WO2014103983A1 - Method for producing glass substrate for information recording medium - Google Patents

Method for producing glass substrate for information recording medium Download PDF

Info

Publication number
WO2014103983A1
WO2014103983A1 PCT/JP2013/084417 JP2013084417W WO2014103983A1 WO 2014103983 A1 WO2014103983 A1 WO 2014103983A1 JP 2013084417 W JP2013084417 W JP 2013084417W WO 2014103983 A1 WO2014103983 A1 WO 2014103983A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
glass
information recording
evaluation
recording medium
Prior art date
Application number
PCT/JP2013/084417
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 高田
直之 福本
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2014103983A1 publication Critical patent/WO2014103983A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for producing a glass substrate for an information recording medium.
  • HDD hard disk drive
  • a glass surface evaluation apparatus using laser scattering is used to detect minute defects on the surface of a glass substrate used for an information recording medium.
  • the detection accuracy of minute defects has been improved by improving the output of a laser used in a glass surface evaluation apparatus, making the laser spot diameter finer, and the like.
  • Patent Document 1 discloses a glass for detecting defects with high accuracy without being affected by the directivity of scattered light due to scratches and chipping results on the glass substrate surface. A surface evaluation apparatus is disclosed.
  • the glass substrate noise signal defects of the glass substrate itself
  • the glass substrate internal defect signal inclusion, bubble, This is because it is difficult to detect the actual defect signal and the substrate internal scattering signal separately from the glass substrate noise.
  • the actual defect signal of the glass substrate and the substrate internal scattering signal are compared to the glass substrate using an amorphous material. Is more difficult to detect.
  • the present invention has been made in order to solve the above-mentioned problems, and includes an evaluation process that makes it possible to easily detect an actual defect signal and a substrate internal scattering signal of a glass substrate by reducing glass substrate noise. It is providing the manufacturing process of the glass substrate for information recording media provided.
  • the method for producing a glass substrate for information recording medium is a method for producing a glass substrate for information recording medium, which is used for an information recording medium in which a magnetic thin film is formed on the surface of the glass substrate.
  • the evaluation step has a reflectance higher than the reflectance of the surface of the glass substrate on the surface of the glass substrate for evaluation selected from the glass substrate group.
  • the transition step includes a step of transferring only the glass substrate group to which the glass substrate evaluated to be acceptable belongs to the step of forming the magnetic thin film except the glass substrate used in the evaluation in the evaluation step. Including.
  • the reflective film is a film using a metal material.
  • the metallic material consists of a material selected from the group of Cr, Al and Ag.
  • the reflective film has a thickness of 10 nm to 50 nm.
  • the glass substrate is a crystallized glass material.
  • a manufacturing process of a glass substrate for an information recording medium comprising an evaluation process that makes it possible to easily detect a glass substrate defect signal and a substrate internal scattering signal by reducing glass substrate noise. It is possible to provide.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is a top view which shows the information recording medium provided with the glass substrate as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a flowchart which shows the manufacturing method of a glass substrate. It is a schematic diagram which shows the evaluation process of the glass substrate surface using a defect inspection apparatus.
  • FIG. 1 It is a figure which shows the glass substrate noise in the evaluation process of the glass substrate using an amorphous material, and the intensity image of an actual defect signal, (A) is evaluation with respect to the conventional defect, (B) is evaluation with respect to the conventional minute defect, ( C) is a diagram showing an evaluation for a minute defect when a reflective film is provided. It is a figure which shows the intensity
  • FIG. 6 is a diagram showing evaluation results in Examples 1-1 to 1-4 and Comparative Example 1.
  • FIG. 6 is a diagram showing evaluation results in Examples 2-1 to 2-4 and Comparative Example 2.
  • FIG. 1 is a perspective view showing the information recording apparatus 30.
  • the information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
  • the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28.
  • a spindle motor (not shown) is installed on the upper surface of the housing 20.
  • An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
  • the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
  • a compression stress layer 12 see FIG. 5
  • a magnetic recording layer 14 see FIGS. 4 and 5 are formed on the glass substrate 1. To be manufactured.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
  • a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
  • a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
  • the information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
  • FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole.
  • the hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3.
  • a chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4.
  • a chamfered portion 8 (chamfer portion) is formed between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
  • the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
  • the thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
  • the thickness of a glass substrate means the average value of the value measured in arbitrary arbitrary points which become point symmetry on a glass substrate.
  • adopted is used for a portable use.
  • the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
  • FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14.
  • the compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1.
  • the magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12.
  • the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed.
  • the magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
  • the magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method).
  • the magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
  • the thickness of the magnetic recording layer 14 is about 0.3 ⁇ m to 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m for the sputtering method, and about 0.05 ⁇ m to about the electroless plating method. 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
  • a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
  • the surface of the magnetic recording layer 14 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • the magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary.
  • the underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
  • protective layers may be formed on the protective layer or instead of the protective layer.
  • colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
  • Glass substrate manufacturing method Next, the manufacturing method of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG.
  • step 10 a “glass melting step” of step 10 (hereinafter abbreviated as “S10”, the same applies to step 11 and subsequent steps), the glass material constituting the glass substrate is melted.
  • a glass substrate was produced by pressing the molten glass material using an upper mold and a lower mold.
  • the glass composition used was a general aluminosilicate glass.
  • the method for producing the glass substrate is not limited to molding, and may be cut out from plate glass, which is a known technique, and the glass composition is not limited thereto.
  • both main surfaces of the glass substrate were lapped.
  • This first lapping step was performed using a double-sided lapping device using a planetary gear mechanism. Specifically, the lapping platen was pressed on both surfaces of the glass substrate from above and below, the grinding liquid was supplied onto the main surface of the glass substrate, and these were moved relatively to perform lapping. By this lapping process, a glass substrate having a substantially flat main surface was obtained.
  • a hole was formed in the center of the glass substrate using a cylindrical diamond drill to produce an annular glass substrate.
  • the inner peripheral end surface and the outer peripheral end surface of the glass substrate were ground with a diamond grindstone, and a predetermined chamfering process was performed.
  • the fine uneven shape formed on the main surface in the coring and end face processing in the previous step can be removed in advance. As a result, the polishing time of the main surface in the subsequent process can be shortened.
  • the outer peripheral end surface and the inner peripheral end surface of the glass substrate were subjected to mirror polishing by brush polishing.
  • a slurry containing general cerium oxide abrasive grains was used as the abrasive grains.
  • the main surface was polished.
  • the first polishing step is mainly intended to correct scratches and warpage remaining on the main surface in the first and second lapping steps (S12, S14) described above.
  • the main surface was polished by a double-side polishing apparatus having a planetary gear mechanism.
  • the abrasive general cerium oxide abrasive grains were used.
  • a surface reinforcing layer was formed on the main surface of the glass substrate 1G.
  • chemical strengthening was performed by bringing the glass substrate 1G into contact with a mixed solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. for about 30 minutes.
  • the lithium ion and sodium ion on the inner peripheral end surface and outer peripheral end surface of the glass substrate are respectively replaced with sodium ions and potassium ions in the chemical strengthening solution, and a compressive stress layer is formed, thereby forming the main surface of the glass substrate and The end face was strengthened.
  • this chemical strengthening process is not an essential process, and when it is not necessary to strengthen the main surface and the end face of the glass substrate, the chemical strengthening process may not be performed.
  • the main surface polishing step was performed in the “second polishing step” of S18.
  • This second polishing step aims to eliminate the fine defects on the main surface that have been generated and remain in the above-described steps and finish it in a mirror shape, to eliminate warpage and finish it to a desired flatness.
  • polishing was performed by a double-side polishing apparatus having a planetary gear mechanism.
  • abrasive colloidal silica having an average particle diameter of about 20 nm was used to obtain a smooth surface.
  • the final cleaning process is a process performed at the end of the glass substrate manufacturing process, and includes a drying process as appropriate.
  • the shape inspection and the surface quality inspection of the glass substrate were performed on all the glass substrates after the final cleaning process. Thereafter, a glass substrate group having a plurality of glass substrates was prepared. Usually, one glass substrate group includes 100 glass substrates.
  • the reflectance of the inspection laser light on the surface of the glass substrate for evaluation selected from the glass substrate group is higher than the reflectance of the surface.
  • a reflective film was formed.
  • FIG. 3 the case where the reflective film 100 is formed on the glass substrate 1 is illustrated by a one-dot chain line.
  • the inspection laser beam When the inspection laser beam is directly incident on the surface of the glass substrate on which the reflective film is not formed, the laser beam is incident on the inside of the glass substrate, and the laser beam is irregularly reflected inside the glass substrate. As a result, the level of glass substrate noise detected by the glass surface evaluation apparatus increases.
  • the inspection laser when the inspection laser is irradiated from the air on the surface side where the reflective film is provided on the glass substrate on which the reflective film having a reflectance higher than the reflectance of the surface is reflected with respect to the inspection laser light
  • the inspection laser is reflected according to the surface state (unevenness state) of the glass substrate, and the inspection laser incident inside the glass substrate is reflected by the reflection film, and the surface of the glass substrate on the side where the reflection film is formed Is not emitted to the outside.
  • the reflected light of the inspection laser detected by the glass surface evaluation apparatus is only the inspection laser reflected according to the surface state of the glass substrate, and the level of the glass substrate noise detected by the glass surface evaluation apparatus can be lowered. It becomes possible.
  • a reflective film made of a metal material generally used as a reflective coat may be used.
  • a metal film made of a material selected from the group consisting of Cr, Al, and Ag can generate a reflective surface having good reflection characteristics for various measurement wavelengths, and thus it is preferable to use it as a reflective film in this embodiment.
  • FIG. 7 is a schematic view showing an evaluation process of the glass substrate surface using the glass surface evaluation apparatus.
  • An inspection laser having a wavelength of, for example, 390 nm to 650 nm is incident on the glass substrate 1 from the irradiation optical system 110 at a different angle from the irradiation optical system 110, and each scattered signal is detected by the detection optical system 210.
  • a threshold value between a typical glass substrate noise and an actual defect signal By setting a threshold value between a typical glass substrate noise and an actual defect signal, a defect on the glass substrate surface is quantitatively detected.
  • the average reflectance of the glass substrate before the formation of the reflective film at the inspection laser wavelength of 390 nm to 650 nm with respect to the air is generally about 3% to 5%. It is desirable that the reflectance is 10% or more, which is twice or more the reflectance before coating.
  • FIG. 8 and FIG. 9 are diagrams showing strength images of glass substrate noise and actual defect signals in an evaluation process of a glass substrate using an amorphous material and a crystallized glass material
  • FIG. (B) is an evaluation for a conventional minute defect
  • (C) is a diagram showing an evaluation for a minute defect when a reflective film is provided.
  • FIG. 10 and FIG. 11 are diagrams showing strength images of glass substrate noise and internal defect signals in the evaluation process of a glass substrate using an amorphous material and a crystallized glass material
  • FIG. Evaluation, (B) is a diagram showing evaluation for a minute defect when a reflective film is provided.
  • the level of the actual defect signal DS1 for the conventional relatively large actual defect is higher than the level of the glass substrate noise signal GLN1. Since there is a large level difference, it was possible to clearly distinguish both signals.
  • the level of the actual defect signal DS2 with respect to a small actual defect has a level difference with respect to the level of the glass substrate noise signal GLN1, and it is possible to clearly identify both signals.
  • the crystallized glass material is used for the glass substrate, since the microcrystals existing inside the glass substrate become a scattering factor, as shown in (A), the crystallized glass material is The level of the glass substrate noise signal GLN2 generated due to the scattering factor inside the glass substrate is higher than that of the amorphous material. Therefore, even with the conventional actual defect signal DS3 for a relatively large actual defect, it may be difficult to clearly distinguish both signals with respect to the level of the glass substrate noise signal GLN2.
  • the level of the actual defect signal DS4 with respect to a small actual defect has a level difference with respect to the level of the glass substrate noise signal GLN3, so that both signals can be clearly identified.
  • the internal defect signal due to inclusion, bubbles, internal contamination, etc. as shown in FIG. It was difficult to distinguish from the defect signal DS6.
  • a glass substrate on which a reflective film having a reflectance higher than the reflectance of the glass substrate surface is used for the inspection.
  • the level of the glass substrate noise signal GLN3 generated due to the scattering factor inside the glass substrate detected by the glass surface evaluation apparatus can be lowered (in (B)).
  • the reflection film provided on the surface can reduce the incidence of laser light on the internal defects.
  • the amount of emission from the inside of the glass substrate can be suppressed, so that the internal defect signal DS6 can be prevented from being generated, and only the actual defect signal DS5 can be detected with high accuracy. It becomes possible.
  • the glass substrate can be evaluated based only on the actual defect signal DS5.
  • the present embodiment as shown in (B), a glass substrate on which a reflective film having a reflectance higher than the reflectance of the glass substrate surface is used for the inspection.
  • the level of the glass substrate noise signal GLN4 generated due to the scattering factor inside the glass substrate detected by the glass surface evaluation apparatus can be lowered (in (B)).
  • the internal defect signal DS8 can be prevented from being generated for the same reason as described above, so that only the actual defect signal DS7 can be accurately detected.
  • the manufacturing method of the glass substrate in the present embodiment is configured as described above.
  • a glass substrate 1G shown in FIG. 1 capable of forming a magnetic thin film on the surface of the glass substrate is obtained.
  • the information recording medium 1 shown in FIG. 2 is obtained using the glass substrate 1G thus obtained.
  • the glass substrate used for the evaluation is excluded except for the glass substrate used for the evaluation. Only the group is shifted to the magnetic thin film forming step (S50) for forming the magnetic thin film.
  • both main surfaces of the glass substrate 1G are formed of an adhesion layer made of a Cr alloy and a CoFeZr alloy.
  • An information recording medium of a perpendicular magnetic recording system is formed by sequentially forming a soft magnetic layer, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a C-based protective layer, and an F-based lubricating layer. To manufacture.
  • This configuration is an example of a configuration of a perpendicular magnetic recording system, and a magnetic layer or the like may be configured as an in-plane information recording medium. Thereafter, the information recording medium 1 is completed by performing a heat treatment step and the like.
  • the manufacturing method of the glass substrate for information recording media in this Embodiment evaluation which makes it possible to detect a glass substrate defect signal and a substrate internal scattering signal easily by reducing glass substrate noise.
  • the manufacturing process of the glass substrate for information recording media provided with a process is made possible.
  • the glass substrate noise on the glass substrate surface is reduced and the SN ratio of the defect signal is improved. It becomes possible to make it.
  • FIG. 12 the flow of the evaluation process of the glass substrate in an Example is shown.
  • the steps S10 to S20 described above were performed, and 1000 glass substrates that were determined to be non-defective (passed) in the step S20 were prepared.
  • defects of 1 ⁇ m or more such as scratches or chips on the surface of the glass substrate were determined as defective products (failed).
  • Two glass substrates were selected from one glass substrate group as a glass substrate for evaluation using a glass surface evaluation apparatus (S120).
  • a reflective film was provided on the surface of the glass substrate for evaluation by sputtering (S130).
  • OSA Optical Surface Analyzer
  • 7120 manufactured by KLA-Tencor Candela was used.
  • the glass substrate for evaluation on which the reflective film was formed was evaluated using a glass surface evaluation apparatus (S140).
  • S140 glass surface evaluation apparatus
  • whether or not a non-defective product (pass) is acceptable is determined based on a determination line (in this embodiment, the number of defects of 1 ⁇ m or less is 15 counts or less).
  • the glass substrate group to which the glass substrate determined to be non-defective (pass) is evaluated as non-defective (OK product) (S150).
  • the glass substrate group to which the glass substrate determined to be defective (failed) belongs is evaluated as defective (NG product) (S160), and the process of S18 (second polishing step) is performed again. Processing and reevaluation are performed (S170).
  • the decision line is determined by the required quality of the glass substrate corresponding to the specifications of the hard disk drive in which the glass substrate is finally incorporated.
  • Example 1-1 A sputtering apparatus was used for the reflective film formed on the glass substrate using an amorphous material.
  • a Cr film was formed to a thickness of about 5 nm by discharging for 10 s at a deposition target Cr, a discharge vacuum of 5 ⁇ 10 ⁇ 2 Pa, and an RF power of 500 W.
  • Example 1-1 a glass substrate with a reflective film thickness of 20 nm was prepared as Example 1-2, and a glass substrate with a reflective film thickness of 50 nm was prepared as Example 1-3.
  • Example 1-4 a glass substrate having a reflective film thickness of 90 nm was prepared.
  • Example 1 The evaluation results of Examples 1-1 to 1-4 are shown in FIG.
  • Comparative Example 1 a glass substrate (amorphous material) on which no reflective film was formed was prepared.
  • a magnetic thin film is formed on a glass substrate belonging to a glass substrate group evaluated as good (OK) and incorporated into a hard disk drive, and the rate of occurrence of subsequent errors such as read / write errors and head crashes is confirmed. did.
  • Example 1-1 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 8%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 59%.
  • Example 1-2 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 5%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 87%.
  • Example 1-3 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 4%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 92%.
  • Example 1-4 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 10%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 93%.
  • Example 2-1 A sputtering apparatus was used for the reflective film formed on the glass substrate using the crystallization material.
  • a Cr film was formed to a thickness of about 5 nm by discharging for 10 s at a deposition target Cr, a discharge vacuum of 5 ⁇ 10 ⁇ 2 Pa, and an RF power of 500 W.
  • Example 2-1 a glass substrate with a reflective film thickness of 20 nm was prepared as Example 1-2, and a glass substrate with a reflective film thickness of 50 nm was prepared as Example 1-3.
  • Example 1-4 a glass substrate having a reflective film thickness of 90 nm was prepared.
  • Example 2 The evaluation results of Examples 2-1 to 2-4 are shown in FIG.
  • a glass substrate (crystallization material) on which no reflective film was formed was prepared.
  • a magnetic thin film is formed on a glass substrate belonging to a glass substrate group evaluated as good (OK) and incorporated into a hard disk drive, and the rate of occurrence of subsequent errors such as read / write errors and head crashes is confirmed. did.
  • Example 2-1 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 11%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 53%.
  • Example 2-2 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 7%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 85%.
  • Example 2-3 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 4%. On the other hand, the incidence of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 91%.
  • Example 2-4 the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 14%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 94%.
  • the glass surface evaluation apparatus using laser scattering by forming a reflective film on the surface of the glass substrate, compared to a glass substrate on which no reflective film is formed, By providing the reflective film described above, the glass substrate noise on the glass substrate surface is reduced, and the SN ratio of the defect signal can be improved.
  • the actual defect signal of the glass substrate and the substrate internal scattering signal are compared to the glass substrate using an amorphous material. It was difficult to detect.
  • the thickness of the reflective film is preferably 20 nm to 50 nm.
  • both the glass substrate using an amorphous material and the glass substrate using a crystallized glass material can be used for a glass substrate.
  • a glass substrate using an amorphous material is characterized in that scattered light noise in optical inspection is small because internal light scattering is small. Moreover, there is an advantage that the smoothness after polishing is excellent. On the other hand, a glass substrate using a crystallized glass material has an advantage of excellent strength.

