WO2014101380A1 - 功率电感器及其制造方法 - Google Patents

功率电感器及其制造方法 Download PDF

Info

Publication number
WO2014101380A1
WO2014101380A1 PCT/CN2013/078226 CN2013078226W WO2014101380A1 WO 2014101380 A1 WO2014101380 A1 WO 2014101380A1 CN 2013078226 W CN2013078226 W CN 2013078226W WO 2014101380 A1 WO2014101380 A1 WO 2014101380A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
die
casting
metal layer
metal
Prior art date
Application number
PCT/CN2013/078226
Other languages
English (en)
French (fr)
Inventor
王向群
Original Assignee
Wang Xiangqun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Xiangqun filed Critical Wang Xiangqun
Publication of WO2014101380A1 publication Critical patent/WO2014101380A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/361Electric or magnetic shields or screens made of combinations of electrically conductive material and ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to an inductor, and more particularly to a power inductor and a method of fabricating the same.
  • Difficulties are: one is that the high-strength enameled wire with a diameter of 0.15 or less cannot achieve mechanical peeling welding, diameter 0.15 Although the following self-welding wire can be welded, but the insulation withstand voltage does not meet the requirements; the second is that due to the small size, the buried electrode occupies the powder space, causing the powder to decrease, the magnetic energy product of the inductor to decrease, and the outer diameter of the coil to be squeezed by the electrode. , causing the current resistance characteristics to decrease; the third is the high cost of the small-sized electrode, the accuracy of the product electrode size and shape is relatively low, and it is difficult to achieve full-automatic production in large quantities. .
  • One of the technical problems to be solved by the present invention is to provide a power inductor for realizing large-scale automated production and a method of manufacturing the same, in view of the above-mentioned drawbacks of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a power inductor including an inner core, a die-casting body covering the inner core, and a metal layer disposed on the die-casting body; a coil structure wound by an enameled wire, the inner core comprising a main body and two extending portions extending from the main body, wherein the die-casting body is formed by die-casting magnetic metal powder on the inner and outer portions of the inner core, The end faces of the extending portions respectively expose opposite end faces of the die-casting body;
  • the metal layer includes two first metal layers respectively contacting the end faces of the two extension portions, and the first metal layer correspondingly extending the ends of the die-casting body to form an electrode of the power inductor .
  • the first metal layer comprises a copper layer and a nickel layer in order from the inside to the outside; or the first metal layer comprises a copper layer, an iron layer or an iron-chromium alloy layer, and a nickel layer in order from the inside to the outside;
  • a tin layer is further disposed on the first metal layer, and the tin layer is located on the nickel layer.
  • the metal layer further includes a second metal layer spaced between the two first metal layers; the second metal layer is coated on the surface of the die casting body between the two first metal layers Forming a shielding layer of the power inductor; and an interval between the second metal layer and the first metal layer forms an annular insulating tape on the die-cast body.
  • the second metal layer comprises a copper layer and a nickel layer in order from the inside to the outside; or the second metal layer comprises a copper layer, an iron layer or an iron-chromium alloy layer, and nickel in order from the inside to the outside.
  • the second metal layer comprises a copper layer, an iron layer or an iron-chromium alloy layer, and nickel in order from the inside to the outside.
  • the insulating tape has a width of 0.5 to 1.0 mm.
  • the die-cast body is further coated with a resin layer, and the resin layer is located below the metal layer to cover a surface other than the opposite end faces of the die-cast body.
  • the magnetic metal powder is an insulating coated particle size of 5-50 One or more of micron carbonyl iron powder, reduced iron powder, electrolytic iron powder, atomized iron powder, iron silicon aluminum powder, iron silicon alloy powder, high magnetic flux powder, amorphous iron powder and ferrite powder The combination.
  • the magnetic metal powder contains 0.8-1.2% binder and/or 0.5-0.8% by weight based on the total weight of the powder. Release agent.
  • the invention also provides a method for manufacturing the above power inductor, comprising the following steps:
  • the metal layer comprising two first metal layers on opposite ends of the die-casting body corresponding to the extending portion, the first metal layer The end portion of the die cast body is wrapped to form an electrode to produce the power inductor.
  • the inner core is a coil structure wound by a flat or circular high-strength hot-melt enamel; when the magnetic metal powder is formulated, the magnetic metal powder is Adding to the total weight of the powder 0.8-1.2% binder and / or 0.5-0.8% mold release agent.
  • the step (3) further comprises (3.1), dip coating the die-cast body in a resin liquid, drying and solidifying to obtain a die-cast body coated with a resin layer; the resin layer coating the die-cast body All surfaces, or surfaces outside the opposite ends of the die cast body.
  • the step (3) further comprises the step (3.2) of pre-treating the die-casting body coated with the resin layer: exposing the die-casting body with the end face of the inner core extending portion for grinding treatment The end surface of the extension portion is flush and exposed to the end surface of the die-cast body.
  • Tin plating is performed on the nickel layer of the first metal layer to form a tin layer on the nickel layer.
  • the metal layer further includes a second metal layer coated on the surface of the die-casting body between the two first metal layers, and the second metal layer is formed. a shielding layer; an annular insulating tape is formed between the second metal layer and the first metal layer.
  • the step (4) comprises:
  • an annular insulating tape is respectively etched on the opposite ends of the metal layer corresponding to the die-casting body, and the metal layer is divided into two parts corresponding to the extending portion and covered on the end of the die-casting body a metal layer, and a first metal layer between the two first metal layers coated on the surface of the die casting;
  • Tin plating is performed on the nickel layer of the first metal layer to form a tin layer on the nickel layer.
  • the invention adopts the magnetic metal powder and the inner core to integrally die-casting, can realize large-volume automatic production, greatly reduces material cost and labor cost; eliminates the welding process between the traditional coil and the electrode, and completely overcomes the tendency of the traditional process to appear.
  • the quality hazard of various problems such as solder joints has greatly improved the insulation characteristics, magnetic shielding characteristics, current resistance characteristics, high temperature characteristics and cost control of the finished product.
  • By providing a metal layer on the die-casting body between the electrodes as a shielding layer it can form an electric field and a magnetic field double shielding effect with the magnetic metal particles of the die-casting body, EMI high suppression feature for electronic machine EMC
  • the enhancement of the characteristics lays the foundation for the use of precision test instruments and complex electromagnetic environments and radiation in outer space.
  • the manufacturing method of the invention is simple and easy to operate, and can realize mass production in an automated manner.
  • FIG. 1 is a schematic structural view of a power inductor according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the power inductor of Figure 1 taken along line A-A;
  • FIG. 3 is a schematic structural view of an embodiment of the inner core of the power inductor shown in FIG. 1;
  • FIG. 4 is a schematic structural view of another embodiment of the inner core of the power inductor shown in FIG. 1;
  • Figure 5 is a schematic view showing a manufacturing process of a power inductor according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a power inductor according to another embodiment of the present invention.
  • Figure 7 is a cross-sectional view of the power inductor of Figure 6 taken along line B-B;
  • Fig. 8 is a schematic view showing a manufacturing process of a power inductor according to another embodiment of the present invention.
  • a power inductor includes an inner core 2 and a die-casting body covering the inner core 2 And a metal layer 3 disposed on the die-cast body 1.
  • the inner core 2 is a coil structure wound by an enamel wire, and includes a main body 21 and two extending portions 22 extending from the main body 21.
  • Die casting body 1 The magnetic metal powder is integrally die-casted in the inner and outer portions of the inner core 2, and the die-casting body 1 seals the inner core 2 with high density therein, and the end faces of the two extending portions 22 respectively expose the opposite end faces of the die-casting body 1.
  • the enameled wire for making the inner core 2 is preferably a high-strength hot-melt (high-temperature resistant) enameled wire, and the enameled wire also has a self-adhesive property, for example, a temperature resistance grade can be used.
  • the enameled wire can be a flat or round enameled wire, as shown in Figure 3, the inner core 2
  • the inner core 2' may also be a coil structure in which a flat enameled wire is wound.
  • the magnetic metal powder is an insulating magnetic metal powder, which has an insulating coated particle size of 5-50. Micron carbonyl iron powder, reduced iron powder, electrolytic iron powder, atomized iron powder and iron silicon aluminum powder, iron silicon alloy powder and iron-based powder such as high magnetic flux powder, amorphous iron powder and ferrite powder Or a combination of a plurality of die-casting bodies formed by die-casting the insulated magnetic metal powder 1 Insulation. In order to make the magnetic metal powders better bond together to form a compact die-cast body 1, which may contain a binder, the binder accounts for 0.8-1.2% of the total weight of the powder. .
  • the binder may include one or more of an epoxy resin, a silicone resin, and a phenol resin.
  • the die-casting body 1 is formed by die-casting of a magnetic metal powder in a die-casting cavity, so that the die-cast body 1 after molding is formed.
  • the magnetic metal powder may also contain a release agent, the release agent accounts for 0.5-0.8% of the total weight of the powder, and the release agent includes zinc stearate and magnesium stearate. Use either or both of them.
  • the die-casting body 1 is a rectangular parallelepiped, which is covered with an inner core 2 of a coil structure, and the inner core 2 body 21
  • An extension portion 22 is formed at each end portion, and end faces of the two extension portions 22 respectively expose opposite end faces of the die-cast body 1.
  • the metal layer 3 is coated on the die-cast body 1 and includes two first metal layers 31 which are respectively in contact with the end faces of the two extension portions 22.
  • First metal layer 31 corresponding extension 22 covers the end of the die-cast body 1 to form an electrode of the power inductor for accessing the circuit; the end portion includes a die-cast body 1 with the extension 22 exposed
  • the end face further includes a portion extending from the end toward the middle of the die cast body 1.
  • the first metal layer 31 may include a copper layer 311, an iron layer or an iron-chromium alloy layer 312 and a nickel layer in this order from the inside to the outside. 313.
  • the iron-chromium alloy layer an iron-chromium alloy containing chromium in an amount of 4.5 to 12% is preferred.
  • the first metal layer 31 may also include a copper layer 311 and a nickel layer 313 in order from the inside to the outside. .
  • the copper layer 311 of the first metal layer 31 is chemically bonded to the extending portion 22, that is, the copper layer 311 and the end face of the extending portion 22 are bonded by a copper metal ion in the form of a chemical metal bond.
  • First metal layer A tin layer 314 is also disposed on the 31, and a tin layer 314 is disposed on the nickel layer 313 to achieve solderability and solderability of the electrode, and to prevent etching of the copper layer 311 and the iron chromium layer 312 at the edge. Oxidation of the equal layer.
  • the thickness of the above iron layer or iron-chromium alloy layer 312 depends on the volume of the die-casting body 1, as preferably 2-5 microns.
  • the die-casting body 1 is also covered with a resin layer 5 and a resin layer 5
  • a resin layer 5 For the resin layer formed by epoxy resin coating, an epoxy resin containing nano silica is preferred, which has good dispersibility, impregnation and adhesion, and is resistant to high temperatures and corrosion.
  • the resin layer 5 is located on the metal layer 3 Below, the surface of the die-casting body 1 opposite to the opposite end faces is provided to prevent moisture and rust.
  • the power inductor is resistant to large currents and can be prepared in ultra-small sizes up to 3.2*2.5*1. It completely solves the problem that the current small-sized power inductors are difficult to use the high-strength high-temperature enameled wire, which breaks the shortcomings of the current industry commonly used self-welding wire.
  • FIG. 5 it is a schematic diagram of a manufacturing process of the power inductor of the above embodiment, FIG. The middle arrow indicates the order in which the processing is performed, and the manufacturing method of the power inductor includes the following steps:
  • the inner core 2 is prepared by enameled wire winding, and the magnetic metal powder is prepared.
  • the inner core 2 can be wound by an automatic winding machine.
  • the enameled wire is made of a flat or round high-strength hot-melt enamel, which is wound to form a coil structure as a core. 2;
  • the manufactured inner core 2 includes a main body 21 and an extending portion 22 extending from the main body 21.
  • the inner core 2 can be as shown in Figure 3.
  • the circular enameled wire wound coil structure is shown; an inner core 2' formed by a flat enameled wire wound coil structure as shown in Fig. 4 can also be used.
  • Magnetic metal powder is insulated.
  • the magnetic metal powder is coated with an insulating particle size of 5-50.
  • the binder may include one or more of an epoxy resin, a silicone resin, and a phenol resin. When blending, it can also be added to the total weight of the powder.
  • release agent for subsequent die casting It can be smoothly removed from the die casting cavity; the release agent includes zinc stearate and magnesium stearate, and either or both of them can be used.
  • the binder and the release agent may be added at the same time, or any one of them may be added as needed.
  • the extension of the inner core 2 22 The inner core 2 is positioned in the die casting cavity by directly inserting the opposite end faces of the die casting cavity through the extending portion 22 without peeling and directly into the die casting cavity of the die cast film. Put the amount of magnetic metal powder to the inner core 2 It is located at the center of the die-cast molded body 1 and is preferably filled with 30% by weight of magnetic metal powder.
  • the main body of the inner core 2 is 21 There is space in the middle, as shown in Figure 3, so the magnetic metal powder will be filled into it (ie, the inside of the inner core 2) and then filled into the outer core 2 to make the inner core 2 It is completely embedded in the magnetic metal powder, and the die-casting body 1 is obtained by shaking and heat-curing die-casting to seal the inner core 2 with high density. It completely overcomes various quality hazards that are prone to solder joints in the past, and greatly improves the insulation characteristics, magnetic shielding characteristics, current resistance characteristics, high temperature characteristics, and cost control of the finished product.
  • the end face of the extending portion 22 of the inner core 2 exposes the end face of the die-casting body, and the end portion of the extending portion 22 also exposes the die-casting body.
  • 1 end face, preferably the end portion of the control extension portion 22 is not more than 1 mm, and the inner core 2 The rest of the material is completely shielded by the magnetic metal powder, so that the finished product has good mechanical strength properties and magnetic shielding properties.
  • the die-cast body obtained after heat curing 1 Deburring to obtain a burr-free, die-cast-free draping, smooth surface of the die-casting body 1 .
  • the deburring process can adopt a mechanically rotating roller method, which is extremely low in cost and is advantageous for mass processing.
  • a rectangular parallelepiped die-cast body 1 and two extensions 22 of the inner core 2 are obtained. Correspondingly, they are coated in opposite ends of the die-cast body 1, and the end faces of the extending portions 22 are exposed to the end faces of the die-cast body 1.
  • This step may further include (3.1), dip coating the obtained die-cast body 1 in a resin liquid, and dry and solidify to obtain a surface coated with a resin layer. Die casting body 1 .
  • the resin layer 5 covers all surfaces of the die-cast body 1 (i.e., including the opposite end faces), or surfaces other than the opposite end faces of the die-cast body 1.
  • the obtained resin layer 5 covers all the surfaces of the die-casting body 1; when only the other surfaces of the opposite sides of the die-casting body 1 are dip-coated in the resin liquid, the obtained resin layer 5 Coated die casting 1 Surfaces outside the opposite ends.
  • the resin liquid is selected from an epoxy resin liquid, preferably an epoxy resin liquid containing nano silica.
  • the dip coating can be carried out under atmospheric conditions or under vacuum. In this embodiment, it is preferably dip coated under vacuum to better prevent foaming of the pores.
  • the drying and curing treatment can be carried out in a fluidization equipment, which is advantageous for large-scale processing, and is subjected to vibration drying curing (also called fluidized coating coating), which can ensure that each product is fully fluidized without sticking to each other.
  • the cured resin layer is a transparent resin layer 5, even and flat.
  • the step (3.2) may further include: pre-treating the die-cast body 1 coated with the resin layer 5: exposing the die-cast body 1 to the inner core 2
  • the opposite end faces of the extending portion 22 are subjected to a grinding process so that the end faces of the extending portions 22 are flush and exposed to the opposite end faces of the die-cast body 1.
  • Die-casting body coated with resin layer 5 One end is arranged by a feeder, and the end face is ground by an automatic grinding end machine, and only the resin layer 5 of the end surface of the die-cast body 1 and the end portion of the extension portion 22 where the inner core 2 is exposed and the die-cast body are ground during grinding. 1
  • a small portion of the magnetic metal powder corresponding to the end face is exposed to expose the end face of the extension 22 for bonding with the subsequent copper layer, as shown in Fig. 5(b).
  • a metal layer 3 is provided on the die-casting body 1, and the metal layer 3 is included in the corresponding extension portion of the die-casting body 1
  • the two first metal layers 31 on opposite end portions of the first metal layer 31 are coated with the ends of the die-cast body 1 to form electrodes, thereby producing a power inductor.
  • This step (4) includes:
  • Electrolytic copper or electroplated copper layer for the die-casting body 1 and a copper layer and an extension portion at the end surface of the die-casting body 1 The end faces are bonded by copper ions in the form of chemical metal bonds. Die casting is required before chemical copper or electroplating 1
  • the cleaning and activation treatment may be carried out, and the cleaning and activation treatment may be carried out by a conventional technique.
  • the copper layer is on the resin layer 5 as shown in Fig. 5(c).
  • Electroplating can be carried out in large quantities at a time, such as 10,000 die-casting bodies to be plated 1 For a batch. During electroplating, the appropriate plating current and bath temperature are adjusted. When the electroplated copper layer is brought to an appropriate thickness, the plating is stopped. At this time, the extension of the inner core 2 is 22 The end faces are bonded to the copper layer in the form of chemical metal bonds instead of soldered.
  • the electroplating step eliminates the disadvantages of high cost and poor reliability caused by the existing welding process, and also has a certain tensile strength.
  • the copper layer is electroplated and then washed and dried.
  • the die-casting body 1 provided with the copper layer is protected against the opposite end portions of the extending portion, and the die-casting body 1 The surface portions other than the both end portions are etched to remove the copper layer thereon.
  • the protection method can be applied to the copper layer on the surface of both ends of the die-casting body 1 by using a tip coating machine in batch, and then dried and solidified to form a protective layer. 6, as shown in Figure 5 (d).
  • the die-casting body 1 is etched using an environmentally friendly etchant, except for the die-casting body 1
  • the opposite portions of the copper layer are dissolved by the etchant except that the opposite ends are not etched.
  • the end portion of the die-cast body 1 includes the end face of the die-cast body 1 in which the extension portion 22 is exposed, and also includes the die-cast body 1 facing the end face 1
  • the portion extending in the middle portion, the remaining portion of the die-cast body 1 is an intermediate portion between the both end portions thereof.
  • the protective layer on the die-casting body 1 is removed by using a lacquering agent, and subsequent operations can be performed.
  • Environmentally friendly etchants such as the United States A type of etchant from CRE-473 manufactured by Transene.
  • the copper layer on the opposite end portions of the die-cast body 1 after etching is the copper layer 311 of the first metal layer 31.
  • an iron layer or an iron-chromium alloy layer 312 and a nickel layer are sequentially plated on the copper layer 311 at both ends of the die-casting body 1
  • the copper layer 311, the iron chrome layer 312, and the nickel layer 313 form the first metal layer 31 on both ends of the die-cast body 1, as shown in (e) of FIG. It can be understood that it can also be used in die casting 1
  • the copper layer 311 at both ends is plated with a nickel layer 313 without an iron plating layer or an iron-chromium alloy layer 312, so that the copper layer 311 and the nickel layer 313 form a first metal layer on both ends of the die-cast body 1. .
  • the obtained first metal layer 31 includes a copper layer 311, an iron layer or an iron-chromium alloy layer from the inside to the outside. 312 and nickel layer 313.
  • the two first metal layers 31 are respectively in contact with the end faces of the corresponding extension portions 22, and electrodes are formed on the end portions of the die-cast body 1, the first metal layer 31 and the extension portion 22
  • the end face contact is mainly contacted by the copper layer 311 in combination with the end face of the extension portion 22.
  • tin plating is performed on the nickel layer 313 of the first metal layer 31 to form a tin layer on the nickel layer 313 314 .
  • the tinning operation is carried out by rolling cage tin plating, and the tin plating is to ensure the extension of the first metal layer 31 and the inner core 2 in the die casting body 1
  • the solderability of the formed electrode can be cleaned and dried after tin plating to obtain the final product.
  • the metal layer 3 is provided on the resin layer 5.
  • a power inductor includes an inner core 2 and a die-casting body covering the inner core 2 And a metal layer 3 disposed on the die-cast body 1.
  • the metal layer 3 further includes a second metal layer 32 spaced between the two first metal layers 31. .
  • the second metal layer 32 is coated on the surface of the die-cast body 1 between the two first metal layers 31 to form a shield layer of the power inductor.
  • the second metal layer 32 includes a copper layer 321 , an iron layer or an iron-chromium alloy layer 322 and a nickel layer 323 from the inside to the outside. .
  • the iron layer or iron-chromium alloy layer 322 has a function of shielding the magnetic field, so that the fabricated power inductor has a shielding magnetic field.
  • Iron layer or iron-chromium alloy layer 322 thickness depending on the size of the die casting, such as the preferred 2-5 microns.
  • the second metal layer 32 can form an electric field and a magnetic field double shielding effect with the magnetic metal particles of the die-casting body 1, so that the obtained power inductor is EMI Highly restrained features, completely blocking the channel of electromagnetic radiation exchange in the whole frequency band, for the whole machine EMC
  • the enhancement of the characteristics lays the foundation for the use of precision test instruments and complex electromagnetic environments and radiation in outer space.
  • the chromium content is 4.5-12% Iron chrome.
  • the second metal layer 32 may also include a copper layer 311 and a nickel layer 313 in order from the inside to the outside.
  • the space between the second metal layer 32 and the first metal layer 31 forms an annular insulating tape 4 on the die-cast body 1, and the insulating tape 4
  • the width is 0.5-1.0mm.
  • the insulating tape 4 functions to separate the second metal layer 32 from the first metal layer 31 to protrude the electrode.
  • the first metal layer 31 and the second metal layer 31 may be integrally formed during fabrication, and the first and second metal layers may be formed by etching the insulating tape 4 31, 32 separate.
  • the inner core 2 is prepared by enameled wire winding, and the magnetic metal powder is prepared.
  • the resulting inner core 2 includes a main body 21 and an extension 22 extending from the main body 21.
  • This step may further include (3.1), dip coating the obtained die-cast body 1 in a resin liquid, and dry and solidify to obtain a surface coated with a resin layer. Die casting body 1 .
  • the step (3.2) may further include: pre-treating the die-cast body 1 coated with the resin layer 5: exposing the die-cast body 1 to the inner core 2 The opposite end faces of the extending portion 22 are subjected to a grinding process so that the end faces of the extending portions 22 are flush and exposed to the opposite end faces of the die-cast body 1. As shown in Figure 8 (b).
  • a metal layer 3 is disposed on the die-casting body, and the metal layer 3 is included in the corresponding extension portion of the die-casting body 1
  • the two first metal layers 31 on opposite end portions of the second metal layer 31 are also included between the two first metal layers 31 and coated on the surface of the die-cast body 1.
  • First metal layer 31 will be die cast 1
  • the ends are covered to form an electrode, the second metal layer 32 forms a shield layer, and an annular insulating tape 4 is formed between the second metal layer 32 and the first metal layer 31.
  • This step (4) includes:
  • Electrolytic copper or electroplated copper layer for the die-casting body 1 and a copper layer and an extension portion at the end surface of the die-casting body 1 The end faces are bonded by copper ions in the form of chemical metal bonds.
  • the die-casting body 1 needs to be cleaned and activated before chemical copper or electroplating, and the cleaning and activation treatment may be carried out by using prior art means.
  • Electroplating can be carried out in large quantities at a time, such as 10,000 die-casting bodies to be plated 1 For a batch. During electroplating, the appropriate plating current and bath temperature are adjusted. When the electroplated copper layer is brought to an appropriate thickness, the plating is stopped. At this time, the extension of the inner core 2 is 22 The end faces are bonded to the copper layer in the form of chemical metal bonds instead of soldered.
  • the electroplating step eliminates the disadvantages of high cost and poor reliability caused by the existing welding process, and also has a certain tensile strength.
  • the copper layer is electroplated and then washed and dried.
  • FIG. Figure (c) shows sequentially coating an iron layer or an iron-chromium alloy layer and a nickel layer on the copper layer to form a metal layer 3 on the die-casting body 1, as shown in FIG. Figure (c) shows.
  • the thickness of the iron layer or the iron-chromium alloy layer depends on the volume of the die-casting body 1 , as preferred 2-5 Micron. It will be appreciated that a nickel layer may also be plated on the copper layer without the need for an iron or iron chromium alloy layer to form a metal layer on the die cast body.
  • annular insulating tape 4 is respectively etched on the opposite ends of the metal layer 3 corresponding to the die-casting body 1 to form the metal layer 3
  • the first metal layer 31 covered on the end portion of the die-cast body 1 and the first metal layer 32 between the two first metal layers 31 coated on the surface of the die-cast body 1 are divided into corresponding extension portions 22. (d) is shown in the figure.
  • the first metal layer 31 and the second metal layer 31 obtained in this embodiment respectively include a copper layer from the inside to the outside. 311, 321 , iron or iron-chromium alloy layers 312, 322 and nickel layers 313, 323.
  • the two first metal layers 31 and the corresponding extensions 22 respectively In the end face contact, an electrode is formed on the end portion of the die-cast body 1, and the end face of the first metal layer 31 and the extending portion 22 is mainly in contact with the end face of the extending portion 22 through the copper layer 311; the second metal layer 32 A shielding layer is formed.
  • the annular insulating tape 4 may be formed by a laser or etching process, and the second metal layer 32 and the first metal layer are disposed by the insulating tape 4 31 Interval, ie, separate the shield from the electrode.
  • the width of the insulating tape 4 is 0.5-1.0 mm.
  • tin plating is performed on the nickel layer 313 of the first metal layer 31 to form a tin layer on the nickel layer 313 314 .
  • Tin plating is tinned in a rolling cage. Tin plating is used to ensure the solderability of the electrode. It also prevents the copper layer 311 and the iron-chromium layer 312 from being etched. Oxidation of the equal layer. After the tin plating is completed, it can be washed and dried to obtain the final product.
  • each step lays a foundation for automatic production, and is suitable for mass production of automatic production, which can greatly reduce material cost and labor cost, and the cost thereof can be the current inductor production process. Cost Within 20%, the material cost has been reduced by 50%, creating a new milestone in the production of wound-type alloy powder integrated inductors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种功率电感器及其制造方法,该电感器包括内芯(2)、包覆内芯的压铸体(1)及设置在压铸体上的金属层(3),内芯包括主体(21)及自主体延伸出的两延伸部(22),金属层包括分别与两延伸部端面接触的两第一金属层(31),第一金属层对应延伸部将压铸体的端部包覆起来,形成功率电感器的电极。该功率电感器可实现大批量自动化生产,可具有电场与磁场双屏蔽功能。

Description

功率电感器及其制造方法 技术领域
本发明涉及一种电感器,尤其涉及一种功率电感器及其制造方法。
背景技术
随着科技的迅速发展,包括手机在内的各种移动数码产品的尺寸越来越小。由于环境的变化带来的对电磁辐射,交叉干扰与电磁污染管制越来越严格(EMC 管制标准),电感器在电路中担当重要的吸收突波功能,而其中的功率电感器的耐电流特性、 EMI 与 EMS 特性还满足不了市场的要求。当前市场的小尺寸片式功率电感器大都不是一体成型的构造,存在电感量偏低、不耐大电流、可靠性差和温度过高,以及 EMI 特性不好的现实困难,同时,自动化程度不高,其用工成本高也是业界发展的障碍。
目前业内已有采用粉末压铸一体成型的功率电感器电极,其采取的工艺是将电极的端部埋入粉体的内部以求固定,这种方式虽然简单易行,但是也出现了在小尺寸( 3*2*1 以下尺寸)工艺无法实现的困境。难点有:其一在于直径 0.15 以下的高强度漆包线无法实现机械脱皮焊接,直径 0.15 以下自焊线虽然可以焊接但绝缘耐压达不到要求;其二是由于尺寸小,埋入式电极占用粉体空间,致使粉料减少,电感的磁能积下降,线圈外缘尺寸受电极挤占,致使耐电流特性下降;其三是小尺寸的电极成本较高,产品电极尺寸与形状的一致性精准程度较低,且难以实现大批量的全自动化生产 。
发明内容
本发明要解决的技术问题之一在于,针对现有技术的上述缺陷,提供一种以实现大批量自动化生产的功率电感器及其制造方法。
本发明解决其技术问题所采用的技术方案是:提供一种功率电感器,包括内芯、包覆所述内芯的压铸体及设置在所述压铸体上的金属层;所述内芯为漆包线绕制而成的线圈结构,所述内芯包括主体及自所述主体延伸出的两延伸部,所述压铸体采用磁性金属粉料压铸于所述内芯的内、外部而形成,两所述延伸部端面分别露出所述压铸体的相对两端面;
所述金属层包括分别与两所述延伸部端面接触的两第一金属层,所述第一金属层对应延伸部将所述压铸体的端部包覆起来,形成所述功率电感器的电极。
优选地,所述第一金属层由内到外依次包括铜层及镍层;或,所述第一金属层由内到外依次包括铜层、铁层或铁铬合金层、及镍层;
所述第一金属层上还设有锡层,所述锡层位于所述镍层上。
优选地,所述金属层还包括间隔位于两所述第一金属层之间的第二金属层;所述第二金属层于两所述第一金属层之间包覆在所述压铸体表面,形成所述功率电感器的屏蔽层;且所述第二金属层与第一金属层之间的间隔在所述压铸体上形成环形绝缘带。
优选地,所述第二金属层由内到外均依次包括铜层及镍层;或,所述第二金属层由内到外均依次包括铜层、铁层或铁铬合金层、及镍层。
优选地,所述绝缘带的宽度为0.5-1.0mm 。
优选地,所述压铸体上还覆有树脂层,所述树脂层位于所述金属层下方而包覆所述压铸体相对两端面之外的表面。
优选地,所述磁性金属粉料为经过绝缘包覆的粒径为 5-50 微米的羰基铁粉、还原铁粉、电解铁粉、雾化铁粉、铁硅铝粉、铁硅合金粉、高磁通粉、非晶铁粉及铁氧体粉中的一种或多种的组合。
优选地,所述磁性金属粉料含有占粉料总重量的 0.8-1.2% 的粘结剂和 / 或 0.5-0.8% 的脱模剂。
本发明还提供一种上述功率电感器的制造方法,包括以下步骤:
(1)、采用漆包线绕制制备内芯,并调配磁性金属粉料;
(2)、在压铸腔中填入 10-50wt% 的所述磁性金属粉料,将所述内芯放入压铸腔中的所述磁性金属粉料上,所述内芯的延伸部分别轴向指向所述压铸腔的相对两端面;
(3)、在所述压铸腔中填入其余的所述磁性金属粉料,将所述内芯覆盖,进行压铸并热固化,使得所述磁性金属粉料紧密包覆在内芯的内外、部上,形成压铸体,所述内芯的延伸部端面露出所述压铸体的相对两端面;
(4)、在所述压铸体上设置金属层,所述金属层包括位于所述压铸体对应所述延伸部的相对两端部上的两第一金属层,所述第一金属层将所述压铸体的所述端部包覆起来形成电极,制得所述功率电感器。
优选地,所述步骤(1)中,所述内芯为采用扁平或圆形的高强度热熔漆包线绕制而成的线圈结构;调配所述磁性金属粉料时,在所述磁性金属粉料中加入占粉料总重量的 0.8-1.2% 的粘结剂和 / 或 0.5-0.8% 的脱模剂。
优选地,所述步骤(3)还包括(3.1)、将所述压铸体在树脂液中浸涂,干燥固化,得到表面覆有树脂层的压铸体;所述树脂层包覆所述压铸体所有表面、或所述压铸体相对两端面之外的表面。
优选地,所述步骤(3)还包括步骤(3.2)、将所述表面覆有树脂层的压铸体进行前处理:将所述压铸体露出有所述内芯延伸部的端面进行磨削处理,使得所述延伸部端面平齐而露出于所述压铸体的所述端面。
优选地,所述步骤(4)包括:
(4.1)、对所述压铸体进行化学沉铜或电镀铜层,位于所述压铸体端面的所述铜层与所述延伸部端面通过铜离子以化学金属键形式结合;
(4.2)、将设有铜层的压铸体对应所述延伸部的相对两端部保护起来,对所述压铸体两端部之外的表面部分进行蚀刻处理,以去除其上的铜层;
(4.3)、在所述压铸体两端部的铜层上镀镍层,从而所述铜层、铁铬层和镍层在所述压铸体两端部上形成第一金属层;或,
在所述压铸体两端部的铜层上依次镀铁层或铁铬合金层及镍层,从而所述铜层、铁层或铁铬合金层和镍层在所述压铸体两端部上形成第一金属层;
(4.4)、在所述第一金属层的镍层上进行镀锡,以在所述镍层上形成锡层。
优选地,所述步骤(4)中,所述金属层还包括于两所述第一金属层之间、包覆在所述压铸体表面上的第二金属层,所述第二金属层形成屏蔽层;在所述第二金属层与第一金属层之间形成有环形绝缘带。
优选地,所述步骤(4)包括:
(4.1)、对所述压铸体进行化学沉铜或电镀铜层,位于所述压铸体端面的所述铜层与所述延伸部端面通过铜离子以化学金属键形式结合;
(4.2)、在所述铜层上镀镍层,从而在所述压铸体上形成金属层;或,
在所述铜层上依次镀铁层或铁铬层及镍层,从而在所述压铸体上形成金属层;
(4.3)、在所述金属层对应所述压铸体相对两端部上分别蚀刻出环形绝缘带,将所述金属层分成对应所述延伸部包覆在所述压铸体端部上的两第一金属层、及位于两第一金属层之间包覆在所述压铸体表面的第一金属层;
(4.4)、在第一金属层的镍层上进行镀锡,以在所述镍层上形成锡层。
本发明采用磁性金属粉料与内芯一体压铸成型,可以实现大批量自动化生产,极大地减少了材料成本和用工成本;取消了传统线圈与电极间的焊接工艺,彻底克服了传统工艺中容易出现焊点等各种问题的质量隐患,使得成品的绝缘特性、磁屏蔽特性、耐电流特性、高温特性以及成本控制得以大幅度提升。通过在电极之间的压铸体上设置金属层作为屏蔽层,其能与压铸体的磁性金属粒子形成电场与磁场双屏蔽效果,对 EMI 高度抑制特点,为电子整机 EMC 特性的提升奠定了基础,适用于精密测试仪器及复杂电磁环境和辐射的外太空使用。本发明制造方法简单易操作,可以实现大批量自动化生产。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图 1 是本发明一实施例 的功率电感器的结构示意图;
图 2 是图 1 所示功率电感器沿 A-A 线的剖视图;
图 3 是图 1 所示功率电感器中内芯一实施例的结构示意图;
图 4 是图 1 所示功率电感器中内芯另一实施例的结构示意图;
图 5 是本发明一实施例 的功率电感器的制造过程示意图;
图 6 是本发明另一实施例 的功率电感器的结构示意图;
图 7 是是图 6 所示功率电感器沿 B-B 线的剖视图;
图 8 是本发明另一实施例 的功率电感器的制造过程示意图 。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图 1-3 所示,本发明一实施例的功率电感器,包括内芯 2 、包覆所述内芯 2 的压铸体 1 及设置在压铸体 1 上的金属层 3 。内芯 2 为漆包线绕制而成的线圈结构,其包括主体 21 及自主体 21 延伸出的两延伸部 22 。压铸体 1 采用磁性金属粉料一体压铸于内芯 2 的内、外部而形成,压铸体 1 将内芯 2 高密度封固于其中,两延伸部 22 端面分别露出压铸体 1 的相对两端面。
制作内芯 2 的漆包线优选采用高强度热熔(耐高温)的漆包线,且漆包线还具有自粘特性,例如可采用耐温等级在 200 ℃以上的热风自粘型聚酰胺或聚酰亚胺类漆包线。漆包线可为扁平或圆形的漆包线,如图 3 所示,内芯 2 为采用圆形漆包线绕制而成的线圈结构;作为一种选择性实施方式,如图4所示,内芯2’ 也可为扁平漆包线绕制而成的线圈结构 。
磁性金属粉料为绝缘的磁性金属粉料,其为经过绝缘包覆的粒径为 5-50 微米的羰基铁粉、还原铁粉、电解铁粉、雾化铁粉以及铁硅铝粉,铁硅合金粉以及高磁通粉、非晶铁粉、铁氧体粉等铁基粉末的一种或多种的组合,由该绝缘的磁性金属粉料压铸形成的压铸体 1 具有绝缘性。为使磁性金属粉料能更好粘结在一起以形成紧密的压铸体 1 ,其中可含有粘结剂,粘结剂占粉料总重量的 0.8-1.2% 。该粘结剂可包括环氧树脂、硅酮树脂及酚醛树脂中的一种或多种。另外,该压铸体 1 由磁性金属粉料在压铸腔内压铸形成,为使成型后的压铸体 1 顺利从压铸腔中脱出,磁性金属粉料中还可含有脱模剂,脱模剂占粉料总重量的 0.5-0.8% ,该脱模剂包括有硬脂酸锌及硬脂酸镁,可采用其中任一种或两种。
在本实施例中,压铸体 1 呈长方体,其内包覆一个线圈结构的内芯 2 ,内芯 2 主体 21 两端部分别延伸出有延伸部 22 ,两延伸部 22 的端面分别露出压铸体 1 的相对两端面。
金属层 3 包覆在压铸体 1 上,其包括分别与两延伸部 22 端面接触的两第一金属层 31 。第一金属层 31 对应延伸部 22 包覆压铸体 1 的端部,形成功率电感器的电极,用于接入电路;所述端部包括露出有延伸部 22 的压铸体 1 的端面,还包括自该端面向压铸体 1 中间延伸一段的部分。
在本实施例中,该第一金属层 31 由内到外均可依次包括铜层 311 、铁层或铁铬合金层 312 及镍层 313 。对于铁铬合金层,优选其中含铬为 4.5-12% 的铁铬合金。在其他实施例中,该第一金属层 31 也可由内到外依次包括铜层 311 和镍层 313 。第一金属层 31 的铜层 311 与延伸部 22 之间为化学金属键结合,即,铜层 311 与延伸部 22 端面通过铜离子以化学金属键形式结合。第一金属层 31 上还设有锡层 314 ,锡层 314 位于镍层 313 上,实现了电极的焊接可焊性,同时还可防止蚀刻边缘的铜层 311 、铁铬层 312 等层的氧化。上述的铁层或铁铬合金层 312 厚度视压铸体 1 体积大小而定,如优选 2-5 微米。
压铸体 1 上还覆有树脂层 5 ,树脂层 5 为采用环氧树脂涂覆形成的树脂层,优选含有纳米二氧化硅的环氧树脂,具有很好的分散性、浸透力及附着力,且耐高温及耐腐蚀。该树脂层 5 位于金属层 3 下方,而包覆压铸体 1 相对两端面之外的表面,起到防潮防锈的作用。
该功率电感器耐大电流,可超小尺寸制备,尺寸可为 3.2*2.5*1 以下。 彻底解决了当下小尺寸功率电感器难以使用高强度耐高温漆包线的用线限制,突破了当前业界普遍使用自焊线造成可靠性差的弊端。
参考图 5 ,并结合图 1-3 所示,其为上述实施例的功率电感器的制造过程示意图,图 5 中箭头表示加工的进行顺序,该功率电感器的制造方法包括以下步骤:
(1)、采用漆包线绕制制备内芯 2 ,并调配磁性金属粉料。
可采用自动绕线机绕制内芯 2 ,漆包线采用扁平或圆形的高强度热熔漆包线,将其绕制形成线圈结构,作为内芯 2 ;参考图 2 、 3 所示,所制得的内芯 2 包括主体 21 及自主体 21 延伸出的延伸部 22 。当然,内芯 2 可为图 3 所示的圆形漆包线绕制的线圈结构;也可采用图 4 所示的扁平漆包线绕制的线圈结构形成的内芯 2’ 。
磁性金属粉料具绝缘性。该磁性金属粉料采用经过绝缘包覆的粒径为 5-50 微米的羰基铁粉、还原铁粉、电解铁粉、雾化铁粉以及铁硅铝粉,铁硅合金粉以及高磁通粉、非晶铁粉、铁氧体粉等铁基粉末的一种或多种的组合。调配时,还可在加入占粉料总重量的 0.8-1.2% 的粘结剂,使磁性金属粉料在压铸时能更好粘结在一起;该粘结剂可包括环氧树脂、硅酮树脂及酚醛树脂中的一种或多种。调配时,还可加入占粉料总重量的 0.5-0.8% 的脱模剂,使后续成型后的压铸体 1 能顺利从压铸腔中脱出;该脱模剂包括有硬脂酸锌及硬脂酸镁,可采用其中任一种或两种。粘结剂和脱模剂可同时添加,或根据需要添加其中任一种。
(2)、在压铸腔中填入 10-50wt% 的磁性金属粉料,将内芯 2 放入压铸腔中的磁性金属粉料上,内芯 2 的延伸部 22 分别轴向指向压铸腔的相对两端面。
将内芯 2 放入压铸机的压铸腔时,内芯 2 的延伸部 22 不需经过脱皮而直接装入压铸膜的压铸腔中,通过延伸部 22 分别轴向指向压铸腔的相对两端面,将内芯 2 定位在压铸腔内。放入磁性金属粉料的量,以能将内芯 2 位于所压铸成型的压铸体 1 的中心位置为准,优选填入 30wt% 的磁性金属粉料。
(3)、在压铸腔中填入其余的磁性金属粉料,将内芯 2 覆盖,进行压铸并热固化,使得磁性金属粉料紧密包覆在内芯 2 的内、外部上,形成压铸体 1 ,内芯 2 的两延伸部 22 端面分别露出压铸体 1 的相对两端面,如图 5 中(a)图所示。采用磁性金属粉料与内芯 2 一体压铸成型,其压铸腔能够容易做到多型腔、大压力,以满足制造生产要求。
该步骤中,在放有内芯 2 的压铸腔中填入其余的磁性金属粉料时,由于内芯 2 的主体 21 中间存在空间,参考图 3 所示,因此磁性金属粉料会填充到其中(即内芯 2 的内部)后再填充到内芯 2 外部,使内芯 2 完全埋入在磁性金属粉料中,采用震实、热固化压铸得到压铸体 1 ,以将内芯 2 高密度封固于其中, 彻底克服了以往容易出现焊点的各种质量隐患,使得成品的绝缘特性,磁屏蔽特性,耐电流特性,高温特性,以及成本控制得以大幅度提升。
根据压铸操作的差异,内芯 2 的延伸部 22 端面露出压铸体端面, 延伸部 22 的端部也会露出压铸体 1 端面,优选控制延伸部 22 端部露出的部分不超过 1mm ,而内芯 2 的其余部分完全被磁性金属粉料所屏蔽,使得成品具有良好的机械强度特性和磁屏蔽特性。
为获得外观更佳的压铸体 1 ,将热固化后得到的压铸体 1 进行去毛边处理,以获得无毛刺、无压铸披锋,表面光滑的压铸体 1 。去毛边工艺可采用机械转动的滚筒方法,成本极低,利于大批量处理。在本实施例中,通过该步骤获得长方体状的压铸体 1 ,内芯 2 的两延伸部 22 对应包覆在压铸体 1 的相对两端内,而延伸部 22 的端面露出压铸体 1 的端面。
该步骤之后还可包括(3.1)、将得到的压铸体 1 在树脂液中浸涂,干燥固化,得到表面覆有树脂层 5 的压铸体 1 。根据操作方式不同,该步骤(3.1)后,树脂层 5 包覆压铸体 1 所有表面(即包括相对两端面)、或压铸体 1 相对两端面之外的表面。当将压铸体 1 整体置入树脂液中浸涂时,获得的树脂层 5 包覆压铸体 1 所有表面;当只将压铸体 1 相对两端面外的其他表面在树脂液中浸涂,则获得的树脂层 5 包覆压铸体 1 相对两端面之外的表面。树脂液选用环氧树脂液,优选含有纳米二氧化硅的环氧树脂液,浸涂可在大气条件下或真空下,本实施例中,优选真空下浸涂,可更好防止气孔起泡。干燥固化处理可在流化设备中进行,利于大批量处理,且采用震动干燥固化(也称流化包衣裹覆),能够保证每个产品得到充分的流化而互不粘连。固化后的树脂层为透明的树脂层 5 ,均匀平整。
还可包括步骤(3.2)、将表面覆有树脂层 5 的压铸体 1 进行前处理:将压铸体 1 露出有内芯 2 延伸部 22 的相对端面进行磨削处理,使得延伸部 22 端面平齐而露出于压铸体 1 的该相对端面。可将表面覆有树脂层 5 的压铸体 1 一个个通过送料器排列,通过自动磨端头机进行端面磨削,磨削时仅磨去压铸体 1 的端面的树脂层 5 、内芯 2 所露出在外的延伸部 22 的端部及压铸体 1 对应端面的小部分磁性金属粉料,从而暴露出延伸部 22 的端面,以便与后续铜层的结合,如图 5 中(b)图所示。
(4)、在压铸体 1 上设置金属层 3 ,金属层 3 包括位于压铸体 1 对应延伸部 22 的相对两端部上的两第一金属层 31 ,第一金属层 31 将压铸体 1 的端部包覆起来形成电极,制得功率电感器。
该步骤(4)包括:
(4.1)、对压铸体 1 进行化学沉铜或电镀铜层,位于压铸体 1 端面的铜层与延伸部 22 端面通过铜离子以化学金属键形式结合。在化学沉铜或电镀前还需对压铸体 1 进行清洗、活化处理,该清洗、活化处理采用现有技术手段实施即可。本实施例中,铜层位于树脂层 5 上,如图 5 中(c)图所示。
电镀处理可一次大批量进行,如以 10000 个待镀压铸体 1 为一批次。电镀时,调整好适当的电镀电流和镀液温度,当电镀铜层到适当厚度后停止电镀,此时内芯 2 的延伸部 22 端面与铜层以化学金属键形式结合,而非焊接形式结合。该电镀步骤免除了现有采用焊接工艺带来的成本高、可靠性差的弊端,同时也具备一定的抗拉力强度。电镀铜层后进行清洗干燥。
(4.2)、将设有铜层的压铸体 1 对应延伸部的相对两端部保护起来,对压铸体 1 两端部之外的表面部分进行蚀刻处理,以去除其上的铜层。
保护方法可采用端头涂覆机批量自动化涂覆保护剂于压铸体 1 两端部的表面的铜层上,然后干燥固化形成保护层 6 ,如图 5 中(d)图所示。采用环保型蚀刻剂对压铸体 1 进行蚀刻,除了压铸体 1 相对两端部不受蚀刻外,其余部分表面的铜层被蚀刻剂溶解。在本实施例中,压铸体 1 的端部包括露出有延伸部 22 的压铸体 1 的端面,还包括自该端面向压铸体 1 中间延伸一段的部分,压铸体 1 的其余部分为位于其两端部之间的中间部分。最后采用溶漆剂去除压铸体 1 上的保护层,即可进行后续作业。环保型蚀刻剂如可采用如美国 Transene 公司生产的 CRE-473 一类蚀刻液。
蚀刻后的位于压铸体 1 相对两端部上的铜层即为第一金属层 31 的铜层 311 。
(4.3)、在压铸体 1 两端部的铜层 311 上依次镀铁层或铁铬合金层 312 及镍层 313 ,从而所述铜层 311 、铁铬层 312 和镍层 313 在压铸体 1 两端部上形成第一金属层 31 ,如图 5 中(e)所示。可以理解,也可在压铸体 1 两端部的铜层 311 上镀镍层 313 ,而不需镀铁层或铁铬合金层 312 ,从而所述铜层 311 和镍层 313 在压铸体 1 两端部上形成第一金属层 31 。
参考图 1 、 2 所示,获得的第一金属层 31 由内到外均分别依次包括铜层 311 、铁层或铁铬合金层 312 及镍层 313 。其中,两第一金属层 31 分别与对应的延伸部 22 端面接触,在压铸体 1 端部上形成电极,第一金属层 31 与延伸部 22 端面接触主要通过铜层 311 与延伸部 22 端面结合而接触。
(4.4)、在第一金属层 31 的镍层 313 上进行镀锡,以在镍层 313 上形成锡层 314 。
镀锡作业采用滚笼镀锡,镀锡是为了保证第一金属层 31 与内芯 2 的延伸部 22 在压铸体 1 上形成的电极的可焊性,镀锡完成后即可清洗、干燥,得到最终成品。
对于表面覆有树脂层 5 的压铸体 1 ,金属层 3 设置在树脂层 5 上。
如图 6 、 7 所示,本发明另一实施例的功率电感器,包括内芯 2 、包覆所述内芯 2 的压铸体 1 及设置在压铸体 1 上的金属层 3 。本实施例与上述图 1-2 所示实施例不同的在于:金属层 3 还包括间隔位于两第一金属层 31 之间的第二金属层 32 。该第二金属层 32 于两第一金属层 31 之间包覆在压铸体 1 表面,形成功率电感器的屏蔽层。
第二金属层 32 由内到外依次包括铜层 321 、铁层或铁铬合金层 322 及镍层 323 。铁层或铁铬合金层 322 具有屏蔽磁场的功能,从而使制成的功率电感器具有屏蔽磁场的作用。铁层或铁铬合金层 322 厚度视压铸体 1 体积大小而定,如优选 2-5 微米。该第二金属层 32 能与压铸体 1 的磁性金属粒子形成电场与磁场双屏蔽效果,使制得的功率电感器对 EMI 高度抑制特点,彻底阻断了全频段电磁辐射交流的通道,为整机 EMC 特性的提升奠定了基础,适用于精密测试仪器及复杂电磁环境和辐射的外太空使用。对于铁铬合金层,优选其中含铬为 4.5-12% 的铁铬合金。在其他实施例中,该第二金属层 32 也可由内到外依次包括铜层 311 和镍层 313 。
该第二金属层 32 与第一金属层 31 之间的间隔在压铸体 1 上形成环形绝缘带 4 ,绝缘带 4 的宽度为 0.5-1.0mm 。该绝缘带 4 的作用是将第二金属层 32 与第一金属层 31 分开来,突出电极的作用。
该第一金属层 31 与第二金属层 31 在制作时可一体形成,再通过蚀刻出绝缘带 4 将第一、第二金属层 31 、 32 分开来。
参考图 8 ,并结合图 6 、 7 所示,该实施例的功率电感器的制造方法,
(1)、采用漆包线绕制制备内芯 2 ,并调配磁性金属粉料。
所制得的内芯 2 包括主体 21 及自主体 21 延伸出的延伸部 22 。
(2)、在压铸腔中填入 10-50wt% 的磁性金属粉料,将内芯 2 放入压铸腔中的磁性金属粉料上,内芯 2 的延伸部 22 分别轴向指向压铸腔的相对两端面。
(3)、在压铸腔中填入其余的磁性金属粉料,将内芯 2 覆盖,进行压铸并热固化,使得磁性金属粉料紧密包覆在内芯 2 的内、外部上,形成压铸体 1 ,内芯 2 的两延伸部 22 端面分别露出压铸体 1 的相对两端面,如图 8 中(a)图所示。
该步骤之后还可包括(3.1)、将得到的压铸体 1 在树脂液中浸涂,干燥固化,得到表面覆有树脂层 5 的压铸体 1 。
还可包括步骤(3.2)、将表面覆有树脂层 5 的压铸体 1 进行前处理:将压铸体 1 露出有内芯 2 延伸部 22 的相对端面进行磨削处理,使得延伸部 22 端面平齐而露出于压铸体 1 的该相对端面。如图 8 中(b)图所示。
该步骤(1)至(3)可参照上述实施例,在此不在赘述。而与上述实施例制造方法不同的于:
(4)、在压铸体上设置金属层 3 ,金属层 3 包括位于压铸体 1 对应延伸部 22 的相对两端部上的两第一金属层 31 ,还包括于两第一金属层 31 之间、包覆在压铸体 1 表面上的第二金属层 32 。第一金属层 31 将压铸体 1 的端部包覆起来形成电极,第二金属层 32 形成屏蔽层;在第二金属层 32 与第一金属层 31 之间形成有环形绝缘带 4 。
该步骤(4)包括:
(4.1)、对压铸体 1 进行化学沉铜或电镀铜层,位于压铸体 1 端面的铜层与延伸部 22 端面通过铜离子以化学金属键形式结合。在化学沉铜或电镀前还需对压铸体 1 进行清洗、活化处理,该清洗、活化处理采用现有技术手段实施即可。
电镀处理可一次大批量进行,如以 10000 个待镀压铸体 1 为一批次。电镀时,调整好适当的电镀电流和镀液温度,当电镀铜层到适当厚度后停止电镀,此时内芯 2 的延伸部 22 端面与铜层以化学金属键形式结合,而非焊接形式结合。该电镀步骤免除了现有采用焊接工艺带来的成本高、可靠性差的弊端,同时也具备一定的抗拉力强度。电镀铜层后进行清洗干燥。
(4.2)、在铜层上依次镀铁层或铁铬合金层及镍层,从而在压铸体 1 上形成金属层 3 ,如图 8 中(c)图所示。铁层或铁铬合金层厚度视压铸体 1 体积大小而定,如优选 2-5 微米。可以理解的,也可在铜层上镀镍层,而不需镀铁层或铁铬合金层,从而在压铸体上形成金属层。
对于表面覆有树脂层 5 的压铸体 1 ,金属层 3 设置在树脂层 5 上。
(4.3)、在金属层 3 对应压铸体 1 相对两端部上分别蚀刻出环形绝缘带 4 ,将金属层 3 分成对应延伸部 22 包覆在压铸体 1 端部上的两第一金属层 31 、及位于两第一金属层 31 之间包覆在压铸体 1 表面的第一金属层 32. 如图 8 中(d)图所示。
参考图 6 、 7 所示,本实施例获得的第一金属层 31 、第二金属层 31 由内到外均分别依次包括铜层 311 、 321 ,铁层或铁铬合金层 312 、 322 及镍层 313 、 323 。其中,两第一金属层 31 分别与对应的延伸部 22 端面接触,在压铸体 1 端部上形成电极,第一金属层 31 与延伸部 22 端面接触主要通过铜层 311 与延伸部 22 端面结合而接触;第二金属层 32 形成屏蔽层。
环形绝缘带 4 可采用激光或蚀刻工艺形成,通过该绝缘带 4 的设置,使第二金属层 32 与第一金属层 31 间隔,即,将屏蔽层从电极中分离开来。绝缘带 4 的宽度为 0.5-1.0mm 。
(4.4)、在第一金属层 31 的镍层 313 上进行镀锡,以在镍层 313 上形成锡层 314 。
镀锡作业采用滚笼镀锡,镀锡是为了保证电极的可焊性,还可防止蚀刻边缘的铜层 311 、铁铬层 312 等层的氧化。镀锡完成后即可清洗、干燥,得到最终成品。
由上述可知,本发明功率电感器的制造方法中,每一步骤都为可自动化生产奠定了基础,适用大批量自动化生产,能够大大减少材料成本和用工成本,其成本可为现行电感器生产工艺成本的 20% 以内,材料成本了降低了 50% , 开创了绕线式合金粉末一体成型电感器制作新里程。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内 。

Claims (15)

  1. 一种功率电感器,其特征在于,包括内芯、包覆所述内芯的压铸体及设置在所述压铸体上的金属层;所述内芯为漆包线绕制而成的线圈结构,所述内芯包括主体及自所述主体延伸出的两延伸部,所述压铸体采用磁性金属粉料压铸于所述内芯的内、外部而形成,两所述延伸部端面分别露出所述压铸体的相对两端面;
    所述金属层包括分别与两所述延伸部端面接触的两第一金属层,所述第一金属层对应延伸部将所述压铸体的端部包覆起来,形成所述功率电感器的电极。
  2. 根据权利要求1所述的功率电感器,其特征在于,所述第一金属层由内到外依次包括铜层及镍层;或,所述第一金属层由内到外依次包括铜层、铁层或铁铬合金层、及镍层;
    所述第一金属层上还设有锡层,所述锡层位于所述镍层上。
  3. 根据权利要求1所述的功率电感器,其特征在于,所述金属层还包括间隔位于两所述第一金属层之间的第二金属层;所述第二金属层于两所述第一金属层之间包覆在所述压铸体表面,形成所述功率电感器的屏蔽层;且所述第二金属层与第一金属层之间的间隔在所述压铸体上形成环形绝缘带。
  4. 根据权利要求3所述的功率电感器 ,其特征在于,所述第二金属层由内到外依次包括铜层及镍层;或,所述第二金属层由内到外依次包括铜层、铁层或铁铬合金层、及镍层。
  5. 根据权利要求3所述的功率电感器 ,其特征在于,所述绝缘带的宽度为0.5-1.0mm。
  6. 根据权利要求1所述的功率电感器,其特征在于,所述压铸体上还覆有树脂层,所述树脂层位于所述金属层下方而包覆所述压铸体相对两端面之外的表面。
  7. 根据权利要求1所述的功率电感器,其特征在于,所述磁性金属粉料为经过绝缘包覆的粒径为 5-50 微米的羰基铁粉、还原铁粉、电解铁粉、雾化铁粉、铁硅铝粉、铁硅合金粉、高磁通粉、非晶铁粉及铁氧体粉中的一种或多种的组合。
  8. 根据权利要求1所述的功率电感器,其特征在于,所述磁性金属粉料含有占粉料总重量的 0.8-1.2% 的粘结剂和 / 或 0.5-0.8% 的脱模剂。
  9. 一种功率电感器的制造方法,其特征在于,包括以下步骤:
    (1)、采用漆包线绕制制备内芯,并调配磁性金属粉料;
    (2)、在压铸腔中填入 10-50wt% 的所述磁性金属粉料,将所述内芯放入压铸腔中的所述磁性金属粉料上,所述内芯的延伸部分别轴向指向所述压铸腔的相对两端面;
    (3)、在所述压铸腔中填入其余的所述磁性金属粉料,将所述内芯覆盖,进行压铸并热固化,使得所述磁性金属粉料紧密包覆在内芯的内外、部上,形成压铸体,所述内芯的延伸部端面露出所述压铸体的相对两端面;
    (4)、在所述压铸体上设置金属层,所述金属层包括位于所述压铸体对应所述延伸部的相对两端部上的两第一金属层,所述第一金属层将所述压铸体的所述端部包覆起来形成电极,制得所述功率电感器。
  10. 根据权利要求9所述的功率电感器的制造方法,其特征在于,所述步骤(1)中,所述内芯为采用扁平或圆形的高强度热熔漆包线绕制而成的线圈结构;调配所述磁性金属粉料时,在所述磁性金属粉料中加入占粉料总重量的 0.8-1.2% 的粘结剂和 / 或 0.5-0.8% 的脱模剂。
  11. 根据权利要求9所述的功率电感器的制造方法,其特征在于,所述步骤(3)还包括(3.1)、将所述压铸体在树脂液中浸涂,干燥固化,得到表面覆有树脂层的压铸体;所述树脂层包覆所述压铸体所有表面、或所述压铸体相对两端面之外的表面。
  12. 根据权利要求11所述的功率电感器的制造方法,其特征在于,所述步骤(3)还包括步骤(3.2)、将所述表面覆有树脂层的压铸体进行前处理:将所述压铸体露出有所述内芯延伸部的端面进行磨削处理,使得所述延伸部端面平齐而露出于所述压铸体的所述端面。
  13. 根据权利要求9所述的功率电感器的制造方法,其特征在于,所述步骤(4)包括:
    (4.1)、对所述压铸体进行化学沉铜或电镀铜层,位于所述压铸体端面的所述铜层与所述延伸部端面通过铜离子以化学金属键形式结合;
    (4.2)、将设有铜层的压铸体对应所述延伸部的相对两端部保护起来,对所述压铸体两端部之外的表面部分进行蚀刻处理,以去除其上的铜层;
    (4.3)、在所述压铸体两端部的铜层上镀镍层,从而所述铜层和镍层在所述压铸体两端部上形成第一金属层;或,
    在所述压铸体两端部的铜层上依次镀铁层或铁铬合金层及镍层,从而所述铜层、铁层或铁铬合金层和镍层在所述压铸体两端部上形成第一金属层;
    (4.4)、在所述第一金属层的镍层上进行镀锡,以在所述镍层上形成锡层。
  14. 根据权利要求9所述的功率电感器的制造方法,其特征在于,所述步骤(4)中,所述金属层还包括于两所述第一金属层之间、包覆在所述压铸体表面上的第二金属层,所述第二金属层形成屏蔽层;在所述第二金属层与第一金属层之间形成有环形绝缘带。
  15. 根据权利要求14所述的功率电感器的制造方法,其特征在于,所述步骤( 4 )包括:
    (4.1)、对所述压铸体进行化学沉铜或电镀铜层,位于所述压铸体端面的所述铜层与所述延伸部端面通过铜离子以化学金属键形式结合;
    (4.2)、在所述铜层上镀镍层,从而在所述压铸体上形成金属层;或,
    在所述铜层上依次镀铁层或铁铬层及镍层,从而在所述压铸体上形成金属层;
    (4.3)、在所述金属层对应所述压铸体相对两端部上分别蚀刻出环形绝缘带,将所述金属层分成对应所述延伸部包覆在所述压铸体端部上的两第一金属层、及位于两第一金属层之间包覆在所述压铸体表面的第一金属层;
    (4.4)、在第一金属层的镍层上进行镀锡,以在所述镍层上形成锡层。
PCT/CN2013/078226 2012-12-26 2013-06-27 功率电感器及其制造方法 WO2014101380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220729087.2 2012-12-26
CN2012207290872U CN203013434U (zh) 2012-12-26 2012-12-26 功率电感器

Publications (1)

Publication Number Publication Date
WO2014101380A1 true WO2014101380A1 (zh) 2014-07-03

Family

ID=48605001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078226 WO2014101380A1 (zh) 2012-12-26 2013-06-27 功率电感器及其制造方法

Country Status (2)

Country Link
CN (1) CN203013434U (zh)
WO (1) WO2014101380A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961922A (zh) * 2019-04-03 2019-07-02 美磊电子科技(昆山)有限公司 一种顶部被覆导体的一体成型模铸电感结构及其制备工艺
CN114464439A (zh) * 2022-02-20 2022-05-10 广东创芯电子有限公司 一种屏蔽型功率贴片电感器及其成型方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050224A (zh) * 2012-12-26 2013-04-17 王向群 功率电感器及其制造方法
CN203013434U (zh) * 2012-12-26 2013-06-19 王向群 功率电感器
KR101642578B1 (ko) * 2013-10-16 2016-08-10 삼성전기주식회사 코일부품, 그 실장기판 및 포장체
CN107863222A (zh) * 2017-12-20 2018-03-30 四川长虹电子部品有限公司 一种埋入式大功率扼流圈及其制备方法
KR102029577B1 (ko) 2018-03-27 2019-10-08 삼성전기주식회사 코일 부품
JP2021057455A (ja) * 2019-09-30 2021-04-08 太陽誘電株式会社 コイル部品、回路基板及び電子機器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158485A (zh) * 1995-11-16 1997-09-03 摩托罗拉公司 可表面安装的电感器
CN1303111A (zh) * 1999-12-16 2001-07-11 Tdk株式会社 用于磁性铁氧体的粉末、磁性铁氧体、多层铁氧体元件及其制法
CN101911221A (zh) * 2008-01-08 2010-12-08 株式会社村田制作所 开磁路型层叠线圈部件及其制造方法
CN102449710A (zh) * 2009-05-01 2012-05-09 株式会社昌星 使用磁片的叠层电感器及其制造方法
CN103050224A (zh) * 2012-12-26 2013-04-17 王向群 功率电感器及其制造方法
CN103093947A (zh) * 2011-11-07 2013-05-08 三星电机株式会社 多层式电感器及其制造方法
CN203013434U (zh) * 2012-12-26 2013-06-19 王向群 功率电感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158485A (zh) * 1995-11-16 1997-09-03 摩托罗拉公司 可表面安装的电感器
CN1303111A (zh) * 1999-12-16 2001-07-11 Tdk株式会社 用于磁性铁氧体的粉末、磁性铁氧体、多层铁氧体元件及其制法
CN101911221A (zh) * 2008-01-08 2010-12-08 株式会社村田制作所 开磁路型层叠线圈部件及其制造方法
CN102449710A (zh) * 2009-05-01 2012-05-09 株式会社昌星 使用磁片的叠层电感器及其制造方法
CN103093947A (zh) * 2011-11-07 2013-05-08 三星电机株式会社 多层式电感器及其制造方法
CN103050224A (zh) * 2012-12-26 2013-04-17 王向群 功率电感器及其制造方法
CN203013434U (zh) * 2012-12-26 2013-06-19 王向群 功率电感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961922A (zh) * 2019-04-03 2019-07-02 美磊电子科技(昆山)有限公司 一种顶部被覆导体的一体成型模铸电感结构及其制备工艺
CN114464439A (zh) * 2022-02-20 2022-05-10 广东创芯电子有限公司 一种屏蔽型功率贴片电感器及其成型方法
CN114464439B (zh) * 2022-02-20 2024-05-17 广东创芯电子有限公司 一种屏蔽型功率贴片电感器及其成型方法

Also Published As

Publication number Publication date
CN203013434U (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2014101380A1 (zh) 功率电感器及其制造方法
CN107452691B (zh) 电子电路封装
CN106898479B (zh) 线圈组件及制造该线圈组件的方法
CN108074878B (zh) 复合磁性密封材料及使用其的电子电路封装体
CN108133912B (zh) 电子电路封装
TW557457B (en) Compressed magnetic core with built-in coil and manufacturing method thereof
US11195651B2 (en) Inductance element
KR20170039719A (ko) 표면 실장 인덕터 및 그 제조 방법
TWI579867B (zh) A dust core, a method for manufacturing the dust core, an electronic / electrical component provided with the dust core, and an electronic / electrical device to which the electronic / electrical component is mounted
CN103050224A (zh) 功率电感器及其制造方法
US20190295760A1 (en) Inductive element and manufacturing method
TWI681522B (zh) 使用複合磁性密封材料之電子電路封裝
TWI637408B (zh) 線圈零件
CN102744403A (zh) 一种纳米晶磁粉芯的制备方法
WO2016117201A1 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
TW201712132A (zh) 壓粉芯、該壓粉芯之製造方法、具備該壓粉芯之電感器、及安裝有該電感器之電子電氣機器
JP4308426B2 (ja) 無線障害抑制チョークコイル
US20190180926A1 (en) Electronic component
JP2003272927A (ja) チップインダクタおよびその製造方法
WO2016192095A1 (zh) 高密度一体成型电感的制造方法
EP3579254B1 (en) Powder compact core, method for manufacturing powder compact core, electric/electronic component provided with powder compact core, and electric/electronic apparatus having electric/electronic component mounted therein
JP3138490B2 (ja) チップインダクタの製造方法
JP2001338812A (ja) コイル及びその製造方法
CN114551075A (zh) 一种电感制作方法
KR100835886B1 (ko) 새로운 형태의 내부코일을 적용한 일체형 smd 인덕터의제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867438

Country of ref document: EP

Kind code of ref document: A1