WO2014101058A1 - 多用户多输入多输出通信的方法和基站 - Google Patents

多用户多输入多输出通信的方法和基站 Download PDF

Info

Publication number
WO2014101058A1
WO2014101058A1 PCT/CN2012/087712 CN2012087712W WO2014101058A1 WO 2014101058 A1 WO2014101058 A1 WO 2014101058A1 CN 2012087712 W CN2012087712 W CN 2012087712W WO 2014101058 A1 WO2014101058 A1 WO 2014101058A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
power
port
antenna
pilot configuration
Prior art date
Application number
PCT/CN2012/087712
Other languages
English (en)
French (fr)
Inventor
杨敬
蒋培刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/087712 priority Critical patent/WO2014101058A1/zh
Priority to CN201280002494.6A priority patent/CN104040980B/zh
Publication of WO2014101058A1 publication Critical patent/WO2014101058A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method and base station for multi-user Multiple Input Multiple Output (CU-MIMO) communication.
  • CU-MIMO Multiple Input Multiple Output
  • MU-MIMO is a spatial degree of freedom that utilizes multi-user channels to multiplex multiple downlink user data into the same time-frequency domain resource to obtain spatial division multiplexing access ("SDMA"). Gain. For downlink MU-MIMO, it is difficult for each user to implement joint detection, so it is multiplexed in an evolved base station (Evolutional Node B, called "ENB or eNodeB").
  • Evolutional Node B called "ENB or eNodeB”
  • the Partnership Project known as the "3GPP” Association, has added a new transmission in the R10 protocol of the Long Term Evolution (LTE-Advanced) (LTE-Advanced) Mode 9 (TM9) Multiple Input Multiple Output (“Multiple Input Multiple Output”) mode.
  • the TM9 mode adds some user equipment (User Equipment, called “UE”) Demodulation Reference Signal (DRS) antenna port (Port) and new signaling format downlink control information ( Downlink Control Information, called "DCI” format 2C (DCI Format 2C) format to better support single-user (Single-User, called "SU”) / MU MIMO implementation and SU / MU adaptive Switch.
  • UE User Equipment
  • DCI Demodulation Reference Signal
  • SU Single-user
  • SU single-user
  • the DRS is a UE demodulation pilot, and the channel and weight information of each user are carried by the DRS.
  • the UE may obtain the weighted equivalent channel information by performing channel estimation on the DRS.
  • the pilot configuration of the UE includes an antenna port, a scrambling code identifier, an orthogonal code length, and the like.
  • the DCI Format 2C format provides information such as the DRS Port location and the corresponding layer number (Lay) used by the user, as well as the Modulation and Coding Scheme ("MCS"). Therefore, for R10, MU-MIMO and SU-MIMO are transparent, and flexible switching is possible.
  • MCS Modulation and Coding Scheme
  • the newly added DCI Format 2C format of the RIO protocol, the DRS Port information is specified in Table 1.
  • the DRS Port can only use the antenna ports 7, 8 and 2 different scrambling codes to combine 3/4 layer multiplexing, and through the antenna port. 7, 8 and different scrambling codes, 3/4 layer MU pairing, 2 UE DRS pilots are not strictly orthogonal, thus affecting network performance.
  • Embodiments of the present invention provide a method and a base station for MU-MIMO communication, which can enhance network performance.
  • the method further includes: if the number of transmission layers supported by the second UE is greater than or equal to 4, determining the pilot of the second UE by using the n as the transmission layer of the second UE configuration; the pilot guide disposed second UE to the second UE transmits; power allocation for the second UE on the "two-port pilot antenna port prior to the second configuration in the UE, on the other ports No power is allocated for the second UE.
  • the method further comprising: if the second number of transmission layers is supported by the UE 2 according to the number of layers and the second UE supports the "UE 2 determines that the second pilot configuration; the pilot guide disposed second UE to the second UE transmits; power allocation for the second UE on the "two-port antenna port prior to the second UE in the pilot configuration of.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 4 or 8.
  • the value is 2, the n 2 is 2, the value is 4; determining the pilot configuration of the first UE by using the n as the number of transmission layers of the first UE, including: determining a pilot configuration of the first UE.
  • Antenna ports are antenna port 7, antenna port 8, antenna port 9 and antenna port 10; power is allocated to the first UE on the last port of the antenna ports in the pilot configuration of the first UE, on other ports Not allocating power to the first UE, including: allocating power to the first UE on the antenna port 9 and the antenna port 10, and not allocating power to the first UE on the antenna port 7 and the antenna port 8; Determining the pilot configuration of the second UE as the number of transmission layers of the second UE, including: determining that an antenna port in a pilot configuration of the second UE is the antenna port 7, the antenna port 8, and the antenna Port 9 and the antenna port 10; the first « 2 of the antenna ports in the pilot configuration of the second UE Assigning power to the second UE on the port, and not allocating power to the second UE on the other port, including: allocating power to the second UE on the antenna port 7 and the antenna port 8, at the antenna port 9 and the The second UE is not allocated power on the antenna port 10.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 4 or 8. , which is 2, the "2 to 1, the"3; n as the number of layers of the first UE determines that the UE a first pilot configuration, comprising: determining the configuration of the first pilot of the UE
  • the antenna ports are the antenna port 7, the antenna port 8, and the antenna port 9; the first UE is allocated power on the last port of the antenna port in the pilot configuration of the first UE, and the other port is not the first Allocating power to a UE includes: allocating power to the first UE on the antenna port 8 and the antenna port 9, and not allocating power to the first UE on the antenna port 7; using the n as the second UE Transmission Determining, by the number of layers, the pilot configuration of the second UE, including: determining that an antenna port in a pilot configuration of the second UE is the antenna port 7, the antenna port
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2, «! is 2, the " 2 is 2, the "4"; determining the pilot configuration of the first UE by using the n as the number of transmission layers of the first UE, comprising: determining the pilot configuration of the first UE Antenna ports are antenna port 7, antenna port 8, antenna port 9 and antenna port 10; power is allocated to the first UE on the last port of the antenna ports in the pilot configuration of the first UE, on other ports Not allocating power to the first UE, including: allocating power to the first UE on the antenna port 9 and the antenna port 10, and not allocating power to the first UE on the antenna port 7 and the antenna port 8; according to the second number of transmission layers supported by the UE and the "UE 2 determines that the second pilot configuration, comprising: determining a pilot arrangement in the second UE for antenna port 7 and antenna port 8 of the antenna port
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2.
  • is 2, the n 2 is 1, the "3"; determining the pilot configuration of the first UE as the number of transmission layers of the first UE, including: determining the pilot configuration of the first UE
  • the antenna port is the antenna port 7, the antenna port 8, and the antenna port 9; the first UE is allocated power on the last port of the antenna port in the pilot configuration of the first UE, and the first port is not the first
  • the UE allocates power, including: allocating power to the first UE on the antenna port 8 and the antenna port 9, and not allocating power to the first UE on the antenna port 7; according to the number of transmission layers supported by the second UE and the "pilot 2 determines the configuration of the second UE, comprising: determining that the UE second pilot port for antenna configurations antenna port 7; the second UE antenna port pilot configuration in front "for the second
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2, 2, the "2 is 1, the "3"; determining the pilot configuration of the first UE by using the n as the number of transmission layers of the first UE, comprising: determining an antenna in a pilot configuration of the first UE The port is the antenna port 7, the antenna port 8, and the antenna port 9; the first UE is allocated power on the last port of the antenna port in the pilot configuration of the first UE, and the first UE is not on the other port.
  • Allocating power includes: allocating power to the first UE on the antenna port 8 and the antenna port 9, and not allocating power to the first UE on the antenna port 7; according to the number of transmission layers supported by the second UE the "UE 2 determines that the second pilot configuration, comprising: determining a pilot arrangement in the second UE for antenna port 7 and antenna port 8 of the antenna port; UE in the second pilot configuration before the antenna ports "for the second UE is allocated two power ports, comprising: a second port for the power allocated to the UE 7 on the antenna, the antenna port is not allocated to the UE for a first power 8.
  • the number of transmission layers supported by the first UE is 8
  • the number of transmission layers supported by the second UE is 8
  • the number of transmission layers supported by the second UE is 8
  • the n is 5
  • determining the pilot configuration of the first UE as the number of transmission layers of the first UE including: determining that the antenna port in the pilot configuration of the first UE is Antenna port 7, antenna port 8, antenna port 9, antenna port 10, and antenna port 11; allocating power to the first UE on the latter port of the antenna port in the pilot configuration of the first UE, on other ports Not allocating power to the first UE, including: allocating power to the first UE on the antenna port 9, the antenna port 10, and the antenna port 11, where the antenna port 7 and the antenna port 8 are not Determining the pilot configuration of the second UE by using the n as the number of transmission layers of the second UE, including: determining that the antenna port in the pilot configuration of the second UE is the antenna port 7, the antenna Port
  • the number of transmission layers supported by the first UE is 8
  • the number of transmission layers supported by the second UE is 8 , where is 3 , the "2 to 3, the"6;
  • the determining the pilot configuration of the second UE by the number of layers includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the antenna Port 11 and the antenna port 12; the second UE is allocated power on the first n 2 ports of the antenna ports in the pilot configuration of the second UE, and the second UE is not allocated power on other ports, including : The second UE is allocated power on the antenna port 7, the antenna port 8 and the antenna port 9, and no power is allocated to the second UE on the antenna port 10, the antenna 11 and the antenna port 12.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 4 , the "2 to 3, the"7; n determining the configuration of the pilot as the first transmission layers of the UE, the first UE, comprising: determining a pilot arrangement in the first UE antenna port Antenna port 7, antenna port 8, antenna port 9, antenna port 10, antenna port 11, antenna port 12, and antenna port 13; on the latter port of the antenna ports in the pilot configuration of the first UE A UE allocates power, and the other UE does not allocate power to the first UE, including: allocating power to the first UE on the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13, where The first UE is not allocated power on the antenna port 7, the antenna port 8, and the antenna port 9.
  • the determining the pilot configuration of the second UE as the number of transmission layers of the second UE includes: determining the first The antenna port in the pilot configuration of the two UEs is the antenna port 7, and the antenna port 8, the antenna port 9, the antenna port 10, antenna port 11, port 12 and the antenna 13 of the antenna port; for the "two-port antenna port before the second pilot UE configuration in The second UE allocates power, and the other UEs do not allocate power to the second UE, including: allocating power to the second UE on the antenna port 7, the antenna port 8, and the antenna port 9, at the antenna port 10, The antenna 11, the antenna port 12, and the antenna port 13 are not allocated power to the second UE.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, x is 4, the “ 2 is 4, the “is 8; determining the pilot configuration of the first UE by using the n as the transmission layer number of the first UE, and determining: determining the pilot configuration of the first UE.
  • Antenna port is the antenna end Port 7, antenna port 8, antenna port 9, antenna port 10, antenna port 11, antenna port 12, antenna port 13 and antenna port 14; on the latter port of the antenna ports in the pilot configuration of the first UE Allocating power to the first UE, and not allocating power to the first UE on the other port, including: allocating power to the first UE on the antenna port 11, the antenna port 12, the antenna port 13, and the antenna port 14 And not allocating power to the first UE on the antenna port 7, the antenna port 8, the antenna port 9, and the antenna port 10; determining the guide of the second UE as the number of transmission layers of the second UE
  • the frequency configuration includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, the antenna port 12, the the antenna port 13 and antenna port 14; the port before the second UE antenna pilot configuration is "allocated to the UE for a second 2-port power, power is not allocated to the UE for a second port on the other, Includes:
  • the method further includes: receiving the first UE The acknowledge/deny (ACK/NACK) message is sent; if no power is allocated on the antenna port corresponding to the codeword to be retransmitted in the ACK/NACK message, the codeword is not retransmitted.
  • ACK/NACK acknowledge/deny
  • the method further includes: receiving an ACK sent by the second UE.
  • the NACK message if no power is allocated on the antenna port corresponding to the codeword that needs to be retransmitted in the ACK/NACK message, the codeword is not retransmitted.
  • the configuration module is further configured to: if the number of transmission layers supported by the second UE is greater than or equal to 4, determine the number of transmission layers of the second UE by using the n a pilot configuration; the sending module is further configured to send the pilot configuration of the second UE to the second UE; Antenna port before the processing module further configured to pilot the second UE in the "power allocated to the UE for a second 2-port, power is not allocated to the UE for a second port on the other.
  • the module is further configured to, if the second transmission layers supported by the UE is 2, "the second UE 2 is determined according to the number of transmission layers supported by the UE and the second of pilot arrangement; the sending module is further configured to guide the second UE transmit frequency configuration to the second UE; before the processing module is further configured to the UE a second pilot configuration antenna ports "2 The second UE is allocated power on the ports.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 4 or 8.
  • the value is 2, the 2 is 2, the “4”; the configuration module is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, antenna port 9, and antenna port.
  • the processing module is specifically configured to use the antenna port 9 and the antenna
  • the first UE is allocated power on the port 10
  • the first UE is not allocated power on the antenna port 7 and the antenna port 8
  • the second UE is allocated power on the antenna port 7 and the antenna port 8. No power is allocated to the second UE on the antenna port 9 and the antenna port 10.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 4 or 8. , which is 2, the "2 to 1, the"3;
  • the configuration module is configured to determine the first pilot UE antenna port configurations antenna port 7 and antenna port 8 and the antenna port 9, which is determined
  • the antenna port in the pilot configuration of the second UE is the antenna port 7, the antenna port 8, and the antenna port 9.
  • the processing module is specifically configured to allocate the first UE on the antenna port 8 and the antenna port 9. Power is not allocated to the first UE on the antenna port 7, and the second UE is allocated power on the antenna port 7, and the second UE is not allocated power on the antenna port 8 and the antenna port 9. .
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2.
  • «! is 2, the " 2 is 2, the "4";
  • the configuration module is specifically for determining that the antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, antenna port 9, and antenna port.
  • the antenna port in the pilot configuration of the second UE is determined to be the antenna port 7 and the antenna port 8;
  • the processing module is specifically configured to allocate work for the first UE on the antenna port 9 and the antenna port 10 Rate, no power is allocated to the first UE on the antenna port 7 and the antenna port 8, and power is allocated to the second UE on the antenna port 7 and the antenna port 8.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2.
  • the “ 2 is 1, the "3";
  • the configuration module is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, and antenna port 9, determining the second The antenna port in the pilot configuration of the UE is the antenna port 7;
  • the processing module is specifically configured to allocate power to the first UE on the antenna port 8 and the antenna port 9, where the antenna port 7 is not the first A UE allocates power, and the second UE is allocated power on the antenna port 7.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2.
  • the “ 2 is 1, the "3"
  • the configuration module is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, and antenna port 9, determining the second The antenna port in the pilot configuration of the UE is the antenna port 7 and the antenna port 8
  • the processing module is specifically configured to allocate power to the first UE on the antenna port 8 and the antenna port 9, at the antenna port 7 The power is not allocated to the first UE, and the second UE is allocated power on the antenna port 7, and the first UE is not allocated power on the antenna port 8.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 3.
  • the parameter is 2 is 2, and the n is 5;
  • the configuration module is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, antenna port 9, antenna port 10, and antenna port. 11.
  • the antenna port in the pilot configuration of the second UE is determined to be the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the antenna port 11.
  • the processing module is specifically configured to be used in the antenna
  • the first UE is allocated power on the port 9, the antenna port 10, and the antenna port 11, and the first UE is not allocated power on the antenna port 7 and the antenna port 8, and the antenna port 7 and the antenna port are 8 is allocated power for the second UE, and no power is allocated to the second UE on the antenna port 9, the antenna 10, and the antenna port 11.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 3.
  • the parameter is 2, and the n is 6; the configuration module is specifically configured to determine that the antenna port in the pilot configuration of the first UE is the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the antenna port.
  • the processing module is specifically configured to allocate power to the first UE on the antenna port 10, the antenna port 11, and the antenna port 12, where the antenna port 7, the antenna port 8, and the antenna port 9 are not
  • a UE allocates power, and the second UE is allocated power on the antenna port 7, the antenna port 8, and the antenna port 9, and the second UE is not on the antenna port 10, the antenna 11 and the antenna port 12. Allocate power.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 4 the "3 to 2, the n is 7; the module is specifically configured to determine the first pilot UE antenna port configurations antenna port 7 and antenna port 8, antenna port 9, antenna port 10, an antenna port 11.
  • the antenna port 12 and the antenna port 13 determine that the antenna port in the pilot configuration of the second UE is the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, and the antenna port An antenna port 12 and the antenna port 13; the processing module is specifically configured to allocate power to the first UE on the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13, where the antenna port 7 is The first UE is not allocated power on the antenna port 8 and the antenna port 9, and the second UE is allocated power on the antenna port 7, the antenna port 8, and the antenna port 9, at the antenna port 10, Antenna 11, the antenna port 12, and the antenna port 13 Not allocated for the second UE power.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, ! is 4, the " 2 is 4, the "8";
  • the configuration module is specifically used to determine that the antenna port in the pilot configuration of the first UE is antenna port 7, antenna port 8, antenna port 9, antenna port 10
  • the processing module is specifically configured to be on the antenna port 11, the antenna port 12, the antenna port 13 and the antenna port 14
  • the first UE allocates power, and the first UE is not allocated power on the antenna port 7, the antenna port 8, the antenna port 9, and the antenna port 10, at the antenna port 7, the antenna port 8, and the antenna Port 9 and the antenna port 10 are the second U E allocates power, not on the
  • the base station further includes: a first receiving module, in combination with the possible implementation of the second aspect or the first to the eleven possible implementation manners of the second aspect, And the processing module is further configured to: if the power is not allocated on the antenna port corresponding to the codeword that needs to be retransmitted in the ACK/NACK message, the codeword is not retransmitted.
  • the base station further includes: a second receiving module, configured to receive the The ACK/NACK message sent by the second UE; the processing module is further configured to: if the power is not allocated on the antenna port corresponding to the codeword that needs to be retransmitted in the ACK/NACK message, the codeword is not retransmitted.
  • the method and the base station of the MU-MIMO communication determine the first UE by using the total number of layers n as the number of transmission layers of the first UE when the total number of pairs is greater than or equal to 3.
  • the frequency configuration is that the first UE is allocated power on the latter port of the antenna port in the pilot configuration of the first UE, and the power is not allocated to the first UE on the other ports, so that all DRSs of the paired users are orthogonal. This can enhance network performance.
  • FIG. 1 is a schematic flowchart of a method of MU-MIMO communication according to an embodiment of the present invention.
  • 2 is another schematic flow diagram of a method of MU-MIMO communication in accordance with an embodiment of the present invention.
  • FIG. 3 is still another schematic flowchart of a method of MU-MIMO communication according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is another schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is still another schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • a user equipment may be referred to as a terminal (Terminal), a mobile station (Mobile Station, referred to as “MS”), a mobile terminal ( Mobile Terminal), etc.
