WO2014103204A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2014103204A1
WO2014103204A1 PCT/JP2013/007242 JP2013007242W WO2014103204A1 WO 2014103204 A1 WO2014103204 A1 WO 2014103204A1 JP 2013007242 W JP2013007242 W JP 2013007242W WO 2014103204 A1 WO2014103204 A1 WO 2014103204A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
passage
housing
scroll
drive shaft
Prior art date
Application number
PCT/JP2013/007242
Other languages
French (fr)
Japanese (ja)
Inventor
義友 塚
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to RU2015131143/06A priority Critical patent/RU2600206C1/en
Priority to CN201380067868.7A priority patent/CN104903583B/en
Priority to EP13869762.8A priority patent/EP2940302B1/en
Priority to BR112015013435-1A priority patent/BR112015013435B1/en
Priority to US14/758,174 priority patent/US20150330390A1/en
Priority to KR1020157020116A priority patent/KR101728261B1/en
Priority to ES13869762T priority patent/ES2747231T3/en
Publication of WO2014103204A1 publication Critical patent/WO2014103204A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a scroll type compressor, and particularly relates to a countermeasure against oil supply to a sliding portion of a compression mechanism.
  • a scroll type compressor having a fixed scroll and a movable scroll and compressing fluid between both scrolls is known and widely used in a refrigeration apparatus and the like.
  • Patent Document 1 discloses this type of scroll compressor.
  • the scroll compressor has an electric motor housed in a casing and a drive shaft that is rotationally driven by the electric motor.
  • the end of the drive shaft is engaged with the engaging portion of the end plate of the movable scroll.
  • the movable scroll rotates eccentrically with respect to the fixed scroll. Thereby, the compression chamber between both scrolls becomes small gradually, and fluid is compressed in this compression chamber.
  • a housing that rotatably accommodates the drive shaft is fixed to the inner peripheral surface of the casing.
  • An accommodation chamber is formed in the upper center portion of the housing so as to accommodate the engaging portion of the drive shaft and the movable scroll.
  • An oil pump that sucks up oil in the oil reservoir at the bottom of the casing is provided at the lower end of the drive shaft. The oil sucked up by the oil pump along with the rotation of the drive shaft flows upward through the oil flow path in the drive shaft, to the bearing portion of the drive shaft and the sliding portion between the engagement portion of the drive shaft and the movable scroll. After that, it flows out into the storage chamber.
  • the oil accumulated in the storage chamber sequentially flows in an oil flow path 44a extending radially outward from the storage chamber and an oil flow path 44b extending upward from the outflow side of the oil flow path 44a to slide the compression mechanism.
  • the thrust sliding surface of a compression mechanism is also used using the oil after utilized for lubrication of the sliding part between a drive shaft and the engaging part of a movable scroll. Lubricated.
  • the present invention has been made in view of such a point, and an object thereof is to provide a scroll type compressor that can reduce oil agitation loss in a storage chamber.
  • a casing (15), an electric motor (50) accommodated in the casing (15), a drive shaft (60) driven by the electric motor (50), and the drive shaft (60).
  • a compression mechanism (20) having an engaging portion (43) with which an end portion is engaged, a movable scroll (40) rotating eccentrically with respect to the drive shaft (60), and a fixed scroll (30);
  • a housing (25) having a bearing part (28) for supporting the drive shaft (60) and a housing part (26) for housing the engaging part (43), and an oil reservoir (18) of the casing (15) )
  • an oil conveying mechanism (75) for conveying the oil
  • the drive shaft (60) receives the oil conveyed by the oil conveying mechanism (75) on the sliding portion ( 44)
  • Scroll-type compressors with an oil supply passage (70) to be supplied to are targeted.
  • the scroll compressor is formed on the housing (25) at the bottom (26a) of the accommodating portion (26) and lubricates the sliding portion (44) of the engaging portion (43).
  • a recess (78) in which the oil is stored and an oil supply passage (70) for sending the oil in the recess (78) to the sliding portions (35, 45) of the compression mechanism (20) are formed.
  • the drive shaft (60) and the movable scroll (40) are connected by the end of the drive shaft (60) engaging with the engaging portion (43) of the movable scroll (40).
  • the electric motor (50) rotationally drives the drive shaft (60)
  • the movable scroll (40) rotates eccentrically with respect to the fixed scroll (30).
  • the volume of the compression chamber between the fixed scroll (30) and the movable scroll (40) is expanded and contracted, and the fluid is compressed in the compression chamber.
  • the oil transfer mechanism (75) is configured to slide the oil in the oil reservoir (18) of the casing (15) through the oil supply passage (70) between the drive shaft (60) and the engaging portion (43) ( 44). Thereby, a sliding part (44) is lubricated with oil, and sliding resistance becomes small.
  • the oil used for lubrication of the sliding part (44) of the engaging part (43) flows out into the housing part (26) that houses the engaging part (43).
  • the recess (78) is formed at the bottom of the accommodating portion (26), the oil that has flowed out flows down into the recess (78). Therefore, in the accommodating part (26), it is suppressed that oil accumulates to the circumference
  • the oil that has flowed down into the recess (78) is sent to the sliding portion (35, 45) of the compression mechanism (20) through the oil supply passage (90). Since the recess (78) is located at a position lower than the bottom of the storage portion (26), the oil in the storage portion (26) is sequentially supplied into the recess (78). For this reason, the oil in the recessed part (78) can be reliably supplied to the sliding parts (35, 45) of the compression mechanism (20).
  • the second invention is characterized in that, in the first invention, the recess (78) is constituted by an annular groove (78) surrounding the entire circumference of the bearing portion (28).
  • the concave portion of the second invention is constituted by an annular groove (78) surrounding the entire circumference of the bearing portion (28) of the drive shaft (60). If an annular groove is formed on the entire circumference of the bearing portion (28), the elastic coefficient of the portion of the housing (25) between the annular groove (78) and the bearing portion (28) becomes small. For this reason, even if the axis of the drive shaft (60) is inclined when the drive shaft (60) is rotated, this portion is easily deformed so as to be along the outer peripheral surface of the drive shaft (60). As a result, the outer peripheral surface of the drive shaft (60) can be prevented from coming into contact with the bearing portion (28), and the bearing load on the bearing portion (28) can be reduced.
  • the housing (25) is formed with an oil drainage path (80) for sending the oil in the housing part (26) to the oil reservoir (18). It is characterized by.
  • a part of the oil that has flowed down into the accommodating portion (26) is passed through the oil drainage passage (80). 18) Returned to.
  • the raise of the oil level height of a accommodating part (26) can be suppressed by returning the oil of a accommodating part (26) to an oil reservoir part (18) through an oil drainage path (80). Therefore, the engagement portion (43) can be prevented from being immersed in oil, and the oil stirring loss in the rotating engagement portion (43) is reduced.
  • the inflow port (80a) of the oil drainage passage (80) is arranged inside the housing part (26) so as to be along the bottom part (26a) of the housing part (26). It is characterized by having an opening.
  • the inlet (80a) of the oil drainage passage (80) is formed at a position along the bottom (26a) of the housing (26), the oil overflowing from the recess (78) is quickly drained. Can be led to the oil passage (80). Therefore, an increase in the oil level height of the accommodating portion (26) can be reliably suppressed.
  • the fifth invention is characterized in that, in the third invention, the inflow port (80a) of the oil drainage passage (80) opens into the recess (78).
  • part of the oil that has flowed down from the containing portion (26) to the recess (78) is returned to the oil reservoir (18) through the oil drainage passage (80). For this reason, it can prevent that the oil of a recessed part (78) overflows to an accommodating part (26), and can suppress the raise of the oil surface height of an accommodating part (26) reliably.
  • the recess (78) has a first chamber (S1) communicating with the inlet (90a) of the oil supply passage (90) and the oil discharge passage (
  • a partition member (100) for partitioning the second chamber (S2) communicating with the inflow port (80a) of 80) is formed from the bottom of the recess (78) to the opening surface, and the first chamber (S1 ) Is larger than the volume of the second chamber (S2).
  • the interior of the recess (78) is partitioned into a first chamber (S1) and a second chamber (S2) by a partition member (100).
  • the volume of the first chamber (S1) connected to the oil supply passage (90) is larger than the volume of the second chamber (S2) connected to the oil discharge passage (80).
  • the amount of oil that flows into the recess (78) after being used for lubricating the sliding portion (44) of the engaging portion (43) is also greater in the first chamber (S1) than in the second chamber (S2). Will increase. Therefore, in the present invention, sufficient oil can be secured to be supplied to the sliding portions (35, 45) of the compression mechanism (20) through the oil supply passage (90).
  • the height of the inflow port (90a) of the oil supply passage (90) is equal to that of the inflow port (80a) of the oil discharge passage (80). It is in a position lower than the height.
  • the height of the inlet (90a) of the oil supply passage (90) is lower than the height of the inlet (80a) of the oil passage (80). For this reason, if the oil level is between the inlet (90a) of the oil supply passage (90) and the inlet (80a) of the oil discharge passage (80), this oil will only enter the oil supply passage (90). Sent. On the other hand, when the oil level is higher than the inlet (80a) of the oil discharge passage (80), the oil is sent to both the oil supply passage (90) and the oil discharge passage (80).
  • the oil that has flowed into the housing part (26) is preferentially supplied to the oil supply path (90) rather than the oil discharge path (80), so the sliding part (35 of the compression mechanism (20) , 45) can be reliably lubricated.
  • the concave portion (78) is formed in the bottom portion (26a) of the accommodating portion (26), the oil used for lubrication of the sliding portion (44) of the engaging portion (43) is supplied to the concave portion (78 ) Can be sent in.
  • an accommodating part (26) it can suppress that an engaging part (43) is immersed in oil, and the stirring loss of the oil of the engaging part (43) in rotation can be reduced.
  • the engaging portion (43) can be prevented from being immersed in oil as described above, the compressed fluid may be mixed in the oil or the oil may be in a mist shape. Can be prevented. Therefore, the oil used for lubricating the sliding portion (44) can be quickly returned to the oil reservoir (18), and so-called oil rising can be prevented.
  • the second invention it is possible to prevent the drive shaft (60) and the bearing portion (28) from coming into contact with each other by configuring the concave portion with an annular groove (78). That is, in the present invention, since the annular groove (78) serves as a recess (78) for storing oil and a so-called elastic groove, the structure of the apparatus can be simplified.
  • the engagement part (43) is prevented from being immersed in the oil. It is possible to suppress oil agitation by the engaging portion (43).
  • the inflow port (80a) of the oil discharge passage (80) since the height of the inflow port (80a) of the oil discharge passage (80) is located along the bottom (26a) of the storage portion (26), the oil in the storage portion (26) is discharged. It can be discharged quickly.
  • the inflow port (80a) of the oil discharge passage (80) opens into the recess (78), so that the oil in the recess (78) is prevented from overflowing into the storage portion (26). it can.
  • the fourth and fifth inventions it is possible to effectively suppress an increase in the height of the oil level of the accommodating portion (26), and it is possible to reliably suppress oil agitation by the engaging portion (43).
  • the interior of the recess (78) is partitioned into a first chamber (S1) and a second chamber (S2) by a partition member (100), and the first chamber (S1) communicates with the oil supply passage (90). Since the volume of the second chamber (S2) is larger than that of the second chamber (S2), it is possible to prevent the amount of oil supplied from the oil supply passage (90) to the sliding portions (35, 45) of the compression mechanism (20) from being insufficient. Accordingly, the sliding portions (35, 45) of the compression mechanism (20) can be reliably lubricated, and as a result, the reliability of the scroll compressor can be improved.
  • the oil supply passage (90) is connected to the compression mechanism (20). It is possible to prevent the amount of oil supplied to the sliding portions (35, 45) from being insufficient. Accordingly, the sliding portions (35, 45) of the compression mechanism (20) can be reliably lubricated, and as a result, the reliability of the scroll compressor can be improved.
  • FIG. 1 is a longitudinal section showing the whole scroll compressor composition concerning an embodiment.
  • FIG. 2 is an enlarged vertical cross-sectional view of a main part of the compression mechanism and the housing according to the embodiment.
  • FIG. 3 is a horizontal sectional view showing the internal structure of the compression mechanism.
  • 4 is a sectional view taken along line XX of FIG.
  • FIG. 5 is a view corresponding to FIG. 2 of the scroll compressor according to the first modification.
  • FIG. 6 is a perspective view showing the internal structure of the central recess of the scroll compressor according to the second modification.
  • FIG. 7 is a horizontal sectional view showing the internal structure of the central recess of the scroll compressor according to the second modification.
  • the scroll compressor (10) of this embodiment is a hermetic compressor.
  • the scroll compressor (10) is connected to a refrigerant circuit that performs a refrigeration cycle, and sucks and compresses refrigerant in the refrigerant circuit.
  • a compression mechanism (20), an electric motor (50), a lower bearing member (55), and a drive shaft (60) are provided in the internal space of the casing (15). ) And is housed.
  • the casing (15) is a sealed container formed in a vertically long cylindrical shape.
  • a compression mechanism (20), an electric motor (50), and a lower bearing member (55) are arranged in order from the top to the bottom.
  • the drive shaft (60) is arranged in such a posture that its axial direction is along the height direction of the casing (15). The detailed structure of the compression mechanism (20) will be described later.
  • the casing (15) is provided with a suction pipe (16) and a discharge pipe (17).
  • the suction pipe (16) and the discharge pipe (17) both penetrate the casing (15).
  • the suction pipe (16) is connected to the compression mechanism (20).
  • the discharge pipe (17) opens in a portion between the electric motor (50) and the compression mechanism (20) in the internal space of the casing (15).
  • the lower bearing member (55) includes a central cylindrical portion (56) and an arm portion (57). Although only one is shown in FIG. 1, the lower bearing member (55) is provided with three arms (57).
  • the central cylindrical portion (56) is formed in a substantially cylindrical shape. Each arm portion (57) extends outward from the outer peripheral surface of the central cylindrical portion (56). In the lower bearing member (55), the three arm portions (57) are arranged at substantially equal angular intervals. The protruding end portion of each arm portion (57) is fixed to the casing (15). Near the upper end of the central cylindrical portion (56), a bearing metal (58) is inserted. A sub journal portion (67) of a drive shaft (60), which will be described later, is inserted through the bearing metal (58).
  • the central cylindrical portion (56) constitutes a journal bearing that supports the sub journal portion (67).
  • the electric motor (50) includes a stator (51) and a rotor (52).
  • the stator (51) is fixed to the casing (15).
  • the rotor (52) is arranged coaxially with the stator (51).
  • a main shaft portion (61) of a drive shaft (60), which will be described later, is inserted through the rotor (52).
  • a plurality of core cuts (51a) through which refrigerant and oil flow are formed on both ends of the stator (51) in the axial direction on the outer peripheral surface of the stator (51).
  • the drive shaft (60) is formed with a main shaft portion (61), a balance weight portion (62), and an eccentric portion (63).
  • the balance weight part (62) is disposed in the middle of the main shaft part (61) in the axial direction.
  • the main shaft portion (61) has a lower portion than the balance weight portion (62) passing through the rotor (52) of the electric motor (50).
  • the portion above the balance weight portion (62) constitutes the main journal portion (64), and the sub journal portion (67) below the portion penetrating the rotor (52). ) Is formed.
  • the main journal portion (64) is inserted through a bearing metal (28) provided in the central bulge portion (27) of the housing (25).
  • the sub-journal part (67) is inserted through a bearing metal (58) provided in the central cylindrical part (56) of the lower bearing member (55).
  • the eccentric part (63) is formed at the upper end of the drive shaft (60).
  • the eccentric part (63) is formed in a cylindrical shape having a smaller diameter than the main journal part (64), and projects from the upper end surface of the main journal part (64).
  • the shaft center of the eccentric portion (63) is parallel to the shaft center of the main journal portion (64) (that is, the shaft center of the main shaft portion (61)) and is eccentric to the shaft center of the main journal portion (64). Yes.
  • the eccentric part (63) is inserted into a bearing metal (44) provided in the cylindrical part (43) of the movable scroll (40).
  • the cylindrical portion (43) of the movable scroll (40) constitutes an engaging portion with which the eccentric portion (63) is rotatably engaged.
  • An oil supply passage (70) is formed in the drive shaft (60).
  • the oil supply passage (70) includes one main passage (74) and three branch passages (71 to 73).
  • the main passage (74) extends along the axis of the drive shaft (60), and one end thereof opens to the lower end of the main shaft portion (61) and the other end opens to the upper end surface of the eccentric portion (63). ing.
  • the first branch passage (71) is formed in the eccentric part (63).
  • the first branch passage (71) extends from the main passage (74) to the outer side in the radial direction of the eccentric portion (63), and opens to the outer peripheral surface of the eccentric portion (63).
  • the second branch passage (72) is formed in the main journal portion (64).
  • the second branch passage (72) extends from the main passage (74) to the outer side in the radial direction of the main journal portion (64), and opens on the outer peripheral surface of the main journal portion (64).
  • the third branch passage (73) is formed in the secondary journal section (67).
  • the third branch passage (73) extends from the main passage (74) to the outer side in the radial direction of the sub journal portion (67), and is open to the outer peripheral surface of the sub journal portion (67).
  • An oil supply pump (75) as an oil transfer mechanism is attached to the lower end of the drive shaft (60).
  • the oil supply pump (75) is a trochoid pump driven by the drive shaft (60).
  • the oil supply pump (75) is disposed near the start end of the main passage (74) of the oil supply passage (70).
  • the oil supply pump (75) has a suction port (76) that opens downward at the lower end and sucks refrigeration oil, which is lubricating oil.
