WO2014101097A1 - Cmos影像传感器像元结构及其制造方法 - Google Patents

Cmos影像传感器像元结构及其制造方法 Download PDF

Info

Publication number
WO2014101097A1
WO2014101097A1 PCT/CN2012/087826 CN2012087826W WO2014101097A1 WO 2014101097 A1 WO2014101097 A1 WO 2014101097A1 CN 2012087826 W CN2012087826 W CN 2012087826W WO 2014101097 A1 WO2014101097 A1 WO 2014101097A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
image sensor
cmos image
deep trench
sensor according
Prior art date
Application number
PCT/CN2012/087826
Other languages
English (en)
French (fr)
Inventor
康晓旭
赵宇航
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to US14/439,229 priority Critical patent/US9305951B2/en
Publication of WO2014101097A1 publication Critical patent/WO2014101097A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • the present invention relates to the field of CMOS image sensor technology, and in particular to a pixel structure of a CMOS image sensor capable of improving optical performance and a method of fabricating the same.
  • CMOS image sensors are rapidly evolving due to their compatibility with CMOS processes. Compared with the CCD process, the process is completely compatible with the CMOS process. By combining the photosensitive element and the CMOS processing circuit on the silicon substrate, the cost is greatly reduced on the basis of ensuring performance, and the integration degree can be greatly improved. , manufacturing higher pixel products.
  • CMOS image sensors use a method of frontal illumination.
  • the photosensors and CMOS processing circuits are implemented together on the silicon substrate at the same level, while the chip interconnects are fabricated on the CMOS processing circuit. Pass without stepping through the interconnects.
  • conventional semiconductor materials have poor light transmittance, so it is necessary to remove all of the dielectric layers on the photosensitive member and fill the light-transmitting material to enhance its light absorption.
  • An object of the present invention is to remedy the above-mentioned deficiencies of the prior art, and to provide a pixel structure of a CMOS image sensor and a method of fabricating the same.
  • the pixel structure of the CMOS image sensor of the present invention comprising a photosensitive element on a silicon substrate and a multilayer structure for a standard CMOS device, having a deep trench forming a light transmissive space above the photosensitive element, wherein The sidewalls of the deep trench are surrounded by a light reflecting shield layer that is continuously arranged in the longitudinal direction to reflect light incident on the light reflecting shield layer.
  • the projection surface of the deep trench in the longitudinal direction completely covers the photosensitive member so that all light incident into the deep trench can be absorbed by the photosensitive member.
  • the multilayer structure comprises a first polysilicon layer, a first metal interconnect layer, a first contact hole layer, a first via layer and a first interconnect dielectric layer.
  • the light reflecting shield is a layer of metal reflective layer.
  • the metal reflective layer is disposed inwardly facing the sidewall of the deep trench.
  • “inward” refers to the direction from the outside of the deep trench to the inside of the deep trench.
  • the metal reflective layer extends upward from the bottom end of the deep trench to the top of the deep trench and further extends over the multilayer structure.
  • the top layer of the multilayer structure is a dielectric layer for separating the metal reflective layer from the metal interconnect layer of the multilayer structure. The purpose of providing a metal reflective layer on top of the multilayer structure is to reflect light incident from the top of the multilayer structure into the interior of the multilayer structure, further avoiding optical crosstalk of the adjacent pixels.
  • the material of the metal reflective layer comprises a metal material commonly used in CMOS processes such as Al, Cu, Pt, Ru, TaN, Ta, Ti, TiN, and a laminated composite material thereof, such as Ti ⁇ TiN ⁇ Al composite metal.
  • the thickness of the metal reflective layer is 50A-5000A, which is by PVD (physical vapor deposition, Physical Vapor Deposition), CVD (Chemical Vapor Deposition) > ALD (Atomic Layer Deposition) and other film forming techniques.
  • the light reflecting shield layer is a metal reflective layer disposed outwardly along the sidewall of the deep trench such that there is a dielectric layer between the metal reflective layer and the deep trench sidewall.
  • “Outward” here refers to the direction from the inside of the deep trench to the outside of the deep trench.
  • the light reflecting shield layer comprises a second polysilicon layer surrounded by polysilicon continuously stacked from bottom to top, and a second layer surrounded by a plurality of contact holes. a contact hole layer, a second metal interconnection layer surrounded by a metal wiring, and a second via layer surrounded by a plurality of through holes densely arranged, the light reflection shielding layer being along a side of the deep trench
  • the wall is outwardly disposed such that it has a dielectric layer between the sidewalls of the deep trench.
  • the plurality of layers in the light reflection shielding layer correspond to corresponding levels in the standard CMOS process, and are implemented by using a standard CMOS process.
  • the light reflecting shielding layer has a plurality of second metal interconnect layers and a plurality of second via layers, and the two are interleaved.
  • the spacing between the plurality of contact holes in the second contact hole layer and the plurality of via holes in the second via layer is defined by a minimum pitch of the CMOS standard process.
  • the light reflecting shield layer is polygonal in a top to bottom projection surface and surrounds the photosensitive element.
  • the polygon is square or hexagonal.
  • the deep trench is filled with a transparent material to form a light transmissive body.
  • the transparent body formed by the transparent material further covers the metal reflective layer on the top layer of the multilayer structure, and the color filter and the microlens are sequentially disposed on the upper surface of the transparent body.
  • Layer (microlens) is sequentially disposed on the upper surface of the transparent body.
  • the thickness of the dielectric layer between the light reflecting shielding layer and the sidewall of the deep trench is 0.05 um-lum.
  • the second polysilicon layer is implemented by a standard CMOS process gate material process, and the material thereof may be n-type doped polysilicon or p-doped polysilicon or undoped polysilicon, and the implementation process may be It is implemented with the gate of an N-type MOS (Metal-Oxide-Semiconductor) or with a P-type MOS and a high-resistance polysilicon structure.
  • CMOS process gate material process and the material thereof may be n-type doped polysilicon or p-doped polysilicon or undoped polysilicon, and the implementation process may be It is implemented with the gate of an N-type MOS (Metal-Oxide-Semiconductor) or with a P-type MOS and a high-resistance polysilicon structure.
  • N-type MOS Metal-Oxide-Semiconductor
  • the second contact hole layer is realized by a contact hole process of a standard CMOS process, and the material thereof may be Cu or W.
  • the second metal interconnect layer is implemented by a contact hole process in a standard CMOS process, and the material may be Cu or Al.
  • the second metal interconnection layer can be realized by the A1 rear process of the standard CMOS process, or can be realized by the copper back process Damascus process.
  • the second via layer is implemented by a contact hole process in a standard CMOS process, and the material may be Cu or W.
  • the via layer can be implemented by a standard CMOS process A1 after-pass process, or by a copper post-process Damascus process.
  • the transparent material is a transparent resin containing carbon, hydrogen or oxygen.
  • the photosensitive element is a photodiode.
  • the method for fabricating the pixel structure of the CMOS image sensor in the first application of the present invention comprises the following steps:
  • Step S101 arranging photosensitive elements and a multilayer structure for standard CMOS devices on a silicon substrate;
  • Step S102 performing a photolithography etching to remove the dielectric layer above the photosensitive element to form a deep trench having a light transmissive space;
  • Step S103 depositing a metal reflective layer on the surface of the silicon wafer by using a film forming process
  • Step S104 removing deposited metal other than the metal reflective layer attached to the sidewall of the deep trench.