  • the user equipment can communicate with one or more core networks via a Radio Access Network (“RAN"), for example, the user equipment can be a mobile phone (or “cellular” “Telephone", a computer with a mobile terminal, etc., for example, the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • RAN Radio Access Network
  • the base station may be a base station (Base Transceiver Station, called “BTS”) in GSM or CDMA, or may be a base station (NodeB, "NB” called “NB”) in WCDMA, or may be
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • Evolutional Node B referred to as "ENB or e-NodeB”
  • LTE Long Term Evolutional Node B
  • FIG. 1 shows a schematic flow diagram of a method 100 of MU-MIMO communication in accordance with an embodiment of the present invention.
  • the method 100 is performed by a base station. As shown in FIG. 1, the method 100 includes:
  • S120 Determine the pilot configuration of the first UE by using the n as the number of transmission layers of the first UE.
  • the first UE is allocated power on the last port of the antenna port in the pilot configuration of the first UE, and the first UE is not allocated power on the other port.
  • the values of 0 and 2 in the single codeword enable mode of Table 1 can be selected when determining the pilot configuration. , or the two groups of values 1 and 3, in which case the DRSs of the two UEs are orthogonal. If the total number of pairs is more than 2, according to the existing protocol standards, different scrambling codes are needed. For example, when 2+2 pairing, select the doubles in Table 1 according to the number of layers (ie, the number of layers 2) that each UE participates in. The values 0 and 1 in the codeword enable mode cause the DRSs of the two UEs to be non-orthogonal.
  • the base station determines that the total number of layers of the first UE and the second UE is greater than or equal to 3, if the first The number of transmission layers supported by the UE is greater than or equal to 4, that is, the first UE is a 4R/8R UE, and the total number of layers n is used as the number of transmission layers of the first UE to determine the pilot configuration of the first UE, that is, according to the total layer.
  • the first UE is allocated power on the last m ports of the antenna ports in the pilot configuration of the first UE, and the first UE is not allocated power on the other ports. Since the DRSs determined according to the total number of layers are orthogonal, the DRSs of the first UE and the second UE can be orthogonal after allocating power to the second UE on other ports.
  • the total number of layers to be matched is greater than or equal to 3
  • the total number of layers n is determined as the number of transmission layers of the first UE, and the pilot configuration of the first UE is determined.
  • the first UE is allocated power on the rear W1 ports of the antenna ports in a UE, and the first UE is not allocated power on the other ports, so that all DRSs of the paired users are orthogonal, thereby enhancing the network. performance.
  • the method 100 further includes:
  • the pilot configuration of the second UE is sent to the second UE;
  • the base station determines, in the total number of layers that the first UE is paired with the second UE, that is greater than or equal to
  • the second UE is a 4R/8R UE, determining the pilot configuration of the second UE by using the total number of layers n as the number of transmission layers of the second UE, That is, the pilot configuration of the second UE is determined according to the total number of layers n, instead of the number of layers n 2 participating in the pairing according to the second UE, and then the determined pilot configuration of the second UE is sent to the second UE, and is followed.
  • n before the total number of layers determines the configuration of the second pilot in the UE antenna ports "for the two ports on the second UE assigned power, power is not allocated to the UE for a second port on the other.
  • the base station is determined according to the total number of layers n pilot configuration thereof, and the front "2 a second port for the power allocated to the UE, the second UE is not allocated power on the rear ports, the power allocated to the first UE on the rear port, for the first UE is not allocated power on "before the two ports, and by total
  • the pilot configuration determined by layer number n informs the first UE and the second UE that they are acquiring data. In this way, the DRSs of the first UE and the second UE can be orthogonal.
  • the number of transmission layers supported by the first UE is 4 or 8
  • the number of transmission layers supported by the second UE is 4 or 8
  • the number of transmission layers is 2, and the value of n 2 is 2, and the value is 4;
  • S120 includes: determining that antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, antenna port 9, and antenna port 10;
  • S 140 includes: allocating power to the first UE on the antenna port 9 and the antenna port 10, and not allocating power to the first UE on the antenna port 7 and the antenna port 8;
  • S150 includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7, the antenna port 8, the antenna port 9, and the antenna port 10;
  • S 170 includes: allocating power to the second UE on the antenna port 7 and the antenna port 8, and the second UE is not allocated power on the antenna port 9 and the antenna port 10.
  • the first UE and the second UE are both Layer 2 participating MU-MIMO pairings.
  • the eNodeB determines, according to the total number of layers 4, the pilot configurations of the two UEs to be the pilot configuration corresponding to the value 3 in the dual codeword enable mode of Table 1, that is, the 4 layers, the antenna port 7-10.
  • the eNodeB allocates power (corresponding codeword 0) to the second UE only on antenna ports 7 and 8, and allocates power (corresponding codeword 1) to the first UE only on antenna ports 9 and 10.
  • the eNodeB performs signaling indication of the antenna port and the layer in the DCI 2C according to the value 3 in the dual codeword enable mode of Table 1 for the first UE and the second UE, indicating the first UE and the second UE their respective transmission layers Both are 4 and the antenna port is 7-10.
  • Layer-to-codeword mapping It is carried out in a standard manner as stipulated by the RIO Agreement.
  • the second UE codeword 0 carries the real service data, and is formed by mapping the two layers of data.
  • the first UE codeword 1 carries the real service data, and is mapped by the two layers of data, and the layer data corresponding to the non-real service data. The power is set to zero.
  • the first UE and the second UE each acquire a channel estimation value according to the number of transmission layers 4 and acquire service data according to the channel estimation value.
  • the second UE there is power only on antenna ports 7 and 8, correspondingly only data of codeword 0 is obtained; for the first UE, there is power only on antenna ports 9 and 10, correspondingly only codewords can be obtained 1 data.
  • the codeword 0 carries the real service data of the second UE
  • the codeword 1 carries the real service data of the first UE. Therefore, when processing the ACK/NACK message, the eNodeB does not need to retransmit the codeword 1 of the second UE and Codeword 0 of the first UE.
  • the method 100 further includes:
  • the codeword is not retransmitted.
  • the method 100 further includes:
  • the codeword is not retransmitted.
  • the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and the antenna port corresponding to the codeword that needs to be retransmitted in the ACK/NACK message. If the power is not allocated, the codeword is not retransmitted, and the next implementation of the MU pairing scheduling is performed according to the maintenance result.
  • the number of transmission layers supported by the first UE is 4 or 8
  • the number of transmission layers supported by the second UE is 4 or 8, and the ratio of rh is 2, and “ 2 is 1 The "3";
  • S120 includes: determining that antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, and antenna port 9;
  • S 140 includes: allocating power to the first UE on the antenna port 8 and the antenna port 9, and not allocating power to the first UE on the antenna port 7;
  • S150 includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7, the antenna port 8, and the antenna port 9; S170 includes: allocating power to the second UE on the antenna port 7, and not allocating power to the second UE on the antenna port 8 and the antenna port 9.
  • the first UE is a layer 2 participating MU-MIMO pairing
  • the second UE is a layer 1 participating MU. - MIMO pairing.
  • the eNodeB determines, according to the total number of layers 3, the pilot configurations of the two UEs as the pilot configuration corresponding to the value 2 in the dual codeword enable mode of Table 1, that is, Layer 3, antenna ports 7-9.
  • the eNodeB allocates power (corresponding codeword 0) to the second UE only on antenna port 7, and allocates power (corresponding codeword 1) to the first UE only on antenna ports 8 and 9.
  • the eNodeB performs signaling indication of the antenna port and the layer in the DCI 2C according to the value 2 in the dual codeword enable mode of Table 1 for the first UE and the second UE, indicating the first UE and the second UE their respective transmission layers Both are 3 and the antenna port is 7-9.
  • the layer-to-codeword mapping is performed in a standard manner as specified by the existing R10 protocol. For the second UE codeword 0, the real service data is carried, and is mapped by one layer of data. For the first UE codeword 1 to carry real service data, the two layers of data are mapped, and the layer data corresponding to the non-real service data is formed. The power is set to zero.
  • the first UE and the second UE each acquire a channel estimation value according to the number of transmission layers 3 and acquire service data based on the channel estimation value.
  • the second UE only the antenna port 7 has power, and correspondingly only the data of the codeword 0 is obtained; for the first UE, only the antenna ports 8 and 9 have power, and correspondingly only the data of the codeword 1 can be obtained.
  • the codeword 0 carries the real service data of the second UE
  • the codeword 1 carries the real service data of the first UE. Therefore, when processing the ACK/NACK message, the eNodeB does not need to retransmit the codeword 1 of the second UE and Codeword 0 of the first UE.
  • the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling according to the maintenance result. achieve.
  • the pilot configuration of the UE is determined according to the total number of layers, and the DRS antenna port used by the UE is extended to 7, 8, 9, and 10
  • all DRSs of the paired users can be orthogonalized, thereby enhancing network performance.
  • the method 100 further includes:
  • S190 Send the pilot configuration of the second UE to the second UE.
  • the base station determines, when the total number of layers that the first UE is paired with the second UE is greater than or equal to 3, if the number of transmission layers supported by the second UE is 2, that is, the second UE is 2R UE, according to the second
  • the number of transmission layers supported by the UE 2 and the number of layers in which the second UE participates in pairing 2 determines the pilot configuration of the second UE, and then transmits the determined pilot configuration of the second UE to the second UE, and in the second UE with the pilot configuration of antenna ports "for the two ports on the second UE assigned power, power is not allocated to the UE for a second port on the other.
  • the base station determines the pilot configuration of the first UE according to the total number of layers n, and after the port is turned on first UE UE configuration of the first frequency allocated power, front "for the first UE is not allocated power on the two ports, while participating in a second pair of transmission layers according supported by the UE and a second UE 2
  • the number of layers " 2 " determines the pilot configuration of the second UE, and allocates power to the second UE on the first " two ports" in the antenna port in the pilot configuration of the second UE, and the second port is not the second
  • the UE allocates power and informs the first UE and the second UE of their respective pilot configurations so that they can acquire data.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2, where is 2, and the “ 2 is 2, and the “is 4”;
  • S120 includes: determining that antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, antenna port 9, and antenna port 10;
  • S 140 includes: allocating power to the first UE on the antenna port 9 and the antenna port 10, and not allocating power to the first UE on the antenna port 7 and the antenna port 8;
  • S 180 includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7 and the antenna port 8;
  • S195 includes: allocating power to the second UE on the antenna port 7 and the antenna port 8. Specifically, when a 4R/8R UE (first UE) and a 2R UE (second UE) perform 4-layer MU-MIMO pairing, both the first UE and the second UE participate in MU-MIMO pairing.
  • the eNodeB determines, according to the total number of layers 4, the pilot configuration of the first UE to be the pilot configuration corresponding to the value 3 in the dual codeword enable mode of Table 1, that is, the fourth layer, the antenna port 7-10.
  • the eNodeB allocates power (corresponding codeword 1) to the first UE only on antenna ports 9 and 10, and sets the two layers of data power corresponding to antenna ports 7 and 8 to zero.
  • the eNodeB determines, according to the number of transmission layers 2 supported by the second UE and the number of layers 2 that the second UE participates in, the pilot configuration of the second UE is a pilot configuration corresponding to the value 0 in the dual codeword enable mode of Table 1, that is, , 2 layers, antenna port 7-8. eNodeB only on antenna port 7 and The power is allocated to the second UE on the 8th, and the puncturing/power is set to 0 for the carrier data of the resource element (the resource element called "RE") mapped to the antenna ports 9 and 10 by the second UE.
  • the resource element the resource element called "RE
  • the eNodeB performs signaling indication of the antenna port and the layer in the DCI 2C according to the value 3 in the dual codeword enable mode of the first UE, indicating that the first UE has a transmission layer number of 4 and an antenna port of 7-10.
  • the eNodeB performs the signaling indication of the antenna port and the layer in the DCI 2C according to the value 0 in the dual codeword enable mode of Table 1, indicating that the second UE has a transmission layer number of 2 and an antenna port of 7-8.
  • the layer-to-codeword mapping is performed in a standard manner as specified by the existing R10 protocol. For the second UE codewords 0 and 1, both carry real service data, which are respectively mapped by one layer of data.
  • the first UE codeword 1 carries real service data, and is mapped by two layers of data, and the layer data power corresponding to the non-real service data is set to zero.
  • the second UE acquires a channel estimation value according to the number of transmission layers 2 and acquires service data according to the channel estimation value. For the second UE, there is power on antenna ports 7 and 8, and data for code words 0 and 1 can be obtained accordingly.
  • the first UE acquires a channel estimation value according to the number of transmission layers 4 and acquires service data according to the channel estimation value. For the first UE, there is power only on antenna ports 9 and 10, and correspondingly only data of codeword 1 can be obtained.
  • the eNodeB Since the codeword 1 carries the real service data of the first UE, the eNodeB does not need to retransmit the codeword 0 of the first UE when processing the ACK/NACK message. That is to say, the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling related implementation according to the maintenance result.
  • the number of transmission layers supported by the first UE is 4 or 8
  • the number of transmission layers supported by the second UE is 2, and the ⁇ is 2, and the “ 2 is 1, the Is 3;
  • S140 includes: allocating power to the first UE on the antenna port 8 and the antenna port 9, and not allocating power to the first UE on the antenna port 7;
  • S180 includes: determining an antenna port in a pilot configuration of the second UE as the antenna port 7; S195 includes: allocating power to the second UE on the antenna port 7.
  • the first UE is a layer 2 participating MU-MIMO pairing
  • the second UE Both are involved in MU-MIMO pairing.
  • the eNodeB determines, according to the total number of layers 3, the pilot configuration of the first UE to be the pilot configuration corresponding to the value 2 in the dual codeword enable mode of Table 1, that is, the layer 3, antenna port 7-9.
  • the eNodeB allocates power (corresponding codeword 1) to the first UE only on antenna ports 8 and 9, and sets the layer data power corresponding to antenna port 7 to zero.
  • the eNodeB determines, according to the number of transmission layers 2 supported by the second UE and the number of layers 1 that the second UE participates in, the pilot configuration of the second UE is a pilot configuration corresponding to the value 0 in the single codeword enable mode of Table 1, that is, , 1 layer, antenna port 7.
  • the eNodeB allocates power only for the second UE on antenna port 7, and punctifies/powers the carrier data mapped to the REs of the second UE mapped to antenna ports 8 and 9.
  • the eNodeB performs the signaling indication of the antenna port and the layer in the DCI 2C according to the value 2 in the dual codeword enable mode of Table 1, indicating that the first UE has a transmission layer number of 3 and an antenna port of 7-9.
  • the eNodeB performs the signaling indication of the antenna port and the layer in the DCI 2C according to the value 0 in the single codeword enable mode in Table 1.
  • the second UE indicates that the number of transmission layers is 1 and the antenna port is 7.
  • the layer-to-codeword mapping is performed in a standard manner as specified by the existing R10 protocol.
  • the real service data is carried, and is mapped by one layer of data.
  • the first UE codeword 1 carries real service data, and is mapped by two layers of data, and the layer data power corresponding to the non-real service data is set to zero.
  • the second UE acquires a channel estimation value according to the number of transmission layers 1 and acquires service data according to the channel estimation value.
  • the second UE For the second UE, there is power on the antenna port 7, and the data of the codeword 0 can be obtained accordingly.
  • the first UE acquires a channel estimation value according to the number of transmission layers 3 and acquires service data according to the channel estimation value.
  • For the first UE there is power only on antenna ports 8 and 9, and correspondingly only data of codeword 1 can be obtained. Since the codeword 1 carries the real service data of the first UE, the eNodeB does not need to retransmit the codeword 0 of the first UE when processing the ACK/NACK message.
  • the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling related implementation according to the maintenance result.
  • the number of transmission layers supported by the first UE is 4 or 8
  • the number of transmission layers supported by the second UE is 2, and the ⁇ is 2, and the “ 2 is 1, the Is 3;
  • S140 includes: allocating power to the first UE on the antenna port 8 and the antenna port 9, and not allocating power to the first UE on the antenna port 7;
  • S180 includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7 and the antenna port 8; S195 includes: allocating power to the second UE on the antenna port 7, and not allocating power to the first UE on the antenna port 8.
  • the first UE is a Layer 2 participating MU-MIM0 pairing
  • the second UE is Layer 1 participates in MU-MIMO pairing.
  • the eNodeB determines, according to the total number of layers 3, the pilot configuration of the first UE to be the pilot configuration corresponding to the value 2 in the dual codeword enable mode of Table 1, that is, the layer 3, antenna port 7-9.
  • the eNodeB allocates power (corresponding codeword 1) to the first UE only on antenna ports 8 and 9, and sets the layer data power corresponding to antenna port 7 to zero.
  • the eNodeB determines, according to the number of transmission layers 2 supported by the second UE and the number of layers 1 that the second UE participates in, the pilot configuration of the second UE is a pilot configuration corresponding to the value 0 in the dual codeword enable mode of Table 1, that is, , 2 layers, antenna port 7-8.
  • the eNodeB allocates power (corresponding codeword 0) to the second UE only on the antenna port 7, and punctifies/powers the carrier data mapped to the RE on the antenna ports 8 and 9 of the second UE.
  • the eNodeB performs the signaling indication of the antenna port and the layer in the DCI 2C according to the value 2 in the dual codeword enable mode of Table 1, indicating that the first UE has a transmission layer number of 3 and an antenna port of 7-9.
  • the eNodeB performs signaling indication of the antenna port and layer in the DCI 2C according to the value 0 in the dual codeword enable mode of Table 1, indicating that the second UE has 2 transmission layers and antenna ports 7-8.
  • Layer-to-codeword mapping is done in a standard manner as defined by the existing R10 protocol. For the second UE codeword 0, the real service data is carried, and is mapped by one layer of data, and the layer data power corresponding to the non-real service data is set to zero.
  • the first UE codeword 1 carries the real service data, and is mapped by two layers of data, and the layer data power corresponding to the non-real service data is set to zero.
  • the second UE acquires the channel estimation value according to the number of transmission layers 2 and acquires the traffic data based on the channel estimation value. For the second UE, there is only power on the antenna port 7, and correspondingly only the data of the codeword 0 can be obtained.
  • the first UE acquires the channel estimation value according to the number of transmission layers 3 and acquires the traffic data based on the channel estimation value. For the first UE, there is power only on antenna ports 8 and 9, and correspondingly only data of codeword 1 is obtained.
  • the codeword 0 carries the real service data of the second UE
  • the codeword 1 carries the real service data of the first UE. Therefore, when processing the ACK/NACK message, the eNodeB does not need to retransmit the codeword 1 of the second UE and Codeword 0 of the first UE. That is to say, the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling related implementation according to the maintenance result.
  • the pilot configuration of the 4R/8R UE is determined according to the total number of layers, and the UE is used.
  • the DRS antenna port is extended to 7, 8, 9, and 10 to enable paired users All DRSs are orthogonal, which enhances network performance.
  • 4R/8R UEs perform 4-layer and 3-layer MU-MIMO pairing with one 2R UE.
  • 4R/8R UEs perform 4-layer and 3-layer MU-MIMO pairing with one 2R UE.
  • more than 4 layers of MU-MIMO can be performed. pair.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 3, and the value of 2 is 2, where n is 5 ;
  • S120 includes: determining that antenna ports in the pilot configuration of the first UE are antenna port 7, antenna port 8, antenna port 9, antenna port 10, and antenna port 11;
  • S 140 includes: allocating power to the first UE on the antenna port 9, the antenna port 10, and the antenna port 11, and not allocating power to the first UE on the antenna port 7 and the antenna port 8;
