WO2014098214A1 - 流路部材およびこれを用いた熱交換器ならびに半導体装置 - Google Patents

流路部材およびこれを用いた熱交換器ならびに半導体装置 Download PDF

Info

Publication number
WO2014098214A1
WO2014098214A1 PCT/JP2013/084239 JP2013084239W WO2014098214A1 WO 2014098214 A1 WO2014098214 A1 WO 2014098214A1 JP 2013084239 W JP2013084239 W JP 2013084239W WO 2014098214 A1 WO2014098214 A1 WO 2014098214A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
flow path
lid
body portion
path member
Prior art date
Application number
PCT/JP2013/084239
Other languages
English (en)
French (fr)
Inventor
実 中須賀
佳孝 岩田
森 昌吾
大蔵 上山
Original Assignee
京セラ株式会社
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 株式会社豊田自動織機 filed Critical 京セラ株式会社
Priority to JP2014553217A priority Critical patent/JP6054423B2/ja
Publication of WO2014098214A1 publication Critical patent/WO2014098214A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a flow path member, a heat exchanger using the same, and a semiconductor device.
  • Patent Document 1 as a flow path member for cooling a semiconductor module, a flow path in which a plurality of pin-shaped fins are erected on the opposite surface of the mounting surface on which the semiconductor module is mounted so as to be orthogonal to the flow of the refrigerant. Members have been proposed.
  • the present invention has been devised to solve the above-described problems, and an object of the present invention is to provide a flow path member having high heat exchange efficiency, a heat exchanger using the same, and a semiconductor device.
  • the flow path member of the present invention includes a frame body portion, a lid body portion including a first lid body portion that covers one side of the frame body portion, and a second lid body portion that covers the other side of the frame body portion;
  • An internal space surrounded by the frame body part and the lid body part is a flow path member that is a flow path through which a fluid flows, wherein the first lid body part and the second lid body part
  • a first pin-shaped fin extending toward the inside of the flow path is provided in one lid body portion, and the flow is between the one lid body portion and the first pin-shaped fin.
  • the present invention is characterized in that a gap that widens toward the road is provided.
  • the heat exchanger of this invention is provided with the said 1st pin-shaped fin or the said 2nd pin-shaped fin among the said 1st cover body parts and 2nd cover body parts in the flow-path member of the said structure.
  • a metal member is provided on the surface opposite to the flow path side.
  • the semiconductor device of the present invention is a semiconductor device in which a semiconductor element is mounted on the heat exchanger having the above-described configuration, and the semiconductor element is mounted on the lid portion provided with the metal member. It is characterized by this.
  • the flow path member of the present invention it is possible to generate a vortex at the root of the first pin-shaped fin, thereby improving the heat exchange efficiency.
  • heat exchange between the flow path member and the metal member can be efficiently performed, and a heat exchanger with high heat exchange efficiency can be obtained.
  • the semiconductor device of the present invention it is possible to provide a semiconductor device that suppresses a temperature rise due to heat generation of a semiconductor element with a simple structure.
  • FIG. 1 It is a figure showing an example of a channel member of this embodiment, (a) is a sectional view in the direction along the direction of fluid flow, (b) is a sectional view in a direction orthogonal to the direction of fluid flow, (C) is sectional drawing to which the A section enclosed with the dotted line of (a) was expanded. It is a figure which shows another example of the flow-path member of this embodiment, (a) is sectional drawing perpendicular
  • FIG. It is a figure which shows another example of the flow-path member of this embodiment, (a) is sectional drawing perpendicular
  • FIG. It is a figure which shows another example of the flow-path member of this embodiment, (a) is sectional drawing perpendicular
  • FIG. It is a figure which shows the cross-sectional shape of an example of the pin-shaped fin used for this embodiment, (a)-(c) is an example of a square shape, (d) and (e) are examples of a circular shape.
  • FIG. 1A and 1B are diagrams illustrating an example of a flow path member 1 according to the present embodiment, in which FIG. 1A is a cross-sectional view in a direction along a fluid flow direction, and FIG. 1B is a direction orthogonal to the fluid flow direction. It is sectional drawing, (c) is sectional drawing to which the A section enclosed with the dotted line of (a) was expanded. In the following drawings, the same components are described using the same reference numerals.
  • the flow path member 1 of the present embodiment shown in FIG. 1 includes a frame body portion 3, a first lid body portion 2 a that covers one side of the frame body portion 3, and a second lid body that covers the other side of the frame body portion 3.
  • the internal space surrounded by the frame body portion 3 and the lid body portion 2 is a flow path 6 through which the fluid 8 flows, and the first lid body portion 2a.
  • a first pin-like fin 4 extending toward the inside of the flow path 6 is provided.
  • the first pin-shaped fin 4 is fixed by inserting the root portion 4b into the first lid portion 2a (hereinafter referred to as the first pin-shaped fin 4).
  • FIG. 1 shows an example in which the first pin-shaped fin 4 is inserted and provided on the inner surface side of the first lid portion 2a
  • the second pin-shaped fin 4 is provided only on the second lid portion 2b.
  • the flow path 6 is provided between the first pin-shaped fin 4 and the first lid body portion 2a, and between the second pin-shaped fin 4 'and the second lid body portion 2b. What is necessary is just to have the clearance gap 7 which spreads toward.
  • the fluid 8 is supplied from the supply port 16 provided on one side surface of the frame body portion 3 and is discharged from the discharge port 17 provided on the other side surface opposite to the supply port 16.
  • the position of the discharge port 17 may be on either the first lid body portion 2a or the second lid body portion 2b, and may be provided on the first lid body portion 2a or the second lid body portion 2b. .
  • the first pin-shaped fin 4 in the present embodiment has a cross-sectional shape with an aspect ratio of 10 or less in the dimension in the long side direction and the dimension in the short side direction, and one tip portion 4a (hereinafter referred to as “the tip part 4a”). , May be simply referred to as a tip portion) is not fixed to either the first lid portion 2a or the second lid portion 2b.
  • the long side direction of the first pin-shaped fin 4 is a direction along the flow of the fluid 8
  • the short side direction is a direction orthogonal to the flow of the fluid 8.
  • a plurality of first pin-like fins 4 are provided with respect to the first lid body portion 2a or the second lid body portion 2b. In this case, the first lid body portion 2a or the second lid body portion. It is preferable to arrange in a lattice shape or a staggered lattice shape on the inner surface side of 2b.
  • the fact that the gap 7 is widened toward the flow path 6 between the lid body portion 2 and the first pin-shaped fins 4 is inserted into the inner surface side of the lid body portion 2.
  • both the case where the gap 7 exists so as to surround the entire circumference of the root portion 4b of the first pin-shaped fin 4 and the case where the gap 7 exists only in a part are included.
  • the clearance gap 7 exists only in a part it is preferable that it exists in the supply port 16 side.
  • the gap 7 in the present embodiment is described when the gap 7 is present on the lid part 2 side of the joint part 9 between the lid part 2 and the first pin-shaped fin 4.
  • the gap 7 can also be formed by providing a step by making the diameter of the base portion 4b of the fin 4 smaller than that of other portions.