  • the method further includes a step S105: filling the transparent trench with the transparent material and planarizing the silicon wafer; Step S106: sequentially fabricating the color filter layer and the microlens layer on the upper surface of the transparent material.
  • step S101 and step S102 further comprise a step S1011 of removing a passivation layer over a pixel array region composed of a plurality of photosensitive elements, the passivation layer comprising, for example, a lower SiN layer having a thickness of 1000A-2000A) and The stacked structure of the upper Si0 2 layer, the step S011 includes removing the Si0 2 layer and staying in the SiN layer and removing the SiN layer.
  • the film forming process in step S103 includes processes such as PVD, CVD, and ALD.
  • step S104 needs to remove the metal reflective layer on the plurality of height planes, including the bottom of the deep trench, the area outside the deep trench sidewall in the deep trench, even the top of the isolation region between the deep trenches, and the image
  • this step includes multiple or multiple lithography exposure techniques for multiple focal planes.
  • the step S104 includes: first exposing the bottom region of the deep trench to expose the metal reflective layer that needs to be removed by etching; and then exposing the metal reflective layer on the top of the isolation region between the deep trenches to expose the metal to be etched and removed. Reflecting layer; further realizing exposure of the metal reflective layer on the passivation layer of the outer region of the pixel array, exposing the metal reflective layer that needs to be removed by etching; finally removing the metal reflective layer of the above region by etching.
  • the metal reflective layer above the plane of the surface of the silicon wafer can also be removed by large-area etching because the vertical height of the metal reflective layer on the sidewall of the deep trench is very high, that is, thick, and therefore, can be etched After being retained.
  • the method for fabricating the pixel structure of the CMOS image sensor in the second application of the present invention comprises the following steps:
  • Step S201 arranging the photosensitive element and the multilayer structure for the standard CMOS device on the silicon substrate, and implementing the photosensitive element and the multilayer structure by using a standard CMOS process;
  • Step S202 implementing a through hole of the top layer of the multi-layer structure and a hole groove for accommodating the light reflection shielding layer;
  • Step S203 Implementing a trench for accommodating a metal wire in the first metal interconnect layer of the top layer of the multi-layer structure
  • Step S204 implementing a metal layer of the top first metal interconnection layer and a metal layer of the light reflection shielding layer;
  • Step S205 etching realizes deep trenches.
  • step S202 and the step S203 adopt a full via first process in the double damascene process.
  • the method further includes a step S206 of filling a transparent material into the deep trench to form a transparent body, and a color filter layer and a microlens layer implemented on the upper surface of the transparent body.
  • the method for fabricating the pixel structure of the CMOS image sensor in the third application of the present invention includes the following steps:
  • Step S301 arranging a photosensitive element, a multilayer structure for a standard CMOS device, and a light reflection shielding layer on a silicon substrate, and implementing a photosensitive element, a multilayer structure, and a light reflection shielding layer by using a standard CMOS process, wherein
  • the light reflecting shielding layer comprises a second polysilicon layer, a second contact hole layer surrounded by a plurality of contact space dense arrangements, and a second metal interdiction surrounded by metal wires. a layer and a second via layer surrounded by a plurality of through holes densely arranged;
  • Step S302 etching realizes a deep trench.
  • the method further includes a step S303 of filling a transparent material into the deep trench to form a transparent body, and a color filter layer and a microlens layer implemented on the upper surface of the transparent body.
  • the dielectric layer film layer above the photosensitive element region is large and complicated, and at the same time is very thick, that is, the distance that the light reaches the photosensitive element is relatively long, so that there is an inevitable loss in the light transmission, and the loss is
  • the light transmission path is proportional; at the same time, during the light transmission, a certain angle of light will be incident on the sidewall of the deep trench, and some of the light will be refracted, transmitted and absorbed, resulting in crosstalk between adjacent pixels. And light loss.
  • the deep trench sidewalls above the photosensitive member are surrounded by annular metal interconnects, vias, contact holes, and polysilicon, or are directly surrounded by a metal layer. Since the metal layer, the via hole, the contact hole layer, and the polysilicon layer use metal or polysilicon, the light incident thereon is substantially completely reflected, and when the light having a larger incident angle is incident on the sidewall of the deep trench, the passing phase does not occur. The area between adjacent pixels reaches a pixel next to it, avoiding the occurrence of optical crosstalk, effectively improving the optical resolution and sensitivity of the pixel. At the same time, since the incident light is reflected onto the photosensitive element, the image is improved.
  • the light absorption amount of the element can improve the optical sensitivity and definition of the entire CMOS image sensor, and improve the performance and reliability of the chip; in addition, the passivation layer of the photosensitive element array region can be removed by a large area, and the light transmission path can be reduced. Length, the angle of incidence also becomes larger; at the same time, due to the distance from the photosensitive element to the color filter layer and the microlens The distance is shorter, and it can accept a larger angle of incident light, which improves the light absorption ability.
  • FIG. 1 is a cross-sectional view showing a structure of a pixel of a CMOS image sensor according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a structure of a pixel of a CMOS image sensor according to a second embodiment of the present invention
  • FIGS. 3a and 3b are diagrams showing the presence or absence of a pixel structure of the present invention
  • Figure 4 is a cross-sectional view of the photodiode array region of the present invention before preparing a metal reflective layer
  • Figure 5 is a cross-sectional view of Figure 4 after preparing a metal reflective layer and other layers
  • FIG. 6 is a schematic view showing a third embodiment of a CMOS image sensor pixel structure of the present invention
  • FIG. 7 is a plan view of a second metal interconnection layer in a third embodiment of the present invention
  • Figure 8 is a plan view showing a second contact hole layer in a third embodiment of the present invention.
  • 9a to 9d are schematic views showing the process flow of the fourth embodiment of the present invention.
  • a pixel structure of a CMOS image sensor includes a photodiode 10 on a silicon substrate 1 and a multi-layer structure (a hierarchy for a standard CMOS device).
  • the silicon substrate 1 and the multilayer structure further have a gate oxide layer 2, wherein the multilayer structure comprises a polysilicon layer 3, a tungsten contact hole layer 4, a copper metal interconnection layer 5 and thereon from bottom to top.
  • Above the photodiode 10 is a deep trench 7 forming a light transmissive space, and the sidewall of the deep trench 7 is surrounded inward by the metal reflective layer 6 to reflect the light incident on the metal reflective layer 6.
  • the metal reflective layer 6 is an aluminum material having a thickness of 100 A and is prepared by a PVD film forming technique.
  • the deep trench 7 is filled with a transparent material to form a transparent body 71.
  • the transparent body 71 formed by the transparent material also covers the top layer of the multilayer structure.
  • the upper surface of the transparent material in the deep trench 7 is once provided with color filter.
  • Step S101 preparing a photodiode 10 and a multilayer structure for a CMOS device on a silicon substrate by using a standard CMOS process, removing a passivation layer of the pixel array region, the passivation layer including a lower SiN layer and an upper layer 810 2 layers
  • the laminated structure, the step of removing the passivation layer includes removing the SiO 2 layer and staying in the SiN layer and removing the SiN layer;
  • Step S102 photolithography etching removes the dielectric layer above the photodiode 10 to form a deep trench 7 having a light transmissive space;
  • Step S103 depositing a metal reflective layer 6 on the surface of the silicon wafer by using a PVD film forming process
  • Step S104 removing the metal reflective layer 6 in the deep trench 7 except the sidewall of the deep trench;
  • Step S105 filling the deep trench 7 with a transparent material and planarizing the silicon wafer; Step S106: sequentially fabricating the color filter layer 8 and the microlens 9 on the upper surface of the transparent material in the deep trench 7.
  • Step S04 includes: first exposing the bottom region of the deep trench 7 to expose the metal reflective layer that needs to be etched away; and further exposing the metal reflective layer at the top of the isolation region between the deep trenches 7 to expose the etch removal. Metal reflective layer; Finally, the metal reflective layer on the passivation layer of the outer region of the pixel array is exposed to expose the metal reflective layer that needs to be removed by etching; finally, the metal reflective layer of the above region is removed by etching.
  • the pixel structure of the CMOS image sensor includes the photodiode 10 on the silicon substrate 1 and a multi-layer structure (for the level of the standard CMOS device).
  • the silicon substrate 1 and the multilayer structure further have a gate oxide layer 2, wherein the multilayer structure comprises a polysilicon layer 3, a tungsten contact hole layer 4, a copper metal interconnection layer 5 and a bottom layer thereof from bottom to top.
  • the multilayer structure comprises a polysilicon layer 3, a tungsten contact hole layer 4, a copper metal interconnection layer 5 and a bottom layer thereof from bottom to top.
  • Other via layers, metal interconnect layers, and interconnect dielectric layers are examples of the multilayer structure.
  • the layer metal reflective layer 6 is for reflecting light incident from the top of the multilayer structure into the interior of the multilayer structure, and further avoiding optical crosstalk of the light to adjacent pixels.
  • the metal reflective layer 6 is a titanium material having a thickness of 500 A and is prepared by a PVD film forming technique.
  • the deep trench 7 is filled with a transparent material to form a transparent body 71.
  • the transparent body 71 formed by the transparent material also covers the top layer of the multilayer structure.
  • the upper surface of the transparent material in the deep trench 7 is once provided with color filter.
  • the multilayer structure of Figure 3a has a passivation layer 11 more than the multilayer structure of Figure 3b. It can be seen that after removing the passivation layer, the incident angle of the light A of the pixel becomes larger. The light path B becomes shorter, which can improve the absorption of light.
  • the passivation layer 12 of the photodiode array region CC is first removed, wherein the passivation layer 12 includes a stacked structure of a lower SiN layer and an upper layer 810 2 layers which are sequentially formed, and the step of removing the passivation layer includes removing Si0. Two layers are left in the SiN layer and the SiN layer is removed; then a deep trench 7 is formed over each photodiode 10 (the various layers of the multi-layer structure 31 between the pixels in the figure are omitted).
  • the light-transmitting diode array region CC has been prepared with a light-transmitting body, a metal reflective layer 6, a color filter layer 8, and a microlens 9.
  • the top layer of the multilayer structure 31 is the dielectric layer 14 for the purpose of separating and protecting the metal interconnection layer and the metal reflection layer 6 in the multilayer structure; meanwhile, the isolation region between the deep trenches 7
  • the top metal reflective layer 6 is also removed a portion in order to avoid series interference between adjacent pixels.
  • the transparent materials of the first and second embodiments are made of a transparent resin material containing carbon, hydrogen and oxygen which is commonly used in the art.
  • the pixel structure of the CMOS image sensor includes a photodiode 37 on a silicon substrate 31 and a multilayer structure (for a level of a standard CMOS device).
  • a gate oxide layer 32 wherein the multilayer structure includes a first polysilicon layer 33, a W contact hole layer 34, a Cu metal interconnection layer 35 and a first via layer 351, and an interconnection from bottom to top.
  • a dielectric layer (not shown) is provided with a deep trench 38 above the photodiode 37, and a light reflecting shield layer 39 in the sidewall dielectric of the deep trench 38.
  • the light reflecting shield layer 39 and the sidewall of the deep trench 38 The distance is O.lum, which completely surrounds the deep trench 39, and includes a second polysilicon layer 391, a second contact hole layer 392, and a second layer which are vertically stacked from the gate oxide layer 32 in the longitudinal direction.
  • the second metal interconnect layer A 393, the second metal interconnect layer B 395, and the second metal interconnect layer C 397 are continuous annular structures and completely surround the deep trenches 38.
  • the second contact hole layer 392 is densely arranged by a plurality of contact holes to form a ring shape and surround the deep trenches 38; the second via layer A 394 and the second via layer B 396 are also composed of multiple Through hole dense Arranged to form a ring shape and surround the deep trench 38.
  • the second polysilicon layer 391 is implemented by a standard CMOS process gate material process, and the material is n-type doped polysilicon, and the implementation process is implemented together with the gate of the N-type MOS.
  • the second contact hole layer 392 is implemented using a standard CMOS process contact hole process, the material of which is W.
  • the three-layer second metal interconnect layer is implemented by a standard CMOS process contact hole process, and the material may be Cu, which is realized by a copper post-process Damascene process.
  • the two-layer second via layer is realized by a standard CMOS process contact hole process, the material of which is Cu, which is realized by a copper post-process Damascus process.
  • the color filter 312 and the microlens 311 are sequentially prepared from the bottom to the top.
  • the method for fabricating the pixel structure of the CMOS image sensor of the present embodiment includes the following steps: Step S201, disposing a photodiode 37, a multilayer structure, and a light reflecting shielding layer 39 on the silicon substrate 31, and implementing the photodiode by using a standard CMOS process. 37, a multilayer structure and light reflection shielding layer 39;
  • Step S202 etching the deep trench 38, removing all the medium above the photodiode 37; step S203, filling the transparent trench 36 into the deep trench 38, and planarizing the surface;
  • Step S204 a color filter 312 and a microlens 311 are sequentially prepared on the upper surface of the planarized transparent body 36.
  • the light-reflecting shielding layer is a metal layer surrounded by a metal, and is vertically arranged integrally from the gate oxide layer in the longitudinal direction.
  • the manufacturer of the pixel structure of the CMOS image sensor of this embodiment is manufactured.
  • the method includes the following steps:
  • Step S301 arranging a photodiode and a multilayer structure for a standard CMOS device on a silicon substrate, and implementing a photodiode and a multilayer structure using a standard CMOS process;
  • Step S302 using a photolithography process to realize a through hole 401 of a top layer of the multilayer structure and a hole groove 402 for accommodating the light reflection shielding layer;
  • Step S303 implementing a trench 403 for accommodating the metal wiring in the first metal interconnect layer of the top layer of the multi-layer structure by using a photolithography process;
  • Step S304 implementing a metal connection 404 of the top first metal interconnection layer and a metal layer 405 of the light reflection shielding layer by a standard process
  • Step S305 etching deep trenches 406, filling the transparent body, and planarizing the surface; Step S306, sequentially preparing color filters and microlenses on the planarized upper surface of the transparent body.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明公开了一种CMOS影像传感器的像元结构及其制备方法,该结构包括硅衬底(31)上的光敏元件(37)和用于标准CMOS器件的多层结构,在所述光敏元件的上方具有形成透光空间的深沟槽(38),其中,所述深沟槽的侧壁由光线反射屏蔽层(39)环绕,所述光线反射屏蔽层在纵向上连续排布,以反射入射到所述光线反射屏蔽层的光线。本发明将深沟槽被环形的金属互连线、通孔、接触孔和多晶硅所包围,使入射到上面的光线基本被完全反射,避免了光学出串扰的发生,有效地提高了像元的光学分辨率和灵敏度,提升了芯片的性能和可靠性。

Description

CMOS影像传感器像元结构及其制造 法
技术领域
本发明涉及 CMOS 影像传感器技术领域, 尤其涉及一种可提高光学性 能的 CMOS影像传感器的像元结构及其制造方法。 技术背景
CMOS影像传感器由于其与 CMOS工艺兼容的特点, 从而得到快速发 展。 相对于 CCD工艺, 其工艺完全与 CMOS工艺兼容, 其通过将光敏元件 和 CMOS 处理电路一起做在硅衬底上, 从而在保证性能的基础上大幅度降 低了成本, 同时可以大幅度提高集成度, 制造像素更高的产品。
传统 CMOS影像传感器是使用正面光照的方法, 将光敏元件和 CMOS 处理电路一起做在硅衬底上使用同一层次实现,而芯片互连则制造在 CMOS 处理电路之上,光敏元件之上为了光线的通过而不进行互连线的排步。然而, 常规半导体材料的透光性较差, 因此需要把光敏元件上面的介质层次全部去 除, 并填充透光材料, 以增强其光吸收。
然而, 随着像元尺寸减小, 相邻像元之间的间距也随着急剧减小, 当光 线入射时,会使光线经过折射和多次反射穿过相邻像元之间区域到达旁边一 个像元, 这会引起像元之间的光学串扰, 导致像元图像信号灵敏度、 分辨率 和清晰度变差, 芯片性能变差。 因此, 如何减小相邻像元之间的光学串扰、 增强入射光的量以提高像元分辨率和灵敏度, 是本领域技术人员亟待解决的 技术难题之一。 发明概要
本发明的目的在于弥补上述现有技术的不足, 提供一种 CMOS 影像传 感器的像元结构及其制造方法。
本发明的 CMOS影像传感器的像元结构, 其包括硅衬底上的光敏元件 和用于标准 CMOS器件的多层结构, 在所述光敏元件的上方具有形成透光 空间的深沟槽, 其中, 所述深沟槽的侧壁由光线反射屏蔽层环绕, 所述光线 反射屏蔽层在纵向上连续排布, 以反射入射到所述光线反射屏蔽层的光线。
进一步地, 所述深沟槽在纵向方向的投影面完全覆盖所述光敏元件, 以 使所有入射到深沟槽内的光线都可被光敏元件所吸收。
其中,该多层结构包括第一多晶硅层、第一金属互连层、第一接触孔层、 第一通孔层和第一互连介质层。
在第一个应用中, 所述光线反射屏蔽层是一层金属反射层。
进一步地, 所述金属反射层贴着深沟槽的侧壁向内而设。 此处 "向内" 指从深沟槽外部朝深沟槽内部的方向。
进一步地, 所述金属反射层自深沟槽底端向上延伸至深沟槽顶端, 并进 一步延伸覆盖所述多层结构。 较佳地, 所述多层结构中的顶层为介质层, 用 以将金属反射层与多层结构中的金属互连层相隔开。在多层结构顶层也设置 金属反射层的目的在于, 反射从多层结构顶部入射到多层结构内部的光线, 而进一步避免光线对相邻像元的光学串扰。
进一步地, 所述金属反射层的材料包括 Al、 Cu、 Pt、 Ru、 TaN、 Ta、 Ti、 TiN等 CMOS工艺中常用的金属材料及其叠层复合材料, 如 Ti\TiN\Al复合 金属,且该金属反射层的厚度为 50A-5000A,其是通过 PVD (物理气相沉积, Physical Vapor Deposition )、 CVD (化学气相沉禾只, Chemical Vapor Deposition )> ALD (原子层沉积, Atomic Layer Deposition)等成膜技术来制 备的。
在第二个应用中, 所述光线反射屏蔽层是一层金属反射层, 其沿着深沟 槽的侧壁向外而设, 使得金属反射层与深沟槽侧壁之间具有介质层。 此处的 "向外 "指从深沟槽内部朝深沟槽外部的方向。
在第三个应用中,所述光线反射屏蔽层包括自下而上连续层叠排布的由 多晶硅所围成的第二多晶硅层、 由多个接触孔密集排布所围成的第二接触孔 层、 由金属连线所围成的第二金属互连层和由多个通孔密集排布所围成的第 二通孔层, 所述光线反射屏蔽层沿着深沟槽的侧壁向外而设, 使得其与深沟 槽侧壁之间具有介质层。
其中, 上述第三个应用中光线反射屏蔽层中的多个层次相对应于标准 CMOS工艺中的相应层次, 是利用标准 CMOS工艺来实现的。
其中, 所述光线反射屏蔽层有数个第二金属互连层和数个第二通孔层, 且两两交错而设。
其中,第二接触孔层中的多个接触孔和第二通孔层中的多个通孔的间距 是按照 CMOS标准工艺最小间距来定义的。
进一步地,所述光线反射屏蔽层在从上至下的投影面上呈多边形并包围 所述光敏元件。 优选的, 所述多边形为方形或六角形。
进一步地, 所述深沟槽内填充透明材料以形成透光体。
进一步地,所述透明材料所形成的透光体还覆盖该多层结构顶层的金属 反射层, 在透光体的上表面还依次设置有彩色滤光层(colorfilter)和微透镜 层 (microlens)。
进一步地, 所述光线反射屏蔽层与深沟槽侧壁之间的介质层的厚度为 0.05um-lum。
进一步地, 该第二多晶硅层采用标准 CMOS 工艺的栅极材料的工艺实 现, 其材料可以是 n型掺杂的多晶硅或 p型掺杂的多晶硅或者无掺杂的多晶 硅, 其实现工艺可以是与 N 型 MOS (金属 -氧化物-半导体, Metal-Oxide-Semiconductor)的栅极一起实现,或者和 P型 M0S以及高阻多 晶硅结构一起实现。
进一步地, 该第二接触孔层采用标准 CMOS工艺的接触孔工艺来实现, 其材料可以是 Cu或者 W。
进一步地, 该第二金属互连层采用标准 CMOS 工艺的接触孔工艺来实 现,其材料可以是 Cu或者 A1。其中,该第二金属互连层可以采用标准 CMOS 工艺的 A1后道工艺来实现, 也可以由铜后道工艺大马士革工艺来实现。
进一步地, 该第二通孔层采用标准 CMOS 工艺的接触孔工艺来实现, 其材料可以是 Cu或者 W。 其中, 该通孔层可以采用标准 CMOS工艺的 A1 后道工艺来实现, 也可以由铜后道工艺大马士革工艺来实现。
进一步地, 该透明材料是含碳、 氢、 氧的透明树脂。
进一步地, 所述光敏元件是光敏二极管。
本发明上述第一个应用中 CMOS 影像传感器的像元结构的制造方法, 包括以下步骤:
步骤 S101 : 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构; 步骤 S102: 光刻刻蚀去除光敏元件上方的介质层, 形成具有透光空间 的深沟槽;
步骤 S103 : 利用成膜工艺向硅片表面沉积金属反射层;
步骤 S104: 去除附着于深沟槽侧壁的金属反射层以外的沉积金属。
进一步地, 还包括步骤 S105: 向深沟槽内填充透明材料, 并实现硅片 平坦化; 步骤 S106: 在透明材料的上表面依次制作彩色滤光层和微透镜层。
