WO2014101105A1 - 具有凸透镜结构的像元结构及制造方法 - Google Patents

具有凸透镜结构的像元结构及制造方法 Download PDF

Info

Publication number
WO2014101105A1
WO2014101105A1 PCT/CN2012/087836 CN2012087836W WO2014101105A1 WO 2014101105 A1 WO2014101105 A1 WO 2014101105A1 CN 2012087836 W CN2012087836 W CN 2012087836W WO 2014101105 A1 WO2014101105 A1 WO 2014101105A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex lens
light transmissive
transmissive material
deep trench
light
Prior art date
Application number
PCT/CN2012/087836
Other languages
English (en)
French (fr)
Inventor
赵宇航
康晓旭
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Publication of WO2014101105A1 publication Critical patent/WO2014101105A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures

Definitions

  • the present invention relates to the field of CMOS image sensor technology, and in particular to a pixel structure and a manufacturing method of a CMOS image sensor having a convex lens structure.
  • CMOS image sensors are rapidly evolving due to their compatibility with CMOS processes. Compared with the CCD process, the process is completely compatible with the CMOS process. By combining the photodiode and the CMOS processing circuit on the silicon substrate, the cost is greatly reduced on the basis of ensuring performance, and the integration degree can be greatly improved. , manufacturing higher pixel products.
  • CMOS image sensors use frontal illumination. Photodiodes and CMOS processing circuits are implemented together on a silicon substrate using the same level, while chip interconnects are fabricated on CMOS processing circuits. Pass without stepping through the interconnects.
  • conventional semiconductor materials have poor light transmittance, so it is necessary to remove all of the dielectric layers on the photodiode and fill the light-transmitting material to enhance its light absorption. At the same time, due to the thicker layers of the back channel and the thicker thickness, the dielectric layer on the photodiode is removed, and a deep trench is formed. How to achieve planarization and complete the subsequent color-filter and color Processes such as microlens are technical difficulties in traditional processes and products.
  • the traditional CIS (CMOS image sensor) structure is to use the organic material and related processes to manufacture the color filter layer and the microlens in the subsequent process after the CMOS process is completed, and the microlens is used to converge the light to realize the light of each pixel. Absorption of the signal.
  • the microlens fabricated on the color filter layer is a plano-convex lens structure, and is limited by its material, structure, and process limitations. The force is limited, there may be some light that cannot be concentrated in the pixel and lost, which directly affects the performance of the CIS chip. In addition, a certain distance is needed to concentrate the light on the photodiode, and the light is in the medium. The loss increases as the transmission distance increases.
  • An object of the present invention is to remedy the above-mentioned deficiencies of the prior art and to provide a pixel structure and a manufacturing method having a convex lens structure.
  • a pixel structure having a convex lens structure of the present invention comprising a photosensitive element on a silicon substrate and a multilayer structure for a standard CMOS device having a downwardly convex lower convex lens and an upward convex upper convex lens above the photosensitive element
  • the upper convex lens is located above the lower convex lens and constitutes a full convex lens with the lower convex lens.
  • the multilayer structure includes a polysilicon layer, a contact hole layer, a metal interconnection layer, a via layer, and an interconnect dielectric layer; the upper convex lens and the lower convex lens are both light transmissive materials.
  • the photosensitive element has a deep trench above it, the bottom of the deep trench being filled with a light transmissive material disposed in the deep trench and above the light transmissive material.
  • the filling is semi-filled to form a circular arc-shaped concave surface.
  • the upper surface of the lower convex lens extends upward to the top surface of the multilayer structure or the top surface of the multilayer structure, and the upper convex lens is disposed on the upper surface of the lower convex lens.
  • the top surface of the multilayer structure is the top surface of the deep trench.
  • a dielectric layer is further disposed between the bottom surface of the deep trench and the photosensitive element. That is, The deep trench is not a one-pass structure, but the deep trench can be etched only on the top layer of the dielectric layer above the photosensitive element or several layers near the top surface, which achieves the purpose of providing the lower convex lens and also eliminates the need for Part of the process steps.
  • a central color filter layer is further disposed between the upper convex lens and the lower convex lens.
  • the color filter layer can be omitted.
  • a thick dielectric layer disposed above the thick dielectric layer.
  • "above the region of the photosensitive element” herein means directly above the photosensitive element region, in order to eliminate the possibility of providing a polysilicon layer, a contact hole layer, a via layer or a metal interconnection layer directly above the photosensitive element region;
  • the "thick dielectric layer” consists of and consists of only a plurality of interconnected dielectric layers in a multilayer structure, the top surface of which is the top surface of the multilayer structure.
  • the upper surface of the thick dielectric layer is provided with an accommodating layer accommodating a lower convex lens, and the accommodating layer has a groove, and the lower convex lens is disposed in the groove.
  • the bottom of the groove is filled with a light transmissive material, and the lower convex lens is disposed above the light transmissive material.
  • the filling is semi-filled to form a circular arc-shaped concave surface.
  • the upper convex lens is located above the upper surface of the lower convex lens and is integral with the lower convex lens.
  • a thick color filter layer is further disposed between the thick dielectric layer and the accommodating layer.
  • the color filter layer can be omitted.
  • the receiving layer is a light transmissive material.
  • the groove area is larger than the area of the photosensitive element region. So set up so as to suck Receive more light to the photosensitive element.
  • the photosensitive element is a photodiode.
  • a manufacturing method of the pixel structure having a convex lens structure of the present invention comprises the following steps: Step S101, disposing a photosensitive element on a silicon substrate and a multilayer structure for a standard CMOS device, and removing the photosensitive element by a deep trench etching process a dielectric layer above to form a deep trench;
  • Step S102 filling the deep trench with the first light transmissive material one or more times to form a semi-filled structure having a circular arc-shaped concave surface;
  • Step S103 performing exposure and development on the first light transmissive material by using a lithography plate to remove the first light transmissive material on the periphery of the deep trench;
  • Step S104 filling the concave half-filled structure with the second light-transmitting material to form a lower convex lens, and achieving surface flattening;
  • Step S105 preparing a convex lens on the planarized surface to form a full convex lens structure.
  • the method of the present invention is performed after the standard CMOS process device, interconnection level, and PAD (pass-up) passivation level are completed.