  • S150 includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the antenna port 11;
  • S 170 includes: allocating power to the second UE on the antenna port 7 and the antenna port 8, and the second UE is not allocated power on the antenna port 9, the antenna 10, and the antenna port 11.
  • the first UE is a Layer 3 participating MU-MIMO pairing
  • the second UE is a Layer 2 participating MU-MIMO pairing.
  • the eNodeB determines, according to the total number of layers 5, the pilot configurations of the two UEs to be the pilot configuration corresponding to the value 4 in the dual codeword enable mode of Table 1, that is, the 5th layer, the antenna port 7-11.
  • the eNodeB allocates power (corresponding codeword 0) to the second UE only on antenna ports 7 and 8, and allocates power (corresponding codeword 1) to the first UE only on antenna ports 9, 10 and 11.
  • the eNodeB performs signaling indication of the antenna port and the layer in the DCI 2C according to the value 4 in the double codeword enable mode of Table 1 for the first UE and the second UE, indicating the first UE and the second UE their respective transmission layers Both are 5 and the antenna port is 7-11.
  • the layer-to-codeword mapping is performed in a standard manner as specified by the existing R10 protocol.
  • the second UE codeword 0 carries the real service data, which is formed by mapping the two layers of data. For the first UE codeword 1, the real service data is carried, and the three layers of data are mapped, and the layer data corresponding to the non-real service data is formed. The power is set to zero.
  • the first UE and the second UE each acquire a channel estimation value according to the number of transmission layers 5 and acquire service data according to the channel estimation value.
  • the second UE there is only power on antenna ports 7 and 8, and correspondingly only data of codeword 0 is obtained; for the first UE, there is power only on antenna ports 9, 10 and 11, correspondingly only Codeword 1 data. Since the codeword 0 carries the real service data of the second UE, the codeword 1 carries the real service data of the first UE, and therefore, the eNodeB is processing the ACK/NACK. In the case of a message, it is not necessary to retransmit the codeword 1 of the second UE and the codeword 0 of the first UE.
  • the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling related implementation according to the maintenance result.
  • the number of transmission layers supported by the first UE is 8, and the second
  • the number of transmission layers supported by the UE is 8, which is 3, and the " 2 is 3, and the "is 6;
  • S140 includes: allocating power to the first UE on the antenna port 10, the antenna port 11, and the antenna port 12, and not allocating the first UE on the antenna port 7, the antenna port 8, and the antenna port 9. Power
  • S150 includes: determining an antenna port in the pilot configuration of the second UE as the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, and the antenna port 12;
  • S170 includes: on the antenna port 7, the antenna port 8, and the antenna port 9, the second
  • the UE allocates power, and no power is allocated to the second UE on the antenna port 10, the antenna 11 and the antenna port 12.
  • the first UE and the second UE are all Layer 3 participating MU-MIMO pairing.
  • the eNodeB determines, according to the total number of layers 6, the pilot configuration of the two UEs to be the pilot configuration corresponding to the value 5 in the dual codeword enable mode of Table 1, that is, the 6 layers, the antenna ports 7-12.
  • the eNodeB allocates power (corresponding codeword 0) to the second UE only on antenna ports 7, 8, and 9, and allocates power (corresponding codeword 1) to the first UE only on antenna ports 10, 11, and 12.
  • the eNodeB performs signaling indication of the antenna port and the layer in the DCI 2C according to the value 5 in the double codeword enable mode of Table 1 for the first UE and the second UE, indicating the first UE and the second UE their respective transmission layers Both are 6, and the antenna port is 7-12.
  • the layer-to-codeword mapping is performed in a standard manner as specified by the existing R10 protocol.
  • the second UE codeword 0 carries the real service data, and is formed by mapping the three layers of data.
  • the first UE codeword 1 carries the real service data, and is mapped by the three layers of data, and the layer data corresponding to the non-real service data. The power is set to zero.
  • the first UE and the second UE each acquire a channel estimation value according to the number of transmission layers 6 and acquire service data according to the channel estimation value.
  • the second UE there is only power on antenna ports 7, 8, and 9, correspondingly only data of codeword 0 is obtained; for the first UE, there is power only on antenna ports 10, 11 and 12, correspondingly only can Get the data of codeword 1. Since the codeword 0 carries the real service data of the second UE, the codeword 1 carries the real service data of the first UE. Therefore, when processing the ACK/NACK message, the eNodeB does not need to retransmit the codeword 1 of the second UE and Codeword 0 of the first UE.
  • the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling related implementation according to the maintenance result.
  • the first UE supports transmission of 8 layers, the second layers supported by the UE for the transmission 8, which is 4, the "2 to 3, the"7;
  • S140 includes: allocating power to the first UE on the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13, where the antenna port 7, the antenna port 8, and the antenna port 9 are not The first UE allocates power;
  • S150 includes: determining an antenna port in a pilot configuration of the second UE as the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13;
  • S170 includes: allocating power to the second UE on the antenna port 7, the antenna port 8, and the antenna port 9, where the antenna port 10, the antenna 11, the antenna port 12, and the antenna port 13 are not The second UE allocates power.
  • the first UE is a 4-layer participating MU-MIMO pairing
  • the second UE is a 3-layer participating MU-MIMO pairing.
  • the eNodeB determines, according to the total number of layers 7, the pilot configuration of the two UEs as the pilot configuration corresponding to the value 6 in the dual codeword enable mode of Table 1, that is, the 7th layer, the antenna port 7-13.
  • the eNodeB allocates power (corresponding codeword 0) to the second UE only on antenna ports 7, 8, and 9, and allocates power (corresponding codeword 1) to the first UE only on antenna ports 10, 11, 12, and 13.
  • the eNodeB performs signaling indication of the antenna port and the layer in the DCI 2C according to the value 6 in the double codeword enable mode of Table 1 for the first UE and the second UE, indicating the first UE and the second UE their respective transmission layers Both are 7, and the antenna port is 7-13.
  • the layer-to-codeword mapping is performed in a standard manner as specified by the existing R10 protocol.
  • the second UE codeword 0 carries the real service data, and is formed by mapping the three layers of data.
  • the first UE codeword 1 carries the real service data, and is mapped by the four layers of data, and the layer corresponding to the non-real service data.
  • the data power is set to zero.
  • the first UE and the second UE each acquire a channel estimation value according to the number of transmission layers 7 and acquire the service data according to the channel estimation value.
  • the second UE there is power only on antenna ports 7, 8, and 9, and correspondingly only data of codeword 0 is obtained; for the first UE, there is power only on antenna ports 10, 11, 12, and 13, correspondingly Only the data of codeword 1 can be obtained. Since the codeword 0 carries the real service data of the second UE, the codeword 1 carries the real service data of the first UE. Therefore, the eNodeB does not need to retransmit the codeword 1 of the second UE when processing the ACK/NACK message. Codeword 0 of the first UE.
  • the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling related implementation according to the maintenance result.
  • the number of transmission layers supported by the first UE is 8, and the second
  • the number of transmission layers supported by the UE is 8, which is 4, and the " 2 is 4, and the "is 8;
  • S120 includes: determining antenna ports in the pilot configuration of the first UE as antenna port 7, antenna port 8, antenna port 9, antenna port 10, antenna port 11, antenna port 12, antenna port 13, and antenna port 14;
  • S140 includes: allocating power to the first UE on the antenna port 11, the antenna port 12, the antenna port 13, and the antenna port 14, at the antenna port 7, the antenna port 8, the antenna port 9, and the antenna No power is allocated to the first UE on port 10.
  • S150 includes: determining an antenna port in a pilot configuration of the second UE as the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13 and the antenna port 14;
  • S170 includes: allocating power to the second UE on the antenna port 7, the antenna port 8, and the antenna port 9 and the antenna port 10, at the antenna port 11, the antenna 12, the antenna port 13, and the antenna No power is allocated to the second UE on port 14.
  • the first UE and the second UE are all 4-layer participating MU-MIMO pairing.
  • the eNodeB determines, according to the total number of layers 8, the pilot configurations of the two UEs to be the pilot configuration corresponding to the value 7 in the dual codeword enable mode of Table 1, that is, the 8 layers, the antenna ports 7-14.
  • the eNodeB allocates power (corresponding codeword 0) to the second UE only on antenna ports 7, 8, 9 and 10, and allocates power to the first UE only on antenna ports 11, 12, 13 and 14 (corresponding codeword 1) .
  • the eNodeB performs signaling indication of the antenna port and the layer in the DCI 2C according to the value 7 in the dual codeword enable mode of Table 1 for the first UE and the second UE, indicating the first UE and the second UE their respective transmission layers Both are 8, and the antenna port is 7-14.
  • Layer to The codeword mapping is performed in accordance with the standard method stipulated by the existing R10 protocol.
  • the second UE codeword 0 carries the real service data, and is formed by mapping the four layers of data.
  • the first UE codeword 1 carries the real service data, and is mapped by the four layers of data, and the layer data corresponding to the non-real service data. The power is set to zero.
  • the first UE and the second UE each acquire a channel estimation value according to the number of transmission layers 8 and acquire service data according to the channel estimation value.
  • the second UE there is power only on antenna ports 7, 8, 9 and 10, correspondingly only data of codeword 0 is obtained; for the first UE, there is power only on antenna ports 11, 12, 13 and 14. , correspondingly only the data of codeword 1 can be obtained. Since the codeword 0 7
  • the eNodeB performs validity maintenance on the codeword ACK/NACK fed back by the UE according to whether the power of the codeword is set to zero when the pairing user is paired, and performs the next MU pairing scheduling related implementation according to the maintenance result.
  • the pilot configuration of the UE is determined according to the total number of layers, and the DRS antenna port used by the UE is extended to 7- 14 Above, it is possible to achieve orthogonality of all DRSs of the paired users, thereby enhancing network performance.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • FIG. 4 shows a schematic block diagram of a base station 400 in accordance with an embodiment of the present invention.
  • the base station 400 includes:
  • the configuration module 420 is configured to determine the pilot configuration of the first UE by using the n as the number of transmission layers of the first UE;
  • the sending module 430 is configured to send the pilot configuration of the first UE to the first UE;
  • the processing module 440 is configured to allocate power to the first UE on a later port of the antenna ports in the pilot configuration of the first UE, and allocate power to the first UE on other ports.
  • the base station according to the embodiment of the present invention determines the pilot configuration of the first UE as the number of transmission layers of the first UE when the total number of layers to be matched is greater than or equal to 3, in the pilot configuration of the first UE.
  • the next port in the antenna port allocates power to the first UE, and the other port is not the first.
  • the UE allocates power, which can realize that all DRSs of the paired users are orthogonal, thereby enhancing network performance.
  • the configuration module 420 is further configured to: if the number of transmission layers supported by the second UE is greater than or equal to 4, determine the second as the number of transmission layers of the second UE. Pilot configuration of the UE;
  • the sending module 430 is further configured to guide the second UE transmit frequency configuration to the second UE; antenna port before the processing module 440 for further disposed in the second pilot of the UE in the "two ports
  • the second UE is allocated power, and the second UE is not allocated power on other ports.
  • the configuration module 420 is further configured to, if the second transmission layers supported by the UE is 2, "2 determines the second transmission according to the number of layers supported by the UE and the second Pilot configuration of the UE;
  • the sending module 430 is further configured to guide the second UE transmit frequency configuration to the second UE; antenna port before the processing module 440 for further disposed in the second pilot of the UE in the "two ports The power is allocated to the second UE.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 4 or 8, which is 2, and the 2 is 2, "4";
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, the antenna port 9, and the antenna port 10, and determine the antenna port in the pilot configuration of the second UE. Is the antenna port 7, the antenna port 8, the antenna port 9 and the antenna port 10;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 9 and the antenna port 10, and the first UE is not allocated power on the antenna port 7 and the antenna port 8, at the antenna port. 7 and the antenna port 8 allocate power to the second UE, and the second UE is not allocated power on the antenna port 9 and the antenna port 10.
  • the number of transmission layers supported by the first UE is 4 or 8
  • the number of transmission layers supported by the second UE is 4 or 8, and the ratio of rh is 2, and “ 2 is 1 The "3";
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, and the antenna port 9, and determine the antenna in the pilot configuration of the second UE.
  • the port is the antenna port 7, the antenna port 8 and the antenna port 9;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 8 and the antenna port 9, and allocate power to the first UE on the antenna port 7, where the antenna port 7 is The two UEs allocate power, and the second UE is not allocated power on the antenna port 8 and the antenna port 9.
  • the pilot configuration of the UE is determined according to the total number of layers, and the DRS antenna ports used by the UE are extended to 7, 8, 9, and 10.
  • all DRSs of the paired users can be orthogonalized, thereby enhancing network performance.
  • the number of transmission layers supported by the first UE is 4 or 8
  • the number of transmission layers supported by the second UE is 2
  • the ⁇ is 2
  • the n 2 is 2.
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, the antenna port 9, and the antenna port 10, and determine the antenna port in the pilot configuration of the second UE. For the antenna port 7 and the antenna port 8;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 9 and the antenna port 10, and the first UE is not allocated power on the antenna port 7 and the antenna port 8, at the antenna port. 7 and the antenna port 8 allocate power to the second UE.
  • the number of transmission layers supported by the first UE is 4 or 8
  • the number of transmission layers supported by the second UE is 2, and the ⁇ is 2, and the “ 2 is 1, the Is 3;
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, and the antenna port 9, and determine that the antenna port in the pilot configuration of the second UE is the antenna port. 7;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 8 and the antenna port 9, and allocate power to the first UE on the antenna port 7, where the antenna port 7 is Two UEs allocate power.
  • the number of transmission layers supported by the first UE is 4 or 8, and the number of transmission layers supported by the second UE is 2, where ⁇ is 2, and the " 2 is 1, the Is 3;
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, and the antenna port 9, and determine that the antenna port in the pilot configuration of the second UE is the antenna port. 7 and the antenna port 8;
  • the processing module 440 is specifically configured to be the first on the antenna port 8 and the antenna port 9.
  • the UE allocates power, and the first UE is not allocated power on the antenna port 7, at the antenna port 7
  • the second UE is allocated power, and the first UE is not allocated power on the antenna port 8.
  • the pilot configuration of the 4R/8R UE is determined according to the total number of layers, and the DRS antenna port used by the UE is extended to 7.
  • the top, 8, 9, and 10 it is possible to achieve orthogonality of all DRSs of the paired users, thereby enhancing network performance.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 3, and the “ 2 is 2, and the “is 5”;
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the antenna port 11, and determine the pilot configuration of the second UE.
  • the antenna port is the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the antenna port 11;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 9, the antenna port 10, and the antenna port 11, and do not allocate power to the first UE on the antenna port 7 and the antenna port 8.
  • the second UE is allocated power on the antenna port 7 and the antenna port 8, and no power is allocated to the second UE on the antenna port 9, the antenna 10 and the antenna port 11.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 3, and the “ 2 is 3, and the “is 6”;
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, and the antenna port 12, and determine the second UE.
  • the antenna port in the pilot configuration is the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11 and the antenna port 12;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 10, the antenna port 11, and the antenna port 12, where the antenna port 7, the antenna port 8, and the antenna port 9 are not The first UE allocates power, and the second UE is allocated power on the antenna port 7, the antenna port 8, and the antenna port 9, and is not the second on the antenna port 10, the antenna 11 and the antenna port 12. The UE allocates power.
  • the first UE supports transmission of 8 layers, the second layers supported by the UE for the transmission 8, which is 4, the "2 to 3, the"7;
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13, and determine The antenna port in the pilot configuration of the second UE is the antenna port 7, The antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port 13, at the antenna port 7, the antenna port 8, and the antenna port. 9 is not allocated power for the first UE, and the second UE is allocated power on the antenna port 7, the antenna port 8, and the antenna port 9, at the antenna port 10, the antenna 11, the antenna port 12, and The second UE is not allocated power on the antenna port 13.
  • the number of transmission layers supported by the first UE is 8, and the number of transmission layers supported by the second UE is 8, which is 4, and the “ 2 is 4, and the “is 8”;
  • the configuration module 420 is specifically configured to determine that the antenna ports in the pilot configuration of the first UE are the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, the antenna port 12, the antenna port 13, and the antenna.
  • the port 14 determines that the antenna port in the pilot configuration of the second UE is the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, the antenna port 11, the antenna port 12, and the antenna port. 13 and the antenna port 14;
  • the processing module 440 is specifically configured to allocate power to the first UE on the antenna port 11, the antenna port 12, the antenna port 13, and the antenna port 14, at the antenna port 7, the antenna port 8, and the antenna port. 9 and the antenna port 10 is not allocated power for the first UE, and the second UE is allocated power at the antenna port 7, the antenna port 8, and the antenna port 9 and the antenna port 10, at the antenna port 11.
  • the antenna 12, the antenna port 13 and the antenna port 14 do not allocate power to the second UE.
  • the pilot configuration of the UE is determined according to the total number of layers, and the DRS antenna port used by the UE is extended to 7-14, and the paired user can be implemented. All DRSs are orthogonal, which enhances network performance.
  • the base station 400 further includes: a first receiving module 450, configured to receive an ACK/NACK message sent by the first UE; the processing module 440 is further configured to: If no power is allocated on the antenna port corresponding to the codeword that needs to be retransmitted in the ACK/NACK message, the codeword is not retransmitted.
  • the base station 400 further includes: a second receiving module 460, configured to receive an ACK/NACK message sent by the second UE; the processing module 440 is further configured to: If no power is allocated on the antenna port corresponding to the codeword that needs to be retransmitted in the ACK/NACK message, the codeword is not retransmitted.
  • the base station 400 may correspond to a base station in a method of MU-MIMO communication according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the base station 400 are respectively implemented in order to implement FIG. 1 to FIG. The corresponding process of each method in 3, for the sake of cleaning, will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • base station 700 generally includes at least one processor 710, such as a CPU, at least one port 720, and memory 730.
  • a block such as a computer program.
  • Memory 730 may include high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • the communication connection of the base station to the at least one UE is implemented by at least one port 720.
  • memory 730 stores the following elements, executable modules or data structures, or a subset thereof, or their extension set:
  • Operating system 732 which contains various system programs for implementing various basic services and handling hardware-based tasks
  • the application module 734 includes various applications for implementing various application services.
  • the application module 734 includes, but is not limited to, a determination module 410, a configuration module 420, a transmission module 430, a processing module 440, a first receiving module 450, and a second receiving module 460.
  • each module in the application module 734 refers to the corresponding modules in the embodiment shown in FIG. 4, FIG. 5 and FIG. 6, which are not described herein.
  • the term "and/or” is merely an association describing the associated object, indicating that there may be three relationships.
  • a and / or B can mean: A exists separately, there are A and B, and there are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种MU-MIMO通信的方法和基站。该方法包括:确定第一UE与第二UE配对的总层数n大于或等于3,其中,该第一UE参与配对的层数为n1,该第二UE参与配对的层数为n2,n=n1+n2,该第一UE支持的传输层数大于或等于4;将该n作为该第一UE的传输层数确定该第一UE的导频配置;将该第一UE的导频配置发送给该第一UE;在该第一UE的导频配置中的天线端口中的后n1个端口上为该第一UE分配功率,其他端口上不为该第一UE分配功率。本发明实施例的MU-MIMO通信的方法和基站,可以实现配对用户的所有DRS都正交,从而能够增强网络性能。

Description

多用户多输入多输出通信的方法和基站 技术领域
本发明涉及通信领域, 并且更具体地, 涉及多用户多输入多输出 ( Multi-User Multiple Input Multiple Output, 筒称为 "MU-MIMO" )通信的 方法和基站。 背景技术
MU-MIMO是一种利用多用户信道的空间自由度,将多个下行用户数据 复用到相同时频域资源,获取空分复用接入( Spatial Division Multiple Access, 筒称为 "SDMA" )增益。 对下行 MU-MIMO而言, 由于各个用户难以实现 联合检测,因此在演进型基站( Evolutional Node B,筒称为 "ENB或 eNodeB" ) 复用。
为了提升实际网络容量, 第三代移动通信伙伴计划 ( 3rd Generation
Partnership Project, 筒称为" 3GPP" )协会在长期演进 ( Long Term Evolution, 筒称为 "LTE" ) 的后续演进( LTE- Advanced, 筒称为 "LTE-A" ) R10协议 中新增加了传输模式 9 ( TM9 )多输入多输出( Multiple Input Multiple Output, 筒称为 "MIMO" )模式。 TM9模式新增一些用户设备(User Equipment, 筒 称为 "UE" )专用解调导频( Demodulation Reference Signal, 筒称为 "DRS" ) 天线端口 ( Port ) 和新的信令格式下行控制信息 ( Downlink Control Information, 筒称为 "DCI" )格式 2C ( DCI Format 2C )格式以更好的支持 单用户 (Single-User, 筒称为 "SU" ) /MU MIMO的实现和 SU/MU的自适 应切换。
DRS是 UE解调导频, 各个用户的信道和权值信息都是通过 DRS承载,
UE可通过对 DRS进行信道估计获取加权后的等效信道信息。 UE的导频配 置包括天线端口、 扰码标识、 正交码长等。 DCI Format 2C格式中则提供用 户使用的 DRS Port 位置和对应的层数 (Lay ) 以及调制与编码策略 ( Modulation and Coding Scheme, 筒称为 "MCS" )等相关信息。 因此, 对 于 R10而言, MU-MIMO和 SU-MIMO是透明的, 可以灵活的进行自适应切 换。 RIO协议新增加的 DCI Format 2C格式, DRS Port信息见表 1规定。 按 照表 1规定的层数和天线端口指示以及 DCI Format 2C的信令内容限制, 对 于 4R (秩为 4, 也就是支持传输层数为 4, 2R和 8R依次类推)和 2R的 UE 而言,按照标准的协议流程进行 MU-MIMO配对时,若进行 3/4层配对, DRS Port只能使用天线端口 7、 8以及 2个不同的扰码组合出 3/4层复用, 而通过 天线端口 7、 8和不同扰码, 进行 3/4层 MU配对, 2个 UE DRS 导频不是 严格正交的, 因而影响网络性能。
表 1
Figure imgf000003_0001
发明内容
本发明实施例提供了一种 MU-MIMO通信的方法和基站,能够增强网络 性能。
第一方面, 提供了一种 MU-MIMO通信的方法, 包括: 确定第一用户设 备 UE与第二 UE配对的总层数《大于或等于 3 ,其中,该第一 UE参与配对 的层数为 , 该第二 UE参与配对的层数为《2, n=n1+n2, 该第一 UE支持的 传输层数大于或等于 4; 将该 n作为该第一 UE的传输层数确定该第一 UE 的导频配置; 将该第一 UE的导频配置发送给该第一 UE;在该第一 UE的导 频配置中的天线端口中的后 个端口上为该第一 UE分配功率,其他端口上 不为该第一 UE分配功率。 在第一种可能的实现方式中, 该方法还包括: 若该第二 UE支持的传输 层数大于或等于 4, 将该 n作为该第二 UE的传输层数确定该第二 UE的导 频配置;将该第二 UE的导频配置发送给该第二 UE; 在该第二 UE的导频配 置中的天线端口中的前《2个端口上为该第二 UE分配功率,其他端口上不为 该第二 UE分配功率。
在第二种可能的实现方式中, 该方法还包括: 若该第二 UE支持的传输 层数为 2, 根据该第二 UE支持的传输层数和该《2确定该第二 UE的导频配 置;将该第二 UE的导频配置发送给该第二 UE; 在该第二 UE的导频配置中 的天线端口中的前《2个端口上为该第二 UE分配功率。
在第三种可能的实现方式中, 结合第一方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 4或 8 , 该第二 UE支持的传输层数为 4或 8 , 该 为 2, 该 n2为 2, 该《为 4; 将该 n作为该第一 UE的传输层数确定该 第一 UE的导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9和天线端口 10; 在该第一 UE的导频配 置中的天线端口中的后 个端口上为该第一 UE分配功率,其他端口上不为 该第一 UE分配功率, 包括: 在该天线端口 9和该天线端口 10上为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功率; 将该《作为该第二 UE的传输层数确定该第二 UE的导频配置, 包括: 确定 该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天 线端口 9和该天线端口 10; 在该第二 UE的导频配置中的天线端口中的前 «2个端口上为该第二 UE分配功率, 其他端口上不为该第二 UE分配功率, 包括: 在该天线端口 7和该天线端口 8上为该第二 UE分配功率, 在该天线 端口 9和该天线端口 10上不为该第二 UE分配功率。
在第四种可能的实现方式中, 结合第一方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 4或 8 , 该第二 UE支持的传输层数为 4或 8 , 该 为 2, 该《2为 1 , 该《为 3; 将该 n作为该第一 UE的传输层数确定该 第一 UE的导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8和天线端口 9; 在该第一 UE的导频配置中的天线端 口中的后 个端口上为该第一 UE分配功率, 其他端口上不为该第一 UE分 配功率, 包括: 在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端口 7上不为该第一 UE分配功率; 将该 n作为该第二 UE的传输 层数确定该第二 UE的导频配置, 包括: 确定该第二 UE的导频配置中的天 线端口为该天线端口 7、 该天线端口 8和该天线端口 9; 在该第二 UE的导 频配置中的天线端口中的前《2个端口上为该第二 UE分配功率,其他端口上 不为该第二 UE分配功率, 包括: 在该天线端口 7上为该第二 UE分配功率, 在该天线端口 8和该天线端口 9上不为该第二 UE分配功率。
在第五种可能的实现方式中, 结合第一方面的第二种可能的实现方式, 该第一 UE支持的传输层数为 4或 8 , 该第二 UE支持的传输层数为 2 , 该 «!为 2, 该《2为 2, 该《为 4; 将该 n作为该第一 UE的传输层数确定该第一 UE的导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天线端 口 7、 天线端口 8、 天线端口 9和天线端口 10; 在该第一 UE的导频配置中 的天线端口中的后 个端口上为该第一 UE分配功率,其他端口上不为该第 一 UE分配功率, 包括: 在该天线端口 9和该天线端口 10上为该第一 UE分 配功率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功率; 根据 该第二 UE支持的传输层数和该《2确定该第二 UE的导频配置, 包括: 确定 该第二 UE的导频配置中的天线端口为该天线端口 7和该天线端口 8; 在该 第二 UE的导频配置中的天线端口中的前《2个端口上为该第二 UE分配功率, 包括: 在该天线端口 7和该天线端口 8上为该第二 UE分配功率。
在第六种可能的实现方式中, 结合第一方面的第二种可能的实现方式, 该第一 UE支持的传输层数为 4或 8 , 该第二 UE支持的传输层数为 2, 该 ^为 2 , 该 n2为 1 , 该《为 3; 将该《作为该第一 UE的传输层数确定该第一 UE的导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天线端 口 7、 天线端口 8和天线端口 9; 在该第一 UE的导频配置中的天线端口中 的后 个端口上为该第一 UE分配功率, 其他端口上不为该第一 UE分配功 率, 包括: 在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该 天线端口 7上不为该第一 UE分配功率; 根据该第二 UE支持的传输层数和 该《2确定该第二 UE的导频配置, 包括: 确定该第二 UE的导频配置中的天 线端口为该天线端口 7; 在该第二 UE的导频配置中的天线端口中的前《2个 端口上为该第二 UE分配功率, 包括: 在该天线端口 7上为该第二 UE分配 功率。
在第七种可能的实现方式中, 结合第一方面的第二种可能的实现方式, 该第一 UE支持的传输层数为 4或 8 , 该第二 UE支持的传输层数为 2 , 该 为 2, 该《2为 1 , 该《为 3; 将该 n作为该第一 UE的传输层数确定该第一 UE的导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天线端 口 7、 天线端口 8和天线端口 9; 在该第一 UE的导频配置中的天线端口中 的后 个端口上为该第一 UE分配功率, 其他端口上不为该第一 UE分配功 率, 包括: 在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该 天线端口 7上不为该第一 UE分配功率; 根据该第二 UE支持的传输层数和 该《2确定该第二 UE的导频配置, 包括: 确定该第二 UE的导频配置中的天 线端口为该天线端口 7和该天线端口 8; 在该第二 UE的导频配置中的天线 端口中的前《2个端口上为该第二 UE分配功率, 包括: 在该天线端口 7上为 该第二 UE分配功率, 在该天线端口 8上不为该第一 UE分配功率。
在第八种可能的实现方式中, 结合第一方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 8 ,该第二 UE支持的传输层数为 8 ,该 为 3 , 该 n2为 2 , 该 n为 5 ; 将该《作为该第一 UE的传输层数确定该第一 UE的 导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10和天线端口 11 ; 在该第一 UE的导频 配置中的天线端口中的后 个端口上为该第一 UE分配功率,其他端口上不 为该第一 UE分配功率, 包括: 在该天线端口 9、 该天线端口 10和该天线端 口 11上为该第一 UE分配功率,在该天线端口 7和该天线端口 8上不为该第 一 UE分配功率; 将该 n作为该第二 UE的传输层数确定该第二 UE的导频 配置, 包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该 天线端口 8、 该天线端口 9、 该天线端口 10和该天线端口 11 ; 在该第二 UE 的导频配置中的天线端口中的前《2个端口上为该第二 UE分配功率,其他端 口上不为该第二 UE分配功率, 包括: 在该天线端口 7和该天线端口 8上为 该第二 UE分配功率, 在该天线端口 9、 该天线 10和该天线端口 11上不为 该第二 UE分配功率。
在第九种可能的实现方式中, 结合第一方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 8 ,该第二 UE支持的传输层数为 8 ,该 为 3 , 该《2为 3 , 该《为 6; 将该 n作为该第一 UE的传输层数确定该第一 UE的 导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11和天线端口 12; 在该 第一 UE的导频配置中的天线端口中的后 个端口上为该第一 UE分配功率, 其他端口上不为该第一 UE分配功率, 包括: 在该天线端口 10、 该天线端口
11和该天线端口 12上为该第一 UE分配功率,在该天线端口 7、该天线端口 8和该天线端口 9上不为该第一 UE分配功率; 将该 n作为该第二 UE的传 输层数确定该第二 UE的导频配置, 包括: 确定该第二 UE的导频配置中的 天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11和该天线端口 12; 在该第二 UE的导频配置中的天线端口中 的前 n2个端口上为该第二 UE分配功率, 其他端口上不为该第二 UE分配功 率, 包括: 在该天线端口 7、 该天线端口 8和该天线端口 9上为该第二 UE 分配功率, 在该天线端口 10、 该天线 11和该天线端口 12上不为该第二 UE 分配功率。
在第十种可能的实现方式中, 结合第一方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 8,该第二 UE支持的传输层数为 8,该 为 4, 该《2为 3, 该《为 7; 将该 n作为该第一 UE的传输层数确定该第一 UE的 导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12和天线 端口 13; 在该第一 UE的导频配置中的天线端口中的后 个端口上为该第 一 UE分配功率, 其他端口上不为该第一 UE分配功率, 包括: 在该天线端 口 10、该天线端口 11、该天线端口 12和该天线端口 13上为该第一 UE分配 功率, 在该天线端口 7、 该天线端口 8和该天线端口 9上不为该第一 UE分 配功率; 将该《作为该第二 UE的传输层数确定该第二 UE的导频配置, 包 括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11、 该天线端口 12和该天线 端口 13; 在该第二 UE的导频配置中的天线端口中的前《2个端口上为该第 二 UE分配功率, 其他端口上不为该第二 UE分配功率, 包括: 在该天线端 口 7、 该天线端口 8和该天线端口 9上为该第二 UE分配功率, 在该天线端 口 10、该天线 11、该天线端口 12和该天线端口 13上不为该第二 UE分配功 率。
在第十一种可能的实现方式中, 结合第一方面的第一种可能的实现方 式, 该第一 UE支持的传输层数为 8, 该第二 UE支持的传输层数为 8, 该 nx为 4, 该《2为 4, 该《为 8; 将该 n作为该第一 UE的传输层数确定该第一 UE的导频配置, 包括: 确定该第一 UE的导频配置中的天线端口为天线端 口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12、 天线端口 13和天线端口 14; 在该第一 UE的导频配置中的天线端口中的后 个端口上为该第一 UE分配功率, 其他端口上不为该第一 UE分配功率, 包括: 在该天线端口 11、 该天线端口 12、 该天线端口 13和该天线端口 14 上为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8、 该天线端口 9 和该天线端口 10上不为该第一 UE分配功率;将该《作为该第二 UE的传输 层数确定该第二 UE的导频配置, 包括: 确定该第二 UE的导频配置中的天 线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该 天线端口 11、 该天线端口 12、 该天线端口 13和该天线端口 14; 在该第二 UE的导频配置中的天线端口中的前《2个端口上为该第二 UE分配功率, 其 他端口上不为该第二 UE分配功率, 包括: 在该天线端口 7、 该天线端口 8、 和该天线端口 9和该天线端口 10上为该第二 UE分配功率, 在该天线端口 11、该天线 12、该天线端口 13和该天线端口 14上不为该第二 UE分配功率。
在第十二种可能的实现方式中, 结合第一方面或第一方面的第一至十一 种可能的实现方式中的任一种可能的实现方式, 该方法还包括: 接收该第一 UE发送的确认 /否认( ACK/NACK ) 消息; 若该 ACK/NACK消息中需要重 传的码字对应的天线端口上不分配功率, 则不重传该码字。
在第十三种可能的实现方式中, 结合第一方面的第一至十一种可能的实 现方式中的任一种可能的实现方式, 该方法还包括: 接收该第二 UE发送的 ACK/NACK消息;若该 ACK/NACK消息中需要重传的码字对应的天线端口 上不分配功率, 则不重传该码字。
第二方面, 提供了一种基站, 包括: 确定模块, 用于确定第一用户设备 UE与第二 UE配对的总层数《大于或等于 3, 其中, 该第一 UE参与配对的 层数为 , 该第二 UE参与配对的层数为 n2, n=n1+n2, 该第一 UE支持的传 输层数大于或等于 4; 配置模块, 用于将该《作为该第一 UE的传输层数确 定该第一 UE的导频配置; 发送模块, 用于将该第一 UE的导频配置发送给 该第一 UE; 处理模块, 用于在该第一 UE的导频配置中的天线端口中的后 个端口上为该第一 UE分配功率, 其他端口上不为该第一 UE分配功率。 在第一种可能的实现方式中, 该配置模块还用于, 若该第二 UE支持的 传输层数大于或等于 4, 将该 n作为该第二 UE的传输层数确定该第二 UE 的导频配置; 该发送模块还用于将该第二 UE的导频配置发送给该第二 UE; 该处理模块还用于在该第二 UE的导频配置中的天线端口中的前《2个端口上 为该第二 UE分配功率, 其他端口上不为该第二 UE分配功率。
在第二种可能的实现方式中, 该配置模块还用于, 若该第二 UE支持的 传输层数为 2, 根据该第二 UE支持的传输层数和该《2确定该第二 UE的导 频配置; 该发送模块还用于将该第二 UE的导频配置发送给该第二 UE; 该 处理模块还用于在该第二 UE的导频配置中的天线端口中的前《2个端口上为 该第二 UE分配功率。
在第三种可能的实现方式中, 结合第二方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 4或 8, 该第二 UE支持的传输层数为 4或 8, 该 为 2, 该《2为 2, 该《为 4; 该配置模块具体用于确定该第一 UE的导 频配置中的天线端口为天线端口 7、天线端口 8、天线端口 9和天线端口 10, 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9和该天线端口 10;该处理模块具体用于在该天线端口 9和该天 线端口 10上为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上不 为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上为该第二 UE分 配功率, 在该天线端口 9和该天线端口 10上不为该第二 UE分配功率。
在第四种可能的实现方式中, 结合第二方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 4或 8, 该第二 UE支持的传输层数为 4或 8, 该 为 2, 该《2为 1 , 该《为 3; 该配置模块具体用于确定该第一 UE的导 频配置中的天线端口为天线端口 7、 天线端口 8和天线端口 9, 确定该第二 UE的导频配置中的天线端口为该天线端口 7、该天线端口 8和该天线端口 9; 该处理模块具体用于在该天线端口 8和该天线端口 9上为该第一 UE分配功 率, 在该天线端口 7上不为该第一 UE分配功率, 在该天线端口 7上为该第 二 UE分配功率, 在该天线端口 8和该天线端口 9上不为该第二 UE分配功 率。
在第五种可能的实现方式中, 结合第二方面的第二种可能的实现方式, 该第一 UE支持的传输层数为 4或 8, 该第二 UE支持的传输层数为 2, 该 «!为 2, 该《2为 2, 该《为 4; 该配置模块具体用于确定该第一 UE的导频配 置中的天线端口为天线端口 7、 天线端口 8、 天线端口 9和天线端口 10, 确 定该第二 UE的导频配置中的天线端口为该天线端口 7和该天线端口 8; 该 处理模块具体用于在该天线端口 9和该天线端口 10上为该第一 UE分配功 率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功率, 在该天线 端口 7和该天线端口 8上为该第二 UE分配功率。
在第六种可能的实现方式中, 结合第二方面的第二种可能的实现方式, 该第一 UE支持的传输层数为 4或 8, 该第二 UE支持的传输层数为 2, 该 为 2, 该《2为 1 , 该《为 3; 该配置模块具体用于确定该第一 UE的导频配 置中的天线端口为天线端口 7、 天线端口 8和天线端口 9, 确定该第二 UE 的导频配置中的天线端口为该天线端口 7; 该处理模块具体用于在该天线端 口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端口 7上不为该第 一 UE分配功率, 在该天线端口 7上为该第二 UE分配功率。
在第七种可能的实现方式中, 结合第二方面的第二种可能的实现方式, 该第一 UE支持的传输层数为 4或 8, 该第二 UE支持的传输层数为 2, 该 为 2, 该《2为 1 , 该《为 3; 该配置模块具体用于确定该第一 UE的导频配 置中的天线端口为天线端口 7、 天线端口 8和天线端口 9, 确定该第二 UE 的导频配置中的天线端口为该天线端口 7和该天线端口 8; 该处理模块具体 用于在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端 口 7上不为该第一 UE分配功率,在该天线端口 7上为该第二 UE分配功率, 在该天线端口 8上不为该第一 UE分配功率。
在第八种可能的实现方式中, 结合第二方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 8,该第二 UE支持的传输层数为 8,该 为 3, 该《2为 2, 该 n为 5; 该配置模块具体用于确定该第一 UE的导频配置中的 天线端口为天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10和天线端口 11 ,确定该第二 UE的导频配置中的天线端口为该天线端口 7、该天线端口 8、 该天线端口 9、 该天线端口 10和该天线端口 11; 该处理模块具体用于在该 天线端口 9、 该天线端口 10和该天线端口 11上为该第一 UE分配功率, 在 该天线端口 7和该天线端口 8上不为该第一 UE分配功率, 在该天线端口 7 和该天线端口 8上为该第二 UE分配功率, 在该天线端口 9、 该天线 10和该 天线端口 11上不为该第二 UE分配功率。
在第九种可能的实现方式中, 结合第二方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 8,该第二 UE支持的传输层数为 8,该 为 3, 该《2为 3, 该 n为 6; 该配置模块具体用于确定该第一 UE的导频配置中的 天线端口为天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11和天线端口 12,确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11和该天线端口 12; 该处理模块具体用于在该天线端口 10、 该天线端口 11和该天线端口 12 上为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8和该天线端口 9 上不为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8和该天线端口 9上为该第二 UE分配功率, 在该天线端口 10、 该天线 11和该天线端口 12 上不为该第二 UE分配功率。
在第十种可能的实现方式中, 结合第二方面的第一种可能的实现方式, 该第一 UE支持的传输层数为 8,该第二 UE支持的传输层数为 8,该 为 4, 该《2为 3, 该 n为 7; 该配置模块具体用于确定该第一 UE的导频配置中的 天线端口为天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12和天线端口 13, 确定该第二 UE的导频配置中的天线端口 为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端 口 11、 该天线端口 12和该天线端口 13; 该处理模块具体用于在该天线端口 10、 该天线端口 11、 该天线端口 12和该天线端口 13上为该第一 UE分配功 率, 在该天线端口 7、 该天线端口 8和该天线端口 9上不为该第一 UE分配 功率, 在该天线端口 7、 该天线端口 8和该天线端口 9上为该第二 UE分配 功率, 在该天线端口 10、 该天线 11、 该天线端口 12和该天线端口 13上不 为该第二 UE分配功率。
在第十一种可能的实现方式中, 结合第二方面的第一种可能的实现方 式, 该第一 UE支持的传输层数为 8, 该第二 UE支持的传输层数为 8, 该 «!为 4, 该《2为 4, 该《为 8; 该配置模块具体用于确定该第一 UE的导频配 置中的天线端口为天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天 线端口 11、 天线端口 12、 天线端口 13和天线端口 14, 确定该第二 UE的导 频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线 端口 10、 该天线端口 11、 该天线端口 12、 该天线端口 13和该天线端口 14; 该处理模块具体用于在该天线端口 11、 该天线端口 12、 该天线端口 13和该 天线端口 14上为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8、 该 天线端口 9和该天线端口 10上不为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8、 和该天线端口 9和该天线端口 10上为该第二 UE分配功率, 在该天线端口 11、 该天线 12、 该天线端口 13和该天线端口 14上不为该第 二 UE分配功率。
在第十二种可能的实现方式中, 结合第二方面或第二方面的第一至十一 种可能的实现方式中的任一种可能的实现方式, 该基站还包括: 第一接收模 块, 用于接收该第一 UE发送的 ACK/NACK消息; 该处理模块还用于若该 ACK/NACK 消息中需要重传的码字对应的天线端口上不分配功率, 则不重 传该码字。
在第十三种可能的实现方式中, 结合第二方面的第一至十一种可能的实 现方式中的任一种可能的实现方式, 该基站还包括: 第二接收模块, 用于接 收该第二 UE发送的 ACK/NACK消息; 该处理模块还用于若该 ACK/NACK 消息中需要重传的码字对应的天线端口上不分配功率, 则不重传该码字。
基于上述技术方案,本发明实施例的 MU-MIMO通信的方法和基站,在 配对的总层数大于或等于 3时, 将总层数 n作为第一 UE的传输层数确定第 一 UE的导频配置, 在第一 UE的导频配置中的天线端口中的后 个端口上 为第一 UE分配功率, 其他端口上不为第一 UE分配功率, 可以实现配对用 户的所有 DRS都正交, 从而能够增强网络性能。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的 MU-MIMO通信的方法的示意性流程图。 图 2是根据本发明实施例的 MU-MIMO通信的方法的另一示意性流程 图。
图 3是根据本发明实施例的 MU-MIMO通信的方法的又一示意性流程 图。
图 4是根据本发明实施例的基站的示意性框图。
图 5是根据本发明实施例的基站的另一示意性框图。
图 6是根据本发明实施例的基站的又一示意性框图。
图 7是根据本发明实施例的基站的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
应理解, 本发明实施例的技术方案可以应用于各种通信系统, 例如: 全 球移动通讯 ( Global System of Mobile communication, 筒称为 "GSM" )系统、 码分多址(Code Division Multiple Access, 筒称为 "CDMA" ) 系统、 宽带码 分多址( Wideband Code Division Multiple Access, 筒称为 "WCDMA" )系统、 通用分组无线业务(General Packet Radio Service, 筒称为 "GPRS" )、 长期 演进( Long Term Evolution, 筒称为 "LTE" )系统、 LTE频分双工( Frequency Division Duplex,筒称为 "FDD" )系统、 LTE 时分双工( Time Division Duplex, 筒称为 "TDD" )、 通用移动通信系统 ( Universal Mobile Telecommunication System,筒称为 "UMTS" ),全球互联微波接入( Worldwide Interoperability for Microwave Access , 筒称为 " WiMAX" )通信系统等。
还应理解,在本发明实施例中,用户设备( User Equipment,筒称为 "UE" ) 可称之为终端 (Terminal ), 移动台 (Mobile Station, 筒称为 "MS" )、 移动 终端 (Mobile Terminal )等, 该用户设备可以经无线接入网 (Radio Access Network, 筒称为 "RAN" )与一个或多个核心网进行通信, 例如, 用户设备 可以是移动电话(或称为 "蜂窝" 电话)、 具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动 装置, 它们与无线接入网交换语音和 /或数据。
在本发明实施例中, 基站可以是 GSM 或 CDMA 中的基站 (Base Transceiver Station, 筒称为 "BTS" ), 也可以是 WCDMA中的基站( NodeB , 筒称为 "NB" ), 还可以是 LTE中的演进型基站(Evolutional Node B , 筒称 为 "ENB或 e-NodeB" ), 本发明并不限定。 但为描述方便, 下述实施例将以 基站 ENB和用户设备 UE为例进行说明。
图 1示出了根据本发明实施例的 MU-MIMO通信的方法 100的示意性流 程图。 该方法 100由基站执行, 如图 1所示, 该方法 100包括:
S110, 确定第一用户设备 UE与第二 UE配对的总层数《大于或等于 3 , 其中, 该第一 UE参与配对的层数为 nl , 该第二 UE参与配对的层数为《2, n=ni+n2, 该第一 UE支持的传输层数大于或等于 4;
S120, 将该 n作为该第一 UE的传输层数确定该第一 UE的导频配置;
S130, 将该第一 UE的导频配置发送给该第一 UE;
S140,在该第一 UE的导频配置中的天线端口中的后 个端口上为该第 一 UE分配功率, 其他端口上不为该第一 UE分配功率。
在第一 UE与第二 UE进行 MU-MIMO配对时, 若配对总层数为 2 , 即 1+1配对, 确定导频配置时可以选择表 1单码字使能模式下的值 0和 2, 或 者值 1和 3这两组,这种情况下两个 UE的 DRS正交。若配对总层数超过 2, 按照现有协议标准, 需要使用不同的扰码, 例如, 2+2配对时, 按照两个 UE 各自参与配对的层数(即层数 2 )选择表 1中双码字使能模式下的值 0和 1 , 这样导致两个 UE的 DRS不正交。在本发明实施例中, 为了使配对总层数超 过 2层后配对用户的 DRS都正交,基站在确定第一 UE与第二 UE配对的总 层数《大于或等于 3时, 若第一 UE支持的传输层数大于或等于 4, 即第一 UE为 4R/8R UE, 将配对总层数 n作为第一 UE的传输层数确定第一 UE的 导频配置, 也就是说按照总层数《, 而不是按照第一 UE参与配对的层数 , 确定第一 UE的导频配置,然后将确定的第一 UE的导频配置发送给第一 UE, 并在按照总层数 n确定的第一 UE的导频配置中的天线端口中的后 m个端口 上为第一 UE分配功率, 其他端口上不为第一 UE分配功率。 由于按照总层 数确定的 DRS都正交, 这样, 在其他端口上为第二 UE分配功率后, 第一 UE和第二 UE的 DRS就能都正交。
因此,本发明实施例的 MU-MIMO通信的方法,在配对的总层数大于或 等于 3时, 将总层数 n作为第一 UE的传输层数确定第一 UE的导频配置, 在第一 UE的导频配置中的天线端口中的后 Wl个端口上为第一 UE分配功率, 其他端口上不为第一 UE分配功率, 可以实现配对用户的所有 DRS都正交, 从而能够增强网络性能。
在本发明实施例中, 如图 2所示, 可选地, 该方法 100还包括:
S150, 若该第二 UE支持的传输层数大于或等于 4, 将该《作为该第二 UE的传输层数确定该第二 UE的导频配置;
S160, 将该第二 UE的导频配置发送给该第二 UE;
S170,在该第二 UE的导频配置中的天线端口中的前《2个端口上为该第 二 UE分配功率, 其他端口上不为该第二 UE分配功率。 具体而言, 基站在确定第一 UE与第二 UE配对的总层数《大于或等于
3时, 若第二 UE支持的传输层数大于或等于 4 , 即第二 UE为 4R/8R UE, 将总层数 n作为第二 UE的传输层数确定第二 UE的导频配置, 也就是说按 照总层数 n确定第二 UE的导频配置, 而不是按照第二 UE参与配对的层数 n2, 然后将确定的第二 UE 的导频配置发送给第二 UE, 并在按照总层数 n 确定的第二 UE的导频配置中的天线端口中的前《2个端口上为第二 UE分配 功率, 其他端口上不为该第二 UE分配功率。 也就是说, 若第一 UE和第二 UE均为 4R/8R UE, 在它们配对的总层数 n超过 2时, 基站按照总层数 n确 定它们的导频配置,并在前《2个端口上为第二 UE分配功率,后 个端口上 不为第二 UE分配功率, 后 个端口上为第一 UE分配功率, 前《2个端口上 不为第一 UE分配功率, 并将按照总层数 n确定的导频配置通知第一 UE和 第二 UE, 以便于它们获取数据。 通过这样的方式, 第一 UE和第二 UE的 DRS就能都正交。
可选地, 该第一 UE支持的传输层数为 4或 8 , 该第二 UE支持的传输 层数为 4或 8 , 该 ^为 2 , 该 n2为 2 , 该《为 4;
S 120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8、 天线端口 9和天线端口 10;
S 140包括:在该天线端口 9和该天线端口 10上为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功率;
S 150包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9和该天线端口 10;
S 170包括: 在该天线端口 7和该天线端口 8上为该第二 UE分配功率, 在该天线端口 9和该天线端口 10上不为该第二 UE分配功率。
具体而言,当两个 4R/8R UE(第一 UE和第二 UE )进行 4层 MU-MIMO 配对时, 第一 UE和第二 UE都是 2层参与 MU-MIMO配对。 eNodeB按照 总层数 4确定这两个 UE的导频配置为表 1双码字使能模式中的值 3对应的 导频配置, 也就是, 4层, 天线端口 7- 10。 eNodeB只在天线端口 7和 8上 为第二 UE分配功率(对应码字 0 ), 只在天线端口 9和 10上为第一 UE分 配功率(对应码字 1 )。 eNodeB为第一 UE和第二 UE在 DCI 2C中按照表 1 双码字使能模式中的值 3进行天线端口和层的信令指示, 指示第一 UE和第 二 UE它们各自的传输层数都为 4 , 天线端口为 7-10。 层到码字映射按照现 有 RIO协议规定的标准方式进行。 对于第二 UE码字 0承载真实业务数据, 由 2个层数据映射而成, 对于第一 UE码字 1承载真实业务数据, 由 2个层 数据映射而成, 非真实业务数据对应的层数据功率置 0。 第一 UE和第二 UE 各自根据传输层数 4获取信道估计值并根据信道估计值获取业务数据。对于 第二 UE, 只在天线端口 7和 8上有功率, 相应地只能得到码字 0的数据; 对于第一 UE, 只在天线端口 9和 10上有功率, 相应地只能得到码字 1的数 据。 因为码字 0承载了第二 UE的真实业务数据, 码字 1承载了第一 UE的 真实业务数据, 因此, eNodeB在处理 ACK/NACK消息时, 不需要重传第二 UE的码字 1以及第一 UE的码字 0。
因此, 可选地, 该方法 100还包括:
接收该第一 UE发送的 ACK/NACK消息;
若该 ACK/NACK 消息中需要重传的码字对应的天线端口上不分配功 率, 则不重传该码字。
可选地, 该方法 100还包括:
接收该第二 UE发送的 ACK/NACK消息;
若该 ACK/NACK 消息中需要重传的码字对应的天线端口上不分配功 率, 则不重传该码字。
也就是说, eNodeB 根据配对用户配对时候码字的功率是否置零信息, 对 UE反馈过来的码字 ACK/NACK进行有效性维护,若 ACK/NACK消息中 需要重传的码字对应的天线端口上不分配功率, 则不重传该码字, 并且根据 维护结果进行下一步 MU配对调度相关实现。
上面描述了两个 4R/8R UE进行 4层 MU-MIMO配对的实施例, 下面描 述两个 4R/8R UE进行 3层 MU-MIMO配对的实施例。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8 , 该 第二 UE支持的传输层数为 4或 8 , 该 rh为 2 , 该《2为 1 , 该《为 3 ;
S 120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8和天线端口 9;
S 140包括: 在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端口 7上不为该第一 UE分配功率;
S 150包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8和该天线端口 9; S170包括: 在该天线端口 7上为该第二 UE分配功率, 在该天线端口 8 和该天线端口 9上不为该第二 UE分配功率。
具体而言,当两个 4R/8R UE (第一 UE和第二 UE )进行 3层 MU-MIMO 配对时, 第一 UE是 2层参与 MU-MIMO配对, 第二 UE都是 1层参与 MU-MIMO配对。 eNodeB按照总层数 3确定这两个 UE的导频配置为表 1 双码字使能模式中的值 2对应的导频配置, 也就是, 3层, 天线端口 7-9。 eNodeB只在天线端口 7上为第二 UE分配功率(对应码字 0 ), 只在天线端 口 8和 9上为第一 UE分配功率(对应码字 1 )。 eNodeB为第一 UE和第二 UE在 DCI 2C中按照表 1双码字使能模式中的值 2进行天线端口和层的信令 指示,指示第一 UE和第二 UE它们各自的传输层数都为 3 ,天线端口为 7-9。 层到码字映射按照现有 R10协议规定的标准方式进行。 对于第二 UE码字 0 承载真实业务数据, 由 1个层数据映射而成, 对于第一 UE码字 1承载真实 业务数据, 由 2个层数据映射而成, 非真实业务数据对应的层数据功率置 0。 第一 UE和第二 UE各自根据传输层数 3获取信道估计值并根据信道估计值 获取业务数据。 对于第二 UE, 只在天线端口 7有功率, 相应地只能得到码 字 0的数据; 对于第一 UE, 只在天线端口 8和 9上有功率, 相应地只能得 到码字 1的数据。 因为码字 0承载了第二 UE的真实业务数据, 码字 1承载 了第一 UE的真实业务数据, 因此, eNodeB在处理 ACK/NACK消息时, 不 需要重传第二 UE的码字 1以及第一 UE的码字 0。 即, 与 4层配对时类似, eNodeB根据配对用户配对时候码字的功率是否置零信息, 对 UE反馈过来 的码字 ACK/NACK进行有效性维护, 并且根据维护结果进行下一步 MU配 对调度相关实现。
因此, 本发明实施例的 MU-MIMO通信的方法, 在 2个 4R/8R UE配对 的总层数超过 2时,按照总层数确定 UE的导频配置,将 UE使用的 DRS 天 线端口扩展到 7、 8、 9和 10 上面, 可以实现配对用户的所有 DRS都正交, 从而能够增强网络性能。
在本发明实施例中, 如图 3所示, 可选地, 该方法 100还包括:
S180, 若该第二 UE支持的传输层数为 2, 根据该第二 UE支持的传输 层数和该《2确定该第二 UE的导频配置;
S190, 将该第二 UE的导频配置发送给该第二 UE;
S195 ,在该第二 UE的导频配置中的天线端口中的前《2个端口上为该第 二 UE分配功率。
具体而言, 基站在确定第一 UE与第二 UE配对的总层数《大于或等于 3时, 若第二 UE支持的传输层数为 2 , 即第二 UE为 2R UE, 则根据第二 UE支持的传输层数 2和第二 UE参与配对的层数《2确定第二 UE的导频配 置, 然后将确定的第二 UE的导频配置发送给第二 UE,并在第二 UE的导频 配置中的天线端口中的前《2个端口上为第二 UE分配功率,其他端口上不为 该第二 UE分配功率。也就是说,若第一 UE为 4R/8R UE,第二 UE为 2R UE, 在它们配对的总层数 n超过 2时, 基站按照总层数 n确定第一 UE的导频配 置, 并在第一 UE的导频配置的后 个端口上为第一 UE分配功率, 前《2 个端口上不为第一 UE分配功率, 同时根据第二 UE支持的传输层数 2和第 二 UE参与配对的层数《2确定第二 UE的导频配置, 并在第二 UE的导频配 置中的天线端口中的前《2个端口上为第二 UE分配功率,其他端口上不为该 第二 UE分配功率, 并向第一 UE和第二 UE通知它们各自的导频配置, 以 便于它们获取数据。
可选地, 该第一 UE支持的传输层数为 4或 8 , 该第二 UE支持的传输 层数为 2 , 该 为 2 , 该《2为 2 , 该《为 4;
S 120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8、 天线端口 9和天线端口 10;
S 140包括:在该天线端口 9和该天线端口 10上为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功率;
S 180包括:确定该第二 UE的导频配置中的天线端口为该天线端口 7和 该天线端口 8;
S 195包括: 在该天线端口 7和该天线端口 8上为该第二 UE分配功率。 具体而言, 当一个 4R/8R UE (第一 UE )和一个 2R UE (第二 UE )进 行 4层 MU-MIMO配对时,第一 UE和第二 UE都是 2层参与 MU-MIMO配 对。 eNodeB按照总层数 4确定第一 UE的导频配置为表 1双码字使能模式 中的值 3对应的导频配置, 也就是, 4层, 天线端口 7- 10。 eNodeB只在天 线端口 9和 10上为第一 UE分配功率(对应码字 1 ), 在天线端口 7和 8对 应的两层数据功率置零。 eNodeB根据第二 UE支持的传输层数 2和第二 UE 参与配对的层数 2确定第二 UE的导频配置为表 1双码字使能模式中的值 0 对应的导频配置, 也就是, 2层, 天线端口 7-8。 eNodeB只在天线端口 7和 8上为第二 UE分配功率, 而对第二 UE映射到天线端口 9和 10上资源元素 ( Resource Element, 筒称为 "RE " )的载波数据进行打孔 /功率置 0。 eNodeB 为第一 UE在 DCI 2C中按照表 1双码字使能模式中的值 3进行天线端口和 层的信令指示, 指示第一 UE其传输层数为 4, 天线端口为 7-10。 eNodeB为 第二 UE在 DCI 2C中按照表 1双码字使能模式中的值 0进行天线端口和层 的信令指示, 指示第二 UE其传输层数为 2, 天线端口为 7-8。 层到码字映射 按照现有 R10协议规定的标准方式进行。对于第二 UE码字 0和 1都承载真 实业务数据, 分别由 1个层数据映射而成。 对于第一 UE码字 1承载真实业 务数据, 由 2个层数据映射而成, 非真实业务数据对应的层数据功率置 0。 第二 UE根据传输层数 2获取信道估计值并根据信道估计值获取业务数据。 对于第二 UE, 在天线端口 7和 8上有功率, 相应地能得到码字 0和 1的数 据。 第一 UE根据传输层数 4获取信道估计值并根据信道估计值获取业务数 据。 对于第一 UE, 只在天线端口 9和 10上有功率, 相应地只能得到码字 1 的数据。 因为码字 1承载了第一 UE的真实业务数据, 因此, eNodeB在处 理 ACK/NACK消息时, 不需要重传第一 UE的码字 0。 也就是说, eNodeB 根据配对用户配对时候码字的功率是否置零信息, 对 UE反馈过来的码字 ACK/NACK进行有效性维护, 并且根据维护结果进行下一步 MU配对调度 相关实现。
上面描述了一个 4R/8R UE与一个 2R UE进行 4层 MU-MIMO配对的实 施例,下面描述一个 4R/8R UE与一个 2R UE进行 3层 MU-MIMO配对的实 施例。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8, 该 第二 UE支持的传输层数为 2, 该 ηι为 2, 该《2为 1 , 该《为 3;
S120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8和天线端口 9;
S140包括: 在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端口 7上不为该第一 UE分配功率;
S180包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7; S195包括: 在该天线端口 7上为该第二 UE分配功率。
具体而言, 当一个 4R/8R UE (第一 UE )和一个 2R UE (第二 UE )进 行 3层 MU-MIMO配对时, 第一 UE是 2层参与 MU-MIMO配对, 第二 UE 都是 1层参与 MU-MIMO配对。 eNodeB按照总层数 3确定第一 UE的导频 配置为表 1双码字使能模式中的值 2对应的导频配置, 也就是, 3层, 天线 端口 7-9。 eNodeB只在天线端口 8和 9上为第一 UE分配功率(对应码字 1 ), 在天线端口 7对应的层数据功率置零。 eNodeB根据第二 UE支持的传输层 数 2和第二 UE参与配对的层数 1确定第二 UE的导频配置为表 1单码字使 能模式中的值 0对应的导频配置, 也就是, 1层, 天线端口 7。 eNodeB只在 天线端口 7上为第二 UE分配功率, 而对第二 UE映射到天线端口 8和 9上 RE的载波数据进行打孔 /功率置 0。 eNodeB为第一 UE在 DCI 2C中按照表 1双码字使能模式中的值 2进行天线端口和层的信令指示, 指示第一 UE其 传输层数为 3 , 天线端口为 7-9。 eNodeB为第二 UE在 DCI 2C中按照表 1 单码字使能模式中的值 0进行天线端口和层的信令指示, 指示第二 UE其传 输层数为 1 , 天线端口为 7。 层到码字映射按照现有 R10协议规定的标准方 式进行。 对于第二 UE码字 0承载真实业务数据, 由 1个层数据映射而成。 对于第一 UE码字 1承载真实业务数据, 由 2个层数据映射而成, 非真实业 务数据对应的层数据功率置 0。 第二 UE根据传输层数 1获取信道估计值并 根据信道估计值获取业务数据。 对于第二 UE, 在天线端口 7上有功率, 相 应地能得到码字 0的数据。 第一 UE根据传输层数 3获取信道估计值并根据 信道估计值获取业务数据。 对于第一 UE, 只在天线端口 8和 9上有功率, 相应地只能得到码字 1的数据。因为码字 1承载了第一 UE的真实业务数据, 因此, eNodeB在处理 ACK/NACK消息时, 不需要重传第一 UE的码字 0。 也就是说, eNodeB根据配对用户配对时候码字的功率是否置零信息, 对 UE 反馈过来的码字 ACK/NACK进行有效性维护, 并且根据维护结果进行下一 步 MU配对调度相关实现。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8, 该 第二 UE支持的传输层数为 2, 该 ηι为 2, 该《2为 1 , 该《为 3;
S120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8和天线端口 9;
S140包括: 在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端口 7上不为该第一 UE分配功率;
S180包括:确定该第二 UE的导频配置中的天线端口为该天线端口 7和 该天线端口 8; S195包括: 在该天线端口 7上为该第二 UE分配功率, 在该天线端口 8 上不为该第一 UE分配功率。
具体而言, 当一个 4R/8R UE (第一 UE )和一个 2R UE (第二 UE )进 行 3层 MU-MIMO配对时, 第一 UE是 2层参与 MU-MIM0配对, 第二 UE 都是 1层参与 MU-MIMO配对。 eNodeB按照总层数 3确定第一 UE的导频 配置为表 1双码字使能模式中的值 2对应的导频配置, 也就是, 3层, 天线 端口 7-9。 eNodeB只在天线端口 8和 9上为第一 UE分配功率(对应码字 1 ), 在天线端口 7对应的层数据功率置零。 eNodeB根据第二 UE支持的传输层 数 2和第二 UE参与配对的层数 1确定第二 UE的导频配置为表 1双码字使 能模式中的值 0对应的导频配置, 也就是, 2层, 天线端口 7-8。 eNodeB只 在天线端口 7上为第二 UE分配功率(对应码字 0 ), 而对第二 UE映射到天 线端口 8和 9上 RE的载波数据进行打孔 /功率置 0。 eNodeB为第一 UE在 DCI 2C中按照表 1双码字使能模式中的值 2进行天线端口和层的信令指示, 指示第一 UE其传输层数为 3 ,天线端口为 7-9。 eNodeB为第二 UE在 DCI 2C 中按照表 1双码字使能模式中的值 0进行天线端口和层的信令指示,指示第 二 UE其传输层数为 2, 天线端口 7-8。 层到码字映射按照现有 R10协议规 定的标准方式进行。 对于第二 UE码字 0承载真实业务数据, 由 1个层数据 映射而成, 非真实业务数据对应的层数据功率置 0。 对于第一 UE码字 1承 载真实业务数据, 由 2个层数据映射而成, 非真实业务数据对应的层数据功 率置 0。 第二 UE根据传输层数 2获取信道估计值并根据信道估计值获取业 务数据。 对于第二 UE, 只在天线端口 7上有功率, 相应地只能得到码字 0 的数据。 第一 UE根据传输层数 3获取信道估计值并根据信道估计值获取业 务数据。 对于第一 UE, 只在天线端口 8和 9上有功率, 相应地只能得到码 字 1的数据。 因为码字 0承载了第二 UE的真实业务数据, 码字 1承载了第 一 UE的真实业务数据, 因此, eNodeB在处理 ACK/NACK消息时, 不需要 重传第二 UE的码字 1以及第一 UE的码字 0。 也就是说, eNodeB根据配对 用户配对时候码字的功率是否置零信息,对 UE反馈过来的码字 ACK/NACK 进行有效性维护, 并且根据维护结果进行下一步 MU配对调度相关实现。
因此, 本发明实施例的 MU-MIMO通信的方法, 在一个 4R/8R UE与一 个 2R UE配对的总层数超过 2时, 按照总层数确定 4R/8R UE的导频配置, 将 UE使用的 DRS 天线端口扩展到 7、 8、 9和 10 上面, 可以实现配对用户 的所有 DRS都正交, 从而能够增强网络性能。
以上描述了两个 4R/8R UE, 以及一个 4R/8R UE与一个 2R UE进行 4 层和 3层 MU-MIMO配对的实施例, 对于两个 8R UE, 还可以进行超过 4 层的 MU-MIMO配对。
因此, 在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8 , 该第二 UE支持的传输层数为 8 , 该 为 3 , 该《2为 2 , 该 n为 5 ;
S 120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8、 天线端口 9、 天线端口 10和天线端口 11 ;
S 140包括: 在该天线端口 9、 该天线端口 10和该天线端口 11上为该第 一 UE分配功率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功 率;
S 150包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10和该天线端口 11 ;
S 170包括: 在该天线端口 7和该天线端口 8上为该第二 UE分配功率, 在该天线端口 9、 该天线 10和该天线端口 11上不为该第二 UE分配功率。
具体而言, 当两个 8R UE (第一 UE和第二 UE )进行 5层 MU-MIMO 配对时,第一 UE是 3层参与 MU-MIMO配对,第二 UE是 2层参与 MU-MIMO 配对。 eNodeB按照总层数 5确定这两个 UE的导频配置为表 1双码字使能 模式中的值 4对应的导频配置, 也就是, 5层, 天线端口 7- 11。 eNodeB只 在天线端口 7和 8上为第二 UE分配功率 (对应码字 0 ), 只在天线端口 9、 10和 11上为第一 UE分配功率 (对应码字 1 )。 eNodeB为第一 UE和第二 UE在 DCI 2C中按照表 1双码字使能模式中的值 4进行天线端口和层的信令 指示,指示第一 UE和第二 UE它们各自的传输层数都为 5 ,天线端口为 7-11。 层到码字映射按照现有 R10协议规定的标准方式进行。 对于第二 UE码字 0 承载真实业务数据, 由 2个层数据映射而成, 对于第一 UE码字 1承载真实 业务数据, 由 3个层数据映射而成, 非真实业务数据对应的层数据功率置 0。 第一 UE和第二 UE各自根据传输层数 5获取信道估计值并根据信道估计值 获取业务数据。 对于第二 UE, 只在天线端口 7和 8上有功率, 相应地只能 得到码字 0的数据; 对于第一 UE, 只在天线端口 9、 10和 11上有功率, 相 应地只能得到码字 1的数据。 因为码字 0承载了第二 UE的真实业务数据, 码字 1承载了第一 UE的真实业务数据, 因此, eNodeB在处理 ACK/NACK 消息时, 不需要重传第二 UE的码字 1以及第一 UE的码字 0。 也就是说, eNodeB根据配对用户配对时候码字的功率是否置零信息, 对 UE反馈过来 的码字 ACK/NACK进行有效性维护, 并且根据维护结果进行下一步 MU配 对调度相关实现。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8, 该第二
UE支持的传输层数为 8, 该 为 3, 该《2为 3, 该《为 6;
S120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8、 天线端口 9、 天线端口 10、 天线端口 11和天线端口 12;
S140包括: 在该天线端口 10、 该天线端口 11和该天线端口 12上为该 第一 UE分配功率, 在该天线端口 7、 该天线端口 8和该天线端口 9上不为 该第一 UE分配功率;
S150包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11和该天线端口 12;
S170包括: 在该天线端口 7、 该天线端口 8和该天线端口 9上为该第二
UE分配功率, 在该天线端口 10、 该天线 11和该天线端口 12上不为该第二 UE分配功率。
具体而言, 当两个 8R UE (第一 UE和第二 UE )进行 6层 MU-MIMO 配对时, 第一 UE和第二 UE都是 3层参与 MU-MIMO配对。 eNodeB按照 总层数 6确定这两个 UE的导频配置为表 1双码字使能模式中的值 5对应的 导频配置, 也就是, 6层, 天线端口 7-12。 eNodeB只在天线端口 7、 8和 9 上为第二 UE分配功率(对应码字 0 ), 只在天线端口 10、 11和 12上为第一 UE分配功率(对应码字 1 )。 eNodeB为第一 UE和第二 UE在 DCI 2C中按 照表 1 双码字使能模式中的值 5进行天线端口和层的信令指示, 指示第一 UE和第二 UE它们各自的传输层数都为 6,天线端口为 7-12。层到码字映射 按照现有 R10协议规定的标准方式进行。对于第二 UE码字 0承载真实业务 数据, 由 3个层数据映射而成, 对于第一 UE码字 1承载真实业务数据, 由 3个层数据映射而成, 非真实业务数据对应的层数据功率置 0。 第一 UE和 第二 UE各自根据传输层数 6获取信道估计值并根据信道估计值获取业务数 据。 对于第二 UE, 只在天线端口 7、 8和 9上有功率, 相应地只能得到码字 0的数据; 对于第一 UE, 只在天线端口 10、 11和 12上有功率, 相应地只能 得到码字 1的数据。 因为码字 0承载了第二 UE的真实业务数据, 码字 1承 载了第一 UE的真实业务数据, 因此, eNodeB在处理 ACK/NACK消息时, 不需要重传第二 UE的码字 1以及第一 UE的码字 0。 也就是说, eNodeB根 据配对用户配对时候码字的功率是否置零信息, 对 UE反馈过来的码字 ACK/NACK进行有效性维护, 并且根据维护结果进行下一步 MU配对调度 相关实现。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8, 该第二 UE支持的传输层数为 8, 该 为 4, 该《2为 3, 该《为 7;
S120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12和天线端 口 13;
S140包括: 在该天线端口 10、 该天线端口 11、 该天线端口 12和该天线 端口 13上为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8和该天线 端口 9上不为该第一 UE分配功率;
S150包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11、 该天线端口 12和该天线端口 13;
S170包括: 在该天线端口 7、 该天线端口 8和该天线端口 9上为该第二 UE分配功率, 在该天线端口 10、 该天线 11、 该天线端口 12和该天线端口 13上不为该第二 UE分配功率。
具体而言, 当两个 8R UE (第一 UE和第二 UE )进行 7层 MU-MIMO 配对时,第一 UE是 4层参与 MU-MIMO配对,第二 UE是 3层参与 MU-MIMO 配对。 eNodeB按照总层数 7确定这两个 UE的导频配置为表 1双码字使能 模式中的值 6对应的导频配置, 也就是, 7层, 天线端口 7-13。 eNodeB只 在天线端口 7 、 8和 9上为第二 UE分配功率(对应码字 0 ), 只在天线端口 10、 11、 12和 13上为第一 UE分配功率(对应码字 1 )。 eNodeB为第一 UE 和第二 UE在 DCI 2C中按照表 1双码字使能模式中的值 6进行天线端口和 层的信令指示, 指示第一 UE和第二 UE它们各自的传输层数都为 7, 天线 端口为 7-13。层到码字映射按照现有 R10协议规定的标准方式进行。对于第 二 UE码字 0承载真实业务数据, 由 3个层数据映射而成, 对于第一 UE码 字 1承载真实业务数据, 由 4个层数据映射而成, 非真实业务数据对应的层 数据功率置 0。 第一 UE和第二 UE各自根据传输层数 7获取信道估计值并 根据信道估计值获取业务数据。 对于第二 UE, 只在天线端口 7 、 8和 9上 有功率, 相应地只能得到码字 0的数据; 对于第一 UE, 只在天线端口 10、 11、 12和 13上有功率, 相应地只能得到码字 1的数据。 因为码字 0承载了 第二 UE的真实业务数据, 码字 1承载了第一 UE的真实业务数据, 因此, eNodeB在处理 ACK/NACK消息时,不需要重传第二 UE的码字 1以及第一 UE的码字 0。 也就是说, eNodeB根据配对用户配对时候码字的功率是否置 零信息, 对 UE反馈过来的码字 ACK/NACK进行有效性维护, 并且根据维 护结果进行下一步 MU配对调度相关实现。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8, 该第二
UE支持的传输层数为 8, 该 为 4, 该《2为 4, 该《为 8;
S120包括: 确定该第一 UE的导频配置中的天线端口为天线端口 7、 天 线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12、 天线端口 13和天线端口 14;
S140包括: 在该天线端口 11、 该天线端口 12、 该天线端口 13和该天线 端口 14上为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8、 该天线 端口 9和该天线端口 10上不为该第一 UE分配功率;
S150包括: 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11、 该天线端口 12、 该天线端口 13和该天线端口 14;
S170包括: 在该天线端口 7、 该天线端口 8、 和该天线端口 9和该天线 端口 10上为该第二 UE分配功率, 在该天线端口 11、 该天线 12、 该天线端 口 13和该天线端口 14上不为该第二 UE分配功率。
具体而言, 当两个 8R UE (第一 UE和第二 UE )进行 8层 MU-MIMO 配对时, 第一 UE和第二 UE都是 4层参与 MU-MIMO配对。 eNodeB按照 总层数 8确定这两个 UE的导频配置为表 1双码字使能模式中的值 7对应的 导频配置, 也就是, 8层, 天线端口 7-14。 eNodeB只在天线端口 7、 8、 9 和 10上为第二 UE分配功率(对应码字 0 ), 只在天线端口 11、 12、 13和 14 上为第一 UE分配功率(对应码字 1 )。 eNodeB为第一 UE和第二 UE在 DCI 2C中按照表 1双码字使能模式中的值 7进行天线端口和层的信令指示, 指 示第一 UE和第二 UE它们各自的传输层数都为 8, 天线端口为 7-14。 层到 码字映射按照现有 R10协议规定的标准方式进行。对于第二 UE码字 0承载 真实业务数据, 由 4个层数据映射而成, 对于第一 UE码字 1承载真实业务 数据, 由 4个层数据映射而成, 非真实业务数据对应的层数据功率置 0。 第 一 UE和第二 UE各自根据传输层数 8获取信道估计值并根据信道估计值获 取业务数据。 对于第二 UE, 只在天线端口 7、 8、 9和 10上有功率, 相应地 只能得到码字 0的数据; 对于第一 UE, 只在天线端口 11、 12、 13和 14上 有功率, 相应地只能得到码字 1的数据。 因为码字 0 7|载了第二 UE的真实 业务数据, 码字 1承载了第一 UE的真实业务数据, 因此, eNodeB在处理 ACK/NACK消息时, 不需要重传第二 UE的码字 1以及第一 UE的码字 0。 也就是说, eNodeB根据配对用户配对时候码字的功率是否置零信息, 对 UE 反馈过来的码字 ACK/NACK进行有效性维护, 并且根据维护结果进行下一 步 MU配对调度相关实现。
因此, 本发明实施例的 MU-MIMO通信的方法, 在 2个 8R UE配对的 总层数超过 4时, 按照总层数确定 UE的导频配置, 将 UE使用的 DRS 天 线端口扩展到 7-14 上面, 可以实现配对用户的所有 DRS都正交, 从而能够 增强网络性能。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
上文中结合图 1至图 3 ,详细描述了根据本发明实施例的 MU-MIMO通 信的方法, 下面将结合图 4至图 7 , 描述根据本发明实施例的基站。
图 4示出了根据本发明实施例的基站 400的示意性框图。 如图 4所示, 该基站 400包括:
确定模块 410, 用于确定第一用户设备 UE与第二 UE配对的总层数 n 大于或等于 3 , 其中, 该第一 UE参与配对的层数为 , 该第二 UE参与配 对的层数为《2, η=ηι2, 该第一 UE支持的传输层数大于或等于 4;
配置模块 420, 用于将该 n作为该第一 UE的传输层数确定该第一 UE 的导频配置;
发送模块 430, 用于将该第一 UE的导频配置发送给该第一 UE;
处理模块 440, 用于在该第一 UE的导频配置中的天线端口中的后 个 端口上为该第一 UE分配功率, 其他端口上不为该第一 UE分配功率。 本发明实施例的基站, 在配对的总层数大于或等于 3时, 将总层数《作 为第一 UE的传输层数确定第一 UE的导频配置, 在第一 UE的导频配置中 的天线端口中的后 个端口上为第一 UE分配功率, 其他端口上不为第一
UE分配功率, 可以实现配对用户的所有 DRS都正交, 从而能够增强网络性 ^
匕。
在本发明实施例中, 可选地, 该配置模块 420还用于, 若该第二 UE支 持的传输层数大于或等于 4, 将该 n作为该第二 UE的传输层数确定该第二 UE的导频配置;
该发送模块 430还用于将该第二 UE的导频配置发送给该第二 UE; 该处理模块 440还用于在该第二 UE的导频配置中的天线端口中的前《2 个端口上为该第二 UE分配功率, 其他端口上不为该第二 UE分配功率。
在本发明实施例中, 可选地, 该配置模块 420还用于, 若该第二 UE支 持的传输层数为 2, 根据该第二 UE支持的传输层数和该《2确定该第二 UE 的导频配置;
该发送模块 430还用于将该第二 UE的导频配置发送给该第二 UE; 该处理模块 440还用于在该第二 UE的导频配置中的天线端口中的前《2 个端口上为该第二 UE分配功率。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8 , 该 第二 UE支持的传输层数为 4或 8 , 该 为 2, 该《2为 2, 该《为 4;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9和天线端口 10, 确定该第二 UE的导频 配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9和该天线 端口 10;
该处理模块 440具体用于在该天线端口 9和该天线端口 10上为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上为该第二 UE分配功率, 在该天线端口 9 和该天线端口 10上不为该第二 UE分配功率。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8 , 该 第二 UE支持的传输层数为 4或 8 , 该 rh为 2 , 该《2为 1 , 该《为 3 ;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8和天线端口 9, 确定该第二 UE的导频配置中的天线 端口为该天线端口 7、 该天线端口 8和该天线端口 9;
该处理模块 440具体用于在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端口 7上不为该第一 UE分配功率, 在该天线端口 7 上为该第二 UE分配功率, 在该天线端口 8和该天线端口 9上不为该第二 UE分配功率。
本发明实施例的基站, 在 2个 4R/8R UE配对的总层数超过 2时, 按照 总层数确定 UE的导频配置, 将 UE使用的 DRS 天线端口扩展到 7、 8、 9 和 10 上面,可以实现配对用户的所有 DRS都正交,从而能够增强网络性能。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8, 该 第二 UE支持的传输层数为 2, 该 ηι为 2, 该 n2为 2, 该《为 4;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9和天线端口 10, 确定该第二 UE的导频 配置中的天线端口为该天线端口 7和该天线端口 8;
该处理模块 440具体用于在该天线端口 9和该天线端口 10上为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上不为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上为该第二 UE分配功率。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8, 该 第二 UE支持的传输层数为 2, 该 ηι为 2, 该《2为 1 , 该《为 3;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8和天线端口 9, 确定该第二 UE的导频配置中的天线 端口为该天线端口 7;
该处理模块 440具体用于在该天线端口 8和该天线端口 9上为该第一 UE分配功率, 在该天线端口 7上不为该第一 UE分配功率, 在该天线端口 7 上为该第二 UE分配功率。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 4或 8, 该 第二 UE支持的传输层数为 2, 该 ^为 2, 该《2为 1 , 该《为 3;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8和天线端口 9, 确定该第二 UE的导频配置中的天线 端口为该天线端口 7和该天线端口 8;
该处理模块 440具体用于在该天线端口 8和该天线端口 9上为该第一
UE分配功率, 在该天线端口 7上不为该第一 UE分配功率, 在该天线端口 7 上为该第二 UE分配功率, 在该天线端口 8上不为该第一 UE分配功率。 本发明实施例的基站, 在一个 4R/8R UE与一个 2R UE配对的总层数超 过 2时,按照总层数确定 4R/8R UE的导频配置,将 UE使用的 DRS 天线端 口扩展到 7、 8、 9和 10 上面, 可以实现配对用户的所有 DRS都正交, 从而 能够增强网络性能。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8, 该第二 UE支持的传输层数为 8, 该 为 3, 该《2为 2, 该《为 5;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10和天线端口 11 , 确定该第 二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端 口 9、 该天线端口 10和该天线端口 11;
该处理模块 440具体用于在该天线端口 9、该天线端口 10和该天线端口 11上为该第一 UE分配功率,在该天线端口 7和该天线端口 8上不为该第一 UE分配功率, 在该天线端口 7和该天线端口 8上为该第二 UE分配功率, 在该天线端口 9、 该天线 10和该天线端口 11上不为该第二 UE分配功率。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8, 该第二 UE支持的传输层数为 8, 该 为 3, 该《2为 3, 该《为 6;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11和天线端口 12, 确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11和该天线端口 12;
该处理模块 440具体用于在该天线端口 10、 该天线端口 11和该天线端 口 12上为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8和该天线端 口 9上不为该第一 UE分配功率, 在该天线端口 7、 该天线端口 8和该天线 端口 9上为该第二 UE分配功率, 在该天线端口 10、 该天线 11和该天线端 口 12上不为该第二 UE分配功率。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8, 该第二 UE支持的传输层数为 8, 该 为 4, 该《2为 3, 该《为 7;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12和天线端口 13,确定该第二 UE的导频配置中的天线端口为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端口 11、 该天线端口 12和该天线端口 13;
该处理模块 440具体用于在该天线端口 10、 该天线端口 11、 该天线端 口 12和该天线端口 13上为该第一 UE分配功率, 在该天线端口 7、 该天线 端口 8和该天线端口 9上不为该第一 UE分配功率, 在该天线端口 7、 该天 线端口 8和该天线端口 9上为该第二 UE分配功率, 在该天线端口 10、 该天 线 11、 该天线端口 12和该天线端口 13上不为该第二 UE分配功率。
在本发明实施例中, 可选地, 该第一 UE支持的传输层数为 8, 该第二 UE支持的传输层数为 8, 该 为 4, 该《2为 4, 该《为 8;
该配置模块 420具体用于确定该第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12、 天线端口 13和天线端口 14, 确定该第二 UE的导频配置中的天线端口 为该天线端口 7、 该天线端口 8、 该天线端口 9、 该天线端口 10、 该天线端 口 11、 该天线端口 12、 该天线端口 13和该天线端口 14;
该处理模块 440具体用于在该天线端口 11、 该天线端口 12、 该天线端 口 13和该天线端口 14上为该第一 UE分配功率, 在该天线端口 7、 该天线 端口 8、 该天线端口 9和该天线端口 10上不为该第一 UE分配功率, 在该天 线端口 7、 该天线端口 8、 和该天线端口 9和该天线端口 10上为该第二 UE 分配功率, 在该天线端口 11、 该天线 12、 该天线端口 13和该天线端口 14 上不为该第二 UE分配功率。
本发明实施例的基站,在 2个 8R UE配对的总层数超过 4时,按照总层 数确定 UE的导频配置, 将 UE使用的 DRS 天线端口扩展到 7-14 上面, 可 以实现配对用户的所有 DRS都正交, 从而能够增强网络性能。
在本发明实施例中, 如图 5所示, 可选地, 该基站 400还包括: 第一接收模块 450, 用于接收该第一 UE发送的 ACK/NACK消息; 该处理模块 440还用于若该 ACK/NACK消息中需要重传的码字对应的 天线端口上不分配功率, 则不重传该码字。
在本发明实施例中, 如图 6所示, 可选地, 该基站 400还包括: 第二接收模块 460, 用于接收该第二 UE发送的 ACK/NACK消息; 该处理模块 440还用于若该 ACK/NACK消息中需要重传的码字对应的 天线端口上不分配功率, 则不重传该码字。 根据本发明实施例的基站 400可对应于根据本发明实施例的 MU-MIMO 通信的方法中的基站,并且基站 400中的各个模块的上述和其它操作和 /或功 能分别为了实现图 1至图 3中的各个方法的相应流程, 为了筒洁, 在此不再 赘述。
图 7是本发明实施例提供的基站的结构示意图。 如图 7所示, 基站 700 一般包括至少一个处理器 710, 例如 CPU, 至少一个端口 720, 存储器 730。 块, 例如计算机程序。 存储器 730可能包含高速 RAM存储器, 也可能还包 括非易失性存储器(non-volatile memory ), 例如至少一个磁盘存储器。 通过 至少一个端口 720实现该基站与至少一个 UE的通信连接。
在一些实施方式中, 存储器 730存储了如下的元素, 可执行模块或者数 据结构, 或者他们的子集, 或者他们的扩展集:
操作系统 732, 包含各种系统程序, 用于实现各种基础业务以及处理基 于硬件的任务;
应用模块 734, 包含各种应用程序, 用于实现各种应用业务。
应用模块 734中包括但不限于确定模块 410、 配置模块 420、 发送模块 430、 处理模块 440、 第一接收模块 450和第二接收模块 460。
应用模块 734中各模块的具体实现参见图 4、 图 5和图 6所示实施例中 的相应模块, 在此不赘述。
应理解, 在本发明实施例中, 术语 "和 /或"仅仅是一种描述关联对象的 关联关系, 表示可以存在三种关系。 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一 般表示前后关联对象是一种 "或" 的关系。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1. 一种多用户多输入多输出 MU-MIM0通信的方法, 其特征在于, 包 括:
确定第一用户设备 UE与第二 UE配对的总层数《大于或等于 3, 其中, 所述第一 UE参与配对的层数为 ηι, 所述第二 UE参与配对的层数为 n2, n=ni+n2, 所述第一 UE支持的传输层数大于或等于 4;
将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配置; 将所述第一 UE的导频配置发送给所述第一 UE;
在所述第一 UE的导频配置中的天线端口中的后 ηι个端口上为所述第一 UE分配功率, 其他端口上不为所述第一 UE分配功率。
2. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 若所述第二 UE支持的传输层数大于或等于 4, 将所述 n作为所述第二 UE的传输层数确定所述第二 UE的导频配置;
将所述第二 UE的导频配置发送给所述第二 UE;
在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述第二
UE分配功率, 其他端口上不为所述第二 UE分配功率。
3. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 若所述第二 UE支持的传输层数为 2, 根据所述第二 UE支持的传输层 数和所述《2确定所述第二 UE的导频配置;
将所述第二 UE的导频配置发送给所述第二 UE;
在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述第二 UE分配功率。
4. 根据权利要求 2所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 4或 8, 所述第二 UE支持的传输层数为 4或 8, 所述 为 2, 所 述《2为 2, 所述《为 4;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8、 天线端口 9和天线端口 10;
所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 9和所述天线端口 10上为所述第一 UE分配功率, 在所述天线端 口 7和所述天线端口 8上不为所述第一 UE分配功率;
所述将所述 n作为所述第二 UE的传输层数确定所述第二 UE的导频配 置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天线端口 8、 所述天线端口 9和所述天线端口 10;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 其他端口上不为所述第二 UE分配功率, 包括: 在所述 天线端口 7和所述天线端口 8上为所述第二 UE分配功率, 在所述天线端口 9和所述天线端口 10上不为所述第二 UE分配功率。
5. 根据权利要求 2所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 4或 8, 所述第二 UE支持的传输层数为 4或 8, 所述 为 2, 所 述《2为 1 , 所述《为 3;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8和天线端口 9;
所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 8和所述天线端口 9上为所述第一 UE分配功率, 在所述天线端口
7上不为所述第一 UE分配功率;
所述将所述 n作为所述第二 UE的传输层数确定所述第二 UE的导频配 置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天线端口 8和所述天线端口 9;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 其他端口上不为所述第二 UE分配功率, 包括: 在所述 天线端口 7上为所述第二 UE分配功率, 在所述天线端口 8和所述天线端口 9上不为所述第二 UE分配功率。
6. 根据权利要求 3所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 4或 8, 所述第二 UE支持的传输层数为 2, 所述 ηι为 2, 所述 n2 为 2, 所述《为 4;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8、 天线端口 9和天线端口 10; 所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 9和所述天线端口 10上为所述第一 UE分配功率, 在所述天线端 口 7和所述天线端口 8上不为所述第一 UE分配功率;
所述根据所述第二 UE支持的传输层数和所述《2确定所述第二 UE的导 频配置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7和所述天线端口 8;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 包括: 在所述天线端口 7和所述天线端口 8上为所述第 二 UE分配功率。
7. 根据权利要求 3所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 4或 8, 所述第二 UE支持的传输层数为 2, 所述 ηι为 2, 所述 n2 为 1 , 所述《为 3;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8和天线端口 9;
所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 8和所述天线端口 9上为所述第一 UE分配功率, 在所述天线端口 7上不为所述第一 UE分配功率;
所述根据所述第二 UE支持的传输层数和所述《2确定所述第二 UE的导 频配置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 包括: 在所述天线端口 7上为所述第二 UE分配功率。
8. 根据权利要求 3所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 4或 8, 所述第二 UE支持的传输层数为 2, 所述 ηι为 2, 所述 n2 为 1 , 所述《为 3;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8和天线端口 9; 所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 8和所述天线端口 9上为所述第一 UE分配功率, 在所述天线端口 7上不为所述第一 UE分配功率;
所述根据所述第二 UE支持的传输层数和所述《2确定所述第二 UE的导 频配置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7和所述天线端口 8;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 包括: 在所述天线端口 7上为所述第二 UE分配功率, 在所述天线端口 8上不为所述第一 UE分配功率。
9. 根据权利要求 2所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 8, 所述第二 UE支持的传输层数为 8, 所述 为 , 所述《2为 2, 所述《为 5;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8、 天线端口 9、 天线端口 10和天线端口 11 ;
所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 9、 所述天线端口 10和所述天线端口 11上为所述第一 UE分配功 率, 在所述天线端口 7和所述天线端口 8上不为所述第一 UE分配功率; 所述将所述 n作为所述第二 UE的传输层数确定所述第二 UE的导频配 置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天线端口 8、 所述天线端口 9、 所述天线端口 10和所述天线端口 11; 所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 其他端口上不为所述第二 UE分配功率, 包括: 在所述 天线端口 7和所述天线端口 8上为所述第二 UE分配功率, 在所述天线端口 9、 所述天线 10和所述天线端口 11上不为所述第二 UE分配功率。
10. 根据权利要求 2所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 8, 所述第二 UE支持的传输层数为 8, 所述 为 , 所述《2为 3, 所述《为 6;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8、 天线端口 9、 天线端口 10、 天线端口 11和天线端口 12;
所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 10、所述天线端口 11和所述天线端口 12上为所述第一 UE分配功 率, 在所述天线端口 7、 所述天线端口 8和所述天线端口 9上不为所述第一 UE分配功率;
所述将所述 n作为所述第二 UE的传输层数确定所述第二 UE的导频配 置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天线端口 8、 所述天线端口 9、 所述天线端口 10、 所述天线端口 11和所 述天线端口 12;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 其他端口上不为所述第二 UE分配功率, 包括: 在所述 天线端口 7、所述天线端口 8和所述天线端口 9上为所述第二 UE分配功率, 在所述天线端口 10、所述天线 11和所述天线端口 12上不为所述第二 UE分 配功率。
11. 根据权利要求 2所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 8, 所述第二 UE支持的传输层数为 8, 所述 为 所述《2为 3, 所述《为 7;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12和天线端口 13;
所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 10、 所述天线端口 11、 所述天线端口 12和所述天线端口 13上为 所述第一 UE分配功率, 在所述天线端口 7、 所述天线端口 8和所述天线端 口 9上不为所述第一 UE分配功率;
所述将所述 n作为所述第二 UE的传输层数确定所述第二 UE的导频配 置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天线端口 8、 所述天线端口 9、 所述天线端口 10、 所述天线端口 11、 所 述天线端口 12和所述天线端口 13;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 其他端口上不为所述第二 UE分配功率, 包括: 在所述 天线端口 7、所述天线端口 8和所述天线端口 9上为所述第二 UE分配功率, 在所述天线端口 10、 所述天线 11、 所述天线端口 12和所述天线端口 13上 不为所述第二 UE分配功率。
12. 根据权利要求 2所述的方法, 其特征在于, 所述第一 UE支持的传 输层数为 8, 所述第二 UE支持的传输层数为 8, 所述 为 所述《2为 4, 所述《为 8;
所述将所述 n作为所述第一 UE的传输层数确定所述第一 UE的导频配 置, 包括: 确定所述第一 UE的导频配置中的天线端口为天线端口 7、 天线 端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12、 天线端口 13和天线端口 14;
所述在所述第一 UE的导频配置中的天线端口中的后 个端口上为所述 第一 UE分配功率, 其他端口上不为所述第一 UE分配功率, 包括: 在所述 天线端口 11、 所述天线端口 12、 所述天线端口 13和所述天线端口 14上为 所述第一 UE分配功率, 在所述天线端口 7、 所述天线端口 8、 所述天线端 口 9和所述天线端口 10上不为所述第一 UE分配功率;
所述将所述 n作为所述第二 UE的传输层数确定所述第二 UE的导频配 置, 包括: 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天线端口 8、 所述天线端口 9、 所述天线端口 10、 所述天线端口 11、 所 述天线端口 12、 所述天线端口 13和所述天线端口 14;
所述在所述第二 UE的导频配置中的天线端口中的前《2个端口上为所述 第二 UE分配功率, 其他端口上不为所述第二 UE分配功率, 包括: 在所述 天线端口 7、 所述天线端口 8、 和所述天线端口 9和所述天线端口 10上为所 述第二 UE分配功率, 在所述天线端口 11、 所述天线 12、 所述天线端口 13 和所述天线端口 14上不为所述第二 UE分配功率。
13. 根据权利要求 1至 12中任一项所述的方法, 其特征在于, 所述方 法还包括:
接收所述第一 UE发送的确认 /否认 ACK/NACK消息;
若所述 ACK/NACK消息中需要重传的码字对应的天线端口上不分配功 率, 则不重传所述码字。
14. 根据权利要求 2至 12中任一项所述的方法, 其特征在于, 所述方 法还包括:
接收所述第二 UE发送的 ACK/NACK消息;
若所述 ACK/NACK消息中需要重传的码字对应的天线端口上不分配功 率, 则不重传所述码字。
15. 一种基站, 其特征在于, 包括:
确定模块, 用于确定第一用户设备 UE与第二 UE配对的总层数《大于 或等于 3, 其中, 所述第一 UE参与配对的层数为 , 所述第二 UE参与配 对的层数为《2, n=ni+n2, 所述第一 UE支持的传输层数大于或等于 4;
配置模块, 用于将所述 n作为所述第一 UE 的传输层数确定所述第一 UE的导频配置;
发送模块, 用于将所述第一 UE的导频配置发送给所述第一 UE;
处理模块,用于在所述第一 UE的导频配置中的天线端口中的后 Wl个端 口上为所述第一 UE分配功率, 其他端口上不为所述第一 UE分配功率。
16. 根据权利要求 15所述的基站, 其特征在于, 所述配置模块还用于, 若所述第二 UE支持的传输层数大于或等于 4, 将所述 n作为所述第二 UE 的传输层数确定所述第二 UE的导频配置;
所述发送模块还用于将所述第二 UE的导频配置发送给所述第二 UE; 所述处理模块还用于在所述第二 UE的导频配置中的天线端口中的前《2 个端口上为所述第二 UE分配功率,其他端口上不为所述第二 UE分配功率。
17. 根据权利要求 15所述的基站, 其特征在于, 所述配置模块还用于, 若所述第二 UE支持的传输层数为 2, 根据所述第二 UE支持的传输层数和 所述《2确定所述第二 UE的导频配置;
所述发送模块还用于将所述第二 UE的导频配置发送给所述第二 UE; 所述处理模块还用于在所述第二 UE的导频配置中的天线端口中的前《2 个端口上为所述第二 UE分配功率。
18. 根据权利要求 16所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 4或 8, 所述第二 UE支持的传输层数为 4或 8, 所述 为 2, 所述《2为 2, 所述《为 4;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9和天线端口 10, 确定所述第二 UE的导 频配置中的天线端口为所述天线端口 7、 所述天线端口 8、 所述天线端口 9 和所述天线端口 10;
所述处理模块具体用于在所述天线端口 9和所述天线端口 10上为所述 第一 UE分配功率, 在所述天线端口 7和所述天线端口 8上不为所述第一 UE分配功率, 在所述天线端口 7和所述天线端口 8上为所述第二 UE分配 功率, 在所述天线端口 9和所述天线端口 10上不为所述第二 UE分配功率。
19. 根据权利要求 16所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 4或 8, 所述第二 UE支持的传输层数为 4或 8, 所述 ηι为 2, 所述《2为 1 , 所述《为 3;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8和天线端口 9, 确定所述第二 UE的导频配置中的天 线端口为所述天线端口 7、 所述天线端口 8和所述天线端口 9;
所述处理模块具体用于在所述天线端口 8和所述天线端口 9上为所述第 一 UE分配功率, 在所述天线端口 7上不为所述第一 UE分配功率, 在所述 天线端口 7上为所述第二 UE分配功率, 在所述天线端口 8和所述天线端口 9上不为所述第二 UE分配功率。
20. 根据权利要求 17所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 4或 8, 所述第二 UE支持的传输层数为 2, 所述 为 2, 所述 «2为 2, 所述《为 4;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9和天线端口 10, 确定所述第二 UE的导 频配置中的天线端口为所述天线端口 7和所述天线端口 8;
所述处理模块具体用于在所述天线端口 9和所述天线端口 10上为所述 第一 UE分配功率, 在所述天线端口 7和所述天线端口 8上不为所述第一 UE分配功率, 在所述天线端口 7和所述天线端口 8上为所述第二 UE分配 功率。
21. 根据权利要求 17所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 4或 8, 所述第二 UE支持的传输层数为 2, 所述 为 2, 所述 «2为 1 , 所述《为 3;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8和天线端口 9, 确定所述第二 UE的导频配置中的天 线端口为所述天线端口 7;
所述处理模块具体用于在所述天线端口 8和所述天线端口 9上为所述第 一 UE分配功率, 在所述天线端口 7上不为所述第一 UE分配功率, 在所述 天线端口 7上为所述第二 UE分配功率。
22. 根据权利要求 17所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 4或 8, 所述第二 UE支持的传输层数为 2, 所述 为 2, 所述 «2为 1 , 所述《为 3;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8和天线端口 9, 确定所述第二 UE的导频配置中的天 线端口为所述天线端口 7和所述天线端口 8;
所述处理模块具体用于在所述天线端口 8和所述天线端口 9上为所述第 一 UE分配功率, 在所述天线端口 7上不为所述第一 UE分配功率, 在所述 天线端口 7上为所述第二 UE分配功率, 在所述天线端口 8上不为所述第一 UE分配功率。
23. 根据权利要求 16所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 8,所述第二 UE支持的传输层数为 8,所述 为 3,所述《2为 2, 所述《为 5;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10和天线端口 11 , 确定所述 第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天线端口 8、 所 述天线端口 9、 所述天线端口 10和所述天线端口 11;
所述处理模块具体用于在所述天线端口 9、所述天线端口 10和所述天线 端口 11上为所述第一 UE分配功率, 在所述天线端口 7和所述天线端口 8 上不为所述第一 UE分配功率, 在所述天线端口 7和所述天线端口 8上为所 述第二 UE分配功率, 在所述天线端口 9、 所述天线 10和所述天线端口 11 上不为所述第二 UE分配功率。
24. 根据权利要求 16所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 8,所述第二 UE支持的传输层数为 8,所述 为 3,所述《2为 3, 所述《为 6;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11和天线端口 12, 确定所述第二 UE的导频配置中的天线端口为所述天线端口 7、 所述天 线端口 8、 所述天线端口 9、 所述天线端口 10、 所述天线端口 11和所述天线 端口 12;
所述处理模块具体用于在所述天线端口 10、 所述天线端口 11和所述天 线端口 12上为所述第一 UE分配功率, 在所述天线端口 7、 所述天线端口 8 和所述天线端口 9上不为所述第一 UE分配功率, 在所述天线端口 7、 所述 天线端口 8和所述天线端口 9上为所述第二 UE分配功率, 在所述天线端口 10、 所述天线 11和所述天线端口 12上不为所述第二 UE分配功率。
25. 根据权利要求 16所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 8,所述第二 UE支持的传输层数为 8,所述 为 4,所述《2为 3, 所述《为 7;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12和天线端口 13, 确定所述第二 UE的导频配置中的天线端口为所述天线 端口 7、 所述天线端口 8、 所述天线端口 9、 所述天线端口 10、 所述天线端 口 11、 所述天线端口 12和所述天线端口 13;
所述处理模块具体用于在所述天线端口 10、 所述天线端口 11、 所述天 线端口 12和所述天线端口 13上为所述第一 UE分配功率, 在所述天线端口 7、 所述天线端口 8和所述天线端口 9上不为所述第一 UE分配功率, 在所 述天线端口 7、 所述天线端口 8和所述天线端口 9上为所述第二 UE分配功 率, 在所述天线端口 10、 所述天线 11、 所述天线端口 12和所述天线端口 13 上不为所述第二 UE分配功率。
26. 根据权利要求 16所述的基站, 其特征在于, 所述第一 UE支持的 传输层数为 8,所述第二 UE支持的传输层数为 8,所述 为 4,所述《2为 4, 所述《为 8;
所述配置模块具体用于确定所述第一 UE的导频配置中的天线端口为天 线端口 7、 天线端口 8、 天线端口 9、 天线端口 10、 天线端口 11、 天线端口 12、 天线端口 13和天线端口 14, 确定所述第二 UE的导频配置中的天线端 口为所述天线端口 7、 所述天线端口 8、 所述天线端口 9、 所述天线端口 10、 所述天线端口 11、 所述天线端口 12、 所述天线端口 13和所述天线端口 14; 所述处理模块具体用于在所述天线端口 11、 所述天线端口 12、 所述天 线端口 13和所述天线端口 14上为所述第一 UE分配功率, 在所述天线端口 7、所述天线端口 8、所述天线端口 9和所述天线端口 10上不为所述第一 UE 分配功率, 在所述天线端口 7、 所述天线端口 8、 和所述天线端口 9和所述 天线端口 10上为所述第二 UE分配功率,在所述天线端口 11、所述天线 12、 所述天线端口 13和所述天线端口 14上不为所述第二 UE分配功率。
27. 根据权利要求 15至 26中任一项所述的基站, 其特征在于, 所述基 站还包括:
第一接收模块, 用于接收所述第一 UE发送的确认 /否认 ACK/NACK消 息;
所述处理模块还用于若所述 ACK/NACK消息中需要重传的码字对应的 天线端口上不分配功率, 则不重传所述码字。
28. 根据权利要求 16至 26中任一项所述的基站, 其特征在于, 所述基 站还包括:
第二接收模块, 用于接收所述第二 UE发送的 ACK/NACK消息; 所述处理模块还用于若所述 ACK/NACK消息中需要重传的码字对应的 天线端口上不分配功率, 则不重传所述码字。
PCT/CN2012/087712 2012-12-27 2012-12-27 多用户多输入多输出通信的方法和基站 WO2014101058A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/087712 WO2014101058A1 (zh) 2012-12-27 2012-12-27 多用户多输入多输出通信的方法和基站
CN201280002494.6A CN104040980B (zh) 2012-12-27 2012-12-27 多用户多输入多输出通信的方法和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087712 WO2014101058A1 (zh) 2012-12-27 2012-12-27 多用户多输入多输出通信的方法和基站

Publications (1)

Publication Number Publication Date
WO2014101058A1 true WO2014101058A1 (zh) 2014-07-03

Family

ID=51019706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087712 WO2014101058A1 (zh) 2012-12-27 2012-12-27 多用户多输入多输出通信的方法和基站

Country Status (2)

Country Link
CN (1) CN104040980B (zh)
WO (1) WO2014101058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162216A1 (zh) * 2016-03-25 2017-09-28 华为技术有限公司 一种天线端口的指示方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103313A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Method and apparatus for transmitting control signaling for mimo transmission
CN101877689A (zh) * 2009-04-28 2010-11-03 华为技术有限公司 数据发送处理方法与装置、数据接收处理方法与装置
CN101932096A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 多用户多输入多输出模式下层映射信息的通知方法和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283904B1 (ko) * 2009-04-16 2013-07-16 알까뗄 루슨트 다중 기지국들 mimo 시스템에서 오브젝트 단말을 선택하기 위한 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103313A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Method and apparatus for transmitting control signaling for mimo transmission
CN101877689A (zh) * 2009-04-28 2010-11-03 华为技术有限公司 数据发送处理方法与装置、数据接收处理方法与装置
CN101932096A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 多用户多输入多输出模式下层映射信息的通知方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162216A1 (zh) * 2016-03-25 2017-09-28 华为技术有限公司 一种天线端口的指示方法和装置
US11018740B2 (en) 2016-03-25 2021-05-25 Huawei Technologies Co., Ltd. Method for antenna port indication and apparatus
US11916628B2 (en) 2016-03-25 2024-02-27 Huawei Technologies Co., Ltd. Method and apparatus for providing antenna port indication to user equipment

Also Published As

Publication number Publication date
CN104040980A (zh) 2014-09-10
CN104040980B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
US11128510B2 (en) Data transmission method, user equipment, and network side device
US9258095B2 (en) Uplink demodulation reference signal design for MIMO transmission
KR101649458B1 (ko) 반송파 집적 및 클러스터된 dft를 갖는 업링크 mimo용 데이터 및 제어 다중화
KR101770174B1 (ko) 다중 계층 빔포밍을 위한 방법 및 시스템
JP5726624B2 (ja) 多入力多出力関連情報の伝送方法、基地局及びユーザ端末
AU2011241291B2 (en) Systems and methods for bundling resource blocks in a wireless communication system
EP3261281A1 (en) System and method for multi-user and multi-cell mimo transmissions
EP3598707B1 (en) Data transmission method, network device and terminal device
WO2013063891A1 (zh) 一种上行解调参考信号的资源配置方法及系统
CN112350806B (zh) 一种被用于无线通信的节点中的方法和装置
WO2013104330A1 (zh) 传输上行控制信息的方法、用户设备和基站
CN110830190B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2010124622A1 (zh) 一种信号的发送方法
JP2011142620A (ja) マルチユーザマルチ入力マルチ出力(mu−mimo)伝送方法、無線通信システムおよび基地局
JP2013509739A (ja) ダウンリンクmimo用ダウンリンク制御シグナリング
EP3637663A1 (en) Method and device for determining qcl of antenna ports
WO2014015726A1 (zh) 导频信号发送方法和装置
WO2021018209A1 (zh) 一种dmrs端口指示方法及装置
WO2020156246A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111431680B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020001433A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2014113982A1 (zh) 解调参考信号的信令指示方法、用户设备以及基站
WO2014101058A1 (zh) 多用户多输入多输出通信的方法和基站
EP3509376A1 (en) Reference symbol indication method, device, and system
CN117939668A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891304

Country of ref document: EP

Kind code of ref document: A1