle oil and GTL diesel oil may be used.
  • FCC residual oil other than cracked light oil (LCO) ie, A mixture of heavy cycle oil and GTL diesel oil
  • LCO cracked light oil
  • a mixture of heavy cycle oil and GTL diesel oil may be used.
  • clarified oil (CLO) obtained by removing particles such as silica-alumina catalyst contained in heavy cycle oil is a kind of heavy cycle oil. That is, the fuel composition according to the present invention may be a mixture of clarified oil and GTL diesel oil.
  • the content ratio of GTL diesel oil refers to the ratio of the weight of GTL diesel oil to the total weight of the fuel composition including the other additives.
  • the present invention is useful as a fuel composition for diesel engines, particularly for marine diesel engines.

Abstract

 FCC残油と天然ガスを液化して生成されたGTL軽油を混合して、燃料組成物を生成する。FCC残油は分解軽油(LCO)であると好適である。GTL軽油を15重量%以上含有するようにしてもよい。あるいは、GTL軽油を60重量%以上含有するようにしてもよい。分解軽油(LCO)に代えてヘビーサイクルオイルをGTL軽油と混合してもよい。ヘビーサイクルオイルはクラリファイドオイル(CLO)であると好適である。この場合、GTL軽油を25重量%以上含有するとさらに好適である。GTL軽油を50重量%以上含有すると特に好適である。