  • the flow path member 1 of this embodiment is provided with a first pin-like fin 4 extending in the flow path 6 on the first lid body portion 2a and is fixed, and the first lid body portion 2a. Between the first pin-shaped fin 4 and the first pin-shaped fin 4, the fluid 8 flows from the supply port 16 provided on one side surface of the frame 3. When flowing in the path 6, a part of the fluid 8 is sewn between the first pin-shaped fins 4 and flows between the tip part 4a of the first pin-shaped fins 4 and the second lid part 2b. A surface flow 8 b flowing through the gap is discharged from the discharge port 17 provided on the other side surface of the frame body portion 3 to the outside of the flow path member 1.
  • the subsurface flow 8 a and the surface flow 8 b are mixed by the creeping flow 8 c flowing along the surface of the first pin-shaped fin 4, and further, part of the subsurface flow 8 a and the surface flow 8 c is vortex 8 d in the gap 7. Is generated. Since the vortex 8d breaks or makes it difficult to form a film in the vicinity of the inner surface of the first lid 2a, the heat conduction resistance between the fluid 8 flowing through the flow path 6 and the outside of the flow path member 1 The heat exchange efficiency at the root portion 4b of the first pin-shaped fin 4 can be increased. In the flow path member 1 having such a configuration, when the heat exchange object is arranged on the outer surface of the first lid part 2a, the root portion of the first pin-shaped fin 4 that is close to the heat exchange object. Heat exchange can be efficiently performed with 4b.
  • the fluid 8 flows left and right between the first pin-shaped fins 4. Also distributed. Thereby, temperature variation in the width direction of the flow path 6 can be suppressed, and an increase in pressure loss can also be suppressed.
  • FIG. 2 is a view showing another example of the flow path member of the present embodiment, (a) is a cross-sectional view perpendicular to the direction in which the fluid 8 flows, and (b) is the flow of the fluid 8. It is sectional drawing of the direction orthogonal to a direction.
  • the 1st pin-shaped fin 4 is set to the 1st cover part 2a, and the 2nd pin is set to the 2nd cover part 2b.
  • a fin 4 ' is provided. Thereby, heat exchange can be performed more efficiently.
  • the description common to both the first pin-shaped fin 4 and the second pin-shaped fin 4 ′ may be simply referred to as the pin-shaped fin 4.
  • the second pin-shaped fin 4 ′ shown in FIG. 2 is fixed by inserting the root portion 4b into the second lid body portion 2b in the same manner as the first pin-shaped fin 4.
  • a gap 7 that widens toward the flow path 6 side.
  • a part of the fluid 8 from the supply port 16 flows between the submerged flow 8 a and the tip portion 4 a of the second pin-shaped fin 4 ′ and the first lid body portion 2 a.
  • the surface flow 8b flows through the gap, and a vortex 8d is generated.
  • the vortex 8d breaks the film formed near the inner surface of the second lid portion 2b or makes it difficult to form a film.
  • the heat exchange efficiency at the root portion 4b of the second pin-shaped fin 4 ′ can be increased. That is, when the heat exchange object is arranged on the outer surface side of the first lid part 2a and the second lid part 2b, the first lid part 2a and the second lid that are close to the respective heat exchange objects. Heat exchange can be efficiently performed at the root portion 4b of the first pin-shaped fin 4 and the second pin-shaped fin 4 ′ provided in the portion 2b.
  • the pin-shaped fin 4 is preferably fixed by inserting the root portion 4b into the recess 2c provided in the lid body portion 2.
  • the pin-like fins 4 are inserted and fixed in the individual recesses 2c provided in the lid body part 2, the rear end of the root part 4b of the pin-like fins 4 (the other end of the pin-like fins 4). Since the tip) is close to the outer surface on which the heat exchange object of the lid part 2 is arranged, the heat exchange efficiency can be further increased.
  • the first pin-shaped fins 4 and the second pin-shaped fins 4 ′ are alternately provided, and a vertical cross section along the direction in which the fluid 8 flows.
  • the tip of the first pin-shaped fin 4 provided on one lid part 2a (hereinafter sometimes simply referred to as “tip”) is the second pin provided on the other lid part 2b. It is preferable that the other end of the pin-shaped fin 4 'is located on the other lid 2b side.
  • the tip of the second pin-shaped fin 4 ′ provided on the other lid portion 2 b has one lid rather than the tip of the first pin-shaped fin 4 provided on the one lid portion 2 a. It is preferable to be located on the body part 2a side.
  • the flow path member 101 of the present embodiment has the second pin-like shape in which the tip of the first pin-shaped fin 4 provided on one lid body portion 2a is provided on the other lid body portion 2b.
  • the fluid 8 supplied from the supply port 16 provided on one side surface of the frame body portion 3 is located on the other lid body portion 2b side from the tip of the fin 4 '. Until it is discharged from the discharge port 17 provided on the side surface, the subsurface flow 8a flows between the first pin-shaped fin 4 and the second pin-shaped fin 4 ′.
  • each of the frame body portion 3, the first lid body portion 2a, the second lid body portion 2b, the first pin-shaped fins 4 and the second pin-shaped fins 4 ′ is ceramic. More preferably, it consists of.
  • Each of the frame body portion 3, the first lid body portion 2 a, the second lid body portion 2 b, the first pin-shaped fin 4, and the second pin-shaped fin 4 ′ of the flow path member 1, 101 of the present embodiment is a ceramic. Since it is rich in heat resistance and corrosion resistance, it is suitable as a flow path member for semiconductor devices that emit high heat, heat exchangers for cooling combustion gases, and the like.
  • a metal member such as a wiring conductor can be formed directly on the outer surface side of the lid portion 2 (the main surface opposite to the flow path 6).
  • a semiconductor element can be mounted thereon, the number of parts can be reduced, and the number of joints between parts can be reduced, so that the thermal resistance at the joints 9 can be reduced and the heat exchange efficiency can be increased.
  • ceramics are also being used as a material for semiconductor elements, and since the thermal expansion coefficient is approximated if the material of the semiconductor element and the flow path members 1 and 101 are both ceramics, the flow path members 1 and 101 and the semiconductor are also used. Even when a metal member such as a wiring layer is interposed between them when the temperature of the element rises, the thermal stress between the flow path members 1 and 101 sandwiching the metal member such as the wiring layer and the semiconductor element is large. Since imbalance does not occur, generation of shear stress can be suppressed. Thereby, generation
  • the ceramic material may be alumina, zirconia, mullite, silicon carbide, silicon nitride, aluminum nitride, or a composite material thereof.
  • the pin-shaped fins 4 are made of a ceramic laminate.
  • the pin-shaped fins 4 are made of a ceramic laminate, they are suitable as flow path members for semiconductor devices that emit high heat, heat exchangers for cooling combustion gases, and the like because of their high heat resistance and corrosion resistance.
  • the frame body portion 3, the first lid body portion 2a, and the second lid body portion 2b may be manufactured using metal, resin, or the like in addition to ceramics.
  • the height of the pin-shaped fin 4 can be easily adjusted. For example, by increasing the height of the pin-like fins 4 located immediately below the heating element of the lid 2 and reducing the others, it is possible to balance the improvement of heat exchange efficiency and pressure loss. Further, by laminating each layer by slightly shifting the position, a step (a convex or concave portion) can be formed for each layer, and the fluid 8 easily causes vortex flow due to this step. Become. Thereby, the efficiency of heat exchange between the fluid 8 and the heat exchange object can be increased.
  • each of the frame body part 3, the lid body part 2 and the pin-like fins 4 is made of ceramics, and the pin-like fins 4 are inserted and fixed into the recesses 2 c provided in the lid body part 2. If it is, it can be produced as follows.
  • the concave portion 2c is formed on the ceramic green sheet plate to be the lid portion 2 by press molding, laser processing, or the like.
  • the ceramic green sheet is processed into a plate-like sheet to be the pin-shaped fins 4 by press molding, laser processing, or the like, and the plate-like sheet is laminated to form a rod-shaped molded body.
  • a molded body to be the frame body portion 3 is formed using a ceramic green sheet plate. The rod-shaped molded body is fitted into the recess 2c, and further, the molded body of the frame body portion 3 and the molded body of the lid body portion 2 are combined and fired at a predetermined temperature. Can be produced.
  • the pin-shaped fin 4 may form a rod-shaped molded body by extrusion molding and may be fitted into the recess 2c.
  • an R surface or an opening is formed on the opening portion of the concave portion 2 c by press molding or laser processing. What is necessary is just to form a C surface.
  • press molding if the lid 2 is made of a metal or ceramic green sheet plate, it can be press molded using a punch that can form an R or C surface at the opening of the recess 2c. Good. Further, even in laser processing, an R surface or a C surface can be formed in the opening of the recess 2c by changing the irradiation depth of the laser beam.
  • the pin-like fins 4 are prepared by laminating the plate-like sheets processed as described above to form a rod-shaped molded body, and, for example, by applying a plurality of layers of slurry, It is good also as a similar shape.
  • the lid part 2 and the pin-shaped fins 4 may be formed from different materials. For example, if the respective materials are different, such as metal and ceramics, they may be joined by brazing or the like. .
  • FIG. 3 and FIG. 4 are views showing still another example of the flow path member of the present embodiment
  • FIG. 3 and FIG. 4A are cross-sectional views perpendicular to the direction in which the fluid 8 flows.
  • 3 and 4B are cross-sectional views in a direction orthogonal to the direction in which the fluid 8 flows.
  • the first pin-like fins 4 provided on the first lid body portion 2 a are provided to be inclined with respect to the direction in which the fluid flows, and are provided on the second lid body portion 2 b.
  • the second pin-shaped fins 4 ′ provided are provided at right angles to the fluid flow direction.
  • each of the 1st pin-shaped fin 4 provided in the 1st cover body part 2a, and 2nd pin-shaped fin 4 'provided in the 2nd cover body part 2b. are inclined with respect to the direction of fluid flow.
  • the pin-shaped fin 4 (tip portion 4a) is tilted to the upstream side with respect to the fluid flow direction so that the direction in which the fluid 8 flows and the direction in which the pin-shaped fin 4 extends is an acute angle.
  • the flow of the fluid flows more toward the lid portion 2 side, and heat exchange can be performed efficiently.
  • the pin-shaped fin 4 (tip portion 4a) is inclined to the downstream side with respect to the fluid flow direction so that the direction in which the fluid 8 flows and the direction in which the pin-shaped fin 4 extends is an obtuse angle.
  • the configuration it is possible to suppress an increase in pressure loss.
  • the pin-shaped fin 4 when the pin-shaped fin 4 is provided, when the heat exchange object is provided on the lid body 2 as will be described later, the pin-shaped fin 4 provided on the lid body part 2 on which the heat exchange object is provided It is preferable that the direction in which the fluid 8 flows and the direction in which the pin-shaped fins 4 extend are inclined with respect to the flowing direction.
  • the pin-like fins 4 provided on the lid portion 2 on the other side are perpendicular to the flow path member 102 shown in FIG. 3 or the fluid 8 like the flow path member 103 shown in FIG. It is preferable that the direction in which the pin flows and the direction in which the pin-shaped fins 4 extend are inclined so as to form an obtuse angle.
  • the tip portion 4a of the pin-shaped fin 4 close to the supply port 16 is inclined to the downstream side,
  • the tip portion 4a of the pin-like fin 4 is provided in the vicinity immediately below the placed semiconductor element so as to be perpendicular to the direction in which the fluid 8 flows, the semiconductor element is suppressed while increasing the overall pressure loss.
  • the heat exchange efficiency in the vicinity of can be increased.
  • the arrangement and inclination direction of the pin-shaped fins 4 can be appropriately selected according to the application to be used.
  • FIG. 5 is a diagram showing a cross-sectional shape of an example of the pin-shaped fin 4 used in the present embodiment, (a) to (c) are examples of a square shape, and (d) and (e) are circular shapes. It is an example.
  • (a) is a rectangle with long sides along the flow direction of the fluid 8
  • (b) is a quadrangle
  • (c) is one of the diagonal lines along the flow direction of the fluid 8.
  • One of the corners is a rhombus that hits the flow of the fluid 8
  • (d) is an ellipse whose major axis is along the direction of the flow of the fluid 8
  • (e) is a circle.
  • the pin-shaped fin 4 has a rectangular cross section such as a rectangle or a quadrangle, and at least one of the sides of the square is provided so as to be orthogonal to the flow of the fluid 8 (a) and (b ),
  • the fluid 8 becomes a vortex or a creeping flow at the location of the pin-shaped fin 4 where the fluid 8 collides, and the mixing with the surrounding fluid 8 is promoted and the heat exchange efficiency is increased.
  • the cross-sectional shape of the pin-shaped fin 4 is substantially circular such as an ellipse or a circle (d) and (e)
  • most of the fluid 8 is present at the location of the pin-shaped fin 4 where the fluid 8 collides. Since it is distributed to the left and right along the circular shape and goes around the back surface, variation in the temperature distribution of heat exchange between the pin-like fins 4 and the fluid 8 is suppressed, and pressure loss is also suppressed low.
  • the pin shape of the pin-shaped fin 4 is a rhombus in which one of the diagonal lines is along the flow direction of the fluid 8 and one of the corners is in contact with the flow of the fluid 8
  • the pin shape An intermediate operation between the case where the fin 4 is in the rectangular shape of (a) and (b) and the case of (d) and (e) is obtained.
  • the shape of the pin-shaped fin 4 a plurality of shapes may be combined in one flow path member 1, 101, 102, 103. If the heat exchange efficiency is increased in the middle of the flow path 6 while suppressing an increase in pressure loss in the flow path 6, the shape of the pin-like fins 4 on the upstream side of the flow path 6 is as shown in FIG.
  • the middle of the channel 6 may be the square or rhombus of (b) or (c).
  • the cross-sectional shape of the pin-like fin 4 may be selected depending on whether the pressure loss is high or the temperature distribution variation due to heat exchange is important.
  • FIG. 6 shows an example of the heat exchanger of the present embodiment, and is a perspective view of a heat exchanger in which a metal member is provided on the main surface on the opposite side of the flow path of the lid portion of the flow path member.
  • a metal member 22 is provided on the surface of the first lid portion 2 a of the flow path members 1, 101, 102, 103 on the opposite side to the flow path 6 side. .
  • the metal member 22 is provided on the first lid portion 2a.
  • the first pin-shaped fin 4 is provided.
  • the metal member 22 may be provided inside the lid body portion 2.
  • each cover body part 2 of the heat exchanger 21 is a wiring conductor
  • the thing by printing of a thick film or a thin film, the thing by a plating method, the thing by joining of a metal plate, etc. Either may be used.
  • FIG. 7 is a perspective view of a semiconductor device in which a semiconductor element is mounted on a heat exchanger, showing an example of the semiconductor device 31 of the present embodiment.
  • the semiconductor device 31 of the present embodiment shown in FIG. 7 has a small number of parts because the semiconductor element 33 is mounted on the lid 2 provided with the metal member 22 in the heat exchanger 21 shown in FIG. With a simple structure, the heat exchange efficiency between the semiconductor element 33 as a heat source and the fluid 8 flowing through the flow path members 1, 101, 102, 103 can be increased, and the cost can be reduced.
  • FIG. 8 shows another example of the semiconductor device 32 of the present embodiment, and is a cross-sectional view of a semiconductor device in which semiconductor elements are mounted on the upper surface and the lower surface of the heat exchanger, respectively.
  • the metal member 22 is provided on the lid portion 2 on the upper surface and the lower surface of the heat exchanger 21, and the semiconductor element 33 is mounted on each metal member 22. . Since the heat exchanger 21 used here uses the flow path members 1, 101, 102, 103, both the first lid portion 2a and the second lid portion 2b have high heat exchange efficiency. The temperature rise of the semiconductor element 33 placed on any metal member 22 can be suppressed.
  • the metal member 22 will be divided
  • a suction force is generated between the electrodes.
  • a heat exchanger can be used as an electrostatic chuck for adsorbing a wafer.
  • the electrode can be manufactured by printing a conductive paste such as tungsten on the ceramic green sheet and further laminating the ceramic green sheets.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 本発明は、熱交換効率を高めた流路部材およびこれを用いた熱交換器ならびに半導体装置に関する。本発明の流路部材1、101,102,103によれば、枠体部3と、枠体部3の一方側を覆う第1蓋体部2aおよび枠体部3の他方側を覆う第2蓋体部2bを備えてなる蓋体部2とで、内部に流体8が流れる流路6を構成してなり、第1蓋体部2aおよび第2蓋体部2bのうち一方の蓋体部2に、流路6内に向けて延びる第1のピン状フィン4が設けられているとともに、一方の蓋体部2と第1のピン状フィン4との間に、流路6側に向けて広がる隙間7が設けられていることから、この隙間7によってピン状フィン4の根本部4bで流体8に渦流を発生させ熱交換効率を向上できる。そして、本発明の流路部材1,101,102,103を用いた熱交換器21ならびに半導体装置31,32は熱交換効率を高めたものとすることができる。

Description

流路部材およびこれを用いた熱交換器ならびに半導体装置
 本発明は、流路部材およびこれを用いた熱交換器ならびに半導体装置に関する。
 近年、電子部品の小型化傾向に伴い、実装される半導体素子の高集積化・高速化が進んでいる。それに伴い、半導体素子からの発熱量が増大しており電子部品が高温の環境下で使用されるようになってきている。それゆえ、電子部品を冷却する必要性が高くなってきている。
 例えば特許文献1には、半導体モジュールを冷却するための流路部材として、半導体モジュールを載置する載置面の反対面に冷媒の流れに直交するようにピン状フィンを複数立設した流路部材が提案されている。
特開2012-4405号公報
 しかしながら、現在では、さらに熱交換効率を高めた流路部材が求められている。
 本発明は、上記課題を解決するために案出されたものであり、熱交換効率の高い流路部材およびこれを用いた熱交換器ならびに半導体装置を提供することを目的とするものである。
 本発明の流路部材は、枠体部と、該枠体部の一方側を覆う第1蓋体部および前記枠体部の他方側を覆う第2蓋体部を備えてなる蓋体部とを有し、前記枠体部および前記蓋体部で囲まれた内部空間が、流体が流れる流路とされた流路部材であって、前記第1蓋体部および前記第2蓋体部のうち一方の蓋体部に、前記流路内に向けて延びる第1のピン状フィンが設けられており、前記一方の蓋体部と前記第1のピン状フィンとの間には、前記流路に向かって広がる隙間が設けられていることを特徴とするものである。
 また、本発明の熱交換器は、上記構成の流路部材における前記第1蓋体部および第2蓋体部のうち、前記第1のピン状フィンまたは前記第2のピン状フィンが設けられた蓋体部の少なくとも一方において、前記流路側と反対側の表面に、金属部材が設けられていることを特徴とするものである。
 また、本発明の半導体装置は、上記構成の熱交換器に半導体素子が実装されてなる半導体装置であって、前記半導体素子は、前記金属部材が設けられた前記蓋体部に実装されていることを特徴とするものである。
 本発明の流路部材によれば、第1のピン状フィンの根本部で渦流を発生させることができ、それにより熱交換効率を向上できる。
 また、本発明の熱交換器によれば、流路部材と金属部材との熱交換を効率的に行なうことができ、熱交換効率の高い熱交換器とすることができる。
 また、本発明の半導体装置によれば、シンプルな構造で半導体素子の発熱による温度上昇を抑制する半導体装置とすることができる。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本実施形態の流路部材の一例を示す図であり、(a)は流体の流れる方向に沿う方向の断面図であり、(b)は流体の流れる方向に直交する方向の断面図であり、(c)は(a)の点線で囲んだA部を拡大した断面図である。 本実施形態の流路部材の他の一例を示す図であり、(a)は流体の流れる方向に沿って垂直な断面図であり、(b)は流体の流れる方向に直交する方向の断面図である。 本実施形態の流路部材のさらに他の一例を示す図であり、(a)は流体の流れる方向に沿って垂直な断面図であり、(b)は流体の流れる方向に直交する方向の断面図である。 本実施形態の流路部材のさらに他の一例を示す図であり、(a)は流体の流れる方向に沿って垂直な断面図であり、(b)は流体の流れる方向に直交する方向の断面図である。 本実施形態に用いるピン状フィンの一例の横断面形状を示す図であり、(a)~(c)は方形状の例であり、(d)および(e)は円形状の例である。 本実施形態の熱交換器の一例を示し、流路部材における蓋体部の流路の反対側主面の上に金属部材を設けた熱交換器の斜視図である。 本実施形態の半導体装置の一例を示し、熱交換器に半導体素子が実装された半導体装置の斜視図である。 本実施形態の半導体装置の他の一例を示し、熱交換器の上面および下面にそれぞれ半導体素子が実装された半導体装置の断面図である。
 以下、図面を参考にして本発明の好適な実施の形態について説明する。
 本発明の流路部材の実施の形態の一例を、図1を用いて説明する。
 図1は、本実施形態の流路部材1の一例を示す図であり、(a)は流体の流れる方向に沿う方向の断面図であり、(b)は流体の流れる方向に直交する方向の断面図であり、(c)は(a)の点線で囲んだA部を拡大した断面図である。なお、以降の図において、同一の構成には同一の符号を用いて説明する。
 図1に示す本実施形態の流路部材1は、枠体部3と、この枠体部3の一方側を覆う第1蓋体部2aおよび枠体部3の他方側を覆う第2蓋体部2bを備えてなる蓋体部2とを有し、枠体部3および蓋体部2で囲まれた内部空間が、流体8が流れる流路6とされており、第1蓋体部2aに、流路6内に向けて延びる第1のピン状フィン4が設けられている。なお、図1に示す流路部材1においては、第1のピン状フィン4は、第1蓋体部2aに根本部4bが挿入されて固定されている(以下、第1のピン状フィン4が蓋体部2に挿入されて固定されている部位を接合部9という場合がある。)とともに、第1のピン状フィン4が挿入された部分において第1蓋体部2aと第1のピン状フィン4との間に、流路6側に向けて広がる隙間7を有している。なお、図1では、第1蓋体部2aの内面側に第1のピン状フィン4を挿入して設けた例を示したが、第2蓋体部2bにのみ第2のピン状フィン4’を設けることもできる。この場合においては、第1のピン状フィン4と第1蓋体部2aとの間、第2のピン状フィン4’と第2の蓋体部2bとの間のそれぞれに、流路6に向かって広がる隙間7を有していればよい。
 また、本実施形態では、流体8は枠体部3の一方の側面に設けられた供給口16から供給され、対向する他方の側面に設けられた排出口17より排出されるが、供給口16および排出口17の位置については第1蓋体部2aまたは第2蓋体部2bのいずれ側にあってもよく、さらには第1蓋体部2a、第2蓋体部2bに設けることもできる。
 なお、本実施形態における第1のピン状フィン4とは、横断面形状において、長辺方向の寸法と短辺方向の寸法とのアスペクト比が10以下であって、一方の先端部4a(以下、単に先端部という場合がある。)が、第1蓋体部2a、第2蓋体部2bのいずれにも固定されていないものを指す。そして、第1のピン状フィン4の長辺方向は、流体8の流れに沿う方向であり、短辺方向とは流体8の流れに直交する方向である。また、第1のピン状フィン4は第1蓋体部2aまたは第2蓋体部2bに対して複数設けられていることが好ましく、この場合において第1蓋体部2aまたは第2蓋体部2bの内面側に格子状または千鳥格子状などに配置されていることが好ましい。
 また、本実施形態において蓋体部2と第1のピン状フィン4との間に、流路6に向かって広がる隙間7を有しているとは、蓋体部2の内面側に挿入された第1のピン状フィン4の根本部4bの全周を取り巻くように隙間7が存在する場合と、一部分にのみ隙間7が存在する場合とのいずれも含むものとする。なお、一部分にのみ隙間7が存在する場合には、供給口16側にあることが好ましい。
 本実施形態における隙間7は、蓋体部2と第1のピン状フィン4との接合部9の蓋体部2側に隙間7を存在させた場合の説明としたが、第1のピン状フィン4の根本部4bの径を他の部分より小さくすることによって段差を設けることによって隙間7とすることもできる。
 そして、本実施形態の流路部材1は、第1蓋体部2aに流路6内に向けて延びる第1のピン状フィン4が設けられて固定されているとともに、第1蓋体部2aと第1のピン状フィン4との間に、流路6に向かって広がる隙間7を有していることから、枠体部3の一方の側面に設けられた供給口16から流体8を流路6に流したとき、流体8の一部は第1のピン状フィン4の合間を縫って流れる伏流8aと、第1のピン状フィン4の先端部4aと第2蓋体部2b間の隙間とを流れる表面流8bとになって、枠体部3の他方の側面に設けられた排出口17から流路部材1の外部に排出される。この際、伏流8aと表面流8bとは第1のピン状フィン4の表面に沿って流れる沿面流8cによって混ざり合うとともに、さらに、伏流8aおよび沿面流8cの一部が、隙間7で渦流8dを発生させる。この渦流8dによって、第1蓋体部2aの内面近傍に生じた境膜を壊す、または境膜を生じ難くするので、流路6を流れる流体8と流路部材1の外部との熱伝導抵抗を低くすることができ、第1のピン状フィン4の根本部4bでの熱交換効率を高めることができる。このような構成の流路部材1においては、第1蓋体部2aの外表面に熱交換対象物を配置したとき、熱交換対象物との距離が近い第1のピン状フィン4の根本部4bで効率的に熱交換ができる。
 また、流体8の流れは、第1のピン状フィン4の配置が、格子状または千鳥状に配置されている場合には、流体8は、第1のピン状フィン4の間に向けて左右にも分散される。それにより、流路6の幅方向における温度ばらつきを抑制できるとともに、圧力損失が高まることも抑制できる。
 つぎに、図2は本実施形態の流路部材の他の一例を示す図であり、(a)は流体8の流れる方向に沿って垂直な断面図であり、(b)は流体8の流れる方向に直交する方向の断面図である。
 図2に示すように、本実施形態の他の一例である流路部材101においては、第1蓋体部2aに第1のピン状フィン4が、第2蓋体部2bに第2のピン状フィン4’が設けられている。それにより、より効率よく熱交換を行うことができる。なお、以下の説明において、第1のピン状フィン4および第2のピン状フィン4’の両方に共通する説明については、単にピン状フィン4という場合がある。
 また、図2に示した第2のピン状フィン4’は、第1のピン状フィン4と同様に、第2蓋体部2bに根本部4bが挿入されて固定されており、第2蓋体部2bと第2のピン状フィン4’との間に、流路6側に向けて広がる隙間7を有している。それにより、第1のピン状フィン4と同様に、供給口16からの流体8の一部が、伏流8aと、第2のピン状フィン4’の先端部4aと第1蓋体部2a間の隙間とを流れる表面流8bとになり、渦流8dが生じる。この渦流8dにより、第2蓋体部2bの内面近傍に生じた境膜を壊す、または境膜を生じ難くするので、流路6を流れる流体8と流路部材101の外部との熱伝導抵抗を低くすることができ、第2のピン状フィン4’の根本部4bでの熱交換効率を高めることができる。つまり、第1蓋体部2aおよび第2蓋体部2bの外面側に熱交換対象物を配置したとき、それぞれの熱交換対象物との距離が近い第1蓋体部2aおよび第2蓋体部2bに設けられた第1のピン状フィン4および第2のピン状フィン4’の根本部4bで効率的に熱交換できる。
 具体的には、本実施形態の流路部材1,101において、ピン状フィン4は、根本部4bが蓋体部2に設けられた凹部2cに挿入されて固定されていることが好ましい。
 このように、ピン状フィン4が蓋体部2に設けられた個々の凹部2cに挿入されて固定されているときには、ピン状フィン4の根本部4bの後端(ピン状フィン4の他方の先端)は、蓋体部2の熱交換対象物を配置する外表面と近接するから、熱交換効率をさらに高めることができる。
 また、本実施形態の流路部材101においては、第1のピン状フィン4と第2のピン状フィン4’とが交互に設けられているとともに、流体8の流れる方向に沿った垂直な断面視において、一方の蓋体部2aに設けられた第1のピン状フィン4の先端(以下、単に「先端」という場合がある。)が、他方の蓋体部2bに設けられた第2のピン状フィン4’の先端よりも、他方の蓋体部2b側に位置することが好ましい。言い換えれば、他方の蓋体部2bに設けられた第2のピン状フィン4’の先端が、一方の蓋体部2aに設けられた第1のピン状フィン4の先端よりも、一方の蓋体部2a側に位置することが好ましい。
 このように、本実施形態の流路部材101は、一方の蓋体部2aに設けられた第1のピン状フィン4の先端が、他方の蓋体部2bに設けられた第2のピン状フィン4’の先端よりも他方の蓋体部2b側に位置することから、枠体部3の一方の側面に設けられた供給口16から供給された流体8は、枠体部3の他方の側面に設けられた排出口17より排出されるまでの間で、第1のピン状フィン4と第2のピン状フィン4’との間を縫って流れる伏流8aとなる。そして、第1のピン状フィン4の先端部4aと第2のピン状フィン4’の先端部4aとが密接して配置されることから、この部分での圧力損失が高くなり第1のピン状フィン4および第2のピン状フィン4’の各先端部4aの間の部分を流れる伏流8aは少なくなる。言い換えれば、圧力損失が相対的に低くなりやすい蓋体部2側を流体8が流れやすくなる。それにより熱交換効率を向上することができる。
 また、本実施形態の流路部材は、枠体部3、第1蓋体部2a、第2蓋体部2b、第1のピン状フィン4および第2のピン状フィン4’のそれぞれがセラミックスからなることがより好ましい。
 本実施形態の流路部材1,101の枠体部3、第1蓋体部2a、第2蓋体部2b、第1のピン状フィン4および第2のピン状フィン4’のそれぞれがセラミックスからなるときは、耐熱性、耐食性に富むため高熱を発する半導体装置や燃焼ガスの冷却用熱交換器等の流路部材として適している。
 特に蓋体部2がセラミックスからなるときは、蓋体部2の外面側(流路6の反対側の主面)に直接、配線導体などの金属部材を形成することができるため、この金属部材上に半導体素子を実装でき、部品点数の削減ができるとともに、部品の接合部が少なくできる分、接合部9における熱抵抗を低減でき熱交換効率を高められる。
 また、半導体素子の材料としてセラミックスも使われつつあり、半導体素子の材料と流路部材1,101がいずれもセラミックスであれば熱膨張係数が近似しているため、流路部材1,101ならびに半導体素子の温度が高くなったときに、これらの間に配線層などの金属部材が介在していても、配線層などの金属部材を挟む流路部材1,101と半導体素子との熱応力に大きなアンバランスが発生しないことから、剪断応力を生じることを抑制できる。それにより、半導体素子などの接合部の剥離の発生を抑制できる。
 ここで、セラミックス材料としては、アルミナ、ジルコニア、ムライト、炭化硅素、窒化珪素、窒化アルミニウムやこれらの複合材料でもよい。
 また、本実施形態の流路部材1,101は、ピン状フィン4が、セラミックスの積層体からなることが好ましい。ピン状フィン4がセラミックスの積層体からなるときには、耐熱性、耐食性に富むため高熱を発する半導体装置や燃焼ガスの冷却用熱交換器等の流路部材として適している。なおこの場合において、枠体部3、第1蓋体部2a、第2蓋体部2bは、セラミックスのほか、金属、樹脂等を用いて作製してもよい。
 ピン状フィン4がセラミックスの積層体からなるときには、容易にピン状フィン4の高さを調整することができる。例えば、蓋体部2の発熱体直下に位置するピン状フィン4の高さを高くし、それ以外を低くすることにより、熱交換効率の向上と圧力損失のバランスをとることもてきる。また、各層毎に位置を少しずつずらして積層することによって、各層毎に、段差(凸または凹となった部分)を形成することができ、この段差があることによって流体8が渦流を起こしやすくなる。それにより流体8と熱交換対象物との熱交換の効率を高くすることができる。
 ちなみに、枠体部3、蓋体部2およびピン状フィン4のそれぞれがセラミックスからなり、ピン状フィン4が、根本部4bが蓋体部2に設けられた凹部2cに挿入されて固定されている場合には、以下の様にして作製することができる。
 まず、蓋体部2となるセラミックグリーンシートの板状体にプレス成型やレーザ加工等により凹部2cを形成する。次に、セラミックグリーンシートをプレス成型やレーザ加工等によって、ピン状フィン4となる板状のシートを加工し、その板状のシートを積層して棒状の成形体を形成する。あわせて、セラミックグリーンシートの板状体を用いて枠体部3となる成形体を形成する。この棒状の成形体を凹部2cに嵌め込み、さらに、枠体部3の成形体と蓋体部2の成形体とを、それぞれ組合せ、所定の温度で焼成することにより、流路部材1,101を作製することができる。なお、ピン状フィン4は、押出成形により棒状の成形体を形成し、凹部2cに嵌め込んでもよい。
 また、蓋体部2とピン状フィン4との接合部9に、流路6側に開口する隙間7を形成する方法としては、プレス成型やレーザ加工によって、凹部2cの開口部にR面またはC面を形成すればよい。プレス成型においては、蓋体部2の材質が金属やセラミックのグリーンシートの板状体であれば、凹部2cの開口部にR面またはC面が形成できるようなポンチを用いてプレス成型すればよい。また、レーザ加工でもレーザ光の照射深度を変化させることによって凹部2cの開口部にR面またはC面が形成できる。
 ちなみに、ピン状フィン4は上記のように加工した板状のシートを積層して棒状の成形体を形成して作製するほか、例えば、スラリーを何層にも重ねて塗ることで、積層体と同様の形状としてもよい。さらには、蓋体部2とピン状フィン4とは異なる材料から形成してもよく、例えば、それぞれの材料が金属とセラミックスのように異なっていれば、これらをロウ付けなどにより接合すればよい。
 つぎに、図3および図4は、本実施形態の流路部材のさらに他の一例を示す図であり、図3および図4の(a)は流体8の流れる方向に沿って垂直な断面図であり、図3および図4の(b)は流体8の流れる方向に直交する方向の断面図である。
 図3に示す流路部材102では、第1蓋体部2aに設けられた第1のピン状フィン4が、流体の流れる方向に対して傾斜して設けられ、第2蓋体部2bに設けられた第2のピン状フィン4’は流体の流れる方向に対して直角に設けられている。また、図4に示す流路部材103では、第1蓋体部2aに設けられた第1のピン状フィン4および第2蓋体部2bに設けられた第2のピン状フィン4’のそれぞれが、流体の流れる方向に対して傾斜して設けられている。
 ここで、ピン状フィン4(先端部4a)を、流体の流れる方向に対して、上流側に傾斜させて流体8の流れる方向とピン状フィン4の延びる方向とが鋭角となるように傾斜させた構成としたときには、流体の流れがより蓋体部2側に流れることとなり、効率よく熱交換を行うことができる。
 一方で、ピン状フィン4(先端部4a)を、流体の流れる方向に対して、下流側に傾斜させて流体8の流れる方向とピン状フィン4の延びる方向とが鈍角となるように傾斜させた構成としたときには、圧力損失が高まることを抑制することができる。
 それゆえ、ピン状フィン4を設けるにあたり、後述するように蓋体部2に熱交換対象物を設ける場合には、熱交換対象物を設ける蓋体部2に設けるピン状フィン4は、流体の流れる方向に対して、流体8の流れる方向とピン状フィン4の延びる方向とが鋭角となるように傾斜させて設けることが好ましい。
 なおこの際、他方側の蓋体部2に設けるピン状フィン4は、図3に示す流路部材102のように直角となるように、または図4に示す流路部材103のように流体8の流れる方向とピン状フィン4の延びる方向とが鈍角となるように傾斜させて設けることが好ましい。
 上記の例以外にも、例えば、蓋体部2に載置される熱交換対象物が半導体素子であるときは、供給口16に近いピン状フィン4の先端部4aを下流側に傾斜させ、載置された半導体素子の直下付近のピン状フィン4の先端部4aが流体8の流れる方向に対して垂直方向となるように設けることにより、全体の圧力損失が高まることを抑制しつつ半導体素子の近辺の熱交換効率を高めることができる。
 この様に、使用する用途に応じて、ピン状フィン4の配置や傾斜方向を適宜選択することができる。
 図5は、本実施形態に用いるピン状フィン4の一例の横断面形状を示す図であり、(a)~(c)は方形状の例であり、(d)および(e)は円形状の例である。
 ここで、図5においては、(a)は流体8の流れ方向に長辺が沿った長方形で、(b)は四角形で、(c)は対角線の一方が流体8の流れ方向に沿っており、角部の一つが流体8の流れに当る菱形であり、(d)は流体8の流れの方向に長軸が沿った楕円形で、(e)は円形である。
 このように、ピン状フィン4の横断面形状が長方形や四角形などの方形状であって、方形の辺の少なくとも一つが、流体8の流れに直交するように備えられた(a)および(b)の方形状の場合には、流体8が衝突するピン状フィン4の箇所では、流体8が渦流や沿面流となり周囲の流体8との混合が促進され熱交換効率は高くなる。
 一方、ピン状フィン4の横断面形状が楕円形や円形などの略円形状である(d)および(e)のときには、流体8が衝突するピン状フィン4の箇所では、流体8の多くが円形にそって左右に振り分けられ背面に回り込むために、ピン状フィン4と流体8との熱交換の温度分布にバラツキが抑えられ、かつ、圧力損失も低く抑えられる。
 なお、ピン状フィン4の横断面形状が、対角線の一方が流体8の流れ方向に沿っており、角部の一つが流体8の流れに当る菱形である(c)の場合は、上記ピン状フィン4の形状が(a)および(b)の方形状の場合と、(d)および(e)場合との中間の作用が得られる。
 なお、ピン状フィン4の形状についても、一つの流路部材1,101,102,103の中で、複数の形状を組み合わせてもよい。流路6の圧力損失が高まることを抑制しつつ、流路6の中程で熱交換効率を高めるのであれば、流路6の上流側におけるピン状フィン4の形状は、図3(a)の長方形や(d)の楕円形、(e)の円形とし、流路6の中程を(b)(c)の正方形や菱形とすればよい。
 このように、圧力損失の高低や、熱交換による温度分布ばらつきの大小のいずれを重要視するかにより、ピン状フィン4の横断面形状を選択すればよい。
 図6は、本実施形態の熱交換器の一例を示し、流路部材における蓋体部の流路の反対側主面の上に金属部材を設けた熱交換器の斜視図である。
 図6に示す本実施形態の熱交換器21は、流路部材1,101,102,103の第1蓋体部2aの流路6側と反対側の表面に金属部材22が設けられている。これにより、流路部材1,101,102,103と金属部材22との熱交換を効率よく行なうことができ、熱交換効率の高い熱交換器21とすることができる。
 ここで示す熱交換器21は、第1蓋体部2aの上に金属部材22を設けているが、第1蓋体部2aおよび第2蓋体部2bのうち、第1のピン状フィン4または第2のピン状フィン4’が設けられた蓋体部2の少なくとも一方の蓋体部2において、流路6側と反対側の表面に金属部材22を設けることが好ましい。なお金属部材22は、蓋体部2の内部に設けてあってもよい。
 ここで、熱交換器21のそれぞれの蓋体部2に設けられる金属部材22は、配線導体であれば、厚膜や薄膜の印刷によるものやメッキ法によるものや金属板の接合によるもの等の何れでもよい。
 図7は、本実施形態の半導体装置31の一例を示し、熱交換器に半導体素子が実装された半導体装置の斜視図である。
 図7に示す本実施形態の半導体装置31は、図6に示す熱交換器21において、金属部材22が設けられた蓋体部2に半導体素子33が実装されていることから、部品点数が少ないシンプルな構造で、発熱源である半導体素子33と流路部材1,101,102,103を流れる流体8との熱交換効率を高めることができるほか、コストを抑えることができる。
 図8は、本実施形態の半導体装置32の他の一例を示し、熱交換器の上面および下面にそれぞれ半導体素子が実装された半導体装置の断面図である。
 図8に示す本実施形態の半導体装置32は、熱交換器21の上面および下面の蓋体部2に金属部材22が設けられており、それぞれの金属部材22に半導体素子33が実装されている。ここに用いた熱交換器21は、流路部材1,101,102,103を用いているため、第1蓋体部2aおよび第2蓋体部2bのいずれもが熱交換効率が高く、したがって、いずれの金属部材22の上に載置された半導体素子33の温度上昇をも抑制できる。
 また、流路部材1,101,102,103の蓋体部2の内部に金属部材22を設けた熱交換器とすれば、金属部材22を複数に分割し、それぞれを電極とし電源と接続することにより電極間に吸引力が発生する。このような熱交換器は、ウエハを吸着するための静電チャックとして用いることができ、例えば、プラズマ処理装置として用いるならば、プラズマに曝されるウエハや電極が過度に高温となることを抑制できる。なお、蓋体部2の中に金属部材22を設ける場合は、セラミックグリーンシートにタングステンなどの導電性ペーストを印刷しさらにセラミックグリーンシートを積層する方法により電極を作製することができる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 1,101,102,103:流路部材
 2:蓋体部
 2a:第1蓋体部
 2b:第2蓋体部
 2c:凹部
 3:枠体部
 4:第1のピン状フィン
 4’:第2のピン状フィン
 4a:先端部
 4b:根本部
 6:流路
 7:隙間
 8:流体
 8a:伏流
 8b:表面流
 8c:沿面流
 8d:渦流
 9:接合部
 16:供給口
 17:排出口
 21:熱交換器
 22:金属部材
 31,32:半導体装置
 33:半導体素子

Claims (9)

  1.  枠体部と、
     該枠体部の一方側を覆う第1蓋体部および前記枠体部の他方側を覆う第2蓋体部を備えてなる蓋体部とを有し、
     前記枠体部および前記蓋体部で囲まれた内部空間が、流体が流れる流路とされた流路部材であって、
     前記第1蓋体部および前記第2蓋体部のうち一方の蓋体部に、前記流路内に向けて延びる第1のピン状フィンが設けられており、前記一方の蓋体部と前記第1のピン状フィンとの間には、前記流路に向かって広がる隙間が設けられていることを特徴とする流路部材。
  2.  前記第1蓋体部および前記第2蓋体部のうち他方の蓋体部に、前記流路内に向けて延びる第2のピン状フィンが設けられており、前記他方の蓋体部と前記第2のピン状フィンとの間には、前記流路に向かって広がる隙間が設けられていることを特徴とする請求項1に記載の流路部材。
  3.  それぞれの前記ピン状フィンが、それぞれの前記蓋体部に設けられた凹部に挿入されて固定されていることを特徴とする請求項2に記載の流路部材。
  4.  前記第1のピン状フィンが、流体の流れる方向に対して鋭角に傾斜しているとともに、前記第2のピン状フィンが流体の流れる方向に対して鈍角に傾斜しているまたは直角に設けられていることを特徴とする請求項2または請求項3に記載の流路部材。
  5.  前記一方の蓋体部に設けられた第1のピン状フィンの先端が、前記他方の蓋体部に設けられた第2のピン状フィンの先端よりも他方の蓋体部側に位置することを特徴とする請求項2~請求項4のいずれか1つに記載の流路部材。
  6.  前記枠体部、前記第1蓋体部、前記第2蓋体部、前記第1のピン状フィンおよび前記第2のピン状フィンのそれぞれがセラミックスからなることを特徴とする請求項2~請求項5のいずれか1つに記載の流路部材。
  7.  前記第1のピン状フィンおよび前記第2のピン状フィンがセラミックスの積層体からなることを特徴とする請求項2~請求項5のいずれか1つに記載の流路部材。
  8.  請求項1~7のいずれか1つに記載の流路部材の前記第1蓋体部および前記第2蓋体部のうち、前記第1のピン状フィンまたは前記第2のピン状フィンが設けられた蓋体部の少なくとも一方において、前記流路側と反対側の表面に、金属部材が設けられていることを特徴とする熱交換器。
  9.  請求項8に記載の熱交換器に半導体素子が実装されてなる半導体装置であって、前記半導体素子は、前記金属部材が設けられた蓋体部に実装されていることを特徴とする半導体装置。
PCT/JP2013/084239 2012-12-21 2013-12-20 流路部材およびこれを用いた熱交換器ならびに半導体装置 WO2014098214A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014553217A JP6054423B2 (ja) 2012-12-21 2013-12-20 流路部材およびこれを用いた熱交換器ならびに半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012280054 2012-12-21
JP2012-280054 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098214A1 true WO2014098214A1 (ja) 2014-06-26

Family

ID=50978530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084239 WO2014098214A1 (ja) 2012-12-21 2013-12-20 流路部材およびこれを用いた熱交換器ならびに半導体装置

Country Status (2)

Country Link
JP (1) JP6054423B2 (ja)
WO (1) WO2014098214A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135181A (ja) * 2016-01-26 2017-08-03 三菱電機株式会社 半導体装置
JP2018195844A (ja) * 2015-03-31 2018-12-06 三協立山株式会社 ヒートシンク
EP3306659A4 (en) * 2015-06-03 2019-06-19 Mitsubishi Electric Corporation LIQUID-COOLED COOLER AND PRODUCTION METHOD FOR RADIATION RUBBER IN A LIQUID-COOLED COOLER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021117275A1 (de) * 2021-07-05 2023-01-05 Connaught Electronics Ltd. Elektronische Recheneinrichtung für ein Assistenzsystem eines Kraftfahrzeugs, Assistenzsystem sowie Verfahren zum Herstellen einer elektronischen Recheneinrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102786A (ja) * 1999-10-01 2001-04-13 Mizutani Denki Kogyo Kk 電子部品の放熱器およびその製造方法
JP2004088014A (ja) * 2002-08-29 2004-03-18 Nippon Light Metal Co Ltd ヒートシンク
JP2006324647A (ja) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd 液冷ジャケット
JP2010021311A (ja) * 2008-07-10 2010-01-28 Nippon Soken Inc 半導体素子冷却用ヒートシンク
WO2010134160A1 (ja) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 熱交換器及びその製造方法
JP2012236223A (ja) * 2011-05-13 2012-12-06 Mitsubishi Electric Corp 放熱器製造装置と半導体装置の製造方法
JP2014038893A (ja) * 2012-08-10 2014-02-27 Kyocera Corp 熱交換部材およびこれを用いた流路部材、熱交換器ならびに半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343548B2 (ja) * 2008-12-11 2013-11-13 日本軽金属株式会社 液冷ジャケットの製造方法
US20110079376A1 (en) * 2009-10-03 2011-04-07 Wolverine Tube, Inc. Cold plate with pins
WO2011136362A1 (ja) * 2010-04-28 2011-11-03 株式会社 豊田自動織機 放熱装置および半導体装置
JP2014045134A (ja) * 2012-08-28 2014-03-13 Kyocera Corp 流路部材およびこれを用いた熱交換器ならびに半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102786A (ja) * 1999-10-01 2001-04-13 Mizutani Denki Kogyo Kk 電子部品の放熱器およびその製造方法
JP2004088014A (ja) * 2002-08-29 2004-03-18 Nippon Light Metal Co Ltd ヒートシンク
JP2006324647A (ja) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd 液冷ジャケット
JP2010021311A (ja) * 2008-07-10 2010-01-28 Nippon Soken Inc 半導体素子冷却用ヒートシンク
WO2010134160A1 (ja) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 熱交換器及びその製造方法
JP2012236223A (ja) * 2011-05-13 2012-12-06 Mitsubishi Electric Corp 放熱器製造装置と半導体装置の製造方法
JP2014038893A (ja) * 2012-08-10 2014-02-27 Kyocera Corp 熱交換部材およびこれを用いた流路部材、熱交換器ならびに半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195844A (ja) * 2015-03-31 2018-12-06 三協立山株式会社 ヒートシンク
EP3306659A4 (en) * 2015-06-03 2019-06-19 Mitsubishi Electric Corporation LIQUID-COOLED COOLER AND PRODUCTION METHOD FOR RADIATION RUBBER IN A LIQUID-COOLED COOLER
EP3627549A1 (en) * 2015-06-03 2020-03-25 Mitsubishi Electric Corporation Liquid-type cooling apparatus and manufacturing method for heat radiation fin in liquid-type cooling apparatus
EP3745455A1 (en) * 2015-06-03 2020-12-02 Mitsubishi Electric Corporation Manufacturing method for heat radiation fin in liquid-type cooling apparatus
JP2017135181A (ja) * 2016-01-26 2017-08-03 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP6054423B2 (ja) 2016-12-27
JPWO2014098214A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6262422B2 (ja) 冷却装置および半導体装置
JP5600097B2 (ja) 冷却板アセンブリおよびパワーエレクトロニクス・モジュール
US6817405B2 (en) Apparatus having forced fluid cooling and pin-fin heat sink
EP1873827A1 (en) Heat sink device
WO2013062131A1 (ja) 流路部材、これを用いた熱交換器および半導体装置ならびに半導体製造装置
US11277937B2 (en) Re-entrant flow cold plate
JP6054423B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体装置
JP6124890B2 (ja) 放熱装置、及び半導体装置
JP6349161B2 (ja) 液冷式冷却装置
TW201315960A (zh) 疊層式散熱器
US20150122465A1 (en) Heat sink device
JP5344994B2 (ja) ヒートシンク装置
JP6279980B2 (ja) 液冷式冷却装置
JP2014072395A (ja) 冷却装置
JP5114323B2 (ja) 半導体装置
US20080011452A1 (en) Heat sink
WO2021172479A1 (ja) 放熱部材
US20070137849A1 (en) Heatsink with offset fins
JP2014045134A (ja) 流路部材およびこれを用いた熱交換器ならびに半導体装置
JP5715352B2 (ja) ヒートシンク
JP2008294197A (ja) パワーモジュール用ユニットの製造方法
JP2011119555A (ja) 曲折ルーバー状放熱ユニットを用いたヒートシンク
TWI620497B (zh) 折疊型散熱裝置及其製法
JP2005252151A (ja) 冷却装置
JP5856750B2 (ja) 放熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864995

Country of ref document: EP

Kind code of ref document: A1