Abstract

The present invention is provided with a step of preparing a glass substrate group having a plurality of glass substrates, an evaluation step of evaluating surfaces of the glass substrates included in the glass substrate group, and a transition step of determining whether or not to transition a glass substrate group to a step of forming a magnetic thin film. The evaluation step includes: a step of forming, on the surface of a glass substrate for evaluation selected from among the glass substrate group, a reflective film for which reflectivity with respect to an inspection-use laser light is higher than reflectivity of the surface of the glass substrate; and a step of evaluating pass or fail of the surface state of the glass substrate using a glass surface evaluation device that radiates an inspection laser on the reflective film and uses scattering of the inspection laser. The transition step includes a step of transitioning, to the step which forms the magnetic thin film, only glass substrate groups to which, in the evaluation step, glass substrates that were evaluated as passing belong, excluding the glass substrate used for evaluation.

Description

情報記録媒体用ガラス基板の製造方法Manufacturing method of glass substrate for information recording medium
 本発明は、情報記録媒体用ガラス基板の製造方法に関する。 The present invention relates to a method for producing a glass substrate for an information recording medium.
 コンピュータなどに用いられる情報記録媒体(磁気ディスク記録媒体)には、従来からアルミニウム基板またはガラス基板(情報記録媒体用ガラス基板)が用いられている。これらの基板上に磁気薄膜層が形成され、磁気薄膜層を磁気ヘッドで磁化することにより、磁気薄膜層に情報が記録される。 Conventionally, aluminum substrates or glass substrates (glass substrates for information recording media) have been used as information recording media (magnetic disk recording media) used in computers and the like. A magnetic thin film layer is formed on these substrates, and information is recorded on the magnetic thin film layer by magnetizing the magnetic thin film layer with a magnetic head.
 近年、ハードディスクドライブ(HDD)装置においては、記録密度が増々高密度化されてきている。記録密度の高密度化により、情報記録媒体(メディア)と情報記録媒体上を浮上しながら記録の読み書きを行なうヘッドとのギャップ(フライングハイト)は数nm程度にまで狭小化している。 In recent years, recording density has been increased in hard disk drive (HDD) devices. As the recording density is increased, the gap (flying height) between the information recording medium (medium) and the head that reads and writes the recording while floating on the information recording medium is reduced to about several nanometers.
 フライングハイトが小さくなるにつれて、情報記録媒体をハードディスクドライブ装置に用いた場合の、情報記録媒体に記録されたデータにアクセスする際のリード/ライトエラー、磁気ヘッドが情報記録媒体表面に衝突するヘッドクラッシュなどの問題が発生しやすくなっている。これらの問題を抑制するために、情報記録媒体には、ガラス基板表面の清浄度や表面平滑性等の微小欠陥の検出精度が高く求められるようになってきている。 As the flying height decreases, read / write errors when accessing data recorded on the information recording medium when the information recording medium is used in a hard disk drive, head crash where the magnetic head collides with the surface of the information recording medium It is easy for problems to occur. In order to suppress these problems, information recording media are required to have high detection accuracy of minute defects such as cleanliness and surface smoothness of the glass substrate surface.
 情報記録媒体に用いられるガラス基板表面の微小欠陥の検出には、レーザー散乱を用いたガラス表面評価装置が用いられる。近年では、微小欠陥の検出精度を向上させるために、ガラス表面評価装置に用いられるレーザーの出力向上、レーザースポット径の微細化などを行なうことで、微小欠陥の検出精度の向上を行なっている。 A glass surface evaluation apparatus using laser scattering is used to detect minute defects on the surface of a glass substrate used for an information recording medium. In recent years, in order to improve the detection accuracy of minute defects, the detection accuracy of minute defects has been improved by improving the output of a laser used in a glass surface evaluation apparatus, making the laser spot diameter finer, and the like.
 特開2003-50209号公報(特許文献1)には、ガラス基板表面のスクラッチ、欠け結果による散乱光の指向性に影響されることなく、欠陥検出を高い精度で検出することを目的としたガラス表面評価装置が開示されている。 Japanese Patent Application Laid-Open No. 2003-50209 (Patent Document 1) discloses a glass for detecting defects with high accuracy without being affected by the directivity of scattered light due to scratches and chipping results on the glass substrate surface. A surface evaluation apparatus is disclosed.
特開2003-50209号公報JP 2003-50209 A
 しかしながら、近年においては、上述するようなガラス表面評価装置を用いて評価した結果、合格したガラス基板を用いた情報記録媒体用ガラス基板であっても、この情報記録媒体用ガラス基板を搭載したハードディスクドライブ装置においては、不合格となる場合が生じている。 However, in recent years, as a result of evaluation using the glass surface evaluation apparatus as described above, even a glass substrate for an information recording medium using a glass substrate that has passed, a hard disk on which the glass substrate for information recording medium is mounted In the drive apparatus, the case where it fails is produced.
 この原因としては、ガラス表面評価装置の検出精度を向上(レーザーの出力向上/レーザースポット径の微細化等)させた場合に、アモルファス材および結晶化ガラス材のいずれのガラス基板であっても、以下のような課題があった。 As a cause of this, when the detection accuracy of the glass surface evaluation apparatus is improved (laser output improvement / miniaturization of laser spot diameter, etc.), any glass substrate of amorphous material and crystallized glass material, There were the following problems.
 ガラス基板の表面が露出している状態で検査を行なった場合、ガラス基板ノイズに対して、ガラス基板の実欠陥信号(ガラス基板そのものの欠陥)およびガラス基板の基板内部欠陥信号(インクルージョン・気泡・内部コンタミなどを含む)が同時に検出され、ガラス基板ノイズに対して、実欠陥信号および基板内部散乱信号を切り分けて検出することが困難となるためである。 When inspection is performed with the glass substrate surface exposed, the glass substrate noise signal (defect of the glass substrate itself) and the glass substrate internal defect signal (inclusion, bubble, This is because it is difficult to detect the actual defect signal and the substrate internal scattering signal separately from the glass substrate noise.
 特に、結晶化ガラス材を用いたガラス基板の場合には、ガラス基板の表面に微結晶粒子が存在するため、アモルファス材を用いたガラス基板よりも、ガラス基板の実欠陥信号および基板内部散乱信号の検出がより困難となる。 In particular, in the case of a glass substrate using a crystallized glass material, since there are microcrystalline particles on the surface of the glass substrate, the actual defect signal of the glass substrate and the substrate internal scattering signal are compared to the glass substrate using an amorphous material. Is more difficult to detect.
 本発明は、上記課題を解決するためになされたものであり、ガラス基板ノイズを低減させることにより、ガラス基板の実欠陥信号および基板内部散乱信号を容易に検出することを可能とする評価工程を備える、情報記録媒体用ガラス基板の製造工程を提供することにある。 The present invention has been made in order to solve the above-mentioned problems, and includes an evaluation process that makes it possible to easily detect an actual defect signal and a substrate internal scattering signal of a glass substrate by reducing glass substrate noise. It is providing the manufacturing process of the glass substrate for information recording media provided.
 本発明に係る情報記録媒体用ガラス基板の製造方法は、ガラス基板の表面に磁気薄膜が形成された情報記録媒体に用いられる、情報記録媒体用ガラス基板の製造方法であって、複数枚の上記ガラス基板を有するガラス基板群を準備する工程と、上記ガラス基板群に含まれる上記ガラス基板の表面の評価を行なう評価工程と、上記ガラス基板群を、上記磁気薄膜を形成する工程に移行させるか否かの判断を行なう移行工程と備える。 The method for producing a glass substrate for information recording medium according to the present invention is a method for producing a glass substrate for information recording medium, which is used for an information recording medium in which a magnetic thin film is formed on the surface of the glass substrate. A step of preparing a glass substrate group having a glass substrate, an evaluation step of evaluating the surface of the glass substrate included in the glass substrate group, and a step of moving the glass substrate group to a step of forming the magnetic thin film. And a transition step for determining whether or not.
 上記評価工程は、上記ガラス基板群の中から選択された評価用の上記ガラス基板の表面に、検査用レーザー光に対する反射率が、上記ガラス基板の上記表面の反射率よりも高い反射率を有する反射膜を形成する工程と、上記反射膜に上記検査レーザーを照射して上記検査レーザーの散乱を用いたガラス表面評価装置を用いて、上記ガラス基板の表面状態の合格または不合格の評価を行なう工程とを含む。 The evaluation step has a reflectance higher than the reflectance of the surface of the glass substrate on the surface of the glass substrate for evaluation selected from the glass substrate group. Using the glass surface evaluation apparatus that irradiates the inspection laser on the reflection film and uses the scattering of the inspection laser to evaluate the pass condition or rejection of the glass substrate. Process.
 上記移行工程は、上記評価工程において、上記評価に用いられた上記ガラス基板を除き、合格と評価された上記ガラス基板の属する上記ガラス基板群のみを上記磁気薄膜を形成する工程に移行させる工程を含む。 The transition step includes a step of transferring only the glass substrate group to which the glass substrate evaluated to be acceptable belongs to the step of forming the magnetic thin film except the glass substrate used in the evaluation in the evaluation step. Including.
 1つの実施態様では、上記反射膜は、金属材料を用いた膜である。
 1つの実施態様では、上記金属材料は、Cr、AlおよびAgの群から選択される材料よりなる。
In one embodiment, the reflective film is a film using a metal material.
In one embodiment, the metallic material consists of a material selected from the group of Cr, Al and Ag.
 1つの実施態様では、上記反射膜の膜厚は、10nm~50nmである。
 1つの実施態様では、上記ガラス基板は、結晶化ガラス材である。
In one embodiment, the reflective film has a thickness of 10 nm to 50 nm.
In one embodiment, the glass substrate is a crystallized glass material.
 本発明によれば、ガラス基板ノイズを低減させることにより、ガラス基板の欠陥信号および基板内部散乱信号を容易に検出することを可能とする評価工程を備える、情報記録媒体用ガラス基板の製造工程を提供することを可能とする。 According to the present invention, there is provided a manufacturing process of a glass substrate for an information recording medium, comprising an evaluation process that makes it possible to easily detect a glass substrate defect signal and a substrate internal scattering signal by reducing glass substrate noise. It is possible to provide.
情報記録装置を示す斜視図である。It is a perspective view which shows an information recording device. 本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板を示す平面図である。It is a top view which shows the glass substrate manufactured by the manufacturing method of the glass substrate for information recording media based on this Embodiment. 図2中のIII-III線に沿った矢視断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 情報記録媒体としてガラス基板を備えた情報記録媒体を示す平面図である。It is a top view which shows the information recording medium provided with the glass substrate as an information recording medium. 図4中のV-V線に沿った矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. ガラス基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a glass substrate. 欠陥検査装置を用いたガラス基板表面の評価工程を示す模式図である。It is a schematic diagram which shows the evaluation process of the glass substrate surface using a defect inspection apparatus. アモルファス材を用いたガラス基板の評価工程におけるガラス基板ノイズおよび実欠陥信号の強度イメージを示す図であり、(A)は従来の欠陥に対する評価、(B)は従来の微小な欠陥に対する評価、(C)は、反射膜を設けた場合の微小な欠陥に対する評価を示す図である。It is a figure which shows the glass substrate noise in the evaluation process of the glass substrate using an amorphous material, and the intensity image of an actual defect signal, (A) is evaluation with respect to the conventional defect, (B) is evaluation with respect to the conventional minute defect, ( C) is a diagram showing an evaluation for a minute defect when a reflective film is provided. 結晶化ガラス材を用いたガラス基板の評価工程におけるガラス基板ノイズおよび実欠陥信号の強度イメージを示す図であり、(A)は従来の欠陥に対する評価、(B)は従来の微小な欠陥に対する評価、(C)は、反射膜を設けた場合の微小な欠陥に対する評価を示す図である。It is a figure which shows the intensity | strength image of the glass substrate noise in the evaluation process of the glass substrate using a crystallized glass material, and a real defect signal, (A) is evaluation with respect to the conventional defect, (B) is evaluation with respect to the conventional minute defect. (C) is a figure which shows the evaluation with respect to a micro defect at the time of providing a reflecting film. アモルファス材を用いたガラス基板の評価工程におけるガラス基板ノイズと内部欠陥信号との強度イメージを示す図であり、(A)は従来の欠陥に対する評価、(B)は、反射膜を設けた場合の微小な欠陥に対する評価を示す図である。It is a figure which shows the intensity | strength image of the glass substrate noise and internal defect signal in the evaluation process of the glass substrate using an amorphous material, (A) is evaluation with respect to the conventional defect, (B) is a case where a reflecting film is provided. It is a figure which shows the evaluation with respect to a micro defect. 結晶化ガラス材を用いたガラス基板の評価工程におけるガラス基板ノイズと内部欠陥信号との強度イメージを示す図であり、(A)は従来の欠陥に対する評価、(B)は、反射膜を設けた場合の微小な欠陥に対する評価を示す図である。It is a figure which shows the intensity | strength image of the glass substrate noise in the evaluation process of the glass substrate using a crystallized glass material, and an internal defect signal, (A) is evaluation with respect to the conventional defect, (B) provided the reflecting film. It is a figure which shows the evaluation with respect to the minute defect in a case. 実施例におけるガラス基板の評価工程のフローを示す図である。It is a figure which shows the flow of the evaluation process of the glass substrate in an Example. 実施例1-1から1-4、および比較例1における評価結果を示す図である。FIG. 6 is a diagram showing evaluation results in Examples 1-1 to 1-4 and Comparative Example 1. 実施例2-1から2-4、および比較例2における評価結果を示す図である。FIG. 6 is a diagram showing evaluation results in Examples 2-1 to 2-4 and Comparative Example 2.