  • the deep trench etching process in step S101 removes the dielectric layer and stays on the gate oxide layer (such as Si0 2 ).
  • the removed dielectric layer includes a metal front dielectric layer (such as SiO 2 ), an interconnect dielectric layer (such as SiO 2 ), and a passivation dielectric layer (such as SiO 2 ) over the gate oxide layer
  • step S101 includes The interconnect layer dielectric over the contact hole etch stop layer (such as SiN or SiON) in the metal front dielectric is removed, and the contact hole etch stop layer in the metal front dielectric is removed, and finally stays over the gate oxide layer.
  • This step utilizes a high etch selectivity ratio of Si0 2 to SiN and a high etch selectivity ratio of SiN to Si0 2 .
  • the first light transmissive material in step S102 is a negative light transmissive photosensitive material.
  • the main component of the negative light-transmitting photosensitive material is a transparent resin, specifically an organic macromolecular chain structure composed of C, H, and 0, and contains photosensitive components such as polyisoprene, phenolic formaldehyde of novolac resin, Diazonaphthoquinone (DNQ) and so on.
  • Step S103 uses the same lithographic plate as the deep trench etch process for exposure and development to realize cost control, and does not bring about the influence of the stencil itself, so that a better lithography effect can be achieved.
  • step S103 the first light-transmitting material of the outer periphery of the deep trench and the inner edge of the deep trench are exposed and developed by the negative effect of the light-transmitting photosensitive material by an exposure process, and step S103 may be included in each step.
  • the first filling material is exposed and developed using a photolithography plate to remove the first light transmissive material around the deep trenches.
  • steps S102 and S103 are applied to the case where the trench is deep, and the second number is only required to ensure that a semi-filled structure having a circular arc-shaped concave surface can be formed in the deep trench, so as to facilitate Subsequent flattening steps.
  • the second light transmissive material in the step S104 is a negative light transmissive non-photosensitive material, such as a synthetic cyclized rubber resin and a diarylated photosensitive material, which can be dissolved in the developing solution in the absence of light, and the light is irradiated. Thereafter, the material is glued and no longer dissolved in the developer, and the second light transmissive material has a higher refractive index than the first light transmissive material.
  • the first light transmissive material in step S104 may also be a positive light transmissive photosensitive material, and step S104 includes preparing a color filter layer on top of the upper surface of the lower convex lens, and then preparing an upper convex lens thereon.
  • the first light transmissive material in step S104 is a color filter material.
  • Step S201 disposing a photosensitive element and a multilayer structure for a standard CMOS device on a silicon substrate, and removing a dielectric layer above the photosensitive element by a deep trench etching process to form a deep trench;
  • Step S202 depositing a dielectric layer on the multilayer structure and the deep trench, and removing the dielectric layer at the bottom of the deep trench;
  • Step S203 using a SOG process (spin on glass coating) to fill the bottom of the deep trench with the first light transmissive material to form a semi-filled structure having a circular arc-shaped concave surface, and removing the first periphery of the deep trench Light transmissive material;
  • SOG process spin on glass coating
  • Step S204 filling the concave semi-filled structure with the second light-transmitting material to form a lower convex lens, and achieving surface flattening;
  • Step S205 preparing a convex lens on the planarized surface to form a full convex lens structure.
  • the method of the present invention is performed after the standard CMOS process device, interconnection level, and PAD (pass-up) passivation level are completed.
  • step S201 a portion of the dielectric layer is removed in step S201, and a portion of the deep trench bottom to the dielectric layer between the photosensitive elements is retained.
  • the dielectric layer in step S202 is SiN, and the deposition process includes CVD, PVD, and the like. Further, the filling in step S204 utilizes a CVD or PVD deposition process.
  • step S204 is a CMP chemical mechanical polishing process, and the dielectric layer acts as a barrier layer such as SiN.
  • step S205 includes preparing a color filter layer on top of the upper surface of the lower convex lens, and then preparing a convex lens thereon.
  • Step S301 disposing a photosensitive element on a silicon substrate and a multilayer structure for a standard CMOS device, coating the surface of the multilayer structure with a first a light transmissive material, the first light transmissive material is etched to form a recess, and the receiving layer is realized;
  • Step S302 filling a second light transmissive material at the bottom of the groove to form a semi-filled structure having a circular arc-shaped concave surface, and removing the second light transmissive material around the periphery of the groove;
  • Step S303 filling the concave half-filled structure with the third light-transmissive material, and coating the non-accommodating layer to etch away the third light-transmitting material except the groove region;
  • Step S304 heating and melting the third light-transmitting material, and utilizing the surface tension thereof to form an upper convex lens, realizes a full convex lens structure.
  • the method of the present invention is performed after the standard CMOS process device, interconnection level, and PAD (pass-up) passivation level are completed.
  • the surface of the multilayer structure is the surface of the silicon wafer.
  • the material of the first light transmissive material to the third light transmissive material is described in the first manufacturing method described above, and therefore will not be described again;
  • the third light transmissive material may be a conventional microlens material.
  • step S303 includes filling the concave semi-filled structure with the third light transmissive material to form a lower convex lens, and achieving surface flattening; coating the fourth light transmissive material on the third light transmissive material, and etching and removing A fourth light transmissive material other than the lower convex lens region, in step S304, is heated and the fourth light transmissive material is melted, and the surface tension is used to form an upper convex lens to realize a full convex lens structure.
  • the third light transmissive material and the fourth light transmissive material are different materials, and the third light transmissive material has a melting temperature higher than a melting temperature of the fourth light transmissive material.
  • the present invention utilizes two convex convex microlenses of an upper convex lens and a lower convex lens to form a full convex lens having a stronger concentrating ability, thereby concentrating incident light in a shorter distance.
  • the process is greatly simplified, the loss of light is reduced, the sensitivity of the pixel is improved, the performance and reliability of the CIS chip are improved, and the cost of the chip is greatly reduced.
  • Figures la to lg are schematic structural views of each step of the method for fabricating the pixel structure of the first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a pixel structure of a second embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a pixel structure of a third embodiment of the present invention.
  • 4a to 4e are schematic structural views of each step of a method for fabricating a pixel structure according to a fourth embodiment of the present invention.
  • 5a to 5f are structural schematic views of each step of the method of fabricating the pixel structure of the fifth embodiment of the present invention.
  • Step S101 as shown in FIG. 1, a photodiode and a multilayer structure for a standard CMOS device are arranged on a silicon substrate, and a silicon wafer to be processed is prepared, including setting a standard CMOS process device on the silicon substrate 1, and a contact hole layer 2 , copper interconnect layer 3 and PAD passivation layer 4 and the like.
  • the dielectric layer above the sensitive diode (not shown) is completely removed to form a deep trench.
  • Step S103, FIG. 1c the first groove is filled with the negative transparent photosensitive material 6 containing polyisoprene to form a concave semi-filled structure.
  • Step S104, FIG. 1d performing exposure development using the same photolithography plate as the deep trench etching process to remove the light-transmitting photosensitive material around the deep trench.
  • Step S105, FIG. 3 using a synthetic cyclized rubber resin negative light transmissive non-photosensitive material 7 having a refractive index higher than that of the above negative light-transmitting photosensitive material, the concave groove formed after the first filling and exposure development is performed.
  • the second filling forms a lower convex lens to planarize the surface of the silicon wafer.
  • Step S106, FIG. lf, the first color filter layer 8 is formed on the surface of the planarized silicon wafer.
  • the photodiode has a downwardly convex lower convex lens and an upward convex upper convex lens, and the upper convex lens is located above the lower convex lens, and forms a full convex lens with the lower convex lens.
  • FIG. 2 is a schematic view of a second embodiment of the present invention, which is different from the first embodiment in that the first filling material in the second embodiment is the first color filter material 61 and then directly on the surface of the planarized silicon wafer.
  • a standard first microlens 92 is fabricated.
  • the first color filter material 61 forms a lower convex lens
  • the first microlens 92 forms an upper convex lens to collectively form a full convex lens, and the step of preparing a color filter layer is omitted.
  • the third deep trench 31 is not a structure that passes through the bottom, but There is also a dielectric layer between the bottom surface and the photosensitive element, and the deep trench is etched only on the top layer of the dielectric layer above the photosensitive element or several layers near the top surface.
  • This embodiment employs a more CMOS compatible process to achieve a full convex lens, as follows:
  • Step S201 disposing a photosensitive element and a multilayer structure for a standard CMOS device on a silicon substrate, removing a dielectric layer above the photosensitive element by a deep trench etching process to form a third deep trench 31;
  • Step S202 Depositing a dielectric layer 32 (SiN) on the multilayer structure and the third deep trench 31 by a CVD process, as a barrier layer, and removing the dielectric layer 32 at the bottom of the third deep trench 31;
  • Step S203 SOG
  • the third transparent material A 33 is filled in the bottom of the third deep trench 31 to form a semi-filled structure having a circular arc-shaped concave surface, and the third light-transmitting material A on the periphery of the third deep trench 31 is removed;
  • Step S204 filling the concave semi-filled structure with the high refractive index third light-transmissive material B 34 by a CVD process to form a lower convex lens, and planarizing the CMP processing surface with the dielectric layer 32 as a barrier layer;
  • Step S205 preparing a third color filter layer 35 on the upper surface of the lower convex lens, and preparing a third microlens 36 thereon to form a full convex lens structure.
  • the upper side of the photosensitive element is composed of a multi-layer interconnect dielectric layer in a multi-layer structure, that is, the multi-layer structure above the photosensitive element does not etch a deep trench, the full convex lens It is prepared on the upper surface of the multilayer structure.
  • the specific manufacturing method is as follows:
  • Step S301 as shown in FIG. 4a, a photosensitive member and a multilayer structure for a standard CMOS device are arranged on a silicon substrate, and a fourth color filter layer 41 and a fourth light-transmitting material A are sequentially coated on the surface of the multilayer structure.
  • the fourth light transmissive material A 42 is etched to form a first recess 43 to achieve a receiving layer, wherein the first recess 43 has an area larger than the area of the photosensitive element region, as shown in FIG. 4b;
  • Step S302 the first groove 43 is filled with a fourth light transmissive material B 44, forming a semi-filled structure having a circular arc-shaped concave surface, removing the fourth light-transmissive material B outside the first groove, as shown in FIG. 4b;
  • Step S303 filling the concave semi-filled structure with the fourth light-transmissive material C 45, and coating the non-accommodating layer, etching to remove the fourth light-transmissive material C outside the first groove region, as shown in Figures 4c and 4d;
  • step S304 the fourth light transmissive material C 45 is heated and melted, and the surface tension is used to form an upper convex lens to realize a full convex lens structure, as shown in Fig. 4e.
  • the difference between this embodiment and the fourth embodiment is that the upper convex lens and the lower convex lens of the embodiment are made of different materials. Therefore, different manufacturing methods include:
  • Step S401 as shown in FIG. 5a, a photosensitive element and a multilayer structure for a standard CMOS device are arranged on a silicon substrate, and a fifth color filter layer 51 and a fifth light transmissive material A 52 are sequentially coated on the surface of the multi-layer structure, Etching the fifth light-transmissive material A 52 to form a second recess 53 to achieve a receiving layer, wherein the second recess 53 has an area larger than the area of the photosensitive element region, as shown in FIG. 5b;
  • Step S402 the second groove 43 is filled with a fifth light transmissive material B 54 to form a semi-filled structure having a circular arc-shaped concave surface, and the fifth light-transmissive material B outside the second groove is removed, as shown in FIG. 5b;
  • Step S403 filling the concave semi-filled structure with the fifth light-transmissive material C 55, and coating the non-accommodating layer to form a lower convex lens, planarizing treatment, as shown in FIG. 5c;
  • Step S404 as shown in FIG. 5d, coating a fifth light transmissive material D56 on the fifth light transmissive material C55, and etching away the fifth light transmissive material D56 outside the lower convex lens region, wherein the fifth light transmissive material C 55 and the fifth light transmissive material D 56 is a different material, and the fifth light transmissive material C 55 has a higher melting temperature than the fifth light transmissive material D 56;
  • Step S405 heating and melting the fifth light-transmitting material D 56, and using the surface tension thereof to form an upper convex lens, realizes a full convex lens structure, as shown in Fig. 5f.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种具有凸透镜结构的像元结构及制造方法。像元结构包括硅衬底(1)上的光敏元件和用于标准CMOS器件的多层结构(2,3,4),光敏元件的上方具有向下凸的下凸透镜(91)和向上凸的上凸透镜(92),上凸透镜(92)位于下凸透镜(91)的上方,并与下凸透镜(91)组成全凸透镜。采用这种像元结构可以有效降低光损失,提高像元的灵敏度,提升芯片的性能和可靠性,并大幅降低芯片成本。

Description

具有凸透镜结构的像元结构及制造 法
技术领域
本发明涉及 CMOS影像传感器技术领域, 尤其涉及一种具有凸透镜结 构的 CMOS影像传感器的像元结构及制造方法。 技术背景
CMOS影像传感器由于其与 CMOS工艺兼容的特点, 从而得到快速发 展。 相对于 CCD工艺, 其工艺完全与 CMOS工艺兼容, 其通过将光敏二极 管和 CMOS 处理电路一起做在硅衬底上, 从而在保证性能的基础上大幅度 降低了成本, 同时可以大幅度提高集成度, 制造像素更高的产品。
传统 CMOS影像传感器是使用正面光照的方法,将光敏二极管和 CMOS 处理电路一起做在硅衬底上使用同一层次实现,而芯片互连则制造在 CMOS 处理电路之上, 光敏二极管之上为了光线的通过而不进行互连线的排步。 然 而, 常规半导体材料的透光性较差, 因此需要把光敏二极管上面的介质层次 全部去除, 并填充透光材料, 以增强其光吸收。 同时, 由于后道互连层次较 多, 厚度较厚, 导致光敏二极管上面介质层去除后, 形成很深的沟槽, 如何 实现平坦化, 并完成后续的彩色滤光层 (color-filter) 和微透镜 (microlens) 等工艺是传统工艺、 产品的技术难点。
同时, 传统 CIS (CMOS影像传感器)结构是在 CMOS工艺完成后, 在 后续工艺中利用有机材料及相关工艺制造彩色滤光层和微透镜, 利用微透镜 来汇聚光线, 实现每个像元对光信号的吸收。 然而, 彩色滤光层上制作的微 透镜是平凸透镜结构, 且限于其材料、 结构和工艺等限制, 其汇聚光线的能 力有限, 可能会有部分光线无法汇聚到像元之中而损失掉, 直接影响 CIS芯 片的性能;此外,还需要一定的距离才能将光线较好地汇聚在光敏二极管上, 而光线在媒质中又随传输距离增加而损失增加。
因此, 如何提高 CIS像元结构汇聚光线的能力, 以提高 CIS芯片的性能 是本领域技术人员亟待解决的问题之一。 发明概要
本发明的目的在于弥补上述现有技术的不足, 提供一种具有凸透镜结构 的像元结构及制造方法。
本发明的具有凸透镜结构的像元结构, 其包括硅衬底上的光敏元件和用 于标准 CMOS 器件的多层结构, 该光敏元件的上方具有向下凸的下凸透镜 和向上凸的上凸透镜, 该上凸透镜位于下凸透镜的上方, 并与下凸透镜组成 全凸透镜。
其中, 该多层结构包括多晶硅层、 接触孔层、 金属互连层、 通孔层和互 连介质层; 该上凸透镜和下凸透镜均为透光材料。
在一个应用中, 该光敏元件上方具有深沟槽, 该深沟槽的底部由透光材 料填充, 该下凸透镜设于深沟槽内并于透光材料的上方。 其中, 该填充为半 填充, 以形成圆弧形凹形表面。
进一步地, 该下凸透镜的上表面向上延伸至多层结构顶面或多层结构顶 面以上, 该上凸透镜设于下凸透镜上表面之上。 其中, 该多层结构顶面即是 深沟槽顶面。
进一步地, 该深沟槽的底面与光敏元件之间还具有介质层。 也就是说, 深沟槽并非一通到底的结构, 而是可以仅在光敏元件上方介质层的顶层或靠 近顶面的几个层刻蚀出深沟槽, 这样既达到了设置下凸透镜的目的, 也省去 了部分工艺步骤。
进一步地,该上凸透镜和下凸透镜的中间还具有一层彩色滤光层。当然, 若上凸透镜或下凸透镜本身材质具有彩色滤光性能的话, 即可省去该彩色滤 光层。
在另一个应用中, 该光敏元件的区域上方为厚介质层, 该下凸透镜设于 该厚介质层上方。 其中, 该 "光敏元件的区域上方 "在这里是指光敏元件区 域的正上方, 目的是为了排除光敏元件区域的正上方设置多晶硅层、 接触孔 层、 通孔层或金属互连层的可能; 该 "厚介质层" 由并仅由多层结构中的多 层互连介质层组成, 其顶面也即是多层结构的顶面。
进一步地, 该厚介质层的上表面之上设有容纳下凸透镜的容纳层, 该容 纳层具有凹槽, 该下凸透镜设于该凹槽内。
进一步地, 该凹槽底部由透光材料填充, 该下凸透镜设于该透光材料的 上方。 其中, 该填充为半填充, 以形成圆弧形凹形面。
进一步地, 该上凸透镜位于下凸透镜的上表面之上, 并与下凸透镜为一 体。
进一步地, 该厚介质层与容纳层的中间还具有一层彩色滤光层。 当然, 若上凸透镜或下凸透镜本身材质具有彩色滤光性能的话, 即可省去该彩色滤 光层。
进一步地, 该容纳层为透光材料。
进一步地, 该凹槽面积大于光敏元件区域的面积。 如此设置, 以便于吸 收更多的光线至光敏元件。
进一步地, 该光敏元件是光敏二极管。
本发明具有凸透镜结构的像元结构的一个制造方法包括以下步骤: 步骤 S101 , 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 通过深沟槽刻蚀工艺去除光敏元件上方的介质层, 以形成深沟槽;
步骤 S102, 利用第一透光材料对该深沟槽进行一次或多次填充, 形成 具有圆弧形凹形表面的半填充结构;
步骤 S103 , 使用光刻板对该第一透光材料进行曝光显影, 去除深沟槽 外围的第一透光材料;
步骤 S104, 利用第二透光材料对凹形半填充结构进行填充, 形成下凸 透镜, 并实现表面平坦化;
步骤 S105 , 在平坦化的表面之上制备上凸透镜, 形成全凸透镜结构。 其中, 本发明的方法是在标准 CMOS工艺器件、互连层次以及 PAD (悍 盘) 钝化层次完成后再进行的。
其中,步骤 S101中深沟槽刻蚀工艺去除介质层后停留在栅极氧化层(如 Si02)上面。具体地,去除的介质层包括栅极氧化层之上的金属前介质层(如 Si02)、 互连介质层 (如 Si02) 及钝化介质层 (如 Si02), 则步骤 S101包括 依次去除金属前介质中接触孔刻蚀阻挡层 (如 SiN或 SiON) 之上的互连层 介质, 以及去除金属前介质中接触孔刻蚀阻挡层, 最终停留在栅极氧化层之 上。 本步骤工艺利用的是 Si02对 SiN的高刻蚀选择比以及 SiN对 Si02的高 刻蚀选择比。
进一步地, 步骤 S102中的第一透光材料为负性透光光敏材料。 具体地, 该负性透光光敏材料的主要成分是透明树脂, 具体地是由 C、 H、 0组成的 有机大分子链结构, 并含有光敏成分, 如聚异戊二烯、 线性酚醛树脂的酚醛 甲醛、 重氮萘醌 (DNQ) 等等。
其中, 步骤 S103使用与深沟槽刻蚀工艺同一张光刻板进行曝光显影, 实现成本的控制, 也不会带来由于光刻板自身误差带来的影响, 故而可以达 到更好的光刻效果。
其中, 步骤 S103通过曝光工艺, 利用透光光敏材料的负性效果, 使深 沟槽外围及深沟槽内边缘的第一透光材料都被曝光并被显影去除, 且步骤 S103 可以包括在每次用第一透光材料对深沟槽填充之后, 都使用光刻板对 该第一填充材料进行曝光显影, 去除深沟槽外围的第一透光材料。
其中,步骤 S102和 S103的多次填充和光刻是为了适用于沟槽较深的情 况, 其次数只要保证深沟槽内可以形成具有圆弧形凹形表面的半填充结构即 可, 以便于后续的平坦化步骤。
进一步地, 步骤 S104中的第二透光材料为负性透光非光敏材料, 如合 成环化橡胶树脂和双芳化基类光敏材料, 其在无光照时, 可以溶解于显影液 中, 光照后, 该材料发生胶联, 不再溶解于显影液中, 且该第二透光材料的 折射率高于第一透光材料。
进一步地, 步骤 S104中的第一透光材料也可以是正性透光光敏材料, 步骤 S104包括先于下凸透镜的上表面之上制备彩色滤光层, 再在其上制备 上凸透镜。
进一步地, 步骤 S104中的第一透光材料为彩色滤光材料。
本发明具有凸透镜结构的像元结构的另一个制造方法包括以下步骤: 步骤 S201, 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 通过深沟槽刻蚀工艺去除光敏元件上方的介质层, 以形成深沟槽;
步骤 S202, 在多层结构及深沟槽上沉积一层介电层, 并去除深沟槽底 部的介电层;
步骤 S203 , 利用 SOG工艺 (spin on glass coating, 旋转涂布玻璃)在深 沟槽底部填充第一透光材料, 形成具有圆弧形凹形表面的半填充结构, 去除 深沟槽外围的第一透光材料;
步骤 S204, 利用第二透光材料对凹形半填充结构进行填充, 形成下凸 透镜, 并实现表面平坦化;
步骤 S205 , 在平坦化的表面之上制备上凸透镜, 形成全凸透镜结构。 其中, 本发明的方法是在标准 CMOS工艺器件、互连层次以及 PAD (悍 盘) 钝化层次完成后再进行的。
进一步地, 步骤 S201 中去除的是部分介质层, 并保留部分深沟槽底部 至光敏元件之间的介质层。
进一步地,步骤 S202中的介电层是 SiN,沉积工艺包括 CVD、 PVD等。 进一步地, 步骤 S204中的填充利用的是 CVD或 PVD沉积工艺。
进一步地, 步骤 S204的平坦化工艺是 CMP化学机械研磨工艺, 该介电 层作为阻挡层, 如 SiN。
进一步地,步骤 S205包括先于下凸透镜的上表面之上制备彩色滤光层, 再在其上制备上凸透镜。
其中,第一透光材料与第二透光材料的材质在上述第一个制造方法中已 有记载, 故不再赘述。 本发明具有凸透镜结构的像元结构的又一个制造方法包括以下步骤: 步骤 S301 , 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 在多层结构表面涂覆第一透光材料, 刻蚀该第一透光材料以形成凹槽, 实现容纳层;
步骤 S302, 该凹槽底部填充第二透光材料, 形成具有圆弧形凹形表面 的半填充结构, 去除凹槽外围的第二透光材料;
步骤 S303 , 利用第三透光材料对凹形半填充结构进行填充, 并涂覆盖 没容纳层, 刻蚀去除凹槽区域以外的第三透光材料;
步骤 S304, 加热并使第三透光材料熔融, 利用其表面张力以形成上凸 透镜, 实现全凸透镜结构。
其中, 本发明的方法是在标准 CMOS工艺器件、互连层次以及 PAD (悍 盘) 钝化层次完成后再进行的。 多层结构的表面即是硅片表面。
其中,第一透光材料至第三透光材料的材质在上述第一个制造方法中已 有记载, 故不再赘述; 该第三透光材料可以是常规微透镜材质。
进一步地, 步骤 S303包括利用第三透光材料对凹形半填充结构进行填 充, 形成下凸透镜, 并实现表面平坦化; 在第三透光材料上涂覆第四透光材 料, 并刻蚀去除下凸透镜区域以外的第四透光材料, 步骤 S304为加热并使 第四透光材料熔融, 利用其表面张力以形成上凸透镜, 实现全凸透镜结构。 其中, 该第三透光材料与第四透光材料是不同材质, 且第三透光材料的熔融 温度高于第四透光材料的熔融温度。
对比现有技术, 本发明利用上凸透镜和下凸透镜两个平凸微透镜共同形 成聚光能力更强的全凸透镜, 从而能在更短的距离内将入射光线会聚在光敏 元件上, 极大地简化了工艺, 减少了光线的损失, 提高了像元的灵敏度, 提 升了 CIS芯片的性能和可靠性, 并大幅度降低芯片成本。 國删
为能更清楚理解本发明的目的、 特点和优点, 以下将结合附图对本发明 的较佳实施例进行详细描述, 其中:
图 la至 lg是本发明第一实施例像元结构制造方法每个步骤的结构示意 图;
图 2是本发明第二实施例像元结构的结构示意图;
图 3是本发明第三实施例像元结构的结构示意图;
图 4a至 4e是本发明第四实施例像元结构制造方法每个步骤的结构示意 图;
图 5a至 5f是本发明第五实施例像元结构制造方法每个步骤的结构示意 图。
第一实施例
请参阅图 la至 lg, 本实施例的具体步骤包括:
步骤 S101 , 如图 la, 在硅衬底上排布光敏二极管和用于标准 CMOS器 件的多层结构, 制备待处理硅片, 包括在硅衬底 1上设置标准 CMOS工艺 器件、 接触孔层 2、 铜互连线层 3以及 PAD钝化层 4等。
步骤 S102, 图 lb, 使用光刻板 5, 利用深沟槽刻蚀工艺对硅衬底上光 敏二极管 (未图示) 上方的介质层全部去除, 形成深沟槽。
步骤 S103 , 图 lc, 利用含有聚异戊二烯的负性透光光敏材料 6对深沟 槽进行第一次填充, 形成凹形的半填充结构。
步骤 S104, 图 ld, 使用与深沟槽刻蚀工艺同一张光刻板进行曝光显影, 去除深沟槽外围的透光光敏材料。
步骤 S105 , 图 le, 利用折射率高于上述负性透光光敏材料的含合成环 化橡胶树脂负性透光非光敏材料 7, 对第一次填充和曝光显影后形成的凹形 凹槽进行第二次填充, 形成下凸透镜, 实现硅片表面平坦化。
步骤 S106, 图 lf, 在平坦化后的硅片表面制作第一彩色滤光层 8。
步骤 S107, 图 lg, 在该彩色滤光层上制作标准的第一微透镜 92, 形成 上凸透镜。
最终制备得到的像元结构中, 光敏二极管的上方具有向下凸的下凸透镜 和向上凸的上凸透镜, 上凸透镜位于下凸透镜的上方, 并与下凸透镜组成全 凸透镜。
第二实施例
图 2是本发明第二实施例示意图, 与第一实施例不同的是, 第二实施例 中第一次填充的材料是第一彩色滤光材料 61,而后直接在平坦化的硅片表面 上制作标准的第一微透镜 92。 第一彩色滤光材料 61形成下凸透镜, 第一微 透镜 92形成上凸透镜, 共同形成全凸透镜, 并省去了制备彩色滤光层的步 骤。
第三实施例
请参阅图 3, 本实施例中, 第三深沟槽 31并非一通到底的结构, 而是其 底面与光敏元件之间还具有介质层,仅在光敏元件上方介质层的顶层或靠近 顶面的几个层刻蚀出深沟槽。
本实施例采用了与 CMOS 更为兼容的工艺方法来实现全凸透镜, 具体 地如下:
步骤 S201 , 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构,通过深沟槽刻蚀工艺去除光敏元件上方的介质层,以形成第三深沟槽 31 ; 步骤 S202, 在多层结构及第三深沟槽 31上利用 CVD工艺沉积一层介 电层 32 ( SiN) , 可作为阻挡层, 并去除第三深沟槽 31底部的介电层 32; 步骤 S203, SOG工艺在第三深沟槽 31底部填充第三透光材料 A 33, 形成具有圆弧形凹形表面的半填充结构, 去除第三深沟槽 31 外围的第三透 光材料 A;
步骤 S204, 利用 CVD工艺将高折射率的第三透光材料 B 34对凹形半 填充结构进行填充, 形成下凸透镜, CMP处理表面平坦化, 以介电层 32作 为阻挡层;
步骤 S205 , 在下凸透镜的上表面上制备第三彩色滤光层 35, 并在其上 制备第三微透镜 36, 形成全凸透镜结构。
第四实施例
请参阅图 4a至 4e, 本实施例中, 光敏元件的上方是由多层结构中的多 层互连介质层所组成, 即光敏元件上方的多层结构不刻蚀出深沟槽, 全凸透 镜制备于多层结构上表面之上。 具体制造方法如下:
步骤 S301, 如图 4a, 硅衬底上排布光敏元件和用于标准 CMOS器件的 多层结构, 在多层结构表面依次涂覆第四彩色滤光层 41和第四透光材料 A 42, 刻蚀该第四透光材料 A 42以形成第一凹槽 43, 实现容纳层, 其中, 第 一凹槽 43面积大于光敏元件区域的面积, 如图 4b;
步骤 S302, 该第一凹槽 43底部填充第四透光材料 B 44, 形成具有圆弧 形凹形表面的半填充结构, 去除第一凹槽外围的第四透光材料 B, 如图 4b; 步骤 S303, 利用第四透光材料 C 45对凹形半填充结构进行填充, 并涂 覆盖没容纳层, 刻蚀去除第一凹槽区域以外的第四透光材料 C, 如图 4c和 4d;
步骤 S304, 加热并使第四透光材料 C 45熔融, 利用其表面张力以形成 上凸透镜, 实现全凸透镜结构, 如图 4e。
第五实施例
请参阅 5a至 5f, 本实施例与第四实施例不同的是, 本实施例的上凸透 镜和下凸透镜采用的是不同的材质, 因此, 其不同的制造方法包括:
步骤 S401, 如图 5a, 硅衬底上排布光敏元件和用于标准 CMOS器件的 多层结构, 在多层结构表面依次涂覆第五彩色滤光层 51和第五透光材料 A 52, 刻蚀该第五透光材料 A 52以形成第二凹槽 53, 实现容纳层, 其中, 第 二凹槽 53面积大于光敏元件区域的面积, 如图 5b;
步骤 S402, 该第二凹槽 43底部填充第五透光材料 B 54, 形成具有圆弧 形凹形表面的半填充结构, 去除第二凹槽外围的第五透光材料 B, 如图 5b; 步骤 S403, 利用第五透光材料 C 55对凹形半填充结构进行填充, 并涂 覆盖没容纳层, 形成下凸透镜, 平坦化处理, 如图 5c;
步骤 S404, 如图 5d, 在第五透光材料 C 55上涂覆第五透光材料 D 56, 并刻蚀去除下凸透镜区域以外的第五透光材料 D 56, 其中, 第五透光材料 C 55与第五透光材料 D 56是不同材质,且第五透光材料 C 55的熔融温度高于 第五透光材料 D 56;
步骤 S405 , 加热并使第五透光材料 D 56熔融, 利用其表面张力以形成 上凸透镜, 实现全凸透镜结构, 如图 5f。

Claims

权利要求
1 . 一种具有凸透镜结构的像元结构, 其特征在于: 其包括硅衬底上的 光敏元件和用于标准 CMOS 器件的多层结构, 该光敏元件的上方具有向下 凸的下凸透镜和向上凸的上凸透镜, 该上凸透镜位于下凸透镜的上方, 并与 下凸透镜组成全凸透镜。
2. 根据权利要求 1所述的具有凸透镜结构的像元结构, 其特征在于: 该光敏元件上方具有深沟槽, 该深沟槽的底部由透光材料填充, 该下凸透镜 设于深沟槽内并于透光材料的上方。
3. 根据权利要求 2所述的具有凸透镜结构的像元结构, 其特征在于: 该下凸透镜的上表面向上延伸至多层结构顶面或多层结构顶面以上, 该上凸 透镜设于下凸透镜上表面之上。
4. 根据权利要求 3所述的具有凸透镜结构的像元结构, 其特征在于: 该深沟槽的底面与光敏元件之间还具有介质层。
5. 根据权利要求 4所述的具有凸透镜结构的像元结构, 其特征在于: 该上凸透镜和下凸透镜的中间还具有一层彩色滤光层。
6. 根据权利要求 1所述的具有凸透镜结构的像元结构, 其特征在于: 该光敏元件的区域上方为厚介质层, 该下凸透镜设于该厚介质层上方。
7. 根据权利要求 6所述的具有凸透镜结构的像元结构, 其特征在于: 该厚介质层的上表面之上设有容纳下凸透镜的容纳层, 该容纳层具有凹槽, 该下凸透镜设于该凹槽内。
8. 根据权利要求 7所述的具有凸透镜结构的像元结构, 其特征在于: 该凹槽底部由透光材料填充, 该下凸透镜设于该透光材料的上方。
9. 根据权利要求 8所述的具有凸透镜结构的像元结构, 其特征在于: 该上凸透镜位于下凸透镜的上表面之上, 并与下凸透镜为一体。
10. 根据权利要求 9所述的具有凸透镜结构的像元结构, 其特征在于: 该厚介质层与容纳层的中间还具有一层彩色滤光层。
11. 根据权利要求 10所述的具有凸透镜结构的像元结构,其特征在于: 该容纳层为透光材料, 该凹槽面积大于光敏元件区域的面积。
12. 根据权利要求 1至 11任一项所述的具有凸透镜结构的像元结构, 其特征在于: 该光敏元件是光敏二极管。
13. 一种权利要求 2所述具有凸透镜结构的像元结构的制造方法,其特 征在于, 包括以下步骤:
步骤 S101 , 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 通过深沟槽刻蚀工艺去除光敏元件上方的介质层, 以形成深沟槽;
步骤 S102, 利用第一透光材料对该深沟槽进行一次或多次填充, 形成 具有圆弧形凹形表面的半填充结构;
步骤 S103 , 使用光刻板对该第一透光材料进行曝光显影, 去除深沟槽 外围的第一透光材料;
步骤 S104, 利用第二透光材料对凹形半填充结构进行填充, 形成下凸 透镜, 并实现表面平坦化;
步骤 S105 , 在平坦化的表面之上制备上凸透镜, 形成全凸透镜结构。
14. 根据权利要求 13所述的具有凸透镜结构的像元结构的制造方法, 其特征在于: 步骤 S104中的第二透光材料为负性透光非光敏材料, 且该第 二透光材料的折射率高于第一透光材料。
15. 根据权利要求 14所述的具有凸透镜结构的像元结构的制造方法, 其特征在于: 步骤 S104中的第一透光材料是正性透光光敏材料, 步骤 S104 包括先于下凸透镜的上表面之上制备彩色滤光层, 再在其上制备上凸透镜。
16. 根据权利要求 13所述的具有凸透镜结构的像元结构的制造方法, 其特征在于: 步骤 S104中的第一透光材料为彩色滤光材料。
17. 一种权利要求 4所述具有凸透镜结构的像元结构的制造方法,其特 征在于, 包括以下步骤:
步骤 S201 , 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 通过深沟槽刻蚀工艺去除光敏元件上方的介质层, 以形成深沟槽; 步骤 S202, 在多层结构及深沟槽上沉积一层介电层, 并去除深沟槽底 部的介电层;
步骤 S203 , 利用 SOG工艺在深沟槽底部填充第一透光材料, 形成具有 圆弧形凹形表面的半填充结构, 去除深沟槽外围的第一透光材料;
步骤 S204, 利用第二透光材料对凹形半填充结构进行填充, 形成下凸 透镜, 并实现表面平坦化;
步骤 S205 , 在平坦化的表面之上制备上凸透镜, 形成全凸透镜结构。
18. 根据权利要求 17所述的具有凸透镜结构的像元结构的制造方法, 其特征在于: 步骤 S202中的介电层是 SiN, 沉积工艺包括 CVD或 PVD; 步 骤 S204的填充工艺 CVD或 PVD。
19. 根据权利要求 17所述的具有凸透镜结构的像元结构的制造方法, 其特征在于: 步骤 S204的平坦化工艺是 CMP化学机械研磨工艺, 该介电层 作为阻挡层。
20. 根据权利要求 17所述的具有凸透镜结构的像元结构的制造方法, 其特征在于: 步骤 S205包括先于下凸透镜的上表面之上制备彩色滤光层, 再在其上制备上凸透镜。
21. 一种权利要求 7所述具有凸透镜结构的像元结构的制造方法,其特 征在于, 包括以下步骤:
步骤 S301 , 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 在多层结构表面涂覆第一透光材料, 刻蚀该第一透光材料以形成凹槽, 实现容纳层;
步骤 S302, 该凹槽底部填充第二透光材料, 形成具有圆弧形凹形表面 的半填充结构, 去除凹槽外围的第二透光材料;
步骤 S303 , 利用第三透光材料对凹形半填充结构进行填充, 并涂覆盖 没容纳层, 刻蚀去除凹槽区域以外的第三透光材料;
步骤 S304, 加热并使第三透光材料熔融, 利用其表面张力以形成上凸 透镜, 实现全凸透镜结构。
22. 根据权利要求 21所述的具有凸透镜结构的像元结构的制造方法, 其特征在于:步骤 S303包括利用第三透光材料对凹形半填充结构进行填充, 形成下凸透镜, 并实现表面平坦化; 在第三透光材料上涂覆第四透光材料, 并刻蚀去除下凸透镜区域以外的第四透光材料; 步骤 S304为加热并使第四 透光材料熔融,利用其表面张力以形成上凸透镜,实现全凸透镜结构,其中, 该第三透光材料与第四透光材料是不同材质, 且第三透光材料的熔融温度高 于第四透光材料的熔融温度。
PCT/CN2012/087836 2012-12-26 2012-12-28 具有凸透镜结构的像元结构及制造方法 WO2014101105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210575632.1 2012-12-26
CN201210575632.1A CN103066090B (zh) 2012-12-26 2012-12-26 具有凸透镜结构的像元结构及制造方法

Publications (1)

Publication Number Publication Date
WO2014101105A1 true WO2014101105A1 (zh) 2014-07-03

Family

ID=48108640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087836 WO2014101105A1 (zh) 2012-12-26 2012-12-28 具有凸透镜结构的像元结构及制造方法

Country Status (2)

Country Link
CN (1) CN103066090B (zh)
WO (1) WO2014101105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985200B2 (en) 2017-12-28 2021-04-20 Imec Vzw Method for producing an image sensor, and an image sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258835A (zh) * 2013-05-02 2013-08-21 上海华力微电子有限公司 Cis器件中光通道的形成方法
CN106601765B (zh) * 2016-12-16 2018-05-08 深圳市华海技术有限公司 黑白cmos图像传感器及提高其感光度的制造方法
CN117497551B (zh) * 2023-12-25 2024-04-30 合肥晶合集成电路股份有限公司 图像传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188094B1 (en) * 1998-03-19 2001-02-13 Canon Kabushiki Kaisha Solid-state image pickup device
CN1685514A (zh) * 2002-09-27 2005-10-19 索尼株式会社 固态成像装置及其制造方法
CN1992323A (zh) * 2005-12-28 2007-07-04 东部电子股份有限公司 Cmos图像传感器及其制造方法
CN101436604A (zh) * 2007-11-16 2009-05-20 东部高科股份有限公司 图像传感器及其制造方法
US20100289034A1 (en) * 2009-05-12 2010-11-18 Sharp Kabushiki Kaisha Method for forming lens, method for manufacturing semiconductor apparatus, and electronic information device
CN102130138A (zh) * 2010-01-12 2011-07-20 中芯国际集成电路制造(上海)有限公司 图像传感器及其形成方法
CN102891157A (zh) * 2012-10-25 2013-01-23 上海集成电路研发中心有限公司 一种cmos影像传感器的后端平坦化方法及像元结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188094B1 (en) * 1998-03-19 2001-02-13 Canon Kabushiki Kaisha Solid-state image pickup device
CN1685514A (zh) * 2002-09-27 2005-10-19 索尼株式会社 固态成像装置及其制造方法
CN1992323A (zh) * 2005-12-28 2007-07-04 东部电子股份有限公司 Cmos图像传感器及其制造方法
CN101436604A (zh) * 2007-11-16 2009-05-20 东部高科股份有限公司 图像传感器及其制造方法
US20100289034A1 (en) * 2009-05-12 2010-11-18 Sharp Kabushiki Kaisha Method for forming lens, method for manufacturing semiconductor apparatus, and electronic information device
CN102130138A (zh) * 2010-01-12 2011-07-20 中芯国际集成电路制造(上海)有限公司 图像传感器及其形成方法
CN102891157A (zh) * 2012-10-25 2013-01-23 上海集成电路研发中心有限公司 一种cmos影像传感器的后端平坦化方法及像元结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985200B2 (en) 2017-12-28 2021-04-20 Imec Vzw Method for producing an image sensor, and an image sensor

Also Published As

Publication number Publication date
CN103066090A (zh) 2013-04-24
CN103066090B (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
JP4623641B2 (ja) 固体撮像装置の製造方法
KR100687102B1 (ko) 이미지 센서 및 그 제조 방법.
JP5676528B2 (ja) ボンディングパッド構造を有する裏面照射型センサーとその製造方法
JP5013391B2 (ja) Cmosイメージセンサ及びその製造方法
JP5324890B2 (ja) カメラモジュールおよびその製造方法
US7709969B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
TW201214687A (en) Solid-state imaging element, process for producing solid-state imaging element, and electronic device
KR100642764B1 (ko) 이미지 소자 및 그 제조 방법
TW201027738A (en) Solid-state imaging device and manufacturing method of the same, electronic equipment, and semiconductor device
TWI525804B (zh) 影像感測器裝置及其製造方法
JPH0964325A (ja) 固体撮像素子とその製造方法
US7595217B2 (en) Method of manufacturing a CMOS image sensor
TW202107691A (zh) 形成影像感側器晶片的方法
KR101763017B1 (ko) 반도체 구조체 및 그 제조 방법
JP2004253573A (ja) 半導体装置およびその製造方法
JP2007324629A (ja) 固体撮像素子及び固体撮像素子の製造方法
WO2014101105A1 (zh) 具有凸透镜结构的像元结构及制造方法
KR20070087858A (ko) Cmos 이미지 센서의 제조 방법
JP6681959B2 (ja) 光学センサおよびその形成方法
US7683411B2 (en) Image sensor and method of manufacturing the same
US9129876B2 (en) Image sensor and process thereof
JPH11121725A (ja) 固体撮像素子とその製造方法
KR20090056470A (ko) 이미지 센서 및 그 제조 방법
WO2014101097A1 (zh) Cmos影像传感器像元结构及其制造方法
JP2004319896A (ja) 固体撮像装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891152

Country of ref document: EP

Kind code of ref document: A1