其中,步骤 S101与步骤 S102之间还包括去除由数个光敏元件组成的像 元阵列区域之上的钝化层的步骤 S1011,该钝化层是包括例如下层 SiN层厚 度为 1000A-2000A)和上层 Si02层的叠层结构, 该步骤 S011包括去除 Si02 层并停留在 SiN层以及去除 SiN层。
其中, 步骤 S103中成膜工艺包括 PVD、 CVD、 ALD等工艺。
其中, 由于步骤 S104需要去除多个高度平面上的金属反射层, 包括深 沟槽底部、 深沟槽内除深沟槽侧壁以外的区域, 甚至深沟槽之间隔离区域的 顶部, 以及像元阵列外部区域, 因此, 该步骤包括单次或多次光刻多次不同 焦平面的曝光技术。
具体地, 步骤 S104包括: 先实现深沟槽底部区域的曝光, 露出需要刻 蚀去除的金属反射层; 然后实现深沟槽之间隔离区顶部金属反射层的曝光, 露出需要刻蚀去除的金属反射层; 再实现像元阵列外部区域钝化层上的金属 反射层曝光, 露出需要刻蚀去除的金属反射层; 最后通过刻蚀去除上述区域 的金属反射层。
此外, 也可以通过大面积刻蚀去除硅片表面平面之上的金属反射层, 这 是由于深沟槽侧壁的金属反射层纵向高度很高, 即很厚, 因此, 可以在刻蚀 后被保留下来。
本发明上述第二个应用中 CMOS 影像传感器的像元结构的制造方法, 包括以下步骤:
步骤 S201 : 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 并利用标准 CMOS工艺实现包括光敏元件和多层结构;
步骤 S202: 实现所述多层结构顶层的通孔和用于容置所述光线反射屏 蔽层的孔槽;
步骤 S203: 实现所述多层结构顶层第一金属互连层中用于容置金属连 线的沟槽;
步骤 S204: 实现顶层第一金属互连层的金属连线和光线反射屏蔽层的 金属层;
步骤 S205: 刻蚀实现深沟槽。
进一步地,所述步骤 S202和步骤 S203采用双大马士革工艺中的先刻全 孔工艺 (full via first)
进一步地, 还包括步骤 S206, 向深沟槽内填充透明材料以形成透明体, 并在所述透明体上表面实现的彩色滤光层和微透镜层。
本发明上述第三个应用中 CMOS 影像传感器的像元结构的制造方法, 包括以下步骤:
步骤 S301 : 在硅衬底上排布光敏元件、 用于标准 CMOS器件的多层结 构和光线反射屏蔽层, 并利用标准 CMOS 工艺实现包括光敏元件、 多层结 构和光线反射屏蔽层, 其中, 所述光线反射屏蔽层包括第二多晶硅层、 由多 个接触空密集排布所围成的第二接触孔层、 由金属连线所围成的第二金属互 连层和由多个通孔密集排布所围成的第二通孔层;
步骤 S302: 刻蚀实现深沟槽。
进一步地, 还包括步骤 S303 , 向深沟槽内填充透明材料以形成透明体, 并在所述透明体上表面实现的彩色滤光层和微透镜层。
现有技术中, 由于光敏元件区域上方的介质层膜层较多且复杂, 同时非 常厚, 也就是光线到达光敏元件的距离比较长, 这样光线传输中, 会有不可 避免的损失, 该损失与光线传输路程成正比; 同时, 光线传输过程中, 有一 定角度的光线会入射到深沟槽侧壁上, 该部分光线会发生一定的折射、透射 及吸收, 导致相邻像元之间的串扰以及光线损失。
因此, 本发明的 CMOS影像传感器的像元结构中, 在光敏元件上方的 深沟槽侧壁, 被环形的金属互连线、 通孔、 接触孔和多晶硅所包围, 或直接 被金属层所包围, 由于金属层、 通孔、 接触孔层以及多晶硅层使用金属或多 晶硅, 入射到上面的光线基本被完全反射, 入射角度较大的光线入射到深沟 槽侧壁时, 不会发生穿过相邻像元之间区域到达旁边一个像元, 避免了光学 出串扰的发生, 有效地提高了像元的光学分辨率和灵敏度; 同时, 由于入射 光线被反射到光敏元件之上, 从而提高了像元的光吸收量, 这样可以提高整 个 CMOS影像传感器的光学灵敏度和清晰度, 提升了芯片的性能和可靠性; 此外, 可以通过大面积去除光敏元件阵列区域的钝化层, 降低光线传输路径 的长度, 入射角度也变得更大; 同时, 由于光敏元件到彩色滤光层及微透镜 的距离变短, 能够接受更大角度的入射光线, 提高了光吸收能力。 为能更清楚理解本发明的目的、特点和优点, 以下将结合附图对本发明 的较佳实施例进行详细描述, 其中:
图 1是本发明第一实施例 CMOS影像传感器像元结构的剖视图; 图 2是本发明第二实施例 CMOS影像传感器像元结构的剖视图; 图 3a和图 3b是本发明像元结构中有无钝化层的效果示意图; 图 4是本发明光敏二极管阵列区域在制备金属反射层之前的剖视图; 图 5是图 4在制备金属反射层及其他层次之后的剖视图;
图 6是本发明 CMOS影像传感器像元结构的第三实施例示意图; 图 7是本发明第三实施例中第二金属互连层的俯视图;
图 8是本发明第三实施例中第二接触孔层的俯视图;
图 9a至图 9d是本发明第四实施例的工艺流程示意图。
^咖
第一实施例
请参阅图 1, 第一实施例中, CMOS影像传感器的像元结构包括硅衬底 1上的光敏二极管 10和多层结构(用于标准 CMOS器件的层次), 本实施例 中, 本实施例中硅衬底 1与多层结构之间还具有一层栅极氧化层 2, 其中, 多层结构自下而上包括多晶硅层 3、 钨接触孔层 4、 铜金属互连层 5以及其 上的其他通孔层、 金属互连层和互连介质层。 光敏二极管 10上方具有形成 透光空间的深沟槽 7, 深沟槽 7侧壁向内由金属反射层 6环绕, 以反射入射 到该金属反射层 6的光线。金属反射层 6为铝材料,厚度为 100A,通过 PVD 成膜技术制备。 其中,深沟槽 7内填充透明材料形成透光体 71,透明材料所形成的透光 体 71还覆盖多层结构的顶层, 在深沟槽 7内透明材料的上表面一次设置有 彩色滤光层 8和微透镜 9。
本发明以第一实施例中多个 CMOS影像传感器光学增强结构组成的像 元阵列的制造方法包括:
步骤 S101 :利用标准 CMOS工艺在硅衬底上制备光敏二极管 10和用于 CMOS器件的多层结构, 去除像元阵列区域的钝化层, 该钝化层是包括下层 SiN层和上层 8102层的叠层结构, 去除钝化层的步骤包括去除 Si02层并停 留在 SiN层以及去除 SiN层;
步骤 S102: 光刻刻蚀去除光敏二极管 10上方的介质层, 形成具有透光 空间的深沟槽 7;
步骤 S103 : 利用 PVD成膜工艺向硅片表面沉积金属反射层 6;
步骤 S104: 去除深沟槽 7内除深沟槽侧壁以外的金属反射层 6;
步骤 S105: 向深沟槽 7内填充透明材料, 并实现硅片平坦化; 步骤 S106: 在深沟槽 7内透明材料的上表面依次制作彩色滤光层 8和 微透镜 9。
其中, 步骤 S04包括: 先实现深沟槽 7底部区域的曝光, 露出需要刻蚀 去除的金属反射层; 再实现深沟槽 7之间隔离区顶部金属反射层的曝光, 露 出需要刻蚀去除的金属反射层; 最后实现像元阵列外部区域钝化层上的金属 反射层曝光, 露出需要刻蚀去除的金属反射层; 最后通过刻蚀去除上述区域 的金属反射层。
第二实施例 请继续参阅图 2, 第二实施例中, CMOS影像传感器的像元结构包括硅 衬底 1上的光敏二极管 10和多层结构 (用于标准 CMOS器件的层次), 本 实施例中, 本实施例中硅衬底 1与多层结构之间还具有一层栅极氧化层 2, 其中, 多层结构自下而上包括多晶硅层 3、 钨接触孔层 4、 铜金属互连层 5 以及其上的其他通孔层、 金属互连层和互连介质层。 光敏二极管 10上方具 有形成透光空间的深沟槽 7, 深沟槽 7侧壁由金属反射层 6环绕, 以反射入 射到该金属反射层 6的光线;多层结构的顶层之上也制备一层金属反射层 6, 用以反射从多层结构顶部入射到多层结构内部的光线,而进一步避免光线对 相邻像元的光学串扰。 金属反射层 6为钛材料, 厚度为 500A, 通过 PVD成 膜技术制备。
其中,深沟槽 7内填充透明材料形成透光体 71,透明材料所形成的透光 体 71还覆盖多层结构的顶层, 在深沟槽 7内透明材料的上表面一次设置有 彩色滤光层 8和微透镜 9。
请同时参阅图 3a和 3b, 图 3a中的多层结构比图 3b的多层结构多了一 层钝化层 11, 可见, 去除钝化层后, 像元的光线 A入射角度变得更大, 光 线路程 B则变得更短, 可以提高光的吸收能力。
接着, 请同时参阅图 4和图 5。
图 4中, 光敏二极管阵列区域 C-C的钝化层 12先被去除, 其中, 钝化 层 12包括先后生成的下层 SiN层和上层 8102层的叠层结构, 该去除钝化层 步骤包括去除 Si02层并停留在 SiN层以及去除 SiN层; 然后在各光敏二极 管 10的上方制备出深沟槽 7 (图中像元间的多层结构 31的各个层次被省略 绘出)。 图 5中, 光敏二极管阵列区域 C-C已制备完透光体、 金属反射层 6、 彩 色滤光层 8以及微透镜 9。 从图中可见, 多层结构 31的顶层为介质层 14, 目的是为了将多层结构中的金属互连层与金属反射层 6相互隔开与保护; 同 时, 深沟槽 7之间隔离区顶部金属反射层 6也被去除一部分, 目的是避免相 邻像元间的串联干扰。
其中, 第一、 第二实施例的透明材料选用本领域常用的含碳、 氢、 氧的 透明树脂材料。
第三实施例
请参阅图 6, CMOS影像传感器的像元结构包括硅衬底 31上的光敏二 极管 37和多层结构 (用于标准 CMOS器件的层次), 本实施例中硅衬底 31 与多层结构之间还具有一层栅极氧化层 32,其中,多层结构自下而上包括第 一多晶硅层 33、 W接触孔层 34、 Cu金属互连层 35和第一通孔层 351、 互 连介质层 (未标示), 光敏二极管 37上方设有深沟槽 38, 在深沟槽 38的侧 壁介质内还具有光线反射屏蔽层 39,该光线反射屏蔽层 39与深沟槽 38侧壁 的距离为 O.lum, 其完全包围深沟槽 39, 且其包括纵向上自栅极氧化层 32 起, 向上连续层叠排布的第二多晶硅层 391、 第二接触孔层 392、 第二金属 互连层 A 393、第二通孔层 A 394、第二属互连层 B 395、第二通孔层 B 396、 第二金属互连层 C 397, 该深沟槽 38内还填充透明材料形成的透光体 36。
请继续参阅图 7, 第二金属互连层 A 393、 第二属互连层 B 395、 第二金 属互连层 C 397是连续的环形结构, 并完全包围深沟槽 38。
请继续参阅图 8,第二接触孔层 392由多个接触孔密集排布而形成环形, 并包围深沟槽 38; 第二通孔层 A 394、 第二通孔层 B 396亦由多个通孔密集 排布而形成环形, 并包围深沟槽 38。
本实施例中, 第二多晶硅层 391采用标准 CMOS工艺的栅极材料的工 艺实现, 其材料是 n型掺杂的多晶硅, 其实现工艺是与 N型 MOS的栅极一 起实现。 第二接触孔层 392采用标准 CMOS工艺的接触孔工艺来实现, 其 材料是 W。 三层第二金属互连层均采用标准 CMOS工艺的接触孔工艺来实 现, 其材料可以是 Cu, 采用铜后道工艺大马士革工艺来实现。 两层第二通 孔层采用标准 CMOS工艺的接触孔工艺来实现, 其材料是 Cu, 采用铜后道 工艺大马士革工艺来实现。
本实施例中, 在平坦化后透明体 36的上表面, 同时对应深沟槽 38的上 方, 自下而上依次制备彩色滤光片 312和微透镜 311。
本实施例 CMOS影像传感器的像元结构的制造方法, 包括以下步骤: 步骤 S201 , 在硅衬底 31上排布光敏二极管 37、 多层结构和光线反射屏 蔽层 39, 利用标准 CMOS工艺实现光敏二极管 37、 多层结构和光线反射屏 蔽层 39;
步骤 S202, 刻蚀深沟槽 38, 去除光敏二极管 37上方所有介质; 步骤 S203 , 向深沟槽 38内填充透明体 36, 并平坦化表面;
步骤 S204, 在平坦化后的透明体 36上表面依次制备彩色滤光片 312和 微透镜 311。
第四实施例
本实施例中, 光线反射屏蔽层是由金属围成的金属层, 且纵向上自栅极 氧化层起, 向上连续排布成一体。
请参阅图 9a至图 9d,本实施例 CMOS影像传感器的像元结构的制造方 法, 包括以下步骤:
步骤 S301 : 在硅衬底上排布光敏二极管和用于标准 CMOS器件的多层 结构, 并利用标准 CMOS工艺实现包括光敏二极管和多层结构;
步骤 S302: 利用光刻工艺, 实现多层结构顶层的通孔 401 和用于容置 光线反射屏蔽层的孔槽 402;
步骤 S303 : 利用光刻工艺, 实现多层结构顶层第一金属互连层中用于 容置金属连线的沟槽 403 ;
步骤 S304: 通过标准工艺, 实现顶层第一金属互连层的金属连线 404 和光线反射屏蔽层的金属层 405;
步骤 S305 : 刻蚀实现深沟槽 406, 填充透明体, 并平坦化表面; 步骤 S306, 在平坦化后的透明体上表面依次制备彩色滤光片和微透镜。

Claims

权利要求
1. 一种 CMOS影像传感器的像元结构, 其包括硅衬底上的光敏元件和 用于标准 CMOS器件的多层结构, 在所述光敏元件的上方具有形成透光空 间的深沟槽, 其特征在于: 所述深沟槽的侧壁由光线反射屏蔽层环绕, 所述 光线反射屏蔽层在纵向上连续排布, 以反射入射到所述光线反射屏蔽层的光 线。
2. 根据权利要求 1所述的 CMOS影像传感器的像元结构,其特征在于: 所述深沟槽在纵向方向的投影面完全覆盖所述光敏元件。
3. 根据权利要求 2所述的 CMOS影像传感器的像元结构,其特征在于: 所述光线反射屏蔽层是一层金属反射层。
4. 根据权利要求 3所述的 CMOS影像传感器的像元结构,其特征在于: 所述金属反射层贴着深沟槽的侧壁向内而设。
5. 根据权利要求 3所述的 CMOS影像传感器的像元结构,其特征在于: 所述金属反射层沿着深沟槽的侧壁向外而设,使得金属反射层与深沟槽侧壁 之间具有介质层。
6. 根据权利要求 4或 5所述的 CMOS影像传感器的像元结构, 其特征 在于: 所述金属反射层自深沟槽底端向上延伸至深沟槽顶端, 并进一步延伸 覆盖所述多层结构, 所述多层结构中的顶层为介质层。
7. 根据权利要求 6所述的 CMOS影像传感器的像元结构,其特征在于: 所述金属反射层材料包括 Al、 Cu、 Pt、 Ru、 TaN、 Ta、 Ti、 TiN及其叠层复 合材料, 且所述金属反射层的厚度为 50A-5000A。
8. 根据权利要求 2所述的 CMOS影像传感器的像元结构,其特征在于: 所述光线反射屏蔽层包括自下而上连续层叠排布的由多晶硅所围成的第二 多晶硅层、 由多个接触孔密集排布所围成的第二接触孔层、 由金属连线所围 成的第二金属互连层和由多个通孔密集排布所围成的第二通孔层,所述光线 反射屏蔽层沿着深沟槽的侧壁向外而设,使得其与深沟槽侧壁之间具有介质 层。
9. 根据权利要求 8所述的 CMOS影像传感器的像元结构,其特征在于: 所述第二多晶硅层是 N型掺杂的多晶硅或 P型掺杂的多晶硅或者无掺杂的多 晶硅; 所述第二接触孔层和第二通孔层中的接触孔和通孔的材料为铜或钨; 所述第二金属互连层中金属连线的材料为铜或铝。
10. 根据权利要求 5或 8所述的 CMOS影像传感器的像元结构, 其特 征在于: 所述光线反射屏蔽层与深沟槽侧壁之间的介质层的厚度为 0.05um-lum。
11. 根据权利要求 4、 5或 8所述的 CMOS影像传感器的像元结构, 其 特征在于:所述光线反射屏蔽层在从上至下的投影面上呈多边形并包围所述 光敏元件。
12. 根据权利要求 11所述的 CMOS影像传感器的像元结构, 其特征在 于: 所述多边形为方形或六角形。
13. 根据权利要求 1至 12任一项所述的 CMOS影像传感器的像元结构, 其特征在于: 所述深沟槽内填充透明材料以形成透光体。
14. 根据权利要求 13所述的 CMOS影像传感器的像元结构, 其特征在 于: 所述透明材料所形成的透光体还覆盖该多层结构顶层的金属反射层, 在 透光体的上表面还依次设置有彩色滤光层和微透镜层。
15. 根据权利要求 14所述的 CMOS影像传感器的像元结构, 其特征在 于: 该透明材料是含碳、 氢、 氧的透明树脂。
16. 根据权利要求 15所述的 CMOS影像传感器的像元结构, 其特征在 于: 所述光敏元件是光敏二极管, 所述多层结构包括第一多晶硅层、 第一金 属互连层、 第一接触孔层、 第一通孔层和第一互连介质层。
17. 一种权利要求 4所述的 CMOS影像传感器的像元结构的制造方法, 其特征在于, 包括以下步骤:
步骤 S101 : 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构; 步骤 S102: 光刻刻蚀去除光敏元件上方的介质层, 形成具有透光空间 的深沟槽;
步骤 S103 : 利用成膜工艺向硅片表面沉积金属反射层;
步骤 S104: 去除附着于深沟槽侧壁的金属反射层以外的沉积金属。
18. 根据权利要求 17所述的 CMOS影像传感器光学增强结构的制备方 法, 其特征在于: 步骤 S101与步骤 S102之间还包括去除由数个光敏元件组 成的像元阵列区域之上的钝化层的步骤 S1011 , 该钝化层是包括下层 SiN层 和上层 8102层的叠层结构, 该步骤 S1011包括去除 Si02层并停留在 SiN层 以及去除 SiN层。
19. 根据权利要求 17所述的 CMOS影像传感器光学增强结构的制备方 法, 其特征在于: 步骤 S103中成膜工艺包括 PVD、 CVD、 ALD。
20. 根据权利要求 17所述的 CMOS影像传感器光学增强结构的制备方 法, 其特征在于: 步骤 S104包括单次或多次光刻多次不同焦平面的曝光技 术。
21. 根据权利要求 18所述的 CMOS影像传感器光学增强结构的制备方 法, 其特征在于: 步骤 S104包括先实现深沟槽底部区域的曝光, 露出需要 刻蚀去除的金属反射层; 然后实现深沟槽之间隔离区顶部金属反射层的曝 光, 露出需要刻蚀去除的金属反射层; 再实现像元阵列外部区域钝化层上的 金属反射层曝光, 露出需要刻蚀去除的金属反射层; 最后通过刻蚀去除上述 区域的金属反射层。
22. 根据权利要求 17所述的 CMOS 影像传感器的像元结构的制造方 法, 其特征在于: 还包括步骤 S105: 向深沟槽内填充透明材料, 并实现硅 片平坦化; 步骤 S106: 在透明材料的上表面依次制作彩色滤光层和微透镜 层。
23. 一种权利要求 5所述的 CMOS影像传感器的像元结构的制造方法, 其特征在于, 包括以下步骤:
步骤 S201 : 在硅衬底上排布光敏元件和用于标准 CMOS器件的多层结 构, 并利用标准 CMOS工艺实现包括光敏元件和多层结构;
步骤 S202: 实现所述多层结构顶层的通孔和用于容置所述光线反射屏 蔽层的孔槽;
步骤 S203 : 实现所述多层结构顶层第一金属互连层中用于容置金属连 线的沟槽;
步骤 S204: 实现顶层第一金属互连层的金属连线和光线反射屏蔽层的 金属层;
步骤 S205 : 刻蚀实现深沟槽。
24. 根据权利要求 23所述的 CMOS影像传感器光学增强结构的制备方 法, 其特征在于: 所述步骤 S202和步骤 S203采用双大马士革工艺中的先刻 全孔工艺。
25. 根据权利要求 24所述的 CMOS影像传感器光学增强结构的制备方 法, 其特征在于: 还包括步骤 S206, 向深沟槽内填充透明材料以形成透明 体, 并在所述透明体上表面实现的彩色滤光层和微透镜层。
26. 一种权利要求 8所述的 CMOS影像传感器的像元结构的制造方法, 其特征在于, 包括以下步骤:
步骤 S301 : 在硅衬底上排布光敏元件、 用于标准 CMOS器件的多层结 构和光线反射屏蔽层, 并利用标准 CMOS 工艺实现包括光敏元件、 多层结 构和光线反射屏蔽层, 其中, 所述光线反射屏蔽层包括第二多晶硅层、 由多 个接触空密集排布所围成的第二接触孔层、 由金属连线所围成的第二金属互 连层和由多个通孔密集排布所围成的第二通孔层;
步骤 S302: 刻蚀实现深沟槽。
27. 根据权利要求 26所述的 CMOS影像传感器光学增强结构的制备方 法, 其特征在于: 还包括步骤 S303 , 向深沟槽内填充透明材料以形成透明 体, 并在所述透明体上表面实现的彩色滤光层和微透镜层。
PCT/CN2012/087826 2012-12-26 2012-12-28 Cmos影像传感器像元结构及其制造方法 WO2014101097A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/439,229 US9305951B2 (en) 2012-12-26 2012-12-28 Pixel structure of CMOS image sensor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210575311.1A CN103066089B (zh) 2012-12-26 2012-12-26 Cmos影像传感器像元结构及其制造方法
CN201210575311.1 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014101097A1 true WO2014101097A1 (zh) 2014-07-03

Family

ID=48108639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087826 WO2014101097A1 (zh) 2012-12-26 2012-12-28 Cmos影像传感器像元结构及其制造方法

Country Status (2)

Country Link
CN (1) CN103066089B (zh)
WO (1) WO2014101097A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575061B2 (en) * 2019-06-26 2023-02-07 X-Fab Semiconductor Foundries Gmbh Single photon avalanche diode devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096635B2 (en) 2014-08-08 2018-10-09 Xintec Inc. Semiconductor structure and manufacturing method thereof
CN109767725A (zh) * 2019-03-19 2019-05-17 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示装置
CN114284305B (zh) * 2021-12-07 2024-01-12 杭州海康微影传感科技有限公司 光电探测器及其制备方法、射线探测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917222A (zh) * 2005-08-18 2007-02-21 联华电子股份有限公司 互补式金属氧化物半导体晶体管影像感测器及其制造方法
CN1992322A (zh) * 2005-12-29 2007-07-04 东部电子股份有限公司 Cmos图像传感器及其制造方法
CN101231971A (zh) * 2007-01-22 2008-07-30 台湾积体电路制造股份有限公司 具有接合垫的金属氧化物半导体影像感测器及其形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123060B2 (ja) * 2003-06-11 2008-07-23 ソニー株式会社 固体撮像素子及びその製造方法
US7193289B2 (en) * 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
JP2008034699A (ja) * 2006-07-31 2008-02-14 Sharp Corp 固体撮像素子およびその製造方法、電子情報機器、イオン化スパッタリング装置
JP2008270500A (ja) * 2007-04-19 2008-11-06 Sharp Corp 固体撮像素子およびその製造方法、電子情報機器
KR20090025818A (ko) * 2007-09-07 2009-03-11 주식회사 동부하이텍 이미지 센서 및 그의 제조방법
US20100144084A1 (en) * 2008-12-05 2010-06-10 Doan Hung Q Optical waveguide structures for an image sensor
KR20100079739A (ko) * 2008-12-31 2010-07-08 주식회사 동부하이텍 이미지 센서 및 그의 제조 방법
JP2012038986A (ja) * 2010-08-10 2012-02-23 Sony Corp 固体撮像装置とその製造方法、並びに電子機器
CN102891159B (zh) * 2012-10-25 2018-10-16 上海集成电路研发中心有限公司 Cmos影像传感器的像元结构及其制造方法
CN103000647B (zh) * 2012-10-25 2018-10-16 上海集成电路研发中心有限公司 一种cmos影像传感器光学增强结构及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917222A (zh) * 2005-08-18 2007-02-21 联华电子股份有限公司 互补式金属氧化物半导体晶体管影像感测器及其制造方法
CN1992322A (zh) * 2005-12-29 2007-07-04 东部电子股份有限公司 Cmos图像传感器及其制造方法
CN101231971A (zh) * 2007-01-22 2008-07-30 台湾积体电路制造股份有限公司 具有接合垫的金属氧化物半导体影像感测器及其形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575061B2 (en) * 2019-06-26 2023-02-07 X-Fab Semiconductor Foundries Gmbh Single photon avalanche diode devices

Also Published As

Publication number Publication date
CN103066089B (zh) 2018-08-28
CN103066089A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
US10797096B2 (en) Semiconductor image sensor
TWI752159B (zh) 影像感測裝置與其形成方法
TWI682553B (zh) 半導體影像感測裝置及影像感測器的製造方法
CN107039468B (zh) 影像感测器及其制作方法
US9305951B2 (en) Pixel structure of CMOS image sensor and manufacturing method thereof
KR102300877B1 (ko) Bsi 이미지 센서에서 자기 정렬된 그리드들을 형성하는 방법
US20100203665A1 (en) Methods of manufacturing an image sensor having an air gap
JP2008192951A (ja) 固体撮像装置およびその製造方法
CN110164904B (zh) 图像传感器及其制造方法
US11532658B2 (en) Image sensor grid and method of fabrication of same
JP2008091643A (ja) 固体撮像装置
US11646340B2 (en) Semiconductor image sensor
JP6083572B2 (ja) 固体撮像装置及びその製造方法
KR20190055746A (ko) 이미지 센서 디바이스를 위한 편광자
WO2014101097A1 (zh) Cmos影像传感器像元结构及其制造方法
JP2012204387A (ja) 固体撮像素子およびその製造方法
TWI782461B (zh) 背照式影像感測器及其製造方法
JP2014086514A (ja) 撮像装置、その製造方法及びカメラ
CN102891159B (zh) Cmos影像传感器的像元结构及其制造方法
JP7194918B2 (ja) 固体撮像素子
CN103000647A (zh) 一种cmos影像传感器光学增强结构及制备方法
JP7457989B2 (ja) 光検出器、固体撮像素子、及び、光検出器の製造方法
CN110828490B (zh) 背照式影像传感器
JP2014086515A (ja) 撮像装置、その製造方法及びカメラ
TW202318651A (zh) 影像感測器及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14439229

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890934

Country of ref document: EP

Kind code of ref document: A1