 本発明に基づいた実施の形態および各実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and the examples, when the number, amount, and the like are referred to, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態]
 (情報記録装置30)
 図1を参照して、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。
[Embodiment]
(Information recording device 30)
The information recording device 30 will be described with reference to FIG. FIG. 1 is a perspective view showing the information recording apparatus 30. The information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
 具体的には、情報記録装置30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。 Specifically, the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28. A spindle motor (not shown) is installed on the upper surface of the housing 20.
 磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。詳細は図4および図5を参照して後述されるが、情報記録媒体10は、ガラス基板1に圧縮応力層12(図5参照)および磁気記録層14(図4および図5参照)が形成されることによって製造される。 An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28. The information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm. Although details will be described later with reference to FIGS. 4 and 5, in the information recording medium 10, a compression stress layer 12 (see FIG. 5) and a magnetic recording layer 14 (see FIGS. 4 and 5) are formed on the glass substrate 1. To be manufactured.
 アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられる。 The arm 23 is attached so as to be swingable around the vertical axis 24. A suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23. A head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。 A voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21. The voice coil 25 is clamped by a magnet (not shown) provided on the housing 20. A voice coil motor 26 is constituted by the voice coil 25 and the magnet.
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。 A predetermined current is supplied to the voice coil 25. The arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet. As the arm 23 swings, the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1. The head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10. A magnetic head (not shown) provided on the head slider 21 performs a seek operation.
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載される情報記録装置30は、以上のように構成される。 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10. The information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
 (ガラス基板1)
 図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。
(Glass substrate 1)
FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment. 3 is a cross-sectional view taken along the line III-III in FIG.
 図2および図3に示すように、情報記録媒体10(図4および図5参照)にその一部として用いられるガラス基板1(情報記録媒体用ガラス基板)は、主表面2、主表面3、内周端面4、孔5、および外周端面6を有し、全体として円盤状に形成される。孔5は、一方の主表面2から他方の主表面3に向かって貫通するように設けられる。主表面2と内周端面4との間、および、主表面3と内周端面4との間には、面取部7がそれぞれ形成される。主表面2と外周端面6との間、および、主表面3と外周端面6との間には、面取部8(チャンファー部)が形成される。 As shown in FIGS. 2 and 3, the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole. The hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3. A chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4. Between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
 ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。ガラス基板の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。なお、ガラス基板の厚みとは、ガラス基板上の点対称となる任意の何点かで測定した値の平均値を意味する。また、本実施の形態における情報記録媒体用ガラス基板が採用される情報記録媒体は、携帯型の用途に用いられることが好ましい。 The size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. In addition, the thickness of a glass substrate means the average value of the value measured in arbitrary arbitrary points which become point symmetry on a glass substrate. Moreover, it is preferable that the information recording medium in which the glass substrate for information recording medium in this Embodiment is employ | adopted is used for a portable use.
 本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。ガラス基板の高硬度化の観点から、ガラス基板1のビッカース硬度は、610kg/mm以上であるとよい。 In the present embodiment, the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
 (情報記録媒体10)
 図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。
(Information recording medium 10)
FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium. FIG. 5 is a cross-sectional view taken along the line VV in FIG.
 図4および図5に示すように、情報記録媒体10は、ガラス基板1と、圧縮応力層12と、磁気記録層14とを含む。圧縮応力層12は、ガラス基板1の主表面2,3、内周端面4、および外周端面6を覆うように形成される。磁気記録層14は、圧縮応力層12の主表面2,3上の所定の領域を覆うように形成される。ガラス基板1の内周端面4上に圧縮応力層12が形成されることによって、内周端面4の内側に孔15が形成される。孔15を利用して、情報記録媒体10は筐体20(図1参照)上に設けられたスピンドルモーターに対して固定される。 4 and 5, the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14. The compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1. The magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12. By forming the compressive stress layer 12 on the inner peripheral end face 4 of the glass substrate 1, a hole 15 is formed inside the inner peripheral end face 4. The information recording medium 10 is fixed to a spindle motor provided on the housing 20 (see FIG. 1) using the holes 15.
 図5に示す情報記録媒体10においては、主表面2上に形成された圧縮応力層12と主表面3上に形成された圧縮応力層12との双方(両面)の上に、磁気記録層14が形成されている。磁気記録層14は、主表面2上に形成された圧縮応力層12の上(片面)にのみ設けられていてもよく、主表面3上に形成された圧縮応力層12の上(片面)に設けられていてもよい。 In the information recording medium 10 shown in FIG. 5, the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed. The magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
 磁気記録層14は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の主表面2,3上の圧縮応力層12にスピンコートすることによって形成される(スピンコート法)。磁気記録層14は、ガラス基板1の主表面2,3上の圧縮応力層12に対して実施されるスパッタリング法または無電解めっき法等により形成されてもよい。 The magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method). The magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
 磁気記録層14の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気記録層14はスパッタリング法または無電解めっき法によって形成されるとよい。 The thickness of the magnetic recording layer 14 is about 0.3 μm to 1.2 μm for the spin coating method, about 0.04 μm to 0.08 μm for the sputtering method, and about 0.05 μm to about the electroless plating method. 0.1 μm. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
 磁気記録層14に用いる磁性材料としては、高い保持力を得る目的で結晶異方性の高いCoを主成分とし、残留磁束密度を調整する目的でNiまたはCrを加えたCo系合金などを付加的に用いることが好適である。 As a magnetic material used for the magnetic recording layer 14, a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
 磁気ヘッドの滑りをよくするために、磁気記録層14の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In order to improve the sliding of the magnetic head, the surface of the magnetic recording layer 14 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
 磁気記録層14には、必要に応じて下地層または保護層を設けてもよい。情報記録媒体10における下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。 The magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary. The underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
 磁気記録層14に設ける下地層は、単層に限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、または、NiAl/CrV等の多層下地層としてもよい。 The underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁気記録層14の摩耗および腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、またはシリカ層が挙げられる。これらの保護層は、下地層および磁性膜など共にインライン型スパッタ装置で連続して形成されることができる。これらの保護層は、単層としてもよく、または、同一若しくは異種の層からなる多層構成としてもよい。 Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
 上記保護層上に、あるいは上記保護層に代えて、他の保護層を形成してもよい。たとえば、上記保護層に代えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。 Other protective layers may be formed on the protective layer or instead of the protective layer. For example, instead of the protective layer, colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
 (ガラス基板の製造方法)
 次に、図6に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法について説明する。
(Glass substrate manufacturing method)
Next, the manufacturing method of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG.
 まず、ステップ10(以下、「S10」と略す。ステップ11以降も同様。)の「ガラス溶融工程」において、ガラス基板を構成するガラス素材を溶融する。 First, in a “glass melting step” of step 10 (hereinafter abbreviated as “S10”, the same applies to step 11 and subsequent steps), the glass material constituting the glass substrate is melted.
 S11の「プレス成形工程」において、溶融させたガラス素材を上型および下型を用いたプレスによりガラス基板を作製した。使用したガラス組成は、一般的なアルミノシリケートガラスを用いた。ガラス基板の作製方法としては成形に限らず、公知の手法である板ガラスからの切り出し等でも構わず、ガラス組成もこれに限らない。 In S11 “press molding process”, a glass substrate was produced by pressing the molten glass material using an upper mold and a lower mold. The glass composition used was a general aluminosilicate glass. The method for producing the glass substrate is not limited to molding, and may be cut out from plate glass, which is a known technique, and the glass composition is not limited thereto.
 S12の「第1ラップ工程」において、ガラス基板の両主表面をラッピング加工した。この第1ラップ工程は、遊星歯車機構を利用した両面ラッピング装置を用いて行なった。具体的には、ガラス基板の両面に上下からラップ定盤を押圧させ、研削液をガラス基板の主表面上に供給し、これらを相対的に移動させてラッピング加工を行なった。このラッピング加工により、おおよそ平坦な主表面を有するガラス基板を得た。 In the “first lapping step” of S12, both main surfaces of the glass substrate were lapped. This first lapping step was performed using a double-sided lapping device using a planetary gear mechanism. Specifically, the lapping platen was pressed on both surfaces of the glass substrate from above and below, the grinding liquid was supplied onto the main surface of the glass substrate, and these were moved relatively to perform lapping. By this lapping process, a glass substrate having a substantially flat main surface was obtained.
 S13の「コアリング工程」において、円筒状のダイヤモンドドリルを用いて、ガラス基板の中心部に孔を形成し、円環状のガラス基板を作製した。ガラス基板の内周端面、および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を実施した。 In the “coring step” of S13, a hole was formed in the center of the glass substrate using a cylindrical diamond drill to produce an annular glass substrate. The inner peripheral end surface and the outer peripheral end surface of the glass substrate were ground with a diamond grindstone, and a predetermined chamfering process was performed.
 S14の「第2ラップ工程」において、ガラス基板の両主表面について、上記第1ラップ工程(S12)と同様に、ラッピング加工を行なった。この第2ラップ工程を行なうことにより、前工程のコアリングや端面加工において主表面に形成された微細な凹凸形状を予め除去しておくことができる。その結果、後工程での主表面の研磨時間を短縮することができる。 In the “second lapping step” of S14, lapping was performed on both main surfaces of the glass substrate in the same manner as in the first lapping step (S12). By performing the second lapping step, the fine uneven shape formed on the main surface in the coring and end face processing in the previous step can be removed in advance. As a result, the polishing time of the main surface in the subsequent process can be shortened.