Description

燃料組成物
 本発明は、ディーゼル機関、特に舶用ディーゼル機関に使用する燃料組成物に関する。
 JISK2205において規定される3種重油、いわゆるC重油は舶用ディーゼル機関の燃料として広く使用されている。C重油は安価ではあるが、原油を常温蒸留にして得られる残渣油を主原料とするので、硫黄分を多く含む。そのためC重油を燃焼させると、いわゆるSOx(硫黄酸化物)が多量に発生するという欠点がある。SOxは酸性雨等の原因となるので、排出の抑制が求められている。そこで、IMO(国際海事機関)は海域ごとに、当該海域で使用できる燃料油の硫黄分濃度の上限値を定めている。
 現時点において、IMOは一般海域で使用できる燃料油の硫黄分濃度の上限値を3.5%とし、北欧近海等のECA(Emission Control Areas:大気汚染物質放出規制海域)では前記上限値を1.0%としている。C重油の硫黄分濃度は約3.0%であるから、現時点においてもECAではC重油を使用することができない。また近い将来においては、燃料中の硫黄分濃度の規制は更に強化される。2015年には、ECAにおける前記上限値は0.1%に下げられる。遅くとも2025年頃には、一般海域における前記上限値は0.5%に下げられる。したがって将来は、全ての海域においてC重油を舶用ディーゼル機関の燃料として使用することができなくなる。
 その一方で、近年は、残渣油を2次処理してガソリンを抽出することが広く行われるようになって、C重油の供給量が減少する傾向にある。ある研究者の予測によれば、C重油の供給と需要は2015年頃に均衡し、その後は供給が不足するとされている。
 残渣油の2次処理は減圧蒸留装置と流動接触分解装置(FCC)を使って、概略、次のようなプロセスで実行される。すなわち、常温蒸留装置から排出された残渣油は減圧蒸留装置で減圧蒸留されて減圧軽油と減圧残油に分留される。そして減圧軽油は間接脱硫装置で脱硫されてFCCに送られ、シリカアルミナ触媒またはゼオライト触媒に接触して分解され、ガソリン(分解ガソリン)が製造される。FCCでは、減圧軽油の約60%が分解ガソリンとして抽出される。なお、減圧残油は直接脱硫装置で脱硫された後、別のFCCに送られて分解ガソリンが抽出される。
 FCCにおいて、減圧軽油から分解ガソリンを抽出した後の残油(以下、本明細書において「FCC残油」と呼ぶ)のうち、軽質な留分(例えば、沸点範囲190~375℃程度)は分解軽油あるいはライトサイクルオイル(LCO)と呼ばれ、減圧軽油の約30%がLCOとして取り出される。なお、FCC残油から分解軽油を抽出した残りの成分はヘビーサイクルオイル(HCO)と呼ばれ、減圧軽油の約10%がHCOとして取り出される。また、ヘビーサイクルオイル(HCO)からシリカアルミナ触媒等の粒子を除去したものは、クラリファイドオイル(CLO)と呼ばれる。
 前述したように、C重油は使用できる海域が制限される上に、供給量が減少する傾向にあるので、硫黄分濃度が低い燃料であって、C重油の不足を補える代替燃料が求められている。FCC残油、中でもLCOは、硫黄分濃度が低い上に、発熱量も大きく低温流動性にも優れているから、代替燃料の候補として注目されている。
 しかしながら、LCOは芳香族成分が多くセタン価が低いので、つまり自己着火性が劣るので、ディーゼル機関用の燃料としては使いにくいという問題がある。自己着火性が劣る燃料では、ディーゼル機関の起動が困難であり、たとえ起動できたとしてもディーゼルノックを起こし、運転の継続ができないからである。
 この問題を解決する為に、低セタン価の主燃料と高セタン価の副燃料で運転される2種燃料エンジンが提案されている。例えば、特許文献1に開示された2種燃料エンジンは、給油ポンプで加圧された副燃料を適切な送油量と送油タイミングで燃料噴射弁に送油するコントロール装置と制御弁を備えていて、難自己着火性燃料(主燃料)と良自己着火性燃料(副燃料)とを整然と分けて噴射でき、また両者の量比を自由に制御できる。しかしながら、特許文献1に記載の発明を既存のエンジンに適用するには、エンジンの改造が必要であるから、該発明の実施は容易でない。
 そこで、難自己着火性燃料と良自己着火性燃料を混合して、既存のエンジンの燃料として使用することが試みられている。例えば、特許文献2には、直留軽油60~95容量%と分解軽油5~40容量%を含有するディーゼル軽油組成物が開示されている。
特許第2538908号公報 特開平8-311462号公報
 しかしながら、特許文献2に記載のディーゼル軽油組成物は、分解軽油の含有量が最大でも40容量%に留まる。そのため、FCCの普及に伴って供給が増大する分解軽油を十分に活用できないという問題がある。またC重油に代わる代替燃料を十分に供給できないという問題がある。
 そこで、本発明は、C重油に代えて、既存のディーゼル機関で使用することが可能で、分解軽油の含有量が大きくて、しかも硫黄分濃度が低い燃料組成物を提供することを目的とする。
 上記目的を達成するために、本発明に係る燃料組成物は、天然ガスを液化して生成されたGTL軽油と、FCC残油を混合してなるものである。
 GTL軽油を15重量%以上含有すると好ましい。
 GTL軽油を60重量%以上含有するようにしても良い。
 前記FCC残油は分解軽油であっても良い。
 前記FCC残油はヘビーサイクルオイルであっても良い。
 前記ヘビーサイクルオイルはクラリファイドオイルであっても良い。
 前記クラリファイドオイルを含有する燃料組成物において、GTL軽油を25重量%以上含有するようにしても良い。
 前記クラリファイドオイルを含有する燃料組成物において、GTL軽油を50重量%以上含有するようにしても良い。
 本発明によれば、GTL軽油を含有するので、自己着火性に優れた燃料組成物が得られる。また、GTL軽油は硫黄分を全く含まないし、FCC残油は硫黄分濃度が小さいので、全体として硫黄分濃度が小さい燃料組成物が得られるので、将来、舶用機関用燃料に要求される硫黄分濃度の規制値を十分にクリアできる。GTL軽油の含有比を60重量%以上にすれば、2015年以降、ECAにおいて要求される硫黄分濃度の規制値を十分にクリアできる。また、一般海域においては、FCC残油の含有比を大きくできるので、供給量の増加が予想されるFCC残油を有効に活用することができる。その結果、舶用機関用燃料として好適な、あるいはC重油の代替燃料として好適な燃料組成物が得られる。
GTL軽油の含有比と硫黄分濃度及び価格の関係を示すグラフである。 クランク角度と燃料噴射率の関係を示すグラフである。 第1の実施例に係る燃料組成物の燃焼試験の結果を示すグラフである。 第2の実施例に係る燃料組成物の燃焼試験の結果を示すグラフである。 比較例に係る燃料組成物の燃焼試験の結果を示すグラフである。
 本発明に係る燃料組成物は、FCC残油にGTL軽油を混合して製造されるが、本実施形態では、FCC残油の一種である分解軽油(LCO)にGTL軽油を混合して製造される燃料組成物を例示する。そこで、まず分解軽油(LCO)の性状について説明し、続いて、GTL軽油の性状について説明する。
[分解軽油(LCO)]
 分解軽油(LCO)は、原油を常圧蒸留装置で分留して残った残渣油(常圧残渣油)を減圧蒸留装置で減圧蒸留して、減圧軽油と減圧残油に分留し、減圧軽油を脱硫して、更に接触分解して製造される。本実施形態においては、表1に示すような性状を有する分解軽油(LCO)を燃料組成物の原料として使用する。
Figure JPOXMLDOC01-appb-T000001
  
 表1から明らかなように、分解軽油(LCO)は通常の軽油(分留軽油)に比べてセタン指数が低く(分留軽油のセタン指数は45~50程度)、自己着火性が劣る燃料である。しかしながら、硫黄分濃度は小さく(C重油の硫黄分濃度は最大で3.5%)、燃焼時のSOx発生量が少ない。
[GTL軽油]
 GTL軽油は、高温環境において天然ガス(メタン)と水(水蒸気)を金属触媒の下で反応させて水素分子と一酸化炭素を得る水蒸気メタン改質工程と、フィッシャー・トロプシュ法を用いて、水素分子とー酸化炭素から多数の炭素原子が繋がった大きな炭化水素分子を合成するFT合成工程と、水素化によって大きな炭化水素分子のチェーンを必要な長さの断片に切断し、断片を蒸留によって長さ毎に分ける水素化・蒸留工程を経て製造される。また、水素化・蒸留工程において、炭化水素分子のチェーンの断片の長さを調整することによって所望の性状のGTL軽油を得ることができる。本実施形態において使用するGTL軽油は、表2に示すような性状を有する。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、このGTL軽油はセタン指数が大きく、自己着火性が優れる燃料である。そのため、このGTL軽油を分解軽油(LCO)に混合すると、燃料組成物の自己着火性が改善される。
 分解軽油(LCO)とGTL軽油の混合割合は、燃料組成物の使用目的や使用する場所の規制値等に応じて適宜選択できる。図1に本発明に係る燃料組成物中のGTL軽油の含有比と硫黄分濃度の関係、及びGTL軽油の含有比と燃料価格の関係を図1に示す。図1から明らかなように、GTL軽油の含有比の大小に関係なく、燃料組成物中の硫黄分濃度は0.25%以下であるから、本発明に係る燃料組成物は、一般海域においては、2025年以降も舶用機関の燃料として使用することができる。GTL軽油の含有比を60重量%以上にすれば、硫黄分濃度を0.1%以下にすることができることが解る。つまり、GTL軽油の含有比を60重量%以上にすれば、ECAにおける舶用機関の燃料として2015年以降も使用することができることが解る。
[供試エンジン]
 図2に示すようなタイミングで、シリンダーに燃料が噴射されるディーゼルエンジン(以下、「供試エンジン」と言う)を使って、燃料組成物の性能を確認した。なお、図2において、横軸はクランク角度を示し、クランク角度が0°の時、ピストンが上死点にある。また縦軸は燃料噴射率を示している。したがって、図2に依れば、供試エンジンはピストンが上死点の手前8°(クランク角度-8°)から上死点を越えて21°の位置に来るまでの間、燃料を噴射する。
[第1実施例]
 分解軽油(LCO)とGTL軽油を以下のような割合で混合して、本発明に係る燃料組成物を得た。
GTL5:GTL軽油を5重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
GTL10:GTL軽油を10重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
GTL20:GTL軽油を20重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
GTL30:GTL軽油を30重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
 前記GTL5~GTL30と、GTLを含有しない純粋な分解軽油LCO100を使って運転して行った燃焼試験の結果を図3に示す。図3において、横軸はクランク角度を、縦軸は熱発生率と熱発生量を示している。LCO100の熱発生率のカーブを見ると、クランク角度3°付近に燃焼開始を示す顕著なピークがあることが解る。つまり、LCO100はクランク角度-8°から燃料噴射が始まっているのに、クランク角度3°にならないと燃焼が開始されないことを示している。つまり着火遅れが生じていることを示している。また、顕著なピークは、爆発的な燃焼が生じていることを示している。爆発的な燃焼はディーゼルノックの原因になるので好ましくない。
 これに対して、GTL5~GTL30の熱発生率のカーブを見ると、GTL軽油の含有比が大きくなるにつれて、燃焼開始を示すピークが図の左方向に移動し、該ピークの高さが低くなることが解る。つまり、GTL軽油の含有比が大きくなるにつれて、着火遅れが改善され、安定的な燃焼が得られることが解る。特にGTL15~GTL30は、実用上十分に着火遅れが改善され、実用上十分に安定的な燃焼が得られる。言い替えれば、GTL軽油の含有比が15重量%以上あれば、着火遅れが小さくて、ディーゼルノック発生のおそれが少ない、実用上十分な燃焼性能を有する燃料組成物が得られる。
 なお、本発明において、GTL軽油の含有比は任意である。所望の着火遅れの改善あるいは硫黄分濃度が得られるような含有比を選択することができる。例えば、前述したように、GTL軽油の含有比を15重量%以上にすれば、実用上十分な着火遅れの改善が期待できる。また、GTL軽油の含有比を60重量%以上にすれば、2015年以降のECAにおける舶用機関燃料の硫黄分濃度の上限値をクリアすることができる。
[第2実施例]
 第1実施例においては、分解軽油(LCO)とGTL軽油を混合してなる燃料組成物を例示したが、本発明に係る燃料組成物は、分解軽油(LCO)以外のFCC残油、つまりヘビーサイクルオイルとGTL軽油を混合してなるものであってもよい。分解軽油(LCO)をベースとする場合に比べて、ヘビーサイクルオイルをベースにする場合は、GTL軽油の混合比を大きくする必要があるが、ヘビーサイクルオイルとGTL軽油を混合しても着火性能が改善されるので、ディーゼル燃料として実用可能である。また、ヘビーサイクルオイルに含まれるシリカアルミナ触媒等の粒子を除去してなるクラリファイドオイル(CLO)がヘビーサイクルオイルの一種であることは言うまでもない。つまり、本発明に係る燃料組成物はクラリファイドオイルにGTL軽油を混合してなるものであってもよい。そこで、クラリファイドオイルにGTL軽油を混合してなる燃料組成物の実施例について説明する。
 クラリファイドオイル(CLO)とGTL軽油を以下のような割合で混合して、本発明に係る燃料組成物を得た。
GCL10:GTL軽油を10重量パーセント含有し、残余がクラリファイドオイル(CLO)で構成される燃料組成物。
GCL25:GTL軽油を25重量パーセント含有し、残余がクラリファイドオイル(CLO)で構成される燃料組成物。
GCL50:GTL軽油を50重量パーセント含有し、残余がクラリファイドオイル(CLO)で構成される燃料組成物。
 前記第1実施例に倣って、GCL10~GCL50と、GTL軽油を含有しない純粋なクラリファイドオイルCLO100を使って運転して行った燃焼試験の結果を図4に示す。図4において、横軸はクランク角度を、縦軸は熱発生率と熱発生量を示している。CLO100の熱発生率のカーブを見ると、クランク角度13°付近に顕著なピークがあることが解る。つまり、大きな着火遅れが生じていることが解る。これに対して、GCL10ではクランク角度5°付近で、GCL25ではクランク角度2°付近で、GCL50ではクランク角度0°付近で、それぞれ熱発生率のピークが生じることが解る。つまり、クラリファイドオイル(CLO)にGTL軽油を添加すると着火遅れが抑制されることが解る。
 つまり、GTL軽油の混合比が燃料組成物全体の25重量パーセント以上になるように、クラリファイドオイル(CLO)にGTL軽油を添加すれば、着火遅れを実用上十分に抑制できることが解る。また、GTL軽油の混合比が燃料組成物全体の50重量パーセント以上になるように、クラリファイドオイル(CLO)にGTL軽油を添加すれば、着火遅れをほぼ完全に抑制できることが解る。
[比較例]
 GTL軽油に替えて通常の舶用軽油(MGO)と分解軽油(LCO)を混合してなる以下の燃料組成物について、前記供試エンジンを使って燃焼試験を行った結果を図5に示す。
MGO5:舶用軽油(MGO)を5重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
MGO10:舶用軽油(MGO)を10重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
MGO20:舶用軽油(MGO)を20重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
MGO30:舶用軽油(MGO)を30重量パーセント含有し、残余が分解軽油(LCO)で構成される燃料組成物。
 図5によれば、分解軽油(LCO)に舶用軽油(MGO)を加えれば、GTL軽油を加えた場合と同様に、着火遅れが改善され、ディーゼルノック発生の危険を小さくすることができるが、舶用軽油(MGO)の含有比に対する改善の割合は、GTL軽油の含有比に対する改善の割合に比べて小さいことが解る。例えば、MGO30の着火遅れはGTL15とほぼ同程度である。つまり、分解軽油(LCO)にGTL軽油を混入すれば、舶用軽油(MGO)を混合する場合に比べて、より少ない混入量で着火遅れを改善することができる。つまり本発明に係る燃料組成物にはより多くの分解軽油(LCO)を含有させることができる。
 以上説明したように、本発明に依れば、硫黄分濃度が小さく、着火性に優れた燃料組成物が得られるので、C重油を代替する燃料を提供することができる。また、比較的少量のGTL軽油の添加で自己着火性を改善できるので、FCC残油の含有比を大きくすることができ、FCC残油を有効活用することができる。
 また、本発明に係る燃料組成物の使用に当たっては、ディーゼル機関に格別の改造等を必要としないので、既存の船舶あるいは既存の舶用機関での使用がきわめて容易である。また本発明に係る燃料組成物は常温においても流動性を有するので、C重油用の燃料タンクに設置されるようなヒータを必要としない。そのため、本発明に係る燃料組成物を使用する船舶においては、燃料タンクや燃料移送系の配管の艤装を簡略にすることができる。
 なお、上記実施形態は、本発明の具体的実施態様の例示であって、本発明の技術的範囲は、上記実施形態の記載によっては限定されない。特許請求の範囲に記載された技術的思想の範囲において、自由に変形あるいは改良して実施することができる。
 例えば、本発明に係る燃料組成物の原料は、表1及び表2に示した分解軽油(LCO)とGTL軽油には限定されない。各種の分解軽油(LCO)とGTL軽油を原料とすることができる。あるいは、性状の異なる複数の分解軽油(LCO)が混合されても良いし、性状の異なる複数のGTL軽油が混合されても良い。
 また、上記実施形態においては、分解軽油(LCO)とGTL軽油を混合してなる燃料組成物を例示したが、本発明に係る燃料組成物は、分解軽油(LCO)以外のFCC残油、つまりヘビーサイクルオイルとGTL軽油を混合してなるものであってもよい。分解軽油(LCO)をベースとする場合に比べて、ヘビーサイクルオイルをベースにする場合は、GTL軽油の混合比を大きくする必要があるが、ヘビーサイクルオイルとGTL軽油を混合しても着火性能が改善されるので、ディーゼル燃料として実用可能である。また、ヘビーサイクルオイルに含まれるシリカアルミナ触媒等の粒子を除去してなるクラリファイドオイル(CLO)がヘビーサイクルオイルの一種であることは言うまでもない。つまり、本発明に係る燃料組成物はクラリファイドオイルにGTL軽油を混合してなるものであってもよい。
 また、FCC残油とGTL軽油の他に、他の添加物、例えば、カルボン酸系、エステル系、アルコール系およびフェノール系の物質が潤滑性向上剤として含まれていてもよい。なお、他の添加物を含む場合、GTL軽油の含有比とは、他の添加物を含む燃料組成物全体の重量に対する、GTL軽油の重量の比率を指す。
 本出願は2012年12月28日に出願された明細書、特許請求の範囲、図、および要約書を含む日本国特許出願2012-288530号に基づく優先権を主張するものである。この元となる特許出願の開示内容は参照により全体として本出願に含まれる。
 本発明は、ディーゼル機関用、特に舶用ディーゼル機関用の燃料組成物として有用である。

Claims (8)

  1.  天然ガスを液化して生成されたGTL軽油と、FCC残油を混合してなる燃料組成物。
  2.  GTL軽油を15重量%以上含有する請求項1に記載の燃料組成物。
  3.  GTL軽油を60重量%以上含有する請求項1に記載の燃料組成物。
  4.  前記FCC残油は分解軽油であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の燃料組成物。
  5.  前記FCC残油はヘビーサイクルオイルであることを特徴とする請求項1に記載の燃料組成物。
  6.  前記ヘビーサイクルオイルはクラリファイドオイルであることを特徴とする請求項5に記載の燃料組成物。
  7.  GTL軽油を25重量%以上含有する請求項6に記載の燃料組成物。
  8.  GTL軽油を50重量%以上含有する請求項6に記載の燃料組成物。
     
PCT/JP2013/084684 2012-12-28 2013-12-25 燃料組成物 WO2014104103A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-288530 2012-12-28
JP2012288530 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104103A1 true WO2014104103A1 (ja) 2014-07-03

Family

ID=51021181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084684 WO2014104103A1 (ja) 2012-12-28 2013-12-25 燃料組成物

Country Status (1)

Country Link
WO (1) WO2014104103A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029913A1 (ja) * 2015-08-20 2017-02-23 株式会社大島造船所 燃料組成物、船舶、及び燃料組成物自動切り替えシステム
WO2018154651A1 (ja) * 2017-02-22 2018-08-30 株式会社大島造船所 燃料組成物、船舶、及び燃料組成物自動切り替えシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112581A (ja) * 1997-06-20 1999-01-19 Showa Shell Sekiyu Kk 環境対応型ディーゼル燃料組成物
JP2003531950A (ja) * 2000-05-02 2003-10-28 エクソンモービル リサーチ アンド エンジニアリング カンパニー 低排出物f−t燃料/分解基材油ブレンド
JP2005507025A (ja) * 2001-10-19 2005-03-10 シェブロン ユー.エス.エー. インコーポレイテッド 高度にパラフィン系の留出物燃料成分及び従来の留出物燃料成分の熱的に安定な配合物
JP2006160851A (ja) * 2004-12-06 2006-06-22 Idemitsu Kosan Co Ltd 混合燃料油の調製装置およびその方法
JP2007269926A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp A重油組成物
JP2008007615A (ja) * 2006-06-29 2008-01-17 Nippon Oil Corp 燃料油組成物
JP2009504827A (ja) * 2005-08-12 2009-02-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 燃料組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112581A (ja) * 1997-06-20 1999-01-19 Showa Shell Sekiyu Kk 環境対応型ディーゼル燃料組成物
JP2003531950A (ja) * 2000-05-02 2003-10-28 エクソンモービル リサーチ アンド エンジニアリング カンパニー 低排出物f−t燃料/分解基材油ブレンド
JP2005507025A (ja) * 2001-10-19 2005-03-10 シェブロン ユー.エス.エー. インコーポレイテッド 高度にパラフィン系の留出物燃料成分及び従来の留出物燃料成分の熱的に安定な配合物
JP2006160851A (ja) * 2004-12-06 2006-06-22 Idemitsu Kosan Co Ltd 混合燃料油の調製装置およびその方法
JP2009504827A (ja) * 2005-08-12 2009-02-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 燃料組成物
JP2007269926A (ja) * 2006-03-30 2007-10-18 Nippon Oil Corp A重油組成物
JP2008007615A (ja) * 2006-06-29 2008-01-17 Nippon Oil Corp 燃料油組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029913A1 (ja) * 2015-08-20 2017-02-23 株式会社大島造船所 燃料組成物、船舶、及び燃料組成物自動切り替えシステム
US10583896B2 (en) 2015-08-20 2020-03-10 Oshima Shipbuilding Co., Ltd. Fuel composition, ship, and automatic fuel composition-switching system
WO2018154651A1 (ja) * 2017-02-22 2018-08-30 株式会社大島造船所 燃料組成物、船舶、及び燃料組成物自動切り替えシステム
CN110337489A (zh) * 2017-02-22 2019-10-15 株式会社大岛造船所 燃料组合物、船舶、以及燃料组合物自动切换系统
JPWO2018154651A1 (ja) * 2017-02-22 2020-01-16 株式会社大島造船所 燃料組成物、船舶、及び燃料組成物自動切り替えシステム

Similar Documents

Publication Publication Date Title
US10260015B2 (en) Fuel composition for GCI engines and method of production
US8038742B2 (en) Fuel for homogeneous charge compression ignition engine
EP2077312A1 (en) Fuels for homogeneous charge compression ignition combustion engine
GB2447684A (en) Biogasoline from marine oils
KR20130036355A (ko) 바이오디젤 연료
JP2009501832A (ja) 軽油燃料
JP6373530B1 (ja) C重油組成物
JP5265435B2 (ja) 筒内直接噴射式ガソリンエンジン用無鉛ガソリン組成物
EP3161112A1 (en) Aviation gasoline composition, its preparation and use
JP2007308573A (ja) 軽油組成物
JP5111049B2 (ja) 高発熱量燃料油組成物
JP5019802B2 (ja) 予混合圧縮自己着火式エンジン用燃料
WO2014104103A1 (ja) 燃料組成物
JP2008248175A (ja) 軽油基材および軽油組成物
WO2020112095A1 (en) Low sulfur marine fuel compositions
JP2007308572A (ja) 軽油組成物
JP5383618B2 (ja) 過給エンジン用燃料組成物
JP4458405B2 (ja) 予混合圧縮自己着火式エンジン用燃料
JP5403596B2 (ja) 無鉛ガソリン
JP6709749B2 (ja) 無鉛ガソリン
CN103361130A (zh) 一种用于重油活塞发动机的煤油燃料组合物
JP2008231201A (ja) A重油組成物
JP4371925B2 (ja) 無鉛ガソリン組成物およびその製造方法
JP5383619B2 (ja) 過給エンジン用燃料組成物
JP2010235902A (ja) ガソリン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP