WO2014015726A1 - 导频信号发送方法和装置 - Google Patents

导频信号发送方法和装置 Download PDF

Info

Publication number
WO2014015726A1
WO2014015726A1 PCT/CN2013/077527 CN2013077527W WO2014015726A1 WO 2014015726 A1 WO2014015726 A1 WO 2014015726A1 CN 2013077527 W CN2013077527 W CN 2013077527W WO 2014015726 A1 WO2014015726 A1 WO 2014015726A1
Authority
WO
WIPO (PCT)
Prior art keywords
dedicated pilot
ports
downlink dedicated
layers
pilot signals
Prior art date
Application number
PCT/CN2013/077527
Other languages
English (en)
French (fr)
Inventor
张晓娟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13823714.4A priority Critical patent/EP2879340A4/en
Publication of WO2014015726A1 publication Critical patent/WO2014015726A1/zh
Priority to US14/605,514 priority patent/US9456442B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention claims the priority of a Chinese patent application filed on July 26, 2012 by the Chinese Patent Office, Application No. 201210260743.3, and entitled “Pilot Signal Transmission Method and Apparatus", the entire contents of which are incorporated herein by reference. This is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of wireless communications, and in particular, to a method and an apparatus for transmitting pilot signals.
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Multi-Input Multiple Multiple-Input Multiple
  • MIMO Multiple-input Multiple-Out
  • the MIMO technology of the transmitter precoding is usually used to realize the multiplexing gain of multiple antennas to expand the channel capacity area of multiple users.
  • the MIMO technology based on the pre-coding of the transmitting end can transmit the information of multiple users on the simultaneous, frequency-domain and code-domain resources by using the Spatial Division Multiple Access (SDMA) technology, which can greatly improve the system compared with the single-user MIMO system. Capacity and spectrum efficiency.
  • SDMA Spatial Division Multiple Access
  • Enhanced downlink MIMO is one of the key technologies of LTE.
  • problems affecting multi-user MIMO performance such as the maximum number of multiplexed streams is only 4 (that is, only supports 4 users for maximum multiplexing).
  • the number of multiplexed streams is 2.
  • a technical problem to be solved by embodiments of the present invention is to provide a method and apparatus for transmitting pilot signals, which can increase the maximum number of multiplexed streams.
  • the embodiment of the present invention provides a method for transmitting a pilot signal, which is used in an LTE network, where the method includes:
  • the network node determines the number of ports and layers used to transmit the downlink dedicated pilot signal to the user equipment; the network node generates downlink control signaling according to the port and the number of layers, where the downlink control signaling uses 5-bit signaling
  • the user equipment indicates the number of ports and layers used for transmitting the downlink dedicated pilot signal to support multiplexing of up to 8 user equipments;
  • the network node sends the downlink control signaling to the user equipment, and sends a downlink dedicated pilot signal to the user equipment according to the determined port and the number of layers, so that the user equipment receives according to the downlink control signaling.
  • the downlink dedicated pilot signal is the downlink dedicated pilot signal.
  • At least 8 values are used to indicate two ports used for transmitting downlink dedicated pilot signals when the number of layers is 2, and some or all of the remaining values are used to indicate other layers when transmitting downlink dedicated guides.
  • the port used by the frequency signal is used to indicate the number of layers is 2, and some or all of the remaining values are used to indicate other layers when transmitting downlink dedicated guides.
  • the two ports used for transmitting the downlink dedicated pilot signal when the at least 8 value indicates the number of layers is 2: 8 use 8 values to sequentially indicate that the port used for transmitting the downlink dedicated pilot signal is (7, 8), ( 9, 10), (11, 13), (12, 14), (7, 9), (8, 10), (11, 12) or (13, 14).
  • the ports used for transmitting the downlink dedicated pilot signals when part or all of the remaining values are used to indicate other layers include:
  • At least 6 of the remaining values indicate 3 ports for transmitting downlink dedicated pilot signals when the number of layers is 3, and the downlink dedicated pilot signals transmitted on the 3 ports are code division signals And/or frequency division signals;
  • At least 4 of the remaining values indicate 4 ports for transmitting downlink dedicated pilot signals when the number of layers is 4, and between the downlink dedicated pilot signals transmitted on the 4 ports is Code division signal and/or frequency division signal;
  • At least one of the remaining values indicates five ports for transmitting downlink dedicated pilot signals when the number of layers is 5;
  • At least one of the remaining values indicates six ports used to transmit downlink dedicated pilot signals when the number of layers is six;
  • At least one of the remaining values indicates 7 ports for transmitting downlink dedicated pilot signals when the number of layers is 7;
  • At least one of the remaining values indicates eight ports for transmitting downlink dedicated pilot signals when the number of layers is 8.
  • the embodiment of the present invention further provides a pilot signal sending apparatus, which is used in an LTE network, where the apparatus includes:
  • a port determining module configured to determine a port and a layer used for transmitting a downlink dedicated pilot signal to the user equipment
  • the signaling generating module is configured to be connected to the port determining module, configured to generate downlink control signaling according to the port and the number of layers, where the downlink control signaling uses the 5-bit signaling to indicate to the user equipment that the downlink is dedicated.
  • the number of ports and layers used by the pilot signal to support multiplexing of up to 8 user equipments;
  • a transmitting module configured to be connected to the signaling generating module, configured to send the downlink control signaling to the user equipment, and send a downlink dedicated pilot signal to the user equipment according to the determined port and layer number, so that the The user equipment receives the downlink dedicated pilot signal according to the downlink control signaling.
  • the downlink control signaling generated by the signaling generating module further includes a 1-bit signal indicating a scrambling identifier to support multiplexing of up to 16 user equipments.
  • the port indicated by the 5-bit signaling in the downlink control signaling generated by the signaling generating module is the antenna ports 7 to 14 defined in the LTE R10.
  • the 5-bit signaling in the downlink control signaling generated by the signaling generation module is used in: At least 8 values indicate 2 ports used for transmitting downlink dedicated pilot signals when the number of layers is 2, and the remaining values are used to indicate the ports used for transmitting the downlink dedicated pilot signals when other layers are used, or
  • At least 8 values indicate 2 ports for transmitting downlink dedicated pilot signals when the number of layers is 2, and at least 8 values indicate 1 port used for transmitting downlink dedicated pilot signals when the number of layers is 1, and the remaining values are partially or completely The port used to transmit the downlink dedicated pilot signal when indicating other layers.
  • the ports used for transmitting the downlink dedicated pilot signals are sequentially indicated by (8, 8), (9, 10), (11, 13), 12, 14), (7, 9), (8, 10), (11, 12) or (13, 14).
  • the downlink control signaling generated by the signaling generating module may be DCI2C signaling.
  • an embodiment of the present invention further provides a network node, including the pilot signal transmitting apparatus as described above.
  • the embodiments of the present invention have the following beneficial effects:
  • 3-bit signaling is added to the existing 2-bit downlink control signaling, and a total of 5-bit signaling is used to indicate that the downlink dedicated pilot signal is transmitted.
  • the number of ports and layers used since 5 bits of signaling can indicate 32 different values, up to 8 users can be reused by appropriately setting the ports and layers used for transmitting downlink dedicated pilot signals indicated by different values.
  • FIG. 1 is a schematic diagram of a specific process of a method for transmitting a pilot signal in an embodiment of the present invention
  • 2 is a schematic diagram of a pilot pattern of the antenna ports 7 to 14 in the embodiment of the present invention
  • FIG. 3 is a schematic diagram of a specific configuration of a pilot signal transmitting apparatus in the embodiment of the present invention
  • FIG. 4 is a network node in the embodiment of the present invention
  • a schematic diagram of a specific composition is a schematic diagram of a specific process of a method for transmitting a pilot signal in an embodiment of the present invention.
  • the orthogonal code and the orthogonal scrambling code sequence are used to achieve the effect of multi-user multiplexing.
  • the downlink control signaling format 2B downlink control information format 2B, DCI2B signaling
  • the downlink control signaling format 2C downlink control information
  • FIG. Format 2C, DCI2C signaling refers to the same number of multiplexed users and ports (ports), and fails to use the combination of 8 antenna ports to achieve more user multiplexing effects.
  • the user equipment-specific reference signal (UE-specific reference signal) defined by the LTE version 10 (Rel-10, R10) can achieve more than 4 layers.
  • User MIMO pilot and downlink signaling For example, DCI2C can be considered to increase the overhead of 3 bits.
  • the lbit is used to indicate the scrambling identity.
  • the 2bit and the original antenna port (the Antenna port(s)) are 3 bits in total. ), hereinafter referred to as port ) and number of layers.
  • Such 5-bit signaling can indicate 32 values. As long as the indication contents of 32 values are properly configured, the pilot transmission situation on the eight ports can be indicated, thereby realizing up to 8 user multiplexing (ie, 8-stream multiplexing).
  • the lbit 4 scrambling identity is added to indicate the pseudo-orthogonal two sets of pilot transmission conditions on the eight ports, thereby realizing up to 16 user multiplexing. That is, in the UE-specific pilot signal, two different pilots may be generated according to different scrambling identity content, and the two sets of pilots are pseudo-orthogonal, so that the user equipment is different according to the received scrambling identity.
  • Two sets of different pilot signals can be decoded; that is, when the pilot signals are transmitted on the eight ports, each port can simultaneously transmit the above two pseudo-orthogonal pilot signals, and the user equipment receives the scrambling according to the scrambling Identity can be decoded accordingly.
  • up to 16 user multiplexing i.e., 16 stream multiplexing
  • sequence of pilots in LTE R10 is defined as:
  • n scro is defined as a scrambling identity in the embodiment of the present invention, which can be dynamically configured in the downlink control signaling. If not configured, it is assumed to be 0 or 1.
  • n scm and 8 ports 16 groups of pilots can be simultaneously transmitted on 8 ports, thereby realizing multiplexing of up to 16 streams in one cell.
  • FIG. 1 is a schematic diagram of a specific process of a method for transmitting a pilot signal in an embodiment of the present invention.
  • the method is used in an LTE network and includes the following steps:
  • the network node determines a port and a layer used to transmit a downlink dedicated pilot signal to the user equipment. Specifically, the network node may determine, according to current channel conditions of each user equipment, a port and a layer used for transmitting the downlink dedicated pilot signal to the user equipment, and determine the multiplexed user equipment. For example, the eNB selects an appropriate multiplexing (or pairing) user equipment according to the channel conditions of the current user equipment (such as channel to noise ratio, correlation, and other channel characteristic indicators), and obtains the port and layer occupied by the multiplexed user equipments. number. For specific multiplexing and port assignments, refer to the instructions in the following steps.
  • the network node generates downlink control signaling according to the port and the number of layers, where the downlink control signaling uses the 5-bit signaling to indicate to the user equipment the port and the number of layers used for transmitting the downlink dedicated pilot signal. To support multiplexing of up to 8 user devices. And further, the downlink control signaling may further include a 1-bit signal indicating a scrambling identifier to support multiplexing of up to 16 user equipments. For the specific implementation principle, refer to the foregoing description, which is not described herein.
  • 5 bits of signaling have a total of 32 values
  • different values may indicate different ports and layers. For example, it can be used in 5-bit signaling: transmitting at least 8 values indicating that the number of layers is 1 when transmitting a downlink dedicated pilot signal One port used for the number; at least eight values indicate two ports for transmitting the downlink dedicated pilot signal when the number of layers is two. Then, the remaining values are used in part or in whole to indicate the port used for transmitting the downlink dedicated pilot signal when other layers are used. That is, the remaining values may be used in part to indicate the port status when other layers are used, and the rest are reserved bits; currently, all of the remaining values may be used to indicate the port conditions in other layers. Of course, in the case of two codewords, the port assignment when the number of layers is one may not be indicated.
  • At least 6 values of the remaining values may indicate three ports used for transmitting the downlink dedicated pilot signal when the number of layers is 3; and at least 4 values indicate that the downlink dedicated pilot signal is used when the number of layers is 4 4 ports; at least 1 value indicates 5 ports for transmitting downlink dedicated pilot signals when the number of layers is 5; at least 1 value indicates 6 ports for transmitting downlink dedicated pilot signals when the number of layers is 6 At least one value indicates seven ports for transmitting downlink dedicated pilot signals when the number of layers is 7, and at least one value indicates eight ports for transmitting downlink dedicated pilot signals when the number of layers is 8.
  • the number of layers is usually two layers; in the case of 5-bit signaling, in the case of layers of 3 to 8 layers, full or partial indication may not be performed.
  • 2 Codewords Codeword 0 is enabled, and Codeword 1 is also enabled, there is no need to indicate that the number of layers is 1 layer.
  • the code division and frequency division between the intra-user multiplexing and the inter-user multiplexing in the multiplexed stream which can be used for different layers.
  • the next port combination is planned. For example, when the number of layers is 2, the combination of the two ports used may include frequency division or code division between the two ports.
  • the downlink dedicated pilot signals transmitted on the three ports are code division signals and/or frequency division signals.
  • the downlink dedicated pilot signals transmitted on the four ports are code division signals and/or frequency division signals.
  • the port indicated by the 5-bit signaling may be the antenna ports 7 to 14 defined in the LTE R10.
  • the UE-specific pilot signal pilot pattern definition on antenna ports 7-14 is as shown in FIG. 2.
  • the pilot signals transmitted by ports 7, 8, 11, and 13 are code division signals, and the pilot signals transmitted by ports 9, 10, 12, and 14 are also code division signals; and ports 7, 8, 11, and 13 And between the two groups of ports 9, 10, 12, 14 are frequency division signals.
  • LTE R12, LTER13, etc. it is possible to evolve new standards such as LTE R12, LTER13, etc., and new standards may be defined in these standards.
  • the antenna port defined in LTE R10 and the present invention can be used.
  • the idea described in the embodiments is a principle, and the technical solutions disclosed in the embodiments of the present invention are applied in the new standard.
  • the two ports used to transmit the downlink dedicated pilot signal may be (7, 8), (9, 10), (11, 13), (12, 14), (7, 9), (8, 10), (11, 12) or (13, 14). In this way, among the eight values, that is, the port combination including the code division between the two ports, the combination of the frequency division between the two ports is also included.
  • the downlink control signaling may be DCI2C signaling.
  • the downlink control signaling may also be other signaling, which is not limited herein, as long as the corresponding bit number information can be carried in the signaling. As shown in Table 1, it is an indication of the field of the DCI2C signaling based on the antenna port defined in R 10 in the embodiment of the present invention.
  • the combination of two ports when the number of layers is two, includes a case where a group of ports is coded (such as port combination (7, 8), (9, 10), and the like. ), also includes the case of frequency division between a group of ports (such as port combination (7, 9), etc.).
  • the combination of the three ports includes a code between a group of ports.
  • the case (such as port combination (7, 8, 11), (9, 10, 12), etc.), also includes the case where code points and frequency divisions exist simultaneously in a group of ports (such as port combination (7, 8, 9), where the code is divided between ports 7 and 8, and the frequency is divided between ports (7, 8) and port 9.
  • the combination of 4 ports includes the case of code division between a group of ports (such as port combination (7, 8, 11, 13), (9, 10, 12, 14). )), also includes the case where code points and frequency divisions exist simultaneously in a group of ports (such as port combination (7, 8, 9, 10), where code points are between ports 7 and 8, ports 9 and 10 Between the code points, the frequency between the port (7, 8) and the port (9, 10)).
  • the network node sends the downlink control signaling to the user equipment, and sends a downlink dedicated pilot signal to the user equipment according to the determined port and the number of layers, so that the user equipment is configured according to the downlink control signal.
  • the downlink dedicated pilot signal is received.
  • the specific pilot signal transmission situation in this step and the signaling sent to each user are related to the actual multiplexing situation.
  • the multiplexing situation may include intra-user code division multiplexing, frequency division multiplexing between users. That is, the same user uses multiple layers of transmit signals, and the multi-layer port combination is a code-to-port combination.
  • multiple ports are used for transmission. These ports are frequency-divided ports. For example, based on the case of Table 1, when the single codeword is valid: The value of DCI2C sent to User A is 8, indicating that User A uses the number of layers to 2, and transmits pilot signals through ports 7 and 8, the user inner code.
  • the value of DCI2C sent to user B is 9, indicating that user B uses the number of layers to be 2, and the pilot signals are transmitted through ports 9 and 10, and the intra-code division is multiplexed; and between user A and user B is Frequency division multiplexing.
  • DCI2C sent to user A is 12, indicating that user A uses the number of layers to be 2, and transmits pilot signals through ports 7 and 9, and the intra-frequency division multiplexing is performed in the user;
  • the value of DCI2C is 13, indicating that user B uses 2 layers, transmits pilot signals through ports 8 and 10, and the user internal frequency division multiplexing; and between user A and user B (7 and 8, 9 and 10) Code division multiplexing.
  • the receiving end uses the joint solution equations of time-domain symbols to achieve the purpose of separating the ports.
  • the assumption of this operation is: The channel is involved in the operation.
  • the time domain symbol is invariant or gradual in the range, and the joint solution equation between the time domain symbols can achieve the purpose of eliminating channel information of other ports except the target port.
  • the frequency is divided among users.
  • the advantage is that: when the weight orthogonality is better, the multiplexing condition can be satisfied; when the spatial isolation between users is relatively weak, the inter-user pilot frequency division can be used to obtain small inter-user interference.
  • the disadvantages are: channel fading is easy to destroy the orthogonality of the orthogonal code, and it is easy to introduce large inter-stream interference. Therefore, it is suitable for a scenario where the single-user multi-stream weight is highly orthogonal.
  • the user's code is divided.
  • the advantage is that: the pilot frequency division within the user, each port is equivalent to a single stream, and the inter-stream interference is small.
  • the disadvantages are: The requirements for paired users are very strict, and the orthogonality between the paired users is very good, otherwise it is easy to introduce large inter-user interference. Therefore, it is applicable to: a scenario in which the paired user candidate set in the system is large and the orthogonality between the paired users is high.
  • the above factors may be considered in determining the number of ports and layers used to transmit downlink dedicated pilot signals to each user equipment in step 101.
  • the evolved NodeB is based on channel conditions of the current user (such as channel characteristics such as signal to interference and noise ratio, correlation, etc.). Select the appropriate pairing user, get the current user's data layer (or rank) and occupied port (data + interference), according to the antenna port (antenna port(s)), the number of layers and Table 1 to get to the corresponding user equipment The specific value of the downlink control signaling sent. And send downlink control signaling to the user equipment, such as DCI2C.
  • channel conditions of the current user such as channel characteristics such as signal to interference and noise ratio, correlation, etc.
  • the UE receives and parses the DCI 2C to obtain the number of layers and the port indication of the current transmission, and obtains the interference information of the paired port by using blind detection or the like (such as the current user's port indicated in the downlink control signaling shown in Table 1). Because of the "transparent" multi-user relationship, the information of the paired user is not informed. At this time, the interference information can be obtained by blind detection, and the interference information refers to the characteristics of the received signal on other ports except the current user using the port.
  • the channel estimation result is solved, and whether the hypothesis is established according to the received energy, for example, if the paired port has strong energy reception, then the interference information is obtained (in general, the interference covariance is used) Matrix representation).
  • the UE obtains the service data and ACK/NACK feedback of the current transmission through MIMO equalization.
  • the eNB selects an appropriate pairing user according to the current user's channel conditions (signal-to-noise ratio, correlation, and other channel characteristic indicators), and obtains the number of layers and all occupied pairs.
  • the eNB side maintains a power allocation table, and only allocates power to the port where the current user has data transmission, and the interference port does not allocate power.
  • the eNB sends downlink control signaling, such as DCI2C, to the user equipment.
  • the UE side receives and parses the DCI 2C to obtain the total number of layers of the current transmission and all the occupied port indications, and performs MIMO equalization of the total layer dimension. Since the interference port of the equalization process has no power transmission, the codeword corresponding to the interference port is always NACK. The UE side does not know which powers, so the ACK/NACK feedback is performed according to the actual equalization result. After receiving the feedback, the eNB side determines whether the current transmission is correct according to the maintained power allocation table.
  • the current user not only knows the port that he or she owns, but also the port occupied by the user that is paired with it, for example, two users each user's layer 2 pairing (both users are double-codeword valid)
  • User A assigns port 7/8
  • user B allocates 9/10
  • the receiver performs equalization and check according to 4 streams (equivalent to interference known)
  • port7/8 has transmission power, so there is ACK/NACK information reflecting the actual demodulation capability.
  • Port9/10 has no transmission power, so its ACK/NACK information is always NACK, and the receiving side feeds back the obtained ACK/NACK information to the transmitting side. Since the power allocation information of each port is maintained by the transmitting end, the transmitting side only has ACK/NACK information corresponding to the port of the power transmission, and discards other ACK/NACK information of the unallocated power.
  • the maximum number of users can be up to 8 when the 5-bit signaling in the downlink indication signaling is used. Multiplexing, the cumulative number of used layers is 8. If the combination of 5-bit signaling and Scrambling identity is used, multiplexing of up to 16 users can be achieved. The total number of layers used by all User Equipments (UEs) is 16.
  • UEs User Equipments
  • Also provided in the embodiment of the present invention is a computer storage medium having a computer program stored therein, the computer program being executable as shown in FIG.
  • FIG. 3 it is a schematic diagram of a specific composition of a pilot signal transmitting apparatus in an embodiment of the present invention.
  • the apparatus can be placed in a network node, such as an evolved Node B (eNB).
  • the device 1 includes: a port determining module 10, configured to determine a port and a layer used for transmitting a downlink dedicated pilot signal to a user equipment; a signaling generating module 12, connected to the port determining module 10, according to the port Generating downlink control signaling with the layer number, wherein the downlink control signaling uses 5 bits of signaling to indicate to the user equipment the port and layer used for transmitting the downlink dedicated pilot signal to support multiplexing of up to 8 user equipments.
  • a port determining module 10 configured to determine a port and a layer used for transmitting a downlink dedicated pilot signal to a user equipment
  • a signaling generating module 12 connected to the port determining module 10, according to the port Generating downlink control signaling with the layer number, wherein the downlink control signaling
  • the transmitting module 14 is connected to the signaling generating module 12, and configured to send the downlink control signaling to the user equipment, and send a downlink dedicated pilot signal to the user equipment according to the determined port and layer number, The user equipment receives the downlink dedicated pilot signal according to the downlink control signaling.
  • the downlink control signaling generated by the signaling generating module may further include a 1-bit signal indicating a scrambling identifier to support multiplexing of up to 16 user equipments.
  • the downlink control signaling generated by the signaling generating module 12 may specifically be DCI2C signaling.
  • the port indicated by the 5-bit signaling in the downlink control signaling generated by the signaling generating module 12 is the ports 7 to 14 defined in the LTE R10.
  • the 5-bit signaling in the downlink control signaling generated by the signaling generating module 12 is used: at least 8 values indicating 2 ports used for transmitting downlink dedicated pilot signals when the number of layers is 2, and remaining values Ports used to transmit downlink dedicated pilot signals when part or all of the other layers are indicated, or
  • At least 8 values indicate 2 ports for transmitting downlink dedicated pilot signals when the number of layers is 2, and at least 8 values indicate 1 port used for transmitting downlink dedicated pilot signals when the number of layers is 1, and the remaining values are partially or completely The port used to transmit the downlink dedicated pilot signal when indicating other layers.
  • the port used for transmitting the downlink dedicated pilot signal is sequentially indicated by 8 values (7). 8), (9, 10), (11, 13), (12, 14), (7, 9), (8, 10), (11, 12) or (13, 14).
  • At least 6 of the remaining values in the 5-bit signaling in the downlink control signaling generated by the signaling generation module 12 indicate that the downlink dedicated pilot signal is used when the number of layers is 3 And a port division signal and/or a frequency division signal between the downlink dedicated pilot signals transmitted on the three ports.
  • At least 4 of the remaining values indicate 4 ports for transmitting downlink dedicated pilot signals when the number of layers is 4, and a code division signal is transmitted between the downlink dedicated pilot signals transmitted on the 4 ports And/or a frequency division signal; at least one of the remaining values indicates five ports used for transmitting a downlink dedicated pilot signal when the number of layers is 5; and at least one of the remaining values indicates that the number of layers is 6 6 ports for transmitting downlink dedicated pilot signals; at least one of the remaining values indicating 7 ports for transmitting downlink dedicated pilot signals when the number of layers is 7; at least one of the remaining values The eight ports used to transmit the downlink dedicated pilot signal when the number of layers is 8.
  • the meanings represented by the respective values in the 5-bit signaling can be flexibly configured differently from Table 1.
  • the indication of the port combination when the number of layers is 2 or 3 can be increased without configuring the number of layers, for example, configured to use 10 Values or more indicate the port combination of layer 2, not the port case when the number of layers is 7 or / and 8, or defined as the default value; or the number of indicated layers is 3 or / and The value of the port combination of 4 is reduced.
  • the meanings represented by the respective values in the 5-bit signaling may be further combined, as long as the port and the number of layers indicated in the meaning may indicate that the basic requirement of the 8-stream multiplexing is satisfied. can.
  • FIG. 4 it is a network node in an embodiment of the present invention, which includes an input device, an output device, a memory, and a processor.
  • the processor may perform the following steps: determining a port for transmitting a downlink dedicated pilot signal to a user equipment.
  • the downlink dedicated pilot signal is sent, so that the user equipment receives the downlink dedicated pilot signal according to the downlink control signaling.
  • the downlink control signaling may further include a 1-bit signal indicating a scrambling identifier to support multiplexing of up to 16 user equipments.
  • the port indicated by the 5-bit signaling is the antenna port 7 defined in the LTE R10.
  • the 5-bit signaling may be used: at least 8 values indicating 2 ports used for transmitting downlink dedicated pilot signals when the number of layers is 2; or when at least 8 values are used to indicate that the number of layers is 1 when transmitting downlink One port used for the dedicated pilot signal; the remaining values are used in part or in whole to indicate the port used to transmit the downlink dedicated pilot signal when other layers are present.
  • the ports used for transmitting the downlink dedicated pilot signals are sequentially indicated by (8, 8), (9, 10), (11, 13), and 8 values are used. (12, 14), (7, 9), (8, 10), (11, 12) or (13, 14).
  • At least 6 of the remaining values indicating 3 ports for transmitting downlink dedicated pilot signals when the number of layers is 3, and between the downlink dedicated pilot signals transmitted on the 3 ports is a code division signal and/or a frequency division signal; at least 4 of the remaining values indicate 4 ports for transmitting a downlink dedicated pilot signal when the number of layers is 4, and the downlink transmitted on the 4 ports
  • the dedicated pilot signals are between the code division signal and/or the frequency division signal; at least one of the remaining values indicates five ports used for transmitting the downlink dedicated pilot signal when the number of layers is 5; At least one value indicates 6 ports used for transmitting downlink dedicated pilot signals when the number of layers is 6, and at least one of the remaining values indicates 7 ports for transmitting downlink dedicated pilot signals when the number of layers is 7. And at least one of the remaining values indicates eight ports for transmitting downlink dedicated pilot signals when the number of layers is 8.
  • the downlink control signaling may further include a 1-bit signal indicating a scrambling identifier.
  • the downlink control signaling is DCI2C signaling.
  • the configuration of the Scrambling identity is specified, that is, only the 5-bit signaling in the downlink indication signaling is used, a maximum of 8 user multiplexing can be implemented, and the cumulative use layer is 8; If 5-bit signaling is used in combination with Scrambling identity, The multiplexing of up to 16 users is implemented, and the total number of layers used by all user equipments (User Equipment, UE) is 16.
  • the solution in the embodiment of the present invention can be flexibly configured according to the actual wireless environment, the number of system users, and the spatial characteristics of the paired users. Compared with the existing protocol scheme, the number of combinations of the scheme is more, which makes the TM9 more convenient to be applied to a multi-user scenario, fully utilizing the advantages of the 8 stream, and effectively improving the spectrum efficiency.
  • LTE Long Term Evolution
  • LTE-A advanced long term evolution
  • the user equipment may be a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), etc., for example, may be a mobile phone (or called a "cellular" "Telephone", a computer with communication function, etc., can also be a portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile device that can communicate with a network node.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了导频信号发送方法和装置,用于LTE网络中,该方法包括:网络节点确定向用户设备发射下行专用导频信号所用的端口和层数;所述网络节点根据所述端口和层数生成下行控制信令,所述下行控制信令中采用5比特信令向所述用户设备指示所述发射下行专用导频信号所用的端口和层数,以支持最多8个用户设备复用;所述网络节点向所述用户设备发送所述下行控制信令,并按照确定的端口和层数向所述用户设备发送下行专用导频信号,以便所述用户设备根据所述下行控制信令接收所述下行专用导频信号。采用本发明,可以增加最大复用流数。

Description

导频信号发送方法和装置 本申请要求于 2012 年 07 月 26 日提交中国专利局、 申请号为 201210260743.3、发明名称为"导频信号发送方法和装置"的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通讯领域, 尤其涉及导频信号发送方法和装置。
背景技术 随着移动通讯技术的不断发展, 不断涌现中各种不同的通讯制式。 当 今通讯系统的一个发展趋势则是长期演进( Long Term Evolution , LTE ) 系 统, LTE技术主要基于正交频分多址( Orthogonal Frequency Division Multiple Access, OFDMA )技术和多入多出( Multiple-Input Multiple-Out-put, MIMO ) 技术来支持高速数据传输。 这两种技术在提高数据传输和提高频谱利用率 等方面具有其他技术望尘莫及的优势, 能够在不增加带宽的情况下成倍的 提高通信系统的容量和频谱利用率, 成为下一代无线传输系统的关键技术。
并且随着多天线技术研究的深入, 通信系统已从点对点的单用户系统 扩展到点对多点的多用户系统。 在 LTE 系统中通常釆用发送端预编码的 MIMO技术实现多天线的复用增益使多用户的信道容量区域扩大。 基于发 送端预编码的 MIMO技术利用空分多址( Spatial Division Multiple Access, SDMA )技术能在同时、频域和码域资源上传输多个用户的信息, 较单用户 MIMO系统能大大提高其系统容量和频谱效率。
增强的下行 MIMO是 LTE的关键技术之一 , 但是目前该技术仍存在 一些影响多用户 MIMO性能的问题, 如最大复用流数仅为 4 (即最大只支 持 4用户复用), 每用户最多复用流数为 2。 发明内容 本发明实施例所要解决的技术问题在于, 提供一种导频信号发送方法 和装置, 可以增加最大复用流数。
为了解决上述技术问题, 一方面, 本发明实施例提供了一种导频信号 发送方法, 用于 LTE网络中, 所述方法包括:
网络节点确定向用户设备发射下行专用导频信号所用的端口和层数; 所述网络节点根据所述端口和层数生成下行控制信令, 所述下行控制 信令中釆用 5 比特信令向所述用户设备指示发射下行专用导频信号所用的 端口和层数, 以支持最多 8个用户设备复用;
所述网络节点向所述用户设备发送所述下行控制信令, 并按照确定的 端口和层数向所述用户设备发送下行专用导频信号, 以便所述用户设备根 据所述下行控制信令接收所述下行专用导频信号。
其中, 所述 5比特信令中釆用至少 8个值指示层数为 2时的发射下行 专用导频信号所用的 2个端口, 其余值部分或全部用以指示其他层数时发 射下行专用导频信号所用的端口。
所述至少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个 端口包括: 釆用 8个值依次指示发射下行专用导频信号所用的端口为 (7、 8 )、 (9、 10 )、 (11、 13 )、 (12、 14 )、 (7、 9 )、 (8、 10 )、 (11、 12 )或(13、 14 )。
所述其余值部分或全部用以指示其他层数时发射下行专用导频信号所 用的端口包括:
所述其余值中至少 6个值指示层数为 3时的发射下行专用导频信号所 用的 3个端口, 并且所述 3个端口上发射的所述下行专用导频信号之间为 码分信号和 /或频分信号;
所述其余值中至少 4个值指示层数为 4时的发射下行专用导频信号所 用的 4个端口, 并且所述 4个端口上发射的所述下行专用导频信号之间为 码分信号和 /或频分信号;
所述其余值中至少 1个值指示层数为 5时的发射下行专用导频信号所 用的 5个端口;
所述其余值中至少 1个值指示层数为 6时的发射下行专用导频信号所 用的 6个端口;
所述其余值中至少 1个值指示层数为 7时的发射下行专用导频信号所 用的 7个端口;
所述其余值中至少 1个值指示层数为 8时的发射下行专用导频信号所 用的 8个端口。
另一方面, 本发明实施例还提供了一种导频信号发送装置, 用于 LTE 网络中, 所述装置包括:
端口确定模块, 用于确定向用户设备发射下行专用导频信号所用的端 口和层数;
信令生成模块, 与所述端口确定模块连接, 用于根据所述端口和层数 生成下行控制信令, 所述下行控制信令中釆用 5 比特信令向所述用户设备 指示发射下行专用导频信号所用的端口和层数, 以支持最多 8个用户设备 复用;
发射模块, 与所述信令生成模块连接, 用于向所述用户设备发送所述 下行控制信令, 并按照确定的端口和层数向所述用户设备发送下行专用导 频信号, 以便所述用户设备根据所述下行控制信令接收所述下行专用导频 信号。
其中, 所述信令生成模块生成的下行控制信令中还包括 1 比特信号指 示扰频标识, 以支持最多 16个用户设备复用。
所述信令生成模块生成的下行控制信令中的所述 5 比特信令指示的端 口为 LTE R10中定义的天线端口 7至 14。
所述信令生成模块生成的下行控制信令中的所述 5比特信令中釆用: 至少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个端口, 其余值部分或全部用以指示其他层数时发射下行专用导频信号所用的端 口, 或,
至少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个端口, 至少 8个值指示层数为 1时发射下行专用导频信号所用的 1个端口, 其余 值部分或全部用以指示其他层数时发射下行专用导频信号所用的端口。
所述信令生成模块生成的下行控制信令中, 釆用 8个值依次指示发射 下行专用导频信号所用的端口为 (7、 8 )、 (9、 10 )、 (11、 13 )、 (12、 14 )、 ( 7、 9 )、 (8、 10 )、 (11、 12 )或 ( 13、 14 )。
进一步的, 所述信令生成模块生成的下行控制信令可为 DCI2C信令。 再一方面, 本发明实施例还提供了一种网络节点, 包括如上所述的导 频信号发送装置。
实施本发明实施例, 具有如下有益效果: 在本发明实施例中, 在现有 的 2比特下行控制信令中增加了 3比特信令, 一共 5比特信令用于指示发 射下行专用导频信号所用的端口和层数, 由于 5比特信令共可以指示 32个 不同值, 通过适当设置不同值所指示的发射下行专用导频信号所用的端口 和层数就可以实现最多 8用户复用, 提高系统的最大复用流数。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1是本发明实施例中的导频信号发送方法的一个具体流程示意图; 图 2是本发明实施例中天线端口 7~14的导频图案示意图; 图 3是本发明实施例中的导频信号发送装置的一个具体组成示意图; 图 4是本发明实施例中的网络节点的一个具体组成示意图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
在 LTE系统中,如 LTE传输模式( Transmission Mode , TM ) 8和 TM9 , 其信令指示及用户复用时, 均釆用正交码和正交扰码序列的方式达到多用 户复用的效果。 在多用户复用场景下, 发明人在对现有技术的研究发现, ΤΜ8 中规定下行控制信令格式 2B( Downlink control information format 2B , DCI2B信令 )和下行控制信令格式 2C ( Downlink control information format 2C , DCI2C信令)所指的复用用户数及端口 (port ) 完全相同, 未能利用 8个天线端口的组合实现更多用户复用的效果。
而在本发明实施例中,可基于 LTE版本 10 ( Rel-10 , R10 )定义的 8port 用户终端专用导频信号 ( User Equipment-specific Reference signal , UE-specific Reference signal ),实现超过 4层的多用户 MIMO导频及下行信 令发送。 如, 可考虑 DCI2C增加 3比特(bit )开销, 其中 lbit用于指示扰 频标识( scrambling identity ), 2bit与原天线端口 ( Antenna port(s) ) 3bit共 5bit指示所用天线端口( Antenna port(s) , 以下简称 port )和层数( number of layers )。
这样 5bit信令可以指示 32个值, 只要适当配置 32个值的指示内容, 就可以指示 8个端口上的导频发送情况, 从而实现最多 8个用户复用 (即, 8流复用)。 在加上 lbit的 4尤频标识( scrambling identity ), 指示 8个端口上 的伪正交的两组导频发送情况, 从而实现最多 16个用户复用。 即, 在 UE专用导频信号中, 根据不同的 scrambling identity内容可产 生两组不同的导频, 且该两组导频之间伪正交, 这样, 用户设备根据接收 到的 scrambling identity的不同, 可以解码获得两组不同的导频信号; 即, 当在 8个端口上发送导频信号时, 每个端口可同时发送上述伪正交的两组 导频信号,用户设备接收到后再根据 scrambling identity即可进行对应解码。 这样, 就可实现最多 16个用户复用 (即, 16流复用)。
如, 在 LTE R10中导频的序列定义为:
r(m) = -^(l - 2 * c(2m)) + j-^(l - 2* c(2m + l)),m = 0,l,...,12N^MAX -l
其伪随机序列的初始化为:
cimt = (Lns/2」 + l)*(2i< + l)*216 + ns , 其中, nscm e {0,l}
nscro即定义为本发明实施例中的扰频标识( scrambling identity ), 其可在 下行控制信令中动态配置。 如果没有配置, 则假设为 0或 1。 这样, 在本发 明实施例中, 通过 nscm和 8个端口组合, 可以在 8个端口上同时发送 16组 导频, 实现在一个小区中支持最大 16流的复用。
如图 1 所示, 为本发明实施例中的导频信号发送方法的一个具体流程 示意图。 该方法用于 LTE网络中, 包括如下步骤:
101、 网络节点确定向用户设备发射下行专用导频信号所用的端口和层 数。 具体的, 网络节点可根据当前各用户设备的信道条件确定向用户设备 发射下行专用导频信号所用的端口和层数, 并确定复用的用户设备。 如由 eNB根据当前用户设备的信道条件 (如信干噪比、 相关性等信道特征指标 ) 选择适当的复用 (或称配对)用户设备, 得到复用的各用户设备所占用的 port和层数。 具体复用情况和 port分配可参考下述步骤中的说明。
102、 所述网络节点根据所述端口和层数生成下行控制信令, 所述下行 控制信令中釆用 5 比特信令向所述用户设备指示发射下行专用导频信号所 用的端口和层数, 以支持最多 8个用户设备复用。 并且, 进一步的所述下 行控制信令中还可包括 1比特信号指示扰频标识, 以支持最多 16个用户设 备复用; 具体实现原理可参见前述说明, 此处不做赞述。
由于 5比特信令共有 32个值,则不同值可指示不同的端口和层数。如, 在 5比特信令中可釆用: 至少 8个值指示层数为 1时发射下行专用导频信 号所用的 1个端口; 至少 8个值指示层数为 2时的发射下行专用导频信号 所用的 2个端口。 则其余值部分或全部用以指示其他层数时发射下行专用 导频信号所用的端口。 即, 其余值中可以部分用于指示其他层数时的端口 情况, 剩余为保留位; 当前, 也可以其余值中全部用于指示其他层数时的 端口情况。 当然, 对于两个码字的情况中, 可以不指示层数为 1 时的端口 分配。
具体的, 在其余值中可以有至少 6个值指示层数为 3时的发射下行专 用导频信号所用的 3个端口; 至少 4个值指示层数为 4时的发射下行专用 导频信号所用的 4个端口; 至少 1个值指示层数为 5时的发射下行专用导 频信号所用的 5个端口; 至少 1个值指示层数为 6时的发射下行专用导频 信号所用的 6个端口; 至少 1个值指示层数为 7时的发射下行专用导频信 号所用的 7个端口; 至少 1个值指示层数为 8时的发射下行专用导频信号 所用的 8个端口。
当然, 一般来讲在多用户复用的情况下, 层数多为 2层; 则在 5比特 信令中, 对于层数为 3~8层的情况, 可以全部或部分不进行完全的指示。 而在 2编码字 (Two Codewords ): 编码字 0使能, 编码字 1也使能时, 不 需指示层数为 1层的情况。
在用 5 比特信令的不同的值指示不同的端口和层数的情况时, 考虑复 用流中用户内复用和用户间复用之间的码分和频分情况, 可对不同层数下 的端口组合进行规划。 如当层数为 2时, 所釆用的 2个端口组合中, 可以 包括 2个端口之间为频分或码分的情况。 当层数为 3时, 3个端口上发射的 所述下行专用导频信号之间为码分信号和 /或频分信号。 当层数为 4 时, 4 个端口上发射的所述下行专用导频信号之间为码分信号和 /或频分信号。
其中, 所述 5比特信令指示的端口可为 LTE R10中定义的天线端口 7 至 14。 在天线端口 7~14上的 UE专用导频信号导频图案定义如图 2所示。 端口 7、 8、 11、 13发送的导频信号之间为码分信号, 端口 9、 10、 12、 14 发送的导频信号之间也为码分信号; 而端口 7、 8、 11、 13和端口 9、 10、 12、 14两组端口之间则为频分信号。 当然, 随着 LTE技术的不断发展, 还 可能演进出 LTE R12、 LTER13等等新的标准, 在这些标准中可能定义了新 的天线端口情况, 只要这些天线端口数大于等于 8个, 且这 8个端口发送 的导频信号之间具有频分和码分的关系, 那么就可以以 LTE R10中定义的 天线端口和本发明实施例中描述的思路为原则, 在新的标准中应用本发明 实施例中公开的技术方案。
对于 R 10中定义的天线端口, 当层数为 2时, 发射下行专用导频信号 所用的 2个端口可为(7、 8 )、 (9、 10 )、 (11、 13 )、 ( 12、 14 )、 (7、 9 )、 (8、 10 )、 (11、 12 )或 (13、 14 )。 这样在 8个值中, 即包括 2个端口之间为码 分的端口组合情况, 也包括 2个端口之间为频分的组合情况。
其中, 上述的下行控制信令可为 DCI2C信令; 当然, 该下行控制信令 具体也可以是其他信令, 此处不做限定, 只要该信令中可携带相应比特数 信息即可。 如表 1所示, 为本发明实施例中基于 R 10中定义的天线端口, DCI2C信令的字段指示。
Figure imgf000009_0001
Figure imgf000009_0002
在本实施例中, 当层数为 2层时, 其 2个端口的组合中既包括一组端 口内之间为码分的情况(如端口组合(7、 8 )、 (9、 10 )等), 也包括一组 端口内之间为频分的情况(如端口组合(7、 9 ), 等)。
当层数为 3层时, 其 3个端口的组合中既包括一组端口内之间为码 的情况(如端口组合(7、 8、 11 )、 (9、 10、 12 )等), 也包括一组端口内 之间码分和频分同时存在的情况(如端口组合(7、 8、 9 ), 其中端口 7和 8 之间为码分, 端口 (7、 8 )和端口 9之间为频分)。
当层数为 4层时, 其 4个端口的组合中既包括一组端口内之间为码分 的情况(如端口组合(7、 8、 11、 13 )、 (9、 10、 12、 14 ) ), 也包括一组端 口内之间为码分和频分同时存在的情况(如端口组合(7、 8、 9、 10 ), 其 中端口 7和 8之间为码分, 端口 9和 10之间为码分, 端口 (7、 8 )和端口 ( 9、 10 )之间为频分)。
103、 所述网络节点向所述用户设备发送所述下行控制信令, 并按照确 定的端口和层数向所述用户设备发送下行专用导频信号, 以便所述用户设 备根据所述下行控制信令接收所述下行专用导频信号。 本步骤中的具体的 导频信号发送情况和向各用户发送的信令与实际的复用情况有关。
如, 复用情况可包括用户内码分复用, 用户间频分复用。 即, 同一个 用户, 使用多层发射信号, 多层使用的端口组合为码分端口组合, 不同用 户复用时, 使用多个端口发射, 这些端口之间为频分端口。 如, 基于表 1 的情况, 在单码字有效的情况下: 向用户 A发送的 DCI2C的值为 8, 表明 用户 A使用层数为 2, 通过端口 7和 8发射导频信号, 用户内码分复用; 向用户 B发送的 DCI2C的值为 9, 表明用户 B使用层数为 2, 通过端口 9 和 10发射导频信号,用户内码分复用;而用户 A和用户 B之间为频分复用。
同理, 也可以是用户内频分复用, 用户间码分复用。 如, 基于表 1 的 情况, 向用户 A发送的 DCI2C的值为 12, 表明用户 A使用层数为 2, 通过 端口 7和 9发射导频信号, 用户内频分复用; 向用户 B发送的 DCI2C的值 为 13 , 表明用户 B使用层数为 2, 通过端口 8和 10发射导频信号, 用户内 频分复用; 而用户 A和用户 B之间 (7和 8, 9和 10 )为码分复用。
由于专用导频码分釆用的是正交卷积码 ( Orthogonal Convolutional Code, OCC ) ,接收端要通过时域符号的联合解方程实现各 port分离的目的, 这个运算的前提假设是: 信道在参与运算的时域符号范围内不变或緩变, 当时域符号间进行联合解方程时才能起到除目标 port外其他 port的信道信 息 4氐消的目的。 比如设方程组 xl+yl=cl , x2-y2=c2, 求解 x, y (此处的 x、 y可以理解为各 port的信道系数), 当 xl=x2 , yl=y2时这个方程组才能 解对, 如果上述假设不成立, 仍按照之前的解方程方法求解, 那么所得值 误差尤比较大。
因而若釆用用户内码分, 用户间频分。 则优点在于: 在权值正交性较 好的情况下, 可满足复用条件; 当用户间空间隔离度相对较弱时, 可通过 用户间导频频分, 获得较小的用户间干扰。 缺点在于: 信道衰落易破坏正 交码的正交性, 易引入较大的流间干扰。 因而其适用于单用户多流权值正 交性高的场景。
若釆用用户内频分, 用户间码分。 则优点在于: 用户内导频频分, 每 port等效为单流, 流间干扰较小。 缺点在于: 对配对用户要求非常严格, 要 求配对用户间正交性非常好, 否则易引入较大的用户间干扰。 因而其适用 于: 系统内配对用户候选集较大, 配对用户间正交性高的场景。
在步骤 101 中确定向各用户设备发射下行专用导频信号所用的端口和 层数时可考虑上述因素。
在具体实施例中, 当上述方法用于 "透明" 的多用户 MIMO时, 演进 节点 B ( evolved NodeB, eNB )根据当前用户的信道条件(如信干噪比、 相关性等信道特征指标), 选择适当的配对用户, 得到当前用户的数据层数 (或称为 rank )和占用 port (数据 +干扰), 根据天线端口 ( antenna port(s) )、 层数和表 1 得到要向相应用户设备发送的下行控制信令的具体值。 并向用 户设备发送下行控制信令, 如 DCI2C。
UE接收并解析 DCI 2C获得本次传输的层数和 port指示, 可釆用盲检 测等方式获得配对 port口的干扰信息 (如表 1所示的下行控制信令中指示 的是当前用户的 port, 因 "透明" 多用户的关系, 未告知配对用户的信息, 此时可釆用盲检测的方式获取干扰信息, 该干扰信息是指除当前用户使用 port之夕卜 其他 port上的接收信号特征), 比如, 通过假设配对 port存在的 情况下, 求解信道估计结果, 按照接收能量来判断假设是否成立, 如配对 port有较强能量接收,那么就得到干扰信息了(一般情况下使用干扰协方差 矩阵表示)。 同时, UE 通过 MIMO 均衡得到本次传输的业务数据及 ACK/NACK反馈。 当用于 "非透明" 的多用户 MIMO时, eNB根据当前用户的信道条件 (信干噪比、 相关性等信道特征指标), 选择适当的配对用户, 得到配对后 的层数和所有占用的 port, 根据 antenna port(s)、 层数和表 1得到要向相应 用户设备发送的下行控制信令的具体值。 eNB 侧维护功率分配表, 只给当 前用户有数据传输的 port分配功率, 干扰 port不分配功率。 eNB向用户设 备发送下行控制信令, 如 DCI2C。
UE侧接收并解析 DCI 2C获得本次传输的总层数和所有占用的 port指 示, 进行总层数维度的 MIMO均衡。 由于均衡过程的干扰 port是没有功率 传输的, 所以干扰 port对应的码字始终为 NACK。 UE侧由于不知道哪些功 率, 所以根据的实际均衡结果进行 ACK/NACK反馈, eNB侧收到反馈后根 据维护的功率分配表判断本次传输是否正确。
即对于 "非透明" 多用户, 当前用户不仅知道自己占用的 port, 也知道 和它配对的用户占用的 port, 比如说两个用户每个用户 2层配对(两用户均 为双码字有效),用户 A分配 port7/8,用户 B分配 9/10,对于用户 A: value (值)发送 16,只给 port7/8分配功率,接收端按照 4流进行均衡和校验(相 当于干扰已知), port7/8有发送功率所以有反映实际解调能力的 ACK/NACK 信息, port9/10没有发送功率所以其 ACK/NACK信息一直为 NACK, 接收 侧将所得 ACK/NACK信息反馈给发送侧,由于各 port口的功率分配信息由 发送端维护,所以发送侧仅关系有功率发送的 port对应的 ACK/NACK信息, 而将其他未分配功率的 ACK/NACK信息丟弃。
通过上述描述可知, 在本发明实施例中, 在指定 Scrambling identity或 下行指示信令中不包括 Scrambling identity的配置下, 即仅依靠下行指示信 令中的 5比特信令时, 可实现最多 8用户复用, 累计使用层数为 8; 若 5比 特信令和 Scrambling identity组合使用, 可实现最多 16个用户的复用, 所 有用户设备( User Equipment , UE ) 累计使用层数为 16。
在多用户复用模式下, 釆用本发明实施例中的方案可根据实际无线环 境、 系统用户数及配对用户的空间特性灵活配置。 与现有协议方案相比, 本方案的组合数更多, 使得 TM9能够更方便的应用于多用户场景, 充分发 挥 8流优势, 有效提高频谱效率。 进一步的, 根据不同的信道条件, 从 port 集合 S1={7,8,11,13}, S2={9,10,12,14}中选择对应数目的 port口, 可在复用时实现两种 port口组 合方案: 用户内码分、 用户内频分。 并且, 本方案还可以同时满足 "透明" 多用户 MIMO和 "不透明 " 多用户 MIMO需求。
在本发明实施例中还提供了一种计算机存储介质, 该计算机存储介质 中存储有计算机程序, 该计算机程序可执行如图 1所示的步骤。
如图 3 所示, 为本发明实施例中的导频信号发送装置的一种具体组成 示意图。 该装置可设置在网络节点, 如演进节点 B ( eNB )中。 该装置 1包 括: 端口确定模块 10, 用于确定向用户设备发射下行专用导频信号所用的 端口和层数; 信令生成模块 12, 与所述端口确定模块 10连接, 用于根据所 述端口和层数生成下行控制信令, 所述下行控制信令中釆用 5 比特信令向 所述用户设备指示发射下行专用导频信号所用的端口和层数,以支持最多 8 个用户设备复用; 发射模块 14, 与所述信令生成模块 12连接, 用于向所述 用户设备发送所述下行控制信令, 并按照确定的端口和层数向所述用户设 备发送下行专用导频信号, 以便所述用户设备根据所述下行控制信令接收 所述下行专用导频信号。 其中, 所述信令生成模块生成的下行控制信令中 可还包括 1比特信号指示扰频标识, 以支持最多 16个用户设备复用。
信令生成模块 12生成的下行控制信令具体可为 DCI2C信令。
其中, 所述信令生成模块 12生成的下行控制信令中的所述 5比特信令 指示的端口为 LTE R10中定义的端口 7至 14。
所述信令生成模块 12 生成的下行控制信令中的所述 5 比特信令中釆 用: 至少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个端口, 其余值部分或全部用以指示其他层数时发射下行专用导频信号所用的端 口, 或,
至少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个端口, 至少 8个值指示层数为 1时发射下行专用导频信号所用的 1个端口, 其余 值部分或全部用以指示其他层数时发射下行专用导频信号所用的端口。
所述信令生成模块 12生成的下行控制信令中, 在所述 5比特信令指示 的信息中, 釆用 8个值依次指示发射下行专用导频信号所用的端口为 (7、 8 )、 (9、 10 )、 (11、 13 )、 (12、 14 )、 (7、 9 )、 (8、 10 )、 (11、 12 )或(13、 14 )。
进一步的, 所述信令生成模块 12生成的下行控制信令中的所述 5比特 信令中所述其余值中至少 6个值指示层数为 3时的发射下行专用导频信号 所用的 3个端口, 并且所述 3个端口上发射的所述下行专用导频信号之间 为码分信号和 /或频分信号。 所述其余值中至少 4个值指示层数为 4时的发 射下行专用导频信号所用的 4个端口, 并且所述 4个端口上发射的所述下 行专用导频信号之间为码分信号和 /或频分信号; 所述其余值中至少 1个值 指示层数为 5时的发射下行专用导频信号所用的 5个端口; 所述其余值中 至少 1个值指示层数为 6时的发射下行专用导频信号所用的 6个端口; 所 述其余值中至少 1个值指示层数为 7时的发射下行专用导频信号所用的 7 个端口; 所述其余值中至少 1个值指示层数为 8时的发射下行专用导频信 号所用的 8个端口。
具体信令值的设置可参考前述表 1 中的设置。 当然, 可以理解的是, 在其他具体实施例中, 可以以不同于表 1而灵活配置 5比特信令中各个值 代表的含义。 如, 考虑到同一用户设备同时复用多流的情况较少, 则可以 不配置高层数情况, 而增加当层数为 2层或 3层时的端口组合的指示, 如, 配置为釆用 10个值或更多的值指示层数为 2的端口组合情况, 而不指示层 数为 7或 /和 8时的端口情况, 或定义为默认值; 或是将指示层数为 3或 / 和 4的端口组合的值减少。
从本发明实施例的构思出发, 还可以对 5 比特信令中各个值代表的含 义进行更多的组合, 只要该含义中指示的端口和层数情况可以指示满足 8 流复用的基本需要即可。
如图 4所示, 为本发明实施例中的网络节点, 其包括输入装置、 输出 装置、 存储器和处理器, 该处理器可执行如下步骤: 确定向用户设备发射 下行专用导频信号所用的端口和层数; 根据所述端口和层数生成下行控制 信令, 所述下行控制信令中釆用 5 比特信令向所述用户设备指示发射下行 专用导频信号所用的端口和层数, 以支持最多 8个用户设备复用; 向所述 用户设备发送所述下行控制信令, 并按照确定的端口和层数向所述用户设 备发送下行专用导频信号, 以便所述用户设备根据所述下行控制信令接收 所述下行专用导频信号。 其中, 所述下行控制信令中还可包括 1 比特信号 指示扰频标识, 以支持最多 16个用户设备复用。
其中, 所述 5比特信令指示的端口为 LTE R10中定义的天线端口 7至
14。
所述 5比特信令中可釆用: 至少 8个值指示层数为 2时的发射下行专 用导频信号所用的 2个端口; 或还釆用至少 8个值指示层数为 1时发射下 行专用导频信号所用的 1 个端口; 其余值部分或全部用以指示其他层数时 发射下行专用导频信号所用的端口。 具体的, 在所述 5 比特信令指示的信 息中, 釆用 8个值依次指示发射下行专用导频信号所用的端口为 (7、 8 )、 ( 9、 10 )、 (11、 13 )、 (12、 14 )、 (7、 9 )、 (8、 10 )、 (11、 12 )或 (13、 14 )。
或还在所述其余值中至少 6个值指示层数为 3时的发射下行专用导频 信号所用的 3个端口, 并且所述 3个端口上发射的所述下行专用导频信号 之间为码分信号和 /或频分信号; 所述其余值中至少 4个值指示层数为 4时 的发射下行专用导频信号所用的 4个端口, 并且所述 4个端口上发射的所 述下行专用导频信号之间为码分信号和 /或频分信号; 所述其余值中至少 1 个值指示层数为 5时的发射下行专用导频信号所用的 5个端口; 所述其余 值中至少 1个值指示层数为 6时的发射下行专用导频信号所用的 6个端口; 所述其余值中至少 1个值指示层数为 7时的发射下行专用导频信号所用的 7 个端口; 所述其余值中至少 1个值指示层数为 8时的发射下行专用导频信 号所用的 8个端口。
其中, 所述下行控制信令中还可包括 1 比特信号指示扰频标识。 所述 下行控制信令为 DCI2C信令。
上述装置实施例中的各术语可参考前述方法实施例中的解释, 此处不 做赘述。
通过上述描述可知, 在本发明实施例中, 在指定 Scrambling identity的 配置下, 即仅依靠下行指示信令中的 5比特信令时, 可实现最多 8用户复 用, 累计使用层数为 8; 若 5比特信令和 Scrambling identity组合使用, 可 实现最多 16个用户的复用, 所有用户设备(User Equipment, UE ) 累计 使用层数为 16。
在多用户复用模式下, 釆用本发明实施例中的方案可根据实际无线环 境、 系统用户数及配对用户的空间特性灵活配置。 与现有协议方案相比, 本方案的组合数更多, 使得 TM9能够更方便的应用于多用户场景, 充分发 挥 8流优势, 有效提高频谱效率。
应理解, 本发明的技术方案可以应用于长期演进(LTE, Long Term Evolution ) 系统、 先进的长期演进( LTE-A, Advanced long term evolution ) 系统等, 本发明实施例并不限定, 但为描述方便, 本发明实施例将以 LTE 网络为例进行说明。
还应理解, 在本发明实施例中, 用户设备(UE, User Equipment )可以 是移动台 (MS, Mobile Station ) 、 移动终端 ( Mobile Terminal )等, 如, 可以是移动电话 (或称为 "蜂窝" 电话) 、 具有通信功能的计算机等, 还 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的可与网络节点 通讯的移动装置。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储 于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的 实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体
RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定 本发明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明 所涵盖的范围。

Claims

权利要求
1、 一种导频信号发送方法, 用于长期演进 LTE网络中, 其特征在于, 所述方法包括:
网络节点确定向用户设备发射下行专用导频信号所用的端口和层数; 所述网络节点根据所述端口和层数生成下行控制信令, 所述下行控制 信令中釆用 5 比特信令向所述用户设备指示所述发射下行专用导频信号所 用的端口和层数, 以支持最多 8个用户设备复用;
所述网络节点向所述用户设备发送所述下行控制信令, 并按照确定的 端口和层数向所述用户设备发送下行专用导频信号, 以便所述用户设备根 据所述下行控制信令接收所述下行专用导频信号。
2、 如权利要求 1所述的方法, 其特征在于, 所述下行控制信令中还包 括 1比特信号指示扰频标识, 以支持最多 16个用户设备复用。
3、 如权利要求 2所述的方法, 其特征在于, 所述 5比特信令指示的端 口为长期演进系统版本 10 LTE R10中定义的天线端口 7至 14。
4、 如权利要求 3所述的方法, 其特征在于, 所述 5比特信令中釆用至 少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个端口, 其余 值部分或全部用以指示其他层数时发射下行专用导频信号所用的端口。
5、 如权利要求 4所述的方法, 其特征在于, 所述其余值部分或全部用 以指示其他层数时发射下行专用导频信号所用的端口包括:
所述其余值中至少 8个值指示层数为 1 时发射下行专用导频信号所用 的 1个端口。
6、 如权利要求 4所述的方法, 其特征在于, 所述至少 8个值指示层数 为 2时的发射下行专用导频信号所用的 2个端口包括:
釆用 8个值依次指示发射下行专用导频信号所用的端口为(7、 8 )、 (9、 10 )、 (11、 13 )、 (12、 14 )、 (7、 9 )、 (8、 10 )、 (11、 12 )或 (13、 14 )。
7、 如权利要求 4或 5所述的方法, 其特征在于, 所述其余值部分或全 部用以指示其他层数时发射下行专用导频信号所用的端口包括:
所述其余值中至少 6个值指示层数为 3时的发射下行专用导频信号所 用的 3个端口, 并且所述 3个端口上发射的所述下行专用导频信号之间为 码分信号和 /或频分信号;
所述其余值中至少 4个值指示层数为 4时的发射下行专用导频信号所 用的 4个端口, 并且所述 4个端口上发射的所述下行专用导频信号之间为 码分信号和 /或频分信号;
所述其余值中至少 1个值指示层数为 5时的发射下行专用导频信号所 用的 5个端口;
所述其余值中至少 1个值指示层数为 6时的发射下行专用导频信号所 用的 6个端口;
所述其余值中至少 1个值指示层数为 7时的发射下行专用导频信号所 用的 7个端口;
所述其余值中至少 1个值指示层数为 8时的发射下行专用导频信号所 用的 8个端口。
8、 如权利要求 1至 7中任一项所述的方法, 其特征在于, 所述下行控 制信令为 DCI2C信令。
9、 如权利要求 1至 7中任一项所述的方法, 其特征在于, 所述网络节 点确定向用户设备发射下行专用导频信号所用的端口和层数包括: 所述网络节点根据当前各用户设备的信道条件确定向用户设备发射下 行专用导频信号所用的端口和层数, 并确定复用的用户设备。
10、 一种导频信号发送装置, 用于 LTE网络中, 其特征在于, 所述装 置包括:
端口确定模块, 用于确定向用户设备发射下行专用导频信号所用的端 口和层数;
信令生成模块, 与所述端口确定模块连接, 用于根据所述端口和层数 生成下行控制信令, 所述下行控制信令中釆用 5 比特信令向所述用户设备 指示发射下行专用导频信号所用的端口和层数, 以支持最多 8个用户设备 复用;
发射模块, 与所述信令生成模块连接, 用于向所述用户设备发送所述 下行控制信令, 并按照确定的端口和层数向所述用户设备发送下行专用导 频信号, 以便所述用户设备根据所述下行控制信令接收所述下行专用导频 信号。
11、 如权利要求 10所述的装置, 其特征在于, 所述信令生成模块生成 的下行控制信令中还包括 1比特信号指示扰频标识, 以支持最多 16个用户 设备复用。
12、 如权利要求 11所述的装置, 其特征在于, 所述信令生成模块生成 的下行控制信令中的所述 5比特信令指示的端口为 LTE R10中定义的天线 端口 7至 14。
13、 如权利要求 12所述的装置, 其特征在于, 所述信令生成模块生成 的下行控制信令中的所述 5比特信令中釆用:
至少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个端口, 其余值部分或全部用以指示其他层数时发射下行专用导频信号所用的端 口, 或,
至少 8个值指示层数为 2时的发射下行专用导频信号所用的 2个端口, 至少 8个值指示层数为 1时发射下行专用导频信号所用的 1个端口, 其余 值部分或全部用以指示其他层数时发射下行专用导频信号所用的端口。
14、 如权利要求 13所述的装置, 其特征在于, 所述信令生成模块生成 的下行控制信令中, 釆用 8个值依次指示发射下行专用导频信号所用的端 口为 (7、 8 )、 (9、 10 )、 (11、 13 )、 (12、 14 )、 (7、 9 )、 (8、 10 )、 (11、 12 )或 ( 13、 14 )。
15、 如权利要求 13所述的装置, 其特征在于, 所述信令生成模块生成 的下行控制信令中,
所述其余值中至少 6个值指示层数为 3时的发射下行专用导频信号所 用的 3个端口, 并且所述 3个端口上发射的所述下行专用导频信号之间为 码分信号和 /或频分信号;
所述其余值中至少 4个值指示层数为 4时的发射下行专用导频信号所 用的 4个端口, 并且所述 4个端口上发射的所述下行专用导频信号之间为 码分信号和 /或频分信号;
所述其余值中至少 1个值指示层数为 5时的发射下行专用导频信号所 用的 5个端口;
所述其余值中至少 1个值指示层数为 6时的发射下行专用导频信号所 用的 6个端口;
所述其余值中至少 1个值指示层数为 7时的发射下行专用导频信号所 用的 7个端口;
所述其余值中至少 1个值指示层数为 8时的发射下行专用导频信号所 用的 8个端口。
16、 如权利要求 10至 15中任一项所述的装置, 其特征在于, 所述信 令生成模块生成的下行控制信令为 DCI2C信令。
17、 一种网络节点, 其特征在于, 所述网络节点包括如权利要求 10至 16中任一项所述的导频信号发送装置。
PCT/CN2013/077527 2012-07-26 2013-06-20 导频信号发送方法和装置 WO2014015726A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13823714.4A EP2879340A4 (en) 2012-07-26 2013-06-20 PILOT SIGNAL TRANSMISSION AND DEVICE
US14/605,514 US9456442B2 (en) 2012-07-26 2015-01-26 Reference signal sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210260743.3 2012-07-26
CN201210260743.3A CN103581090B (zh) 2012-07-26 2012-07-26 导频信号发送方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/605,514 Continuation US9456442B2 (en) 2012-07-26 2015-01-26 Reference signal sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2014015726A1 true WO2014015726A1 (zh) 2014-01-30

Family

ID=49996565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077527 WO2014015726A1 (zh) 2012-07-26 2013-06-20 导频信号发送方法和装置

Country Status (4)

Country Link
US (1) US9456442B2 (zh)
EP (1) EP2879340A4 (zh)
CN (1) CN103581090B (zh)
WO (1) WO2014015726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735616B (zh) * 2016-07-28 2021-08-11 大陸商Oppo廣東移動通信有限公司 傳輸導頻信號的方法、終端設備和網絡側設備

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857053B (zh) * 2014-02-19 2018-05-01 大唐移动通信设备有限公司 一种用户调度方法及装置
US20150282185A1 (en) * 2014-03-28 2015-10-01 Futurewei Technologies, Inc. Multi-user, multiple access, systems, methods, and devices
CN110572195B (zh) 2016-03-25 2020-11-24 华为技术有限公司 一种天线端口的指示方法和装置
CN107396443B (zh) * 2016-05-13 2022-07-12 中兴通讯股份有限公司 一种控制信息的发送方法、检测方法、基站和终端
EP3451604A4 (en) * 2016-09-30 2019-06-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD FOR TRANSMITTING DOWNLINK CONTROL INFORMATION, NETWORK SIDE DEVICE, AND TERMINAL DEVICE
WO2018230923A1 (ko) * 2017-06-14 2018-12-20 엘지전자 주식회사 차세대 통신 시스템에서 코드워드와 레이어 간 맵핑 방법 및 이를 위한 장치
WO2019095334A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种下行控制信息的发送方法、终端设备和网络设备
CN112994832B (zh) * 2019-12-13 2023-03-31 中国移动通信有限公司研究院 参数确定方法、装置、相关设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076076A (zh) * 2009-11-20 2011-05-25 夏普株式会社 一种解调参考信号的资源分配通知方法
CN102246481A (zh) * 2009-01-06 2011-11-16 马维尔国际贸易有限公司 高效mimo传输方案
CN102315870A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 一种下行控制信息指示方法及装置
EP2418783A2 (en) * 2009-07-17 2012-02-15 LG Electronics Inc. Method for receiving downlink signal in multi-antenna wireless communication system and device therefor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010072020A1 (en) * 2008-12-22 2010-07-01 Huawei Technologies Co., Ltd. Method for signalling in a wireless communication system
CN101989970A (zh) * 2009-08-07 2011-03-23 中国移动通信集团公司 一种解调导频信号的发送方法和设备
US8964657B2 (en) * 2009-11-02 2015-02-24 Qualcomm Incorporated Apparatus and method for joint encoding of user specific reference signal information in wireless communication
CN102742191A (zh) * 2009-11-08 2012-10-17 Lg电子株式会社 用于控制下行链路传输功率的方法和基站、以及用于接收pdsch的方法和用户设备
EP3447959B1 (en) * 2010-02-11 2020-07-15 Samsung Electronics Co., Ltd. Method for indicating a dm-rs antenna port in a wireless communication system
CN101834629B (zh) * 2010-04-06 2014-10-22 中兴通讯股份有限公司 一种指示传输参数的方法及系统
CN103299556B (zh) * 2011-01-07 2017-05-17 交互数字专利控股公司 用于协作多点传输中下行链路共享信道接收的方法、系统和设备
EP2487825B1 (en) * 2011-01-28 2020-03-04 Samsung Electronics Co., Ltd. Method and device for generating reference signal in cellular mobile communication system
KR20120122816A (ko) * 2011-04-29 2012-11-07 주식회사 팬택 무선통신시스템에서 참조 신호를 송수신하는 방법 및 장치
EP2564611B1 (en) * 2011-07-01 2015-02-18 Ofinno Technologies, LLC Synchronization signal and control messages in multicarrier OFDM
US9185613B2 (en) * 2011-09-12 2015-11-10 Ofinno Technologies, Llc Handover in heterogeneous wireless networks
US9166729B2 (en) * 2011-12-14 2015-10-20 Marvell World Trade Ltd. Enhanced demodulation reference signal (DM-RS) design
US9019924B2 (en) * 2012-04-04 2015-04-28 Samsung Electronics Co., Ltd. High-order multiple-user multiple-input multiple-output operation for wireless communication systems
EP2839707A4 (en) * 2012-04-19 2015-12-09 Ericsson Telefon Ab L M SIGNALING FOR UPLINK SURVEYS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246481A (zh) * 2009-01-06 2011-11-16 马维尔国际贸易有限公司 高效mimo传输方案
EP2418783A2 (en) * 2009-07-17 2012-02-15 LG Electronics Inc. Method for receiving downlink signal in multi-antenna wireless communication system and device therefor
CN102076076A (zh) * 2009-11-20 2011-05-25 夏普株式会社 一种解调参考信号的资源分配通知方法
CN102315870A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 一种下行控制信息指示方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2879340A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735616B (zh) * 2016-07-28 2021-08-11 大陸商Oppo廣東移動通信有限公司 傳輸導頻信號的方法、終端設備和網絡側設備
US11368345B2 (en) 2016-07-28 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Pilot signal transmission method, terminal equipment, and network equipment

Also Published As

Publication number Publication date
CN103581090B (zh) 2016-12-28
EP2879340A1 (en) 2015-06-03
CN103581090A (zh) 2014-02-12
EP2879340A4 (en) 2015-07-15
US9456442B2 (en) 2016-09-27
US20150173052A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US10333597B2 (en) Method and system for enabling block bundling in LTE-A systems
WO2014015726A1 (zh) 导频信号发送方法和装置
RU2559047C2 (ru) Системы и способы комплектации блоков ресурсов в системе беспроводной связи
US9094167B2 (en) System and method for multi-user and multi-cell MIMO transmissions
US20170338929A1 (en) Method and base station for transmitting downstream link data, and method and user device for receiving downstream link data
EP2599356B1 (en) Signaling methods for ue-specific dynamic downlink scheduler in ofdma systems
KR101838203B1 (ko) 무선 통신 시스템에서 다중 사용자 다중 입력 다중 출력 전송을 위한 방법 및 장치
US10348432B2 (en) Network signaling for network-assisted interference cancellation and suppression
US9131492B2 (en) Method and system of multi-layer beamforming
EP2369776B1 (en) Method for indicating a DM-RS antenna port in a wireless communication system
WO2012141054A1 (ja) 無線通信システム、移動局装置および基地局装置
WO2013063895A1 (zh) 一种上行解调参考信号的资源配置方法及系统
WO2011017953A1 (zh) 一种确定小区参考信号位置的方法及装置
CA2787834A1 (en) Method for indicating a dm-rs antenna port in a wireless communication system
US11012210B2 (en) System and method for demodulation reference signal overhead reduction
US20190036570A1 (en) Multipoint Data Transmission Method and Apparatus
CN117859277A (zh) 用于增加数量的正交dmrs端口的技术
CN108418662B (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2016062066A1 (zh) 数据接收方法、发送方法、接收装置及发送装置
WO2012152214A1 (zh) 传输参数指示/传输参数确定方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013823714

Country of ref document: EP