WO2014102983A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2014102983A1
WO2014102983A1 PCT/JP2012/083955 JP2012083955W WO2014102983A1 WO 2014102983 A1 WO2014102983 A1 WO 2014102983A1 JP 2012083955 W JP2012083955 W JP 2012083955W WO 2014102983 A1 WO2014102983 A1 WO 2014102983A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil temperature
solenoid valve
oil pump
hydraulic
Prior art date
Application number
PCT/JP2012/083955
Other languages
English (en)
French (fr)
Inventor
泰英 水野
伊藤 慎一
英樹 窪谷
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112012007263.4T priority Critical patent/DE112012007263T5/de
Priority to US14/654,946 priority patent/US20150330375A1/en
Priority to JP2014553977A priority patent/JPWO2014102983A1/ja
Priority to BR112015015295A priority patent/BR112015015295A2/pt
Priority to KR1020157019249A priority patent/KR20150097701A/ko
Priority to PCT/JP2012/083955 priority patent/WO2014102983A1/ja
Publication of WO2014102983A1 publication Critical patent/WO2014102983A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0204Frequency of the electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/11Outlet temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity

Definitions

  • the present invention relates to a control device for a vehicle drive device, and more particularly to control of a drive device including a solenoid valve type oil pump.
  • Patent Document 1 discloses a configuration including a solenoid valve type oil pump in addition to a mechanical oil pump driven by an engine.
  • the solenoid valve type oil pump of patent document 1 makes it possible to supply the optimal hydraulic pressure regardless of the secular change of the vehicle by making the drive frequency of the solenoid valve variable.
  • the solenoid valve type oil pump repeatedly performs suction and discharge of hydraulic oil by reciprocating a plunger (piston) provided in a solenoid coil by applying a current that repeatedly turns on and off to the solenoid valve. is there.
  • the plunger is connected to a spring that urges the plunger in one direction.
  • surge power back electromotive force
  • a surge absorption circuit that absorbs this surge power is usually provided.
  • the circuit scale increases in order to ensure heat resistance, leading to an increase in the size and cost of the surge absorption circuit. Therefore, it is desirable to reduce the surge absorption power.
  • the solenoid valve type oil pump since the solenoid valve type oil pump is connected to the hydraulic clutch via a valve body or the like, for example, hydraulic oil leaks from the valve body or the like.
  • the amount of leakage of the hydraulic oil varies depending on the oil temperature of the hydraulic oil. For example, when the oil temperature is high, the amount of leakage increases. In general, since the design is based on a high oil temperature with a large amount of leakage, the discharge amount required of the solenoid valve type oil pump increases. However, when the oil temperature is low, the amount of leakage is small and the flow rate and hydraulic pressure are excessive, resulting in energy loss.
  • the present invention has been made against the background of the above circumstances.
  • the object of the present invention is to control a vehicle drive device equipped with a solenoid valve type oil pump during operation of the solenoid valve type oil pump. It is an object of the present invention to provide a control device for a vehicle drive device that can reduce the size of a surge absorbing circuit that absorbs generated surge.
  • the gist of the first invention is that: (a) a solenoid valve type oil pump that performs suction and discharge of hydraulic oil by an on / off operation of the solenoid valve; Control of a vehicle drive device comprising: means for controlling an on / off drive frequency; means for detecting an oil temperature of the hydraulic oil; and a hydraulic circuit to which hydraulic oil discharged from the solenoid valve type oil pump is supplied. (B) further comprising a surge absorption circuit that absorbs back electromotive force generated in the solenoid valve type oil pump, and (c) the drive frequency for operating the solenoid valve type oil pump is low temperature Is set lower than in the case of high temperature.
  • the viscous resistance of the hydraulic oil is large and the solenoid current flowing through the solenoid valve is large when the oil temperature is low. Therefore, since the surge power is increased, a surge absorption circuit having a large physique designed to have a large surge absorption power is required. Further, the amount of hydraulic oil leakage from the hydraulic circuit decreases as the viscosity resistance of the hydraulic oil increases. In other words, the amount of leakage of hydraulic oil from the hydraulic circuit has a characteristic that it decreases as the oil temperature decreases.
  • the drive frequency for operating the solenoid valve type oil pump is set lower when the oil temperature is low than when it is high. With this setting, when the oil temperature is low, the drive frequency is low, so the discharge amount of the solenoid valve type oil pump is reduced. However, the amount of hydraulic oil leakage is reduced, so that the necessary flow rate can be secured. Further, since the surge power is proportional to the drive frequency, the surge power is reduced even at a low oil temperature, so that the surge absorption circuit can be downsized.
  • the gist of the second invention is that in the control device for a vehicle drive device of the first invention, the oil temperature of the hydraulic oil is calculated based on a solenoid current of the electromagnetic valve. In this way, the oil temperature can be detected without using a sensor or the like.
  • the gist of the third invention is the control device for a vehicle drive device according to the first invention, wherein the drive frequency of the solenoid valve type oil pump is continuously changed according to the oil temperature. Change. If it does in this way, it sets to the frequency which can ensure a required flow volume according to oil temperature, an excess flow volume and oil_pressure
  • the gist of the fourth invention is the control device for the vehicle drive device of the first invention, wherein the drive frequency of the solenoid valve type oil pump is a threshold value of a preset oil temperature. It changes step by step. If it does in this way, a frequency changes based on the threshold value of oil temperature, and it can ensure a required flow volume, suppressing surge electric power.
  • the gist of the fifth invention is that in the control device for a vehicle drive device according to the first invention, the oil temperature of the hydraulic oil is detected by an oil temperature sensor, and the electromagnetic valve The oil temperature is calculated based on the solenoid current.
  • the oil temperature is detected normally by the oil temperature sensor, and the oil temperature is not detected by the oil temperature sensor, the oil temperature is calculated based on the solenoid current. In this way, even when the oil temperature sensor detects a reliable oil temperature during normal operation and the oil temperature sensor cannot detect the oil temperature, the oil temperature is calculated based on the solenoid current of the solenoid valve. It is possible to set the optimum driving frequency based on the oil temperature.
  • the optimum discharge amount of the solenoid valve type oil pump based on the oil temperature is not known if the detection by the oil temperature sensor is disabled. Therefore, the drive frequency must be increased. Therefore, surge power also increases, and the surge absorption circuit needs to be increased accordingly.
  • the oil temperature can be calculated based on the solenoid current of the solenoid valve, the oil temperature is calculated based on the solenoid current of the solenoid valve even if the oil temperature cannot be detected by the hydraulic sensor.
  • the gist of the sixth invention is a control device for a vehicle drive device according to the fifth invention, wherein a control unit to which an oil temperature signal is supplied from the oil temperature sensor, and a solenoid of the solenoid valve.
  • the controller that calculates the oil temperature based on the current is configured separately. In this way, even if a hydraulic sensor failure or communication abnormality occurs, the oil temperature can be calculated based on the solenoid current of the solenoid valve without being affected by it, and the surge absorption circuit becomes larger. It can be surely prevented.
  • the gist of the seventh invention is a control device for a vehicle drive device according to the first invention, further comprising a mechanical oil pump driven by an engine, and the electromagnetic Drive the valve oil pump.
  • the mechanical oil pump stops while the engine is stopped, but instead of this, the solenoid valve oil pump is driven, so that the shortage of hydraulic oil supply can be avoided.
  • the gist of the eighth invention is that in the control device for a vehicle drive device according to the seventh invention, the hydraulic oil discharged from the solenoid valve type oil pump is supplied to the starting clutch of the transmission. Is done. In this way, while the vehicle is stopped, the engine is stopped and the mechanical oil pump is stopped. During this time, the hydraulic oil is supplied from the solenoid valve type oil pump to the starting clutch of the transmission. When the vehicle is restarted, the transmission clutch of the transmission can be quickly engaged to start smoothly.
  • the ninth aspect of the present invention is the control device for a vehicle drive device according to the first aspect of the invention, wherein the solenoid valve type oil pump discharges the working oil and the suction oil passage.
  • a discharge oil passage, and a cross-sectional area of the suction oil passage is larger than a cross-sectional area of the discharge oil passage.
  • FIG. 2 is a diagram illustrating a schematic configuration of a power transmission path from an engine to a drive wheel constituting a vehicle drive device to which the present invention is applied, and also illustrates a main part of a control system provided in the vehicle drive device. It is a block diagram.
  • FIG. 2 is a simplified view of a part of a hydraulic circuit for controlling the vehicle drive device of FIG. 1, in particular, a hydraulic circuit for controlling a starting clutch. It is a figure explaining the structure and operation
  • FIG. 2 is a functional block diagram mainly illustrating a control operation of a solenoid valve type oil pump in the electronic control device of FIG. 1. It is a map which shows the relationship between solenoid electric current and oil temperature. It is a map which shows the relationship between oil temperature and required flow volume. It is a map which determines a drive frequency based on a required flow rate. It is a figure which shows the voltage change and electric current change with respect to a drive frequency. It is a flowchart explaining the control action of an electronic control device, and especially the control action of a solenoid valve type oil pump. It is a figure which shows the relationship between the oil temperature which is the other Example of this invention, a drive frequency, and surge absorption electric power. The surge absorption power with respect to the drive frequency is shown on the time axis. It is a control action of an electronic control unit corresponding to other examples of the present invention, and is a flow chart explaining control action of a solenoid valve type oil pump.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power transmission path from an engine 12 to a drive wheel 14 constituting a vehicle drive device 10 to which the present invention is applied, and controls provided in the vehicle drive device 10. It is a block diagram explaining the principal part of a system
  • a transmission mechanism 16 is a stepped automatic transmission or a continuously variable automatic transmission (CVT) that is preferably used for an FF (front engine / front drive) type vehicle that is placed horizontally in a vehicle, for example. Yes, and connected to the engine 12 via the torque converter 17.
  • CVT continuously variable automatic transmission
  • the transmission mechanism 16, the counter gear pair 20, the final gear pair 22, the differential gear device (differential gear) 24, and the like constitute a transaxle (T / A).
  • the engine 12 is an internal combustion engine such as a gasoline engine or a diesel engine, for example, an electronic throttle valve 54 provided in the intake pipe 50 and driven to open and close by a throttle actuator 52, a fuel injection device 56 that injects fuel into the cylinder, And an ignition device 58 for igniting the injected fuel.
  • an electronic throttle valve 54 provided in the intake pipe 50 and driven to open and close by a throttle actuator 52, a fuel injection device 56 that injects fuel into the cylinder, And an ignition device 58 for igniting the injected fuel.
  • the wheel braking device 64 is a well-known drum brake or disc brake, and is provided for each wheel (that is, each wheel including the driven wheel 14). Brakes the wheel. That is, each wheel is braked by the brake hydraulic pressure generated by the depression operation of the foot brake pedal 66.
  • the vehicle drive device 10 is provided with an electronic control device 80 including a function as a vehicle engine control device that controls the engine 12.
  • the electronic control unit 80 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like, and the CPU uses a temporary storage function of the RAM according to a program stored in the ROM in advance. By performing signal processing, output control of the engine 12, shift control of the transmission mechanism 16, drive control of a solenoid valve type oil pump 86 described later, and the like are executed.
  • the electronic control unit 80 exclusively performs drive control of the E / G-ECU that exclusively executes output control of the engine 12, the A / T-ECU that exclusively executes shift control of the transmission mechanism 16, and the solenoid valve oil pump 86. It comprises a plurality of control devices such as O / P-ECUs to be executed, and mutual data exchange is executed by communication between these control devices.
  • the electronic control unit 80 includes, for example, an engine rotational speed signal corresponding to the crank angle (position) Acr of the crankshaft of the engine 12 from the engine rotational speed sensor 28 and the engine rotational speed Ne, and a transmission mechanism unit from the input rotational speed sensor 30.
  • a wheel speed signal corresponding to Nw a signal indicating whether or not the accelerator pedal 68 is operated from the accelerator opening sensor 36 and an operation amount of the accelerator pedal 68 (accelerator opening Acc), and for causing the wheel braking device 64 to brake the wheel.
  • an engine output control command signal for controlling the output of the engine 12 such as a drive signal to the throttle actuator 52 for operating the opening ⁇ th (throttle valve opening ⁇ th) of the electronic throttle valve 54
  • an ignition signal for instructing the ignition timing of the engine 12 by the ignition device 58 and a shift for the shift control of the transmission mechanism unit 16
  • a control command signal, a drive signal for driving the solenoid valve type oil pump 86, and the like are output.
  • the electronic control unit 80 outputs a shift control command signal to a hydraulic control circuit (not shown) based on the input rotation speed signal, the output rotation speed signal, etc., and executes the gear ratio switching control of the transmission mechanism unit 16. To do.
  • the electronic control unit 80 basically drives the throttle actuator 52 based on the accelerator opening signal Acc from a pre-stored relationship (not shown), and the accelerator opening Acc.
  • the throttle control is executed so that the throttle valve opening ⁇ th increases as the value increases. Further, the electronic control unit 80 executes control for driving the solenoid valve type oil pump 86 when the engine 12 is stopped.
  • the electronic control unit 80 performs so-called idling stop control in which the engine 12 is automatically stopped temporarily in association with the stop of traveling of the vehicle in order to improve fuel efficiency. For example, when waiting for a vehicle signal or the like, the engine 12 is temporarily stopped automatically when the brake pedal 66 is depressed while the shift range is in the D range.
  • the temporary stop of the engine 12 in the idling stop control means that the fuel supply to the engine 12 is cut off and the engine 12 is brought into a non-driven state, and the engine rotational speed Ne is set in the non-driven state. Since the engine 12 is not necessarily zero, the temporary stop of the engine 12 includes a case where the engine speed Ne is not zero.
  • the fuel consumption is, for example, a travel distance per unit fuel consumption
  • the improvement in fuel consumption is an increase in the travel distance per unit fuel consumption, or as a whole vehicle.
  • a reduction in fuel consumption means that the travel distance per unit fuel consumption is shortened, or the fuel consumption rate of the entire vehicle is increased.
  • FIG. 2 schematically shows a hydraulic circuit 82 that controls the starting clutch C1.
  • the hydraulic control circuit 82 includes a mechanical oil pump 84 that is driven by the engine 12 and a solenoid valve 104 that is configured to include the solenoid valve 104 and that is driven by the solenoid valve 104.
  • the hydraulic oil discharged from these oil pumps is selectively supplied to the starting clutch C1 via the switching valve 93.
  • the mechanical oil pump 84 is driven when the engine 12 is driven, and pumps up the hydraulic oil stored in the oil pan 88 and discharges it to the pressure regulating circuit 90 side.
  • the pressure adjusting circuit 90 is configured to include, for example, a regulator valve (not shown) and the like, and uses the hydraulic oil discharged by the mechanical oil pump 84 as a base pressure to adjust the optimum line pressure according to the traveling state of the vehicle. .
  • the solenoid valve SL1 adjusts to the optimum clutch pressure Pc1 according to the running state of the vehicle using the line pressure as a source pressure.
  • the regulated clutch pressure Pc1 is supplied to the starting clutch C1 via the switching valve 93.
  • the solenoid valve type oil pump 86 pumps up the hydraulic oil stored in the oil pump 88 and supplies the hydraulic oil to the starting clutch C1 through the switching valve 93.
  • the switching valve 93 is a switching valve that switches the hydraulic oil supplied to the starting clutch C ⁇ b> 1 to either the solenoid valve SL ⁇ b> 1 or the solenoid valve type oil pump 86.
  • the solenoid valve oil pump 86 and the starting clutch C1 are communicated, and the communication between the solenoid valve SL1 and the starting clutch C1 is blocked. Since the specific structure and operation of the switching valve 93 are known techniques, the description thereof is omitted. Further, the hydraulic oil discharged from the electromagnetic valve type oil pump 86 is directly supplied to the starting clutch C1 through the switching valve 93 without being regulated. That is, the solenoid valve type oil pump 86 is a dedicated oil pump that supplies hydraulic oil to the starting clutch C1 during the idle stop control.
  • FIG. 3 shows the structure of the solenoid valve type oil pump 86.
  • FIG. 3A shows a state in which hydraulic oil is being sucked from the oil pan 88
  • FIG. 3B shows a state in which the hydraulic oil is discharged to the start clutch C1 side.
  • a solenoid valve type oil pump 86 includes a cylindrical plunger 94 that reciprocates in a cylindrical case 92, and a solenoid coil 96 that reciprocates the plunger 94 by repeating on / off operations at a predetermined duty ratio and drive frequency F.
  • the hydraulic oil is sucked in by connecting the electromagnetic pan), the spring 98 that urges the plunger 94 to the side from which the hydraulic oil is discharged (right side in FIG.
  • the suction oil passage 99, the solenoid valve type oil pump 86 and the switching bubble 93 (starting clutch C1) are connected to discharge oil passage 100 for discharging the hydraulic oil, and the reverse flow of the hydraulic oil drawn from the oil pan 88 Including a first check valve 101 for preventing the backflow and a second check valve 102 for preventing the backflow of the hydraulic oil discharged from the solenoid valve type oil pump 86. In is configured.
  • the first check valve 101 is closed.
  • the plunger 94 reciprocates in the case 92, whereby the hydraulic oil in the oil pan 88 is sucked through the suction oil passage 99, and the sucked hydraulic oil is discharged to the discharge oil passage 100 side.
  • the cross-sectional area Ain of the suction oil passage 99 for sucking the hydraulic oil is made larger than the cross-sectional area Aout of the discharge oil passage 100 for discharging the hydraulic oil. Accordingly, when the hydraulic oil is sucked into the electromagnetic valve type oil pump 86, the resistance thereof is reduced, so that the controllability of the electromagnetic valve type oil pump 86 is improved.
  • the solenoid valve type oil pump 86 of the present embodiment includes a drive frequency switching circuit 108 for switching the drive frequency F, and by switching the drive frequency F, the discharge amount of the solenoid valve type oil pump 86 can be adjusted.
  • FIG. 3B when the plunger 94 moves in the solenoid coil 96 by the biasing force of the spring 98, surge power (back electromotive force) is generated in the circuit.
  • FIG. 4 shows temporal changes in the current I and the voltage V when the solenoid valve type oil pump 86 is driven.
  • the solid line indicates the voltage V
  • the broken line indicates the current I.
  • the solenoid coil 96 When the solenoid coil 96 is energized, the voltage becomes a positive value.
  • an O / P-ECU that controls the solenoid valve type oil pump 86 is incorporated in the drive frequency switching circuit 108 as shown in FIG.
  • the ECU may be provided separately from the drive frequency switching circuit 108.
  • a surge absorbing circuit 110 for absorbing the surge power is interposed between the solenoid coil 96 of the solenoid valve type oil pump 86 and the drive frequency switching circuit 108.
  • the surge absorption circuit 110 includes a rectifier diode 112 and a Zener diode 114, for example.
  • the surge absorption power W absorbed by the surge absorption circuit 110 is calculated by the following equation (1).
  • I represents the solenoid current [A]
  • Vz represents the Zener voltage [V]
  • t represents the surge width [s] shown in FIG. 4
  • F the drive frequency [Hz]. Is shown.
  • the Zener voltage Vz is a value that is rated based on the Zener diode 114.
  • W I ⁇ Vz ⁇ t ⁇ F (1)
  • the circuit scale of the surge absorbing circuit 110 is increased and the cost is increased in order to ensure the heat resistance. Therefore, it is desirable to reduce the surge absorption power W.
  • FIG. 5 shows the relationship between the hydraulic pressure and oil temperature and the amount of hydraulic fluid leakage. As shown in FIG. 5, the amount of hydraulic oil leakage increases as the hydraulic pressure increases. Further, when the hydraulic oil has a high oil temperature, the amount of leakage increases as compared with the case where the hydraulic oil has a low oil temperature. This is because the viscosity resistance of the hydraulic oil decreases as the oil temperature Toil of the hydraulic oil increases.
  • the amount of leakage is reduced when the oil temperature is low, so that the required hydraulic fluid can be supplied to the starting clutch C1 even if the discharge amount from the solenoid valve type oil pump 86 is smaller than that when the oil temperature is high.
  • the discharge amount of the solenoid valve type oil pump 86 is not variable, and the discharge amount of the solenoid valve type oil pump 86 is designed on the basis of a large amount of leakage (at high oil temperature). It was. Therefore, when the oil temperature is low, the flow rate and hydraulic pressure of the hydraulic oil become excessive, resulting in energy loss and deterioration of fuel consumption, and the clutch hydraulic pressure of the starting clutch C1 is excessive and torque transmission shock can occur. There was also sex.
  • the drive frequency F of the solenoid valve type oil pump 86 is set to a high value, and the surge absorption power W is also related to it as can be understood from the equation (1). growing. Therefore, the surge absorption circuit 110 is increased in size to ensure heat resistance against the surge absorption power W, resulting in an increase in cost.
  • the solenoid valve type oil pump 86 when the solenoid valve type oil pump 86 is driven, the drive frequency F of the solenoid valve type oil pump 86 is changed according to the oil temperature Toil of the hydraulic oil, and the solenoid valve type oil pump 86 is changed.
  • the surge absorption power W is suppressed and the surge absorption circuit 110 is prevented from being enlarged.
  • the surge absorption power W is suppressed by suppressing the increase in the size of the surge absorption circuit 110 by setting the drive frequency F to be lower in the case of low temperature than in the case of high temperature.
  • FIG. 6 is a functional block diagram for explaining mainly the control operation of the solenoid valve type oil pump 86 in the electronic control unit 80.
  • the O / P-ECU is incorporated in the drive frequency switching circuit 108, but in the functional block diagram of FIG. 6, specific functions of the O / P-ECU are described. Therefore, the O / P-ECU is described separately from the drive frequency switching circuit 108.
  • the oil temperature detecting unit 130 (oil temperature detecting means) shown in FIG.
  • the oil temperature detection unit 130 detects the oil temperature Toil from the oil temperature sensor 40 provided in the oil pan 88 that stores hydraulic oil.
  • the oil temperature detection unit 130 detects the solenoid current I [A] of the solenoid valve 104 (solenoid valve type oil pump 86) from the drive frequency switching circuit 108, and calculates the oil temperature Toil based on the solenoid current I. .
  • FIG. 7 is a map showing the relationship between the solenoid current I and the oil temperature Toil, which is obtained in advance by experiments and analysis. As shown in FIG.
  • the oil temperature detection unit 130 detects the solenoid current I and determines the oil temperature Toil based on the map of FIG. 7 obtained and stored in advance. In addition, you may calculate the oil temperature Toil based on not only the map shown in FIG. 7 but the experimental formula which calculates the oil temperature Toil calculated
  • the required flow rate calculation unit 132 calculates the required flow rate Q [cc / min] required by the solenoid valve type oil pump 86 based on the oil temperature Toil obtained by the oil temperature detection unit 130.
  • This required flow rate Q is the flow rate of the hydraulic oil required by the starting clutch C1.
  • FIG. 8 is a map showing the relationship between the oil temperature Toil and the required flow rate Q obtained in advance by experiments and analysis. As shown in FIG. 8, the required flow rate Q increases as the oil temperature Toil increases. This is because when the oil temperature Toil increases, the viscosity of the hydraulic oil decreases and leakage from the hydraulic circuit increases, and the required flow rate Q increases by this leakage.
  • the required flow rate calculation part 132 determines the required flow rate Q from the calculated oil temperature Toil based on the map shown in FIG. In addition, you may calculate the required flow rate Q based on the experimental formula which calculates the required flow rate Q calculated
  • the drive frequency calculation unit 134 determines the drive frequency F [Hz] of the solenoid valve type oil pump 86 based on the required flow rate Q obtained by the required flow rate calculation unit 132.
  • FIG. 9 is a map for determining the drive frequency F based on the required flow rate Q.
  • FIG. 9 is obtained in advance through experiments and analysis, and is set to a drive frequency F that satisfies the required flow rate Q. As shown in FIG. 9, the drive frequency F increases as the required flow rate Q increases. As a result, the drive frequency F of the solenoid valve type oil pump 86 continuously changes according to the oil temperature Toil.
  • the drive frequency changing unit 136 outputs, to the drive frequency switching circuit 108, a command for driving the solenoid valve type oil pump 86 so that the solenoid valve 104 is turned on / off at the drive frequency F obtained by the drive frequency calculating unit 134. To do.
  • the driving frequency F is lower in the case of the low oil temperature than in the case of the high oil temperature from the maps of FIGS.
  • FIG. 10 shows voltage changes and current changes with respect to the driving frequency F.
  • FIG. 10A shows a state when the oil temperature is high, that is, the driving frequency F is high
  • FIG. 10B shows a state when the oil temperature is low, that is, the driving frequency F is low.
  • the solid line indicates the voltage [V]
  • the broken line indicates the current I [A].
  • the drive frequency F is low at the low oil temperature of FIG. 10 (b)
  • the number of occurrences of surge power is reduced compared to the high oil temperature of FIG. 10 (a).
  • the electric power W is reduced.
  • the drive frequency F is low at the time of low oil temperature
  • the discharge amount discharged from the solenoid valve type oil pump 86 is decreased.
  • the required flow rate Q is also reduced. Therefore, the required flow rate Q is ensured even when the drive frequency F is lowered and the discharge amount of hydraulic oil from the solenoid valve type oil pump 86 is reduced.
  • FIG. 11 is a flowchart explaining the control operation of the electromagnetic valve type oil pump 86, which is a main part of the control operation of the electronic control device 80, and is repeated with a very short cycle time of, for example, about several milliseconds to several tens of milliseconds. Executed.
  • step S ⁇ b> 1 (hereinafter, step is omitted) corresponding to the oil temperature detection unit 130
  • the solenoid current I of the solenoid valve type oil pump 86 related to the oil temperature oil of the hydraulic oil is input.
  • step S2 corresponding to the oil temperature detection unit 130
  • the oil temperature Toil of the hydraulic oil is calculated by referring to the solenoid current I input in S1 from the map shown in FIG. In the above description, the oil temperature Toil is calculated based on the solenoid current I.
  • the oil temperature sensor 40 can directly detect the oil temperature Toil.
  • the required flow rate Q is calculated by referring to the oil temperature Toil calculated in S2 from the map shown in FIG.
  • the drive frequency F is calculated by referring to the necessary flow rate Q calculated in S3 from the map shown in FIG.
  • a command for operating the solenoid valve type oil pump 86 at the drive frequency F calculated in S4 is output to the drive frequency switching circuit 108.
  • the drive frequency F for operating the solenoid valve type oil pump 86 is set lower when the oil temperature Toil is low than when it is high.
  • the drive frequency F is low, so the discharge amount of the solenoid valve type oil pump 86 is reduced, but the amount of hydraulic oil leakage is reduced, so the necessary flow rate is secured. it can.
  • the surge absorption power W is proportional to the drive frequency F, the surge absorption power W becomes small even at a low oil temperature, so that the surge absorption circuit 110 can be downsized.
  • the drive frequency F is increased and the discharge amount of the solenoid valve type oil pump 86 is increased. Since the solenoid current I is small and lower than that at a low temperature, the surge absorption power W does not increase. Therefore, the surge absorbing circuit 110 can be reduced in size. Further, since the drive frequency F is lowered at the time of low oil temperature, the hydraulic oil is not discharged excessively at the time of low oil temperature, and a transmission shock due to deterioration of fuel consumption and excessive torque of the start clutch C1 is prevented.
  • the oil temperature Toil of the hydraulic oil is calculated based on the solenoid current I of the solenoid valve. In this way, the oil temperature can be detected without using a sensor or the like.
  • the drive frequency F of the solenoid valve type oil pump 86 continuously changes according to the oil temperature Toil. If it does in this way, it sets to drive frequency F which can ensure a required flow according to oil temperature Toil, and can suppress an excess flow and oil pressure, and can suppress energy loss.
  • a mechanical oil pump 84 driven by the engine 12 is further provided, and the solenoid valve oil pump 86 is driven while the engine 12 is stopped.
  • the mechanical oil pump 84 is stopped while the engine is stopped, but instead of this, the solenoid valve oil pump 86 is driven to avoid insufficient supply of hydraulic oil to the starting clutch C1. Can do.
  • the hydraulic oil discharged from the solenoid valve type oil pump 86 is supplied to the starting clutch C1 of the transmission mechanism unit 16. In this way, while the vehicle is stopped, the engine 12 is stopped and the mechanical oil pump 84 is stopped. During this time, hydraulic oil is supplied from the solenoid valve type oil pump 86 to the starting clutch C1 of the transmission mechanism unit 16. Therefore, when the vehicle restarts, the start clutch C1 of the speed change mechanism 16 can be quickly engaged to start smoothly.
  • the drive frequency F of the solenoid valve type oil pump 86 is continuously changed.
  • the drive frequency F may be changed stepwise.
  • FIG. 12 shows the relationship between the oil temperature Toil, the drive frequency F, and the surge absorption power W.
  • FIG. 12 shows data of four drive frequencies F of 10 Hz indicated by ⁇ , 15 Hz indicated by ⁇ , 20 Hz indicated by ⁇ , and 25 Hz indicated by ⁇ .
  • the surge absorption power W decreases as the oil temperature Toil increases.
  • it turns out that the surge absorption electric power W is increasing, so that the drive frequency F is high.
  • the thick solid line shown in FIG. 12 indicates the drive frequency F that is switched according to the oil temperature Toil.
  • the driving frequency F when the oil temperature Toil is less than 50 ° C., the driving frequency F is switched to 10 Hz, and when the oil temperature Toil is 50 ° C. to 80 ° C., the driving frequency F is switched to 15 Hz, and the oil temperature Toil is 80 ° C.
  • the drive frequency F is switched to 20 Hz in the region between ⁇ 110 ° C., and the drive frequency F is switched to 25 Hz in the region where the oil temperature Toil is 110 ° C. or higher. That is, the drive frequency F is set to change stepwise based on the threshold value of the oil temperature Toil.
  • the value indicated by the alternate long and short dash line (about 2.7 W) shown in FIG. 12 is the maximum value Wmax of the surge absorption power W.
  • the drive frequency F is switched according to the oil temperature Toil so that the surge absorption power W does not exceed the maximum value Wmax.
  • the drive frequency F is not switched, and the required flow rate Q is set based on the high oil temperature when the amount of leakage of hydraulic oil is large.
  • the drive frequency F is set to a high value. It was set. Therefore, the maximum value of the surge absorption power W is increased, and the surge absorption circuit 110 is also increased.
  • the maximum value of the conventional surge absorption power W is set to about 3.6 W (low oil temperature value based on a drive frequency of 25 Hz) in FIG.
  • the maximum value of the surge absorption power W is about 2.7 W, and the maximum value of the surge absorption power W is reduced by about 1 W as the difference ⁇ W. Therefore, the surge absorbing circuit 110 can be reduced in size.
  • FIG. 13 shows the surge absorption power W with respect to the drive frequency F on the time axis.
  • the surge absorption power W increases when the drive frequency F is 25 Hz, but as the drive frequency F is switched to a lower value, the surge absorption power W also changes to a lower value in the step state.
  • the solenoid current I is also reduced, so that the surge absorption power W is not increased. Therefore, the surge absorbing circuit 110 can be reduced in size.
  • the drive frequency F of the solenoid valve type oil pump 86 is set to a preset threshold value of the oil temperature Toil. Therefore, the drive frequency F changes based on the threshold value of the oil temperature Toil, and the necessary flow rate can be secured while suppressing the surge absorption power W.
  • the oil temperature detection unit 130 directly detects the oil temperature sensor 40 or indirectly calculates the oil temperature Toil from the solenoid current I related to the oil temperature Toil.
  • the oil temperature Toil is reliably detected by selectively switching using both of these oil temperature detections.
  • the oil temperature detection unit 130 of this embodiment includes both oil temperature detection by the oil temperature sensor 40 and oil temperature detection calculated based on the solenoid current I. Normally, the oil temperature sensor 40 directly detects oil temperature. The temperature Toil is detected. In addition, since the oil temperature detection by the oil temperature sensor 40 is a direct oil temperature detection, the accuracy is higher than the case of detecting indirectly based on the solenoid current I. Accordingly, the oil temperature Toil is normally detected by the oil temperature sensor 40.
  • the oil temperature Toil cannot be detected in the configuration in which the oil temperature detection based on the solenoid current I cannot be performed.
  • driving is performed at a high driving frequency F.
  • the surge absorption power W is increased and the surge absorption circuit is enlarged.
  • the idle stop control is stopped and the engine 12 is always driven, resulting in a deterioration in fuel consumption.
  • the oil temperature detection unit 130 of the present embodiment determines whether the oil temperature can be detected by the oil temperature sensor 40, and when the oil temperature detection by the oil temperature sensor 40 becomes impossible, By switching to the method of detecting the oil temperature Toil from the solenoid current I, the oil temperature can be detected even if the oil temperature cannot be detected by the oil temperature sensor 40, and the surge absorption circuit 110 can be increased in size and idle stop control can be performed. Stopping can be reliably prevented.
  • the oil temperature signal output from the oil temperature sensor 40 is input to the A / T-ECU, and the oil temperature is transmitted from the A / T-ECU to the O / P-ECU.
  • a signal is transmitted. That is, the A / T-ECU to which the oil temperature signal is supplied from the oil temperature sensor 40 and the O / P-ECU that calculates the oil temperature Toil based on the solenoid current I are configured separately. With this configuration, the solenoid current I is detected in the O / P-ECU even if the oil temperature sensor 40 fails or a communication abnormality occurs between the A / T-ECU and the O / P-ECU. This makes it possible to detect the oil temperature Toil.
  • the A / T-ECU corresponds to a control unit to which an oil temperature signal is supplied from an oil temperature sensor
  • the O / P-ECU corresponds to a control unit in which the oil temperature is calculated based on a solenoid current.
  • FIG. 14 is a flowchart for explaining the control operation of the electromagnetic valve type oil pump 86, which is a control operation of the electronic control unit 80 of the present embodiment.
  • step S10 (hereinafter, step is omitted) corresponding to the oil temperature detection unit 130, it is determined whether detection by the oil temperature sensor 40 is possible. If it is determined that the oil temperature cannot be detected by the oil temperature sensor 40 due to a failure of the oil temperature sensor 40 or a communication abnormality between the A / T-ECU and the O / P-ECU, S10 is denied and the oil temperature is detected. The process proceeds to S1 corresponding to the unit 130.
  • a solenoid current I that is a parameter related to the oil temperature Toil is input, and in S2 corresponding to the oil temperature detection unit 130, the oil temperature Toil is calculated based on the solenoid current I obtained in S1.
  • the process proceeds to S12 corresponding to the oil temperature detection unit 130, and the oil temperature sensor 40 detects the oil temperature Toil.
  • the required flow rate Q is calculated based on the oil temperature Toil in S3 corresponding to the required flow rate calculation unit 132.
  • the drive frequency F is calculated based on the required flow rate Q obtained in S3, and in S5 corresponding to the drive frequency changing unit 136, the drive frequency F calculated in S4 is calculated.
  • a command to operate the solenoid valve type oil pump 86 is output to the drive frequency switching circuit 108.
  • the oil temperature detection unit 130 detects the oil temperature Toil by the oil temperature sensor 40 in a normal state, and based on the solenoid current I when the oil temperature Toil by the oil temperature sensor 40 is difficult. By calculating the oil temperature Toil, the oil temperature Toil can be reliably detected, and the surge absorber circuit 110 can be prevented from being enlarged and the idle stop control stopped.
  • the oil temperature Toil of the hydraulic oil is detected by the oil temperature sensor 40 and calculated based on the solenoid current I of the solenoid valve.
  • the oil temperature Toil is calculated based on the solenoid current I.
  • the oil temperature Toil can be calculated, and the optimum drive frequency F can be set based on the oil temperature Toil.
  • the optimum discharge amount of the electromagnetic valve type oil pump 86 based on the oil temperature Toil is not known.
  • the drive frequency F must be increased. Therefore, the surge absorption power W is also increased, and the surge absorption circuit 110 needs to be increased accordingly.
  • the oil temperature Toil can be calculated based on the solenoid current I of the solenoid valve, even if the oil temperature Toil cannot be detected by the hydraulic sensor 40, the solenoid current of the solenoid valve. By calculating the oil temperature Toil based on I and setting the drive frequency F to an optimum value, it is possible to reliably prevent the surge absorption power from being suppressed and the surge absorption circuit 110 from becoming large.
  • the A / T-ECU to which the oil temperature signal is supplied from the oil temperature sensor 40 and the O / P-ECU that calculates the oil temperature based on the solenoid current I of the solenoid valve are: It is configured separately. In this way, even if a failure of the hydraulic sensor 40 or a communication abnormality occurs, the oil temperature Toil can be calculated based on the solenoid current I of the solenoid valve without being affected by the failure, and the surge absorption circuit 110 It is possible to reliably prevent the increase.
  • the hydraulic oil discharged from the solenoid valve type oil pump 86 is supplied to the starting clutch C1 of the transmission mechanism unit 16, but is not limited to the starting clutch C1, and is an actuator driven by hydraulic pressure. If it is, it will not specifically limit. In the above-described embodiment, the hydraulic oil discharged from the solenoid valve type oil pump 86 is supplied only to the starting clutch C1, but is selectively supplied to other actuators via a switching valve or the like. It does not matter.
  • the detection of the oil temperature Toil is directly detected from the oil temperature sensor 40, or a method of calculating based on the solenoid current I is applied. It is also possible to detect Further, although the solenoid current I is applied as a parameter related to the oil temperature Toil, any parameter that can indirectly estimate the oil temperature Toil such as the engine water temperature may be adopted as appropriate.
  • the surge absorbing circuit 110 is configured by connecting one rectifier diode and two Zener diodes in series.
  • this configuration is an example, and there is no contradiction. It may be changed as appropriate.
  • the surge absorption circuit 110 is also designed to be reduced accordingly.
  • the specific configuration of the solenoid valve type oil pump 86 is an example, and the configuration is appropriately applied if the discharge amount is variable by changing the drive frequency F of the solenoid valve. be able to.
  • the relationship maps shown in FIGS. 7 to 9 are stored in the O / P-ECU.
  • the present invention is not necessarily limited to this, and is stored in another storage device. It doesn't matter.

Abstract

 電磁弁式オイルポンプの作動中に発生するサージを吸収するサージ吸収回路を小型化できる車両用駆動装置の制御装置を提供する。 電磁弁式オイルポンプ86を作動させる駆動周波数Fが、油温Toilが低温の場合には高温の場合よりも低く設定される。このように設定されると、油温Toilの低温時には、電磁弁式オイルポンプ86の吐出量が少なくなるが、作動油の漏れ量が少なくなるので必要な流量を確保できる。そして、低油温時においてサージ吸収電力Wが小さくなるため、サージ吸収回路を小型化できる。一方、高油温時は、漏れ量が多くなるので駆動周波数Fを高くして、電磁弁式オイルポンプ86の吐出量が多くするが、高油温時は作動油の粘性抵抗も小さく、ソレノイド電流Iが低温時に比べて低くなるため、サージ吸収回路を小型化できる。

Description

車両用駆動装置の制御装置
 本発明は、車両用駆動装置の制御装置に係り、特に、電磁弁式オイルポンプを備えた駆動装置の制御に関するものである。
 従来、油圧クラッチをはじめとする油圧によって駆動される車両のアクチュエータには、主にエンジンによって駆動される機械式オイルポンプから作動油が供給されていた。また、機械式オイルポンプだけでなく、さらに電磁弁式オイルポンプを備えたものが提案されている。例えば特許文献1に記載のポンプ装置もその一例である。特許文献1には、エンジンによって駆動される機械式オイルポンプに加えて、電磁弁式オイルポンプを備えた構成が開示されている。そして、例えば信号待ちなどシフトレンジがDレンジに維持された状態で車両を停止させた際には、エンジンを自動停止させるとともに、電磁弁式オイルポンプを駆動させて発進クラッチに次回の発進に備えて適切な油圧を供給することで、速やかな発進を可能としている。また、特許文献1の電磁弁式オイルポンプは、電磁弁の駆動周波数を可変とすることで、車両の経年変化に拘わらず最適な油圧を供給することを可能としている。
特開2011-69258号公報
 前記電磁弁式オイルポンプは、電磁弁にオンオフを繰り返す電流を与えることで、ソレノイドコイル内に設けられているプランジャ(ピストン)を往復運動させることにより作動油の吸入および吐出を繰り返し実行するものである。このプランジャには、そのプランジャを一方向に付勢するスプリングが連結されており、電磁弁への通電がオフに切り替わり、プランジャがスプリングによってソレノイドコイル内を移動する際に、電磁弁の駆動回路内にサージ電力(逆起電力)が発生することが知られている。そこで、通常は、このサージ電力を吸収するサージ吸収回路が設けられている。このサージ吸収回路が吸収するサージ吸収電力が大きくなると、耐熱性を確保するために回路規模が大きくなり、サージ吸収回路の大型化および高コスト化を招くことになる。従って、サージ吸収電力を小さくすることが望まれる。
 ところで、電磁弁式オイルポンプはバルブボデー等を介して油圧クラッチに接続されているため、例えばバルブボデー等から作動油の漏れが発生する。この作動油の漏れ量は、作動油の油温によって変化し、例えば高油温の場合には漏れ量が多くなる。一般には、漏れ量が多い高油温時を基準として設計されるので、電磁弁式オイルポンプが要求される吐出量が多くなる。しかしながら、低油温時にあっては、漏れ量が少ないために流量および油圧が過剰となり、エネルギロスが発生する。ここで、作動油の油温が低い場合には、作動油の粘性抵抗も大きくなり、ソレノイドコイルを流れるソレノイド電流も大きくなることに関連して、前記サージ吸収電力が大きくなる。従って、サージ吸収回路も大きなものが必要となってしまう。なお、特許文献1においては、作動油の油温の変化による粘性抵抗の変化について何ら考慮されていない。従って、作動油の漏れ量を考慮した場合であっても、漏れ量が多い高油温時を基準として設計され、低油温時にあってはソレノイド電流が大きくなることからサージ電力も大きくなるため、サージ吸収回路も大型のものが必要となりコストも高くなる問題があった。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、電磁弁式オイルポンプを備えた車両用駆動装置の制御装置において、電磁弁式オイルポンプの作動中に発生するサージを吸収するサージ吸収回路を小型化できる車両用駆動装置の制御装置を提供することにある。
 上記目的を達成するための、第1発明の要旨とするところは、(a)電磁弁のオンオフ操作によって作動油の吸入および吐出を実行する電磁弁式オイルポンプと、その電磁弁式オイルポンプのオンオフの駆動周波数を制御する手段と、前記作動油の油温を検出する手段と、前記電磁弁式オイルポンプから吐出される作動油が供給される油圧回路とを、備える車両用駆動装置の制御装置であって、(b)前記電磁弁式オイルポンプにおいて発生する逆起電力を吸収するサージ吸収回路をさらに備え、(c)前記電磁弁式オイルポンプを作動させる前記駆動周波数は、低温の場合が高温の場合よりも低く設定されていることを特徴とする。
 例えば、油温に拘わらず一定の駆動周波数で電磁弁式オイルポンプを作動させると、油温が低温の場合は、作動油の粘性抵抗が大きく電磁弁に流れるソレノイド電流が大きくなる。従って、サージ電力が大きくなるので、サージ吸収電力が大きく設計されている体格の大きいサージ吸収回路が必要となる。また、油圧回路からの作動油の漏れ量は、作動油の粘性抵抗が大きくなるに従って少なくなる。言い換えれば、油圧回路からの作動油の漏れ量は、油温が低温になるに従って少なくなるという特性を有している。これより、油温が低い場合は、高い場合に比べて電磁弁式オイルポンプの吐出流量を抑制しても漏れ量が少なくなるため、必要な流量を確保できる。そこで、電磁弁式オイルポンプを作動させる駆動周波数が、油温が低温の場合には高温の場合よりも低く設定される。このように設定されると、油温の低温時には、駆動周波数が低くなるので電磁弁式オイルポンプの吐出量が少なくなるが、作動油の漏れ量が少なくなるので必要な流量を確保できる。また、サージ電力は駆動周波数に比例するので、低油温時であってもサージ電力が小さくなるため、サージ吸収回路を小型化することができる。一方、高油温時は、漏れ量が多くなるので駆動周波数を高くして、電磁弁式オイルポンプの吐出量を多くすることになるが、高油温時は作動油の粘性抵抗も小さく、ソレノイド電流が低温時に比べて低くなるため、サージ電力が大きくなることはない。従って、サージ吸収回路を小型化することができる。
 また、好適には、第2発明の要旨とするところは、第1発明の車両用駆動装置の制御装置において、前記作動油の油温は、前記電磁弁のソレノイド電流に基づいて算出される。このようにすれば、センサ等を用いることなく油温を検出することができる。
 また、好適には、第3発明の要旨とするところは、第1発明の車両用駆動装置の制御装置において、前記電磁弁式オイルポンプの前記駆動周波数は、前記油温に応じて連続的に変化する。このようにすれば、油温に応じて必要な流量を確保できる周波数に設定され、余分な流量および油圧を抑制してエネルギロスを抑制することができる。
 また、好適には、第4発明の要旨とするところは、第1発明の車両用駆動装置の制御装置において、前記電磁弁式オイルポンプの前記駆動周波数は、予め設定されている油温の閾値に基づいて段階的に変化する。このようにすれば、油温の閾値に基づいて周波数が変化し、サージ電力を抑制しつつ、必要な流量を確保することができる。
 また、好適には、第5発明の要旨とするところは、第1発明の車両用駆動装置の制御装置において、前記作動油の油温は、油温センサによって検出されるとともに、前記電磁弁のソレノイド電流に基づいて算出され、正常時には前記油温センサによって油温が検出され、その油温センサによって油温が検出されない場合に、前記ソレノイド電流に基づいて油温が算出される。このようにすれば、正常時には油温センサによって信頼性の高い油温が検出され、油温センサによる油温の検出ができない場合であっても、電磁弁のソレノイド電流に基づいて油温を算出することができ、その油温に基づいて最適な駆動周波数に設定することができる。例えば、油温センサのみによって油温が検出される場合において、油温センサによる検出ができなくなると、油温に基づく最適な電磁弁式オイルポンプの吐出量がわからなくなるので、吐出量を確保するために駆動周波数を高くしなければならなくなる。従って、サージ電力も大きくなり、サージ吸収回路もそれに応じて大きくする必要が生じる。これに対して、さらに電磁弁のソレノイド電流に基づいて油温を算出することができるので、油圧センサによる油温の検出ができなくなっても、電磁弁のソレノイド電流に基づいて油温が算出され、駆動周波数が最適な値に設定されることで、サージ電力が抑制されてサージ吸収回路が大きくなることが確実に防止される。
 また、好適には、第6発明の要旨とするところは、第5発明の車両用駆動装置の制御装置において、前記油温センサから油温信号が供給される制御部と、前記電磁弁のソレノイド電流に基づいて油温を算出する制御部とは、別個に構成されている。このようにすれば、油圧センサの故障や通信異常が発生しても、その影響を受けることなく電磁弁のソレノイド電流に基づいて油温を算出することができ、サージ吸収回路が大きくなることを確実に防止することができる。
 また、好適には、第7発明の要旨とするところは、第1発明の車両用駆動装置の制御装置において、エンジンによって駆動される機械式オイルポンプを更に備え、そのエンジンの停止中は前記電磁弁式オイルポンプを駆動させる。このようにすれば、エンジン停止中は機械式オイルポンプが停止するが、これに変わって電磁弁式オイルポンプが駆動することで、作動油の供給不足を回避することができる。
 また、好適には、第8発明の要旨とするところは、第7発明の車両用駆動装置の制御装置において、前記電磁弁式オイルポンプから吐出される作動油は、変速機の発進クラッチに供給される。このようにすれば、車両停止中はエンジンが停止されることで機械式オイルポンプが停止されるが、その間は電磁弁式オイルポンプから変速機の発進クラッチに作動油が供給されるので、車両の再発進時の際に、変速機の発進クラッチを速やかに係合させてスムーズな発進が可能となる。
 また、好適には第9発明の要旨とするところは、第1発明の車両用駆動装置の制御装置において、前記電磁弁式オイルポンプは、作動油を吸入する吸入油路と作動油を吐出する吐出油路とを備えており、該吸入油路の断面積は該吐出油路の断面積よりも大きい。このようにすれば、吸入油路から作動油が吸入される際の抵抗が低減されて、電磁弁式オイルポンプの制御性が向上する。
、本発明が適用される車両用駆動装置を構成するエンジンから駆動輪までの動力伝達経路の概略構成を説明する図であると共に、車両用駆動装置に設けられた制御系統の要部を説明するブロック線図である。 図1の車両用駆動装置を制御する油圧回路の一部であって、特に、発進クラッチを制御する油圧回路を簡略的に示している。 図2の電磁弁式オイルポンプの構造および作動を説明する図である。 図3の電磁弁式オイルポンプを駆動させたときの電流および電圧の時間変化を示している。 油圧および油温と作動油の漏れ量との関係を示す図である。 図1の電子制御装置において、主に電磁弁式オイルポンプの制御作動を説明するための機能ブロック線図である。 ソレノイド電流と油温との関係を示すマップである。 油温と必要流量との関係を示すマップである。 必要流量に基づいて駆動周波数を決定するマップである。 駆動周波数に対する電圧変化および電流変化を示す図である。 電子制御装置の制御作動であって、特に電磁弁式オイルポンプの制御作動を説明するフローチャートである。 本発明の他の実施例である油温および駆動周波数とサージ吸収電力との関係を示す図である。 駆動周波数に対するサージ吸収電力を時間軸で示したものである。 本発明のさらに他の実施例に対応する電子制御装置の制御作動であって、電磁弁式オイルポンプの制御作動を説明するフローチャートである。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
 図1は、本発明が適用される車両用駆動装置10を構成するエンジン12から駆動輪14までの動力伝達経路の概略構成を説明する図であると共に、車両用駆動装置10に設けられた制御系統の要部を説明するブロック線図である。図1において、変速機構部16は、例えば車両において横置きされるFF(フロントエンジン・フロントドライブ)型車両に好適に用いられる有段の自動変速機または無段の自動変速機(CVT)等であり、トルクコンバータ17を介してエンジン12に連結されている。走行用駆動力源としての内燃機関であるエンジン12からトルクコンバータ17を経て変速機構部16へ入力された動力は、カウンタギヤ対20の一方を構成する出力回転部材としての出力歯車18から、動力伝達装置としてのカウンタギヤ対20、ファイナルギヤ対22、差動歯車装置(ディファレンシャルギヤ)24、及び一対の車軸(ドライブシャフト(D/S))26等を順次介して一対の駆動輪14へ伝達される。これら変速機構部16、カウンタギヤ対20、ファイナルギヤ対22、差動歯車装置(ディファレンシャルギヤ)24等によりトランスアクスル(T/A)が構成される。
 エンジン12は、例えばガソリンエンジンやディーゼルエンジン等の内燃機関であり、吸気管50に設けられスロットルアクチュエータ52により開閉駆動される電子スロットル弁54と、気筒内に燃料を噴射する燃料噴射装置56と、その噴射された燃料に点火する点火装置58とを備えている。
 車輪制動装置64は、よく知られたドラムブレーキやディスクブレーキであり、各車輪(すなわち駆動輪14に従動輪を加えた各車輪)ごとに設けられており、フットブレーキペダル66の踏込操作により各車輪を制動する。すなわち、フットブレーキペダル66の踏込操作によって発生させられるブレーキ油圧によって各車輪を制動する。
 車両用駆動装置10には、エンジン12を制御する車両用エンジン制御装置としての機能を含む電子制御装置80が備えられている。電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御、変速機構部16の変速制御、後述する電磁弁式オイルポンプ86の駆動制御などを実行する。また、電子制御装置80は、エンジン12の出力制御を専ら実行するE/G-ECU、変速機構16の変速制御を専ら実行するA/T-ECU、電磁弁式オイルポンプ86の駆動制御を専ら実行するO/P-ECUなどの複数の制御装置から構成され、これらの制御装置の間で互いのデータの受け渡しが通信によって実行される。
 電子制御装置80には、例えばエンジン回転速度センサ28からのエンジン12のクランクシャフトのクランク角度(位置)Acr及びエンジン回転速度Neに応じたエンジン回転速度信号、入力回転速度センサ30からの変速機構部16の入力軸の回転速度Ninに応じた入力回転速度信号、車速センサ32からの出力歯車18の回転速度Noutに対応する車速Vを表す車速信号、各車輪速センサ34からの各車輪の回転速度Nwに応じた車輪速信号、アクセル開度センサ36からのアクセルペダル68の操作の有無及びアクセルペダル68の操作量(アクセル開度Acc)を表す信号、車輪を車輪制動装置64に制動させるための制動操作の有無すなわちブレーキペダル66の踏込操作の有無を表すフットブレーキスイッチ38からの信号、油温センサ40からの作動油の油温Toilを表す信号などが供給される。
 また、電子制御装置80からは、例えばエンジン12の出力制御の為のエンジン出力制御指令信号例えば電子スロットル弁54の開度θth(スロットル弁開度θth)を操作するスロットルアクチュエータ52への駆動信号や燃料噴射装置56によるエンジン12の各気筒内への燃料供給量を制御する燃料供給量信号や点火装置58によるエンジン12の点火時期を指令する点火信号、変速機構部16の変速制御の為の変速制御指令信号、電磁弁式オイルポンプ86を駆動させる駆動信号等が、それぞれ出力される。例えば、電子制御装置80は、前記入力回転速度信号や出力回転速度信号等に基づいて変速制御指令信号を不図示の油圧制御回路などへ出力して変速機構部16のギヤ比の切換制御を実行する。また、電子制御装置80は、エンジン12の出力制御の一部として、基本的には、図示しない予め記憶された関係からアクセル開度信号Accに基づいてスロットルアクチュエータ52を駆動し、アクセル開度Accが増加するほどスロットル弁開度θthを増加させるようにスロットル制御を実行する。また、電子制御装置80は、エンジン12が停止した際に、電磁弁式オイルポンプ86を駆動させる制御を実行する。
 本実施例の電子制御装置80は、燃費向上のために、車両の走行停止に関連してエンジン12を一時的に自動停止する所謂アイドリングストップ制御を実行する。例えば、車両の信号待ちなどにあっては、シフトレンジがDレンジの状態でブレーキペダル66が踏み込まれた状態で停止されるが、このときエンジン12を一時的に自動停止させる。なお、上記アイドリングストップ制御におけるエンジン12の一時的な停止とは、エンジン12への燃料供給が遮断されてそのエンジン12が非駆動状態になることであり、その非駆動状態においてエンジン回転速度Neが零であるとは限らないので、上記エンジン12の一時的な停止にはエンジン回転速度Neが零でない場合も含まれる。また、本実施例で燃費とは、例えば、単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。逆に、燃費の低下とはその単位燃料消費量当たりの走行距離が短くなることであり、或いは、車両全体としての燃料消費率が大きくなることである。
 ここで、アイドルストップ制御の状態からアクセルペダル68が踏み込まれた際には、車両が速やかに発進することが望ましい。しかしながら、アイドルストップ制御中はエンジン12が停止しているので、エンジン12によって駆動される機械式オイルポンプも停止する。従って、車両の発進の際に係合される変速機構部16の発進クラッチC1の係合に遅れが生じ、車両の発進応答性が低下する可能性がある。これに対して本実施例の車両にあっては、アイドルストップ制御中(エンジン停止中)は、機械式オイルポンプに代わって後述する電磁弁式オイルポンプ86を駆動させて、発進クラッチC1に予め作動油を供給して係合直前の状態とすることで速やかな発進を可能としている。
 図2は、発進クラッチC1を制御する油圧回路82を簡略的に示している。図2に示すように、油圧制御回路82は、エンジン12によって駆動される機械式オイルポンプ84、および電磁弁104を含んで構成されその電磁弁104によって駆動される電磁弁式オイルポンプ86の2個のオイルポンプを有しており、これらのオイルポンプから吐出される作動油が切替バルブ93を介して選択的に発進クラッチC1に供給される。
 機械式オイルポンプ84は、エンジン12が駆動すると駆動させられ、オイルパン88に貯留されている作動油を汲み上げて調圧回路90側に吐出する。調圧回路90は、例えば図示しないレギュレータバルブ等を含んで構成されており、機械式オイルポンプ84によって吐出された作動油を元圧にして車両の走行状態に応じた最適なライン圧に調圧する。ソレノイドバルブSL1は、前記ライン圧を元圧にして車両の走行状態に応じて最適なクラッチ圧Pc1に調圧する。この調圧されたクラッチ圧Pc1が切替バルブ93を介して発進クラッチC1に供給される。
 電磁弁式オイルポンプ86は、オイルポンプ88に貯留されている作動油を汲み上げ、切換バルブ93を介して発進クラッチC1に作動油を供給する。切替バルブ93は、発進クラッチC1に供給される作動油を、ソレノイドバルブSL1および電磁弁式オイルポンプ86の何れかに切り換える切替弁である。機械式オイルポンプ84が作動している場合、ソレノイドバルブSL1と発進クラッチC1とを連通するとともに、電磁弁式オイルポンプ86と発進クラッチC1との連通を遮断する。また、機械式オイルポンプ86が非駆動である場合には、電磁弁式オイルポンプ86と発進クラッチC1とを連通するとともに、ソレノイドバルブSL1と発進クラッチC1との連通を遮断する。なお、切替バルブ93の具体的な構造や作動については、公知技術であるためその説明を省略する。また、電磁弁式オイルポンプ86から吐出される作動油は、調圧されることなく切替バルブ93を介して直接発進クラッチC1に供給される。すなわち、電磁弁式オイルポンプ86は、アイドルストップ制御中において発進クラッチC1に作動油を供給する専用のオイルポンプである。
 図3は、電磁弁式オイルポンプ86の構造を示している。図3(a)はオイルパン88から作動油を吸入している状態を示し、図3(b)は発進クラッチC1側に作動油を吐出する状態を示している。電磁弁式オイルポンプ86は、筒状のケース92内を往復運動する円柱状のプランジャ94と、所定のデューティ比および駆動周波数Fでオンオフ操作を繰り返すことでプランジャ94を往復運動させるソレノイドコイル96(電磁部)と、プランジャ94を作動油が吐出される側(図3において右側)に付勢するスプリング98と、オイルパン88と電磁弁式オイルポンプ86とを接続することで作動油が吸入される吸入油路99と、電磁弁式オイルポンプ86と切替バブル93(発進クラッチC1)とを接続することで作動油を吐出する吐出油路100と、オイルパン88から吸入された作動油の逆流を防止する第1チェック弁101と、電磁弁式オイルポンプ86から吐出された作動油の逆流を防止する第2チェック弁102とを、含んで構成されている。そして、ソレノイドコイル96にソレノイド電流を印加する通電状態と、ソレノイド電流を印可しない非通電状態を作り、所定の駆動周波数で通電状態と非通電状態のオンオフ操作を繰り返すことで、電磁弁式オイルポンプ86において作動油の吸入および吐出が繰り返し実行される。また、電磁弁式オイルポンプ86において、ケース92、プランジャ94、ソレノイドコイル96、およびスプリング98によって、電磁弁104が構成される。
 図3(a)に示すように、ソレノイドコイル96が通電されることでプランジャ94がスプリング98側(図3において左側)に移動すると、第1チェック弁101の間で差圧が発生するので、その差圧によって第1チェック弁101が開弁され、オイルパン88と接続されている吸入油路99から作動油がケース92内へ吸入される。このとき、第2チェック弁102は閉弁される。また、図3(b)に示すように、非通電状態となると、スプリング98の付勢力によってプランジャ94がチェック弁側(図3において右側)に移動させられ、作動油が第2チェック弁102を通って発進クラッチC1に接続されている吐出油路100側に吐出される。このとき、第1チェック弁101は閉弁される。このように、プランジャ94がケース92内を往復運動することで、オイルパン88の作動油が吸入油路99を通って吸入され、吸入された作動油が吐出油路100側に吐出される。また、作動油を吸入する吸入油路99の断面積Ainは、作動油を吐出する吐出油路100の断面積Aoutよりも大きくされている。これより、作動油が電磁弁式オイルポンプ86内に吸入される際、その抵抗が少なくなるので、電磁弁式オイルポンプ86の制御性が向上する。
 また、本実施例の電磁弁式オイルポンプ86は、駆動周波数Fを切り替える駆動周波数切替回路108を備えており、この駆動周波数Fを切り替えることで電磁弁式オイルポンプ86の吐出量を調整できる。ここで、図3(b)に示すように、プランジャ94がスプリング98の付勢力によってソレノイドコイル96内を移動する際には、回路内にサージ電力(逆起電力)が発生する。図4は、電磁弁式オイルポンプ86を駆動させたときの電流Iおよび電圧Vの時間変化を示している。図4において、実線が電圧Vを示しており、破線が電流Iを示している。ソレノイドコイル96が通電されると電圧が正の値となり、非通電に切り替えられるとソレノイドコイル96内をプランジャ94が移動する際に負の値である逆起電力(サージ電力)が発生する。なお、本実施例の駆動周波数切替回路108では、図2に示すように駆動周波数切替回路108内に電磁弁式オイルポンプ86を制御するO/P-ECUが組み込まれているが、O/P-ECUは駆動周波数切替回路108と別個に設けられていても構わない。
 そこで、電磁弁式オイルポンプ86のソレノイドコイル96と駆動周波数切替回路108との間には、そのサージ電力を吸収するためのサージ吸収回路110が介在されている。サージ吸収回路110は、例えば整流ダイオード112やツェナーダイオード114を含んで構成されている。このサージ吸収回路110によって吸収されるサージ吸収電力Wは、下式(1)で算出される。ここで、式(1)において、Iはソレノイド電流[A]を示し、Vzはツェナー電圧[V]を示し、tが図4に示すサージ幅[s]を示し、Fが駆動周波数[Hz]を示している。なお、ツェナー電圧Vzは、ツェナーダイオード114に基づいて定格的に定まる値である。
W=I×Vz×t×F・・・(1)
 このサージ吸収電力Wが大きくなると、その耐熱性を確保するためにサージ吸収回路110の回路規模が大きくなるとともにコストも高くなる。従って、サージ吸収電力Wを低減することが望ましい。
 ところで、吐出油路100や切替バルブ93を含んで構成される、電磁弁式オイルポンプ86と発進クラッチC1とを接続する油圧回路(本発明の油圧回路に対応する)は、図示しないバルブボデー内に形成されており、その作動油がそのバルブボデーを通過する際に漏れが生じる。図5に、油圧および油温と作動油の漏れ量との関係を示す。図5に示すように、油圧が高くなるに従って作動油の漏れ量が増加する。また、作動油が高油温であると場合は、低油温である場合に比べて漏れ量が多くなる。これは、作動油の油温Toilが高くなるに従って作動油の粘性抵抗が低下することに起因している。従って、低油温時には漏れ量が少なくなるので、電磁弁式オイルポンプ86からの吐出量が高油温時に比べて少なくなっても発進クラッチC1には必要となる作動油を供給できる。しかしながら、従来では、電磁弁式オイルポンプ86の吐出量は可変とはなっておらず、漏れ量が多い状態(高油温時)を基準として電磁弁式オイルポンプ86の吐出量が設計されていた。従って、低油温時にあっては作動油の流量および油圧が過剰となり、それによるエネルギロスが生じて燃費が悪化するとともに、発進クラッチC1のクラッチ油圧が過剰となってトルク伝達ショックが発生する可能性もあった。また、作動油の流量を多くするには、電磁弁式オイルポンプ86の駆動周波数Fを高い値に設定することになり、それに関連して式(1)からもわかるようにサージ吸収電力Wも大きくなる。従って、サージ吸収電力Wに対する耐熱性等を確保するためにサージ吸収回路110が大型化してコストアップを招いてしまう。
 そこで、本実施例では、電磁弁式オイルポンプ86を駆動させる際には、作動油の油温Toilに応じて電磁弁式オイルポンプ86の駆動周波数Fを変化させて、電磁弁式オイルポンプ86からの吐出流量を最適に制御することで、サージ吸収電力Wを抑制してサージ吸収回路110の大型化を抑制する。具体的には、駆動周波数Fを、低温の場合が高温の場合よりも低く設定することで、サージ吸収電力Wを抑制してサージ吸収回路110の大型化を抑制する。以下、本発明の要部である電磁弁式オイルポンプ86の駆動制御について説明する。
 図6は、電子制御装置80において、主に電磁弁式オイルポンプ86の制御作動を説明するための機能ブロック線図である。なお、図2のブロック線図では、駆動周波数切替回路108内にO/P-ECUが組み込まれているが、図6の機能ブロック線図では、O/P-ECUの具体的な機能を説明するために、O/P-ECUを駆動周波数切替回路108と別個に記載している。
 図6に示す油温検出部130(油温検出手段)は、油圧回路82を流れる作動油の油温Toilを検出する。油温検出部130は、作動油を貯留するオイルパン88に設けられている油温センサ40から油温Toilを検出する。或いは、油温検出部130は、駆動周波数切替回路108から電磁弁104(電磁弁式オイルポンプ86)のソレノイド電流I[A]を検出し、そのソレノイド電流Iに基づいて油温Toilを算出する。図7は、予め実験や解析によって求められる、ソレノイド電流Iと油温Toilとの関係を示すマップである。図7に示すように、油温Toilが低下するに従って、作動油の粘性抵抗が増加してソレノイド電流Iが増加する。油温検出部130は、ソレノイド電流Iを検出し、予め求められて記憶されている上記図7のマップに基づいて油温Toilを決定する。なお、図7に示すマップだけでなく、予め実験的に求められた油温Toilを算出する実験式に基づいて油温Toilを算出しても構わない。
 必要流量算出部132(必要流量算出手段)は、油温検出部130によって求められた油温Toilに基づいて電磁弁式オイルポンプ86が必要とする必要流量Q[cc/min]を算出する。この必要流量Qは、発進クラッチC1が必要とする作動油の流量である。図8は、予め実験や解析によって求められる油温Toilと必要流量Qとの関係を示すマップである。図8に示すように、油温Toilが高くなるに従って、必要流量Qが増加している。これは、油温Toilが高くなると作動油の粘性が低下して油圧回路からの漏れが増加し、この漏れ分だけ必要流量Qが増加するためである。必要流量算出部132は、算出された油温Toilから、予め求められて記憶されている上記図8に示すマップに基づいて必要流量Qを決定する。なお、図8に示すマップだけなく、予め実験的に求められた必要流量Qを算出する実験式に基づいて必要流量Qを算出しても構わない。
 駆動周波数算出部134(駆動周波数算出手段)は、必要流量算出部132によって求められた必要流量Qに基づいて電磁弁式オイルポンプ86の駆動周波数F[Hz]を決定する。図9は、必要流量Qに基づいて駆動周波数Fを決定するマップである。この図9は、予め実験や解析的に求められ、必要流量Qを満足する駆動周波数Fに設定されている。図9に示すように、必要流量Qが増加するに従って駆動周波数Fが増加している。これより、電磁弁式オイルポンプ86の駆動周波数Fは、油温Toilに応じて連続的に変化することとなる。
 駆動周波数変更部136は、駆動周波数算出部134によって求められた駆動周波数Fで電磁弁104のオンオフが実行されるように電磁弁式オイルポンプ86を駆動させる指令を、駆動周波数切替回路108に出力する。このように制御されると、図7乃至図9の各マップより、駆動周波数Fは、低油温の場合が高油温の場合よりも低くなる。図10に、駆動周波数Fに対する電圧変化および電流変化を示す。図10(a)が高油温時すなわち駆動周波数Fが高い状態を示しており、図10(b)が低油温時すなわち駆動周波数Fが低い状態を示している。また、図10において実線が電圧[V]を示し、破線が電流I[A]を示している。図10に示すように、図10(b)の低油温時では駆動周波数Fが低くなるので、図10(a)の高油温時に比べてサージ電力の発生回数が少なくなるため、サージ吸収電力Wが低減される。ここで、低油温時において駆動周波数Fが低くなると、電磁弁式オイルポンプ86から吐出される吐出量が減少することになるが、上述したように、低油温時では作動油の漏れ量が少なくなるので、必要流量Qも少なくなる。従って、駆動周波数Fが低くなって電磁弁式オイルポンプ86からの作動油の吐出量が少なくなっても必要流量Qが確保される。一方、高油温時は漏れ量が多くなり必要流量Qが多くなるが、駆動周波数Fが高くなることでその必要流量Qが賄われる。また、高油温時は駆動周波数Fが高くなるものの、図10(a)からもわかるように高油温時のソレノイド電流Iは低油温時に比べて低くなるので、サージ吸収電力Wの増加も抑制される。従って、低油温時においてもサージ吸収回路110のサージ吸収電力Wの最大値が小さくなるので、サージ吸収回路110の小型化および低コスト化が可能となる。
 図11は、電子制御装置80の制御作動の要部であって、特に電磁弁式オイルポンプ86の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
 図11において、先ず、油温検出部130に対応するステップS1(以下、ステップを省略)において、作動油の油温oilと関連性のある電磁弁式オイルポンプ86のソレノイド電流Iが入力される。同じく油温検出部130に対応するS2において、予め求められて記憶されている図7に示すマップからS1で入力されたソレノイド電流Iを参照することで作動油の油温Toilが算出される。なお、上記はソレノイド電流Iに基づいて油温Toilが算出されているが、油温センサ40によって直接検出することもできる。次いで、必要流量算出部132に対応するS3において、予め求められて記憶されている図8に示すマップから、S2で算出された油温Toilを参照することで必要流量Qが算出される。駆動周波数算出部134に対応するS4では、予め求められて記憶されている図9に示すマップから、S3で算出された必要流量Qを参照することで駆動周波数Fが算出される。そして、駆動周波数変更部136に対応するS5において、S4で算出された駆動周波数Fで電磁弁式オイルポンプ86を作動させる指令が駆動周波数切替回路108に出力される。
 上述のように、本実施例によれば、電磁弁式オイルポンプ86を作動させる駆動周波数Fが、油温Toilが低温の場合には高温の場合よりも低く設定される。このように設定されると、油温Toilの低温時には、駆動周波数Fが低くなるので電磁弁式オイルポンプ86の吐出量が少なくなるが、作動油の漏れ量が少なくなるので必要な流量を確保できる。また、サージ吸収電力Wは駆動周波数Fに比例するので、低油温時であってもサージ吸収電力Wが小さくなるため、サージ吸収回路110を小型化することができる。一方、高油温時は、漏れ量が多くなるので駆動周波数Fを高くして、電磁弁式オイルポンプ86の吐出量を多くすることになるが、高油温時は作動油の粘性抵抗も小さく、ソレノイド電流Iが低温時に比べて低くなるため、サージ吸収電力Wが大きくなることはない。従って、サージ吸収回路110を小型化することができる。また、低油温時に駆動周波数Fが低くなることで、低油温時に作動油が余分に吐出されることもなくなり、燃費悪化や発進クラッチC1のトルク過大による伝達ショックも防止される。
 また、本実施例によれば、作動油の油温Toilは、電磁弁のソレノイド電流Iに基づいて算出される。このようにすれば、センサ等を用いることなく油温を検出することができる。
 また、本実施例によれば、電磁弁式オイルポンプ86の駆動周波数Fは、油温Toilに応じて連続的に変化する。このようにすれば、油温Toilに応じて必要な流量を確保できる駆動周波数Fに設定され、余分な流量および油圧を抑制してエネルギロスを抑制することができる。
 また、本実施例によれば、エンジン12によって駆動される機械式オイルポンプ84を更に備え、そのエンジン12の停止中は電磁弁式オイルポンプ86を駆動させる。このようにすれば、エンジン停止中は機械式オイルポンプ84が停止するが、これに変わって電磁弁式オイルポンプ86が駆動することで、発進クラッチC1への作動油の供給不足を回避することができる。
 また、本実施例によれば、電磁弁式オイルポンプ86から吐出される作動油は、変速機構部16の発進クラッチC1に供給される。このようにすれば、車両停止中はエンジン12が停止されることで機械式オイルポンプ84が停止されるが、その間は電磁弁式オイルポンプ86から変速機構部16の発進クラッチC1に作動油が供給されるので、車両の再発進時の際に、変速機構部16の発進クラッチC1を速やかに係合させてスムーズな発進が可能となる。
 つぎに、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。
 前述の実施例にあっては、電磁弁式オイルポンプ86の駆動周波数Fを連続的に変更するものであったが、駆動周波数Fを段階的(ステップ)に変更するものであっても構わない。図12は、油温Toilおよび駆動周波数Fとサージ吸収電力Wとの関係を示している。図12には、□で示される10Hz、○で示される15Hz、▲で示される20Hz、および◆で示される25Hzの4個の駆動周波数Fのデータが示されている。図12からもわかるように、何れの駆動周波数Fにおいても、油温Toilが高くなるに従ってサージ吸収電力Wが減少していることがわかる。また、同じ油温Toilでみると、駆動周波数Fが高くほどサージ吸収電力Wが増加しているのがわかる。
 図12に示す太実線が、油温Toilに応じて切り替えられる駆動周波数Fを示している。図12では、油温Toilが50℃未満の領域では駆動周波数Fが10Hzに切り替えられ、油温Toilが50℃~80℃の領域では駆動周波数Fが15Hzに切り替えられ、油温Toilが80℃~110℃の間の領域では駆動周波数Fが20Hzに切り替えられ、油温Toilが110℃以上の領域では駆動周波数Fが25Hzに切り替えられるように設定されている。すなわち、駆動周波数Fが油温Toilの閾値に基づいて段階的に変化するように設定されている。
 本実施例にあっては、図12に示す一点鎖線で示す値(2.7W程度)がサージ吸収電力Wの最大値Wmaxとなる。そして、サージ吸収電力Wがその最大値Wmaxを超えないように、駆動周波数Fが油温Toilに応じて切り替えられる。なお、従来では、駆動周波数Fを切り替えることがなく、作動油の漏れ量が多い高油温時を基準に必要流量Qが設定され、その必要流量Qを賄うために駆動周波数Fが高い値に設定されていた。従って、サージ吸収電力Wの最大値が大きくなり、サージ吸収回路110も大きくなっていた。例えば、従来のサージ吸収電力Wの最大値は、図12にあっては、3.6W程度(駆動周波数25Hzを基準とする低油温の値)に設定される。これに対して、本実施例では、サージ吸収電力Wの最大値が2.7W程度となり、その差ΔWとして約1W近くサージ吸収電力Wの最大値が低減されている。従って、サージ吸収回路110の小型化が可能となる。
 図13は、駆動周波数Fに対するサージ吸収電力Wを時間軸で示したものである。駆動周波数Fが25Hzの状態ではサージ吸収電力Wが高くなるが、駆動周波数Fが低い値に切り替わるに従って、サージ吸収電力Wもステップ状態に低い値に変化している。なお、図12に示すように、高温時において駆動周波数Fが25Hzに切り替えられるので、ソレノイド電流Iも低くなることからサージ吸収電力Wが大きくなることはない。従って、サージ吸収回路110の小型化が可能となる。
 上述のように、本実施例によれば、前述の実施例と略同様の効果が得られ、さらに、電磁弁式オイルポンプ86の駆動周波数Fは、予め設定されている油温Toilの閾値に基づいて段階的に変化するので、油温Toilの閾値に基づいて駆動周波数Fが変化し、サージ吸収電力Wを抑制しつつ、必要な流量を確保することができる。
 前述の実施例にあっては、油温検出部130として、油温センサ40によって直接検出する、或いは、油温Toilと関連性のあるソレノイド電流Iから間接的に算出することで、油温Toilを検出するものとしたが、本実施例では、これらの油温検出の両方を用いて選択的に切り替えて油温Toilの検出を確実に実行する。
 本実施例の油温検出部130は、油温センサ40による油温検出と、ソレノイド電流Iに基づいて算出する油温検出の両方を備えており、通常は油温センサ40によって直接的に油温Toilを検出する。なお、油温センサ40による油温検出は直接的な油温検出であるため、ソレノイド電流Iに基づいて間接的に検出する場合に比べて精度が高い。従って、通常は油温センサ40によって油温Toilが検出される。
 ここで、油圧センサ40が故障するなどして油温センサ40による油温検出が困難となると、ソレノイド電流Iに基づく油温検出が実施できない構成では、油温Toilが検出不能となるので、必要流量Qの不足を回避するために高い駆動周波数Fで駆動させることになり、結果としてサージ吸収電力Wが大きくなりサージ吸収回路が大型化することになる。或いは、アイドルストップ制御を止めて、エンジン12を常時駆動させることになり、結果として燃費が悪化する。これに対して、本実施例の油温検出部130は、油温センサ40による油温検出が可能か否かを判定し、油温センサ40による油温検出が不能となった場合には、ソレノイド電流Iから油温Toilを検出する方法に切り替えることで、油温センサ40による油温検出が不可能になっても油温検出が可能となり、サージ吸収回路110の大型化やアイドルストップ制御の停止を確実に防止することができる。
 また、図6の機能ブロック線図に示すように、油温センサ40から出力される油温信号はA/T-ECUに入力され、そのA/T-ECUからO/P-ECUに油温信号が伝達されるようになっている。すなわち、油温センサ40から油温信号が供給されるA/T-ECUと、ソレノイド電流Iに基づいて油温Toilを算出するO/P-ECUとが別個に構成されている。このように構成されることで、油温センサ40の故障やA/T-ECUとO/P-ECUとの間で通信異常などが生じても、O/P-ECUにおいてソレノイド電流Iを検出することで、油温Toilの検出が可能となる。なお、A/T-ECUが油温センサから油温信号が供給される制御部に対応し、O/P-ECUがソレノイド電流に基づいて油温が算出される制御部に対応している。
 図14は、本実施例の電子制御装置80の制御作動であって、電磁弁式オイルポンプ86の制御作動を説明するフローチャートである。先ず、油温検出部130に対応するステップS10(以下、ステップを省略する)において、油温センサ40による検出が可能か否かが判断される。油温センサ40の故障、或いは、A/T-ECUとO/P-ECUとの通信異常などによって、油温センサ40による油温検出ができないことを判断すると、S10が否定され、油温検出部130に対応するS1に進む。S1では、油温Toilに関連するパラメータであるソレノイド電流Iが入力され、油温検出部130に対応するS2では、S1で求められたソレノイド電流Iに基づいて油温Toilが算出される。一方、S10が肯定される場合、油温検出部130に対応するS12に進み、油温センサ40によって油温Toilが検出される。そして、油温Toilが検出されると、必要流量算出部132に対応するS3において、油温Toilに基づいて必要流量Qが算出される。次いで、駆動周波数算出部134に対応するS4では、S3で求められた必要流量Qに基づいて駆動周波数Fが算出され、駆動周波数変更部136に対応するS5において、S4で算出された駆動周波数Fで電磁弁式オイルポンプ86を作動させる指令が駆動周波数切替回路108に出力される。
 このように、本実施例の油温検出部130は、正常時には油温センサ40によって油温Toilを検出し、油温センサ40による油温Toilが困難な場合には、ソレノイド電流Iに基づいて油温Toilを算出することで、油温Toilを確実に検出することができ、サージ吸収回路110の大型化やアイドルストップ制御の中止を回避することができる。
 上述のように、本実施例によれば、作動油の油温Toilは、油温センサ40によって検出されるとともに、電磁弁のソレノイド電流Iに基づいて算出され、正常時には油温センサ40によって油温Toilが検出され、その油温センサ40によって油温Toilが検出されない場合に、ソレノイド電流Iに基づいて油温Toilが算出される。このようにすれば、正常時には油温センサ40によって信頼性の高い油温Toilが検出され、油温センサ40による油温Toilの検出ができない場合であっても、電磁弁のソレノイド電流Iに基づいて油温Toilを算出することができ、その油温Toilに基づいて最適な駆動周波数Fに設定することができる。例えば、油温センサ40のみによって油温Toilが検出される場合において、油温センサ40による検出ができなくなると、油温Toilに基づく最適な電磁弁式オイルポンプ86の吐出量がわからなくなるので、吐出量を確保するために駆動周波数Fを高くしなければならなくなる。従って、サージ吸収電力Wも大きくなり、サージ吸収回路110もそれに応じて大きくする必要が生じる。これに対して、本実施例では、電磁弁のソレノイド電流Iに基づいて油温Toilを算出することができるので、油圧センサ40による油温Toilの検出ができなくなっても、電磁弁のソレノイド電流Iに基づいて油温Toilが算出され、駆動周波数Fが最適な値に設定されることで、サージ吸収電力が抑制されてサージ吸収回路110が大きくなることも確実に防止される。
 また、本実施例によれば、油温センサ40から油温信号が供給されるA/T-ECUと、電磁弁のソレノイド電流Iに基づいて油温を算出するO/P-ECUとは、別個に構成されている。このようにすれば、油圧センサ40のフェイルや通信異常が発生しても、その影響を受けることなく電磁弁のソレノイド電流Iに基づいて油温Toilを算出することができ、サージ吸収回路110が大きくなることを確実に防止することができる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の各実施例は、必ずしも独立して実施する必要はなく、矛盾のない範囲で適宜組み合わせて実施しても構わない。
 また、前述の実施例では、電磁弁式オイルポンプ86から吐出される作動油は、変速機構部16の発進クラッチC1に供給されるが、発進クラッチC1に限定されず、油圧によって駆動されるアクチュエータであれば特に限定されない。また、前述の実施例では、電磁弁式オイルポンプ86から吐出される作動油が発進クラッチC1のみに供給されるが、切替バルブ等を介して他のアクチュエータにも選択的に供給される構成であっても構わない。
 また、前述の実施例では、油温Toilの検出を油温センサ40から直接検出する、或いは、ソレノイド電流Iに基づいて算出する方法が適用されているが、これらの何れか一方で油温Toilを検出するものであっても構わない。また、油温Toilに関連するパラメータとしてソレノイド電流Iが適用されているが、例えばエンジン水温など油温Toilを間接的に推定できるパラメータなら適宜採用しても構わない。
 また、前述の実施例では、サージ吸収回路110は、1個の整流ダイオードおよび2個のツェナーダイオードが直列に連結されて構成されているが、この構成は一例であって、矛盾のない範囲で適宜変更されても構わない。なお、本願発明では、サージ吸収電力Wの最大値が低減されるので、サージ吸収回路110についても、それに応じて小さくなるように設計される。
 また、前述の実施例において、電磁弁式オイルポンプ86の具体的な構成は一例であって、電磁弁の駆動周波数Fを変更することで吐出量が可変となる構成であれば、適宜適用することができる。
 また、前述の実施例において、図7乃至図9に示す各関係マップは、O/P-ECUに記憶されているものとしたが、必ずしもこれに限定されず、他の記憶装置に記憶されていても構わない。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
 10:車両用駆動装置
 12:エンジン
 16:変速機構部(変速機)
 40:油温センサ
 80:電子制御装置(制御装置)
 84:機械式オイルポンプ
 86:電磁弁式オイルポンプ
 99:吸入油路
 100:吐出油路
 104:電磁弁
 110:サージ吸収回路
 130:油温検出部(油温を検出する手段)
 136:駆動周波数変更部(駆動周波数を制御する手段)
 C1:発進クラッチ
 A/T-ECU:油温センサから油温信号が供給される制御部
 O/P-ECU:電磁弁のソレノイド電流に基づいて油温を算出する制御部

Claims (9)

  1.  電磁弁のオンオフ操作によって作動油の吸入および吐出を実行する電磁弁式オイルポンプと、該電磁弁のオンオフの駆動周波数を制御する手段と、前記作動油の油温を検出する手段と、前記電磁弁式オイルポンプから吐出される作動油が供給される油圧回路とを、備える車両用駆動装置の制御装置であって、
     前記電磁弁式オイルポンプにおいて発生する逆起電力を吸収するサージ吸収回路をさらに備え、
     前記電磁弁式オイルポンプを作動させる前記駆動周波数は、低温の場合が高温の場合よりも低く設定されていることを特徴とする車両用駆動装置の制御装置。
  2.  前記作動油の油温は、前記電磁弁のソレノイド電流に基づいて算出されることを特徴とする請求項1の車両用駆動装置の制御装置。
  3.  前記電磁弁式オイルポンプの前記駆動周波数は、前記油温に応じて連続的に変化するものであることを特徴とする請求項1の車両用駆動装置の制御装置。
  4.  前記電磁弁式オイルポンプの前記駆動周波数は、予め設定されている油温の閾値に基づいて段階的に変化するものであることを特徴とする請求項1の車両用駆動装置の制御装置。
  5.  前記作動油の油温は、油温センサによって検出されるとともに、前記電磁弁のソレノイド電流に基づいて算出され、
     正常時には前記油温センサによって前記油温が検出され、該油温センサによって油温が検出されない場合に、前記ソレノイド電流に基づいて油温が算出されることを特徴とする請求項1の車両用駆動装置の制御装置。
  6.  前記油温センサから油温信号が供給される制御部と、前記電磁弁のソレノイド電流に基づいて油温を算出する制御部とは、別個に構成されていることを特徴とする請求項5の車両用駆動装置の制御装置。
  7.  エンジンによって駆動される機械式オイルポンプを更に備え、
     該エンジンの停止中に前記電磁弁式オイルポンプを駆動させることを特徴とする請求項1の車両用駆動装置の制御装置。
  8.  前記電磁弁式オイルポンプから吐出される作動油は、変速機の発進クラッチに供給されることを特徴とする請求項7の車両用駆動装置の制御装置。
  9.  前記電磁弁式オイルポンプは、作動油を吸入する吸入油路と作動油を吐出する吐出油路とを備えており、該吸入油路の断面積は該吐出油路の断面積よりも大きいことを特徴とする請求項1の車両用駆動装置の制御装置。
PCT/JP2012/083955 2012-12-27 2012-12-27 車両用駆動装置の制御装置 WO2014102983A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112012007263.4T DE112012007263T5 (de) 2012-12-27 2012-12-27 Steuervorrichtung für Fahrzeugantriebsvorrichtung
US14/654,946 US20150330375A1 (en) 2012-12-27 2012-12-27 Control device for vehicle drive device
JP2014553977A JPWO2014102983A1 (ja) 2012-12-27 2012-12-27 車両用駆動装置の制御装置
BR112015015295A BR112015015295A2 (pt) 2012-12-27 2012-12-27 dispositivo de controle para dispositivo de propulsão de veículo
KR1020157019249A KR20150097701A (ko) 2012-12-27 2012-12-27 차량용 구동 장치의 제어 장치
PCT/JP2012/083955 WO2014102983A1 (ja) 2012-12-27 2012-12-27 車両用駆動装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083955 WO2014102983A1 (ja) 2012-12-27 2012-12-27 車両用駆動装置の制御装置

Publications (1)

Publication Number Publication Date
WO2014102983A1 true WO2014102983A1 (ja) 2014-07-03

Family

ID=51020135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083955 WO2014102983A1 (ja) 2012-12-27 2012-12-27 車両用駆動装置の制御装置

Country Status (6)

Country Link
US (1) US20150330375A1 (ja)
JP (1) JPWO2014102983A1 (ja)
KR (1) KR20150097701A (ja)
BR (1) BR112015015295A2 (ja)
DE (1) DE112012007263T5 (ja)
WO (1) WO2014102983A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802592B2 (en) 2014-05-26 2017-10-31 Advics Co., Ltd. Brake control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215225A1 (de) * 2016-08-16 2018-02-22 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Getriebes mit einem eine verstellbare Hydraulikpumpe umfassenden Hydrauliksystem
US10843702B2 (en) * 2018-06-06 2020-11-24 Ford Global Technologies, Llc Methods and systems for oil leak determination
DE102019216815A1 (de) * 2019-10-31 2021-05-06 Robert Bosch Gmbh Fluidpumpenvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248468A (ja) * 2000-03-06 2001-09-14 Nissan Motor Co Ltd アイドルストップ車用自動変速機の電動オイルポンプ駆動制御装置
JP2003065221A (ja) * 2001-08-30 2003-03-05 Taisan Kogyo Kk 液体燃料供給用電磁プランジャポンプ
JP2005214216A (ja) * 2004-01-27 2005-08-11 Toyota Motor Corp センサレスブラシレスモータ式オイルポンプの制御装置
JP2008133866A (ja) * 2006-11-27 2008-06-12 Fuji Heavy Ind Ltd 自動変速機の油圧制御装置
WO2012111096A1 (ja) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 車両用オイル供給装置の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779489A (en) * 1986-06-27 1988-10-25 Borg-Warner Automotive, Inc. Control system for controlling transmission fluid pressure
US5971503A (en) * 1998-02-03 1999-10-26 Ford Global Technologies, Inc. Hydraulic control unit with ambient temperature compensation during fluid pressure delivery
JP4370805B2 (ja) * 2003-05-13 2009-11-25 トヨタ自動車株式会社 車両用自動変速機の油温判定装置
US7150606B2 (en) * 2003-10-28 2006-12-19 Motor Components Llc Electromagnetic fuel pump
JP5195475B2 (ja) * 2009-02-04 2013-05-08 トヨタ自動車株式会社 油温センサの異常判定装置および異常判定方法
JP5515556B2 (ja) * 2009-09-24 2014-06-11 アイシン・エィ・ダブリュ株式会社 ポンプ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248468A (ja) * 2000-03-06 2001-09-14 Nissan Motor Co Ltd アイドルストップ車用自動変速機の電動オイルポンプ駆動制御装置
JP2003065221A (ja) * 2001-08-30 2003-03-05 Taisan Kogyo Kk 液体燃料供給用電磁プランジャポンプ
JP2005214216A (ja) * 2004-01-27 2005-08-11 Toyota Motor Corp センサレスブラシレスモータ式オイルポンプの制御装置
JP2008133866A (ja) * 2006-11-27 2008-06-12 Fuji Heavy Ind Ltd 自動変速機の油圧制御装置
WO2012111096A1 (ja) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 車両用オイル供給装置の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802592B2 (en) 2014-05-26 2017-10-31 Advics Co., Ltd. Brake control device

Also Published As

Publication number Publication date
US20150330375A1 (en) 2015-11-19
JPWO2014102983A1 (ja) 2017-01-12
BR112015015295A2 (pt) 2017-07-11
KR20150097701A (ko) 2015-08-26
DE112012007263T5 (de) 2015-09-24

Similar Documents

Publication Publication Date Title
JP3997227B2 (ja) 油圧供給装置
US10935088B2 (en) Vehicle driving device
RU2509939C1 (ru) Автоматическая трансмиссия и способ ее управления
US10576965B2 (en) Starting control device for vehicle and starting control method
US10309526B2 (en) Vehicular hydraulic control device and hydraulic control method
US9477231B2 (en) Control system for variable displacement pump
US10837547B2 (en) Oil pressure control device for vehicle and oil pressure control method
US9382953B2 (en) Hydraulic control circuit for drive line
US9365205B2 (en) Hydraulic pressure control device for transmission
JP4900682B2 (ja) 油圧供給装置
WO2014102983A1 (ja) 車両用駆動装置の制御装置
US9868442B2 (en) Vehicle control device
JP6265273B2 (ja) 車両用油圧制御装置
JP5620948B2 (ja) 車両の制御装置
JP2020070824A (ja) 車両用駆動装置の油圧制御回路
US9168910B2 (en) Control apparatus for vehicle
JP2018013180A (ja) 自動変速機及び自動変速機の制御方法
JP2005098392A (ja) トルクコンバータの油圧制御装置
JP3820810B2 (ja) 車両の制御装置
JP2011226565A (ja) 車両制御装置
JP6203888B2 (ja) 車両の制御装置
JP2014080932A (ja) エンジン制御装置
KR20180067303A (ko) Isg 차량용 자동 변속기의 유압 제어 시스템
JP2014163349A (ja) 内燃機関の制御装置
JP2023022641A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14654946

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014553977

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012007263

Country of ref document: DE

Ref document number: 1120120072634

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015015295

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157019249

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12890925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015015295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150624