 S15の「外周/内周研磨工程」において、ガラス基板の外周端面および内周端面について、ブラシ研磨による鏡面研磨を行なった。このとき研磨砥粒としては、一般的な酸化セリウム砥粒を含むスラリーを用いた。 In the “outer / inner periphery polishing step” of S15, the outer peripheral end surface and the inner peripheral end surface of the glass substrate were subjected to mirror polishing by brush polishing. At this time, as the abrasive grains, a slurry containing general cerium oxide abrasive grains was used.
 S16の「第1ポリッシュ工程」において、主表面研磨を行なった。この第1ポリッシュ工程は、上述の第1および第2ラップ工程(S12,S14)において主表面に残留したキズや反りを矯正することを主目的とするものである。この第1ポリッシュ工程においては、遊星歯車機構を有する両面研磨装置により主表面の研磨を行なった。研磨剤としては、一般的な酸化セリウム砥粒を用いた。 In the “first polishing step” of S16, the main surface was polished. The first polishing step is mainly intended to correct scratches and warpage remaining on the main surface in the first and second lapping steps (S12, S14) described above. In the first polishing step, the main surface was polished by a double-side polishing apparatus having a planetary gear mechanism. As the abrasive, general cerium oxide abrasive grains were used.
 S17の「化学強化工程」において、ガラス基板1Gの主表面に対して表面強化層を形成した。具体的には、300℃に加熱された硝酸カリウム(70%)と硝酸ナトリウム(30%)の混合溶液中に、ガラス基板1Gを約30分間接触させることによって化学強化を行なった。その結果、ガラス基板の内周端面および外周端面のリチウムイオンおよびナトリウムイオンが、化学強化溶液中のナトリウムイオンおよびカリウムイオンにそれぞれ置換され、圧縮応力層が形成されることでガラス基板の主表面及び端面が強化された。 In the “chemical strengthening step” of S17, a surface reinforcing layer was formed on the main surface of the glass substrate 1G. Specifically, chemical strengthening was performed by bringing the glass substrate 1G into contact with a mixed solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. for about 30 minutes. As a result, the lithium ion and sodium ion on the inner peripheral end surface and outer peripheral end surface of the glass substrate are respectively replaced with sodium ions and potassium ions in the chemical strengthening solution, and a compressive stress layer is formed, thereby forming the main surface of the glass substrate and The end face was strengthened.
 なお、この化学強化工程は必須の工程ではなく、ガラス基板の主表面及び端面の強化を必要としない場合には、化学強化工程を実施しなくてもよい。 In addition, this chemical strengthening process is not an essential process, and when it is not necessary to strengthen the main surface and the end face of the glass substrate, the chemical strengthening process may not be performed.
 S18の「第2ポリッシュ工程」において、主表面研磨工程を施した。この第2ポリッシュ工程は上述までの工程で発生、残存している主表面上の微小欠陥等を解消して鏡面状に仕上げること、反りを解消し所望の平坦度に仕上げることを目的とする。この第2ポリッシュ工程は、遊星歯車機構を有する両面研磨装置により研磨を行なった。研磨剤としては、平滑面を得る為に平均粒径が約20nmのコロイダルシリカを用いた。 The main surface polishing step was performed in the “second polishing step” of S18. This second polishing step aims to eliminate the fine defects on the main surface that have been generated and remain in the above-described steps and finish it in a mirror shape, to eliminate warpage and finish it to a desired flatness. In the second polishing step, polishing was performed by a double-side polishing apparatus having a planetary gear mechanism. As the abrasive, colloidal silica having an average particle diameter of about 20 nm was used to obtain a smooth surface.
 次いで、S19の「最終洗浄工程(Final Cleaning)」において、ガラス基板の主表面、端面の最終洗浄を実施する。これによりガラス基板上に残存する付着物を除去する。なお、最終洗浄工程は、ガラス基板の製造工程の最後に行われる工程であり、適宜乾燥工程も含むものである。 Next, in the “final cleaning process” in S19, final cleaning of the main surface and the end surface of the glass substrate is performed. Thereby, the deposits remaining on the glass substrate are removed. The final cleaning process is a process performed at the end of the glass substrate manufacturing process, and includes a drying process as appropriate.
 次に、S20の「全数検査工程」において、上記最終洗浄工程を終了した全てのガラス基板に対して、ガラス基板の形状検査および表面品質検査を行なった。その後、複数枚のガラス基板を有するガラス基板群を準備した。通常、一つのガラス基板群は、100枚のガラス基板を含む。 Next, in the “100% inspection process” of S20, the shape inspection and the surface quality inspection of the glass substrate were performed on all the glass substrates after the final cleaning process. Thereafter, a glass substrate group having a plurality of glass substrates was prepared. Usually, one glass substrate group includes 100 glass substrates.
 次に、S30の「反射膜形成工程」において、ガラス基板群の中から選択された評価用のガラス基板の表面に、検査用レーザー光に対する反射率が、表面の反射率よりも高い反射率を有する反射膜を形成した。図3に、ガラス基板1に反射膜100を形成した場合を、一点鎖線で図示する。 Next, in the “reflection film forming step” of S30, the reflectance of the inspection laser light on the surface of the glass substrate for evaluation selected from the glass substrate group is higher than the reflectance of the surface. A reflective film was formed. In FIG. 3, the case where the reflective film 100 is formed on the glass substrate 1 is illustrated by a one-dot chain line.
 反射膜が形成されていないガラス基板の表面に検査用レーザー光が直接入射すると、ガラス基板の内部にレーザー光が入射し、ガラス基板の内部においてレーザー光が乱反射する。その結果、ガラス表面評価装置によって検出されるガラス基板ノイズのレベルが高くなる。 When the inspection laser beam is directly incident on the surface of the glass substrate on which the reflective film is not formed, the laser beam is incident on the inside of the glass substrate, and the laser beam is irregularly reflected inside the glass substrate. As a result, the level of glass substrate noise detected by the glass surface evaluation apparatus increases.
 一方、検査用レーザー光に対する反射率が表面の反射率よりも高い反射率を有する反射膜が成膜されたガラス基板に、反射膜を設けた面側の空気中より検査レーザーを照射した場合には、ガラス基板の表面状態(凹凸状態)にしたがって検査レーザーが反射されるとともに、ガラス基板の内部入射した検査レーザーは、反射膜により反射されて、反射膜が形成された側のガラス基板の表面からは、外部に向けて出射されない。 On the other hand, when the inspection laser is irradiated from the air on the surface side where the reflective film is provided on the glass substrate on which the reflective film having a reflectance higher than the reflectance of the surface is reflected with respect to the inspection laser light The inspection laser is reflected according to the surface state (unevenness state) of the glass substrate, and the inspection laser incident inside the glass substrate is reflected by the reflection film, and the surface of the glass substrate on the side where the reflection film is formed Is not emitted to the outside.
 その結果、ガラス表面評価装置によって検出される検査レーザーの反射光は、ガラス基板の表面状態にしたがって反射した検査レーザーのみとなり、ガラス表面評価装置によって検出されるガラス基板ノイズのレベルを低くすることが可能となる。 As a result, the reflected light of the inspection laser detected by the glass surface evaluation apparatus is only the inspection laser reflected according to the surface state of the glass substrate, and the level of the glass substrate noise detected by the glass surface evaluation apparatus can be lowered. It becomes possible.
 このように、ガラス基板内部からの光散乱ノイズを抑制する為には、鏡面に準ずるような反射面の生成が望ましく、一般的に反射コートとして用いられる金属材料よりなる反射膜を用いるとよい。 As described above, in order to suppress light scattering noise from the inside of the glass substrate, it is desirable to generate a reflective surface similar to a mirror surface, and a reflective film made of a metal material generally used as a reflective coat may be used.
 特に、Cr、Al、Ag群から選択される材料よりなる金属膜は、さまざまな測定波長に対して良好な反射特性を持つ反射面を生成できるので、本実施の形態において反射膜として用いるとよい。 In particular, a metal film made of a material selected from the group consisting of Cr, Al, and Ag can generate a reflective surface having good reflection characteristics for various measurement wavelengths, and thus it is preferable to use it as a reflective film in this embodiment. .
 次に、図7を参照して、レーザー散乱を用いた欠陥検査装置の一例として、ガラス表面評価装置(たとえば、KLA-Tencor Candela社製 7120)を用いた、ガラス表面評価工程(S40)について説明する。図7は、ガラス表面評価装置を用いたガラス基板表面の評価工程を示す模式図である。 Next, with reference to FIG. 7, a glass surface evaluation step (S40) using a glass surface evaluation apparatus (for example, 7120 manufactured by KLA-Tencor Candela) will be described as an example of a defect inspection apparatus using laser scattering. To do. FIG. 7 is a schematic view showing an evaluation process of the glass substrate surface using the glass surface evaluation apparatus.
 ガラス基板1に対して、照射光学系110から、たとえば390nm~650nmの波長を有する検査レーザーを異なる角度でガラス基板の表面に入射し、それぞれの散乱信号を検出光学系210で検出して、電気的なガラス基板ノイズと実欠陥信号との閾値を設定することでガラス基板表面の欠陥を定量的に検出する。 An inspection laser having a wavelength of, for example, 390 nm to 650 nm is incident on the glass substrate 1 from the irradiation optical system 110 at a different angle from the irradiation optical system 110, and each scattered signal is detected by the detection optical system 210. By setting a threshold value between a typical glass substrate noise and an actual defect signal, a defect on the glass substrate surface is quantitatively detected.
 なお、検査レーザーの波長が390nm~650nmにおける反射膜の成膜前のガラス基板の空気に対する平均反射率は、一般に3%~5%程度であり、反射膜の成膜後平均反射率は、成膜前の反射率の2倍以上の10%以上であることが望ましい。 Note that the average reflectance of the glass substrate before the formation of the reflective film at the inspection laser wavelength of 390 nm to 650 nm with respect to the air is generally about 3% to 5%. It is desirable that the reflectance is 10% or more, which is twice or more the reflectance before coating.
 図8から図11に、反射膜を設けない場合と設けた場合の欠陥の定量的な検出について説明する。図8および図9は、アモルファス材および結晶化ガラス材を用いたガラス基板の評価工程におけるガラス基板ノイズおよび実欠陥信号の強度イメージを示す図であり、(A)は従来の欠陥に対する評価、(B)は従来の微小な欠陥に対する評価、(C)は、反射膜を設けた場合の微小な欠陥に対する評価を示す図である。 8 to 11, the quantitative detection of defects when the reflective film is not provided and when the reflective film is provided will be described. FIG. 8 and FIG. 9 are diagrams showing strength images of glass substrate noise and actual defect signals in an evaluation process of a glass substrate using an amorphous material and a crystallized glass material, and FIG. (B) is an evaluation for a conventional minute defect, and (C) is a diagram showing an evaluation for a minute defect when a reflective film is provided.
 また、図10および図11は、アモルファス材および結晶化ガラス材を用いたガラス基板の評価工程におけるガラス基板ノイズと内部欠陥信号との強度イメージを示す図であり、(A)は従来の欠陥に対する評価、(B)は、反射膜を設けた場合の微小な欠陥に対する評価を示す図である。 FIG. 10 and FIG. 11 are diagrams showing strength images of glass substrate noise and internal defect signals in the evaluation process of a glass substrate using an amorphous material and a crystallized glass material, and FIG. Evaluation, (B) is a diagram showing evaluation for a minute defect when a reflective film is provided.
 図8を参照して、ガラス基板にアモルファス材を用いた場合、(A)に示すように、従来の比較的大きな実欠陥に対する実欠陥信号DS1のレベルは、ガラス基板ノイズ信号GLN1のレベルに対して、大きなレベルの差が存在することから、明確に両者の信号を識別することが可能であった。 Referring to FIG. 8, when an amorphous material is used for the glass substrate, as shown in FIG. 8A, the level of the actual defect signal DS1 for the conventional relatively large actual defect is higher than the level of the glass substrate noise signal GLN1. Since there is a large level difference, it was possible to clearly distinguish both signals.
 しかし、(B)に示すように、検出すべき欠陥の大きさが小さくなると、実欠陥信号DS2のレベルは、ガラス基板ノイズ信号GLN1のレベルに対して、レベルの差が小さくなるために、明確に両者の信号を識別することが困難となる。 However, as shown in (B), when the size of the defect to be detected becomes small, the level of the actual defect signal DS2 becomes clear because the level difference becomes small with respect to the level of the glass substrate noise signal GLN1. It becomes difficult to distinguish both signals.
 一方、本実施の形態においては、(C)に示すように、検査用レーザー光に対する反射率が、ガラス基板表面の反射率よりも高い反射率を有する反射膜を形成したガラス基板を検査に用いることで、上述したように、ガラス表面評価装置によって検出されるガラス基板内部の散乱因子が原因となって発生するガラス基板ノイズ信号GLN1のレベルを低くすることが可能となる((C)中の矢印A1)。 On the other hand, in the present embodiment, as shown in (C), a glass substrate on which a reflective film having a reflectance higher than that of the glass substrate surface is used for the inspection. Thus, as described above, the level of the glass substrate noise signal GLN1 generated due to the scattering factor inside the glass substrate detected by the glass surface evaluation apparatus can be lowered (in (C)). Arrow A1).
 その結果、小さな実欠陥に対する実欠陥信号DS2のレベルは、ガラス基板ノイズ信号GLN1のレベルに対して、レベルの差が生じ、明確に両者の信号を識別することが可能となる。 As a result, the level of the actual defect signal DS2 with respect to a small actual defect has a level difference with respect to the level of the glass substrate noise signal GLN1, and it is possible to clearly identify both signals.
 同様に、図9を参照して、ガラス基板に結晶化ガラス材を用いた場合、ガラス基板内部に存在する微結晶が散乱因子となる為、(A)に示すように、結晶化ガラス材は、アモルファス材に比べてガラス基板内部の散乱因子が原因となって発生するガラス基板ノイズ信号GLN2のレベルは高い。そのため、従来の比較的大きな実欠陥に対する実欠陥信号DS3であっても、ガラス基板ノイズ信号GLN2のレベルに対して、明確に両者の信号を識別することが困難な場合があった。 Similarly, referring to FIG. 9, when a crystallized glass material is used for the glass substrate, since the microcrystals existing inside the glass substrate become a scattering factor, as shown in (A), the crystallized glass material is The level of the glass substrate noise signal GLN2 generated due to the scattering factor inside the glass substrate is higher than that of the amorphous material. Therefore, even with the conventional actual defect signal DS3 for a relatively large actual defect, it may be difficult to clearly distinguish both signals with respect to the level of the glass substrate noise signal GLN2.
 また、(B)に示すように、検出すべき実欠陥の大きさが小さくなると、実欠陥信号DS4のレベルは、ガラス基板ノイズ信号GLN2のレベルの中に埋没し、両者の信号を識別することが極めて困難となる。 As shown in (B), when the size of the actual defect to be detected is reduced, the level of the actual defect signal DS4 is buried in the level of the glass substrate noise signal GLN2, and the two signals are identified. Is extremely difficult.
 一方、本実施の形態においては、(C)に示すように、検査用レーザー光に対する反射率が、ガラス基板表面の反射率よりも高い反射率を有する反射膜を形成したガラス基板を検査に用いることで、上述したように、ガラス表面評価装置によって検出されるガラス基板内部の散乱因子が原因となって発生するガラス基板ノイズ信号GLN3のレベルを低くすることが可能となる((C)中の矢印A2)。 On the other hand, in the present embodiment, as shown in (C), a glass substrate on which a reflective film having a reflectance higher than that of the glass substrate surface is used for the inspection. Thus, as described above, the level of the glass substrate noise signal GLN3 generated due to the scattering factor inside the glass substrate detected by the glass surface evaluation apparatus can be lowered (in (C)). Arrow A2).
 その結果、小さな実欠陥に対する実欠陥信号DS4のレベルは、ガラス基板ノイズ信号GLN3のレベルに対して、レベルの差が生じ、明確に両者の信号を識別することが可能となる。次に、図10を参照して、ガラス基板にアモルファス材を用いた場合、インクルージョン・気泡・内部コンタミなどに起因する内部欠陥信号に関しては、(A)に示すように、実欠陥信号DS5と内部欠陥信号DS6とを区別することは困難であった。 As a result, the level of the actual defect signal DS4 with respect to a small actual defect has a level difference with respect to the level of the glass substrate noise signal GLN3, so that both signals can be clearly identified. Next, referring to FIG. 10, when an amorphous material is used for the glass substrate, the internal defect signal due to inclusion, bubbles, internal contamination, etc., as shown in FIG. It was difficult to distinguish from the defect signal DS6.
 一方、本実施の形態においては、(B)に示すように、検査用レーザー光に対する反射率が、ガラス基板表面の反射率よりも高い反射率を有する反射膜を形成したガラス基板を検査に用いることで、上述したように、ガラス表面評価装置によって検出されるガラス基板内部の散乱因子が原因となって発生するガラス基板ノイズ信号GLN3のレベルを低くすることが可能となる((B)中の矢印A3)とともに、内部のインクルージョン・気泡・内部コンタミなどの比較的大きな内部欠陥があったとしても、表面に設けられた反射膜により当該内部欠陥へのレーザー光の入射を少なくすることができる。 On the other hand, in the present embodiment, as shown in (B), a glass substrate on which a reflective film having a reflectance higher than the reflectance of the glass substrate surface is used for the inspection. Thus, as described above, the level of the glass substrate noise signal GLN3 generated due to the scattering factor inside the glass substrate detected by the glass surface evaluation apparatus can be lowered (in (B)). In addition to the arrow A3), even if there are relatively large internal defects such as internal inclusions, bubbles, and internal contamination, the reflection film provided on the surface can reduce the incidence of laser light on the internal defects.
 また、内部欠陥にレーザーが入射したとしても、ガラス基板内部からの射出量を抑制できる為、内部欠陥信号DS6も発生させないようにすることができ、実欠陥信号DS5のみを精度よく検出することが可能となる。 Further, even if a laser is incident on an internal defect, the amount of emission from the inside of the glass substrate can be suppressed, so that the internal defect signal DS6 can be prevented from being generated, and only the actual defect signal DS5 can be detected with high accuracy. It becomes possible.
 その結果、実欠陥信号DS5のみに基づき、ガラス基板の評価を行なうことが可能となる。 As a result, the glass substrate can be evaluated based only on the actual defect signal DS5.
 次に、図11を参照して、ガラス基板に結晶化ガラス材を用いた場合、インクルージョン・気泡・内部コンタミなどに起因する内部欠陥信号に関しては、(A)に示すように、実欠陥信号DS7と内部欠陥信号DS8とを区別することは困難であった。 Next, referring to FIG. 11, when a crystallized glass material is used for the glass substrate, the internal defect signal due to inclusion, bubbles, internal contamination, etc., as shown in FIG. And the internal defect signal DS8 are difficult to distinguish.
 一方、本実施の形態においては、(B)に示すように、検査用レーザー光に対する反射率が、ガラス基板表面の反射率よりも高い反射率を有する反射膜を形成したガラス基板を検査に用いることで、上述したように、ガラス表面評価装置によって検出されるガラス基板内部の散乱因子が原因となって発生するガラス基板ノイズ信号GLN4のレベルを低くすることが可能となる((B)中の矢印A4)とともに、上記と同様の理由から内部欠陥信号DS8を発生させないようにすることができるため、実欠陥信号DS7のみを精度よく検出することが可能となる。 On the other hand, in the present embodiment, as shown in (B), a glass substrate on which a reflective film having a reflectance higher than the reflectance of the glass substrate surface is used for the inspection. Thus, as described above, the level of the glass substrate noise signal GLN4 generated due to the scattering factor inside the glass substrate detected by the glass surface evaluation apparatus can be lowered (in (B)). In addition to the arrow A4), the internal defect signal DS8 can be prevented from being generated for the same reason as described above, so that only the actual defect signal DS7 can be accurately detected.
 本実施の形態におけるガラス基板の製造方法は、以上のように構成される。このガラス基板の製造方法を用いることで、ガラス基板の表面に磁気薄膜を形成することが可能な、図1に示すガラス基板1Gが得られる。その後、このようにして得られたガラス基板1Gを用いて、図2に示す情報記録媒体1を得る。 The manufacturing method of the glass substrate in the present embodiment is configured as described above. By using this method for producing a glass substrate, a glass substrate 1G shown in FIG. 1 capable of forming a magnetic thin film on the surface of the glass substrate is obtained. Thereafter, the information recording medium 1 shown in FIG. 2 is obtained using the glass substrate 1G thus obtained.
 再び、図6を参照して、ガラス表面評価工程(S40)において、評価用のガラス基板の評価の終了後、評価に用いられたガラス基板を除き、合格と評価されたガラス基板の属するガラス基板群のみを磁気薄膜を形成する磁気薄膜形成工程(S50)に移行させる。 Referring again to FIG. 6, in the glass surface evaluation step (S40), after the evaluation of the glass substrate for evaluation, the glass substrate used for the evaluation is excluded except for the glass substrate used for the evaluation. Only the group is shifted to the magnetic thin film forming step (S50) for forming the magnetic thin film.
 情報記録媒体の製造における磁気薄膜層成膜工程としては、上述の工程を経て得られたガラス基板1Gの洗浄後に、ガラス基板1Gの両主表面に、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系の保護層、F系からなる潤滑層を順次成膜することにより、垂直磁気記録方式の情報記録媒体を製造する。この構成は垂直磁気記録方式の構成の一例であり、面内情報記録媒体として磁性層等を構成してもよい。その後、熱処理工程等を実施することで、情報記録媒体1が完成する。 As a magnetic thin film layer film forming step in the manufacture of an information recording medium, after cleaning the glass substrate 1G obtained through the above-described steps, both main surfaces of the glass substrate 1G are formed of an adhesion layer made of a Cr alloy and a CoFeZr alloy. An information recording medium of a perpendicular magnetic recording system is formed by sequentially forming a soft magnetic layer, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a C-based protective layer, and an F-based lubricating layer. To manufacture. This configuration is an example of a configuration of a perpendicular magnetic recording system, and a magnetic layer or the like may be configured as an in-plane information recording medium. Thereafter, the information recording medium 1 is completed by performing a heat treatment step and the like.
 以上、本実施の形態における情報記録媒体用ガラス基板の製造方法によれば、ガラス基板ノイズを低減させることにより、ガラス基板の欠陥信号および基板内部散乱信号を容易に検出することを可能とする評価工程を備える、情報記録媒体用ガラス基板の製造工程を提供することを可能とする。 As mentioned above, according to the manufacturing method of the glass substrate for information recording media in this Embodiment, evaluation which makes it possible to detect a glass substrate defect signal and a substrate internal scattering signal easily by reducing glass substrate noise. The manufacturing process of the glass substrate for information recording media provided with a process is made possible.
 具体的には、ガラス基板表面の表面評価に用いられるガラス基板に対して、その表面に上述の反射膜を設けることで、ガラス基板表面のガラス基板ノイズが低減され、欠陥信号のSN比を向上させることが可能となる。 Specifically, by providing the above-mentioned reflective film on the glass substrate used for the surface evaluation of the glass substrate surface, the glass substrate noise on the glass substrate surface is reduced and the SN ratio of the defect signal is improved. It becomes possible to make it.
 これにより、従来、評価が困難である微小欠陥の検出数が向上し、ガラス基板ノイズとその他の欠陥ノイズ(実欠陥信号、内部欠陥信号)との選別精度が向上する。その結果、微小欠陥の評価が可能となり、後発エラーとなる不良ガラス基板の流出を効果的に低減することが可能となる。これにより、高記録密度を有する情報記録媒体(磁気ディスク)を安定して供給することが可能となる。 This improves the number of detections of micro-defects that are conventionally difficult to evaluate, and improves the sorting accuracy between glass substrate noise and other defect noises (actual defect signal, internal defect signal). As a result, minute defects can be evaluated, and the outflow of a defective glass substrate that causes a subsequent error can be effectively reduced. As a result, an information recording medium (magnetic disk) having a high recording density can be stably supplied.
 図12に、実施例におけるガラス基板の評価工程のフローを示す。
 上述のS10~S20の工程を行ない、S20の工程で良品(合格)と判別された1000枚のガラス基板を準備した。S20における全数検査は、ガラス基板表面のキズや欠け等の1μm以上の欠陥を不良品(不合格)として判別した。
In FIG. 12, the flow of the evaluation process of the glass substrate in an Example is shown.
The steps S10 to S20 described above were performed, and 1000 glass substrates that were determined to be non-defective (passed) in the step S20 were prepared. In 100% inspection in S20, defects of 1 μm or more such as scratches or chips on the surface of the glass substrate were determined as defective products (failed).
 1000枚のガラス基板において、同一のS18(第2ポリッシュ工程)を行なった100枚のガラス基板を、一つのガラス基板群(1バッチ)とした。したがって、10群(バッチ)のガラス基板群を準備した(S110)。 100 glass substrates subjected to the same S18 (second polishing step) on 1000 glass substrates were defined as one glass substrate group (1 batch). Therefore, 10 groups (batch) of glass substrate groups were prepared (S110).
 ガラス表面評価装置を用いた評価用のガラス基板として、一つのガラス基板群から2枚のガラス基板を選択した(S120)。この評価用のガラス基板の表面にスパッタリング法により反射膜を設けた(S130)。ガラス表面評価装置(OSA:Optical Surface Analyzer)には、KLA-Tencor Candela社製 7120を用いた。 Two glass substrates were selected from one glass substrate group as a glass substrate for evaluation using a glass surface evaluation apparatus (S120). A reflective film was provided on the surface of the glass substrate for evaluation by sputtering (S130). For the glass surface evaluation apparatus (OSA: Optical Surface Analyzer), 7120 manufactured by KLA-Tencor Candela was used.
 反射膜が形成された評価用のガラス基板に対して、ガラス表面評価装置を用いて評価を行なった(S140)。評価においては、判定ライン(本実施例では、1μm以下の欠陥数が15カウント以下)を基準として、良品(合格)の可否を判断する。 The glass substrate for evaluation on which the reflective film was formed was evaluated using a glass surface evaluation apparatus (S140). In the evaluation, whether or not a non-defective product (pass) is acceptable is determined based on a determination line (in this embodiment, the number of defects of 1 μm or less is 15 counts or less).
 良品(合格)と判断されたガラス基板が属するガラス基板群は、良品(OK品)と評価される(S150)。一方、不良品(不合格)と判断されたガラス基板が属するガラス基板群は、不良品(NG品)と評価され(S160)、再び、S18(第2ポリッシュ工程)の工程を実施して再加工および再評価を行なう(S170)。 The glass substrate group to which the glass substrate determined to be non-defective (pass) is evaluated as non-defective (OK product) (S150). On the other hand, the glass substrate group to which the glass substrate determined to be defective (failed) belongs is evaluated as defective (NG product) (S160), and the process of S18 (second polishing step) is performed again. Processing and reevaluation are performed (S170).
 なお、判定ラインの決定は、最終的にガラス基板が組み込まれるハードディスクドライブの仕様に対応したガラス基板への要求品質により決定される。 Note that the decision line is determined by the required quality of the glass substrate corresponding to the specifications of the hard disk drive in which the glass substrate is finally incorporated.
 (実施例1-1)
 アモルファス材を用いたガラス基板に形成する反射膜については、スパッタリング装置を用いた。成膜ターゲットCr、放電真空度5×10-2Pa、RFpower 500Wにて10s放電させることで、Cr膜を約5nm成膜した。
Example 1-1
A sputtering apparatus was used for the reflective film formed on the glass substrate using an amorphous material. A Cr film was formed to a thickness of about 5 nm by discharging for 10 s at a deposition target Cr, a discharge vacuum of 5 × 10 −2 Pa, and an RF power of 500 W.
 成膜後のガラス基板の表面反射率を測定したところ、成膜前2.5%から10%と増加した(検査レーザー波長:405nm、633nm)。 When the surface reflectance of the glass substrate after film formation was measured, it increased from 2.5% before film formation to 10% (inspection laser wavelengths: 405 nm, 633 nm).
 (実施例1-2~1-4)
 実施例1-1と同様に、実施例1-2として反射膜の膜厚が20nmのガラス基板を準備し、実施例1-3として反射膜の膜厚が50nmのガラス基板を準備し、実施例1-4として反射膜の膜厚が90nmのガラス基板を準備した。
(Examples 1-2 to 1-4)
As in Example 1-1, a glass substrate with a reflective film thickness of 20 nm was prepared as Example 1-2, and a glass substrate with a reflective film thickness of 50 nm was prepared as Example 1-3. As Example 1-4, a glass substrate having a reflective film thickness of 90 nm was prepared.
 実施例1-1~1-4の評価結果を図13に示す。比較例1として、反射膜を成膜しないガラス基板(アモルファス材)を準備した。各実施例においては、良品(OK)と評価されたガラス基板群に属するガラス基板に磁気薄膜を成形し、ハードディスクドライブに組み込んで、リード/ライトエラー、ヘッドクラッシュなどの後発エラーの発生率を確認した。 The evaluation results of Examples 1-1 to 1-4 are shown in FIG. As Comparative Example 1, a glass substrate (amorphous material) on which no reflective film was formed was prepared. In each example, a magnetic thin film is formed on a glass substrate belonging to a glass substrate group evaluated as good (OK) and incorporated into a hard disk drive, and the rate of occurrence of subsequent errors such as read / write errors and head crashes is confirmed. did.
 また、比較のために、不良品(NG)と評価されたガラス基板群に属するガラス基板に磁気薄膜を成形し、ハードディスクドライブに組み込んで、リード/ライトエラー、ヘッドクラッシュなどの後発エラーの発生率を確認した。 For comparison, the rate of occurrence of late errors such as read / write errors and head crashes by forming a magnetic thin film on a glass substrate belonging to a group of glass substrates evaluated as defective (NG) and incorporating it into a hard disk drive. It was confirmed.
 実施例1-1において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、8%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、59%であった。 In Example 1-1, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 8%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 59%.
 実施例1-2において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、5%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、87%であった。 In Example 1-2, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 5%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 87%.
 実施例1-3において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、4%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、92%であった。 In Example 1-3, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 4%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 92%.
 実施例1-4において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、10%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、93%であった。 In Example 1-4, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 10%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 93%.
 比較例1において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、13%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、40%であった。 In Comparative Example 1, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 13%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 40%.
 (実施例2-1)
 結晶化材を用いたガラス基板に形成する反射膜については、スパッタリング装置を用いた。成膜ターゲットCr、放電真空度5×10-2Pa、RFpower 500Wにて10s放電させることで、Cr膜を約5nm成膜した。
Example 2-1
A sputtering apparatus was used for the reflective film formed on the glass substrate using the crystallization material. A Cr film was formed to a thickness of about 5 nm by discharging for 10 s at a deposition target Cr, a discharge vacuum of 5 × 10 −2 Pa, and an RF power of 500 W.
 成膜後のガラス基板の表面反射率を測定したところ、成膜前2.5%から10%と増加した(検査レーザー波長:405nm、633nm)。 When the surface reflectance of the glass substrate after film formation was measured, it increased from 2.5% before film formation to 10% (inspection laser wavelengths: 405 nm, 633 nm).
 (実施例2-2~2-4)
 実施例2-1と同様に、実施例1-2として反射膜の膜厚が20nmのガラス基板を準備し、実施例1-3として反射膜の膜厚が50nmのガラス基板を準備し、実施例1-4として反射膜の膜厚が90nmのガラス基板を準備した。
(Examples 2-2 to 2-4)
As in Example 2-1, a glass substrate with a reflective film thickness of 20 nm was prepared as Example 1-2, and a glass substrate with a reflective film thickness of 50 nm was prepared as Example 1-3. As Example 1-4, a glass substrate having a reflective film thickness of 90 nm was prepared.
 実施例2-1~2-4の評価結果を図14に示す。比較例2として、反射膜を成膜しないガラス基板(結晶化材)を準備した。各実施例においては、良品(OK)と評価されたガラス基板群に属するガラス基板に磁気薄膜を成形し、ハードディスクドライブに組み込んで、リード/ライトエラー、ヘッドクラッシュなどの後発エラーの発生率を確認した。 The evaluation results of Examples 2-1 to 2-4 are shown in FIG. As Comparative Example 2, a glass substrate (crystallization material) on which no reflective film was formed was prepared. In each example, a magnetic thin film is formed on a glass substrate belonging to a glass substrate group evaluated as good (OK) and incorporated into a hard disk drive, and the rate of occurrence of subsequent errors such as read / write errors and head crashes is confirmed. did.
 また、比較のために、不良品(NG)と評価されたガラス基板群に属するガラス基板に磁気薄膜を成形し、ハードディスクドライブに組み込んで、リード/ライトエラー、ヘッドクラッシュなどの後発エラーの発生率を確認した。 For comparison, the rate of occurrence of late errors such as read / write errors and head crashes by forming a magnetic thin film on a glass substrate belonging to a group of glass substrates evaluated as defective (NG) and incorporating it into a hard disk drive. It was confirmed.
 実施例2-1において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、11%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、53%であった。 In Example 2-1, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 11%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 53%.
 実施例2-2において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、7%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、85%であった。 In Example 2-2, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 7%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 85%.
 実施例2-3において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、4%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、91%であった。 In Example 2-3, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 4%. On the other hand, the incidence of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 91%.
 実施例2-4において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、14%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、94%であった。 In Example 2-4, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 14%. On the other hand, the occurrence rate of subsequent errors using a glass substrate belonging to the glass substrate group evaluated as defective (NG) was 94%.
 比較例2において、良品(OK)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、18%であった。一方、不良品(NG)と評価されたガラス基板群に属するガラス基板を用いた後発エラーの発生率は、38%であった。 In Comparative Example 2, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as non-defective (OK) was 18%. On the other hand, the rate of occurrence of subsequent errors using glass substrates belonging to the glass substrate group evaluated as defective (NG) was 38%.
 以上の実施例および比較例から、レーザー散乱を用いるガラス表面評価装置において、ガラス基板表面に反射膜を成膜することにより、反射膜を成膜していないガラス基板と比較して、その表面に上述の反射膜を設けることで、ガラス基板表面のガラス基板ノイズが低減され、欠陥信号のSN比を向上させることが可能となる。 From the above examples and comparative examples, in the glass surface evaluation apparatus using laser scattering, by forming a reflective film on the surface of the glass substrate, compared to a glass substrate on which no reflective film is formed, By providing the reflective film described above, the glass substrate noise on the glass substrate surface is reduced, and the SN ratio of the defect signal can be improved.
 特に、結晶化ガラス材を用いたガラス基板の場合には、ガラス基板の表面に微結晶粒子が存在するため、アモルファス材を用いたガラス基板よりも、ガラス基板の実欠陥信号および基板内部散乱信号の検出が困難であった。 In particular, in the case of a glass substrate using a crystallized glass material, since there are microcrystalline particles on the surface of the glass substrate, the actual defect signal of the glass substrate and the substrate internal scattering signal are compared to the glass substrate using an amorphous material. It was difficult to detect.
 しかし、本実施例2-1~2-4から、結晶化ガラス材を用いたガラス基板の場合であっても、欠陥信号のSN比を向上させることにより、後発エラーの発生率を低減させることが可能であることが確認できた。 However, from Examples 2-1 to 2-4, even in the case of a glass substrate using a crystallized glass material, it is possible to reduce the rate of occurrence of subsequent errors by improving the SN ratio of the defect signal. It was confirmed that it was possible.
 また、後発エラーの発生率が7%以下となることから、反射膜の膜厚は、20nm~50nmであるとよい。 Also, since the rate of occurrence of subsequent errors is 7% or less, the thickness of the reflective film is preferably 20 nm to 50 nm.
 なお、上記実施例に示したように、ガラス基板には、アモルファス材を用いたガラス基板、結晶化ガラス材を用いたガラス基板のいずれも用いることができる。アモルファス材を用いたガラス基板は、内部の光散乱が少ないために、光学検査での散乱光ノイズが小さいという特徴がある。また、研磨後の平滑性に優れるという利点がある。一方で、結晶化ガラス材を用いたガラス基板は強度に優れるという利点がある。 In addition, as shown in the said Example, both the glass substrate using an amorphous material and the glass substrate using a crystallized glass material can be used for a glass substrate. A glass substrate using an amorphous material is characterized in that scattered light noise in optical inspection is small because internal light scattering is small. Moreover, there is an advantage that the smoothness after polishing is excellent. On the other hand, a glass substrate using a crystallized glass material has an advantage of excellent strength.
 以上、本発明に基づいた実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment and each Example based on this invention were described, embodiment and each Example disclosed this time are illustrations in all points, and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ガラス基板、2,3 主表面、4 内周端面、5,15 孔、6 外周端面、7,8 面取部、10 情報記録媒体、12 圧縮応力層、14 磁気記録層、20 筐体21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、30 情報記録装置、100 反射膜。 DESCRIPTION OF SYMBOLS 1 Glass substrate, 2, 3 Main surface, 4 Inner peripheral end surface, 5,15 hole, 6, Outer peripheral end surface, 7,8 Chamfer part, 10 Information recording medium, 12 Compression stress layer, 14 Magnetic recording layer, 20 Housing 21 Head slider, 22 suspension, 23 arm, 24 vertical axis, 25 voice coil, 26 voice coil motor, 27 clamp member, 28 fixing screw, 30 information recording device, 100 reflective film.