  • the oil supply pump (75) is not limited to the trochoid pump, and may be a positive displacement pump driven by the drive shaft (60). Therefore, the oil supply pump (75) may be a gear pump, for example.
  • Refrigerator oil which is lubricating oil, is stored at the bottom of the casing (15). That is, the oil reservoir (18) is formed at the bottom of the casing (15).
  • the oil supply pump (75) sucks and discharges refrigeration oil from the oil reservoir (18), and the refrigeration oil discharged from the oil supply pump (75) flows through the main passage (74).
  • the refrigeration oil flowing through the main passage (74) is supplied to the lower bearing member (55), the compression mechanism (20), and the sliding portion of the drive shaft (60). Since the oil supply pump (75) is a positive displacement pump, the flow rate of the refrigeration oil in the main passage (74) is proportional to the rotational speed of the drive shaft (60).
  • a housing (25) is provided inside the casing (15) above the electric motor (50).
  • the housing (25) is formed in a thick disk shape, and its outer peripheral edge is fixed to the casing (15).
  • a central concave portion (26) and an annular convex portion (29) are formed in the central portion of the housing (25).
  • the central recess (26) is a cylindrical recess that opens on the upper surface of the housing (25).
  • the central recess (26) constitutes a housing portion that houses the cylindrical portion (43) of the movable scroll (40) and the eccentric portion (63) of the drive shaft (60).
  • the annular convex portion (29) is formed along the outer periphery of the central concave portion (26) and protrudes from the upper surface of the housing (25).
  • the protruding end surface of the annular convex portion (29) is a flat surface.
  • a ring-shaped concave groove is formed along the circumferential direction of the projecting end surface of the annular convex portion (29), and a seal member (29a) is fitted into the concave groove.
  • the central bulge portion (27) is formed in the housing (25).
  • the central bulging portion (27) is located below the central concave portion (26) and bulges downward.
  • a through-hole penetrating the central bulge portion (27) vertically is formed in the central bulge portion (27), and a bearing metal (28) is inserted into the through-hole.
  • the main journal portion (64) of the drive shaft (60) is inserted through the bearing metal (28) of the central bulge portion (27).
  • the central bulge portion (27) constitutes a journal bearing that supports the main journal portion (64).
  • the compression mechanism (20) includes a fixed scroll (30) and a movable scroll (40).
  • the compression mechanism (20) is provided with an Oldham coupling (24) for restricting the rotation of the movable scroll (40).
  • a fixed scroll (30) and a movable scroll (40) are placed on the housing (25).
  • the fixed scroll (30) is fixed to the housing (25) with bolts or the like.
  • the movable scroll (40) is engaged with the housing (25) via the Oldham coupling (24), and is movable relative to the housing (25).
  • the movable scroll (40) engages with the drive shaft (60) to perform eccentric rotational movement.
  • the movable scroll (40) is a member in which a movable side end plate portion (41), a movable side wrap (42), and a cylindrical portion (43) are integrally formed.
  • the movable side end plate portion (41) is formed in a disc shape.
  • the movable side wrap (42) is formed in a spiral wall shape, and protrudes from the front surface (upper surface in FIGS. 1 and 2) of the movable side end plate portion (41).
  • the cylindrical portion (43) is formed in a cylindrical shape, and protrudes from the back surface (the lower surface in FIGS. 1 and 2) of the movable side end plate portion (41).
  • the rear surface of the movable side end plate portion (41) of the movable scroll (40) is in sliding contact with the seal member (29a) provided on the annular convex portion (29) of the housing (25).
  • the cylindrical portion (43) of the movable scroll (40) is inserted from above into the central recess (26) of the housing (25).
  • a bearing metal (44) is inserted into the cylindrical part (43) as a sliding part with which the eccentric part (63) comes into sliding contact.
  • An eccentric portion (63) of the drive shaft (60) described later is inserted into the bearing metal (44) of the cylindrical portion (43) from below.
  • the cylindrical portion (43) constitutes a journal bearing that slides with the eccentric portion (63).
  • the fixed scroll (30) is a member in which a fixed side end plate part (31), a fixed side wrap (32), and an outer peripheral part (33) are integrally formed.
  • the fixed side end plate portion (31) is formed in a disc shape.
  • the fixed side wrap (32) is formed in a spiral wall shape, and protrudes from the front surface (the lower surface in FIGS. 1 and 2) of the fixed side end plate portion (31).
  • the outer peripheral portion (33) is formed in a thick ring shape extending downward from the outer peripheral portion (33) of the fixed-side end plate portion (31) and surrounds the fixed-side wrap (32).
  • the discharge port (22) is formed in the fixed side end plate part (31).
  • the discharge port (22) is a through hole formed in the vicinity of the center of the fixed-side end plate portion (31), and passes through the fixed-side end plate portion (31) in the thickness direction.
  • a suction pipe (16) is inserted in the vicinity of the outer periphery of the fixed-side end plate part (31).
  • a discharge gas passage (23) is formed in the compression mechanism (20).
  • the start end of the discharge gas passage (23) communicates with the discharge port (22).
  • the discharge gas passage (23) is formed from the fixed scroll (30) to the housing (25), and the other end opens to the lower surface of the housing (25).
  • the fixed scroll (30) and the movable scroll (40) have the front surface of the fixed side end plate portion (31) and the front surface of the movable side end plate portion (41) facing each other, and the fixed side wrap (32)
  • the movable wraps (42) are arranged so as to mesh with each other.
  • the fixed wrap (32) and the movable wrap (42) mesh with each other to form a plurality of compression chambers (21).
  • the movable side end plate portion (41) of the movable scroll (40) and the outer peripheral portion (33) of the fixed scroll (30) are in sliding contact with each other.
  • a portion of the front surface (upper surface in FIGS. 1 and 2) on the outer peripheral side of the movable side wrap (42) is in sliding contact with the fixed scroll (30).
  • the outer peripheral portion (33) of the fixed scroll (30) has its protruding end surface (the lower surface in FIGS. 1 and 2) in sliding contact with the movable thrust sliding surface (45) of the movable scroll (40).
  • a portion of the protruding end surface that is in sliding contact with the movable side thrust sliding surface (45) is a fixed side thrust sliding surface (35). That is, the fixed-side thrust sliding surface (35) and the movable-side thrust sliding surface (45) constitute a sliding portion of the compression mechanism (20).
  • annular groove (78) is formed in the bottom (26a) of the central recess (26) described above.
  • the annular groove (78) is constituted by a recess opened upward.
  • the center of the annular groove (78) substantially coincides with the axis of the main journal portion (64) and surrounds the entire circumference of the bearing metal (28) that is the bearing portion.
  • the annular groove (78) constitutes a so-called elastic groove. That is, in the housing (25), a cylindrical convex portion (79) protruding upward is formed between the annular groove (78) and the bearing metal (28).
  • the main journal portion (64) When the main journal portion (64) is bent radially outward during the rotation of the drive shaft (60), the cylindrical convex portion (79) is elastically deformed along the main journal portion (64). . As a result, the main journal portion (64) can be prevented from being in line contact with the bearing metal (28), so-called one-side contact, and the bearing load of the bearing metal (28) can be reduced.
  • ⁇ Oil used to lubricate the bearing metal (28) of the main journal part (64) flows out into the central recess (26) of the housing (25) through the oil supply passage (70).
  • the housing (25) has an oil drainage path (80) for sending the oil that has flowed into the central recess (26) to the oil reservoir (18), and the sliding part (fixed side) of the compression mechanism (20).
  • An oil supply passage (90) for feeding the thrust sliding surface (35) and the movable-side thrust sliding surface (45) is formed.
  • the oil drainage passage (80) of the present embodiment is formed on the annular convex portion (29) of the housing (25).
  • the oil drainage path (80) includes a horizontal hole (81) that penetrates the lower end of the annular convex part (29) in the radial direction and a vertical hole (82) that extends downward from the outflow end of the horizontal hole (81). Composed.
  • the inflow port (80a) of the oil drainage passage (80) opens into the center recess (26).
  • the height of the lower end of the inflow port (80a) of the oil drainage passage (80) is substantially the same as the height (26a) of the central recess (26). That is, the inflow port (80a) of the oil drainage passage (80) is disposed along the bottom (26a) of the central recess (26).
  • An oil catch plate (83) is provided below the vertical hole (82) of the oil drainage passage (80).
  • the oil catching plate (83) has a diameter-expanded portion (83a) whose diameter is increased upward, and a lower nozzle portion (83b) that is extended downward from the diameter-expanded portion (83a).
  • the outflow end (lower end) of the lower nozzle part (83b) is located inside the core cut (51a) of the stator (51).
  • the oil supply passage (90) is formed from the central bulging portion (27) of the housing (25) to the annular convex portion (29).
  • the oil supply passage (90) includes a first oil supply hole (91) and a second oil supply hole (92).
  • the first oil supply hole (91) extends obliquely upward from the annular groove (78) outward in the radial direction inside the housing (25).
  • the inlet (91a) of the first oil supply hole (91) opens into the annular groove (78).
  • the height of the inlet (91a) of the first oil supply hole (91) is lower than the height of the inlet (80a) of the oil discharge passage (80).
  • the height of the inlet (91a) of the first oil supply hole (91) is higher than the bottom surface of the annular groove (78).
  • the second oil supply hole (92) is formed through the annular protrusion (29) of the housing (25) in the axial direction so as to communicate with the outflow end of the first oil supply hole (91).
  • the screw member (93) is inserted through the second oil supply hole (92).
  • the head (93a) of the screw member (93) closes the lower end of the second oil supply hole (92).
  • the screw member (93) constitutes a pressure reducing mechanism (throttle mechanism) for reducing the pressure of the oil flowing through the second oil supply hole (92).
  • an oil communication passage (94) communicating with the second oil supply hole (92), and the oil communication passage (94).
  • a communicating oil groove (95) is formed.
  • the inflow end of the oil communication passage (94) is connected to the second oil supply hole (92) inside the housing (25).
  • the outflow end of the oil communication passage (94) opens toward the movable thrust sliding surface (45) of the movable scroll (40).
  • the oil groove (95) is a concave groove formed in the fixed-side thrust sliding surface (35) of the outer peripheral portion (33), and is formed in a ring shape surrounding the periphery of the fixed-side wrap (32).
  • the oil groove (95) communicates with the outflow end of the oil communication passage (94).
  • the compression chamber (21) is closed from the suction pipe (16), and then the compression chamber (21) is separated from the fixed wrap (32) and the movable wrap ( 42) and move toward the inner circumferential edge. In the process, the volume of the compression chamber (21) gradually decreases, and the gas refrigerant in the compression chamber (21) is compressed.
  • the compression chamber (21) When the volume of the compression chamber (21) gradually decreases as the movable scroll (40) moves, the compression chamber (21) eventually communicates with the discharge port (22). Then, the refrigerant compressed in the compression chamber (21) (that is, high-pressure gas refrigerant) flows into the discharge gas passage (23) through the discharge port (22), and then the internal space of the casing (15). Is discharged. In the internal space of the casing (15), the high-pressure gas refrigerant discharged from the compression mechanism (20) is once guided below the stator (51) of the electric motor (50), and then the rotor (52) And flows through the gap between the stator (51) and the like, and flows out of the casing (15) through the discharge pipe (17).
  • the high pressure gas refrigerant discharged from the compression mechanism (20) circulates in the inner space of the casing (15) below the housing (25), and the pressure is substantially equal to the pressure of the high pressure gas refrigerant. Are equal. Therefore, the pressure of the refrigerating machine oil stored in the oil reservoir (18) in the casing (15) is also substantially equal to the pressure of the high-pressure gas refrigerant.
  • the portion of the internal space of the casing (15) above the housing (25) communicates with the suction pipe (16) (not shown), and the low pressure gas whose pressure is sucked into the compression mechanism (20) It is about the same as the pressure of the refrigerant. Therefore, in the compression mechanism (20), the pressure in the space near the outer periphery of the movable side end plate portion (41) of the movable scroll (40) is approximately the same as the pressure of the low-pressure gas refrigerant.
  • the oil flowing into the first branch passage (71) is supplied to the gap between the eccentric portion (63) and the bearing metal (44), and is used for lubrication and cooling of the eccentric portion (63) and the bearing metal (44).
  • the oil used for lubricating the bearing metal (44) flows out into the central recess (26).
  • the cylindrical portion (43) of the movable scroll (40) may be immersed in the oil.
  • the oil in the central recess (26) becomes the resistance of the cylindrical portion (43), so-called stirring loss increases, and the power of the electric motor (50) is increased. Incurs an increase.
  • the high-pressure gas refrigerant in the casing (15) may be mixed into the oil, or the oil may be refined in a mist shape. There is.
  • an annular groove (78) is formed in the bottom (26a) of the central recess (26) in order to prevent oil from being stirred by the cylindrical portion (43) in the central recess (26).
  • the refrigerant that has been used to lubricate the bearing metal (44) and has flowed into the central recess (26) flows down from the bottom (26a) of the central recess (26) into the annular groove (78).
  • the oil level in the annular groove (78) exceeds the height position of the inlet (90a) of the first oil supply hole (91)
  • the oil in the annular groove (78) becomes the first oil supply hole (91).
  • This oil passes through the first oil supply hole (91) and flows upward through the second oil supply hole (92).
  • the second oil supply hole (92) the high pressure oil is decompressed by the screw member (93).
  • the oil that has passed through the second oil supply hole (92) flows into the oil groove (95) via the oil communication passage (94) inside the fixed scroll (30).
  • the sliding portion between the fixed-side thrust sliding surface (35) and the movable-side thrust sliding surface (45) is lubricated with oil.
  • the oil that has flowed into the central recess (26) is appropriately supplied to the sliding portion of the compression mechanism (20) through the annular groove (78) and the oil supply passage (90).
  • the oil level height in the central recess (26) is suppressed from increasing, and the area where the cylindrical portion (43) of the movable scroll (40) is immersed in oil can be suppressed.
  • annular groove (78) is formed around the bearing metal (28) of the main journal portion (64), so that a cylindrical shape is formed between the annular groove (78) and the bearing metal (28).
  • a convex part (79) can be formed.
  • the inflow port (90a) of the oil supply path (90) is opened inside the annular groove (78), and the inflow port (80a) of the oil discharge path (80) is formed inside the central recess (26). Is open. That is, the height of the inlet (90a) of the oil supply passage (90) is lower than the height of the inlet (80a) of the oil discharge passage (80). For this reason, the oil that has flowed into the central recess (26) is preferentially introduced into the oil supply passage (90) rather than the oil discharge passage (80), so the sliding portions (35, 45) oil can be supplied reliably, and the reliability of the scroll compressor (10) can be improved.
  • the scroll compressor (10) according to the first modification shown in FIG. 5 is different from the above embodiment in the configuration of the oil discharge passage (80).
  • the oil drainage passage (80) of Modification 1 has an inflow port (80a) that opens into the annular groove (78).
  • the oil drainage passage (80) extends downward from the lateral hole (81) extending radially outward from the annular groove (78) and from the radially outer end of the lateral hole (81).
  • a vertical hole (82) Inside the annular groove (78), the height of the inlet (90a) of the oil supply passage (90) is lower than the height of the inlet (80a) of the oil discharge passage (80).
  • the oil that has flowed into the central recess (26) is preferentially introduced into the oil supply passage (90) rather than the oil discharge passage (80), so that the compression mechanism (20) Oil can be reliably supplied to the sliding parts (35, 45), and the reliability of the scroll compressor (10) can be improved.
  • Modification 2 shown in FIGS. 6 and 7 has the same configuration of the housing (25) as that of Modification 1, and a partition member (100) is provided inside the annular groove (78).
  • the partition member (100) extends in the axial direction of the annular groove (78) from the bottom part on the lower side of the annular groove (78) to the opening end on the upper side of the annular groove (78).
  • the partition member (100) has a cross-sectional shape perpendicular to the axial direction of the annular groove (78) formed in a substantially U-shape (U-shape), and is fitted into the annular groove (78).
  • the partition member (100) is formed on each of the vertical wall portion (100a) curved in an arc shape along the inner peripheral surface of the annular groove (78) and both ends in the circumferential direction of the vertical wall portion (100a). And a pair of side wall portions (100b).
  • the vertical wall (100a) is disposed at a position facing the inlet (80a) of the oil drainage passage (80).
  • Each vertical wall portion (100a) extends in the radial direction from the inner inner peripheral surface of the annular groove (78) to the outer outer peripheral surface.
  • the opening area at the upper end of the first chamber (S1) is larger than the opening area at the upper end of the second chamber (S2). That is, in the annular groove (78), the volume of the first chamber (S1) is larger than the volume of the second chamber (S2). For this reason, in Modification 2, much of the oil that has flowed into the central recess (26) flows down to the first chamber (S1) rather than the second chamber (S2), and is sufficient for the first chamber (S1). You can store oil. Therefore, the oil can be reliably supplied to the sliding portions (35, 45) of the compression mechanism (20) through the first chamber (S1) and the oil supply passage (90), and the reliability of the scroll compressor (10) is improved. Can be improved.
  • the annular recess (78) is formed at the bottom (26a) of the central recess (26) so as to surround the main journal portion (64).
  • the recess (78) is not necessarily annular.
  • the cross-sectional shape perpendicular to the axis may be a rectangle, a straight line, or a dot. That is, the concave portion (78) may have any shape as long as it can capture the oil that has flowed into the central concave portion (26).
  • the present invention relates to a scroll compressor, and is particularly useful as a countermeasure against oil supply to the sliding portion of the compression mechanism.

Abstract

A recess (78), which is formed in the bottom part (26a) of a receiving part (26) and in which oil accumulates after lubrication of a sliding part (44) of an engagement part (43), and an oil supply passage (70), which feeds the oil in the recess (78) to sliding parts (35, 45) of the compressor (20), are formed in the housing (25) of a scroll compressor.

Description

スクロール型圧縮機Scroll compressor
  本発明は、スクロール型圧縮機に関し、特に圧縮機構の摺動部への給油対策に係るものである。 The present invention relates to a scroll type compressor, and particularly relates to a countermeasure against oil supply to a sliding portion of a compression mechanism.
  従来より、固定スクロール及び可動スクロールを有し、両者のスクロールの間で流体を圧縮するスクロール型圧縮機が知られており、冷凍装置等に広く利用されている。 Conventionally, a scroll type compressor having a fixed scroll and a movable scroll and compressing fluid between both scrolls is known and widely used in a refrigeration apparatus and the like.
  特許文献1には、この種のスクロール型圧縮機が開示されている。スクロール型圧縮機は、ケーシングに収容される電動機と、該電動機に回転駆動される駆動軸とを有している。駆動軸の端部は、可動スクロールの鏡板の係合部に係合している。電動機によって駆動軸が回転駆動されると、可動スクロールが固定スクロールに対して偏心回転する。これにより、両者のスクロールの間の圧縮室が徐々に小さくなり、この圧縮室で流体が圧縮される。 Patent Document 1 discloses this type of scroll compressor. The scroll compressor has an electric motor housed in a casing and a drive shaft that is rotationally driven by the electric motor. The end of the drive shaft is engaged with the engaging portion of the end plate of the movable scroll. When the drive shaft is rotationally driven by the electric motor, the movable scroll rotates eccentrically with respect to the fixed scroll. Thereby, the compression chamber between both scrolls becomes small gradually, and fluid is compressed in this compression chamber.
  また、ケーシングの内周面には、駆動軸を回転自在に収容するハウジングが固定される。ハウジングの上側中央部には、駆動軸と可動スクロールの係合部を収容するように、収容室が形成される。また、駆動軸の下端部には、ケーシングの底部の油溜部の油を吸い上げる油ポンプが設けられる。駆動軸の回転に伴い油ポンプに吸い上げられた油は、駆動軸内の油流路を上方へ流れ、駆動軸の軸受部や、駆動軸と可動スクロールの係合部の間の摺動部へ供給され、その後、収容室へ流出する。この収容室に溜まった油は、該収容室から径方向外方へ延びる油流路44a、及び該油流路44aの流出側から上方へ延びる油流路44bを順に流れ、圧縮機構の摺動部(スラスト摺動面)へ供給される。これにより、特許文献1のスクロール型圧縮機では、駆動軸と可動スクロールの係合部との間の摺動部の潤滑に利用された後の油を用いて、圧縮機構のスラスト摺動面も潤滑している。 Also, a housing that rotatably accommodates the drive shaft is fixed to the inner peripheral surface of the casing. An accommodation chamber is formed in the upper center portion of the housing so as to accommodate the engaging portion of the drive shaft and the movable scroll. An oil pump that sucks up oil in the oil reservoir at the bottom of the casing is provided at the lower end of the drive shaft. The oil sucked up by the oil pump along with the rotation of the drive shaft flows upward through the oil flow path in the drive shaft, to the bearing portion of the drive shaft and the sliding portion between the engagement portion of the drive shaft and the movable scroll. After that, it flows out into the storage chamber. The oil accumulated in the storage chamber sequentially flows in an oil flow path 44a extending radially outward from the storage chamber and an oil flow path 44b extending upward from the outflow side of the oil flow path 44a to slide the compression mechanism. To the part (thrust sliding surface). Thereby, in the scroll compressor of patent document 1, the thrust sliding surface of a compression mechanism is also used using the oil after utilized for lubrication of the sliding part between a drive shaft and the engaging part of a movable scroll. Lubricated.
特開2001-214872号公報JP 2001-214872 A
  ところで、特許文献1に開示のスクロール型圧縮機では、収容室の油を圧縮機構の摺動部へ確実に供給するために、収容室内にある程度の油を常に貯留しておく必要がある。一方、このようにして、収容室内にある程度の油が溜まると、収容室に収容される駆動軸ないし係合部が、油に浸かる状態となる。このため、駆動軸が回転する状態において、駆動軸ないし係合部と油との間の摩擦抵抗が大きくなり、ひいては攪拌損失も大きくなって電動機の動力が増大してしまう。 Incidentally, in the scroll compressor disclosed in Patent Document 1, in order to reliably supply the oil in the storage chamber to the sliding portion of the compression mechanism, it is necessary to always store a certain amount of oil in the storage chamber. On the other hand, when a certain amount of oil accumulates in the storage chamber in this way, the drive shaft or the engaging portion stored in the storage chamber is immersed in the oil. For this reason, in a state where the drive shaft rotates, the frictional resistance between the drive shaft or the engaging portion and the oil increases, and as a result, the agitation loss also increases and the power of the electric motor increases.
  本発明は、かかる点に鑑みてなされたものであり、その目的は、収容室内での油の攪拌損失を低減できるスクロール型圧縮機を提供することにある。 The present invention has been made in view of such a point, and an object thereof is to provide a scroll type compressor that can reduce oil agitation loss in a storage chamber.
  第1の発明は、ケーシング(15)と、該ケーシング(15)に収容される電動機(50)と、該電動機(50)によって駆動される駆動軸(60)と、該駆動軸(60)の端部が係合する係合部(43)を有し、該駆動軸(60)に対して偏心して回転する可動スクロール(40)、及び固定スクロール(30)を有する圧縮機構(20)と、上記駆動軸(60)を支持する軸受部(28)、及び上記係合部(43)を収容する収容部(26)を有するハウジング(25)と、上記ケーシング(15)の油溜部(18)の油を搬送する油搬送機構(75)とを備え、上記駆動軸(60)には、上記油搬送機構(75)で搬送された油を上記係合部(43)の摺動部(44)へ供給する給油通路(70)が形成されるスクロール型圧縮機を対象とする。そして、このスクロール型圧縮機は、上記ハウジング(25)には、上記収容部(26)の底部(26a)に形成され、上記係合部(43)の摺動部(44)を潤滑した後の油が溜まり込む凹部(78)と、該凹部(78)内の油を上記圧縮機構(20)の摺動部(35,45)へ送る給油通路(70)とが形成されていることを特徴とする。 According to a first aspect of the present invention, there is provided a casing (15), an electric motor (50) accommodated in the casing (15), a drive shaft (60) driven by the electric motor (50), and the drive shaft (60). A compression mechanism (20) having an engaging portion (43) with which an end portion is engaged, a movable scroll (40) rotating eccentrically with respect to the drive shaft (60), and a fixed scroll (30); A housing (25) having a bearing part (28) for supporting the drive shaft (60) and a housing part (26) for housing the engaging part (43), and an oil reservoir (18) of the casing (15) ) And an oil conveying mechanism (75) for conveying the oil, and the drive shaft (60) receives the oil conveyed by the oil conveying mechanism (75) on the sliding portion ( 44) Scroll-type compressors with an oil supply passage (70) to be supplied to are targeted. The scroll compressor is formed on the housing (25) at the bottom (26a) of the accommodating portion (26) and lubricates the sliding portion (44) of the engaging portion (43). A recess (78) in which the oil is stored and an oil supply passage (70) for sending the oil in the recess (78) to the sliding portions (35, 45) of the compression mechanism (20) are formed. Features.
  第1の発明では、駆動軸(60)の端部が可動スクロール(40)の係合部(43)に係合することで、駆動軸(60)と可動スクロール(40)とが連結する。電動機(50)が駆動軸(60)を回転駆動すると、固定スクロール(30)に対して可動スクロール(40)が偏心回転する。これにより、固定スクロール(30)と可動スクロール(40)との間の圧縮室の容積が拡縮され、該圧縮室で流体が圧縮される。 In the first invention, the drive shaft (60) and the movable scroll (40) are connected by the end of the drive shaft (60) engaging with the engaging portion (43) of the movable scroll (40). When the electric motor (50) rotationally drives the drive shaft (60), the movable scroll (40) rotates eccentrically with respect to the fixed scroll (30). Thereby, the volume of the compression chamber between the fixed scroll (30) and the movable scroll (40) is expanded and contracted, and the fluid is compressed in the compression chamber.
  油搬送機構(75)は、ケーシング(15)の油溜部(18)の油を給油通路(70)を介して駆動軸(60)と係合部(43)との間の摺動部(44)へ供給する。これにより、摺動部(44)が油によって潤滑され、摺動抵抗が小さくなる。係合部(43)の摺動部(44)の潤滑に利用された油は、係合部(43)を収容する収容部(26)の内部へ流出する。本発明では、収容部(26)の底部に凹部(78)が形成されるので、流出した油は凹部(78)の内部へ流れ落ちる。従って、収容部(26)では、係合部(43)の周囲にまで油が溜まり込むことが抑制される。この結果、回転中の係合部(43)における油の攪拌損失が小さくなる。 The oil transfer mechanism (75) is configured to slide the oil in the oil reservoir (18) of the casing (15) through the oil supply passage (70) between the drive shaft (60) and the engaging portion (43) ( 44). Thereby, a sliding part (44) is lubricated with oil, and sliding resistance becomes small. The oil used for lubrication of the sliding part (44) of the engaging part (43) flows out into the housing part (26) that houses the engaging part (43). In the present invention, since the recess (78) is formed at the bottom of the accommodating portion (26), the oil that has flowed out flows down into the recess (78). Therefore, in the accommodating part (26), it is suppressed that oil accumulates to the circumference | surroundings of an engaging part (43). As a result, the oil stirring loss in the rotating engagement portion (43) is reduced.
  凹部(78)に流れ落ちた油は、給油路(90)を通じて圧縮機構(20)の摺動部(35,45)へ送られる。凹部(78)は、収容部(26)の底部よりも低い位置にあるため、収容部(26)内の油は凹部(78)内へ順次供給される。このため、凹部(78)内の油を圧縮機構(20)の摺動部(35,45)へ確実に供給できる。 The oil that has flowed down into the recess (78) is sent to the sliding portion (35, 45) of the compression mechanism (20) through the oil supply passage (90). Since the recess (78) is located at a position lower than the bottom of the storage portion (26), the oil in the storage portion (26) is sequentially supplied into the recess (78). For this reason, the oil in the recessed part (78) can be reliably supplied to the sliding parts (35, 45) of the compression mechanism (20).
  第2の発明は、第1の発明において、上記凹部(78)は、上記軸受部(28)の全周を囲む環状の溝(78)で構成されることを特徴とする。 The second invention is characterized in that, in the first invention, the recess (78) is constituted by an annular groove (78) surrounding the entire circumference of the bearing portion (28).
  第2の発明の凹部は、駆動軸(60)の軸受部(28)の全周を囲む環状の溝(78)で構成される。軸受部(28)の全周に環状の溝を形成すると、ハウジング(25)における環状溝(78)と軸受部(28)との間の部位の弾性係数が小さくなる。このため、駆動軸(60)の回転時に該駆動軸(60)の軸心が傾いてしまったとしても、この部位が駆動軸(60)の外周面に沿うように変形し易くなる。この結果、駆動軸(60)の外周面が軸受部(28)に対して片当たりすることを回避でき、軸受部(28)の軸受負荷を低減できる。 The concave portion of the second invention is constituted by an annular groove (78) surrounding the entire circumference of the bearing portion (28) of the drive shaft (60). If an annular groove is formed on the entire circumference of the bearing portion (28), the elastic coefficient of the portion of the housing (25) between the annular groove (78) and the bearing portion (28) becomes small. For this reason, even if the axis of the drive shaft (60) is inclined when the drive shaft (60) is rotated, this portion is easily deformed so as to be along the outer peripheral surface of the drive shaft (60). As a result, the outer peripheral surface of the drive shaft (60) can be prevented from coming into contact with the bearing portion (28), and the bearing load on the bearing portion (28) can be reduced.
  第3の発明は、第1又は第2の発明において、上記ハウジング(25)には、上記収容部(26)の油を上記油溜部(18)へ送る排油路(80)が形成されていることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the housing (25) is formed with an oil drainage path (80) for sending the oil in the housing part (26) to the oil reservoir (18). It is characterized by.
  第3の発明は、係合部(43)の摺動部(44)を潤滑した後、収容部(26)内に流れ落ちた油の一部が、排油路(80)を通じて油溜部(18)へ返送される。これにより、油溜部(18)の油が不足することを回避できる。また、収容部(26)の油を排油路(80)を通じて油溜部(18)へ戻すことで、収容部(26)の油面高さの上昇を抑制できる。従って、係合部(43)が油に浸かってしまうことを防止でき、回転中の係合部(43)における油の攪拌損失が小さくなる。 According to a third aspect of the present invention, after lubricating the sliding portion (44) of the engaging portion (43), a part of the oil that has flowed down into the accommodating portion (26) is passed through the oil drainage passage (80). 18) Returned to. Thereby, it is possible to avoid a shortage of oil in the oil reservoir (18). Moreover, the raise of the oil level height of a accommodating part (26) can be suppressed by returning the oil of a accommodating part (26) to an oil reservoir part (18) through an oil drainage path (80). Therefore, the engagement portion (43) can be prevented from being immersed in oil, and the oil stirring loss in the rotating engagement portion (43) is reduced.
  第4の発明は、第3の発明において、上記排油路(80)の流入口(80a)は、上記収容部(26)の底部(26a)に沿うように該収容部(26)の内部に開口していることを特徴とする。 According to a fourth invention, in the third invention, the inflow port (80a) of the oil drainage passage (80) is arranged inside the housing part (26) so as to be along the bottom part (26a) of the housing part (26). It is characterized by having an opening.
  第4の発明では、排油路(80)の流入口(80a)が収容部(26)の底部(26a)に沿う位置に形成されるため、凹部(78)から溢れた油を速やかに排油路(80)へ導くことができる。従って、収容部(26)の油面高さの上昇を確実に抑制できる。 In the fourth invention, since the inlet (80a) of the oil drainage passage (80) is formed at a position along the bottom (26a) of the housing (26), the oil overflowing from the recess (78) is quickly drained. Can be led to the oil passage (80). Therefore, an increase in the oil level height of the accommodating portion (26) can be reliably suppressed.
  第5の発明は、第3の発明において、上記排油路(80)の流入口(80a)は、上記凹部(78)の内部に開口していることを特徴とする。 The fifth invention is characterized in that, in the third invention, the inflow port (80a) of the oil drainage passage (80) opens into the recess (78).
  第5の発明では、収容部(26)から凹部(78)へ流れ落ちた油の一部が、排油路(80)を通じて油溜部(18)へ戻される。このため、凹部(78)の油が収容部(26)へ溢れることを防止でき、収容部(26)の油面高さの上昇を確実に抑制できる。 In the fifth aspect of the invention, part of the oil that has flowed down from the containing portion (26) to the recess (78) is returned to the oil reservoir (18) through the oil drainage passage (80). For this reason, it can prevent that the oil of a recessed part (78) overflows to an accommodating part (26), and can suppress the raise of the oil surface height of an accommodating part (26) reliably.
  第6の発明は、第5の発明において、上記凹部(78)の内部には、上記給油路(90)の流入口(90a)と連通する第1室(S1)と、上記排油路(80)の流入口(80a)と連通する第2室(S2)とを区画する仕切部材(100)が、上記凹部(78)の底部から開口面に亘って形成され、上記第1室(S1)の容積が、上記第2室(S2)の容積よりも大きいことを特徴とする。 In a sixth aspect based on the fifth aspect, the recess (78) has a first chamber (S1) communicating with the inlet (90a) of the oil supply passage (90) and the oil discharge passage ( A partition member (100) for partitioning the second chamber (S2) communicating with the inflow port (80a) of 80) is formed from the bottom of the recess (78) to the opening surface, and the first chamber (S1 ) Is larger than the volume of the second chamber (S2).
  第6の発明では、凹部(78)の内部が仕切部材(100)によって第1室(S1)と第2室(S2)とに区画される。給油路(90)と繋がる第1室(S1)の容積は、排油路(80)と繋がる第2室(S2)の容積よりも大きい。このため、係合部(43)の摺動部(44)の潤滑に利用された後、凹部(78)に流れ落ちる油の量も、第2室(S2)より第1室(S1)の方が多くなる。従って、本発明では、給油路(90)を介して圧縮機構(20)の摺動部(35,45)へ供給される油を十分に確保できる。 In the sixth invention, the interior of the recess (78) is partitioned into a first chamber (S1) and a second chamber (S2) by a partition member (100). The volume of the first chamber (S1) connected to the oil supply passage (90) is larger than the volume of the second chamber (S2) connected to the oil discharge passage (80). For this reason, the amount of oil that flows into the recess (78) after being used for lubricating the sliding portion (44) of the engaging portion (43) is also greater in the first chamber (S1) than in the second chamber (S2). Will increase. Therefore, in the present invention, sufficient oil can be secured to be supplied to the sliding portions (35, 45) of the compression mechanism (20) through the oil supply passage (90).
  第7の発明は、第3乃至第6のいずれか1つの発明において、上記給油路(90)の流入口(90a)の高さが、上記排油路(80)の流入口(80a)の高さよりも低い位置にあることを特徴とする。 According to a seventh invention, in any one of the third to sixth inventions, the height of the inflow port (90a) of the oil supply passage (90) is equal to that of the inflow port (80a) of the oil discharge passage (80). It is in a position lower than the height.
  第7の発明では、給油路(90)の流入口(90a)の高さが排油路(80)の流入口(80a)の高さよりも低い位置にある。このため、油面の高さが、給油路(90)の流入口(90a)と排油路(80)の流入口(80a)の間にある場合、この油は給油路(90)にのみ送られる。一方、油面の高さが排油路(80)の流入口(80a)よりも高い場合、この油は給油路(90)と排油路(80)との双方へ送られる。つまり、本発明では、収容部(26)に流出した油が、排油路(80)よりも給油路(90)へ優先的に供給されるので、圧縮機構(20)の摺動部(35,45)を確実に潤滑できる。 In the seventh invention, the height of the inlet (90a) of the oil supply passage (90) is lower than the height of the inlet (80a) of the oil passage (80). For this reason, if the oil level is between the inlet (90a) of the oil supply passage (90) and the inlet (80a) of the oil discharge passage (80), this oil will only enter the oil supply passage (90). Sent. On the other hand, when the oil level is higher than the inlet (80a) of the oil discharge passage (80), the oil is sent to both the oil supply passage (90) and the oil discharge passage (80). That is, in the present invention, the oil that has flowed into the housing part (26) is preferentially supplied to the oil supply path (90) rather than the oil discharge path (80), so the sliding part (35 of the compression mechanism (20) , 45) can be reliably lubricated.
  本発明によれば、収容部(26)の底部(26a)に凹部(78)を形成したので、係合部(43)の摺動部(44)の潤滑に利用された油を凹部(78)内へ送ることができる。これにより、収容部(26)内では、係合部(43)が油に浸かってしまうことを抑制でき、回転中の係合部(43)の油の攪拌損失を低減できる。 According to the present invention, since the concave portion (78) is formed in the bottom portion (26a) of the accommodating portion (26), the oil used for lubrication of the sliding portion (44) of the engaging portion (43) is supplied to the concave portion (78 ) Can be sent in. Thereby, in an accommodating part (26), it can suppress that an engaging part (43) is immersed in oil, and the stirring loss of the oil of the engaging part (43) in rotation can be reduced.
  また、係合部(43)によって油が攪拌されると、この油中に圧縮流体が混入したり、この油がミスト状になったりする虞がある。これにより、油は、自重によって油溜部(18)に戻りにくくなり、油溜部(18)の油量が不足してしまう、という問題が生じる。これに対し、本発明では、上述のように係合部(43)が油に浸かってしまうことを抑制できるので、油中に圧縮流体が混入したり、油がミスト状になったりすることも防止できる。従って、摺動部(44)の潤滑に利用された油を速やかに油溜部(18)へ戻すことができ、いわゆる油上がりを防止できる。 Further, when the oil is stirred by the engaging portion (43), there is a possibility that a compressed fluid is mixed in the oil or the oil becomes a mist. This makes it difficult for the oil to return to the oil reservoir (18) due to its own weight, resulting in a problem that the amount of oil in the oil reservoir (18) is insufficient. On the other hand, in the present invention, since the engaging portion (43) can be prevented from being immersed in oil as described above, the compressed fluid may be mixed in the oil or the oil may be in a mist shape. Can be prevented. Therefore, the oil used for lubricating the sliding portion (44) can be quickly returned to the oil reservoir (18), and so-called oil rising can be prevented.
  第2の発明では、凹部を環状の溝(78)で構成することにより、駆動軸(60)と軸受部(28)の片当たりを防止できる。つまり、本発明では、環状の溝(78)が、油を貯留するための凹部(78)と、いわゆる弾性溝を兼ねる構成となるため、装置構造の簡素化を図ることができる。 In the second invention, it is possible to prevent the drive shaft (60) and the bearing portion (28) from coming into contact with each other by configuring the concave portion with an annular groove (78). That is, in the present invention, since the annular groove (78) serves as a recess (78) for storing oil and a so-called elastic groove, the structure of the apparatus can be simplified.
  第3の発明では、収容部(26)に流出した油が排油路(80)を介して油溜部(18)へ戻るため、係合部(43)が油に浸かってしまうことを防止でき、係合部(43)による油の攪拌を抑制できる。特に、第4の発明では、排油路(80)の流入口(80a)の高さが、収容部(26)の底部(26a)に沿う位置にあるため、収容部(26)の油を速やかに排出できる。また、第5の発明では、排油路(80)の流入口(80a)が、凹部(78)の内部に開口するため、凹部(78)の油が収容部(26)へ溢れることを回避できる。この結果、第4や第5の発明では、収容部(26)の油面の高さの上昇を効果的に抑制でき、係合部(43)による油の攪拌を確実に抑制できる。 In the third aspect of the invention, since the oil that has flowed into the housing part (26) returns to the oil reservoir (18) through the oil drainage path (80), the engagement part (43) is prevented from being immersed in the oil. It is possible to suppress oil agitation by the engaging portion (43). In particular, in the fourth invention, since the height of the inflow port (80a) of the oil discharge passage (80) is located along the bottom (26a) of the storage portion (26), the oil in the storage portion (26) is discharged. It can be discharged quickly. In the fifth aspect of the invention, the inflow port (80a) of the oil discharge passage (80) opens into the recess (78), so that the oil in the recess (78) is prevented from overflowing into the storage portion (26). it can. As a result, in the fourth and fifth inventions, it is possible to effectively suppress an increase in the height of the oil level of the accommodating portion (26), and it is possible to reliably suppress oil agitation by the engaging portion (43).
  第6の発明では、凹部(78)内を仕切部材(100)によって第1室(S1)と第2室(S2)とに区画し、給油路(90)と連通する第1室(S1)の容積を第2室(S2)よりも大きくしたため、給油路(90)から圧縮機構(20)の摺動部(35,45)へ供給される油量が不足してしまうことを防止できる。従って、圧縮機構(20)の摺動部(35,45)を確実に潤滑でき、ひいてはスクロール型圧縮機の信頼性を向上できる。 In the sixth invention, the interior of the recess (78) is partitioned into a first chamber (S1) and a second chamber (S2) by a partition member (100), and the first chamber (S1) communicates with the oil supply passage (90). Since the volume of the second chamber (S2) is larger than that of the second chamber (S2), it is possible to prevent the amount of oil supplied from the oil supply passage (90) to the sliding portions (35, 45) of the compression mechanism (20) from being insufficient. Accordingly, the sliding portions (35, 45) of the compression mechanism (20) can be reliably lubricated, and as a result, the reliability of the scroll compressor can be improved.
  第7の発明では、給油路(90)の流入口(90a)が排油路(80)の流入口(80a)よりも低い位置になるため、給油路(90)から圧縮機構(20)の摺動部(35,45)へ供給される油量が不足してしまうことを防止できる。従って、圧縮機構(20)の摺動部(35,45)を確実に潤滑でき、ひいてはスクロール型圧縮機の信頼性を向上できる。 In the seventh invention, since the inlet (90a) of the oil supply passage (90) is positioned lower than the inlet (80a) of the oil discharge passage (80), the oil supply passage (90) is connected to the compression mechanism (20). It is possible to prevent the amount of oil supplied to the sliding portions (35, 45) from being insufficient. Accordingly, the sliding portions (35, 45) of the compression mechanism (20) can be reliably lubricated, and as a result, the reliability of the scroll compressor can be improved.
図1は、実施形態に係るスクロール型圧縮機の全体構成を示す縦断面図である。Drawing 1 is a longitudinal section showing the whole scroll compressor composition concerning an embodiment. 図2は、実施形態に係る圧縮機構及びハウジングの要部を拡大した縦断面図である。FIG. 2 is an enlarged vertical cross-sectional view of a main part of the compression mechanism and the housing according to the embodiment. 図3は、圧縮機構の内部構造を示す水平断面図である。FIG. 3 is a horizontal sectional view showing the internal structure of the compression mechanism. 図4は、図2のX-X断面図である。4 is a sectional view taken along line XX of FIG. 図5は、変形例1に係るスクロール型圧縮機の図2相当図である。FIG. 5 is a view corresponding to FIG. 2 of the scroll compressor according to the first modification. 図6は、変形例2に係るスクロール型圧縮機の中央凹部の内部構造を示す斜視図である。FIG. 6 is a perspective view showing the internal structure of the central recess of the scroll compressor according to the second modification. 図7は、変形例2に係るスクロール型圧縮機の中央凹部の内部構造を示す水平断面図である。FIG. 7 is a horizontal sectional view showing the internal structure of the central recess of the scroll compressor according to the second modification.
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
  本発明の実施形態について説明する。本実施形態のスクロール型圧縮機(10)は、全密閉圧縮機である。このスクロール型圧縮機(10)は、冷凍サイクルを行う冷媒回路に接続され、冷媒回路の冷媒を吸入して圧縮する。 An embodiment of the present invention will be described. The scroll compressor (10) of this embodiment is a hermetic compressor. The scroll compressor (10) is connected to a refrigerant circuit that performs a refrigeration cycle, and sucks and compresses refrigerant in the refrigerant circuit.
   〈スクロール圧縮機の全体構成〉
  図1に示すように、スクロール型圧縮機(10)では、ケーシング(15)の内部空間に、圧縮機構(20)と、電動機(50)と、下部軸受部材(55)と、駆動軸(60)とが収容されている。ケーシング(15)は、縦長の円筒状に形成された密閉容器である。ケーシング(15)の内部空間では、上から下へ向かって順に、圧縮機構(20)と電動機(50)と下部軸受部材(55)とが配置されている。また、駆動軸(60)は、その軸方向がケーシング(15)の高さ方向に沿う姿勢で配置されている。なお、圧縮機構(20)の詳細な構造については、後述する。
<Overall configuration of scroll compressor>
As shown in FIG. 1, in the scroll compressor (10), a compression mechanism (20), an electric motor (50), a lower bearing member (55), and a drive shaft (60) are provided in the internal space of the casing (15). ) And is housed. The casing (15) is a sealed container formed in a vertically long cylindrical shape. In the internal space of the casing (15), a compression mechanism (20), an electric motor (50), and a lower bearing member (55) are arranged in order from the top to the bottom. Further, the drive shaft (60) is arranged in such a posture that its axial direction is along the height direction of the casing (15). The detailed structure of the compression mechanism (20) will be described later.
  ケーシング(15)には、吸入管(16)と吐出管(17)とが取り付けられている。吸入管(16)及び吐出管(17)は、何れもケーシング(15)を貫通している。吸入管(16)は、圧縮機構(20)に接続されている。吐出管(17)は、ケーシング(15)の内部空間における電動機(50)と圧縮機構(20)の間の部分に開口している。 The casing (15) is provided with a suction pipe (16) and a discharge pipe (17). The suction pipe (16) and the discharge pipe (17) both penetrate the casing (15). The suction pipe (16) is connected to the compression mechanism (20). The discharge pipe (17) opens in a portion between the electric motor (50) and the compression mechanism (20) in the internal space of the casing (15).
  下部軸受部材(55)は、中央円筒部(56)とアーム部(57)とを備えている。図1では一つしか図示されていないが、下部軸受部材(55)には、三つのアーム部(57)が設けられている。中央円筒部(56)は、概ね円筒状に形成されている。各アーム部(57)は、中央円筒部(56)の外周面から外側へ延びている。下部軸受部材(55)では、三つのアーム部(57)が概ね等角度間隔で配置されている。各アーム部(57)の突端部は、ケーシング(15)に固定されている。中央円筒部(56)の上端付近には、軸受メタル(58)が挿入されている。この軸受メタル(58)には、後述する駆動軸(60)の副ジャーナル部(67)が挿通されている。中央円筒部(56)は、副ジャーナル部(67)を支持するジャーナル軸受を構成している。 The lower bearing member (55) includes a central cylindrical portion (56) and an arm portion (57). Although only one is shown in FIG. 1, the lower bearing member (55) is provided with three arms (57). The central cylindrical portion (56) is formed in a substantially cylindrical shape. Each arm portion (57) extends outward from the outer peripheral surface of the central cylindrical portion (56). In the lower bearing member (55), the three arm portions (57) are arranged at substantially equal angular intervals. The protruding end portion of each arm portion (57) is fixed to the casing (15). Near the upper end of the central cylindrical portion (56), a bearing metal (58) is inserted. A sub journal portion (67) of a drive shaft (60), which will be described later, is inserted through the bearing metal (58). The central cylindrical portion (56) constitutes a journal bearing that supports the sub journal portion (67).
  電動機(50)は、固定子(51)と回転子(52)とを備えている。固定子(51)は、ケーシング(15)に固定されている。回転子(52)は、固定子(51)と同軸に配置されている。この回転子(52)には、後述する駆動軸(60)の主軸部(61)が挿通されている。固定子(51)の外周面には、固定子(51)の軸方向の両端に亘って、冷媒及び油が流れる複数のコアカット(51a)が形成される。 The electric motor (50) includes a stator (51) and a rotor (52). The stator (51) is fixed to the casing (15). The rotor (52) is arranged coaxially with the stator (51). A main shaft portion (61) of a drive shaft (60), which will be described later, is inserted through the rotor (52). A plurality of core cuts (51a) through which refrigerant and oil flow are formed on both ends of the stator (51) in the axial direction on the outer peripheral surface of the stator (51).
  駆動軸(60)には、主軸部(61)と、バランスウェイト部(62)と、偏心部(63)とが形成されている。バランスウェイト部(62)は、主軸部(61)の軸方向の途中に配置されている。主軸部(61)は、バランスウェイト部(62)よりも下側の部分が電動機(50)の回転子(52)を貫通している。また、主軸部(61)では、バランスウェイト部(62)よりも上側の部分が主ジャーナル部(64)を構成し、回転子(52)を貫通する部分よりも下側に副ジャーナル部(67)が形成されている。主ジャーナル部(64)は、ハウジング(25)の中央膨出部(27)に設けられた軸受メタル(28)に挿通されている。副ジャーナル部(67)は、下部軸受部材(55)の中央円筒部(56)に設けられた軸受メタル(58)に挿通されている。 The drive shaft (60) is formed with a main shaft portion (61), a balance weight portion (62), and an eccentric portion (63). The balance weight part (62) is disposed in the middle of the main shaft part (61) in the axial direction. The main shaft portion (61) has a lower portion than the balance weight portion (62) passing through the rotor (52) of the electric motor (50). Further, in the main shaft portion (61), the portion above the balance weight portion (62) constitutes the main journal portion (64), and the sub journal portion (67) below the portion penetrating the rotor (52). ) Is formed. The main journal portion (64) is inserted through a bearing metal (28) provided in the central bulge portion (27) of the housing (25). The sub-journal part (67) is inserted through a bearing metal (58) provided in the central cylindrical part (56) of the lower bearing member (55).
  偏心部(63)は、駆動軸(60)の上側端部に形成されている。偏心部(63)は、主ジャーナル部(64)よりも小径の円柱状に形成され、主ジャーナル部(64)の上端面に突設されている。偏心部(63)の軸心は、主ジャーナル部(64)の軸心(即ち、主軸部(61)の軸心)と平行で、且つ主ジャーナル部(64)の軸心に対して偏心している。偏心部(63)は、可動スクロール(40)の円筒部(43)に設けられた軸受メタル(44)に挿入されている。可動スクロール(40)の円筒部(43)は、偏心部(63)が回転自在に係合する係合部を構成する。 The eccentric part (63) is formed at the upper end of the drive shaft (60). The eccentric part (63) is formed in a cylindrical shape having a smaller diameter than the main journal part (64), and projects from the upper end surface of the main journal part (64). The shaft center of the eccentric portion (63) is parallel to the shaft center of the main journal portion (64) (that is, the shaft center of the main shaft portion (61)) and is eccentric to the shaft center of the main journal portion (64). Yes. The eccentric part (63) is inserted into a bearing metal (44) provided in the cylindrical part (43) of the movable scroll (40). The cylindrical portion (43) of the movable scroll (40) constitutes an engaging portion with which the eccentric portion (63) is rotatably engaged.
  駆動軸(60)には、給油通路(70)が形成されている。この給油通路(70)は、一つの主通路(74)と三つの分岐通路(71~73)とを備えている。主通路(74)は、駆動軸(60)の軸心に沿って延びており、その一端が主軸部(61)の下端に、その他端が偏心部(63)の上端面に、それぞれ開口している。第1分岐通路(71)は、偏心部(63)に形成されている。この第1分岐通路(71)は、主通路(74)から偏心部(63)の半径方向の外側に延びており、偏心部(63)の外周面に開口している。第2分岐通路(72)は、主ジャーナル部(64)に形成されている。この第2分岐通路(72)は、主通路(74)から主ジャーナル部(64)の半径方向の外側に延びており、主ジャーナル部(64)の外周面に開口している。第3分岐通路(73)は、副ジャーナル部(67)に形成されている。この第3分岐通路(73)は、主通路(74)から副ジャーナル部(67)の半径方向の外側に延びており、副ジャーナル部(67)の外周面に開口している。 An oil supply passage (70) is formed in the drive shaft (60). The oil supply passage (70) includes one main passage (74) and three branch passages (71 to 73). The main passage (74) extends along the axis of the drive shaft (60), and one end thereof opens to the lower end of the main shaft portion (61) and the other end opens to the upper end surface of the eccentric portion (63). ing. The first branch passage (71) is formed in the eccentric part (63). The first branch passage (71) extends from the main passage (74) to the outer side in the radial direction of the eccentric portion (63), and opens to the outer peripheral surface of the eccentric portion (63). The second branch passage (72) is formed in the main journal portion (64). The second branch passage (72) extends from the main passage (74) to the outer side in the radial direction of the main journal portion (64), and opens on the outer peripheral surface of the main journal portion (64). The third branch passage (73) is formed in the secondary journal section (67). The third branch passage (73) extends from the main passage (74) to the outer side in the radial direction of the sub journal portion (67), and is open to the outer peripheral surface of the sub journal portion (67).
  駆動軸(60)の下端には、油搬送機構としての給油ポンプ(75)が取り付けられている。給油ポンプ(75)は、駆動軸(60)によって駆動されるトロコイドポンプである。この給油ポンプ(75)は、給油通路(70)の主通路(74)の始端付近に配置されている。また、給油ポンプ(75)は、下端に下方に向かって開口して潤滑油である冷凍機油を吸い込む吸込口(76)が形成されている。なお、給油ポンプ(75)は、トロコイドポンプに限定されるものではなく、駆動軸(60)によって駆動される容積型ポンプであればよい。従って、給油ポンプ(75)は、例えばギアポンプであってもよい。 An oil supply pump (75) as an oil transfer mechanism is attached to the lower end of the drive shaft (60). The oil supply pump (75) is a trochoid pump driven by the drive shaft (60). The oil supply pump (75) is disposed near the start end of the main passage (74) of the oil supply passage (70). In addition, the oil supply pump (75) has a suction port (76) that opens downward at the lower end and sucks refrigeration oil, which is lubricating oil. The oil supply pump (75) is not limited to the trochoid pump, and may be a positive displacement pump driven by the drive shaft (60). Therefore, the oil supply pump (75) may be a gear pump, for example.
  ケーシング(15)の底部には、潤滑油である冷凍機油が貯留されている。つまり、ケーシング(15)の底部には、油溜部(18)が形成されている。駆動軸(60)が回転すると、給油ポンプ(75)が油溜部(18)から冷凍機油を吸い込んで吐出し、給油ポンプ(75)から吐出された冷凍機油が主通路(74)を流れる。主通路(74)を流れる冷凍機油は、下部軸受部材(55)や圧縮機構(20)と駆動軸(60)の摺動箇所へ供給される。給油ポンプ(75)は容積型ポンプであるため、主通路(74)における冷凍機油の流量は、駆動軸(60)の回転速度に比例する。 Refrigerator oil, which is lubricating oil, is stored at the bottom of the casing (15). That is, the oil reservoir (18) is formed at the bottom of the casing (15). When the drive shaft (60) rotates, the oil supply pump (75) sucks and discharges refrigeration oil from the oil reservoir (18), and the refrigeration oil discharged from the oil supply pump (75) flows through the main passage (74). The refrigeration oil flowing through the main passage (74) is supplied to the lower bearing member (55), the compression mechanism (20), and the sliding portion of the drive shaft (60). Since the oil supply pump (75) is a positive displacement pump, the flow rate of the refrigeration oil in the main passage (74) is proportional to the rotational speed of the drive shaft (60).
  図2にも示すように、ケーシング(15)の内部には、電動機(50)の上方にハウジング(25)が設けられている。ハウジング(25)は、厚肉の円板状に形成されており、その外周縁部がケーシング(15)に固定されている。ハウジング(25)の中央部には、中央凹部(26)と、環状凸部(29)とが形成されている。中央凹部(26)は、ハウジング(25)の上面に開口する円柱状の窪みである。中央凹部(26)は、可動スクロール(40)の円筒部(43)及び駆動軸(60)の偏心部(63)を収容する収容部を構成する。環状凸部(29)は、中央凹部(26)の外周に沿って形成され、ハウジング(25)の上面から突出している。環状凸部(29)の突端面は、平坦面となっている。環状凸部(29)の突端面には、その周方向に沿ってリング状の凹溝が形成されており、この凹溝にシール部材(29a)が嵌め込まれている。 As shown in FIG. 2, a housing (25) is provided inside the casing (15) above the electric motor (50). The housing (25) is formed in a thick disk shape, and its outer peripheral edge is fixed to the casing (15). A central concave portion (26) and an annular convex portion (29) are formed in the central portion of the housing (25). The central recess (26) is a cylindrical recess that opens on the upper surface of the housing (25). The central recess (26) constitutes a housing portion that houses the cylindrical portion (43) of the movable scroll (40) and the eccentric portion (63) of the drive shaft (60). The annular convex portion (29) is formed along the outer periphery of the central concave portion (26) and protrudes from the upper surface of the housing (25). The protruding end surface of the annular convex portion (29) is a flat surface. A ring-shaped concave groove is formed along the circumferential direction of the projecting end surface of the annular convex portion (29), and a seal member (29a) is fitted into the concave groove.
  ハウジング(25)には、中央膨出部(27)が形成されている。中央膨出部(27)は、中央凹部(26)の下側に位置して下方へ膨出している。中央膨出部(27)には、中央膨出部(27)を上下に貫通する貫通孔が形成されており、この貫通孔に軸受メタル(28)が挿入されている。中央膨出部(27)の軸受メタル(28)には、駆動軸(60)の主ジャーナル部(64)が挿通されている。そして、中央膨出部(27)は、主ジャーナル部(64)を支持するジャーナル軸受を構成している。 The central bulge portion (27) is formed in the housing (25). The central bulging portion (27) is located below the central concave portion (26) and bulges downward. A through-hole penetrating the central bulge portion (27) vertically is formed in the central bulge portion (27), and a bearing metal (28) is inserted into the through-hole. The main journal portion (64) of the drive shaft (60) is inserted through the bearing metal (28) of the central bulge portion (27). The central bulge portion (27) constitutes a journal bearing that supports the main journal portion (64).
   〈圧縮機構の構成〉
  図2にも示すように、圧縮機構(20)は、固定スクロール(30)と、可動スクロール(40)とを備えている。また、圧縮機構(20)には、可動スクロール(40)の自転運動を規制するためのオルダム継手(24)が設けられている。
<Configuration of compression mechanism>
As shown also in FIG. 2, the compression mechanism (20) includes a fixed scroll (30) and a movable scroll (40). The compression mechanism (20) is provided with an Oldham coupling (24) for restricting the rotation of the movable scroll (40).
  ハウジング(25)の上には、固定スクロール(30)と可動スクロール(40)とが載置されている。固定スクロール(30)は、ボルト等によってハウジング(25)に固定されている。一方、可動スクロール(40)は、オルダム継手(24)を介してハウジング(25)に係合しており、ハウジング(25)に対して相対的に移動可能となっている。この可動スクロール(40)は、駆動軸(60)に係合して偏心回転運動を行う。 A fixed scroll (30) and a movable scroll (40) are placed on the housing (25). The fixed scroll (30) is fixed to the housing (25) with bolts or the like. On the other hand, the movable scroll (40) is engaged with the housing (25) via the Oldham coupling (24), and is movable relative to the housing (25). The movable scroll (40) engages with the drive shaft (60) to perform eccentric rotational movement.
  可動スクロール(40)は、可動側鏡板部(41)と、可動側ラップ(42)と、円筒部(43)とを一体に形成した部材である。可動側鏡板部(41)は、円板状に形成されている。可動側ラップ(42)は、渦巻き壁状に形成されており、可動側鏡板部(41)の前面(図1及び図2における上面)に突設されている。円筒部(43)は、円筒状に形成され、可動側鏡板部(41)の背面(図1及び図2における下面)に突設されている。 The movable scroll (40) is a member in which a movable side end plate portion (41), a movable side wrap (42), and a cylindrical portion (43) are integrally formed. The movable side end plate portion (41) is formed in a disc shape. The movable side wrap (42) is formed in a spiral wall shape, and protrudes from the front surface (upper surface in FIGS. 1 and 2) of the movable side end plate portion (41). The cylindrical portion (43) is formed in a cylindrical shape, and protrudes from the back surface (the lower surface in FIGS. 1 and 2) of the movable side end plate portion (41).
  可動スクロール(40)の可動側鏡板部(41)の背面は、ハウジング(25)の環状凸部(29)に設けられたシール部材(29a)と摺接する。一方、可動スクロール(40)の円筒部(43)は、ハウジング(25)の中央凹部(26)へ上方から挿入されている。円筒部(43)には、偏心部(63)が摺接する摺動部としての軸受メタル(44)が挿入されている。円筒部(43)の軸受メタル(44)には、後述する駆動軸(60)の偏心部(63)が下方から挿入されている。円筒部(43)は、偏心部(63)と摺動するジャーナル軸受を構成している。 The rear surface of the movable side end plate portion (41) of the movable scroll (40) is in sliding contact with the seal member (29a) provided on the annular convex portion (29) of the housing (25). On the other hand, the cylindrical portion (43) of the movable scroll (40) is inserted from above into the central recess (26) of the housing (25). A bearing metal (44) is inserted into the cylindrical part (43) as a sliding part with which the eccentric part (63) comes into sliding contact. An eccentric portion (63) of the drive shaft (60) described later is inserted into the bearing metal (44) of the cylindrical portion (43) from below. The cylindrical portion (43) constitutes a journal bearing that slides with the eccentric portion (63).
  固定スクロール(30)は、固定側鏡板部(31)と、固定側ラップ(32)と、外周部(33)とを一体に形成した部材である。固定側鏡板部(31)は、円板状に形成されている。固定側ラップ(32)は、渦巻き壁状に形成されており、固定側鏡板部(31)の前面(図1及び図2における下面)に突設されている。外周部(33)は、固定側鏡板部(31)の外周部(33)から下方へ延びる厚肉のリング状に形成され、固定側ラップ(32)の周囲を囲っている。 The fixed scroll (30) is a member in which a fixed side end plate part (31), a fixed side wrap (32), and an outer peripheral part (33) are integrally formed. The fixed side end plate portion (31) is formed in a disc shape. The fixed side wrap (32) is formed in a spiral wall shape, and protrudes from the front surface (the lower surface in FIGS. 1 and 2) of the fixed side end plate portion (31). The outer peripheral portion (33) is formed in a thick ring shape extending downward from the outer peripheral portion (33) of the fixed-side end plate portion (31) and surrounds the fixed-side wrap (32).
  固定側鏡板部(31)には、吐出ポート(22)が形成されている。吐出ポート(22)は、固定側鏡板部(31)の中央付近に形成された貫通孔であって、固定側鏡板部(31)を厚さ方向に貫通している。また、固定側鏡板部(31)の外周付近には、吸入管(16)が挿入されている。 The discharge port (22) is formed in the fixed side end plate part (31). The discharge port (22) is a through hole formed in the vicinity of the center of the fixed-side end plate portion (31), and passes through the fixed-side end plate portion (31) in the thickness direction. A suction pipe (16) is inserted in the vicinity of the outer periphery of the fixed-side end plate part (31).
  圧縮機構(20)には、吐出ガス通路(23)が形成されている。この吐出ガス通路(23)は、その始端が吐出ポート(22)に連通している。図示しないが、吐出ガス通路(23)は、固定スクロール(30)からハウジング(25)に亘って形成されており、その他端がハウジング(25)の下面に開口している。 A discharge gas passage (23) is formed in the compression mechanism (20). The start end of the discharge gas passage (23) communicates with the discharge port (22). Although not shown, the discharge gas passage (23) is formed from the fixed scroll (30) to the housing (25), and the other end opens to the lower surface of the housing (25).
  圧縮機構(20)において、固定スクロール(30)と可動スクロール(40)は、固定側鏡板部(31)の前面と可動側鏡板部(41)の前面が互いに向かい合い、固定側ラップ(32)と可動側ラップ(42)が互いに噛み合うように配置されている。そして、圧縮機構(20)では、固定側ラップ(32)と可動側ラップ(42)とが互いに噛み合うことによって、複数の圧縮室(21)が形成される。 In the compression mechanism (20), the fixed scroll (30) and the movable scroll (40) have the front surface of the fixed side end plate portion (31) and the front surface of the movable side end plate portion (41) facing each other, and the fixed side wrap (32) The movable wraps (42) are arranged so as to mesh with each other. In the compression mechanism (20), the fixed wrap (32) and the movable wrap (42) mesh with each other to form a plurality of compression chambers (21).
  また、圧縮機構(20)では、可動スクロール(40)の可動側鏡板部(41)と固定スクロール(30)の外周部(33)が互いに摺接する。具体的に、可動側鏡板部(41)では、その前面(図1及び図2における上面)のうち可動側ラップ(42)よりも外周側の部分が、固定スクロール(30)と摺接する可動側スラスト摺動面(45)となっている。一方、固定スクロール(30)の外周部(33)は、その突端面(図1及び図2における下面)が、可動スクロール(40)の可動側スラスト摺動面(45)と摺接する。外周部(33)では、その突端面のうち可動側スラスト摺動面(45)と摺接する部分が、固定側スラスト摺動面(35)となっている。つまり、固定側スラスト摺動面(35)及び可動側スラスト摺動面(45)は、圧縮機構(20)の摺動部を構成する。 In the compression mechanism (20), the movable side end plate portion (41) of the movable scroll (40) and the outer peripheral portion (33) of the fixed scroll (30) are in sliding contact with each other. Specifically, in the movable side end plate portion (41), a portion of the front surface (upper surface in FIGS. 1 and 2) on the outer peripheral side of the movable side wrap (42) is in sliding contact with the fixed scroll (30). Thrust sliding surface (45). On the other hand, the outer peripheral portion (33) of the fixed scroll (30) has its protruding end surface (the lower surface in FIGS. 1 and 2) in sliding contact with the movable thrust sliding surface (45) of the movable scroll (40). In the outer peripheral portion (33), a portion of the protruding end surface that is in sliding contact with the movable side thrust sliding surface (45) is a fixed side thrust sliding surface (35). That is, the fixed-side thrust sliding surface (35) and the movable-side thrust sliding surface (45) constitute a sliding portion of the compression mechanism (20).
  図2及び図4に示すように、上述した中央凹部(26)の底部(26a)には、環状溝(78)が形成される。環状溝(78)は、上側に向かって開放される凹部によって構成される。環状溝(78)の中心は、主ジャーナル部(64)の軸心と概ね一致しており、軸受部である軸受メタル(28)の全周を囲んでいる。環状溝(78)は、いわゆる弾性溝を構成している。つまり、ハウジング(25)では、環状溝(78)と軸受メタル(28)の間に上方に突出する筒状凸部(79)が形成される。駆動軸(60)の回転時において、主ジャーナル部(64)が径方向外方に撓んだ状態となると、筒状凸部(79)は主ジャーナル部(64)に沿うように弾性変形する。これにより、主ジャーナル部(64)が軸受メタル(28)に対して線接触してしまう、いわゆる片当たりを防止でき、軸受メタル(28)の軸受負荷を低減できる。 2 and 4, an annular groove (78) is formed in the bottom (26a) of the central recess (26) described above. The annular groove (78) is constituted by a recess opened upward. The center of the annular groove (78) substantially coincides with the axis of the main journal portion (64) and surrounds the entire circumference of the bearing metal (28) that is the bearing portion. The annular groove (78) constitutes a so-called elastic groove. That is, in the housing (25), a cylindrical convex portion (79) protruding upward is formed between the annular groove (78) and the bearing metal (28). When the main journal portion (64) is bent radially outward during the rotation of the drive shaft (60), the cylindrical convex portion (79) is elastically deformed along the main journal portion (64). . As a result, the main journal portion (64) can be prevented from being in line contact with the bearing metal (28), so-called one-side contact, and the bearing load of the bearing metal (28) can be reduced.
  ハウジング(25)の中央凹部(26)の内部には、給油通路(70)を通じて主ジャーナル部(64)の軸受メタル(28)の潤滑に利用された油が流出する。ハウジング(25)には、中央凹部(26)に流出した油を油溜部(18)に送るための排油路(80)と、この油を圧縮機構(20)の摺動部(固定側スラスト摺動面(35)及び可動側スラスト摺動面(45)に送るための給油路(90)とが形成される。 ¡Oil used to lubricate the bearing metal (28) of the main journal part (64) flows out into the central recess (26) of the housing (25) through the oil supply passage (70). The housing (25) has an oil drainage path (80) for sending the oil that has flowed into the central recess (26) to the oil reservoir (18), and the sliding part (fixed side) of the compression mechanism (20). An oil supply passage (90) for feeding the thrust sliding surface (35) and the movable-side thrust sliding surface (45) is formed.
  本実施形態の排油路(80)は、ハウジング(25)の環状凸部(29)に形成される。排油路(80)は、環状凸部(29)の下端部を径方向に貫通する横孔(81)と、該横孔(81)の流出端から下方に延びる縦孔(82)とで構成される。排油路(80)の流入口(80a)は、中央凹部(26)の内部に開口している。排油路(80)の流入口(80a)の下端部の高さは、中央凹部(26)の底部(26a)と概ね同じ高さにある。つまり、排油路(80)の流入口(80a)は、中央凹部(26)の底部(26a)に沿うように配置される。 The oil drainage passage (80) of the present embodiment is formed on the annular convex portion (29) of the housing (25). The oil drainage path (80) includes a horizontal hole (81) that penetrates the lower end of the annular convex part (29) in the radial direction and a vertical hole (82) that extends downward from the outflow end of the horizontal hole (81). Composed. The inflow port (80a) of the oil drainage passage (80) opens into the center recess (26). The height of the lower end of the inflow port (80a) of the oil drainage passage (80) is substantially the same as the height (26a) of the central recess (26). That is, the inflow port (80a) of the oil drainage passage (80) is disposed along the bottom (26a) of the central recess (26).
  排油路(80)の縦孔(82)の下側には、油捕捉板(83)が設けられる。油捕捉板(83)は、上方に向かって拡径した拡径部(83a)と、該拡径部(83a)から下方に向かって延びる下側ノズル部(83b)とを有している。下側ノズル部(83b)の流出端(下端)は、固定子(51)のコアカット(51a)の内部に位置している。 An oil catch plate (83) is provided below the vertical hole (82) of the oil drainage passage (80). The oil catching plate (83) has a diameter-expanded portion (83a) whose diameter is increased upward, and a lower nozzle portion (83b) that is extended downward from the diameter-expanded portion (83a). The outflow end (lower end) of the lower nozzle part (83b) is located inside the core cut (51a) of the stator (51).
  給油路(90)は、ハウジング(25)の中央膨出部(27)から環状凸部(29)に亘って形成される。給油路(90)は、第1給油孔(91)と第2給油孔(92)とで構成される。第1給油孔(91)は、ハウジング(25)の内部において、環状溝(78)から径方向外方に向かって斜め上方に延びている。第1給油孔(91)の流入口(91a)は、環状溝(78)の内部に開口している。第1給油孔(91)の流入口(91a)の高さは、排油路(80)の流入口(80a)の高さよりも低い位置にある。また、第1給油孔(91)の流入口(91a)の高さは、環状溝(78)の底面よりも高い位置にある。これにより、環状溝(78)の底に溜まったゴミ等が、流入口(91a)を通じて給油路(90)に入り込むことを防止でき、ひいては給油路(90)でのゴミ等の詰まりを防止できる。 The oil supply passage (90) is formed from the central bulging portion (27) of the housing (25) to the annular convex portion (29). The oil supply passage (90) includes a first oil supply hole (91) and a second oil supply hole (92). The first oil supply hole (91) extends obliquely upward from the annular groove (78) outward in the radial direction inside the housing (25). The inlet (91a) of the first oil supply hole (91) opens into the annular groove (78). The height of the inlet (91a) of the first oil supply hole (91) is lower than the height of the inlet (80a) of the oil discharge passage (80). The height of the inlet (91a) of the first oil supply hole (91) is higher than the bottom surface of the annular groove (78). As a result, dust collected at the bottom of the annular groove (78) can be prevented from entering the oil supply passage (90) through the inflow port (91a), and thus can be prevented from being clogged with dust in the oil supply passage (90). .
  第2給油孔(92)は、第1給油孔(91)の流出端と連通するように、ハウジング(25)の環状凸部(29)を軸方向に貫通して形成される。第2給油孔(92)には、スクリュー部材(93)が挿通されている。スクリュー部材(93)の頭部(93a)は、第2給油孔(92)の下端を閉塞している。第2給油孔(92)では、スクリュー部材(93)により、油の流路が絞られている。つまり、スクリュー部材(93)は、第2給油孔(92)を流れる油を減圧する減圧機構(絞り機構)を構成している。 The second oil supply hole (92) is formed through the annular protrusion (29) of the housing (25) in the axial direction so as to communicate with the outflow end of the first oil supply hole (91). The screw member (93) is inserted through the second oil supply hole (92). The head (93a) of the screw member (93) closes the lower end of the second oil supply hole (92). In the second oil supply hole (92), the oil flow path is restricted by the screw member (93). That is, the screw member (93) constitutes a pressure reducing mechanism (throttle mechanism) for reducing the pressure of the oil flowing through the second oil supply hole (92).
  図2及び図3に示すように、固定スクロール(30)の外周部(33)には、第2給油孔(92)に連通する油連絡通路(94)と、該油連絡通路(94)に連通する油溝(95)とが形成される。油連絡通路(94)の流入端は、ハウジング(25)内部の第2給油孔(92)に接続している。油連絡通路(94)の流出端は、可動スクロール(40)の可動側スラスト摺動面(45)に向かって開口している。油溝(95)は、外周部(33)の固定側スラスト摺動面(35)に形成された凹溝であって、固定側ラップ(32)の周囲を囲むリング状に形成されている。油溝(95)は、油連絡通路(94)の流出端と連通している。 As shown in FIGS. 2 and 3, in the outer peripheral portion (33) of the fixed scroll (30), there is an oil communication passage (94) communicating with the second oil supply hole (92), and the oil communication passage (94). A communicating oil groove (95) is formed. The inflow end of the oil communication passage (94) is connected to the second oil supply hole (92) inside the housing (25). The outflow end of the oil communication passage (94) opens toward the movable thrust sliding surface (45) of the movable scroll (40). The oil groove (95) is a concave groove formed in the fixed-side thrust sliding surface (35) of the outer peripheral portion (33), and is formed in a ring shape surrounding the periphery of the fixed-side wrap (32). The oil groove (95) communicates with the outflow end of the oil communication passage (94).
   -運転動作-
  スクロール型圧縮機(10)の運転動作について説明する。
-Driving operation-
The operation of the scroll compressor (10) will be described.
   〈冷媒を圧縮する動作〉
  スクロール型圧縮機(10)において、電動機(50)へ通電すると、駆動軸(60)によって可動スクロール(40)が駆動される。可動スクロール(40)は、その自転運動がオルダム継手(24)によって規制されており、自転運動は行わずに公転運動だけを行う。
<Operation to compress refrigerant>
In the scroll compressor (10), when the electric motor (50) is energized, the movable scroll (40) is driven by the drive shaft (60). The orbiting scroll (40) has its rotation motion restricted by the Oldham coupling (24), and does not rotate but only revolves.
  可動スクロール(40)が公転運動を行うと、吸入管(16)を通って圧縮機構(20)へ流入した低圧のガス冷媒が、固定側ラップ(32)及び可動側ラップ(42)の外周側端部付近から圧縮室(21)へ吸入される。可動スクロール(40)が更に移動すると、圧縮室(21)が吸入管(16)から遮断された閉じきり状態となり、その後、圧縮室(21)は、固定側ラップ(32)及び可動側ラップ(42)に沿ってそれらの内周側端部へ向かって移動してゆく。その過程で圧縮室(21)の容積が次第に減少し、圧縮室(21)内のガス冷媒が圧縮されてゆく。 When the orbiting scroll (40) revolves, the low-pressure gas refrigerant that has flowed into the compression mechanism (20) through the suction pipe (16) becomes the outer peripheral side of the fixed side wrap (32) and the movable side wrap (42). It is sucked into the compression chamber (21) from near the end. When the movable scroll (40) is further moved, the compression chamber (21) is closed from the suction pipe (16), and then the compression chamber (21) is separated from the fixed wrap (32) and the movable wrap ( 42) and move toward the inner circumferential edge. In the process, the volume of the compression chamber (21) gradually decreases, and the gas refrigerant in the compression chamber (21) is compressed.
  可動スクロール(40)の移動に伴って圧縮室(21)の容積が次第に縮小してゆくと、やがて圧縮室(21)は吐出ポート(22)に連通する。そして、圧縮室(21)内で圧縮された冷媒(即ち、高圧のガス冷媒)は、吐出ポート(22)を通って吐出ガス通路(23)へ流入し、その後にケーシング(15)の内部空間へ吐出される。ケーシング(15)の内部空間において、圧縮機構(20)から吐出された高圧のガス冷媒は、一旦は電動機(50)の固定子(51)よりも下方へ導かれ、その後に回転子(52)と固定子(51)の隙間などを通って上方へ流れ、吐出管(17)を通ってケーシング(15)の外部へ流出してゆく。 When the volume of the compression chamber (21) gradually decreases as the movable scroll (40) moves, the compression chamber (21) eventually communicates with the discharge port (22). Then, the refrigerant compressed in the compression chamber (21) (that is, high-pressure gas refrigerant) flows into the discharge gas passage (23) through the discharge port (22), and then the internal space of the casing (15). Is discharged. In the internal space of the casing (15), the high-pressure gas refrigerant discharged from the compression mechanism (20) is once guided below the stator (51) of the electric motor (50), and then the rotor (52) And flows through the gap between the stator (51) and the like, and flows out of the casing (15) through the discharge pipe (17).
  ケーシング(15)の内部空間のうちハウジング(25)よりも下方の部分では、圧縮機構(20)から吐出された高圧ガス冷媒が流通しており、その圧力は高圧ガス冷媒の圧力と実質的に等しくなっている。従って、ケーシング(15)内の油溜部(18)に貯留された冷凍機油の圧力も、高圧ガス冷媒の圧力と実質的に等しくなっている。 The high pressure gas refrigerant discharged from the compression mechanism (20) circulates in the inner space of the casing (15) below the housing (25), and the pressure is substantially equal to the pressure of the high pressure gas refrigerant. Are equal. Therefore, the pressure of the refrigerating machine oil stored in the oil reservoir (18) in the casing (15) is also substantially equal to the pressure of the high-pressure gas refrigerant.
  一方、ケーシング(15)の内部空間のうちハウジング(25)よりも上方の部分は、図示しないが吸入管(16)と連通しており、その圧力が圧縮機構(20)へ吸入される低圧ガス冷媒の圧力と同程度となっている。従って、圧縮機構(20)では、可動スクロール(40)の可動側鏡板部(41)の外周付近の空間の圧力も、低圧ガス冷媒の圧力と同程度となっている。 On the other hand, the portion of the internal space of the casing (15) above the housing (25) communicates with the suction pipe (16) (not shown), and the low pressure gas whose pressure is sucked into the compression mechanism (20) It is about the same as the pressure of the refrigerant. Therefore, in the compression mechanism (20), the pressure in the space near the outer periphery of the movable side end plate portion (41) of the movable scroll (40) is approximately the same as the pressure of the low-pressure gas refrigerant.
   〈摺動部の給油動作〉
  スクロール型圧縮機(10)の運転中には、回転する駆動軸(60)によって給油ポンプ(75)が駆動され、ケーシング(15)の底部に貯留された冷凍機油が給油通路(70)の主通路(74)へ吸い上げられる。主通路(74)を流れる冷凍機油は、その一部が各分岐通路(71~73)へ流入し、残りが主通路(74)の上端から流出する。第3分岐通路(73)へ流入した油(冷凍機油)は、副ジャーナル部(67)と軸受メタル(58)の隙間へ供給され、副ジャーナル部(67)と軸受メタル(58)の潤滑や冷却に利用される。第2分岐通路(72)へ流入した油は、主ジャーナル部(64)と軸受メタル(28)の隙間へ供給され、主ジャーナル部(64)と軸受メタル(28)の潤滑や冷却に利用される。
<Lubrication operation of sliding part>
During operation of the scroll compressor (10), the oil supply pump (75) is driven by the rotating drive shaft (60), and the refrigerating machine oil stored at the bottom of the casing (15) is the main oil supply passage (70). It is sucked up into the passage (74). A part of the refrigeration oil flowing in the main passage (74) flows into the branch passages (71 to 73), and the rest flows out from the upper end of the main passage (74). The oil (refrigerating machine oil) flowing into the third branch passage (73) is supplied to the gap between the sub journal portion (67) and the bearing metal (58), and lubrication of the sub journal portion (67) and the bearing metal (58) Used for cooling. The oil flowing into the second branch passage (72) is supplied to the gap between the main journal part (64) and the bearing metal (28), and is used for lubrication and cooling of the main journal part (64) and the bearing metal (28). The
  第1分岐通路(71)へ流入した油は、偏心部(63)と軸受メタル(44)の隙間へ供給され、偏心部(63)と軸受メタル(44)の潤滑や冷却に利用される。軸受メタル(44)の潤滑に利用された油は、中央凹部(26)の内部へ流出する。 The oil flowing into the first branch passage (71) is supplied to the gap between the eccentric portion (63) and the bearing metal (44), and is used for lubrication and cooling of the eccentric portion (63) and the bearing metal (44). The oil used for lubricating the bearing metal (44) flows out into the central recess (26).
  ところで、中央凹部(26)の内部において、軸受メタル(44)の潤滑に利用された油が溜まり込んでいくと、可動スクロール(40)の円筒部(43)が油に浸かってしまうことがある。このような状態で円筒部(43)が偏心回転運動を繰り返すと、中央凹部(26)内の油が円筒部(43)の抵抗となり、いわゆる攪拌損失が増大して電動機(50)の動力の増大を招く。また、中央凹部(26)内の油が円筒部(43)によって攪拌されると、ケーシング(15)内の高圧のガス冷媒が油に混入したり、油がミスト状に微細化されたりすることがある。これにより、中央凹部(26)内で攪拌された油が、その自重により、最終的に油溜部(18)に戻りにくくなり、油溜部(18)の油量が不足してしまう。そこで、本実施形態では、中央凹部(26)内での円筒部(43)による油の攪拌を防止するために、中央凹部(26)の底部(26a)に環状溝(78)を形成している。 By the way, when the oil used for lubricating the bearing metal (44) accumulates inside the central recess (26), the cylindrical portion (43) of the movable scroll (40) may be immersed in the oil. . When the cylindrical portion (43) repeats eccentric rotational motion in such a state, the oil in the central recess (26) becomes the resistance of the cylindrical portion (43), so-called stirring loss increases, and the power of the electric motor (50) is increased. Incurs an increase. Further, when the oil in the central recess (26) is stirred by the cylindrical portion (43), the high-pressure gas refrigerant in the casing (15) may be mixed into the oil, or the oil may be refined in a mist shape. There is. As a result, the oil stirred in the central recess (26) is unlikely to finally return to the oil reservoir (18) due to its own weight, and the amount of oil in the oil reservoir (18) becomes insufficient. Therefore, in this embodiment, an annular groove (78) is formed in the bottom (26a) of the central recess (26) in order to prevent oil from being stirred by the cylindrical portion (43) in the central recess (26). Yes.
  具体的に、軸受メタル(44)の潤滑に利用されて中央凹部(26)の内部へ流出した冷媒は、該中央凹部(26)の底部(26a)から環状溝(78)の内部へ流れ落ちる。環状溝(78)内の油面の高さが、第1給油孔(91)の流入口(90a)の高さ位置を越えると、環状溝(78)の油が第1給油孔(91)に流入する。この油は、第1給油孔(91)を通過し、第2給油孔(92)を上方へ流れる。この際、第2給油孔(92)では、スクリュー部材(93)により、高圧の油が減圧される。第2給油孔(92)を通過した油は、固定スクロール(30)の内部の油連絡通路(94)を経由して、油溝(95)に流入する。これにより、圧縮機構(20)では、固定側スラスト摺動面(35)と可動側スラスト摺動面(45)との間の摺動部が油によって潤滑される。 Specifically, the refrigerant that has been used to lubricate the bearing metal (44) and has flowed into the central recess (26) flows down from the bottom (26a) of the central recess (26) into the annular groove (78). When the oil level in the annular groove (78) exceeds the height position of the inlet (90a) of the first oil supply hole (91), the oil in the annular groove (78) becomes the first oil supply hole (91). Flow into. This oil passes through the first oil supply hole (91) and flows upward through the second oil supply hole (92). At this time, in the second oil supply hole (92), the high pressure oil is decompressed by the screw member (93). The oil that has passed through the second oil supply hole (92) flows into the oil groove (95) via the oil communication passage (94) inside the fixed scroll (30). Thereby, in the compression mechanism (20), the sliding portion between the fixed-side thrust sliding surface (35) and the movable-side thrust sliding surface (45) is lubricated with oil.
  このように、中央凹部(26)に流出した油は、環状溝(78)及び給油路(90)を通じて、圧縮機構(20)の摺動部へ適宜供給される。この結果、中央凹部(26)内の油面高さが上昇することが抑制され、可動スクロール(40)の円筒部(43)が油に浸かる面積を抑えることができる。 Thus, the oil that has flowed into the central recess (26) is appropriately supplied to the sliding portion of the compression mechanism (20) through the annular groove (78) and the oil supply passage (90). As a result, the oil level height in the central recess (26) is suppressed from increasing, and the area where the cylindrical portion (43) of the movable scroll (40) is immersed in oil can be suppressed.
  また、環状溝(78)内の油面が上昇し、この油が環状溝(78)から中央凹部(26)へ油が溢れた場合、この油は排油路(80)へ流入する。排油路(80)では、油が横孔(81)、縦孔(82)、油捕捉板(83)を順に流れ、コアカット(51a)へ導かれる。コアカット(51a)内の油は、ケーシング(15)の内周面に沿うようにして更に下方へ流れ、最終的に油溜部(18)へ送られる。 Also, when the oil level in the annular groove (78) rises and this oil overflows from the annular groove (78) to the central recess (26), this oil flows into the oil drainage path (80). In the oil drainage path (80), oil flows in order through the horizontal hole (81), the vertical hole (82), and the oil catching plate (83) and is guided to the core cut (51a). The oil in the core cut (51a) flows further downward along the inner peripheral surface of the casing (15) and is finally sent to the oil reservoir (18).
  このように、環状溝(78)から溢れた油は、排油路(80)を通じて直接的に油溜部(18)へ戻される。このため、中央凹部(26)内の油面高さが上昇することが抑制され、可動スクロール(40)の円筒部(43)が油に浸かる面積を抑えることができる。 Thus, the oil overflowing from the annular groove (78) is returned directly to the oil reservoir (18) through the oil drainage passage (80). For this reason, it is suppressed that the oil level height in a center recessed part (26) raises, and the area where the cylindrical part (43) of a movable scroll (40) is immersed in oil can be suppressed.
  -実施形態の効果-
  上記実施形態によれば、ハウジング(25)の中央凹部(26)の底部(26a)に環状溝(78)を形成したので、軸受メタル(44)の潤滑に利用された油を環状溝(78)内へ捕捉できる。これにより、中央凹部(26)内では、可動スクロール(40)の円筒部(43)が油に浸かってしまうことを抑制でき、回転中の円筒部(43)の油の攪拌損失を低減できる。この結果、電動機(50)の動力を削減でき、省エネ性を向上できる。
-Effects of the embodiment-
According to the above embodiment, since the annular groove (78) is formed in the bottom (26a) of the central recess (26) of the housing (25), oil used for lubricating the bearing metal (44) is removed from the annular groove (78 ). Thereby, in the center recessed part (26), it can suppress that the cylindrical part (43) of a movable scroll (40) is immersed in oil, and can reduce the oil stirring loss of the rotating cylindrical part (43). As a result, the power of the electric motor (50) can be reduced and energy saving can be improved.
  また、このようにして円筒部(43)による油の攪拌を抑制することで、油中に圧縮流体が混入したり、油がミスト状になったりすることも防止できる。従って、軸受メタル(44)の潤滑に利用された油を速やかに油溜部(18)へ戻すことができ、いわゆる油上がりを防止できる。 In addition, by suppressing the stirring of the oil by the cylindrical portion (43) in this way, it is possible to prevent the compressed fluid from being mixed into the oil or the oil from becoming a mist. Therefore, the oil used for lubricating the bearing metal (44) can be quickly returned to the oil reservoir (18), and so-called oil rising can be prevented.
  また、上記実施形態では、主ジャーナル部(64)の軸受メタル(28)の周囲に環状溝(78)を形成することで、この環状溝(78)と軸受メタル(28)の間に筒状凸部(79)を形成できる。これにより、主ジャーナル部(64)が軸心に対して傾いたとしても、この主ジャーナル部(64)に沿って筒状凸部(79)を弾性変形させることができる。従って、軸受メタル(28)に対して主ジャーナル部(64)が片当たりしてしまうのを回避でき、主ジャーナル部(64)の軸受負荷を低減できる。そして、環状溝(78)は、油を捕捉して給油路(90)へ導くための溝と、いわゆる弾性溝とを兼ねているため、ハウジング(25)の構造の簡素化を図ることもできる。 In the above embodiment, an annular groove (78) is formed around the bearing metal (28) of the main journal portion (64), so that a cylindrical shape is formed between the annular groove (78) and the bearing metal (28). A convex part (79) can be formed. Thereby, even if the main journal part (64) is inclined with respect to the axial center, the cylindrical convex part (79) can be elastically deformed along the main journal part (64). Therefore, it is possible to avoid the main journal portion (64) from coming into contact with the bearing metal (28), and the bearing load on the main journal portion (64) can be reduced. Since the annular groove (78) serves as both a groove for capturing oil and guiding it to the oil supply passage (90) and a so-called elastic groove, the structure of the housing (25) can be simplified. .
  また、上記実施形態では、中央凹部(26)に流出した油の一部が、排油路(80)を介して直接的に油溜部(18)へ戻るため、円筒部(43)が油に浸かってしまうことを防止できる。特に、本実施形態では、排油路(80)の流入口(80a)が、中央凹部(26)の底部(26a)に沿うように配置されるため、環状溝(78)から油が溢れたとしても、この油を速やかに排油路(80)へ導入できる。 In the above embodiment, a part of the oil that has flowed into the central recess (26) returns directly to the oil reservoir (18) through the oil drainage passage (80), so that the cylindrical portion (43) Can be prevented from being soaked. In particular, in this embodiment, since the inflow port (80a) of the oil drainage channel (80) is arranged along the bottom (26a) of the central recess (26), oil has overflowed from the annular groove (78). However, this oil can be promptly introduced into the oil discharge passage (80).
  また、上記実施形態では、給油路(90)の流入口(90a)を環状溝(78)の内部に開口させ、排油路(80)の流入口(80a)を中央凹部(26)の内部に開口させている。つまり、給油路(90)の流入口(90a)の高さは、排油路(80)の流入口(80a)の高さよりも低い位置にある。このため、中央凹部(26)の内部に流出した油は、排油路(80)よりも給油路(90)へ優先的に導入されるので、圧縮機構(20)の摺動部(35,45)へ確実に油を供給でき、スクロール型圧縮機(10)の信頼性を向上できる。 Moreover, in the said embodiment, the inflow port (90a) of the oil supply path (90) is opened inside the annular groove (78), and the inflow port (80a) of the oil discharge path (80) is formed inside the central recess (26). Is open. That is, the height of the inlet (90a) of the oil supply passage (90) is lower than the height of the inlet (80a) of the oil discharge passage (80). For this reason, the oil that has flowed into the central recess (26) is preferentially introduced into the oil supply passage (90) rather than the oil discharge passage (80), so the sliding portions (35, 45) oil can be supplied reliably, and the reliability of the scroll compressor (10) can be improved.
  〈実施形態の変形例1〉
  図5に示す変形例1に係るスクロール型圧縮機(10)は、上記実施形態と排油路(80)の構成が異なっている。変形例1の排油路(80)は、その流入口(80a)が環状溝(78)の内部に開口している。具体的に、排油路(80)は、環状溝(78)の内部から径方向外方に延びる横孔(81)と、該横孔(81)の径方向外方端部から下方に延びる縦孔(82)とを有している。環状溝(78)の内部では、給油路(90)の流入口(90a)の高さが、排油路(80)の流入口(80a)の高さよりも低い位置にある。
<Variation 1 of Embodiment>
The scroll compressor (10) according to the first modification shown in FIG. 5 is different from the above embodiment in the configuration of the oil discharge passage (80). The oil drainage passage (80) of Modification 1 has an inflow port (80a) that opens into the annular groove (78). Specifically, the oil drainage passage (80) extends downward from the lateral hole (81) extending radially outward from the annular groove (78) and from the radially outer end of the lateral hole (81). And a vertical hole (82). Inside the annular groove (78), the height of the inlet (90a) of the oil supply passage (90) is lower than the height of the inlet (80a) of the oil discharge passage (80).
  変形例1では、環状溝(78)内の油面の高さが、給油路(90)の流入口(90a)と排油路(80)の流入口(80a)との間にある場合、給油路(90)に優先的に油が導入される。一方、環状溝(78)内の油面の高さが、排油路(80)の流入口(80a)にまで至ると、給油路(90)と排油路(80)との双方へ油が導入される。このように、変形例1においても、中央凹部(26)の内部に流出した油は、排油路(80)よりも給油路(90)へ優先的に導入されるので、圧縮機構(20)の摺動部(35,45)へ確実に油を供給でき、スクロール型圧縮機(10)の信頼性を向上できる。 In Modification 1, when the oil level in the annular groove (78) is between the inlet (90a) of the oil supply passage (90) and the inlet (80a) of the oil discharge passage (80), Oil is preferentially introduced into the oil supply passage (90). On the other hand, when the oil level in the annular groove (78) reaches the inlet (80a) of the oil discharge passage (80), oil is supplied to both the oil supply passage (90) and the oil discharge passage (80). Is introduced. Thus, also in the first modification, the oil that has flowed into the central recess (26) is preferentially introduced into the oil supply passage (90) rather than the oil discharge passage (80), so that the compression mechanism (20) Oil can be reliably supplied to the sliding parts (35, 45), and the reliability of the scroll compressor (10) can be improved.
  また、変形例1では、環状溝(78)内の油を給油路(90)と排油路(80)との双方へ送るため、環状溝(78)内の油が中央凹部(26)へ溢れてしまうことを防止できる。この結果、可動スクロール(40)の円筒部(43)が油に浸かってしまうことを一層確実に防止できる。 Further, in Modification 1, since the oil in the annular groove (78) is sent to both the oil supply passage (90) and the oil discharge passage (80), the oil in the annular groove (78) is directed to the central recess (26). It can prevent overflowing. As a result, it is possible to more reliably prevent the cylindrical portion (43) of the movable scroll (40) from being immersed in oil.
  変形例1のそれ以外の作用及び効果は、上記実施形態と同様である。 Other operations and effects of the first modification are the same as those in the above embodiment.
  〈実施形態の変形例2〉
  図6及び図7に示す変形例2は、上記変形例1と同様のハウジング(25)の構成において、環状溝(78)の内部に仕切部材(100)を設けている。仕切部材(100)は、環状溝(78)の下側の底部から、該環状溝(78)の上側の開口端に亘るように、環状溝(78)の軸方向に延びている。仕切部材(100)は、環状溝(78)の軸方向に直角な断面形状が、略コの字(Uの字)状に形成され、環状溝(78)に嵌合している。
<Modification 2 of Embodiment>
Modification 2 shown in FIGS. 6 and 7 has the same configuration of the housing (25) as that of Modification 1, and a partition member (100) is provided inside the annular groove (78). The partition member (100) extends in the axial direction of the annular groove (78) from the bottom part on the lower side of the annular groove (78) to the opening end on the upper side of the annular groove (78). The partition member (100) has a cross-sectional shape perpendicular to the axial direction of the annular groove (78) formed in a substantially U-shape (U-shape), and is fitted into the annular groove (78).
  仕切部材(100)は、環状溝(78)の内側内周面に沿うように円弧状に湾曲した縦壁部(100a)と、該縦壁部(100a)の周方向の両端にそれぞれ形成される一対の側壁部(100b)とを有している。縦壁部(100a)は、排油路(80)の流入口(80a)に対向する位置に配置される。各縦壁部(100a)は、環状溝(78)の内側内周面から外側外周面に亘って径方向に延びている。この仕切部材(100)により、環状溝(78)の内部は、仕切部材(100)の外側の第1室(S1)と、仕切部材(100)の内側の第2室とに区画される。第1室(S1)には、給油路(90)の流入口(90a)が連通している。第2室(S2)には、排油路(80)の流入口(80a)が連通している。 The partition member (100) is formed on each of the vertical wall portion (100a) curved in an arc shape along the inner peripheral surface of the annular groove (78) and both ends in the circumferential direction of the vertical wall portion (100a). And a pair of side wall portions (100b). The vertical wall (100a) is disposed at a position facing the inlet (80a) of the oil drainage passage (80). Each vertical wall portion (100a) extends in the radial direction from the inner inner peripheral surface of the annular groove (78) to the outer outer peripheral surface. By this partition member (100), the inside of the annular groove (78) is partitioned into a first chamber (S1) outside the partition member (100) and a second chamber inside the partition member (100). The inlet (90a) of the oil supply passage (90) communicates with the first chamber (S1). The second chamber (S2) communicates with the inlet (80a) of the oil discharge passage (80).
  変形例2では、第1室(S1)の上端の開口面積が、第2室(S2)の上端の開口面積よりも大きくなっている。つまり、環状溝(78)の内部では、第1室(S1)の体積が第2室(S2)の体積よりも大きくなっている。このため、変形例2では、中央凹部(26)に流出した油の多くが、第2室(S2)よりも第1室(S1)へ流れ落ちることになり、第1室(S1)に十分な油を貯めることができる。従って、第1室(S1)及び給油路(90)を介して、圧縮機構(20)の摺動部(35,45)へ確実に油を供給でき、スクロール型圧縮機(10)の信頼性を向上できる。 In Modification 2, the opening area at the upper end of the first chamber (S1) is larger than the opening area at the upper end of the second chamber (S2). That is, in the annular groove (78), the volume of the first chamber (S1) is larger than the volume of the second chamber (S2). For this reason, in Modification 2, much of the oil that has flowed into the central recess (26) flows down to the first chamber (S1) rather than the second chamber (S2), and is sufficient for the first chamber (S1). You can store oil. Therefore, the oil can be reliably supplied to the sliding portions (35, 45) of the compression mechanism (20) through the first chamber (S1) and the oil supply passage (90), and the reliability of the scroll compressor (10) is improved. Can be improved.
  変形例2のそれ以外の作用効果は、上記実施形態と同様である。 Other functions and effects of Modification 2 are the same as in the above embodiment.
 《その他の実施形態》
  上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
  上記実施形態では、中央凹部(26)の底部(26a)において、主ジャーナル部(64)を囲むように環状の凹部(78)を形成しているが、この凹部(78)は、必ずしも環状でなくてもよく、例えば軸直角な断面形状が、矩形状、直線状、点状であってもよい。つまり、凹部(78)は、中央凹部(26)に流出した油を捕捉できるものであれば、如何なる形状であってもよい。 In the above embodiment, the annular recess (78) is formed at the bottom (26a) of the central recess (26) so as to surround the main journal portion (64). However, the recess (78) is not necessarily annular. For example, the cross-sectional shape perpendicular to the axis may be a rectangle, a straight line, or a dot. That is, the concave portion (78) may have any shape as long as it can capture the oil that has flowed into the central concave portion (26).
  以上説明したように、本発明は、スクロール型圧縮機に関し、特に圧縮機構の摺動部への給油対策について有用である。 As described above, the present invention relates to a scroll compressor, and is particularly useful as a countermeasure against oil supply to the sliding portion of the compression mechanism.
 10  スクロール型圧縮機
 15    ケーシング
 18    油溜部
  20    圧縮機構
  25    ハウジング
  26    中央凹部(収容部)
  26a   底部
 28    軸受メタル(軸受部)
  30    固定スクロール
 35    固定側スラスト摺動面
  40    可動スクロール
  43    円筒部(係合部)
  44    軸受メタル(摺動部)
  45    可動側スラスト摺動面
  50    電動機
  60    駆動軸
  70    給油通路
  75    給油ポンプ(油搬送機構)
 78    環状溝(凹部)
  80    排油路
  80a   流入口(排油路側)
  90    給油路
 90a   流入口(給油路側)
 100   仕切部材
 S1   第1室
 S2    第2室
10 Scroll compressor 15 Casing 18 Oil reservoir 20 Compression mechanism 25 Housing 26 Central recess (housing part)
26a Bottom 28 Bearing metal (bearing part)
30 Fixed scroll 35 Fixed thrust sliding surface 40 Movable scroll 43 Cylindrical part (engagement part)
44 Bearing metal (sliding part)
45 Movable thrust sliding surface 50 Electric motor 60 Drive shaft 70 Oil supply passage 75 Oil supply pump (oil transfer mechanism)
78 Annular groove (concave)
80 Oil drain 80a Inlet (oil drain side)
90 Oil supply passage 90a Inlet (oil supply side)
100 Partition member S1 1st chamber S2 2nd chamber

Claims (7)

  1.   ケーシング(15)と、該ケーシング(15)に収容される電動機(50)と、該電動機(50)によって駆動される駆動軸(60)と、該駆動軸(60)の端部が係合する係合部(43)を有し、該駆動軸(60)に対して偏心して回転する可動スクロール(40)、及び固定スクロール(30)を有する圧縮機構(20)と、上記駆動軸(60)を支持する軸受部(28)、及び上記係合部(43)を収容する収容部(26)を有するハウジング(25)と、上記ケーシング(15)の油溜部(18)の油を搬送する油搬送機構(75)とを備え、
      上記駆動軸(60)には、上記油搬送機構(75)で搬送された油を上記係合部(43)の摺動部(44)へ供給する給油通路(70)が形成されるスクロール型圧縮機であって、
      上記ハウジング(25)には、
       上記収容部(26)の底部(26a)に形成され、上記係合部(43)の摺動部(44)を潤滑した後の油が溜まり込む凹部(78)と、
       上記凹部(78)内の油を上記圧縮機構(20)の摺動部(35,45)へ送る給油路(90)と、
       が形成されている
       ことを特徴とするスクロール型圧縮機。
    The casing (15), the electric motor (50) accommodated in the casing (15), the drive shaft (60) driven by the electric motor (50), and the end of the drive shaft (60) are engaged. A compression mechanism (20) having an engaging portion (43), a movable scroll (40) rotating eccentrically with respect to the drive shaft (60), and a fixed scroll (30), and the drive shaft (60) The bearing (28) that supports the housing and the housing (25) having the accommodating portion (26) that accommodates the engaging portion (43) and the oil in the oil reservoir (18) of the casing (15) are conveyed. An oil transfer mechanism (75),
    The drive shaft (60) is a scroll type in which an oil supply passage (70) for supplying the oil conveyed by the oil conveyance mechanism (75) to the sliding portion (44) of the engaging portion (43) is formed. A compressor,
    The housing (25)
    A recess (78) formed in the bottom portion (26a) of the housing portion (26) and in which oil after lubricating the sliding portion (44) of the engaging portion (43) is accumulated;
    An oil supply path (90) for sending oil in the recess (78) to the sliding part (35, 45) of the compression mechanism (20);
    A scroll type compressor characterized in that is formed.
  2.   請求項1において、
      上記凹部(78)は、上記軸受部(28)の全周を囲む環状の溝(78)で構成される
      ことを特徴とするスクロール圧縮機。
    In claim 1,
    The said recessed part (78) is comprised by the cyclic | annular groove | channel (78) surrounding the perimeter of the said bearing part (28). The scroll compressor characterized by the above-mentioned.
  3.   請求項1又は2において、
      上記ハウジング(25)には、上記収容部(26)の油を上記油溜部(18)へ送る排油路(80)が形成されている
      ことを特徴とするスクロール型圧縮機。
    In claim 1 or 2,
    The scroll compressor characterized in that the housing (25) is formed with an oil discharge passage (80) for sending the oil in the housing part (26) to the oil reservoir (18).
  4.   請求項3において、
      上記排油路(80)の流入口(80a)は、上記収容部(26)の底部(26a)に沿うように該収容部(26)の内部に開口している
      ことを特徴とするスクロール型圧縮機。
    In claim 3,
    The inflow port (80a) of the oil drainage passage (80) is opened inside the housing part (26) along the bottom part (26a) of the housing part (26). Compressor.
  5.   請求項3において、
      上記排油路(80)の流入口(80a)は、上記凹部(78)の内部に開口している
      ことを特徴とするスクロール型圧縮機。
    In claim 3,
    The scroll compressor characterized in that the inlet (80a) of the oil drainage passage (80) opens into the recess (78).
  6.   請求項5において、
      上記凹部(78)の内部には、上記給油路(90)の流入口(90a)と連通する第1室(S1)と、上記排油路(80)の流入口(80a)と連通する第2室(S2)とを区画する仕切部材(100)が、上記凹部(78)の底部から開口端に亘って形成され、
      上記第1室(S1)の容積が、上記第2室(S2)の容積よりも大きい
      ことを特徴とするスクロール型圧縮機。
    In claim 5,
    Inside the recess (78) is a first chamber (S1) communicating with the inlet (90a) of the oil supply passage (90) and a first chamber (S1) communicating with the inlet (80a) of the oil drainage passage (80). A partition member (100) that partitions the two chambers (S2) is formed from the bottom of the recess (78) to the open end,
    The scroll compressor characterized in that the volume of the first chamber (S1) is larger than the volume of the second chamber (S2).
  7.   請求項3乃至6のいずれか1つにおいて、
      上記給油路(90)の流入口(90a)の高さが、上記排油路(80)の流入口(80a)の高さよりも低い位置にある
      ことを特徴とするスクロール型圧縮機。
    In any one of Claims 3 thru | or 6,
    A scroll compressor characterized in that the height of the inlet (90a) of the oil supply passage (90) is lower than the height of the inlet (80a) of the oil discharge passage (80).
PCT/JP2013/007242 2012-12-28 2013-12-10 Scroll compressor WO2014103204A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2015131143/06A RU2600206C1 (en) 2012-12-28 2013-12-10 Scroll compressor
CN201380067868.7A CN104903583B (en) 2012-12-28 2013-12-10 Scroll compressor
EP13869762.8A EP2940302B1 (en) 2012-12-28 2013-12-10 Scroll compressor
BR112015013435-1A BR112015013435B1 (en) 2012-12-28 2013-12-10 SCROLL TYPE COMPRESSOR
US14/758,174 US20150330390A1 (en) 2012-12-28 2013-12-10 Scroll compressor
KR1020157020116A KR101728261B1 (en) 2012-12-28 2013-12-10 Scroll compressor
ES13869762T ES2747231T3 (en) 2012-12-28 2013-12-10 Spiral compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-288807 2012-12-28
JP2012288807A JP5655850B2 (en) 2012-12-28 2012-12-28 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2014103204A1 true WO2014103204A1 (en) 2014-07-03

Family

ID=51020328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007242 WO2014103204A1 (en) 2012-12-28 2013-12-10 Scroll compressor

Country Status (8)

Country Link
US (1) US20150330390A1 (en)
EP (1) EP2940302B1 (en)
JP (1) JP5655850B2 (en)
KR (1) KR101728261B1 (en)
CN (1) CN104903583B (en)
ES (1) ES2747231T3 (en)
RU (1) RU2600206C1 (en)
WO (1) WO2014103204A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015456A1 (en) 2015-07-22 2017-01-26 Trane International Inc. Compressor bearing housing drain
RU2629049C1 (en) * 2016-05-24 2017-08-24 Леонид Михайлович Курин Scroll compressor and method of its operation
CN107289115A (en) * 2016-04-01 2017-10-24 舍弗勒技术股份两合公司 Drive assembly in wheel
WO2019027342A1 (en) * 2017-08-04 2019-02-07 Леонид Михайлович КУРИН Spiral compressor and operating method thereof
JP2021025502A (en) * 2019-08-08 2021-02-22 日立ジョンソンコントロールズ空調株式会社 Scroll compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332913B (en) * 2015-11-23 2017-09-22 珠海格力节能环保制冷技术研究中心有限公司 A kind of screw compressor and the electric equipment products including the compressor
US10132317B2 (en) * 2015-12-15 2018-11-20 Bitzer Kuehlmaschinenbau Gmbh Oil return with non-circular tube
KR102405400B1 (en) 2017-02-13 2022-06-07 엘지전자 주식회사 Scroll compressor
DE102017209553A1 (en) * 2017-06-07 2018-12-13 Robert Bosch Gmbh Gear pump for a waste heat recovery system
KR102515119B1 (en) 2019-01-18 2023-03-29 한온시스템 주식회사 Scroll compressor
KR20240008722A (en) * 2022-07-12 2024-01-19 삼성전자주식회사 Scroll compressor with oil discharge passage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306689A (en) * 1992-04-28 1993-11-19 Daikin Ind Ltd Scroll type fluid machine
JPH0658274A (en) * 1992-08-06 1994-03-01 Daikin Ind Ltd Scroll compressor
JPH0849673A (en) * 1994-08-03 1996-02-20 Daikin Ind Ltd Scroll type fluid machinery
JP2001214872A (en) 1999-11-22 2001-08-10 Daikin Ind Ltd Scroll type compressor
JP2012097580A (en) * 2010-10-29 2012-05-24 Daikin Industries Ltd Scroll compressor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU883558A1 (en) * 1978-12-11 1981-11-23 Омский политехнический институт Screw compressor rotor
JPS6275091A (en) * 1985-09-30 1987-04-06 Toshiba Corp Scroll compressor
EP0518356B1 (en) * 1991-06-13 1995-05-10 Daikin Industries, Limited Scroll type fluid machine
US5370513A (en) * 1993-11-03 1994-12-06 Copeland Corporation Scroll compressor oil circulation system
US5466134A (en) * 1994-04-05 1995-11-14 Puritan Bennett Corporation Scroll compressor having idler cranks and strengthening and heat dissipating ribs
JPH0932758A (en) * 1995-07-17 1997-02-04 Toshiba Corp Scroll-type compressor
JP2005083290A (en) * 2003-09-10 2005-03-31 Fujitsu General Ltd Scroll compressor
US9422930B2 (en) 2004-12-08 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor
RU2404372C2 (en) * 2006-03-03 2010-11-20 Дайкин Индастриз, Лтд. Compressor and method of its fabrication (versions)
WO2008088112A1 (en) * 2007-01-19 2008-07-24 Lg Electronics Inc. Compressor and oil blocking device therefor
EP2224093A4 (en) 2007-11-21 2012-08-29 Panasonic Corp Compressor integral with expander
WO2009107797A1 (en) * 2008-02-28 2009-09-03 ダイキン工業株式会社 Compressor
JP2012097579A (en) * 2010-10-29 2012-05-24 Daikin Industries Ltd Scroll compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306689A (en) * 1992-04-28 1993-11-19 Daikin Ind Ltd Scroll type fluid machine
JPH0658274A (en) * 1992-08-06 1994-03-01 Daikin Ind Ltd Scroll compressor
JPH0849673A (en) * 1994-08-03 1996-02-20 Daikin Ind Ltd Scroll type fluid machinery
JP2001214872A (en) 1999-11-22 2001-08-10 Daikin Ind Ltd Scroll type compressor
JP2012097580A (en) * 2010-10-29 2012-05-24 Daikin Industries Ltd Scroll compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940302A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015456A1 (en) 2015-07-22 2017-01-26 Trane International Inc. Compressor bearing housing drain
EP3325807A4 (en) * 2015-07-22 2019-03-27 Trane International Inc. Compressor bearing housing drain
US10851787B2 (en) 2015-07-22 2020-12-01 Trane International Inc. Compressor bearing housing drain
CN107289115A (en) * 2016-04-01 2017-10-24 舍弗勒技术股份两合公司 Drive assembly in wheel
CN107289115B (en) * 2016-04-01 2021-08-17 舍弗勒技术股份两合公司 In-wheel drive assembly
RU2629049C1 (en) * 2016-05-24 2017-08-24 Леонид Михайлович Курин Scroll compressor and method of its operation
WO2019027342A1 (en) * 2017-08-04 2019-02-07 Леонид Михайлович КУРИН Spiral compressor and operating method thereof
JP2021025502A (en) * 2019-08-08 2021-02-22 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
JP7373939B2 (en) 2019-08-08 2023-11-06 日立ジョンソンコントロールズ空調株式会社 scroll compressor

Also Published As

Publication number Publication date
KR101728261B1 (en) 2017-04-18
RU2600206C1 (en) 2016-10-20
CN104903583B (en) 2017-10-10
CN104903583A (en) 2015-09-09
US20150330390A1 (en) 2015-11-19
JP5655850B2 (en) 2015-01-21
KR20150099849A (en) 2015-09-01
EP2940302B1 (en) 2019-07-10
JP2014129793A (en) 2014-07-10
BR112015013435A2 (en) 2017-07-11
ES2747231T3 (en) 2020-03-10
EP2940302A1 (en) 2015-11-04
EP2940302A4 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5655850B2 (en) Scroll compressor
JP5765379B2 (en) Scroll compressor
US10648471B2 (en) Scroll compressor
KR100538061B1 (en) Rotary compressor
JP5170197B2 (en) Scroll compressor
JP5880513B2 (en) Compressor
JP2013108389A (en) Compressor and refrigerating device
JP2018021493A (en) Scroll compressor
JP2017025789A (en) Rotary compressor
JP2017015054A (en) Single screw compressor
JP2013137002A (en) Scroll compressor
JP2016176458A (en) Compressor
JP2010261353A (en) Scroll compressor
JP2009174460A (en) Screw compressor
JP5114708B2 (en) Hermetic scroll compressor
JP4802855B2 (en) Scroll compressor
JP2015086829A (en) Scroll compressor
JP5540577B2 (en) Scroll compressor
JP2015227632A (en) Compressor
JP2019138210A (en) Scroll compressor
JP2014105692A (en) Scroll compressor
JP6114911B2 (en) Scroll compressor
JP2013087678A (en) Scroll compressor
JP6075283B2 (en) Scroll compressor
JP2014141887A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013869762

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015013435

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14758174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157020116

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015131143

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015013435

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150609