WO2014103985A1 - Glass substrate for use in information recording medium, and manufacturing method and manufacturing device of glass substrate for use in information recording medium - Google Patents

Glass substrate for use in information recording medium, and manufacturing method and manufacturing device of glass substrate for use in information recording medium Download PDF

Info

Publication number
WO2014103985A1
WO2014103985A1 PCT/JP2013/084419 JP2013084419W WO2014103985A1 WO 2014103985 A1 WO2014103985 A1 WO 2014103985A1 JP 2013084419 W JP2013084419 W JP 2013084419W WO 2014103985 A1 WO2014103985 A1 WO 2014103985A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
carrier
polishing
recess
information recording
Prior art date
Application number
PCT/JP2013/084419
Other languages
French (fr)
Japanese (ja)
Inventor
小松 隆史
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201380061151.1A priority Critical patent/CN104812531B/en
Priority to JP2014554438A priority patent/JP5960288B2/en
Publication of WO2014103985A1 publication Critical patent/WO2014103985A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a glass substrate for information recording medium, a method for manufacturing a glass substrate for information recording medium, and a manufacturing apparatus.
  • An information recording medium is mounted on an information recording device such as a computer.
  • a glass substrate is used to manufacture an information recording medium.
  • a magnetic thin film layer is formed on the glass substrate.
  • Information can be recorded in the magnetic thin film layer by magnetizing the magnetic thin film layer with a magnetic head.
  • the recording density of information recording media tends to increase. For example, one 2.5 inch information recording medium having a recording capacity of 500 GB has been developed, and a glass substrate for an information recording medium having higher surface smoothness is required.
  • a double-side polishing apparatus is used to polish the surface of the glass substrate.
  • the glass substrate is held by a carrier (also referred to as a polishing carrier) as disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-006526 (Patent Document 1).
  • a carrier also referred to as a polishing carrier
  • the surface of the glass substrate is polished by the polishing pad of the double-side polishing apparatus.
  • An object of the present invention is to provide a glass substrate for an information recording medium having higher surface smoothness, a manufacturing method thereof, and a manufacturing apparatus thereof.
  • the manufacturing method of the glass substrate for information recording media based on this invention is a manufacturing method of the glass substrate for information recording media provided with the grinding
  • polishing the surface of the glass substrate by sliding the glass substrate against the polishing surface of the surface, all the tooth surfaces of the sun gear and / or all the tooth surfaces of the internal gear from the tooth tip Including a recess having a shape recessed in a direction perpendicular to the rotation axis of the carrier, wherein the carrier is in the recess.
  • the pitch circle diameter of the carrier is DC (unit: m)
  • the depth of the recess from the tooth tip in the direction orthogonal to the rotation axis is d. Assuming (unit: mm), the relationship of 0.24 ⁇ d / DC ⁇ 1.89 is established.
  • TA is a width dimension of the recess in a direction parallel to the rotation axis
  • TA is a thickness dimension of the glass substrate in a direction parallel to the rotation axis. It is established.
  • the concave portion forms one concave groove that is annularly continuous along the circumferential direction.
  • the glass substrate for information recording medium based on the present invention is manufactured using the above-described method for manufacturing a glass substrate for information recording medium based on the present invention.
  • An apparatus for producing a glass substrate for an information recording medium includes a polishing pad, a sun gear and an internal gear between which the glass substrate and a carrier are arranged, and the sun gear and the internal gear are both teeth of these.
  • the carrier By rotating the carrier in a state where the outer periphery of the carrier is engaged with the surface, the glass substrate is brought into sliding contact with the polishing surface of the polishing pad to polish the surface of the glass substrate.
  • the tooth surfaces of the internal gear include a recess having a shape that is recessed from a tooth tip in a direction perpendicular to the rotation axis of the carrier, and the carrier rotates when the carrier rotates.
  • the carrier has a pitch circle diameter of DC (unit: m) and is orthogonal to the rotational axis.
  • the recess depth from the tooth tip of the recess in the direction d (unit: mm) When the relation 0.24 ⁇ d / DC ⁇ 1.89 is satisfied.
  • a glass substrate for an information recording medium having higher surface smoothness, a manufacturing method thereof, and a manufacturing apparatus thereof can be obtained.
  • FIG. 1 is a perspective view showing a glass substrate for information recording medium manufactured using the method for manufacturing a glass substrate for information recording medium in Embodiment 1.
  • FIG. 1 is a perspective view showing a magnetic disk (information recording medium) including a glass substrate for information recording medium manufactured using the method for manufacturing a glass substrate for information recording medium in Embodiment 1.
  • FIG. 3 is a flowchart showing a method for manufacturing the glass substrate for information recording medium in the first embodiment. It is a side view which shows the double-side polish apparatus used by 2nd polishing process S18 in Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a figure which expands and shows the area
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6. It is sectional drawing which shows a mode when the double-side polish apparatus used by 2nd polishing process S18 in Embodiment 1 is performing the polishing process.
  • 5 is a cross-sectional view showing a double-side polishing apparatus used in a second polishing step S18 in the first embodiment.
  • FIG. It is a perspective view which shows the tooth surface of the internal gear used for the double-side polish apparatus shown in FIG.
  • FIG. 11 is a diagram schematically showing a state when the tooth surface of the internal gear is viewed from the direction of arrow XI in FIG. 10 (a diagram in which the tooth surface is developed in the circumferential direction).
  • FIG. It is sectional drawing which shows a mode that the carrier has meshed
  • FIG. It is sectional drawing which shows a mode that the carrier has meshed
  • Glass substrate 1G Glass substrate for information recording medium used for a magnetic disk 1 (see FIG. 2) has a disk shape with a hole 11 formed in the center.
  • Glass substrate 1 ⁇ / b> G includes front main surface 14, back main surface 15, inner peripheral end surface 13, and outer peripheral end surface 12.
  • a chamfer surface 13a having a tapered shape is provided on a portion of the inner peripheral end surface 13 on the front main surface 14 side, and a chamfer surface 13b having a tapered shape is provided on a portion on the back main surface 15 side of the inner peripheral end surface 13 (see FIG. 2).
  • the glass substrate 1G has a size of, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
  • the thickness of the glass substrate 1G is, for example, 0.30 mm to 2.2 mm.
  • Glass substrate 1G in the present embodiment has an outer diameter of about 65 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate 1G is a value calculated by averaging the values measured at a plurality of arbitrary points that are point-symmetric on the glass substrate 1G.
  • the magnetic disk 1 includes a glass substrate 1 ⁇ / b> G and a magnetic thin film layer 16 (magnetic recording layer) formed on the front main surface 14.
  • the magnetic thin film layer 16 in the present embodiment is formed only on the front main surface 14, but may be further formed on the back main surface 15.
  • the magnetic thin film layer 16 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 14 of the glass substrate 1G (spin coating method).
  • the magnetic thin film layer 16 may be formed using a sputtering method or an electroless plating method.
  • the film thickness of the magnetic thin film layer 16 formed on the front main surface 14 of the glass substrate 1G is about 0.3 ⁇ m to about 1.2 ⁇ m in the case of the spin coating method, and about 0.04 ⁇ m to about 0.00 in the case of the sputtering method. In the case of electroless plating, the thickness is about 0.05 ⁇ m to about 0.1 ⁇ m.
  • the magnetic material used for forming the magnetic thin film layer 16 it is preferable to use Co having a high crystal anisotropy and a Co-based alloy with Ni or Cr added for the purpose of adjusting the residual magnetic flux density.
  • An FePt-based material may be used as a magnetic material suitable for heat-assisted recording.
  • a thin lubricant may be coated on the surface of the magnetic thin film layer 16.
  • the lubricant include those obtained by diluting perfluoropolyether (PFPE) with a freon-based solvent. You may provide a base layer and a protective layer as needed.
  • the underlayer is selected according to the type of magnetic film.
  • the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer may have a single-layer structure or a multi-layer structure in which the same or different layers are stacked. Examples of the multilayer structure include Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, and NiAl / CrV.
  • Examples of the protective layer that prevents wear and corrosion of the magnetic thin film layer 16 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. These protective layers may have a single layer structure, or may have a multilayer structure in which the same or different layers are stacked.
  • Another protective layer may be formed on the protective layer or instead of the protective layer.
  • tetraalkoxysilane is diluted with an alcohol solvent
  • colloidal silica fine particles are dispersed and applied onto the Cr layer, and further baked to form a silicon oxide (SiO 2 ) layer. You may form on it.
  • the manufacturing method includes steps S10 to S19.
  • the glass melting step S10 the glass material is melted.
  • the molding step S11 the molten glass material is press-molded using the upper mold and the lower mold.
  • a glass substrate is obtained by molding.
  • the glass substrate may be cut out from the plate glass.
  • the composition of the glass substrate is, for example, aluminosilicate glass.
  • the first lapping step S12 lapping is performed on both main surfaces of the glass substrate using a double-sided lapping device having a planetary gear mechanism.
  • the lap platen is pressed from above and below against the glass substrate, and the glass substrate and the lap platen are relatively moved while supplying abrasive grains and grinding liquid onto both main surfaces of the glass substrate.
  • abrasive alumina or the like is used.
  • a hole is formed in the center of the glass substrate using a cylindrical diamond drill. Using a diamond grindstone, chamfering is performed on the inner peripheral end surface and the outer peripheral end surface of the glass substrate.
  • 2nd lapping process S14 the lapping process similar to 1st lapping process S12 is given to both main surfaces of a glass substrate. Fine irregularities formed on both main surfaces are removed.
  • the outer periphery / inner periphery polishing step S15 mirror polishing is performed on the outer peripheral end surface and the inner peripheral end surface of the glass substrate using a brush.
  • abrasive grains for example, a slurry containing cerium oxide abrasive grains is used.
  • both main surfaces of the glass substrate are polished using a double-side polishing apparatus having a planetary gear mechanism.
  • the abrasive for example, cerium oxide abrasive grains having an average particle diameter of about 1 ⁇ m are used.
  • the first and second lapping steps (S12, S14) scratches and warpage remaining on both main surfaces are corrected.
  • compressive stress layers are formed on both main surfaces of the glass substrate.
  • a mixed solution of potassium nitrate (70%) and sodium nitrate (30%) is heated to 300 ° C., and the glass substrate is immersed in the mixed solution for about 30 minutes.
  • a compressive stress layer is formed, and both main surfaces and both end surfaces of the glass substrate are strengthened.
  • the second polishing step S18 precision polishing is performed on both main surfaces of the glass substrate using a double-side polishing apparatus having a planetary gear mechanism.
  • abrasive for example, colloidal silica having an average particle diameter of about 20 nm is used. The micro-defects remaining on both main surfaces are eliminated, and both main surfaces are finished in a mirror shape. Fine warpage is also eliminated, and both main surfaces have a desired flatness. Further details of the second polishing step S18 will be described later with reference to FIG.
  • both main surfaces and both end surfaces of the glass substrate are cleaned, and then the glass substrate is appropriately dried.
  • the manufacturing method of the glass substrate for information recording media in this Embodiment is comprised as mentioned above.
  • the glass substrate 1G shown in FIG. 1 is obtained by using this glass substrate manufacturing method.
  • the magnetic disk 1 shown in FIG. 2 is obtained by forming the magnetic thin film layer on the glass substrate 1G.
  • FIG. 4 is a side view showing the double-side polishing apparatus 100.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6 is an enlarged view showing a region surrounded by a VI line in FIG.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • the double-side polishing apparatus 100 includes an upper surface plate 20, an upper polishing pad 21, a lower surface plate 30, and a lower polishing pad 31.
  • the upper surface plate 20 and the lower surface plate 30 have a cylindrical shape.
  • the upper polishing pad 21 is mounted on the lower surface on the side (glass substrate side) facing the lower surface plate 30 of the upper surface plate 20.
  • the lower polishing pad 31 is mounted on the upper surface on the side (glass substrate side) facing the upper surface plate 20 of the lower surface plate 30.
  • the lower surface of the upper surface plate 20 and the upper surface of the lower surface plate 30 are parallel to each other and rotate in opposite directions.
  • the upper polishing pad 21 and the lower polishing pad 31 are processed members for polishing both main surfaces of the glass substrate.
  • a polyurethane suede pad is used as the upper polishing pad 21 and the lower polishing pad 31.
  • a surface of the upper polishing pad 21 facing the lower surface plate 30 forms an upper polishing surface 22.
  • the surface of the lower polishing pad 31 facing the upper surface plate 20 forms a lower polishing surface 32.
  • a plurality of disk-shaped carriers 60 are arranged on the lower polishing surface 32 (see FIG. 5).
  • the carrier 60 includes a holding portion 61 (see FIG. 6) having a plurality of circular holes, and a plurality of meshing teeth 62 are provided on the outer periphery of the carrier 60.
  • the thickness of the carrier 60 is, for example, 650 ⁇ m.
  • the plurality of meshing teeth 62 form a pitch circle 68 having a pitch circle diameter DC.
  • the glass substrate 1G is held in a circular hole provided in the holding unit 61 (see FIG. 6).
  • the thickness of the glass substrate 1G is, for example, 810 ⁇ m.
  • a sun gear 40 is provided at the center of the lower surface plate 30 (see FIG. 5).
  • An internal gear 50 is provided coaxially with the sun gear 40 at the periphery of the lower surface plate 30 (see FIG. 5).
  • the sun gear 40 and the internal gear 50 are thicker than the carrier 60 in a direction parallel to the rotation axis of the sun gear 40.
  • the carrier 60 When the carrier 60 is disposed between the sun gear 40 and the internal gear 50, the meshing teeth 62 of the carrier 60 mesh with both the tooth surface 42 of the sun gear 40 and the tooth surface 52 of the internal gear 50.
  • the carrier 60 is rotated using the sun gear 40 and the internal gear 50.
  • the sun gear 40 when the sun gear 40 is driven to rotate, the carrier 60 revolves around the sun gear 40 while rotating.
  • the back main surface of the glass substrate 1G held by the carrier 60 is in contact with the lower polishing surface 32 of the lower polishing pad 31.
  • the upper surface plate 20 moves downward along the vertical direction toward the lower surface plate 30 (see the white arrow).
  • the upper polishing surface 22 of the upper polishing pad 21 comes into contact with the front main surface of the glass substrate 1 ⁇ / b> G held by the carrier 60.
  • the glass substrate 1G is sandwiched between the upper polishing pad 21 and the lower polishing pad 31.
  • the upper surface plate 20 and the lower surface plate 30 apply a predetermined stress to the glass substrate 1G in the thickness direction. Both main surfaces of the glass substrate 1G are pressed against the upper polishing surface 22 and the lower polishing surface 32.
  • the upper polishing surface 22 moves relative to the front main surface of the glass substrate 1G, and the lower polishing surface 32 moves relative to the back main surface of the glass substrate 1G.
  • the upper polishing surface 22 is in sliding contact with the front main surface of the glass substrate 1G
  • the front main surface of the glass substrate 1G is polished.
  • the lower polishing surface 32 is in sliding contact with the back main surface of the glass substrate 1G
  • the back main surface of the glass substrate 1G is polished. Both main surfaces of the glass substrate are polished simultaneously.
  • FIG. 9 is a cross-sectional view showing the double-side polishing apparatus 100, and shows a state when the carrier 60 (not shown) is removed from the sun gear 40 and the internal gear 50.
  • the tooth surface 42 of the sun gear 40 used in the double-side polishing apparatus 100 includes a recess 41.
  • the recess 41 has a shape that is recessed from the tooth tip 43 of the tooth surface 42 in a direction orthogonal to the rotation axis of the sun gear 40 (or the rotation axis of the carrier).
  • the recess 41 is recessed from the tooth tip 43 of the tooth surface 42 toward the inside in the radial direction of the sun gear 40, and the depth da of the recess 41 from the tooth tip 43 is, for example, 0.1 mm or more and 1.0 mm or less. is there.
  • the dent depth da referred to here is the distance from the tooth tip 43 of the tooth surface 42 to the portion of the recess 41 that is located on the innermost side in the radial direction of the sun gear 40.
  • FIG. 10 is a perspective view showing the tooth surface 52 of the internal gear 50.
  • the carrier 60 is separated from the internal gear 50 and the carrier 60 is not engaged with the internal gear 50.
  • FIG. 11 is a diagram schematically showing a state when the tooth surface 52 of the internal gear 50 is viewed from the direction of the arrow XI in FIG. 10 (a diagram in which the tooth surface 52 is developed in the circumferential direction).
  • the tooth surface 52 of the internal gear 50 used in the double-side polishing apparatus 100 includes a recess 51.
  • the recess 51 has a shape that is recessed from the tooth tip 53 of the tooth surface 52 in a direction orthogonal to the rotation axis of the sun gear 40 (or the rotation axis of the carrier).
  • the recess 51 is recessed from the tooth tip 53 of the tooth surface 52 toward the radially outer side of the internal gear 50, and the recess depth db (see FIG. 9) of the recess 51 from the tooth tip 53 is, for example, 0.1 mm. It is 1.0 mm or less.
  • the dent depth db referred to here is the distance from the tooth tip 53 of the tooth surface 52 to the portion of the recess 51 located on the outermost side in the radial direction of the internal gear 50.
  • the concave portion 41 of the sun gear 40 and the concave portion 51 of the internal gear 50 are portions that mesh with the meshing teeth 62 provided on the outer periphery of the carrier 60 when the carrier 60 is disposed between the sun gear 40 and the internal gear 50.
  • the recess 41 is provided on all of the plurality of tooth surfaces 42 (sun gear teeth) provided on the outer periphery of the sun gear 40.
  • the recess 51 is provided on all of the plurality of tooth surfaces 52 (internal gear teeth) provided on the outer periphery of the internal gear 50.
  • the plurality of meshing teeth 62 provided on the outer periphery of the carrier 60 form a pitch circle 68 having a pitch circle diameter DC.
  • the pitch circle diameter DC (unit: m) and the recess depth da (unit: mm) provided in the recess 41 (see FIG. 9) are dimensions that satisfy the equation 0.24 ⁇ da / DC ⁇ 1.89.
  • the pitch circle diameter DC (unit: m) and the recess depth db (unit: mm) provided in the recess 51 (see FIG. 9) are dimensions that satisfy the equation 0.24 ⁇ db / DC ⁇ 1.89.
  • FIG. 12 is a cross-sectional view showing a state where the meshing teeth 62 of the carrier 60 are meshed with the recess 51 of the internal gear 50 of the double-side polishing apparatus 100 used in the second polishing step S18.
  • the carrier 60 rotates with respect to the internal gear 50.
  • the meshing teeth 62 provided on the outer periphery of the carrier 60 mesh with the recess 51 of the internal gear 50.
  • the carrier 60 when the second polishing step S18 is performed using the double-side polishing apparatus 100, the carrier 60 also rotates relative to the sun gear 40 (see FIG. 6 and the like).
  • the meshing teeth 62 provided on the outer periphery of the carrier 60 mesh with the recess 41 (see FIG. 9 and the like) of the sun gear 40.
  • the carrier 60 meshes with the recess 41 of the sun gear 40 on the sun gear 40 side as viewed from the carrier 60, and meshes with the recess 51 of the internal gear 50 on the internal gear 50 side when viewed from the carrier 60.
  • the carrier 60 rotates and revolves in this state. In the direction parallel to the rotation axis of the sun gear 40, the movement of the carrier 60 is effectively restricted by the recesses 41 and 51 (the state of being positioned in the rotation axis direction is maintained).
  • the carrier 60 is in a plane direction orthogonal to the rotation axis of the sun gear 40. It is possible to rotate and revolve with virtually no tilt while maintaining a conforming posture. Both main surfaces of the glass substrate 1G held by the carrier 60 can be effectively polished while receiving an appropriate and uniform pressing force from the upper polishing pad 21 and the lower polishing pad 31.
  • the width dimension of the recess 51 in the direction parallel to the rotation axis of the sun gear 40 is TA and the thickness dimension of the glass substrate 1G in the same direction is TB
  • the relationship of TA ⁇ TB is established. It is good to have.
  • the width dimension TA of the recess 51 is larger than the width dimension of the meshing teeth 62 of the carrier 60. Since the relationship of TA ⁇ TB is established, unnecessary movement of the meshing teeth 62 of the carrier 60 in the vertical direction can be further suppressed.
  • the tooth surface 52 does not have the recess as described above as in the internal gear 50Z shown in FIG.
  • the portion of the carrier 60 on the side of the meshing teeth 62 (the outer peripheral side of the carrier 60) is easy to move in the vertical direction because it forms a free end.
  • FIG. 13 when the carrier 60 is rotating, the position of the meshing teeth 62 is displaced upward, and the outer peripheral portion of the carrier 60 is curved.
  • the meshing teeth 62 of the carrier 60 are not properly meshed with the tooth surfaces 52 of the internal gear 50Z, and an unnecessary moment may be applied to the glass substrate 1G.
  • the upper polishing surface 22 of the upper polishing pad 21 and the lower polishing surface 32 of the lower polishing pad 31 may be damaged by contact with the carrier 60.
  • fine pits or deposits are formed as defects on both main surfaces of the glass substrate 1G. This defect induces read / write errors and head crashes when the glass substrate 1G is used as the magnetic disk 1.
  • the sun gear 40 is provided with the recess 41 and the internal gear 50 is provided with the recess 51, and 0.24 ⁇ da / DC ⁇ 1.89 and 0.24 ⁇ db / DC ⁇ 1.89.
  • the carrier 60 can rotate and revolve with substantially no inclination while maintaining the posture along the surface direction orthogonal to the rotation axis of the sun gear 40. .
  • Both main surfaces of the glass substrate 1G held by the carrier 60 can be effectively polished while receiving an appropriate and uniform pressing force from the upper polishing pad 21 and the lower polishing pad 31.
  • the glass substrate for information recording media manufactured by the manufacturing method and manufacturing apparatus of the glass substrate for information recording media in this Embodiment has higher surface smoothness.
  • the sun gear 40 is provided with the recess 41 and the internal gear 50 is provided with the recess 51.
  • the sun gear 40 is provided with the recess 41 and the internal gear 50 has the recess 51. Even if it is not provided, even if the sun gear 40 is not provided with the recess 41 and only the internal gear 50 is provided with the recess 51, substantially the same operations and effects can be obtained.
  • the tooth surface 52 may be formed with one concave groove 55 that is annularly continuous along the circumferential direction.
  • the concave groove 55 is formed with the same height position and the same width dimension in the direction parallel to the rotation axis of the sun gear 40 (the vertical direction in FIG. 14).
  • the depth of the recess is a distance from the tooth surface of the internal gear 50 ⁇ / b> A to the surface of the recess groove 55 farthest in the direction perpendicular to the rotation axis of the sun gear 40. Also with this configuration, it is possible to obtain substantially the same operations and effects as in the first embodiment.
  • the groove is provided only in the sun gear and the groove is not provided in the internal gear.
  • the concave groove is not provided and the concave groove is provided only in the internal gear, substantially the same operations and effects can be obtained.
  • Example 1 With reference to FIG. 15, the experiment example performed in relation to each of the above-described embodiments (second polishing step S18) will be described.
  • the experimental examples included Examples 1 to 3 and Comparative Examples 1 to 3.
  • a carrier having a pitch circle diameter of about 423 mm and a thickness of 650 ⁇ m and a glass substrate having an outer diameter of 65 mm and a thickness of 810 ⁇ m were prepared. Five carriers were used, and each carrier held 20 glass substrates, and a total of 100 glass substrates were polished simultaneously.
  • a 16B double-side polishing machine manufactured by Hamai Sangyo Co., Ltd. was used as the polishing apparatus.
  • the yield was measured on 100 glass substrates obtained based on the production methods of Examples 1 to 3 and Comparative Examples 1 to 3. Yield is measured by measuring defects on both main surfaces of the cleaned glass substrate using SSI-640 (surface inspection device using He-Ne laser light source, manufactured by System Seiko Co., Ltd.). To do.
  • SSI-640 surface inspection device using He-Ne laser light source, manufactured by System Seiko Co., Ltd.
  • the sun gear 40 having the recess 41 and the internal gear 50 having the recess 51 were used.
  • the width dimension (TA in FIG. 12) of the recess 51 in the direction parallel to the rotation axis of the sun gear 40 was 700 ⁇ m.
  • the width dimension of the recess 41 in the same direction was also set to 700 ⁇ m.
  • Comparative Example 1 a sun gear that does not have the recess 41 and an internal gear that does not have the recess 51 are used.
  • Comparative Example 1 it was found that the polishing pad was scratched and the yield as the final product was low.
  • Comparative Example 2 0.24> da / DC and 0.24> db / DC are satisfied, and the meshing position between the carrier 60 and the sun gear 40 and the meshing between the carrier 60 and the internal gear 50 are satisfied. This is probably because the position moves up and down and the outer peripheral portion of the carrier 60 tends to bend.
  • a scratch was generated on the polishing pad, and in Comparative Example 3, da / DC> 1.89 and db / DC> 1.89, and a carrier crash occurred during the polishing operation, and proper polishing was performed. The process could not be performed.
  • the glass substrate for information recording medium manufactured by the method and apparatus for manufacturing the glass substrate for information recording medium in each of the above-described embodiments has higher surface smoothness.

Abstract

A polishing process involves a process for arranging a glass substrate and a carrier between a sun gear (40) and an internal gear (50), and a process for polishing the surface of the glass substrate by rotating the carrier in a state in which the outer periphery of the carrier meshes with tooth surfaces (42, 52). All tooth surfaces (42) and/or all tooth surfaces (52) include recesses (41, 51) having a shape recessed from the tooth tips, and the outer periphery of the carrier meshes with the recesses (41, 51) when the carrier rotates. Defining DC (unit: m) as the pitch circle diameter of the carrier and d (unit: mm) as the recess depth of the recesses (41, 51) from the tooth tips, the relation holds that 0.24 ≦ d/DC ≦ 1.89.

Description

情報記録媒体用ガラス基板、情報記録媒体用ガラス基板の製造方法および製造装置Information recording medium glass substrate, information recording medium glass substrate manufacturing method and manufacturing apparatus
 本発明は、情報記録媒体用ガラス基板、情報記録媒体用ガラス基板の製造方法および製造装置に関する。 The present invention relates to a glass substrate for information recording medium, a method for manufacturing a glass substrate for information recording medium, and a manufacturing apparatus.
 コンピューターなどの情報記録装置には、情報記録媒体が搭載される。一般的に、情報記録媒体を製造するためにはガラス基板が用いられる。ガラス基板上には、磁気薄膜層が形成される。磁気薄膜層を磁気ヘッドで磁化することにより、磁気薄膜層に情報を記録することができる。近年、情報記録媒体の記録密度は高まる傾向にある。たとえば、2.5インチの情報記録媒体1枚で、500GBの記録容量を有するものも開発されており、より高い表面平滑性を有する情報記録媒体用ガラス基板が求められている。 An information recording medium is mounted on an information recording device such as a computer. In general, a glass substrate is used to manufacture an information recording medium. A magnetic thin film layer is formed on the glass substrate. Information can be recorded in the magnetic thin film layer by magnetizing the magnetic thin film layer with a magnetic head. In recent years, the recording density of information recording media tends to increase. For example, one 2.5 inch information recording medium having a recording capacity of 500 GB has been developed, and a glass substrate for an information recording medium having higher surface smoothness is required.
 情報記録媒体用ガラス基板を製造する際、ガラス基板の表面を研磨するために両面研磨装置が用いられる。ガラス基板は、たとえば特開2008-006526号公報(特許文献1)に開示されるようなキャリア(研磨キャリアともいう)に保持される。ガラス基板がキャリアに保持された状態で、ガラス基板の表面は両面研磨装置の研磨パッドによって研磨される。 When manufacturing a glass substrate for information recording media, a double-side polishing apparatus is used to polish the surface of the glass substrate. The glass substrate is held by a carrier (also referred to as a polishing carrier) as disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-006526 (Patent Document 1). With the glass substrate held by the carrier, the surface of the glass substrate is polished by the polishing pad of the double-side polishing apparatus.
特開2008-006526号公報JP 2008-006526 A
 本発明は、より高い表面平滑性を有する情報記録媒体用ガラス基板、その製造方法およびその製造装置を提供することを目的とする。 An object of the present invention is to provide a glass substrate for an information recording medium having higher surface smoothness, a manufacturing method thereof, and a manufacturing apparatus thereof.
 本発明に基づく情報記録媒体用ガラス基板の製造方法は、ガラス基板の表面を研磨する研磨工程を備える情報記録媒体用ガラス基板の製造方法であって、上記研磨工程は、ガラス基板およびキャリアをサンギアおよびインターナルギアの間に配置する工程と、上記キャリアの外周を上記サンギアおよび上記インターナルギアの双方の歯面に噛合させた状態で上記サンギアおよび上記インターナルギアを用いて上記キャリアを回転させ、研磨パッドの研磨面に対して上記ガラス基板を摺接させて上記ガラス基板の表面を研磨する工程と、を含み、上記サンギアの全ての歯面およびまたは上記インターナルギアの全ての歯面は、歯先から上記キャリアの回転軸に対して直交する方向に凹む形状を有する凹部を含み、上記凹部には上記キャリアが回転する時に上記キャリアの上記外周が噛合し、上記キャリアのピッチ円直径をDC(単位:m)とし、上記回転軸に対して直交する方向における上記凹部の上記歯先からの凹み深さをd(単位:mm)とすると、0.24≦d/DC≦1.89の関係が成立している。 The manufacturing method of the glass substrate for information recording media based on this invention is a manufacturing method of the glass substrate for information recording media provided with the grinding | polishing process of grind | polishing the surface of a glass substrate, Comprising: In the said grinding | polishing process, a glass substrate and a carrier are sun geared. And the step of disposing between the internal gear, and rotating the carrier using the sun gear and the internal gear in a state where the outer periphery of the carrier is engaged with the tooth surfaces of both the sun gear and the internal gear. Polishing the surface of the glass substrate by sliding the glass substrate against the polishing surface of the surface, all the tooth surfaces of the sun gear and / or all the tooth surfaces of the internal gear from the tooth tip Including a recess having a shape recessed in a direction perpendicular to the rotation axis of the carrier, wherein the carrier is in the recess. When the carrier rolls, the outer periphery of the carrier meshes, the pitch circle diameter of the carrier is DC (unit: m), and the depth of the recess from the tooth tip in the direction orthogonal to the rotation axis is d. Assuming (unit: mm), the relationship of 0.24 ≦ d / DC ≦ 1.89 is established.
 好ましくは、上記回転軸に対して平行な方向における上記凹部の幅寸法をTAとし、上記回転軸に対して平行な方向における上記ガラス基板の厚さ寸法をTBとすると、TA<TBの関係が成立している。 Preferably, TA is a width dimension of the recess in a direction parallel to the rotation axis, and TA is a thickness dimension of the glass substrate in a direction parallel to the rotation axis. It is established.
 好ましくは、上記凹部は、円周方向に沿って環状に連続する一つの凹溝を形成している。 Preferably, the concave portion forms one concave groove that is annularly continuous along the circumferential direction.
 本発明に基づく情報記録媒体用ガラス基板は、本発明に基づく上記の情報記録媒体用ガラス基板の製造方法を使用して製造される。 The glass substrate for information recording medium based on the present invention is manufactured using the above-described method for manufacturing a glass substrate for information recording medium based on the present invention.
 本発明に基づく情報記録媒体用ガラス基板の製造装置は、研磨パッドと、ガラス基板およびキャリアが間に配置されるサンギアおよびインターナルギアと、を備え、上記サンギアおよび上記インターナルギアがこれらの双方の歯面に上記キャリアの外周を噛合させた状態で上記キャリアを回転させることにより、上記研磨パッドの研磨面に対して上記ガラス基板が摺接されて上記ガラス基板の表面が研磨され、上記サンギアの全ての歯面およびまたは上記インターナルギアの全ての歯面は、歯先から上記キャリアの回転軸に対して直交する方向に凹む形状を有する凹部を含み、上記凹部には上記キャリアが回転する時に上記キャリアの上記外周が噛合し、上記キャリアのピッチ円直径をDC(単位:m)とし、上記回転軸に対して直交する方向における上記凹部の上記歯先からの凹み深さをd(単位:mm)とすると、0.24≦d/DC≦1.89の関係が成立している。 An apparatus for producing a glass substrate for an information recording medium according to the present invention includes a polishing pad, a sun gear and an internal gear between which the glass substrate and a carrier are arranged, and the sun gear and the internal gear are both teeth of these. By rotating the carrier in a state where the outer periphery of the carrier is engaged with the surface, the glass substrate is brought into sliding contact with the polishing surface of the polishing pad to polish the surface of the glass substrate. And / or all the tooth surfaces of the internal gear include a recess having a shape that is recessed from a tooth tip in a direction perpendicular to the rotation axis of the carrier, and the carrier rotates when the carrier rotates. And the carrier has a pitch circle diameter of DC (unit: m) and is orthogonal to the rotational axis. The recess depth from the tooth tip of the recess in the direction d (unit: mm) When the relation 0.24 ≦ d / DC ≦ 1.89 is satisfied.
 本発明によれば、より高い表面平滑性を有する情報記録媒体用ガラス基板、その製造方法およびその製造装置を得ることができる。 According to the present invention, a glass substrate for an information recording medium having higher surface smoothness, a manufacturing method thereof, and a manufacturing apparatus thereof can be obtained.
実施の形態1における情報記録媒体用ガラス基板の製造方法を使用して製造された情報記録媒体用ガラス基板を示す斜視図である。1 is a perspective view showing a glass substrate for information recording medium manufactured using the method for manufacturing a glass substrate for information recording medium in Embodiment 1. FIG. 実施の形態1における情報記録媒体用ガラス基板の製造方法を使用して製造された情報記録媒体用ガラス基板を備える磁気ディスク(情報記録媒体)を示す斜視図である。1 is a perspective view showing a magnetic disk (information recording medium) including a glass substrate for information recording medium manufactured using the method for manufacturing a glass substrate for information recording medium in Embodiment 1. FIG. 実施の形態1における情報記録媒体用ガラス基板の製造方法を示すフロー図である。FIG. 3 is a flowchart showing a method for manufacturing the glass substrate for information recording medium in the first embodiment. 実施の形態1における第2ポリッシュ工程S18で用いられる両面研磨装置を示す側面図である。It is a side view which shows the double-side polish apparatus used by 2nd polishing process S18 in Embodiment 1. FIG. 図4中のV-V線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 図5中のVI線で囲まれる領域を拡大して示す図である。It is a figure which expands and shows the area | region enclosed by VI line | wire in FIG. 図6中のVII-VII線に沿った矢視断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6. 実施の形態1における第2ポリッシュ工程S18で用いられる両面研磨装置が研磨加工を行っている時の様子を示す断面図である。It is sectional drawing which shows a mode when the double-side polish apparatus used by 2nd polishing process S18 in Embodiment 1 is performing the polishing process. 実施の形態1における第2ポリッシュ工程S18で用いられる両面研磨装置を示す断面図である。5 is a cross-sectional view showing a double-side polishing apparatus used in a second polishing step S18 in the first embodiment. FIG. 図9に示す両面研磨装置に用いられるインターナルギアの歯面を示す斜視図である。It is a perspective view which shows the tooth surface of the internal gear used for the double-side polish apparatus shown in FIG. 図10中の矢印XI方向からインターナルギアの歯面を見た時の様子を模式的に示す図(歯面を周方向に展開した図)である。FIG. 11 is a diagram schematically showing a state when the tooth surface of the internal gear is viewed from the direction of arrow XI in FIG. 10 (a diagram in which the tooth surface is developed in the circumferential direction). 実施の形態1における第2ポリッシュ工程S18で用いられる両面研磨装置のインターナルギアにキャリアが噛合している様子を示す断面図である。It is sectional drawing which shows a mode that the carrier has meshed | engaged with the internal gear of the double-side polish apparatus used by 2nd polishing process S18 in Embodiment 1. FIG. 比較例における第2ポリッシュ工程で用いられる両面研磨装置のインターナルギアにキャリアが噛合している様子を示す断面図である。It is sectional drawing which shows a mode that the carrier has meshed | engaged with the internal gear of the double-side polish apparatus used at the 2nd polishing process in a comparative example. 実施の形態2における第2ポリッシュ工程S18で用いられる両面研磨装置のインターナルギアの歯面を模式的に示す図(歯面を周方向に展開した図)である。It is a figure (figure which developed a tooth surface in the peripheral direction) showing typically a tooth surface of an internal gear of a double-side polish device used at 2nd polish process S18 in Embodiment 2. 実験例に係る実験条件および実験結果を示す図である。It is a figure which shows the experimental condition and experimental result which concern on an experiment example.
 本発明に基づいた各実施の形態について、以下、図面を参照しながら説明する。各実施の形態の説明において、個数および量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数およびその量などに限定されない。各実施の形態の説明において、同一の部品および相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments according to the present invention will be described below with reference to the drawings. In the description of each embodiment, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, the amount, and the like unless otherwise specified. In the description of each embodiment, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態1]
 図1および図2を参照して、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法を使用して製造されたガラス基板1G、およびガラス基板1Gを備えた磁気ディスク1(情報記録媒体)について説明する。
[Embodiment 1]
1 and 2, a glass substrate 1G manufactured using the method for manufacturing a glass substrate for information recording medium according to the present embodiment, and a magnetic disk 1 including the glass substrate 1G (information recording medium) ).
 (ガラス基板1G)
 図1に示すように、磁気ディスク1(図2参照)に用いられるガラス基板1G(情報記録媒体用ガラス基板)は、中心に孔11が形成された円盤形状を有している。ガラス基板1Gは、表主表面14、裏主表面15、内周端面13、および外周端面12を含んでいる。内周端面13の表主表面14側の部分には、テーパー形状を有するチャンファ面13aが設けられ、内周端面13の裏主表面15側の部分には、テーパー形状を有するチャンファ面13b(図2参照)が設けられている。
(Glass substrate 1G)
As shown in FIG. 1, a glass substrate 1G (glass substrate for information recording medium) used for a magnetic disk 1 (see FIG. 2) has a disk shape with a hole 11 formed in the center. Glass substrate 1 </ b> G includes front main surface 14, back main surface 15, inner peripheral end surface 13, and outer peripheral end surface 12. A chamfer surface 13a having a tapered shape is provided on a portion of the inner peripheral end surface 13 on the front main surface 14 side, and a chamfer surface 13b having a tapered shape is provided on a portion on the back main surface 15 side of the inner peripheral end surface 13 (see FIG. 2).
 ガラス基板1Gは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチの大きさを有している。ガラス基板1Gの厚さは、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板1Gは、約65mmの外径と、約20mmの内径と、約0.8mmの厚さとを有している。ガラス基板1Gの厚さとは、ガラス基板1G上の点対称となる任意の複数の点で測定した値の平均によって算出される値である。 The glass substrate 1G has a size of, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the glass substrate 1G is, for example, 0.30 mm to 2.2 mm. Glass substrate 1G in the present embodiment has an outer diameter of about 65 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate 1G is a value calculated by averaging the values measured at a plurality of arbitrary points that are point-symmetric on the glass substrate 1G.
 (磁気ディスク1)
 図2に示すように、磁気ディスク1は、ガラス基板1Gと、表主表面14上に成膜された磁気薄膜層16(磁気記録層)とを備えている。本実施の形態における磁気薄膜層16は、表主表面14上にのみ形成されているが、裏主表面15上にさらに形成されていてもよい。磁気薄膜層16は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1Gの表主表面14上にスピンコートすることによって形成される(スピンコート法)。磁気薄膜層16は、スパッタリング法または無電解めっき法等を使用して形成されていてもよい。
(Magnetic disk 1)
As shown in FIG. 2, the magnetic disk 1 includes a glass substrate 1 </ b> G and a magnetic thin film layer 16 (magnetic recording layer) formed on the front main surface 14. The magnetic thin film layer 16 in the present embodiment is formed only on the front main surface 14, but may be further formed on the back main surface 15. The magnetic thin film layer 16 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 14 of the glass substrate 1G (spin coating method). The magnetic thin film layer 16 may be formed using a sputtering method or an electroless plating method.
 ガラス基板1Gの表主表面14に形成される磁気薄膜層16の膜厚は、スピンコート法の場合は約0.3μm~約1.2μm、スパッタリング法の場合は約0.04μm~約0.08μm、無電解めっき法の場合は約0.05μm~約0.1μmである。磁気薄膜層16の成膜に用いる磁性材料としては、結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などを用いるとよい。熱アシスト記録に好適な磁性材料として、FePt系の材料が用いられてもよい。 The film thickness of the magnetic thin film layer 16 formed on the front main surface 14 of the glass substrate 1G is about 0.3 μm to about 1.2 μm in the case of the spin coating method, and about 0.04 μm to about 0.00 in the case of the sputtering method. In the case of electroless plating, the thickness is about 0.05 μm to about 0.1 μm. As the magnetic material used for forming the magnetic thin film layer 16, it is preferable to use Co having a high crystal anisotropy and a Co-based alloy with Ni or Cr added for the purpose of adjusting the residual magnetic flux density. An FePt-based material may be used as a magnetic material suitable for heat-assisted recording.
 磁気ヘッドに対する滑りをよくするために、磁気薄膜層16の表面に薄い潤滑剤をコーティングしてもよい。潤滑剤としては、たとえばパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。必要に応じて下地層や保護層を設けてもよい。 In order to improve the sliding with respect to the magnetic head, a thin lubricant may be coated on the surface of the magnetic thin film layer 16. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE) with a freon-based solvent. You may provide a base layer and a protective layer as needed.
 下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、およびNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。下地層は、単層構造を有していてもよく、同一または異種の層を積層した複数層構造を有していてもよい。複数層構造としては、たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等が挙げられる。 The underlayer is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. The underlayer may have a single-layer structure or a multi-layer structure in which the same or different layers are stacked. Examples of the multilayer structure include Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, and NiAl / CrV.
 磁気薄膜層16の摩耗や腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層およびシリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。これらの保護層は、単層構造を有していてもよく、同一または異種の層を積層した複数層構造を有していてもよい。 Examples of the protective layer that prevents wear and corrosion of the magnetic thin film layer 16 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. These protective layers may have a single layer structure, or may have a multilayer structure in which the same or different layers are stacked.
 上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。たとえば、上記保護層に替えて、テトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散してCr層の上に塗布し、さらに焼成して酸化ケイ素(SiO)層をその上に形成してもよい。 Another protective layer may be formed on the protective layer or instead of the protective layer. For example, instead of the protective layer, while tetraalkoxysilane is diluted with an alcohol solvent, colloidal silica fine particles are dispersed and applied onto the Cr layer, and further baked to form a silicon oxide (SiO 2 ) layer. You may form on it.
 (ガラス基板1Gの製造方法)
 図3を参照して、本実施の形態に係るガラス基板1Gの製造方法を説明する。当該製造方法は、工程S10~S19を備える。ガラス溶融工程S10においては、ガラス素材が溶融される。成形工程S11においては、上型および下型を用いて溶融ガラス素材がプレス成形される。成形により、ガラス基板が得られる。ガラス基板は、板ガラスから切り出して作製してもよい。ガラス基板の組成は、たとえばアルミノシリケートガラスである。
(Manufacturing method of glass substrate 1G)
With reference to FIG. 3, the manufacturing method of the glass substrate 1G which concerns on this Embodiment is demonstrated. The manufacturing method includes steps S10 to S19. In the glass melting step S10, the glass material is melted. In the molding step S11, the molten glass material is press-molded using the upper mold and the lower mold. A glass substrate is obtained by molding. The glass substrate may be cut out from the plate glass. The composition of the glass substrate is, for example, aluminosilicate glass.
 第1ラップ工程S12においては、遊星歯車機構を有する両面ラッピング装置を用いて、ガラス基板の両主表面にラッピング加工が施される。ガラス基板に対して上下方向からラップ定盤が押圧され、砥粒および研削液をガラス基板の両主表面上に供給しながら、ガラス基板とラップ定盤とが相対的に移動される。砥粒としては、アルミナ等が用いられる。ラッピング加工により、おおよそ平坦な面形状を有するガラス基板が得られる。 In the first lapping step S12, lapping is performed on both main surfaces of the glass substrate using a double-sided lapping device having a planetary gear mechanism. The lap platen is pressed from above and below against the glass substrate, and the glass substrate and the lap platen are relatively moved while supplying abrasive grains and grinding liquid onto both main surfaces of the glass substrate. As the abrasive, alumina or the like is used. By the lapping process, a glass substrate having a substantially flat surface shape is obtained.
 コアリング工程S13においては、円筒状のダイヤモンドドリルを用いて、ガラス基板の中心部に孔が形成される。ダイヤモンド砥石を用いて、ガラス基板の内周端面および外周端面に面取り加工が施される。第2ラップ工程S14においては、ガラス基板の両主表面に、第1ラップ工程S12と同様なラッピング加工が施される。両主表面に形成された微細な凹凸形状は除去される。 In the coring step S13, a hole is formed in the center of the glass substrate using a cylindrical diamond drill. Using a diamond grindstone, chamfering is performed on the inner peripheral end surface and the outer peripheral end surface of the glass substrate. In 2nd lapping process S14, the lapping process similar to 1st lapping process S12 is given to both main surfaces of a glass substrate. Fine irregularities formed on both main surfaces are removed.
 外周/内周研磨工程S15においては、ブラシを用いて、ガラス基板の外周端面および内周端面に鏡面研磨加工が施される。研磨砥粒としては、たとえば酸化セリウム砥粒を含むスラリーが用いられる。第1ポリッシュ工程S16においては、遊星歯車機構を有する両面研磨装置を用いて、ガラス基板の両主表面が研磨される。研磨剤としては、たとえば約1μmの平均粒径を有する酸化セリウム砥粒が用いられる。第1および第2ラップ工程(S12,S14)において両主表面に残留したキズや反りは矯正される。 In the outer periphery / inner periphery polishing step S15, mirror polishing is performed on the outer peripheral end surface and the inner peripheral end surface of the glass substrate using a brush. As the abrasive grains, for example, a slurry containing cerium oxide abrasive grains is used. In the first polishing step S16, both main surfaces of the glass substrate are polished using a double-side polishing apparatus having a planetary gear mechanism. As the abrasive, for example, cerium oxide abrasive grains having an average particle diameter of about 1 μm are used. In the first and second lapping steps (S12, S14), scratches and warpage remaining on both main surfaces are corrected.
 化学強化工程S17においては、ガラス基板の両主表面に圧縮応力層が形成される。硝酸カリウム(70%)と硝酸ナトリウム(30%)との混合溶液を300℃に加熱し、混合溶液中に、ガラス基板が約30分間浸漬される。圧縮応力層が形成され、ガラス基板の両主表面および両端面が強化される。 In the chemical strengthening step S17, compressive stress layers are formed on both main surfaces of the glass substrate. A mixed solution of potassium nitrate (70%) and sodium nitrate (30%) is heated to 300 ° C., and the glass substrate is immersed in the mixed solution for about 30 minutes. A compressive stress layer is formed, and both main surfaces and both end surfaces of the glass substrate are strengthened.
 第2ポリッシュ工程S18(研磨工程)においては、遊星歯車機構を有する両面研磨装置を用いて、ガラス基板の両主表面に精密研磨加工が施される。研磨剤としては、たとえば平均粒径が約20nmのコロイダルシリカが用いられる。両主表面に残存している微小欠陥等は解消され、両主表面は鏡面状に仕上げられる。微細な反りも解消され、両主表面は所望の平坦度を有することとなる。第2ポリッシュ工程S18の更なる詳細については、図4等を参照して後述する。 In the second polishing step S18 (polishing step), precision polishing is performed on both main surfaces of the glass substrate using a double-side polishing apparatus having a planetary gear mechanism. As the abrasive, for example, colloidal silica having an average particle diameter of about 20 nm is used. The micro-defects remaining on both main surfaces are eliminated, and both main surfaces are finished in a mirror shape. Fine warpage is also eliminated, and both main surfaces have a desired flatness. Further details of the second polishing step S18 will be described later with reference to FIG.
 最終洗浄工程S19においては、ガラス基板の両主表面および両端面が洗浄され、その後、ガラス基板は適宜乾燥される。本実施の形態における情報記録媒体用ガラス基板の製造方法は、以上のように構成される。このガラス基板の製造方法を用いることで、図1に示すガラス基板1Gが得られる。上述のとおり、ガラス基板1Gに磁気薄膜層を形成することによって、図2に示す磁気ディスク1が得られる。 In the final cleaning step S19, both main surfaces and both end surfaces of the glass substrate are cleaned, and then the glass substrate is appropriately dried. The manufacturing method of the glass substrate for information recording media in this Embodiment is comprised as mentioned above. The glass substrate 1G shown in FIG. 1 is obtained by using this glass substrate manufacturing method. As described above, the magnetic disk 1 shown in FIG. 2 is obtained by forming the magnetic thin film layer on the glass substrate 1G.
 (第2ポリッシュ工程S18)
 図4~図12を参照して、第2ポリッシュ工程S18で用いられる両面研磨装置100について説明する。上述のとおり、第2ポリッシュ工程S18においては、遊星歯車機構を有する両面研磨装置100を用いて、ガラス基板の両主表面に精密研磨加工が施される。図4は、両面研磨装置100を示す側面図である。図5は、図4中のV-V線に沿った矢視断面図である。図6は、図5中のVI線で囲まれる領域を拡大して示す図である。図7は、図6中のVII-VII線に沿った矢視断面図である。
(Second polishing step S18)
The double-side polishing apparatus 100 used in the second polishing step S18 will be described with reference to FIGS. As described above, in the second polishing step S18, precision polishing is performed on both main surfaces of the glass substrate using the double-side polishing apparatus 100 having a planetary gear mechanism. FIG. 4 is a side view showing the double-side polishing apparatus 100. FIG. 5 is a cross-sectional view taken along the line VV in FIG. FIG. 6 is an enlarged view showing a region surrounded by a VI line in FIG. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
 図4に示すように、両面研磨装置100は、上定盤20、上研磨パッド21、下定盤30および下研磨パッド31を備える。上定盤20および下定盤30は、円柱状の形状を有する。上研磨パッド21は、上定盤20の下定盤30に対向する側(ガラス基板側)の下面に装着されている。下研磨パッド31は、下定盤30の上定盤20に対向する側(ガラス基板側)の上面に装着されている。上定盤20の下面および下定盤30の上面は、相互に平行であり、相互に逆向きに回転する。 As shown in FIG. 4, the double-side polishing apparatus 100 includes an upper surface plate 20, an upper polishing pad 21, a lower surface plate 30, and a lower polishing pad 31. The upper surface plate 20 and the lower surface plate 30 have a cylindrical shape. The upper polishing pad 21 is mounted on the lower surface on the side (glass substrate side) facing the lower surface plate 30 of the upper surface plate 20. The lower polishing pad 31 is mounted on the upper surface on the side (glass substrate side) facing the upper surface plate 20 of the lower surface plate 30. The lower surface of the upper surface plate 20 and the upper surface of the lower surface plate 30 are parallel to each other and rotate in opposite directions.
 上研磨パッド21および下研磨パッド31は、ガラス基板の両主表面を研磨するための加工部材である。上研磨パッド21および下研磨パッド31としては、たとえばポリウレタン製のスウェードパッドが用いられる。下定盤30と対向する上研磨パッド21の表面は、上研磨面22を形成する。上定盤20と対向する下研磨パッド31の表面は、下研磨面32を形成する。 The upper polishing pad 21 and the lower polishing pad 31 are processed members for polishing both main surfaces of the glass substrate. For example, a polyurethane suede pad is used as the upper polishing pad 21 and the lower polishing pad 31. A surface of the upper polishing pad 21 facing the lower surface plate 30 forms an upper polishing surface 22. The surface of the lower polishing pad 31 facing the upper surface plate 20 forms a lower polishing surface 32.
 図5および図6に示すように、下研磨面32(図5参照)の上には、円盤状のキャリア60が複数配置される。キャリア60は、複数の円孔を有する保持部61(図6参照)を備え、キャリア60の外周には、複数の噛合歯62が設けられる。キャリア60の厚さは、たとえば650μmである。複数の噛合歯62は、ピッチ円直径DCを有するピッチ円68を形成している。 As shown in FIGS. 5 and 6, a plurality of disk-shaped carriers 60 are arranged on the lower polishing surface 32 (see FIG. 5). The carrier 60 includes a holding portion 61 (see FIG. 6) having a plurality of circular holes, and a plurality of meshing teeth 62 are provided on the outer periphery of the carrier 60. The thickness of the carrier 60 is, for example, 650 μm. The plurality of meshing teeth 62 form a pitch circle 68 having a pitch circle diameter DC.
 ガラス基板1Gは、保持部61(図6参照)に設けられた円孔に保持される。ガラス基板1Gの厚さは、たとえば810μmである。下定盤30(図5参照)の中央部には、サンギア40が設けられる。下定盤30(図5参照)の周縁部には、インターナルギア50がサンギア40と同軸状に設けられる。サンギア40の回転軸に対して平行な方向において、サンギア40およびインターナルギア50は、キャリア60よりも厚い厚さを有している。 The glass substrate 1G is held in a circular hole provided in the holding unit 61 (see FIG. 6). The thickness of the glass substrate 1G is, for example, 810 μm. A sun gear 40 is provided at the center of the lower surface plate 30 (see FIG. 5). An internal gear 50 is provided coaxially with the sun gear 40 at the periphery of the lower surface plate 30 (see FIG. 5). The sun gear 40 and the internal gear 50 are thicker than the carrier 60 in a direction parallel to the rotation axis of the sun gear 40.
 キャリア60がサンギア40とインターナルギア50との間に配置された状態において、キャリア60の噛合歯62は、サンギア40の歯面42およびインターナルギア50の歯面52の双方に噛合する。キャリア60は、サンギア40およびインターナルギア50を用いて回転される。本実施の形態においては、サンギア40が回転駆動されることによって、キャリア60は自転しながらサンギア40の周りを公転する。 When the carrier 60 is disposed between the sun gear 40 and the internal gear 50, the meshing teeth 62 of the carrier 60 mesh with both the tooth surface 42 of the sun gear 40 and the tooth surface 52 of the internal gear 50. The carrier 60 is rotated using the sun gear 40 and the internal gear 50. In the present embodiment, when the sun gear 40 is driven to rotate, the carrier 60 revolves around the sun gear 40 while rotating.
 図7に示すように、キャリア60に保持されたガラス基板1Gの裏主表面は、下研磨パッド31の下研磨面32に接触している。この状態で、上定盤20は、下定盤30側に向かって鉛直方向に沿って下降移動する(白抜き矢印参照)。その後、上研磨パッド21の上研磨面22は、キャリア60に保持されたガラス基板1Gの表主表面に接触する。 7, the back main surface of the glass substrate 1G held by the carrier 60 is in contact with the lower polishing surface 32 of the lower polishing pad 31. In this state, the upper surface plate 20 moves downward along the vertical direction toward the lower surface plate 30 (see the white arrow). Thereafter, the upper polishing surface 22 of the upper polishing pad 21 comes into contact with the front main surface of the glass substrate 1 </ b> G held by the carrier 60.
 図8に示すように、ガラス基板1Gは、上研磨パッド21および下研磨パッド31の間に挟み込まれる。上定盤20および下定盤30によって、ガラス基板1Gにはその厚さ方向に所定の応力が加えられる。ガラス基板1Gの両主表面は、上研磨面22および下研磨面32に押圧される。 As shown in FIG. 8, the glass substrate 1G is sandwiched between the upper polishing pad 21 and the lower polishing pad 31. The upper surface plate 20 and the lower surface plate 30 apply a predetermined stress to the glass substrate 1G in the thickness direction. Both main surfaces of the glass substrate 1G are pressed against the upper polishing surface 22 and the lower polishing surface 32.
 この状態で、コロイダルシリカなどの研磨液を供給しつつ、ガラス基板1Gの表主表面に対して上研磨面22が相対移動し、ガラス基板1Gの裏主表面に対して下研磨面32が相対移動する。上研磨面22がガラス基板1Gの表主表面に対して摺接することにより、ガラス基板1Gの表主表面が研磨される。下研磨面32がガラス基板1Gの裏主表面に対して摺接することにより、ガラス基板1Gの裏主表面が研磨される。ガラス基板の両主表面は、同時に研磨される。 In this state, while supplying a polishing liquid such as colloidal silica, the upper polishing surface 22 moves relative to the front main surface of the glass substrate 1G, and the lower polishing surface 32 moves relative to the back main surface of the glass substrate 1G. Moving. When the upper polishing surface 22 is in sliding contact with the front main surface of the glass substrate 1G, the front main surface of the glass substrate 1G is polished. When the lower polishing surface 32 is in sliding contact with the back main surface of the glass substrate 1G, the back main surface of the glass substrate 1G is polished. Both main surfaces of the glass substrate are polished simultaneously.
 図9は、両面研磨装置100を示す断面図であり、サンギア40およびインターナルギア50からキャリア60(図示せず)を取り外したときの状態を示している。図9に示すように、両面研磨装置100に用いられるサンギア40の歯面42は、凹部41を含む。凹部41は、歯面42の歯先43からサンギア40の回転軸(若しくはキャリアの回転軸)に対して直交する方向に凹む形状を有している。凹部41は、歯面42の歯先43からサンギア40の径方向の内側に向かって凹んでおり、凹部41の歯先43からの凹み深さdaは、たとえば0.1mm以上1.0mm以下である。ここで言う凹み深さdaとは、歯面42の歯先43から、凹部41のうちのサンギア40の径方向の最も内側に位置する部分までの距離である。 FIG. 9 is a cross-sectional view showing the double-side polishing apparatus 100, and shows a state when the carrier 60 (not shown) is removed from the sun gear 40 and the internal gear 50. FIG. As shown in FIG. 9, the tooth surface 42 of the sun gear 40 used in the double-side polishing apparatus 100 includes a recess 41. The recess 41 has a shape that is recessed from the tooth tip 43 of the tooth surface 42 in a direction orthogonal to the rotation axis of the sun gear 40 (or the rotation axis of the carrier). The recess 41 is recessed from the tooth tip 43 of the tooth surface 42 toward the inside in the radial direction of the sun gear 40, and the depth da of the recess 41 from the tooth tip 43 is, for example, 0.1 mm or more and 1.0 mm or less. is there. The dent depth da referred to here is the distance from the tooth tip 43 of the tooth surface 42 to the portion of the recess 41 that is located on the innermost side in the radial direction of the sun gear 40.
 図10は、インターナルギア50の歯面52を示す斜視図である。図10においては、説明上の便宜のため、キャリア60はインターナルギア50から離れており、キャリア60はインターナルギア50に噛合していない状態が図示されている。図11は、図10中の矢印XI方向からインターナルギア50の歯面52を見た時の様子を模式的に示す図(歯面52を周方向に展開した図)である。 FIG. 10 is a perspective view showing the tooth surface 52 of the internal gear 50. In FIG. 10, for convenience of explanation, the carrier 60 is separated from the internal gear 50 and the carrier 60 is not engaged with the internal gear 50. FIG. 11 is a diagram schematically showing a state when the tooth surface 52 of the internal gear 50 is viewed from the direction of the arrow XI in FIG. 10 (a diagram in which the tooth surface 52 is developed in the circumferential direction).
 図9~図11を参照して、両面研磨装置100に用いられるインターナルギア50の歯面52は、凹部51を含む。凹部51は、歯面52の歯先53からサンギア40の回転軸(若しくはキャリアの回転軸)に対して直交する方向に凹む形状を有している。凹部51は、歯面52の歯先53からインターナルギア50の径方向の外側に向かって凹んでおり、凹部51の歯先53からの凹み深さdb(図9参照)は、たとえば0.1mm以上1.0mm以下である。ここで言う凹み深さdbとは、歯面52の歯先53から、凹部51のうちのインターナルギア50の径方向の最も外側に位置する部分までの距離である。 9 to 11, the tooth surface 52 of the internal gear 50 used in the double-side polishing apparatus 100 includes a recess 51. The recess 51 has a shape that is recessed from the tooth tip 53 of the tooth surface 52 in a direction orthogonal to the rotation axis of the sun gear 40 (or the rotation axis of the carrier). The recess 51 is recessed from the tooth tip 53 of the tooth surface 52 toward the radially outer side of the internal gear 50, and the recess depth db (see FIG. 9) of the recess 51 from the tooth tip 53 is, for example, 0.1 mm. It is 1.0 mm or less. The dent depth db referred to here is the distance from the tooth tip 53 of the tooth surface 52 to the portion of the recess 51 located on the outermost side in the radial direction of the internal gear 50.
 サンギア40の凹部41およびインターナルギア50の凹部51は、サンギア40とインターナルギア50との間にキャリア60が配置された状態において、キャリア60の外周に設けられた噛合歯62に噛合する部位である。凹部41は、サンギア40の外周に設けられた複数の歯面42(サンギア歯)の全てに設けられる。凹部51は、インターナルギア50の外周に設けられた複数の歯面52(インターナルギア歯)の全てに設けられる。 The concave portion 41 of the sun gear 40 and the concave portion 51 of the internal gear 50 are portions that mesh with the meshing teeth 62 provided on the outer periphery of the carrier 60 when the carrier 60 is disposed between the sun gear 40 and the internal gear 50. . The recess 41 is provided on all of the plurality of tooth surfaces 42 (sun gear teeth) provided on the outer periphery of the sun gear 40. The recess 51 is provided on all of the plurality of tooth surfaces 52 (internal gear teeth) provided on the outer periphery of the internal gear 50.
 図6を参照して上述したとおり、キャリア60の外周に設けられた複数の噛合歯62は、ピッチ円直径DCを有するピッチ円68を形成している。ピッチ円直径DC(単位:m)と凹部41(図9参照)に設けられた凹み深さda(単位:mm)とは、0.24≦da/DC≦1.89の式が成立する寸法関係を有している。ピッチ円直径DC(単位:m)と凹部51(図9参照)に設けられた凹み深さdb(単位:mm)とは、0.24≦db/DC≦1.89の式が成立する寸法関係を有している。 As described above with reference to FIG. 6, the plurality of meshing teeth 62 provided on the outer periphery of the carrier 60 form a pitch circle 68 having a pitch circle diameter DC. The pitch circle diameter DC (unit: m) and the recess depth da (unit: mm) provided in the recess 41 (see FIG. 9) are dimensions that satisfy the equation 0.24 ≦ da / DC ≦ 1.89. Have a relationship. The pitch circle diameter DC (unit: m) and the recess depth db (unit: mm) provided in the recess 51 (see FIG. 9) are dimensions that satisfy the equation 0.24 ≦ db / DC ≦ 1.89. Have a relationship.
 図12は、第2ポリッシュ工程S18で用いられる両面研磨装置100のインターナルギア50の凹部51にキャリア60の噛合歯62が噛合している様子を示す断面図である。上述のとおり、両面研磨装置100を用いて第2ポリッシュ工程S18が行なわれる時、キャリア60はインターナルギア50に対して回転する。キャリア60が回転している時、キャリア60の外周に設けられた噛合歯62は、インターナルギア50の凹部51に噛合する。 FIG. 12 is a cross-sectional view showing a state where the meshing teeth 62 of the carrier 60 are meshed with the recess 51 of the internal gear 50 of the double-side polishing apparatus 100 used in the second polishing step S18. As described above, when the second polishing step S <b> 18 is performed using the double-side polishing apparatus 100, the carrier 60 rotates with respect to the internal gear 50. When the carrier 60 is rotating, the meshing teeth 62 provided on the outer periphery of the carrier 60 mesh with the recess 51 of the internal gear 50.
 一方で、両面研磨装置100を用いて第2ポリッシュ工程S18が行なわれる時、キャリア60はサンギア40(図6等参照)に対しても回転する。キャリア60が回転している時、キャリア60の外周に設けられた噛合歯62は、サンギア40の凹部41(図9等参照)にも噛合する。 On the other hand, when the second polishing step S18 is performed using the double-side polishing apparatus 100, the carrier 60 also rotates relative to the sun gear 40 (see FIG. 6 and the like). When the carrier 60 is rotating, the meshing teeth 62 provided on the outer periphery of the carrier 60 mesh with the recess 41 (see FIG. 9 and the like) of the sun gear 40.
 キャリア60は、キャリア60から見てサンギア40側においてはサンギア40の凹部41に噛合し、キャリア60から見てインターナルギア50側においてはインターナルギア50の凹部51に噛合する。キャリア60は、この状態で自転および公転する。サンギア40の回転軸に対して平行な方向において、キャリア60の移動は、凹部41,51によって効果的に規制されている(回転軸方向において位置決めされた状態が保持されている)。 The carrier 60 meshes with the recess 41 of the sun gear 40 on the sun gear 40 side as viewed from the carrier 60, and meshes with the recess 51 of the internal gear 50 on the internal gear 50 side when viewed from the carrier 60. The carrier 60 rotates and revolves in this state. In the direction parallel to the rotation axis of the sun gear 40, the movement of the carrier 60 is effectively restricted by the recesses 41 and 51 (the state of being positioned in the rotation axis direction is maintained).
 0.24≦da/DC≦1.89および0.24≦db/DC≦1.89の式が満足されていることにより、キャリア60は、サンギア40の回転軸に対して直交する面方向に沿った姿勢を維持しながら、実質的にほとんど傾くことなく、自転および公転することができる。キャリア60に保持されたガラス基板1Gの両主表面は、上研磨パッド21および下研磨パッド31から適正かつ均等な押圧力を受けながら、効果的に研磨されることが可能となる。 Since the expressions 0.24 ≦ da / DC ≦ 1.89 and 0.24 ≦ db / DC ≦ 1.89 are satisfied, the carrier 60 is in a plane direction orthogonal to the rotation axis of the sun gear 40. It is possible to rotate and revolve with virtually no tilt while maintaining a conforming posture. Both main surfaces of the glass substrate 1G held by the carrier 60 can be effectively polished while receiving an appropriate and uniform pressing force from the upper polishing pad 21 and the lower polishing pad 31.
 図12に示すように、サンギア40の回転軸に対して平行な方向における凹部51の幅寸法をTAとし、同方向におけるガラス基板1Gの厚さ寸法をTBとすると、TA<TBの関係が成立しているとよい。凹部51の幅寸法TAは、キャリア60の噛合歯62の幅寸法よりも大きい値である。TA<TBの関係が成立していることによって、キャリア60の噛合歯62の上下方向における不要な移動をより一層抑制することができる。この特徴については、インターナルギア50に基づき説明したが、サンギア40についても同様である。 As shown in FIG. 12, when the width dimension of the recess 51 in the direction parallel to the rotation axis of the sun gear 40 is TA and the thickness dimension of the glass substrate 1G in the same direction is TB, the relationship of TA <TB is established. It is good to have. The width dimension TA of the recess 51 is larger than the width dimension of the meshing teeth 62 of the carrier 60. Since the relationship of TA <TB is established, unnecessary movement of the meshing teeth 62 of the carrier 60 in the vertical direction can be further suppressed. Although this feature has been described based on the internal gear 50, the same applies to the sun gear 40.
 図13に示すインターナルギア50Zのように、仮に歯面52が上記のような凹部を有していないとする。この場合、キャリア60のうちの噛合歯62側(キャリア60の外周側)の部分は、自由端を形成しているために上下方向に移動しやすくなる。図13においては、キャリア60が回転している時に、噛合歯62の位置が上方向に変位し、キャリア60の外周部分が湾曲した状態が示されている。キャリア60の噛合歯62は、インターナルギア50Zの歯面52に適切には噛合しておらず、ガラス基板1Gに不要なモーメントが作用している可能性もある。 Suppose that the tooth surface 52 does not have the recess as described above as in the internal gear 50Z shown in FIG. In this case, the portion of the carrier 60 on the side of the meshing teeth 62 (the outer peripheral side of the carrier 60) is easy to move in the vertical direction because it forms a free end. In FIG. 13, when the carrier 60 is rotating, the position of the meshing teeth 62 is displaced upward, and the outer peripheral portion of the carrier 60 is curved. The meshing teeth 62 of the carrier 60 are not properly meshed with the tooth surfaces 52 of the internal gear 50Z, and an unnecessary moment may be applied to the glass substrate 1G.
 この状態でガラス基板1Gに研磨が行われると、上研磨パッド21の上研磨面22および下研磨パッド31の下研磨面32は、キャリア60との接触によって損傷する場合がある。損傷した上研磨パッド21および下研磨パッド31を用いて研磨が行われた場合、ガラス基板1Gの両主表面には微細なピットまたは付着物が欠陥として形成される。この欠陥は、ガラス基板1Gが磁気ディスク1として用いられた時に、リード/ライトエラーおよびヘッドクラッシュなどを誘発する。 If the glass substrate 1G is polished in this state, the upper polishing surface 22 of the upper polishing pad 21 and the lower polishing surface 32 of the lower polishing pad 31 may be damaged by contact with the carrier 60. When polishing is performed using the damaged upper polishing pad 21 and lower polishing pad 31, fine pits or deposits are formed as defects on both main surfaces of the glass substrate 1G. This defect induces read / write errors and head crashes when the glass substrate 1G is used as the magnetic disk 1.
 ここで、0.24>da/DCおよび0.24>db/DCとなると、ギア間の噛合位置が上下方向に移動してキャリア60の外周部分が湾曲しやすくなる。研磨パッドに傷が入り、高品質を有するガラス基板1Gを得にくくなる。一方で、da/DC>1.89およびdb/DC>1.89となると、キャリア60が上下定盤の研磨面内方向に移動しやすくなり、ガラス基板1Gに対して均質な研磨を行なうことが難しくなり、結果として高品質を有するガラス基板1Gを得にくくなる。 Here, when 0.24> da / DC and 0.24> db / DC, the meshing position between the gears moves in the vertical direction, and the outer peripheral portion of the carrier 60 is easily curved. The polishing pad is scratched, making it difficult to obtain a high-quality glass substrate 1G. On the other hand, when da / DC> 1.89 and db / DC> 1.89, the carrier 60 can easily move in the polishing surface direction of the upper and lower surface plates, and perform uniform polishing on the glass substrate 1G. As a result, it becomes difficult to obtain a glass substrate 1G having high quality.
 したがって本実施の形態においては、サンギア40に凹部41が設けられ、インターナルギア50に凹部51が設けられ、0.24≦da/DC≦1.89および0.24≦db/DC≦1.89の式が満足されていることにより、キャリア60は、サンギア40の回転軸に対して直交する面方向に沿った姿勢を維持しながら、実質的にほとんど傾くことなく、自転および公転することができる。キャリア60に保持されたガラス基板1Gの両主表面は、上研磨パッド21および下研磨パッド31から適正かつ均等な押圧力を受けながら、効果的に研磨されることが可能となる。 Therefore, in the present embodiment, the sun gear 40 is provided with the recess 41 and the internal gear 50 is provided with the recess 51, and 0.24 ≦ da / DC ≦ 1.89 and 0.24 ≦ db / DC ≦ 1.89. Is satisfied, the carrier 60 can rotate and revolve with substantially no inclination while maintaining the posture along the surface direction orthogonal to the rotation axis of the sun gear 40. . Both main surfaces of the glass substrate 1G held by the carrier 60 can be effectively polished while receiving an appropriate and uniform pressing force from the upper polishing pad 21 and the lower polishing pad 31.
 上研磨パッド21の上研磨面22および下研磨パッド31の下研磨面32に傷が付くことも全くまたはほとんど無く、ガラス基板1Gの両主表面に微細なピットまたは付着物が欠陥として形成されることも効果的に抑制されている。したがって、本実施の形態における情報記録媒体用ガラス基板の製造方法および製造装置によって製造された情報記録媒体用ガラス基板は、より高い表面平滑性を有することとなる。 There is no or almost no scratch on the upper polishing surface 22 of the upper polishing pad 21 and the lower polishing surface 32 of the lower polishing pad 31, and fine pits or deposits are formed as defects on both main surfaces of the glass substrate 1G. This is also effectively suppressed. Therefore, the glass substrate for information recording media manufactured by the manufacturing method and manufacturing apparatus of the glass substrate for information recording media in this Embodiment has higher surface smoothness.
 本実施の形態においては、サンギア40に凹部41が設けられ、インターナルギア50に凹部51が設けられるという態様に基づいて説明したが、サンギア40にのみ凹部41が設けられインターナルギア50に凹部51が設けられない場合であっても、サンギア40に凹部41が設けられずインターナルギア50にのみ凹部51が設けられる場合であっても、略同様の作用および効果を得ることができる。 In the present embodiment, the sun gear 40 is provided with the recess 41 and the internal gear 50 is provided with the recess 51. However, only the sun gear 40 is provided with the recess 41 and the internal gear 50 has the recess 51. Even if it is not provided, even if the sun gear 40 is not provided with the recess 41 and only the internal gear 50 is provided with the recess 51, substantially the same operations and effects can be obtained.
 [実施の形態2]
 図14に示すインターナルギア50Aのように、歯面52には、円周方向に沿って環状に連続する一つの凹溝55が形成されていてもよい。凹溝55は、サンギア40の回転軸に対して平行な方向(図14紙面上下方向)において同一の高さ位置および同一の幅寸法を持って形成されている。この場合の凹み深さは、サンギア40の回転軸に対して垂直な方向において、インターナルギア50Aの歯面から最も遠くにある凹溝55の表面までの距離である。当該構成によっても、上記の実施の形態1と略同様の作用および効果を得ることができる。
[Embodiment 2]
As in the internal gear 50 </ b> A shown in FIG. 14, the tooth surface 52 may be formed with one concave groove 55 that is annularly continuous along the circumferential direction. The concave groove 55 is formed with the same height position and the same width dimension in the direction parallel to the rotation axis of the sun gear 40 (the vertical direction in FIG. 14). In this case, the depth of the recess is a distance from the tooth surface of the internal gear 50 </ b> A to the surface of the recess groove 55 farthest in the direction perpendicular to the rotation axis of the sun gear 40. Also with this configuration, it is possible to obtain substantially the same operations and effects as in the first embodiment.
 本実施の形態においてはインターナルギア50Aに凹溝55が設けられるという態様に基づいて説明したが、サンギアにのみ凹溝が設けられインターナルギアに凹溝が設けられない場合であっても、サンギアに凹溝が設けられずインターナルギアにのみ凹溝が設けられる場合であっても、略同様の作用および効果を得ることができる。 In the present embodiment, the description has been made based on the aspect in which the groove 55 is provided in the internal gear 50A. However, even if the groove is provided only in the sun gear and the groove is not provided in the internal gear, Even when the concave groove is not provided and the concave groove is provided only in the internal gear, substantially the same operations and effects can be obtained.
 [実験例]
 図15を参照して、上述の各実施の形態(第2ポリッシュ工程S18)に関連して行なった実験例について説明する。当該実験例は、実施例1~3および比較例1~3を含むものとした。いずれの例においても、ピッチ円直径が約423mmで厚さが650μmのキャリアと、外径が65mmで厚さが810μmのガラス基板とを準備した。5枚のキャリアを用い、それぞれのキャリアは20枚のガラス基板を保持したものとし、合計で100枚のガラス基板に対して同時に研磨処理を行なうものとした。研磨装置には、浜井産業株式会社製の16B型両面研磨機を用いた。
[Experimental example]
With reference to FIG. 15, the experiment example performed in relation to each of the above-described embodiments (second polishing step S18) will be described. The experimental examples included Examples 1 to 3 and Comparative Examples 1 to 3. In each example, a carrier having a pitch circle diameter of about 423 mm and a thickness of 650 μm and a glass substrate having an outer diameter of 65 mm and a thickness of 810 μm were prepared. Five carriers were used, and each carrier held 20 glass substrates, and a total of 100 glass substrates were polished simultaneously. A 16B double-side polishing machine manufactured by Hamai Sangyo Co., Ltd. was used as the polishing apparatus.
 実施例1~3および比較例1~3の製造方法に基づき得られた100枚のガラス基板に対して、収率を計測した。収率の計測は、洗浄後のガラス基板に対して両主表面上のディフェクトを計測するものであり、SSI-640(He-Neレーザー光源を用いた表面検査装置、システム精工社製)を使用するものとした。 The yield was measured on 100 glass substrates obtained based on the production methods of Examples 1 to 3 and Comparative Examples 1 to 3. Yield is measured by measuring defects on both main surfaces of the cleaned glass substrate using SSI-640 (surface inspection device using He-Ne laser light source, manufactured by System Seiko Co., Ltd.). To do.
 実施例1~3および比較例2,3においては、凹部41を有するサンギア40および凹部51を有するインターナルギア50を用いるものとした。サンギア40の回転軸に対して平行な方向における凹部51の幅寸法(図12中のTA)は、700μmとした。同方向における凹部41の幅寸法も、700μmとした。比較例1においては、凹部41を有しないサンギアおよび凹部51を有しないインターナルギアを用いるものとした。 In Examples 1 to 3 and Comparative Examples 2 and 3, the sun gear 40 having the recess 41 and the internal gear 50 having the recess 51 were used. The width dimension (TA in FIG. 12) of the recess 51 in the direction parallel to the rotation axis of the sun gear 40 was 700 μm. The width dimension of the recess 41 in the same direction was also set to 700 μm. In Comparative Example 1, a sun gear that does not have the recess 41 and an internal gear that does not have the recess 51 are used.
 実施例1~3においては、0.24≦da/DC≦1.89および0.24≦db/DC≦1.89の式が満足されていることにより、研磨パッドに傷が発生することも無く、最終製品としての収率も高い値を示すことが分かった。サンギア40に凹部41が設けられ、インターナルギア50に凹部51が設けられ、0.24≦da/DC≦1.89および0.24≦db/DC≦1.89の式が満足されていることにより、キャリア60は、サンギア40の回転軸に対して直交する面方向に沿った姿勢を維持しながら、実質的にほとんど傾くことなく、自転および公転することができたためであると考えられる。 In Examples 1 to 3, scratches may occur on the polishing pad when the expressions 0.24 ≦ da / DC ≦ 1.89 and 0.24 ≦ db / DC ≦ 1.89 are satisfied. It was found that the yield as the final product was also high. The sun gear 40 is provided with a recess 41, the internal gear 50 is provided with a recess 51, and the equations 0.24 ≦ da / DC ≦ 1.89 and 0.24 ≦ db / DC ≦ 1.89 are satisfied. Therefore, it is considered that the carrier 60 was able to rotate and revolve with substantially no inclination while maintaining the posture along the plane direction orthogonal to the rotation axis of the sun gear 40.
 一方で比較例1においては、研磨パッドに傷が発生し、最終製品としての収率も低い値を示すことが分かった。比較例2においては、0.24>da/DCおよび0.24>db/DCとなっており、キャリア60とサンギア40との間の噛合位置、ならびにキャリア60とインターナルギア50との間の噛合位置が上下方向に移動してキャリア60の外周部分が湾曲しやすいためであると考えられる。研磨パッドに傷が発生し、比較例3においては、da/DC>1.89およびdb/DC>1.89となっており、研磨作業中にキャリアのクラッシュが発生してしまい、適正な研磨工程を行なうことができなかった。 On the other hand, in Comparative Example 1, it was found that the polishing pad was scratched and the yield as the final product was low. In Comparative Example 2, 0.24> da / DC and 0.24> db / DC are satisfied, and the meshing position between the carrier 60 and the sun gear 40 and the meshing between the carrier 60 and the internal gear 50 are satisfied. This is probably because the position moves up and down and the outer peripheral portion of the carrier 60 tends to bend. A scratch was generated on the polishing pad, and in Comparative Example 3, da / DC> 1.89 and db / DC> 1.89, and a carrier crash occurred during the polishing operation, and proper polishing was performed. The process could not be performed.
 したがって、上述の各実施の形態における情報記録媒体用ガラス基板の製造方法および製造装置によって製造された情報記録媒体用ガラス基板は、より高い表面平滑性を有するものとなることがわかった。 Therefore, it was found that the glass substrate for information recording medium manufactured by the method and apparatus for manufacturing the glass substrate for information recording medium in each of the above-described embodiments has higher surface smoothness.
 以上、本発明に基づいた各実施の形態および実施例について説明したが、今回開示された各実施の形態および実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although each embodiment and Example based on this invention were described, each embodiment and Example disclosed this time are illustrations in all points, and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 磁気ディスク、1G ガラス基板、11 孔、12 外周端面、13 内周端面、13a,13b チャンファ面、14 表主表面、15 裏主表面、16 磁気薄膜層、20 上定盤、21 上研磨パッド、22 上研磨面、30 下定盤、31 下研磨パッド、32 下研磨面、40 サンギア、41,51 凹部、42,52 歯面、43,53 歯先、50,50A,50Z インターナルギア、55 凹溝、60 キャリア、61 保持部、62 噛合歯、68 ピッチ円、100 両面研磨装置、DC ピッチ円直径、S10 ガラス溶融工程、S11 成形工程、S12 第1ラップ工程、S13 コアリング工程、S14 第2ラップ工程、S15 外周/内周研磨工程、S16 第1ポリッシュ工程、S17 化学強化工程、S18 第2ポリッシュ工程、S19 最終洗浄工程、TA 幅寸法、TB 厚さ寸法、da,db 凹み深さ。 1 magnetic disk, 1G glass substrate, 11 holes, 12 outer peripheral end surface, 13 inner peripheral end surface, 13a, 13b chamfer surface, 14 front main surface, 15 back main surface, 16 magnetic thin film layer, 20 upper surface plate, 21 upper polishing pad 22 upper polishing surface, 30 lower surface plate, 31 lower polishing pad, 32 lower polishing surface, 40 sun gear, 41, 51 recess, 42, 52 tooth surface, 43, 53 tooth tip, 50, 50A, 50Z internal gear, 55 recess Groove, 60 carrier, 61 holding part, 62 meshing teeth, 68 pitch circle, 100 double-side polishing apparatus, DC pitch circle diameter, S10 glass melting process, S11 molding process, S12 first lapping process, S13 coring process, S14 second Lapping step, S15 outer / inner polishing step, S16 first polishing step, S17 chemistry Step, S18 second polishing step, S19 final wash step, TA width, TB thickness, da, db recess depth.

Claims (5)

  1.  ガラス基板の表面を研磨する研磨工程を備える情報記録媒体用ガラス基板の製造方法であって、
     前記研磨工程は、
     ガラス基板およびキャリアをサンギアおよびインターナルギアの間に配置する工程と、
     前記キャリアの外周を前記サンギアおよび前記インターナルギアの双方の歯面に噛合させた状態で前記サンギアおよび前記インターナルギアを用いて前記キャリアを回転させ、研磨パッドの研磨面に対して前記ガラス基板を摺接させて前記ガラス基板の表面を研磨する工程と、を含み、
     前記サンギアの全ての歯面およびまたは前記インターナルギアの全ての歯面は、歯先から前記キャリアの回転軸に対して直交する方向に凹む形状を有する凹部を含み、前記凹部には前記キャリアが回転する時に前記キャリアの前記外周が噛合し、
     前記キャリアのピッチ円直径をDC(単位:m)とし、前記回転軸に対して直交する方向における前記凹部の前記歯先からの凹み深さをd(単位:mm)とすると、
    0.24≦d/DC≦1.89の関係が成立している、
    情報記録媒体用ガラス基板の製造方法。
    A method for producing a glass substrate for an information recording medium comprising a polishing step for polishing the surface of a glass substrate,
    The polishing step includes
    Placing the glass substrate and the carrier between the sun gear and the internal gear;
    The carrier is rotated using the sun gear and the internal gear while the outer periphery of the carrier is engaged with the tooth surfaces of both the sun gear and the internal gear, and the glass substrate is slid against the polishing surface of the polishing pad. Polishing the surface of the glass substrate in contact with,
    All the tooth surfaces of the sun gear and / or all the tooth surfaces of the internal gear include a recess having a shape recessed from a tooth tip in a direction perpendicular to the rotation axis of the carrier, and the carrier rotates in the recess. The outer circumference of the carrier meshes when
    When the pitch circle diameter of the carrier is DC (unit: m), and the depth of the recess from the tooth tip in the direction orthogonal to the rotation axis is d (unit: mm),
    The relationship 0.24 ≦ d / DC ≦ 1.89 is established,
    A method for producing a glass substrate for an information recording medium.
  2.  前記回転軸に対して平行な方向における前記凹部の幅寸法をTAとし、前記回転軸に対して平行な方向における前記ガラス基板の厚さ寸法をTBとすると、
    TA<TBの関係が成立している、
    請求項1に記載の情報記録媒体用ガラス基板の製造方法。
    If the width dimension of the recess in the direction parallel to the rotation axis is TA, and the thickness dimension of the glass substrate in the direction parallel to the rotation axis is TB,
    TA <TB is established,
    The manufacturing method of the glass substrate for information recording media of Claim 1.
  3.  前記凹部は、円周方向に沿って環状に連続する一つの凹溝を形成している、
    請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。
    The concave portion forms one concave groove that is annularly continuous along the circumferential direction.
    The manufacturing method of the glass substrate for information recording media of Claim 1 or 2.
  4.  請求項1から3のいずれかに記載の情報記録媒体用ガラス基板の製造方法を使用して製造された、
    情報記録媒体用ガラス基板。
    It manufactured using the manufacturing method of the glass substrate for information recording media in any one of Claim 1 to 3.
    Glass substrate for information recording media.
  5.  研磨パッドと、
     ガラス基板およびキャリアが間に配置されるサンギアおよびインターナルギアと、を備え、
     前記サンギアおよび前記インターナルギアがこれらの双方の歯面に前記キャリアの外周を噛合させた状態で前記キャリアを回転させることにより、前記研磨パッドの研磨面に対して前記ガラス基板が摺接されて前記ガラス基板の表面が研磨され、
     前記サンギアの全ての歯面およびまたは前記インターナルギアの全ての歯面は、歯先から前記キャリアの回転軸に対して直交する方向に凹む形状を有する凹部を含み、前記凹部には前記キャリアが回転する時に前記キャリアの前記外周が噛合し、
     前記キャリアのピッチ円直径をDC(単位:m)とし、前記回転軸に対して直交する方向における前記凹部の前記歯先からの凹み深さをd(単位:mm)とすると、
    0.24≦d/DC≦1.89の関係が成立している、
    情報記録媒体用ガラス基板の製造装置。
    A polishing pad;
    A sun gear and an internal gear between which the glass substrate and the carrier are disposed,
    The glass substrate is slidably contacted with the polishing surface of the polishing pad by rotating the carrier in a state where the sun gear and the internal gear mesh the outer periphery of the carrier with both tooth surfaces. The surface of the glass substrate is polished,
    All the tooth surfaces of the sun gear and / or all the tooth surfaces of the internal gear include a recess having a shape recessed from a tooth tip in a direction perpendicular to the rotation axis of the carrier, and the carrier rotates in the recess. The outer circumference of the carrier meshes when
    When the pitch circle diameter of the carrier is DC (unit: m), and the depth of the recess from the tooth tip in the direction orthogonal to the rotation axis is d (unit: mm),
    The relationship 0.24 ≦ d / DC ≦ 1.89 is established,
    Equipment for manufacturing glass substrates for information recording media.
PCT/JP2013/084419 2012-12-28 2013-12-24 Glass substrate for use in information recording medium, and manufacturing method and manufacturing device of glass substrate for use in information recording medium WO2014103985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380061151.1A CN104812531B (en) 2012-12-28 2013-12-24 Glass substrate for use in information recording medium, and manufacturing method and manufacturing device of glass substrate for use in information recording medium
JP2014554438A JP5960288B2 (en) 2012-12-28 2013-12-24 Method and apparatus for manufacturing glass substrate for information recording medium, and carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012287563 2012-12-28
JP2012-287563 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103985A1 true WO2014103985A1 (en) 2014-07-03

Family

ID=51021067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084419 WO2014103985A1 (en) 2012-12-28 2013-12-24 Glass substrate for use in information recording medium, and manufacturing method and manufacturing device of glass substrate for use in information recording medium

Country Status (3)

Country Link
JP (1) JP5960288B2 (en)
CN (1) CN104812531B (en)
WO (1) WO2014103985A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425376A (en) * 1990-05-16 1992-01-29 Showa Alum Corp Polishing device
JPH0425374A (en) * 1990-05-16 1992-01-29 Showa Alum Corp Polishing device
JPH11179649A (en) * 1997-12-16 1999-07-06 Speedfam Co Ltd Take out method of workpiece and surface polishing device with workpiece take out mechanism
JPH11254303A (en) * 1998-03-11 1999-09-21 Daido Steel Co Ltd Lapping machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083917A1 (en) * 2002-03-28 2003-10-09 Shin-Etsu Handotai Co.,Ltd. Double side polishing device for wafer and double side polishing method
JPWO2006090661A1 (en) * 2005-02-25 2008-07-24 信越半導体株式会社 Carrier for double-side polishing apparatus, double-side polishing apparatus and double-side polishing method using the same
CN101036976A (en) * 2006-03-13 2007-09-19 中国科学院半导体研究所 Twp-sided polishing machine
JP2008207268A (en) * 2007-02-26 2008-09-11 Kishida Seisakusho:Kk Work holder
DE102009038942B4 (en) * 2008-10-22 2022-06-23 Peter Wolters Gmbh Device for machining flat workpieces on both sides and method for machining a plurality of semiconductor wafers simultaneously by removing material from both sides
KR101209271B1 (en) * 2009-08-21 2012-12-06 주식회사 엘지실트론 Apparatus for double side polishing and Carrier for double side polishing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425376A (en) * 1990-05-16 1992-01-29 Showa Alum Corp Polishing device
JPH0425374A (en) * 1990-05-16 1992-01-29 Showa Alum Corp Polishing device
JPH11179649A (en) * 1997-12-16 1999-07-06 Speedfam Co Ltd Take out method of workpiece and surface polishing device with workpiece take out mechanism
JPH11254303A (en) * 1998-03-11 1999-09-21 Daido Steel Co Ltd Lapping machine

Also Published As

Publication number Publication date
CN104812531A (en) 2015-07-29
CN104812531B (en) 2017-05-03
JP5960288B2 (en) 2016-08-02
JPWO2014103985A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5593224B2 (en) Magnetic disk substrate, manufacturing method thereof, and magnetic disk
JP4998095B2 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP4748115B2 (en) Glass substrate for magnetic recording medium and magnetic recording medium
WO2010041536A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
WO2010041537A1 (en) Process for producing glass substrate, and process for producing magnetic recording medium
WO2009081565A1 (en) Manufacturing method of glass substrate for magnetic disk
JP5960288B2 (en) Method and apparatus for manufacturing glass substrate for information recording medium, and carrier
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP6138113B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding
CN108564970B (en) Method for manufacturing glass substrate, and method for manufacturing glass substrate for magnetic disk
JP6042453B2 (en) Manufacturing method of glass substrate for information recording medium
JP5461936B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5235916B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5706250B2 (en) Glass substrate for HDD
WO2013146132A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
WO2014045653A1 (en) Method for manufacturing glass substrate for information recording medium
JP6138114B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for polishing
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk
WO2013146134A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP2014063543A (en) Method for manufacturing glass substrate for information recording medium
WO2013146131A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP2011062781A (en) Manufacturing method of glass substrate for magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868905

Country of ref document: EP

Kind code of ref document: A1