Claims (5)

  1.  ガラス基板の表面に磁気薄膜が形成された情報記録媒体に用いられる、情報記録媒体用ガラス基板の製造方法であって、
     複数枚の前記ガラス基板を有するガラス基板群を準備する工程と、
     前記ガラス基板群に含まれる前記ガラス基板の表面の評価を行なう評価工程と、
     前記ガラス基板群を、前記磁気薄膜を形成する工程に移行させるか否かの判断を行なう移行工程と、備え、
     前記評価工程は、
     前記ガラス基板群の中から選択された評価用の前記ガラス基板の表面に、検査用レーザー光に対する反射率が、前記ガラス基板の前記表面の反射率よりも高い反射率を有する反射膜を形成する工程と、
     前記反射膜に前記検査レーザーを照射して前記検査レーザーの散乱を用いたガラス表面評価装置を用いて、前記ガラス基板の表面状態の合格または不合格の評価を行なう工程と、を含み、
     前記移行工程は、
     前記評価工程において、前記評価に用いられた前記ガラス基板を除き、合格と評価された前記ガラス基板の属する前記ガラス基板群のみを前記磁気薄膜を形成する工程に移行させる工程を含む、
    情報記録媒体用ガラス基板の製造方法。
    A method for producing a glass substrate for an information recording medium used for an information recording medium in which a magnetic thin film is formed on the surface of a glass substrate,
    Preparing a glass substrate group having a plurality of glass substrates;
    An evaluation step for evaluating the surface of the glass substrate included in the glass substrate group;
    A transition step of determining whether to shift the glass substrate group to a step of forming the magnetic thin film; and
    The evaluation step includes
    On the surface of the glass substrate for evaluation selected from the glass substrate group, a reflection film having a reflectance higher than that of the surface of the glass substrate is higher than the reflectance of the surface of the glass substrate. Process,
    Irradiating the inspection laser to the reflective film and using a glass surface evaluation apparatus using scattering of the inspection laser, and evaluating the pass or fail of the surface state of the glass substrate, and
    The transition process includes
    In the evaluation step, except for the glass substrate used in the evaluation, including a step of transferring only the glass substrate group to which the glass substrate evaluated as acceptable belongs to the step of forming the magnetic thin film.
    A method for producing a glass substrate for an information recording medium.
  2.  前記反射膜は、金属材料を用いた膜である、請求項1に記載の情報記録媒体用ガラス基板の製造方法。 The method for manufacturing a glass substrate for an information recording medium according to claim 1, wherein the reflective film is a film using a metal material.
  3.  前記金属材料は、Cr、AlおよびAgの群から選択される材料よりなる、請求項1に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to claim 1, wherein the metal material is made of a material selected from the group consisting of Cr, Al, and Ag.
  4.  前記反射膜の膜厚は、10nm~50nmである、請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。 3. The method for producing a glass substrate for an information recording medium according to claim 1, wherein the reflective film has a thickness of 10 nm to 50 nm.
  5.  前記ガラス基板は、結晶化ガラス材である、請求項1から3のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to any one of claims 1 to 3, wherein the glass substrate is a crystallized glass material.
PCT/JP2013/084417 2012-12-27 2013-12-24 Method for producing glass substrate for information recording medium WO2014103983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285134 2012-12-27
JP2012285134 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103983A1 true WO2014103983A1 (en) 2014-07-03

Family

ID=51021065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084417 WO2014103983A1 (en) 2012-12-27 2013-12-24 Method for producing glass substrate for information recording medium

Country Status (1)

Country Link
WO (1) WO2014103983A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11203715A (en) * 1998-01-14 1999-07-30 Pioneer Electron Corp Production of optical master disk
JP2002260216A (en) * 2001-03-01 2002-09-13 Hitachi Ltd Glass substrate for information recording disk and information recording disk using the same
JP2010073243A (en) * 2008-09-17 2010-04-02 Hoya Glass Disk Thailand Ltd Method for manufacturing glass substrate for magnetic disk
WO2010038741A1 (en) * 2008-09-30 2010-04-08 Hoya株式会社 Magnetic disc glass substrate and magnetic disc
JP2012079363A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method of manufacturing glass substrate for information recording medium, information recording medium, and magnetic disk drive
JP2012079371A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method of manufacturing glass substrate for information recording medium, and information recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11203715A (en) * 1998-01-14 1999-07-30 Pioneer Electron Corp Production of optical master disk
JP2002260216A (en) * 2001-03-01 2002-09-13 Hitachi Ltd Glass substrate for information recording disk and information recording disk using the same
JP2010073243A (en) * 2008-09-17 2010-04-02 Hoya Glass Disk Thailand Ltd Method for manufacturing glass substrate for magnetic disk
WO2010038741A1 (en) * 2008-09-30 2010-04-08 Hoya株式会社 Magnetic disc glass substrate and magnetic disc
JP2012079363A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method of manufacturing glass substrate for information recording medium, information recording medium, and magnetic disk drive
JP2012079371A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method of manufacturing glass substrate for information recording medium, and information recording medium

Similar Documents

Publication Publication Date Title
US10607647B2 (en) Magnetic disk substrate with specified changes in height or depth between adjacent raised or lowered portions and an offset portion on a main surface within a range of 92.0 to 97.0% in a radial direction from a center, a magnetic disk with substrate and magnetic disk device
US9012047B2 (en) Substrate for magnetic disk and magnetic disk
US9135939B2 (en) Glass substrate for information recording medium, information recording medium and method of manufacturing glass substrate for information recording medium
US20100081013A1 (en) Magnetic disk substrate and magnetic disk
JP5898381B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND MAGNETIC DISC DEVICE
WO2014103983A1 (en) Method for producing glass substrate for information recording medium
JP4860580B2 (en) Magnetic disk substrate and magnetic disk
JP2012079363A (en) Method of manufacturing glass substrate for information recording medium, information recording medium, and magnetic disk drive
JP6138113B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding
JP5392075B2 (en) Information recording device
WO2013047190A1 (en) Production method for glass substrate for information recording medium
JP2015060614A (en) Method for manufacturing glass substrate for information recording medium
JP5719785B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
WO2014103283A1 (en) Method for manufacturing glass substrate for information recording medium
JP5869241B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
WO2013146132A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP6196976B2 (en) Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, and glass substrate for information recording medium
JP6021911B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM AND METHOD FOR PRODUCING GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM
JP6267115B2 (en) Information recording medium glass substrate, information recording medium glass substrate manufacturing method, magnetic recording medium, and magnetic recording medium manufacturing method
WO2013146131A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
WO2014050496A1 (en) Method for producing glass substrate for information recording medium
WO2014156795A1 (en) Glass substrate for information recording media and method for producing same
WO2013145461A1 (en) Method for producing hdd glass substrate
WO2013146134A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP2013137849A (en) Method for manufacturing glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP