WO2014101567A1 - Ct成像系统和方法 - Google Patents

Ct成像系统和方法 Download PDF

Info

Publication number
WO2014101567A1
WO2014101567A1 PCT/CN2013/086287 CN2013086287W WO2014101567A1 WO 2014101567 A1 WO2014101567 A1 WO 2014101567A1 CN 2013086287 W CN2013086287 W CN 2013086287W WO 2014101567 A1 WO2014101567 A1 WO 2014101567A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
resolution
energy
interest
coefficient
Prior art date
Application number
PCT/CN2013/086287
Other languages
English (en)
French (fr)
Inventor
沈乐
刑宇翔
李元吉
冯初晴
张丽
陈志强
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to EP13869213.2A priority Critical patent/EP2940458B1/en
Priority to US14/758,795 priority patent/US9495772B2/en
Publication of WO2014101567A1 publication Critical patent/WO2014101567A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering

Definitions

  • Embodiments of the present invention relate to radiation imaging, and in particular to a CT imaging system and method. Background technique
  • Traditional single-energy, dual-energy X-ray imaging typically utilizes a scintillator-type detector, and the acquired signal reflects the overall energy deposition of multi-color X-rays. Since energy deposition is an energy-weighted integration of the X-ray energy spectrum, the imaging results do not reflect the attenuation information of the material at a certain energy.
  • Dual-energy imaging including multi-energy CT, uses different X-ray energy spectra for imaging, and has certain material distinguishing ability. However, due to its physical model, the imaging results have certain systematic errors, and there is always a certain overlap between X-ray energy spectra. The area affects the ability to distinguish between substances. Summary of the invention
  • an embodiment of the present invention proposes a CT imaging system and method.
  • a CT imaging system comprising: an X-ray source, a first detecting and collecting device disposed opposite to the X-ray source, and configured to perform a first CT scan on the object to be inspected Obtaining scan data; reconstructing means configured to reconstruct an image of the first resolution based on the scan data; second detecting and collecting means comprising at least a photon counting detector, and configured to image the image from the first resolution Performing a second CT scan on the determined region of interest, the second CT scan comprising scanning the region of interest with a plurality of energy windows by using the photon counting detector to obtain truncated energy spectrum data;
  • the reconstruction device is further configured to complement the truncated spectral data using the image of the first resolution as the a priori image, and reconstruct the image of the second resolution higher than the first resolution using the complemented spectral data .
  • a CT imaging method comprising the steps of: performing a first CT scan on an object to be inspected to obtain scan data; reconstructing an image of a first resolution based on the scan data; determining from the reconstructed image Position information of the region of interest of the object to be inspected; performing a second CT scan on the region of interest in the object to be inspected, the second CT scan including at least using the photon counting detector to sense the sense in the plurality of energy windows
  • the region of interest is scanned to obtain truncated energy spectrum data; the image of the first resolution is used as a prior image to complement the truncated spectral data; and the reconstructed spectral data is used to reconstruct a higher resolution than the first resolution.
  • Second resolution Rate image comprising the steps of: performing a first CT scan on an object to be inspected to obtain scan data; reconstructing an image of a first resolution based on the scan data; determining from the reconstructed image Position information of the region of interest of the object to be inspected; performing a second CT scan
  • the photon counting detector is used to collect the photon counting projection data of multiple energy windows, and the decomposition of multiple basis functions can be performed, so that the spectral discrimination is high and the numerical stability is good.
  • FIG. 1 is a schematic diagram illustrating a first CT scanning process in a CT apparatus and method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating a second CT scanning process in a CT apparatus and method according to an embodiment of the present invention
  • FIG. 4 is a flow chart describing a process of a CT imaging method according to an embodiment of the present invention. detailed description
  • a CT imaging system comprising: an X-ray source, a first detecting and collecting device, a reconstructing device and a second detecting and collecting device.
  • the first detecting and collecting device is disposed opposite the X-ray source and configured to perform a first CT scan on the object to be inspected to obtain scan data.
  • the reconstruction device is configured to reconstruct an image of the first resolution based on the scan data, for example A normal CT image of the object being inspected.
  • the second detection and acquisition device includes at least a photon counting detector and is configured to perform a second CT scan of the region of interest determined from the image of the first resolution.
  • the second CT scan includes scanning the region of interest with a plurality of energy windows using the photon counting detector to obtain truncated energy spectrum data.
  • the reconstruction device is further configured to complement the truncated spectral data using the image of the first resolution as the a priori image, and reconstruct the image of the second resolution higher than the first resolution using the complemented spectral data .
  • the photon counting detector is utilized to perform CT scanning on the local region of interest of the object to be inspected, thereby enabling imaging of a plurality of energy windows for the region of interest.
  • a photon counting detector can use a semiconductor detector having high spatial resolution, high energy resolution, and high temporal resolution to detect energy and rate information of incident photons under certain conditions.
  • This type of detector is used for X-ray imaging to perform energy spectrum imaging.
  • the main function of the photon counting detector is to detect the energy of the incident particles.
  • the photons in a certain energy range are counted according to the preset upper and lower energy thresholds, and the photon count in a window ⁇ ' is collected.
  • the X-ray energy can be divided into a plurality of non-overlapping energy windows, and photon counting detection is performed separately to obtain data under a plurality of different energies.
  • the energy spectrum imaging technology can be mainly used for the following imaging purposes: (1) When the width of the energy window is narrow, it can be approximated as single-energy X-ray, and obtain the attenuation coefficient information of the substance under different energies; (2) When the energy window width When it is wider, it can be considered as traditional dual-energy or multi-energy imaging for material identification. Since the energy spectrum does not overlap, the decomposition result of the basis function is more stable. (3) Weighting the number of collected photons of different energies to obtain an image with the best contrast and signal-to-noise ratio.
  • the detection unit size of the photon counting detector is on the order of sub-millimeter, and is mainly used for small object imaging Micro-CT.
  • Micro-CT small object imaging
  • high resolution and high contrast imaging, ie local CT imaging is required for small areas of small size.
  • the present application proposes an X-ray energy spectrum CT local imaging system.
  • the system adds a high-resolution photon counting detector to a traditional CT imaging system with a corresponding mechanical control structure and imaging reconstruction algorithm software.
  • a large-size common resolution detector is a scintillation detector for normal CT imaging.
  • the system can provide higher image spatial resolution, better image contrast, and richer material information, which has certain practical significance in the fields of medical diagnosis and industrial testing.
  • the CT apparatus of the present embodiment includes an X-ray source 10, a first detecting and collecting device 20, and a second detecting and collecting device 30.
  • the X-ray source 10 such as an X-ray machine, has a focus size such as a sub-millimeter first first detection and acquisition device 20 utilizing a conventional large field of view flat panel detector, and a second detection and acquisition device 30 including, for example, a photon counting detector.
  • a motion detector mount (not shown) aligns the area array detector with the field of view of the object under inspection 40, performing a complete scan of the normal CT, as shown in FIG. Then, reconstruction is performed by the cone beam FDK algorithm to obtain a reconstructed image of a common resolution.
  • the spatial location information of the region of interest is determined in the reconstructed image.
  • the reconstructed image is displayed on the display device, and the region of interest is selected by the user through the input device, thereby obtaining spatial position information of the region of interest.
  • an image processing algorithm may be employed to determine a region of interest, such as setting a region in the reconstructed image in which the gray value satisfies a predetermined condition as the region of interest.
  • the photon counting detectors in the X-ray source 10 and the second detecting and collecting device are moved to be aligned with the region of interest 41, with the region of interest 41 as the center of rotation, and then a multi (2) energy window is performed.
  • the photon count is partially scanned, as shown in Figure 2.
  • the data obtained is the energy spectrum data cut off on both sides.
  • the reconstruction result of the above-mentioned ordinary CT scan is used as a priori image, and the data of the spectrum data is complemented by the discrete projection method, and appropriate smoothing processing is performed.
  • Reconstruction is performed using the complementary energy spectrum data to obtain a relatively high resolution local energy spectrum attenuation coefficient reconstructed image.
  • the attenuation coefficient image under different energy windows may be subjected to post-processing decomposition of the basis function to obtain a decomposition coefficient, thereby obtaining an atomic number and an electron density image:
  • represents the decomposition coefficient of the nth substrate under the mth energy window
  • represents the decomposition coefficient of the nth material under the mth energy window.
  • FIG. 3 is a block diagram showing the structure of a CT apparatus according to an embodiment of the present invention.
  • the CT apparatus according to the present embodiment includes an X-ray source 10, a mechanical motion device and a controller, a detector, and a data acquisition system.
  • the X-ray source 10 is, for example, an X-ray machine, and a suitable X-ray machine focus size is selected according to the resolution of the image, for example, a micro-focus X-ray machine with a focus on the order of sub-millimeters is selected to obtain a high-resolution image.
  • the mechanical motion devices and controls include the stage 50 and the X-ray machine and detector frame and control system. Stage 50 can be translated to adjust the position of the center of rotation, and the frame can be translated to align the X-ray machine and detectors 20 and 30 with the center of rotation. This embodiment is described in terms of the circumferential scanning trajectory of the rotating stage and the fixed frame. Since the movement of the stage and the frame is relatively moving, the method of the embodiment can also be implemented by means of the stage stationary and the rotating of the frame.
  • the detector and data acquisition systems 20 and 30 include an array X-ray detector 20 that completely covers the scanned object and a photon counter detector 30 that is relatively high resolution with a small field of view. Two detectors are attached to the detector holder, and the detector is used to select which detector to use for imaging. Data acquisition includes readout circuitry, acquisition trigger circuitry, and data transmission circuitry.
  • the reconstruction device 60 is responsible for controlling the operation of the CT system, including mechanical rotation, electrical control, safety interlock control, image reconstruction, etc., for the main control and data processing computer.
  • the system further comprises a display device coupled to the reconstruction device 60, configured to superimpose a high resolution image on at least a portion of the normal CT image and highlight the high resolution image, such as a high resolution The image portion of the rate is boxed and highlighted.
  • the reconstruction device 60 fuses the normal CT image with the high resolution image and outputs the fused image on the display device.
  • FIG. 4 is a flow chart describing the process of a CT imaging method in accordance with an embodiment of the present invention.
  • a first CT scan is performed on the object to be inspected in step S41 to obtain scan data.
  • the object to be inspected 40 is CT scanned using the first detection and acquisition system and the X-ray source in the system shown in FIG. Then, at the step S42. Reconstruct an image of the first resolution based on the scan data.
  • step S43 position information of the region of interest of the object to be inspected is determined from the reconstructed image.
  • the reconstructed image is displayed, for example, on a display device coupled to the reconstruction device for the user to select a corresponding region of interest 41.
  • the reconstructed image is analyzed using an image processing algorithm to derive a region of interest 41, for example, an area in which the gray value satisfies a predetermined condition is set as the region of interest 41.
  • a second CT scan is performed on the region of interest in the object to be inspected, and the second CT scan includes at least scanning the region of interest with a plurality of energy windows by using a photon counting detector to obtain a truncated energy spectrum. data.
  • the mobile X-ray source 10 and the second detection and acquisition device 30 perform a CT scan of the region of interest 41 under a plurality of energy windows.
  • the truncated energy spectrum data is complemented using the image of the first resolution as the a priori image.
  • the complemented spectral data is used to reconstruct an image of a second resolution higher than the first resolution. For example, a high resolution image is reconstructed based on the pre-processing or post-processing described above.
  • the system further comprises a display device coupled to the reconstruction device 60, configured to superimpose a high resolution image on at least a portion of the normal CT image and highlight the high resolution image, such as a high resolution The image portion of the rate is boxed and highlighted.
  • the reconstruction device 60 fuses the normal CT image with the high resolution image and outputs the fused image on the display device.
  • a CT imaging system combining a common energy deposition detector and a high-resolution photon counting detector and a corresponding data processing and image reconstruction algorithm are proposed. It can provide common CT tomography, local high-resolution tomographic image and local spectral tomographic image function, and can be applied to non-destructive testing, medical diagnosis and other fields.
  • aspects of the embodiments disclosed herein may be implemented in an integrated circuit as a whole or in part, as one or more of one or more computers running on one or more computers.
  • a computer program eg, implemented as one or more programs running on one or more computer systems
  • processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and in the field
  • the skilled person will have the ability to design circuits and/or write software and/or firmware code in accordance with the present disclosure.
  • signal bearing media include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, etc.; and transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

公开了一种CT成像系统和方法。所述CT成像系统包括X射线源(10)、第一探测和采集装置(20)、第二探测和采集装置(30)以及重建装置(60)。首先由X射线源(10)以及第一探测和采集装置(20)对被检查物体(40)进行CT扫描,并基于扫描数据由重建装置(60)重建图像,然后从该图像中确定感兴趣区域(41),再由第二探测和采集装置(30)利用光子计数探测器(30)在多个能窗针对该感兴趣区域(41)进行扫描,并重建获得感兴趣区域(41)的高分辨率图像。使用该系统可以进行多个基函数的分解,使得能谱区分度高、数值稳定性高。

Description

CT成像系统和方法 技术领域
本发明的实施例涉及辐射成像, 具体涉及一种 CT成像系统和方法。 背景技术
传统单能、 双能 X射线成像通常利用闪烁体型探测器, 所采集得到的信号反应 了多色 X射线的整体能量沉积量。 由于能量沉积是对 X射线能谱的能量加权积分, 成 像结果无法反映物质在某个能量下的衰减信息。
双能成像包括多能 CT利用不同的 X射线能谱进行成像, 具有一定的物质区分 能力, 但由于其物理模型所限, 成像结果具有一定系统误差, 且 X射线能谱之间总有 一定重叠区域, 影响了物质区分能力。 发明内容
针对现有技术中存在的能谱重叠影响了物质区分能力的技术问题, 本发明的实 施例提出了一种 CT成像系统和方法。
根据本发明的一个方面, 提供了一种 CT成像系统, 包括: X射线源, 第一探测 和采集装置, 与所述 X射线源相对设置, 并且被配置为对被检查物体进行第一 CT扫 描, 得到扫描数据; 重建装置, 配置为基于所述扫描数据重建第一分辨率的图像; 第 二探测和采集装置, 至少包括光子计数探测器, 并且配置为对从所述第一分辨率的图 像中确定的感兴趣区域进行第二 CT扫描, 所述第二 CT扫描包括利用所述光子计数探 测器在多个能窗针对该感兴趣区域进行扫描, 得到截断的能谱数据; 其中, 所述重建 装置进一步被配置为使用第一分辨率的图像作为先验图像对截断的能谱数据进行补 全, 并且利用补全后的能谱数据重建比第一分辨率高的第二分辨率的图像。
根据本发明的另一方面, 提供了一种 CT成像方法, 包括步骤: 对被检查物体进 行第一 CT扫描, 得到扫描数据; 基于扫描数据重建第一分辨率的图像; 从重建图像中 确定所述被检查物体的感兴趣区域的位置信息; 对所述被检查物体中的感兴趣区域进 行第二 CT扫描, 所述第二 CT扫描至少包括利用光子计数探测器在多个能窗针对该感 兴趣区域进行扫描, 得到截断的能谱数据; 使用第一分辨率的图像作为先验图像对截 断的能谱数据进行补全; 以及利用补全后的能谱数据重建比第一分辨率高的第二分辨 率的图像。
利用上述的技术方案, 可进行高分辨率的能谱 CT局部成像。 此外, 与传统双能 CT系统相比, 利用光子计数探测器, 采集多个能窗的光子计数投影数据, 可进行多个 基函数的分解, 使得能谱区分度高, 数值稳定性好。 附图说明
下面的附图表明了本发明的实施方式。 这些附图和实施方式以非限制性、 非穷 举性的方式提供了本发明的一些实施例, 其中:
图 1是描述根据本发明实施例的 CT设备和方法中的第一 CT扫描过程的示意图; 图 2是描述根据本发明实施例的 CT设备和方法中的第二 CT扫描过程的示意图; 图 3是描述根据本发明实施例的 CT设备的结构示意图; 以及
图 4是描述根据本发明实施例的 CT成像方法的过程的流程图。 具体实施方式
下面将详细描述本发明的具体实施例, 应当注意, 这里描述的实施例只用于举 例说明, 并不用于限制本发明。 在以下描述中, 为了提供对本发明的透彻理解, 阐述 了大量特定细节。 然而, 对于本领域普通技术人员显而易见的是: 不必采用这些特定 细节来实行本发明。 在其他实例中, 为了避免混淆本发明, 未具体描述公知的电路、 材料或方法。
在整个说明书中, 对 "一个实施例" 、 "实施例" 、 "一个示例"或 "示例" 的提及意味着: 结合该实施例或示例描述的特定特征、 结构或特性被包含在本发明至 少一个实施例中。 因此, 在整个说明书的各个地方出现的短语 "在一个实施例中" 、 "在实施例中" 、 "一个示例"或 "示例"不一定都指同一实施例或示例。 此外, 可 以以任何适当的组合和 /或子组合将特定的特征、 结构或特性组合在一个或多个实施例 或示例中。 此外, 本领域普通技术人员应当理解, 这里使用的术语 "和 /或"包括一个 或多个相关列出的项目的任何和所有组合。
为了克服现有技术中存在的能谱重叠影响物质分辨能力的技术问题, 提出了一 种 CT成像系统, 包括: X射线源、 第一探测和采集装置、 重建装置和第二探测和采集 装置。 第一探测和采集装置与 X射线源相对设置并且被配置为对被检查物体进行第一 CT扫描, 得到扫描数据。 重建装置配置为基于扫描数据重建第一分辨率的图像, 例如 被检查物体的普通 CT图像。第二探测和采集装置至少包括光子计数探测器, 并且配置 为对从第一分辨率的图像中确定的感兴趣区域进行第二 CT扫描。第二 CT扫描包括利 用所述光子计数探测器在多个能窗针对该感兴趣区域进行扫描, 得到截断的能谱数据。 重建装置进一步被配置为使用第一分辨率的图像作为先验图像对截断的能谱数据进行 补全, 并且利用补全后的能谱数据重建比第一分辨率高的第二分辨率的图像。 在上述 方案中,利用了光子计数探测器来对被检查物体的局部感兴趣区域进行 CT扫描, 从而 能够对感兴趣区域进行多个能量窗的成像。
根据本发明的实施例, 光子计数探测器可以使用半导体探测器, 它具有高空间 分辨率、 高能量分辨率和高时间分辨率, 可以在一定条件下探测入射光子的能量和计 数率信息。 将此种探测器用于 X射线成像, 可完成能谱成像功能。 光子计数探测器的 主要功能为探测入射粒子的能量, 根据预先设定的能量上下阈值对某个能量范围内的 光子进行计数, 所采集的是一个能窗 ^ ' 内的光子计数。在成像时, 可将 X射线 能量分为多个不重叠的能量窗, 分别进行光子计数探测, 得到多个不同能量下的数据。 目前能谱成像技术主要可用于以下成像目的: (1 ) 当能量窗宽度较窄时, 可近似认为 是单能 X射线, 获得物质在不同能量下的衰减系数信息; (2) 当能量窗宽度较宽时, 可认为是传统双能或多能成像, 进行物质识别; 由于能谱不重叠, 基函数分解结果更 稳定。 (3) 对采集到的不同能量的光子数进行加权处理, 获得具有最佳对比度与信噪 比的图像。
目前光子计数探测器的探测单元尺寸在亚毫米量级, 主要用于小物体成像 Micro-CT。 对于人体医学诊断或者安全检查, 受尺寸限制, 难以制造完整覆盖扫描视 野的光子计数探测器。 而在某些诊断应用场合, 仅需要对尺寸较小的局部区域进行高 分辨率及高对比度成像, 即局部 CT成像。
鉴于现有技术中的问题, 本申请提出一种 X射线能谱 CT局部成像系统。 该系 统在传统的 CT成像系统上增加一块高分辨率光子计数探测器,并搭配相应的机械控制 结构和成像重建算法软件。 例如, 大尺寸普通分辨率探测器为闪烁体探测器, 进行普 通 CT成像。 小尺寸高分辨率光子计数探测器进行能谱 CT成像。 该系统可以提供更高 的图像空间分辨率, 更好的图像对比度, 更丰富的物质信息, 在医学诊断、 工业检测 等领域中具有一定的实用意义。
图 1是描述根据本发明实施例的 CT设备和方法中的第一 CT扫描过程的示意图。 图 2是描述根据本发明实施例的 CT设备和方法中的第二 CT扫描过程的示意图。 如图 1所示,本实施例的 CT设备包括 X射线源源 10、第一探测和采集装置 20、 第二探测和采集装置 30。 X射线源 10, 例如 X光机, 他的焦点尺寸例如为亚毫米级第 一探测和采集装置 20利用使用传统的大视野平板探测器, 第二探测和采集装置 30例 如包括光子计数探测器。 移动探测器支架 (未示出) 使面阵探测器对准被检查物体 40 视野, 进行一次普通 CT的完整扫描, 如图 1所示。 然后, 利用锥束 FDK算法进行重 建, 获得普通分辨率的重建图像。 在重建图像中确定感兴趣区域的空间位置信息。 例 如, 在显示设备上显示重建的图像, 由用户通过输入装置选择其中的感兴趣区域, 从 而获得感兴趣区域的空间位置信息。 根据其他的实施例, 可以采用图像处理算法来确 定感兴趣区域, 例如将重建的图像中灰度值满足预定条件的区域设置为感兴趣区域。
接下来, 移动 X射线源 10和第二探测和采集装置中的光子计数探测器, 使其对 准感兴趣区域 41, 以感兴趣区域 41为旋转中心, 再进行一次多 ( 2) 能窗的光子计 数局部扫描, 如图 2所示。 得到的数据为两侧截断的能谱数据。 然后, 上述普通 CT扫 描的重建结果作为先验图像, 利用离散投影方法将能谱数据截断处补全数据, 并进行 适当的平滑处理。 利用补全的能谱数据进行重建, 得到相对高分辨率的局部能谱衰减 系数重建图像。 或者, 在其他实施例中, 由不同能窗下的衰减系数图像可进行基函数 的后处理分解来得到分解系数, 进而得到原子序数和电子密度图像:
ME, = ¾,ι (£ι ) + ¾ ,2^2 ( ) + · · ·¾ ,ΝΜΝ (ΕΙ ) ½Μ = β£Μ,ΐ (¾ί ) + β£Μ ,2〃2 (¾ί ) "| ΑΕΜ ,Ν Ν ^Μ ) Q )
其中, 表示第 m个能窗下的衰减系数; ^表示第 m个能窗下第 n种基材 料的分解系数; 表示第 m个能窗下第 n种物质的衰减系数。 求解以上线性方程 组 (1 ), 得到基材料的分解系数 ,", 进而计算出感兴趣区域内物质的原子序数和电 子密度图像。 或者, 在其他实施例中, 普通 CT扫描中的重建结果作为先验图像, 利 用离散投影方法将能谱数据截断处补全数据, 并进行适当的平滑处理。 利用补全的能 谱数据进行前处理重建。 由于光子计数探测器可划分多个能量窗同时进行数据采集, 因此在进行基函数分解时, 可选用不超过能窗个数的多种基函数的组合, 例如康普顿 效应、 光电效应、 铝基材料、 碳基材料等。 当能窗个数 N等于基函数个数 M时, 可直 接求解非线性多能方程组:
.E. - £ £)
r '- S (E) e dE i = 1, .. , N
( 2)
当能窗个数 N大于基函数个数 M时, 可以构造以下对数似然函数: L (p \ A) = j [ i {A) +
Figure imgf000007_0001
/一、 , 、 -∑ΑΛ(Ε)
Figure imgf000007_0002
……(3 )
其中, ««和 ^分别表示第 个能窗的上限和下限, 为探测器在第 个能 窗采集到的光子数, pi ! 表示 Α·的阶乘, ^为^ '的期望, ^为第 个基函数的系数的 线积分, f E)为第 j个基函数, (£)为第 i个能窗的能谱。 最小化以上目标函数 A)可得到各个基函数的分解系数的线积分 。 再利用一般重建算法 (如 FBP算 法) 重建得到分解系数图像。 光电系数和康普顿系数可用来计算物质的原子序数和电 子密度。 基材料系数反映了某种基材料在物质中的质量密度。
图 3是描述根据本发明实施例的 CT设备的结构示意图。 根据本实施例的 CT设 备包括 X射线源 10、 机械运动装置和控制器、 探测器和数据采集系统。
X射线源 10例如为 X光机,根据成像的分辨率选择合适的 X光机焦点尺寸,例 如选择焦点在亚毫米量级的微焦点 X光机以获得高分辨率图像。 机械运动装置和控制 器包括载物台 50和 X光机和探测器的机架以及控制系统。 载物台 50可平移调整旋转 中心的位置, 机架可平移使 X光机及探测器 20和 30对准旋转中心。 本实施例按照旋 转载物台、 固定机架的圆周扫描轨迹进行描述。 由于载物台与机架的运动属于相对运 动, 也可采用载物台静止、 机架旋转的方式实现本实施例的方法。
探测器及数据采集系统 20和 30包括一块可完整覆盖扫描物体的面阵 X射线探 测器 20与一块小视野相对高分辨率的光子计数探测器 30。两块探测器固定在探测器支 架上, 通过支架平移选择使用哪一块探测器进行成像。 数据采集包括读出电路、 采集 触发电路及数据传输电路等。
重建装置 60例如为主控制及数据处理计算机负责完成 CT系统运行过程的控制, 包括机械转动、 电气控制、 安全联锁控制、 图像重建等。
根据一些实施例, 该系统还包括显示设备, 与重建装置 60连接, 配置为在普通 CT图像的至少一部分上叠加显示高分辨率的图像, 并且突出显示该高分辨率的图像, 例如将高分辨率的图像部分加框, 突出显示。 或者重建装置 60将普通 CT图像与高分 辨率的图像进行融合, 在显示设备上输出融合后的图像。
图 4是描述根据本发明实施例的 CT成像方法的过程的流程图。如图 4所示, 在 步骤 S41对被检查物体进行第一 CT扫描, 得到扫描数据。例如, 利用图 3所示的系统 中的第一探测和采集系统以及 X射线源对被检查物体 40进行 CT扫描。 然后, 在步骤 S42, 基于扫描数据重建第一分辨率的图像。
在步骤 S43, 从重建图像中确定所述被检查物体的感兴趣区域的位置信息。例如 在与重建装置连接的显示设备上显示重建的图像, 供用户选择相应的感兴趣区域 41。 或者利用图像处理算法, 对重建的图像进行分析来得出感兴趣区域 41, 例如将灰度值 满足预定条件的区域设置为感兴趣区域 41。
在步骤 S44, 对被检查物体中的感兴趣区域进行第二 CT扫描, 所述第二 CT扫 描至少包括利用光子计数探测器在多个能窗针对该感兴趣区域进行扫描, 得到截断的 能谱数据。 例如, 在图 3所示的系统中, 移动 X射线源 10和第二探测和采集装置 30, 对感兴趣区域 41进行多个能量窗下的 CT扫描。
在步骤 S45, 使用第一分辨率的图像作为先验图像对截断的能谱数据进行补全。 在步骤 S46, 利用补全后的能谱数据重建比第一分辨率高的第二分辨率的图像。 例如, 基于上述的前处理过程或者后处理过程重建高分辨率的图像。
根据一些实施例, 该系统还包括显示设备, 与重建装置 60连接, 配置为在普通 CT图像的至少一部分上叠加显示高分辨率的图像, 并且突出显示该高分辨率的图像, 例如将高分辨率的图像部分加框, 突出显示。 或者重建装置 60将普通 CT图像与高分 辨率的图像进行融合, 在显示设备上输出融合后的图像。
根据上述实施例, 提出了一种普通能量沉积探测器与高分辨率光子计数探测器 结合的 CT成像系统及相应的数据处理和图像重建算法。可以同时提供普通 CT断层像、 局部高分辨率断层像和局部能谱断层像功能, 可应用于无损检测、 医疗诊断等领域。
以上的详细描述通过使用方框图、 流程图和 /或示例, 已经阐述了 CT成像方法 和系统的众多实施例。 在这种方框图、 流程图和 /或示例包含一个或多个功能和 /或操作 的情况下, 本领域技术人员应理解, 这种方框图、 流程图或示例中的每一功能和 /或操 作可以通过各种硬件、 软件、 固件或实质上它们的任意组合来单独和 /或共同实现。 在 一个实施例中, 本发明的实施例所述主题的若干部分可以通过专用集成电路 (ASIC)、 现场可编程门阵列(FPGA)、 数字信号处理器(DSP)、 或其他集成格式来实现。 然而, 本领域技术人员应认识到, 这里所公开的实施例的一些方面在整体上或部分地可以等 同地实现在集成电路中, 实现为在一台或多台计算机上运行的一个或多个计算机程序 (例如, 实现为在一台或多台计算机系统上运行的一个或多个程序), 实现为在一个或 多个处理器上运行的一个或多个程序 (例如, 实现为在一个或多个微处理器上运行的 一个或多个程序), 实现为固件, 或者实质上实现为上述方式的任意组合, 并且本领域 技术人员根据本公开, 将具备设计电路和 /或写入软件和 /或固件代码的能力。 此外, 本 领域技术人员将认识到, 本公开所述主题的机制能够作为多种形式的程序产品进行分 发, 并且无论实际用来执行分发的信号承载介质的具体类型如何, 本公开所述主题的 示例性实施例均适用。 信号承载介质的示例包括但不限于: 可记录型介质, 如软盘、 硬盘驱动器、 紧致盘 (CD)、 数字通用盘 (DVD)、 数字磁带、 计算机存储器等; 以及 传输型介质, 如数字和 /或模拟通信介质 (例如, 光纤光缆、 波导、 有线通信链路、 无 线通信链路等)。
虽然已参照几个典型实施例描述了本发明, 但应当理解, 所用的术语是说明和 示例性、 而非限制性的术语。 由于本发明能够以多种形式具体实施而不脱离发明的精 神或实质, 所以应当理解, 上述实施例不限于任何前述的细节, 而应在随附权利要求 所限定的精神和范围内广泛地解释, 因此落入权利要求或其等效范围内的全部变化和 改型都应为随附权利要求所涵盖。

Claims

权利要求
1、 一种 CT成像系统, 包括:
X射线源,
第一探测和采集装置, 与所述 X射线源相对设置, 并且被配置为对被检查物体 进行第一 CT扫描, 得到扫描数据;
重建装置, 配置为基于所述扫描数据重建第一分辨率的图像;
第二探测和采集装置, 至少包括光子计数探测器, 并且配置为对从所述第一分 辨率的图像中确定的感兴趣区域进行第二 CT扫描, 所述第二 CT扫描包括利用所述光 子计数探测器在多个能窗针对该感兴趣区域进行扫描, 得到截断的能谱数据;
其中, 所述重建装置进一步被配置为使用第一分辨率的图像作为先验图像对截 断的能谱数据进行补全, 并且利用补全后的能谱数据重建比第一分辨率高的第二分辨 率的图像。
2、 如权利要求 1所述的 CT成像系统, 其中, 所述 X射线源具体为 X光机, 所 述 X光机的焦点尺寸为亚毫米量级。
3、 如权利要求 1所述的 CT成像系统, 其中, 所述第一探测和采集装置包括面 阵 X射线探测器。
4、 如权利要求 1所述的 CT成像系统, 重建装置重建所述多个能窗下第二分辨 率的衰减系数图像。
5、 如权利要求 4所述的 CT成像系统, 利用所述多个能量窗的衰减系数图像, 进行后处理基函数分解, 得到不同效应下的分解系数, 进而计算感兴趣区域的原子序 数和电子密度图像。
6、 如权利要求 1所述的 CT成像系统, 其中所述重建装置针对所述多个能窗中 的每个能窗进行前处理基函数分解, 得到各个基函数的分解系数的线积分, 重建各基 函数的分解系数, 并且基于各个基函数的分解系数计算所述感兴趣区域物质的原子系 数和电子密度。
7、如权利要求 6所述的 CT成像系统, 其中当能窗的个数等于基函数的个数时, 所述重建装置通过求解非线性多能方程组来得到基函数分解系数的线积分, 进而重建 得到分解系数图像。
8、如权利要求 6所述的 CT成像系统, 其中当能窗的数目大于基函数的个数时, 所述重建装置通过构造对数似然函数来得到基函数分解系数的线积分, 进而重建得到 分解系数图像。
9、 如权利要求 1所述的 CT成像系统, 还包括显示设备, 与所述重建装置连接, 配置为在所述第一分辨率图像的至少一部分上叠加显示第二分辨率的图像, 并且突出 显示第二分辨率的图像。
10、如权利要求 1所述的 CT成像系统, 其中所述重建装置利用图像处理算法对 第一分辨率的图像进行处理, 以确定感兴趣区域。
11、 如权利要求 1所述的 CT成像系统, 还包括:
显示设备, 配置为与所述重建装置连接, 并且显示第一分辨率的图像; 输入装置, 接收用户对第一分辨率的图像中特定区域的选择, 作为感兴趣区域。
12、 如权利要求 11所述的 CT成像系统, 其中所述重建装置将所述第一分辨率 的图像与所述第二分辨率的图像进行融合, 在所述显示设备上输出融合后的图像。
13、 一种 CT成像方法, 包括步骤:
对被检查物体进行第一 CT扫描, 得到扫描数据;
基于扫描数据重建第一分辨率的图像;
从重建图像中确定所述被检查物体的感兴趣区域的位置信息;
对所述被检查物体中的感兴趣区域进行第二 CT扫描, 所述第二 CT扫描至少包 括利用光子计数探测器在多个能窗针对该感兴趣区域进行扫描, 得到截断的能谱数据; 使用第一分辨率的图像作为先验图像对截断的能谱数据进行补全; 以及 利用补全后的能谱数据重建比第一分辨率高的第二分辨率的图像。
14、 如权利要求 13所述的 CT成像方法, 其中利用补全后的能谱数据重建比第 一分辨率高的第二分辨率的图像的步骤包括: 重建所述多个能窗下第二分辨率的衰减 系数图像。
15、 如权利要求 14所述的 CT成像方法, 其中利用补全后的能谱数据重建比第 一分辨率高的第二分辨率的图像的步骤还包括: 利用所述多个能量窗的衰减系数图像, 进行后处理基函数分解, 得到不同效应下的分解系数, 进而计算感兴趣区域的原子序 数和电子密度图像。
16、 如权利要求 13所述的 CT成像方法, 其中利用补全后的能谱数据重建比第 一分辨率高的第二分辨率的图像的步骤包括: 对所述多个能窗中的每个能窗进行基函 数分解, 得到各个基函数的分解系数的线积分, 重建各基函数的分解系数, 并且基于 各个基函数的分解系数计算所述感兴趣区域物质的原子系数和电子密度。
17、 如权利要求 16所述的 CT成像方法, 其中当能窗的个数等于基函数的个数 时, 通过求解非线性多能方程组来得到基函数分解系数的线积分, 进而重建得到分解 系数图像。
18、 如权利要求 16所述的 CT成像方法, 其中当能窗的数目大于基函数的个数 时, 通过构造对数似然函数来得到基函数分解系数的线积分, 进而重建得到分解系数 图像。
PCT/CN2013/086287 2012-12-31 2013-10-31 Ct成像系统和方法 WO2014101567A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13869213.2A EP2940458B1 (en) 2012-12-31 2013-10-31 Ct imaging system and method
US14/758,795 US9495772B2 (en) 2012-12-31 2013-10-31 CT imaging systems and methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210593047.4A CN103913472B (zh) 2012-12-31 2012-12-31 Ct成像系统和方法
CN201210593047.4 2012-12-31

Publications (1)

Publication Number Publication Date
WO2014101567A1 true WO2014101567A1 (zh) 2014-07-03

Family

ID=51019859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086287 WO2014101567A1 (zh) 2012-12-31 2013-10-31 Ct成像系统和方法

Country Status (4)

Country Link
US (1) US9495772B2 (zh)
EP (1) EP2940458B1 (zh)
CN (1) CN103913472B (zh)
WO (1) WO2014101567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306309A4 (en) * 2015-06-05 2019-02-27 Tokyo Metropolitan Industrial Technology Research Institute PICTURE DEVICE, PICTURE CAPABILITIES AND IMAGE CORRECTION PROGRAM

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055066A1 (en) * 2012-10-02 2014-04-10 Analogic Corporation Detector array comprising energy integrating and photon counting cells
CA2906973C (en) * 2013-04-04 2020-10-27 Illinois Tool Works Inc. Helical computed tomography
WO2014192831A1 (ja) * 2013-05-28 2014-12-04 株式会社東芝 医用画像診断装置及び制御方法
CN104346820B (zh) * 2013-07-26 2017-05-17 清华大学 一种x光双能ct重建方法
US9808216B2 (en) * 2014-06-20 2017-11-07 Marquette University Material decomposition of multi-spectral x-ray projections using neural networks
US10117628B2 (en) * 2014-10-01 2018-11-06 Toshiba Medical Systems Corporation Photon counting apparatus
US9375192B2 (en) * 2014-10-14 2016-06-28 Carestream Health, Inc. Reconstruction of a cone beam scanned object
CN104352246A (zh) * 2014-12-02 2015-02-18 东南大学 基于可视化的锥束ct感兴趣区域的扫描方法
CN104597063A (zh) * 2015-02-03 2015-05-06 于钦密 一种ct成像控制系统
CN106530366B (zh) * 2015-09-09 2019-04-16 清华大学 能谱ct图像重建方法及能谱ct成像系统
CN105137499B (zh) * 2015-09-28 2018-09-21 同方威视技术股份有限公司 局部图像增强扫描系统及方法
CN106932414A (zh) 2015-12-29 2017-07-07 同方威视技术股份有限公司 检验检疫用检查系统及其方法
CN105527654B (zh) 2015-12-29 2019-05-03 中检科威(北京)科技有限公司 一种检验检疫用检查装置
CN107345925B (zh) * 2016-05-05 2019-10-15 同方威视技术股份有限公司 液体检测方法和系统
CN105726054A (zh) * 2016-05-09 2016-07-06 中国科学院苏州生物医学工程技术研究所 一种双圆弧轨迹ct扫描仪
BR112018074796B1 (pt) * 2016-05-30 2023-03-28 Southern Innovation International Pty Ltd Sistema e método de caracterização de material
CN109310388B (zh) * 2016-09-30 2022-04-15 深圳迈瑞生物医疗电子股份有限公司 一种成像方法和系统
CN106501288A (zh) * 2016-12-21 2017-03-15 北京朗视仪器有限公司 一种装有多探测器的锥形束ct系统
CN109242920B (zh) * 2017-07-11 2020-06-02 清华大学 物质分解方法、装置和系统
CN107610196B (zh) * 2017-09-04 2020-12-11 东软医疗系统股份有限公司 双能量ct图像处理方法、装置以及图像处理设备
EP3605448A1 (en) * 2018-08-01 2020-02-05 Koninklijke Philips N.V. Method for providing automatic adaptive energy setting for ct virtual monochromatic imaging
CN110836901B (zh) * 2018-08-17 2020-09-04 同方威视技术股份有限公司 基于k边缘成像的优化阈值方法、装置、设备和介质
CN109490944B (zh) * 2018-11-22 2022-11-04 天津大学 x射线能谱探测器的能量解析方法
CN109856169B (zh) * 2019-02-19 2021-04-20 首都师范大学 一种高分辨显微能谱ct成像方法及系统
CN109924998A (zh) * 2019-03-22 2019-06-25 上海联影医疗科技有限公司 医学成像方法及光子计数能谱ct成像设备
CN110599562B (zh) * 2019-09-02 2023-01-10 四川轻化工大学 基于多能量系统响应矩阵的放射源定位重建方法
CN110916697B (zh) * 2019-11-11 2023-05-02 东软医疗系统股份有限公司 成像方法、装置及图像处理设备
CN111199566A (zh) * 2019-12-31 2020-05-26 上海联影智能医疗科技有限公司 医疗图像处理方法、装置、存储介质及计算机设备
CN111311704A (zh) * 2020-01-21 2020-06-19 上海联影智能医疗科技有限公司 图像重建方法、装置、计算机设备和存储介质
CN113724177B (zh) * 2021-09-07 2023-12-15 北京大学深圳医院 肺结节信息融合方法、装置、设备及其存储介质
CN114063138B (zh) * 2021-11-16 2023-07-25 武汉联影生命科学仪器有限公司 扫描成像系统有效能量的测定方法、设备和扫描成像系统
CN114199907B (zh) * 2021-12-06 2024-02-09 清华大学 多分辨率ct成像系统及方法
CN114813798B (zh) * 2022-05-18 2023-07-07 中国工程物理研究院化工材料研究所 用于表征材料内部结构及成分的ct检测装置和成像方法
CN115105107A (zh) * 2022-06-20 2022-09-27 北京朗视仪器股份有限公司 一种能谱成像方法及能谱成像系统
CN116019474B (zh) * 2023-02-22 2023-09-19 有方(合肥)医疗科技有限公司 多射源成像装置及方法
CN118071869A (zh) * 2024-04-22 2024-05-24 有方(合肥)医疗科技有限公司 图像处理方法、电子设备、可读存储介质及程序产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990171B2 (en) * 2003-10-27 2006-01-24 General Electric Company System and method of determining a user-defined region-of-interest of an imaging subject for x-ray flux management control
US20080277591A1 (en) * 2007-05-08 2008-11-13 Orbotech Medical Solutions Ltd. Directional radiation detector
CN101405619A (zh) * 2006-03-16 2009-04-08 皇家飞利浦电子股份有限公司 计算机断层造影数据采集装置和方法
CN102106740A (zh) * 2011-03-11 2011-06-29 河海大学 X射线复式断层扫描成像系统及方法
JP2012034901A (ja) * 2010-08-09 2012-02-23 Toshiba Corp X線ct装置、方法およびプログラム
CN102448376A (zh) * 2009-05-28 2012-05-09 皇家飞利浦电子股份有限公司 多探测器阵列成像系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372934B2 (en) * 2005-12-22 2008-05-13 General Electric Company Method for performing image reconstruction using hybrid computed tomography detectors
RU2505268C2 (ru) * 2008-06-30 2014-01-27 Конинклейке Филипс Электроникс Н.В. Спектральная компьютерная томография
US9208585B2 (en) * 2010-07-16 2015-12-08 Mayo Foundation For Medical Education And Research System and method for improved energy series of images using multi-energy CT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990171B2 (en) * 2003-10-27 2006-01-24 General Electric Company System and method of determining a user-defined region-of-interest of an imaging subject for x-ray flux management control
CN101405619A (zh) * 2006-03-16 2009-04-08 皇家飞利浦电子股份有限公司 计算机断层造影数据采集装置和方法
US20080277591A1 (en) * 2007-05-08 2008-11-13 Orbotech Medical Solutions Ltd. Directional radiation detector
CN102448376A (zh) * 2009-05-28 2012-05-09 皇家飞利浦电子股份有限公司 多探测器阵列成像系统
JP2012034901A (ja) * 2010-08-09 2012-02-23 Toshiba Corp X線ct装置、方法およびプログラム
CN102106740A (zh) * 2011-03-11 2011-06-29 河海大学 X射线复式断层扫描成像系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306309A4 (en) * 2015-06-05 2019-02-27 Tokyo Metropolitan Industrial Technology Research Institute PICTURE DEVICE, PICTURE CAPABILITIES AND IMAGE CORRECTION PROGRAM

Also Published As

Publication number Publication date
EP2940458A4 (en) 2016-08-17
US20150356755A1 (en) 2015-12-10
EP2940458A1 (en) 2015-11-04
EP2940458B1 (en) 2020-06-10
CN103913472A (zh) 2014-07-09
CN103913472B (zh) 2016-04-20
US9495772B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
WO2014101567A1 (zh) Ct成像系统和方法
JP5485692B2 (ja) エネルギースペクトル再構成
JP6670586B2 (ja) X線ct装置
US7778383B2 (en) Effective dual-energy x-ray attenuation measurement
JP5920908B2 (ja) 低信号の影響が軽減された投影データを生成する計算機式断層写真法システム
EP3307167B1 (en) Tiled detector arrangement for differential phase contrast ct
JP6139087B2 (ja) X線撮像装置、及びウェッジフィルタ制御方法
US9459358B2 (en) Reference calibration in photon counting based spectral CT
RU2582475C2 (ru) Основанное на правдоподобии шумоподавление области проекции спектральных данных
US20150150524A1 (en) Cone beam computed tomography volumetric imaging system
JP6513431B2 (ja) X線ct装置及びその制御方法
JP2019025331A (ja) 放射線透過・蛍光ct結像システム及び結像方法
JP2016536032A (ja) 電子密度画像の連結再構成
JP2011056253A (ja) 二重エネルギCTのための高速kVp切換えのシステム及び方法
JP2009507544A (ja) Ct用の直接の測定及び散乱補正
CN103472074A (zh) Ct成像系统和方法
JP6033421B2 (ja) X線ct装置、及び処理方法
JP2008536138A (ja) Ctにおけるエネルギー分布再構成
JP2011525382A (ja) kエッジ撮像のための医療X線検査装置及び方法
Wu et al. A hyperspectral X-ray computed tomography system for enhanced material identification
Dydula et al. Development and assessment of a multi-beam continuous-phantom-motion x-ray scatter projection imaging system
US10192328B2 (en) Method for statistical weights design in iterative reconstruction algorithms
JP4114467B2 (ja) X線ct装置
JP2015198833A (ja) 表示装置および表示方法
KR101685005B1 (ko) 저선량 엑스선 콘빔 ct 영상 장치 및 이를 이용한 영상 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14758795

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013869213

Country of ref document: EP