WO2016192095A1 - 高密度一体成型电感的制造方法 - Google Patents

高密度一体成型电感的制造方法 Download PDF

Info

Publication number
WO2016192095A1
WO2016192095A1 PCT/CN2015/080827 CN2015080827W WO2016192095A1 WO 2016192095 A1 WO2016192095 A1 WO 2016192095A1 CN 2015080827 W CN2015080827 W CN 2015080827W WO 2016192095 A1 WO2016192095 A1 WO 2016192095A1
Authority
WO
WIPO (PCT)
Prior art keywords
density
inductor
manufacturing
powder
integrally formed
Prior art date
Application number
PCT/CN2015/080827
Other languages
English (en)
French (fr)
Inventor
郭雄志
肖强
阮佳林
邱俊
刘志达
罗涛
刘元来
Original Assignee
深圳市铂科磁材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市铂科磁材有限公司 filed Critical 深圳市铂科磁材有限公司
Priority to EP15893751.6A priority Critical patent/EP3306629B1/en
Priority to PCT/CN2015/080827 priority patent/WO2016192095A1/zh
Priority to US15/525,285 priority patent/US10283250B2/en
Publication of WO2016192095A1 publication Critical patent/WO2016192095A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • H01F1/14758Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/076Forming taps or terminals while winding, e.g. by wrapping or soldering the wire onto pins, or by directly forming terminals from the wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM

Definitions

  • the invention relates to the technical field of an inductor component, and in particular to a method for manufacturing a novel high-density integrally formed inductor.
  • UPS photovoltaic power inverters
  • photovoltaic inverters photovoltaic inverters
  • wind power etc.
  • filters, chokes, transformers and reactors are widely used in circuit control systems. Filtering, rectification, and inverter can all be applied to inductive components.
  • inductors or reactors plays a crucial role in the development of the modern electronics industry. Components made by traditional processes are gradually not fully applicable to the future development of miniaturization, and a high-performance miniaturized inductor or reactor is developed. To adapt to the rapid development of modern electronic technology, it has very significant significance.
  • the manufacturing process of a conventional inductor or reactor mainly includes:
  • the traditional wire-wound power inductor pin is basically drawn from the enameled wire and hung on a sheet-like or round-pin electrode bonded with epoxy resin and then soldered to make it reliable. The contact is good. In this way, the expansion and contraction rates of various materials are inconsistent.
  • the inductor works in the process of heating and cooling, which causes different expansion and contraction of related materials. If the time is long, the abnormal loss of the device pad will be caused. 2) In the process of the inductor, the current will flow due to the current flowing through the inductor. Under the high temperature condition of the long-term working body, the solder joint of the enameled wire lead-out head and the inductor pad is oxidized, resulting in an abnormal open circuit.
  • the patch type traditional winding power inductor Most of its pads use an epoxy-based organic adhesive to bond the inductor pads to the core body. Due to the difference in the assembly process of the inductor, it is easy to cause PCB and PCB. There is a lack of coplanarity when mounting, and there is a reliability doubt about the solder joint strength when the inductor is used for a long time.
  • the skeleton ferrite machine-assisted winding and automation.
  • the coil is heated. It is necessary to increase the wire diameter and the like to improve the heat dissipation.
  • the temperature derating is applied when the inductor is applied, and mechanical or electromagnetic resonance noise is generated from time to time during the operation of the inductor. That is to say, this type of inductor or reactor, due to the reliability requirements of the material cost, needs to be increased in material cost to meet the derating.
  • the method of segmenting the air gap can only solve the utilization of the partial winding space.
  • the magnetically permeable glue potting structure has the following defects in application: 1 In the process of magnetically encapsulating, there are inevitably structural defects such as bubbles, which may result in insufficient contact between the coil and the magnetically conductive rubber, resulting in abnormal heat dissipation and noise, etc. during the application of the inductor, shortening the service life of the inductor and making Customer circuit performance is poor; 2 When the magnetic conductive material is heated or cooled, its expansion and contraction rate are inconsistent with the magnetic core and the coil. When the inductor is operated under long-term high temperature and high current conditions, the rubber is peeled off, and the magnetic shielding and mechanical properties of the inductor are degraded, and reliability quality exists. Hidden dangers.
  • Chinese Invention Patent Publication No. CN101552091A A metal powder injection molding inductor and a processing method thereof are disclosed, which are formed by injecting a composite material mainly composed of a metal soft magnetic powder and a thermosetting binder.
  • This method solves to some extent the disadvantages of high cost of pressing powder core and complicated production and preparation.
  • this method is composed of ordinary thermosetting binder and ferromagnetic powder, and the density of the magnet after curing is low (4.5g/cm 3 ⁇ 5.2g/cm 3 ), low inductance and poor DC bias capability, etc.
  • the invention provides a method for manufacturing an inductor, which solves the problems of poor electromagnetic performance, low density, large volume, poor heat dissipation effect in the prior art, and solves the damage of the mechanical stress on the coil in the original integral molding, that is, no damage or damage.
  • the insulation capacity of the original coil is, no damage or damage.
  • the present invention adopts the following technical solutions:
  • a method for manufacturing a novel high-density integrally formed inductor includes the following steps:
  • the particle size of the second ferromagnetic powder is as follows: ⁇ 100 mesh to 200 mesh: 20 to 30 wt%, ⁇ 200 mesh to 500 mesh: 30 to 40 wt%, ⁇ 500 mesh: 30 to 50 wt%.
  • the first ferromagnetic powder is iron silicon powder.
  • the second ferromagnetic powder is at least one of iron silicon powder, iron powder, iron silicon aluminum powder, iron nickel powder and iron silicon chromium powder.
  • the resin glue is a modified epoxy silicone resin.
  • the coupling agent is propyl propyl methyl dimethoxy silane.
  • the accelerator is m-xylylenediamine.
  • the method further includes the step of disposing a heat sink outside the forming inductor.
  • the heat sink is made of pure aluminum.
  • the invention has the beneficial effects that the inductor manufactured by the above scheme has the following advantages over the conventional inductor manufacturing:
  • the invention encloses the magnetic core into the spiral enameled wire, simplifies the winding process of the inductor core, and can realize automatic production;
  • the inductor manufactured by the method of the invention has small volume, high density, high relative magnetic permeability, good heat dissipation and long service life;
  • Integral molded structure has low inductance noise
  • the appearance of the inductor can be arbitrarily designed to achieve a variety of shapes.
  • a method for manufacturing a novel high-density integrally formed inductor includes the following steps:
  • the weight ratio is uniformly mixed and stirred to obtain a magnetic composite material, and the second ferromagnetic powder is made of iron-silica powder of three sizes of ⁇ 100 mesh to 200 mesh, ⁇ 200 mesh to 500 mesh, and ⁇ 500 mesh. a ratio of 2:3:5 is mixed;
  • a heat sink is disposed outside the forming inductor, and the heat sink is made of pure aluminum.
  • a method for manufacturing a novel high-density integrally formed inductor includes the following steps:
  • the weight ratio is uniformly mixed and stirred to obtain a magnetic composite material, and the second ferromagnetic powder is made of iron-silica powder of three sizes of ⁇ 100 mesh to 200 mesh, ⁇ 200 mesh to 500 mesh, and ⁇ 500 mesh. a ratio of 25:35:40;
  • a heat sink is disposed outside the forming inductor, and the heat sink is made of pure aluminum.
  • a method for manufacturing a novel high-density integrally formed inductor includes the following steps:
  • Epoxy silicone resin, propyl propyl methyl dimethoxy silane, m-xylylene diamine 80:5:15 The weight ratio is evenly mixed and stirred to obtain a high temperature resin glue;
  • the weight ratio is uniformly mixed and stirred to obtain a magnetic composite material, and the second ferromagnetic powder is made of iron-silica powder of three sizes of ⁇ 100 mesh to 200 mesh, ⁇ 200 mesh to 500 mesh, and ⁇ 500 mesh. a ratio of 3:4:3 is mixed;
  • a heat sink is disposed outside the forming inductor, and the heat sink is made of pure aluminum.
  • a method for manufacturing a novel high-density integrally formed inductor includes the following steps:
  • the weight ratio is uniformly mixed and stirred to obtain a magnetic composite material, and the second ferromagnetic powder is made of iron-nickel powder of three sizes of ⁇ 100 mesh to 200 mesh, ⁇ 200 mesh to 500 mesh, and ⁇ 500 mesh. a ratio of 2:3:5 is mixed;
  • a heat sink is disposed outside the forming inductor, and the heat sink is made of pure aluminum.
  • the method manufactures an inductor of the same specification, and performs electrical performance comparison test with the existing integrally manufactured inductor, and obtains the following data:
  • Example 2 Example 3
  • Example 4 Number of coil turns 30 30 30 30 30
  • Effective magnetic path length l ( cm ) 15.8 15.8 15.8 15.8 15.8 15.8
  • Initial sensitivity L@0A 201.54 269.62 268.64 269.32 269.87 Sensitivity value retained at 5A current L@5A 180.26 266.69 265.51 265.84 266.95

Abstract

提供一种高密度一体成型电感的制造方法,包括以下步骤:(1)绕制漆包线线圈呈螺旋状;(2)将第一铁磁粉通过机械压制成磁芯;(3)将所述磁芯装入所述漆包线线圈的空心腔内;(4)将装有所述磁芯的所述漆包线线圈装入注射模具内;(5)将树脂胶,偶联剂,促进剂混合搅拌均匀,得到高温树脂胶;(6)将第二铁磁粉与所述高温树脂胶均匀搅拌,得到磁性复合材料;(7)将所述磁性复合材料注入所述注射模具的模腔内成型,固化得到外磁体;(8)冷却,脱膜,得到成型电感。采用上述方法得到的电感体积小,密度高,相对磁导率高,散热性较好,使用寿命长。采用一体成型方法,电感的制作较简单,降低生产成本。

Description

[根据细则37.2由ISA制定的发明名称] 高密度一体成型电感的制造方法 说明书
一种新型高密度一体成型电感的制造方法
技术领域
本发明涉及电感元器件技术领域,具体涉及一种新型高密度一体成型电感的制造方法。
背景技术
随着电子工业的发展,在各种开关电源、 UPS 、光伏逆变器、风能等电源中,滤波器、扼流圈、变压器和电抗器等大量应用于电路控制系统中。滤波、整流和逆变等都可以应用到电感类元件。
电感器或电抗器的使用对于现代电子工业的发展有着至关重要的作用,传统工艺制作的元件渐渐不能完全适用于未来小型化的发展,开发一种高性能的小型化的电感器或电抗器以适应现代电子科技的高速发展,具有非常重大的意义。
传统电感器或电抗器的制造工艺过程主要包括:
一、磁环类磁芯,人工穿线或机器辅助穿线。这种电感制造工艺繁琐,生产过程成本高,对磁环的一致性要求较高。而且大多数电感需要采用手动或者半自动化的方式在磁芯表面绕制绝缘线圈,不易实现生产自动化。对于工业大批量生产来说,需要耗费较多的人力和时间,这必然也会提高生产的成本,极大的限制了电感的发展和现代电子信息技术的进步。另外存在着 1 )电极焊盘可靠性不足,传统绕线功率电感引脚基本上是采用将漆包线直接引出挂在用环氧树脂等胶水粘合的片状或圆针型电极上再予以加锡焊接使其可靠接触良好,这样一来,各种材料膨胀和收缩率不一致,电感工作在发热、冷却过程中导致相关材料产生不同膨胀和收缩,时间长了会引起器件焊盘脱落等异常品质隐患; 2 )电感在工作过程中因电流流过会导致其本体发热,在其长期工作本体高温条件下漆包线引出头与电感焊盘挂线处焊点氧化导致电感开路等异常。
二、贴片式传统绕线功率电感。它的焊盘绝大部分采用以环氧树脂为主要材料的有机粘合胶将电感焊盘与磁芯本体粘结在一块组成,因电感的组装工艺差异容易导致其与 PCB 贴装时共面性差、电感长期工作时其焊点强度存在信赖性疑虑。
三、骨架类铁氧体,可机器辅助绕制与自动化。但由于漏磁通的引入导致线圈发热,需要增大线径等提高散热的方法进行应用时的温度降额使用,电感工作时也不时会产生机械或电磁谐振噪音。也就是说此类型的电感器或电抗器,在物料成本上由于可靠性要求的存在,所以需要在物料成本上要增加来满足降额。分段气隙的方法也只能解决部分绕制空间的利用率提高。
四、 ' 工 ' 字型铁氧体或合金类,可通过自动化生产。传统功率电感绝大部分产品是采用 ' 工 ' 字磁芯为主体磁芯材料绕制而成,其结构不可避免存在如下应用中的瓶颈: 1 )电感抗跌落性能不理想: ' 工 ' 字形电感结构决定了其远离磁芯中柱的电感本体边缘承受跌落或冲击能力变得薄弱,这样一来电感在受到跌落冲击时容易导致磁芯破碎等异常: 2 )整机组装过程中功率电感在安装不当或料件吸咐过程中位置偏斜容易引起电感本体破损异常。另外, ' 工 ' 字型绕线目前相当一部分产品采用导磁胶填充磁芯的侧面凹槽以增强其机械强度,减少漏磁干扰。目前这种导磁胶灌封结构在应用中存在如下缺陷: 1 )导磁胶灌封过程中不可避免存在气泡等结构缺陷,这样一来导致线圈与导磁胶不能充分接触从而导致电感应用过程中线圈散热不良及噪音等异常情形,缩短电感的使用寿命、使客户电路性能变差; 2 )导磁材料受热或冷却时其膨胀和收缩率与磁芯以及线圈并不一致,电感在长期高温和大电流条件下工作时导致胶脱落使电感磁屏蔽和机械特性等方面下降,存在可靠性品质隐患。
五、传统绕线功率电感,绝大部分采用开放、热缩套管、导磁胶等方式组成,(主要根据客户产品应用条件、可靠、稳定要求制成并选用)其结构对漏磁的屏蔽效果并不是很好,电感工作时对其周边 IC 、电源模块等电磁场敏感类元器件造成漏磁干扰,从而使得客户产品性能变差, EMI 对策成本增加。
六、传统绕线功率电感因结构和磁芯材料发展的局限性,针对高额定电流的电感产品其体积、外型尺寸受到了一定限制,不适合客户高密度布板以及对体积和空间要求较高的便携式电子产品,与新型发展起来的叠层和平板型功率电感相比存在一定的局限性。
七、 中国发明专利公布号 CN101552091A 公布了一种金属粉末注射成型电感器及其加工方法,其采用金属软磁粉末与热固性粘结剂为主的复合材料注射而成。这种方法一定程度上解决了压制粉芯成本高,生产制备复杂等不足,但此方法是由普通热固性粘结剂与铁磁粉复合而成,存在固化后磁体密度低( 4.5g/cm3 ~ 5.2g/cm3 )、电感低和直流偏置能力差等电磁性能差的缺点。
鉴于此,提供一种新型的高密度一体注射成型电感的制造方法成为必要。
发明内容
本发明提出一种电感制造方法,解决了现有技术中电感电磁性能差、密度低、体积大、散热效果不佳,且解决了原一体成型中机械应力对线圈的破坏,即不损伤或破坏原线圈的绝缘能力。
为实现上述目的, 本发明采用如下技术方案:
一种新型高密度一体成型电感的制造方法,包括以下步骤:
( 1 )绕制漆包线线圈呈螺旋状;
( 2 )将第一铁磁粉通过机械压制成磁芯,并保证所述磁芯密度为 6.2 ~ 6.9g/cm3
( 3 )将所述磁芯装入所述漆包线线圈的空心腔内;
( 4 )将装有所述磁芯的所述漆包线线圈装入注射模具内;
( 5 )将树脂胶 70 ~ 80wt% 、偶联剂 5 ~ 10wt% 、促进剂 15 ~ 20wt% 混合搅拌均匀,得到高温树脂胶;
( 6 )将第二铁磁粉与所述高温树脂胶按第二铁磁粉 88 ~ 94wt% 、高温树脂胶 6 ~ 12wt% 混合搅拌均匀,得到磁性复合材料;
( 7 )将所述磁性复合材料注入所述注射模具的模腔内成型,在 125 ~ 140 ℃ 固化 1.5 ~ 2.5h 得到外磁体,并保证所述外磁体密度为 5.5 ~ 6.2g/cm3
( 8 )冷却,脱膜,得到成型电感。
进一步的,所述第二铁磁粉的粒度配比如下: −100 目~ 200 目: 20 ~ 30wt% , −200 目~ 500 目: 30 ~ 40wt% , −500 目: 30 ~ 50wt% 。
进一步的,所述第一铁磁粉为铁硅粉。
进一步的,所述第二铁磁粉为铁硅粉、铁粉 、 铁硅铝粉、铁镍粉和铁硅铬粉中的至少一种。
进一步的,所述树脂胶为改性环氧硅树脂。
进一步的,所述偶联剂为巯丙基甲基二甲氧基硅烷。
进一步的,所述促进剂为间苯二甲二胺。
进一步的,完成所述步骤( 8 )后,还包括以下步骤:在所述成型电感外侧设置散热器。
更进一步的,所述散热器为纯铝材质。
与现有技术相比,本发明的有益效果是:通过上述方案制造的电感,较传统电感制造具有以下优点:
( 1 )本发明是将磁芯套入螺旋漆包线中,简化了电感磁芯的绕线工艺,并且可实现自动化生产;
( 2 )采用一体成型方法,电感的制作较简单,从而降低了生产成本;
( 3 )采用本发明方法制造的电感体积小,密度高,相对磁导率高,散热性较好,使用寿命长;
( 4 )磁芯与外磁体密度不同,保证整个电感磁体密度的最大化,从而使电感具有优异的电磁性能;
( 5 )整体实现全封闭磁屏蔽结构,电感的 EMI 效果较之现有的一体成型电感更好。
( 6 )一体成型结构电感噪音低;
( 7 )同尺寸直流阻抗最低;
( 8 )不存在机械应力对线圈的破坏,即不损伤或破坏线圈的绝缘能力;
( 9 )采用本发明方法,电感的外观形状可任意设计,从而实现形状的多样化。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例 1
一种新型高密度一体成型电感的制造方法,包括以下步骤:
( 1 ) 通过自动绕线机, 绕制漆包线线圈呈螺旋状;
( 2 )将第一铁磁粉通过机械压制成密度 6.5g/cm3 的磁芯,所述第一铁磁粉为铁硅粉;
( 3 )将所述磁芯装入所述漆包线线圈的空心腔内;
( 4 )将装有所述磁芯的所述漆包线线圈装入注射模具内;
( 5 )将改性环氧硅树脂、巯丙基甲基二甲氧基硅烷、间苯二甲二胺按 7:1:2 的重量比混合搅拌均匀,得到高温树脂胶;
( 6 )将第二铁磁粉与所述高温树脂胶按 94:6 的重量比混合搅拌均匀,得到磁性复合材料,所述第二铁磁粉是由 −100 目~ 200 目、 −200 目~ 500 目、 −500 目三种粒度等级的铁硅粉按 2:3:5 的比例混合而成;
( 7 )将所述磁性复合材料注入所述注射模具的模腔内成型,在 130 ℃ 固化 2h 得到外磁体,所述外磁体密度为 6.2g/cm3
( 8 )冷却,脱膜,得到成型电感。
( 9 )在所述成型电感外侧设置散热器,所述散热器为纯铝材质。
实施例 2
一种新型高密度一体成型电感的制造方法,包括以下步骤:
( 1 ) 通过自动绕线机, 绕制漆包线线圈呈螺旋状;
( 2 )将第一铁磁粉通过机械压制成密度 6.2g/cm3 的磁芯,所述第一铁磁粉为铁硅粉;
( 3 )将所述磁芯装入所述漆包线线圈的空心腔内;
( 4 )将装有所述磁芯的所述漆包线线圈装入注射模具内;
( 5 )将改性环氧硅树脂、巯丙基甲基二甲氧基硅烷、间苯二甲二胺按 75:7:18 的重量比混合搅拌均匀,得到高温树脂胶;
( 6 )将第二铁磁粉与所述高温树脂胶按 9:1 的重量比混合搅拌均匀,得到磁性复合材料,所述第二铁磁粉是由 −100 目~ 200 目、 −200 目~ 500 目、 −500 目三种粒度等级的铁硅粉按 25:35:40 的比例混合而成;
( 7 )将所述磁性复合材料注入所述注射模具的模腔内成型,在 125 ℃ 固化 2.5h 得到外磁体,所述外磁体密度为 5.9g/cm3
( 8 )冷却,脱膜,得到成型电感。
( 9 )在所述成型电感外侧设置散热器,所述散热器为纯铝材质。
实施例 3
一种新型高密度一体成型电感的制造方法,包括以下步骤:
( 1 ) 通过自动绕线机, 绕制漆包线线圈呈螺旋状;
( 2 )将第一铁磁粉通过机械压制成密度 6.9g/cm3 的磁芯,所述第一铁磁粉为铁硅粉;
( 3 )将所述磁芯装入所述漆包线线圈的空心腔内;
( 4 )将装有所述磁芯的所述漆包线线圈装入注射模具内;
( 5 )将环氧硅树脂、巯丙基甲基二甲氧基硅烷、间苯二甲二胺按 80:5:15 的重量比混合搅拌均匀,得到高温树脂胶;
( 6 )将第二铁磁粉与所述高温树脂胶按 88:12 的重量比混合搅拌均匀,得到磁性复合材料,所述第二铁磁粉是由 −100 目~ 200 目、 −200 目~ 500 目、 −500 目三种粒度等级的铁硅粉按 3:4:3 的比例混合而成;
( 7 )将所述磁性复合材料注入所述注射模具的模腔内成型,在 140 ℃ 固化 1.5h 得到外磁体,所述外磁体密度为 5.5g/cm3
( 8 )冷却,脱膜,得到成型电感。
( 9 )在所述成型电感外侧设置散热器,所述散热器为纯铝材质。
实施例 4
一种新型高密度一体成型电感的制造方法,包括以下步骤:
( 1 ) 通过自动绕线机, 绕制漆包线线圈呈螺旋状;
( 2 )将第一铁磁粉通过机械压制成密度 6.9g/cm3 的磁芯,所述第一铁磁粉为铁硅粉;
( 3 )将所述磁芯装入所述漆包线线圈的空心腔内;
( 4 )将装有所述磁芯的所述漆包线线圈装入注射模具内;
( 5 )将改性环氧硅树脂、巯丙基甲基二甲氧基硅烷、间苯二甲二胺按 7:1:2 的重量比混合搅拌均匀,得到高温树脂胶;
( 6 )将第二铁磁粉与所述高温树脂胶按 9:1 的重量比混合搅拌均匀,得到磁性复合材料,所述第二铁磁粉是由 −100 目~ 200 目、 −200 目~ 500 目、 −500 目三种粒度等级的铁镍粉按 2:3:5 的比例混合而成;
( 7 )将所述磁性复合材料注入所述注射模具的模腔内成型,在 130 ℃ 固化 2h 得到外磁体,所述外磁体密度为 6.0g/cm3
( 8 )冷却,脱膜,得到成型电感。
( 9 )在所述成型电感外侧设置散热器,所述散热器为纯铝材质。
根据实施例 1 ~ 4 所述方法制造相同规格的电感,与现有一体成型制造的电感做电气性能对比测试,得到下表数据:
现有一体成型电感 实施例 1 实施例 2 实施例 3 实施例 4
线圈圈数 30 30 30 30 30
有效磁路长度 l ( cm ) 15.8 15.8 15.8 15.8 15.8
初始感量 L@0A 201.54 269.62 268.64 269.32 269.87
5A 电流下保留的感量值 L@5A 180.26 266.69 265.51 265.84 266.95
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

  1. 1. 一种新型高密度一体成型电感的制造方法,其特征在于,包括以下步骤: ( 1 )绕制漆包线线圈呈螺旋状; ( 2 )将第一铁磁粉通过机械压制成磁芯,并保证所述磁芯密度为 6.2 ~ 6.9g/cm3 ; ( 3 )将所述磁芯装入所述漆包线线圈的空心腔内; ( 4 )将装有所述磁芯的所述漆包线线圈装入注射模具内; ( 5 )将 树脂胶 70 ~ 80wt% 、偶联剂 5 ~ 10wt% 、促进剂 15 ~ 20wt% 混合搅拌均匀,得到高温树脂胶; ( 6 )将第二铁磁粉与所述高温树脂胶按第二铁磁粉 88 ~ 94wt% 、高温树脂胶 6 ~ 12wt% 混合搅拌均匀,得到磁性复合材料; ( 7 )将所述磁性复合材料注入所述注射模具的模腔内成型,在 125 ~ 140 ℃ 固化 1.5 ~ 2.5h 得到外磁体,并保证所述 外磁体 密度为 5.5 ~ 6.2g/cm3 ; ( 8 )冷却,脱膜,得到成型电感。
    2. 根据权利要求 1 所述的新型高密度一体成型电感的制造方法,其特征在于,所述第二铁磁粉的粒度配比如下: −100 目~ 200 目: 20 ~ 30wt% , −200 目~ 500 目: 30 ~ 40wt% , −500 目: 30 ~ 50wt% 。
    3. 根据权利要求 1 所述的 新型高密度一体成型电感的制造方法 ,其特征在于,所述 第一铁磁粉 为铁硅粉。
    4. 根据权利要求 1 或 2 所述的 新型高密度一体成型电感的制造方法 ,其特征在于,所述 第二铁磁粉 为铁硅粉、铁粉 、 铁硅铝粉、铁镍粉和铁硅铬粉中的至少一种。
    5. 根据权利要求 1 所述的新型高密度一体成型电感的制造方法,其特征在于,树脂胶为改性环氧硅树脂。
    6. 根据权利要求 1 所述的 新型高密度一体成型电感的制造方法 ,其特征在于,所述偶联剂为巯丙基甲基二甲氧基硅烷。
    7. 根据权利要求 1 所述的 新型高密度一体成型电感的制造方法 ,其特征在于,所述促进剂为间苯二甲二胺。
    8. 根据权利要求 1 所述的 新型高密度一体成型电感的制造方法 ,其特征在于, 完成所述步骤( 8 )后,还包括以下步骤:在所述成型电感外侧设置散热器 。
    9. 根据权利要求 7 所述的 新型高密度一体成型电感的制造方法 ,其特征在于, 所述散热器为纯铝材质 。
PCT/CN2015/080827 2015-06-04 2015-06-04 高密度一体成型电感的制造方法 WO2016192095A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15893751.6A EP3306629B1 (en) 2015-06-04 2015-06-04 Method for manufacturing high-density integrally-molded inductor
PCT/CN2015/080827 WO2016192095A1 (zh) 2015-06-04 2015-06-04 高密度一体成型电感的制造方法
US15/525,285 US10283250B2 (en) 2015-06-04 2015-06-04 Method for manufacturing high-density integrally-molded inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080827 WO2016192095A1 (zh) 2015-06-04 2015-06-04 高密度一体成型电感的制造方法

Publications (1)

Publication Number Publication Date
WO2016192095A1 true WO2016192095A1 (zh) 2016-12-08

Family

ID=57439821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080827 WO2016192095A1 (zh) 2015-06-04 2015-06-04 高密度一体成型电感的制造方法

Country Status (3)

Country Link
US (1) US10283250B2 (zh)
EP (1) EP3306629B1 (zh)
WO (1) WO2016192095A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791830B (zh) * 2018-09-13 2022-01-18 深圳华络电子有限公司 传递模塑电感元件及其制造方法
CN112164570A (zh) * 2020-10-19 2021-01-01 湖南创一电子科技股份有限公司 金属磁粉芯一体式芯片电感的制备方法
CN114300249A (zh) * 2021-12-31 2022-04-08 安徽龙磁金属科技有限公司 一种大功率复合成型电感的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552091A (zh) * 2008-12-31 2009-10-07 王向群 金属粉末注射成型电感器及其加工方法
US20100283568A1 (en) * 2006-03-21 2010-11-11 Vacuumschmelze Gmbh & Co, Kg Paint Composition, in Particular Anti-Corrosive Paint for Rare Earth Permanent Magnets
CN103151131A (zh) * 2003-11-25 2013-06-12 麦格昆磁有限公司 用于铁基稀土粉末上的有机钝化层的涂料配方和应用
CN104200981A (zh) * 2014-08-20 2014-12-10 深圳市铂科磁材有限公司 一种电感制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617426B2 (ja) * 1999-09-16 2005-02-02 株式会社村田製作所 インダクタ及びその製造方法
JP2002319520A (ja) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd インダクタ及びその製造方法
DE102005020913B3 (de) * 2005-05-04 2006-08-03 Brückner Maschinenbau GmbH Hochfeste Barrierefolie für Verpackungszwecke auf Polypropylenbasis, Verfahren zu ihrer Herstellung und ihre Verwendung
RU2413343C2 (ru) * 2006-08-11 2011-02-27 Мицуи Кемикалз, Инк. Сердечник антенны и антенна
WO2008123362A1 (ja) * 2007-03-27 2008-10-16 Zeon Corporation 重合性組成物及び成形体
KR20100028384A (ko) * 2008-09-04 2010-03-12 삼성전기주식회사 복합체 및 그의 제조방법
JP5995181B2 (ja) * 2011-03-24 2016-09-21 住友電気工業株式会社 複合材料、リアクトル用コア、及びリアクトル
SG11201506588QA (en) * 2013-03-04 2015-09-29 Visa Int Service Ass Cryptographic label for attachment to a communication card
TWM465652U (zh) * 2013-06-14 2013-11-11 yi-tai Zhao 電感器結構改良

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151131A (zh) * 2003-11-25 2013-06-12 麦格昆磁有限公司 用于铁基稀土粉末上的有机钝化层的涂料配方和应用
US20100283568A1 (en) * 2006-03-21 2010-11-11 Vacuumschmelze Gmbh & Co, Kg Paint Composition, in Particular Anti-Corrosive Paint for Rare Earth Permanent Magnets
CN101552091A (zh) * 2008-12-31 2009-10-07 王向群 金属粉末注射成型电感器及其加工方法
CN104200981A (zh) * 2014-08-20 2014-12-10 深圳市铂科磁材有限公司 一种电感制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306629A4 *

Also Published As

Publication number Publication date
US10283250B2 (en) 2019-05-07
EP3306629A4 (en) 2019-01-23
EP3306629A1 (en) 2018-04-11
EP3306629B1 (en) 2020-04-22
US20170345540A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2013095036A1 (ko) 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
CN104900390B (zh) 一种新型高密度一体成型电感的制造方法
WO2010008257A2 (ko) 스프링 조립체 및 그를 이용한 테스트 소켓
JP2005210055A (ja) 面実装コイル部品及びその製造方法
WO2016192095A1 (zh) 高密度一体成型电感的制造方法
CN104200981A (zh) 一种电感制造方法
CN101752059B (zh) 一种绕线功率电感元件及其制造方法
CN102122563B (zh) 一种绕线电感及其制造方法
WO2016192094A1 (zh) 一种电感制造方法
CN201845638U (zh) 一种宽带电感器
WO2016192092A1 (zh) 一种大功率圆环形新型电抗器及其制造方法
CN201600982U (zh) 一种绕线功率电感元件
US8610526B2 (en) Resin composition, electronic component using the same and production method therefor
JP6593211B2 (ja) コイル部品
JP6724688B2 (ja) コイル部品
KR100835886B1 (ko) 새로운 형태의 내부코일을 적용한 일체형 smd 인덕터의제조방법
JP3138490B2 (ja) チップインダクタの製造方法
KR20220079872A (ko) 일체형 동시소성 인덕터 및 그 제조방법
WO2013141653A1 (en) Wireless power apparatus
WO2023085549A1 (ko) 페라이트 코어를 사용한 코일매립형 인덕터 및 그 제조방법
JPH08162339A (ja) コイル部品
CN201374240Y (zh) 一种模压绕线电感器
KR101862466B1 (ko) 인덕터 및 이를 구비한 패키지
US20180366266A1 (en) Magnetically Shielded Power Inductor And Production Method
CN211788556U (zh) 一种变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15525285

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015893751

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE