WO2014097535A1 - 照明用光源及び照明装置 - Google Patents

照明用光源及び照明装置 Download PDF

Info

Publication number
WO2014097535A1
WO2014097535A1 PCT/JP2013/006618 JP2013006618W WO2014097535A1 WO 2014097535 A1 WO2014097535 A1 WO 2014097535A1 JP 2013006618 W JP2013006618 W JP 2013006618W WO 2014097535 A1 WO2014097535 A1 WO 2014097535A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
circuit
light
led module
led
Prior art date
Application number
PCT/JP2013/006618
Other languages
English (en)
French (fr)
Inventor
直紀 田上
健太 渡邉
考志 大村
和生 合田
次弘 松田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014515397A priority Critical patent/JP5793721B2/ja
Priority to CN201390000973.4U priority patent/CN204829330U/zh
Publication of WO2014097535A1 publication Critical patent/WO2014097535A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an illumination light source and an illumination device, and more particularly, to a light bulb shaped lamp using a light emitting diode (LED) and an illumination device using the same.
  • LED light emitting diode
  • LEDs Semiconductor light-emitting elements such as LEDs are expected to serve as light sources for various products because of their small size, high efficiency, and long life.
  • a bulb-type LED lamp LED bulb
  • Patent Document 1 a bulb-type LED lamp (LED bulb) is being developed as an illumination light source that replaces conventionally known bulb-type fluorescent lamps and incandescent bulbs.
  • the bulb-type LED lamp is configured to surround, for example, an LED module that serves as a light source, a globe that covers the LED module, a support member that supports the LED module, a drive circuit that supplies power to the LED module, and a drive circuit.
  • the LED module includes a substrate and a plurality of LEDs (light emitting elements) mounted on the substrate.
  • a light bulb-type LED lamp having a configuration that imitates the light distribution characteristics and appearance of an incandescent bulb has been studied.
  • a bulb-type LED lamp having a configuration in which an LED module is held hollow at a central position in the globe using a globe (clear bulb) made of transparent glass as used in an incandescent bulb has been proposed.
  • the LED module is fixed to the top of the column using a column extending from the globe opening toward the center of the globe.
  • the LED mounted on the LED module generates heat from the LED itself due to light emission, which increases the temperature of the LED and decreases the light output. That is, the light emission efficiency of the LED decreases due to the heat generated by itself.
  • light bulb-type LED lamps are required to have higher luminous flux, and research and development of high-power type LED lamps in which LEDs are frequently used are underway.
  • a light bulb shaped LED lamp having a brightness equivalent to 40 W or 60 W has been studied. As the wattage increases, the amount of heat generated by the LED module increases. Therefore, a heat dissipation measure for the LED module is extremely important.
  • the countermeasures it is considered to dissipate heat generated by the LED module (LED) efficiently by arranging a heat sink inside the outer casing.
  • the heat sink that is heated by heat pulling of the LED module surrounds the drive circuit, so that the drive circuit is placed in a high temperature environment. Therefore, in this case, the circuit element can be operated only at a temperature near the heat resistance limit, and it has been difficult to further increase the wattage.
  • An object of the present invention is to provide an illumination light source and an illumination device.
  • an aspect of the light source for illumination includes a globe, a support column extending inward of the globe, a light emitting module connected to one end of the support column, A support member connected to the other end of the pillar, a heat sink having an opening, and the support member fitted in the opening, and a circuit board disposed so that the main surface intersects the axis of the pillar A plurality of circuit elements mounted on the circuit board, a circuit case configured to surround the circuit elements, and a base connected to a part of the circuit case, along the axis of the support column
  • the light emitting module, the circuit board, and the base are positioned in this order, and the temperature is increased mainly by the heat generated by the light emitting module and the temperature generated mainly by the heat generated by the plurality of circuit elements.
  • a second region increases, characterized in that it is separated by the circuit board.
  • the heat sink extends toward the base, the second region includes a high temperature region and a low temperature region, and the high temperature region includes the high temperature region,
  • the region may be surrounded by a heat sink, and the low temperature region may be a region that is not surrounded by the heat sink and is a region that is cooler than the high temperature region.
  • the first circuit element having high heat resistance among the plurality of circuit elements is located in the high temperature region, and the first circuit element of the plurality of circuit elements is more than the first circuit element.
  • the second circuit element having low heat resistance may be located in the low temperature region.
  • the second circuit element may be an electrolytic capacitor.
  • the temperature of the first region may be higher than that of the second region when the light emitting module emits light.
  • the temperature of the first region is 90 ° C. or higher, and the temperature of the low temperature region of the second region is 60 ° C. or lower. There may be.
  • an aspect of the illumination device according to the present invention is characterized by including any one of the above illumination light sources.
  • the present invention it is possible to achieve both the improvement of the heat dissipation of the LED (light emitting element) and the improvement of the heat dissipation of the drive circuit.
  • FIG. 1 is an external perspective view of a light bulb shaped lamp according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the light bulb shaped lamp according to the embodiment of the present invention.
  • 4A is a plan view of the LED module in the light bulb shaped lamp according to the embodiment of the present invention, and
  • FIG. 4B is a plan view of the LED module taken along the line AA ′ in FIG. 4A.
  • FIG. 4C is a cross-sectional view of the LED module taken along line BB ′ of FIG. 4A.
  • FIG. 5 is an enlarged cross-sectional view around the LED (LED chip) in the LED module of the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 6 is a perspective view showing the configuration of the support and the support member in the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional perspective view showing the configuration of the circuit case in the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 8 is a perspective view showing the configuration of the heat sink in the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a heat dissipation path in the light bulb shaped lamp according to the embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of the illumination device according to the embodiment of the present invention.
  • LED light bulb a light bulb shaped LED lamp (LED light bulb) will be described as an example of a light source for illumination.
  • FIG. 1 is an external perspective view of a light bulb shaped lamp according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the light bulb shaped lamp according to the embodiment of the present invention.
  • the lead wires 53a to 53d are omitted.
  • a light bulb shaped lamp 1 is a light bulb shaped lamp that is an alternative to a light bulb shaped fluorescent light or an incandescent light bulb, and includes a globe 10 and an LED module that is a light source. 20, a support 30, a support member 40, a drive circuit 50, a circuit case 60, a heat sink 70, an outer casing 80, and a base 90.
  • the bulb-type lamp 1 includes an envelope formed by the globe 10, the outer casing 80, and the base 90.
  • FIG. 3 is a cross-sectional view of the light bulb shaped lamp according to the embodiment of the present invention.
  • the alternate long and short dash line drawn in the vertical direction on the paper indicates the lamp axis J (center axis) of the light bulb shaped lamp 1.
  • the lamp axis J is identical to the globe axis. I'm doing it.
  • the lamp axis J is an axis serving as a rotation center when the light bulb shaped lamp 1 is attached to a socket of a lighting device (not shown), and coincides with the rotation axis of the base 90.
  • the drive circuit 50 is shown in a side view rather than a sectional view.
  • the globe 10 is a substantially hemispherical light-transmitting cover for taking out the light emitted from the LED module 20 to the outside of the lamp.
  • the globe 10 in the present embodiment is a glass bulb (clear bulb) made of silica glass that is transparent to visible light. Therefore, the LED module 20 housed in the globe 10 can be viewed from the outside of the globe 10.
  • the LED module 20 is covered with the globe 10. Thereby, the light of the LED module 20 that has entered the inner surface of the globe 10 passes through the globe 10 and is extracted to the outside of the globe 10.
  • the globe 10 is configured to house the LED module 20.
  • the shape of the globe 10 is a shape in which one end is closed in a spherical shape and an opening 11 is provided at the other end. Specifically, the shape of the globe 10 is such that a part of a hollow sphere narrows while extending away from the center of the sphere, and the opening 11 is located away from the center of the sphere. Is formed.
  • a glass bulb having a shape similar to that of a general bulb-type fluorescent lamp or incandescent bulb can be used.
  • a glass bulb such as an A shape, a G shape, or an E shape can be used as the globe 10.
  • the opening 11 of the globe 10 is placed on the surface of the support member 40.
  • the globe 10 is fixed by applying an adhesive such as silicone resin between the support member 40 and the outer casing 80.
  • the globe 10 is not necessarily transparent to visible light, and the globe 10 may have a light diffusion function.
  • a milky white light diffusing film can be formed by applying a resin containing a light diffusing material such as silica or calcium carbonate, a white pigment, or the like to the entire inner surface or outer surface of the globe 10. In this way, by providing the globe 10 with a light diffusion function, light incident on the globe 10 from the LED module 20 can be diffused, so that the light distribution angle of the lamp can be expanded.
  • the shape of the globe 10 is not limited to the A shape, and may be a spheroid or an oblate sphere.
  • the material of the globe 10 is not limited to a glass material, and a resin such as acrylic (PMMA) or polycarbonate (PC) may be used. In this case, the resin may contain a light diffusing material.
  • the LED module 20 is a light emitting module having a light emitting element, and emits light of a predetermined color (wavelength) such as white. As shown in FIG. 3, the LED module 20 is disposed inward of the globe 10, and is formed at a spherical center position formed by the globe 10 (for example, inside the large diameter portion where the inner diameter of the globe 10 is large). Preferably they are arranged. Thus, by arranging the LED module 20 at the center position of the globe 10, it is possible to realize a light distribution characteristic approximate to that of an incandescent bulb using a conventional filament coil.
  • the LED module 20 is held hollow in the globe 10 by the support column 30 and emits light by the electric power supplied from the drive circuit 50 via the lead wires 53a and 53b.
  • the substrate 21 of the LED module 20 is supported by the support column 30.
  • FIG. 4A is a plan view of the LED module in the light bulb shaped lamp according to the embodiment of the present invention
  • FIG. 4B is a plan view of the LED module taken along the line AA ′ in FIG. 4A. It is sectional drawing.
  • FIG. 4C is a cross-sectional view of the LED module taken along line B-B ′ of FIG.
  • the LED module 20 includes a substrate 21, an LED 22, a sealing member 23, a metal wiring 24, a wire 25, and terminals 26a and 26b.
  • the LED module 20 in the present embodiment has a COB (Chip On Board) structure in which a bare chip is directly mounted on the substrate 21.
  • COB Chip On Board
  • the substrate 21 is a mounting substrate for mounting the LEDs 22, and includes a first main surface (front side surface) on which the LEDs 22 are mounted, and a second main surface (back side surface) facing the first main surface.
  • the substrate 21 is, for example, a rectangular plate-like substrate that is rectangular in plan view (when viewed from the top of the globe 10).
  • the substrate 21 is connected to one end of the support column 30. Specifically, the second main surface of the substrate 21 and the first fixed surface 30a of the support column 30 are connected so as to be in surface contact.
  • a substrate having a low light transmittance with respect to the light emitted from the LED 22 for example, a white substrate such as a white alumina substrate having a total transmittance of 10% or less or a metal substrate (metal base substrate) coated with a resin is used.
  • a white substrate such as a white alumina substrate having a total transmittance of 10% or less or a metal substrate (metal base substrate) coated with a resin.
  • a substrate having a low light transmittance it is possible to suppress light from being transmitted through the substrate 21 and emitted from the second main surface, and color unevenness can be suppressed. Further, since an inexpensive white substrate can be used, cost reduction can be realized.
  • a translucent substrate having a high light transmittance can be used as the substrate 21.
  • the light of the LED 22 is transmitted through the inside of the substrate 21 and is also emitted from the surface (back side surface) on which the LED 22 is not mounted. Therefore, even if the LED 22 is mounted only on the first main surface (front side surface) of the substrate 21, light is emitted from the second main surface (back side surface), so that the light distribution approximates that of an incandescent bulb. It becomes possible to obtain characteristics. Moreover, since light can be emitted from the LED module 20 in all directions, it is possible to realize all light distribution characteristics.
  • the light-transmitting substrate for example, a substrate having a total transmittance of 80% or more for visible light, or a transparent substrate that is transparent to visible light (that is, the transmittance is extremely high and the other side can be seen through) is used.
  • a translucent substrate a translucent ceramic substrate made of polycrystalline alumina or aluminum nitride, a transparent glass substrate made of glass, a quartz substrate made of crystal, a sapphire substrate made of sapphire, or a transparent resin material made of transparent resin material A resin substrate or the like can be used.
  • a white polycrystalline ceramic substrate made of sintered alumina is used as the light-transmitting substrate 21.
  • a white alumina substrate having a thickness of 1 mm and a light reflectance of 94%, or a white alumina substrate having a thickness of 0.635 mm and a light reflectance of 88% can be used.
  • the substrate 21 a resin substrate, a flexible substrate, or a metal base substrate can be used.
  • the shape of the substrate 21 is not limited to a rectangle, and other shapes such as a square or a circle can be used.
  • the substrate 21 is provided with two through holes 27a and 27b for electrical connection with the two lead wires 53a and 53b.
  • the lead wire 53a (53b) is solder-connected to a terminal 26a (26b) formed on the substrate 21 with the tip portion inserted through the through hole 27a (27b).
  • the LED 22 is an example of a light emitting element, and is a semiconductor light emitting element that emits light with a predetermined power.
  • the plurality of LEDs 22 on the substrate 21 are all the same, and the LEDs 22 are selected so that the Vf characteristics are all the same.
  • Each LED 22 is a bare chip that emits monochromatic visible light.
  • a blue LED chip that emits blue light when energized is used.
  • the blue LED chip for example, a gallium nitride based semiconductor light emitting device having a central wavelength of 440 nm to 470 nm, which is made of an InGaN based material, can be used.
  • the LEDs 22 are mounted only on the first main surface (front side surface) of the substrate 21, and a plurality of LEDs 22 are mounted so as to form a plurality of rows along the long side direction of the substrate 21.
  • 48 LEDs 22 are connected in 12 rows and 4 rows, and one row is provided so that four rows of element rows each consisting of 12 LEDs 22 are arranged in parallel. ing.
  • a plurality of LEDs 22 are mounted.
  • the number of mounted LEDs 22 may be appropriately changed according to the use of the light bulb shaped lamp.
  • the number of LEDs 22 may be one.
  • the number of LEDs 22 mounted in one element row may be further increased.
  • the element rows of the LED 22 are not limited to four rows, but may be one to three rows or five or more rows.
  • the plurality of LEDs 22 mounted on the substrate 21 may be arranged so that some of them are located immediately above the support column 30. In this case, it is preferable that half or more of the plurality of LEDs 22 is located immediately above the support column 30. That is, as shown in FIG. 4A, it is preferable that more than half of the LEDs 22 are arranged so as to overlap the support column 30 in plan view. By disposing the LEDs 22 in this manner, the heat dissipation of the LED module 20 as a whole can be improved.
  • FIG. 5 is an enlarged cross-sectional view around the LED (LED chip) in the LED module of the light bulb shaped lamp according to the embodiment of the present invention.
  • the LED 22 includes a sapphire substrate 22a and a plurality of nitride semiconductor layers 22b having different compositions stacked on the sapphire substrate 22a.
  • a cathode electrode 22c and an anode electrode 22d are provided at both ends of the upper surface of the nitride semiconductor layer 22b.
  • Wire bond portions 22e and 22f are provided on the cathode electrode 22c and the anode electrode 22d, respectively.
  • each of the cathode electrode 22 c of one LED 22 and the anode electrode 22 d of the other LED 22 is connected to the metal wiring 24 by a wire 25 by wire bonding.
  • the electrodes of adjacent LEDs 22 may be directly connected by a wire 25 without using the metal wiring 24.
  • Each LED 22 is mounted on the substrate 21 with a translucent chip bonding material 22g so that the surface on the sapphire substrate 22a side faces the first main surface of the substrate 21.
  • a translucent material for the chip bonding material 22g By using a translucent material for the chip bonding material 22g, the loss of light emitted from the side surface of the LED 22 can be reduced, and the generation of shadows by the chip bonding material 22g can be suppressed.
  • the sealing member 23 is made of resin, for example, and is formed on the substrate 21 so as to cover the LEDs 22.
  • the sealing member 23 is formed so as to collectively seal one row of the plurality of LEDs 22.
  • four sealing members 23 are formed.
  • Each of the four sealing members 23 is linearly provided on the first main surface of the substrate 21 along the arrangement direction (column direction) of the plurality of LEDs 22.
  • the sealing member 23 is mainly made of a translucent material. However, when it is necessary to convert the wavelength of light of the LED 22 to a predetermined wavelength, a wavelength conversion material is mixed into the translucent material.
  • the sealing member 23 in the present embodiment is a wavelength conversion member that includes a phosphor as a wavelength conversion material and converts the wavelength (color) of light emitted from the LED 22.
  • a sealing member 23 can be constituted by, for example, an insulating resin material (phosphor-containing resin) containing phosphor particles. The phosphor particles are excited by light emitted from the LED 22 and emit light of a desired color (wavelength).
  • the sealing member 23 is not necessarily formed of a resin material, and may be formed of an inorganic material such as a low-melting glass or a sol-gel glass in addition to an organic material such as a fluorine-based resin.
  • the phosphor particles to be contained in the sealing member 23 for example, when the LED 22 is a blue LED that emits blue light, for example, YAG-based yellow phosphor particles can be used to obtain white light. Thereby, a part of the blue light emitted from the LED 22 is converted into yellow light by the yellow phosphor particles contained in the sealing member 23. Then, the blue light that has not been absorbed by the yellow phosphor particles and the yellow light that has been wavelength-converted by the yellow phosphor particles are diffused and mixed in the sealing member 23, so that white light is emitted from the sealing member 23. And emitted. In addition, particles such as silica are used as the light diffusing material.
  • the sealing member 23 in the present embodiment is a phosphor-containing resin in which predetermined phosphor particles are dispersed in a silicone resin, and is formed by applying and curing the first main surface of the substrate 21 with a dispenser. Can do.
  • the shape of the cross section perpendicular to the longitudinal direction of the sealing member 23 is substantially semicircular.
  • the sealing member 23 may be formed so as not to be linear but to be rectangular in plan view. In this case, for example, the sealing member 23 may be formed so as to collectively seal all the LEDs 22 on the substrate 21. Alternatively, the sealing member 23 may be formed so as to cover each LED 22 individually. In this case, the sealing member 23 can be formed in a substantially hemispherical shape, for example.
  • a phosphor-containing resin such as a sintered body film composed of body particles and an inorganic binder (binder) such as glass or the same phosphor-containing resin as the surface of the substrate 21 may be further formed.
  • white light can be emitted from both surfaces of the substrate 21 even when light leaks from the second main surface. it can.
  • the metal wiring 24 is a conductive wiring through which a current for causing the LED 22 to emit light flows, and is patterned in a predetermined shape on the surface of the substrate 21. As shown in FIG. 4A, the metal wiring 24 is formed on the first main surface of the substrate 21. The power supplied to the LED module 20 from the lead wires 53 a and 53 b is supplied to each LED 22 by the metal wiring 24.
  • the metal wiring 24 is formed to connect a plurality of LEDs 22 in each LED element row in series.
  • the metal wiring 24 is formed in an island shape between the adjacent LEDs 22.
  • the metal wiring 24 is formed to connect the element rows in parallel.
  • Each LED 22 is electrically connected to the metal wiring 24 via a wire 25. Note that the island-like metal wiring 24 between the LEDs 22 may not be provided. in this case. Adjacent LEDs 22 are wire-bonded by chip-to-chip.
  • the metal wiring 24 can be formed, for example, by patterning or printing a metal film made of a metal material.
  • a metal material of the metal wiring 24 for example, silver (Ag), tungsten (W), copper (Cu), gold (Au), or the like can be used.
  • the metal wiring 24 exposed from the sealing member 23 is preferably covered with a glass film (glass coat film) made of a glass material or a resin film (resin coat film) made of a resin material, except for the terminals 26a and 26b. .
  • a glass film glass coat film
  • resin film resin film
  • the wire 25 is an electric wire such as a gold wire. As shown in FIG. 4B, the wire 25 connects the LED 22 and the metal wiring 24. As described with reference to FIG. 5, the wire 25 connects the cathode electrode 22 c (or the anode electrode 22 d) provided on the upper surface of the LED 22 and the metal wiring 24 formed adjacent to both sides of the LED 22 to the wire bond portion 22 e (or 22f) and wire bonding is performed.
  • the entire wire 25 is embedded in the sealing member 23 so as not to be exposed from the sealing member 23. Thereby, light can be prevented from being absorbed or reflected by the exposed wire 25.
  • the terminals 26a and 26b are external connection terminals for receiving DC power for causing the LEDs 22 to emit light from the outside of the LED module 20.
  • the terminals 26a and 26b are soldered to the lead wires 53a and 53b.
  • the terminals 26a and 26b are formed in a predetermined shape on the first main surface of the substrate 21 so as to surround the through holes 27a and 27b.
  • the terminals 26 a and 26 b are formed continuously with the metal wiring 24 and are electrically connected to the metal wiring 24.
  • the terminals 26 a and 26 b are patterned simultaneously with the metal wiring 24 using the same metal material as the metal wiring 24.
  • terminals 26 a and 26 b are power supply units of the LED module 20, and DC power received from the lead wires 53 a and 53 b is supplied to each LED 22 via the metal wiring 24 and the wire 25.
  • the support column 30 is a long member extending from the vicinity of the opening 11 of the globe 10 toward the inside of the globe 10.
  • the support column 30 has the axis of the support column 30 extended along the lamp axis J. That is, the axis of the support column 30 and the lamp axis J are parallel.
  • the support column 30 functions as a support member that supports the LED module 20, and the LED module 20 is connected to one end of the support column 30.
  • a support member 40 is connected to the other end of the column 30.
  • pillar 30 functions also as a heat radiating member (heat sink) for radiating the heat which generate
  • the thermal conductivity of the support column 30 is preferably larger than the thermal conductivity of the substrate 21. In the present embodiment, the support column 30 is formed using aluminum.
  • the support column 30 is configured to be sandwiched between the LED module 20 and the support member 40.
  • One end of the column 30 on the top side of the globe 10 is connected to the center of the substrate 21 of the LED module 20, and the other end of the column 30 on the base side is connected to the center of the support member 40.
  • FIG. 6 is a perspective view showing the configuration of the support and the support member in the light bulb shaped lamp according to the embodiment of the present invention.
  • a first fixing surface 30 a to which the substrate 21 is fixed is formed at one end of the support column 30 as a connection portion with the substrate 21 of the LED module 20.
  • the first fixed surface 30 a is a contact surface that contacts the second main surface (back surface) of the substrate 21.
  • pillar 30 are fixed by adhesives, such as a silicone resin, for example. Therefore, an adhesive may exist between the substrate 21 and the first fixing surface 30a.
  • pillar 30 may be fixed with the screw.
  • a second fixing surface 30 b to which the support member 40 is fixed is formed at the other end of the support column 30 as a connection portion with the support member 40.
  • the second fixed surface 30 b is a contact surface that contacts the surface of the support member 40.
  • the support member 40 and the support column 30 can be fixed by using, for example, a fixing member such as an adhesive or a screw, or by press-fitting the support column 30 into the support member 40.
  • a solid-structured cylinder having a constant cross-sectional area (area in a cross section when cut along a plane having the axis of the support column 30 as a normal line) can be used. That is, the arbitrary cross-sectional areas of the support columns 30 are the same, and the cross-sectional area of the support columns 30 is constant regardless of the position of the support columns 30 in the longitudinal direction. In this case, the 1st fixed surface 30a and the 2nd fixed surface 30b are circular, and the area is the same.
  • the support column 30 in the present embodiment is a cylinder having a diameter of 15 mm.
  • polygonal pillars such as a square pole and a triangular prism, can also be used other than a cylinder.
  • shape of the support column 30 is not limited to a constant cross-sectional area, and may be a shape in which the cross-sectional area changes midway, such as a combination of a cylinder and a prism.
  • the support member 40 is a support base that supports the support column 30. As shown in FIG. 3, the support member 40 is configured to close the opening 11 of the globe 10.
  • the support member 40 is connected to the heat sink 70. In the present embodiment, the support member 40 is fitted into the first opening 70 a of the heat sink 70 so that the outer periphery of the support member 40 contacts the inner surface of the heat sink 70.
  • the support member 40 also functions as a heat radiating member (heat sink) for radiating heat generated in the LED module 20 (LED 22). Therefore, the support member 40 is preferably composed of a metal material mainly composed of aluminum (Al), copper (Cu), iron (Fe), or the like, or a resin material having high thermal conductivity. Thereby, the heat from the column 30 can be efficiently conducted to the heat sink 70. In the present embodiment, the support member 40 is formed using aluminum.
  • the support member 40 is a disk-shaped member having a stepped portion, and includes a small-diameter portion 41 having a small diameter and a large-diameter portion 42 having a large diameter. Further, the small-diameter portion 41 and the large-diameter portion 42 constitute a step portion.
  • the small-diameter portion 41 can have a thickness of 3 mm and a diameter of about 18 mm, and the large-diameter portion 42 can have a thickness of 3 mm and a diameter of about 42 mm.
  • the height of the stepped portion can be about 4 mm, for example.
  • the small diameter portion 41 constitutes a connection portion with the support column 30, and the support column 30 is connected to the upper surface of the central portion of the small diameter portion 41.
  • the small diameter portion 41 is provided with two through holes for inserting the lead wires 53a and 53b.
  • the large diameter portion 42 constitutes a connection portion with the heat sink 70 and is fitted with the heat sink 70.
  • the support member 40 is fitted into the first opening 70 a of the heat sink 70 so that the outer peripheral surface of the large diameter portion 42 is in contact with the inner peripheral surface of the heat sink 70. Thereby, the heat of the support member 40 can be efficiently conducted to the heat sink 70.
  • the large diameter portion 42 is formed with four concave portions 42a as guide holes for caulking a part of the heat sink 70.
  • the concave portion 42 a is formed so as to cut out a part of the upper end portion of the large diameter portion 42.
  • the opening 11 of the globe 10 abuts on the upper surface of the large-diameter portion 42, and the opening 11 of the globe 10 is closed.
  • the support member 40 and the heat sink 70 can be fixed using an adhesive such as silicone resin, instead of being fixed by caulking.
  • the drive circuit (circuit unit) 50 is a lighting circuit for causing the LED module 20 (LED 22) to emit light (lights), and supplies predetermined power to the LED module 20.
  • the drive circuit 50 converts AC power supplied from the base 90 via the pair of lead wires 53c and 53d into DC power, and the DC power is supplied to the LED module 20 via the pair of lead wires 53a and 53b. It is a power supply circuit for supplying.
  • the drive circuit 50 includes a circuit board 51 and a plurality of circuit elements (electronic components) 52 mounted on the circuit board 51.
  • the circuit board 51 is a printed wiring board on which metal wiring is patterned, and electrically connects a plurality of circuit elements 52 mounted on the circuit board 51.
  • the circuit board 51 is arranged in such a posture that the main surface intersects the lamp axis J (so that the main surface intersects the axis of the support column 30).
  • the circuit board 51 is arranged in a posture in which the main surface is orthogonal to the lamp axis J (so that the main surface is orthogonal to the axis of the support column 30).
  • the circuit element 52 is a circuit component such as a semiconductor element such as a capacitive element such as an electrolytic capacitor or a ceramic capacitor, a resistance element, a rectifier circuit element, a coil element, a choke coil (choke transformer), a noise filter, a diode, or an integrated circuit element. It is. Many of the circuit elements 52 are mounted on the main surface of the circuit board 51 on the base side.
  • a semiconductor element such as a capacitive element such as an electrolytic capacitor or a ceramic capacitor, a resistance element, a rectifier circuit element, a coil element, a choke coil (choke transformer), a noise filter, a diode, or an integrated circuit element. It is.
  • Many of the circuit elements 52 are mounted on the main surface of the circuit board 51 on the base side.
  • the circuit element 52 includes those having high heat resistance (first circuit element) and elements having low heat resistance (second circuit element).
  • An example of the circuit element 52 having low heat resistance is an electrolytic capacitor.
  • the drive circuit 50 configured as described above is housed in the circuit case 60.
  • the circuit board 51 is placed on a protruding part (board holding part) 61 a 1 provided on the inner surface of the case body 61, and the cap part 62 is formed on the main surface of the circuit board 51.
  • the provided protrusion 62a is in contact. Thereby, the circuit board 51 is held by the circuit case 60.
  • the drive circuit 50 may be appropriately selected and combined with a dimmer circuit, a booster circuit, or the like.
  • the drive circuit 50 and the LED module 20 are electrically connected by a pair of lead wires 53a and 53b.
  • the drive circuit 50 and the base 90 are electrically connected by a pair of lead wires 53c and 53d.
  • These four lead wires 53a to 53d are, for example, alloy copper lead wires, and are composed of a core wire made of alloy copper and an insulating resin film covering the core wire.
  • the lead wire 53a is a conducting wire (plus output terminal wire) for supplying a high voltage (positive voltage) from the drive circuit 50 to the LED module 20, and the lead wire 53b is the drive circuit 50.
  • This is a conducting wire (minus-side output terminal wire) for supplying a low-voltage side voltage (negative voltage) to the LED module 20.
  • the lead wires 53a and 53b are inserted into through holes provided in the support member 40 and drawn out to the LED module side (inside the globe 10).
  • each of the lead wires 53a (53b) is inserted into the through hole 27a (27b) of the substrate 21 of the LED module 20 and soldered to the terminals 26a and 26b.
  • the other end (core wire) of each of the lead wires 53a and 53b is electrically connected to the metal wiring of the circuit board 51 by solder or the like.
  • the lead wires 53c and 53d are electric wires for supplying the power for lighting the LED module 20 from the base 90 to the drive circuit 50.
  • One end (core wire) of each of the lead wires 53c and 53d is electrically connected to the base 90 (shell portion 91 or eyelet portion 93), and each other end (core wire) is a power input portion of the circuit board 51. It is electrically connected to (metal wiring) by solder or the like.
  • the circuit case 60 is an insulating case for housing the drive circuit 50 and is configured to surround the drive circuit 50. Specifically, the circuit case 60 is configured to surround the circuit board 51 and the circuit element 52. The circuit case 60 is housed in the heat sink 70 and the base 90.
  • FIG. 7 is a cross-sectional perspective view showing the configuration of the circuit case in the light bulb shaped lamp according to the embodiment of the present invention. In FIG. 7, circuit elements are not shown.
  • the circuit case 60 includes a case body 61 and a cap 62.
  • the case body 61 is an insulating case (housing) having openings on both sides. Protruding portions (substrate holding portions) 61 a 1 are provided at a plurality of locations (for example, three locations) on the inner surface of the case main body 61 in order to place the circuit board 51.
  • the circuit board 51 is placed on the upper surface of the protruding portion 61a1.
  • the case main body 61 can be configured using, for example, an insulating resin material such as polybutylene terephthalate (PBT).
  • the case main body 61 has a large-diameter cylindrical first case 61 a that is substantially the same shape as the heat sink 70, and a small-diameter cylindrical shape that is connected to the first case 61 a and substantially the same shape as the base 90. It is comprised with the 2nd case part 61b.
  • the first case portion 61 a located on the glove side is housed in the heat sink 70. Most of the drive circuit 50 is covered by the first case portion 61a.
  • the second case portion 61b located on the base side is connected to the base 90.
  • the base 90 is externally fitted to the second case part 61 b so that the second case part 61 b is accommodated in the base 90.
  • the opening on the base side of the circuit case 60 (case body 61) is closed.
  • a screwing portion for screwing with the base 90 is formed on the outer peripheral surface of the second case portion 61b, and the base 90 is screwed into the second case portion 61b to thereby form the circuit case 60 ( It is fixed to the case body 61).
  • the cap part 62 is an insulating substantially bottomed cylindrical member configured in a cap shape.
  • a plurality of protrusions 62 a that protrude toward the main surface of the circuit board 51 are provided on the inner surface of the lid part of the cap part 62.
  • the cap 62 can also be configured using an insulating resin material such as PBT.
  • the circuit case 60 configured as described above has an area in the circuit case 60 separated into two space areas with the circuit board 51 as a boundary.
  • the circuit case 60 since the circuit board 51 is sandwiched between the case main body 61 and the cap part 62, the circuit case 60 includes an area surrounded by the cap part 62 and the circuit board 51, and a case main body. Divided into a region surrounded by the part 61 and the circuit board 51.
  • the circuit case 60 is provided with the cap portion 62.
  • the circuit case 60 may be configured only by the case main body portion 61 without providing the cap portion 62.
  • the heat sink 70 is a heat radiating member and is connected to the support member 40. Thereby, the heat generated in the LED module 20 is conducted to the heat sink 70 via the support column 30 and the support member 40. Thereby, the heat of the LED module 20 can be radiated.
  • the heat sink 70 extends toward the base 90 and is configured to surround the drive circuit 50. That is, the drive circuit 50 is disposed inside the heat sink 70. Since the drive circuit 50 is surrounded by the circuit case 60, the heat sink 70 is configured to surround the circuit case 60.
  • the heat sink 70 extends to the boundary portion between the first case portion 61a and the second case portion 61b of the circuit case 60. That is, the first case portion 61 a is surrounded by the heat sink 70, but the second case portion 61 b is not surrounded by the heat sink 70.
  • the heat sink 70 is preferably made of a material having high thermal conductivity, and can be a metal member made of metal, for example.
  • the heat sink 70 in the present embodiment is formed using aluminum.
  • the heat sink 70 may be formed using a non-metallic material such as a resin instead of a metal.
  • the heat sink 70 is preferably made of a nonmetallic material having high thermal conductivity.
  • the heat sink 70 is configured to be fitted with the support member 40.
  • the inner peripheral surface of the heat sink 70 and the outer peripheral surface of the support member 40 are surfaces in the entire circumferential direction. In contact.
  • FIG. 8 is a perspective view showing the configuration of the heat sink in the light bulb shaped lamp according to the embodiment of the present invention.
  • the heat sink 70 is a cylindrical body having an opening (first opening) 70a on the globe side and an opening (second opening) 70b on the base side, and the opening 70a on the globe side. Is configured to be larger than the opening 70b on the base side.
  • the heat sink 70 is a substantially cylindrical member having a constant thickness and gradually changing an inner diameter and an outer diameter.
  • the heat sink 70 is configured in a skirt shape so that the inner surface and the outer surface are surfaces of a truncated cone.
  • the heat sink 70 in the present embodiment is configured such that the inner diameter and the outer diameter become smaller from the first opening 70a toward the second opening 70b. Therefore, the inner peripheral surface and the outer peripheral surface of the heat sink 70 are tapered surfaces (inclined surfaces) configured to be inclined with respect to the lamp axis J.
  • the heat sink 70 configured as described above is provided between the circuit case 60 and the outer casing 80 so as to leave a predetermined gap between the circuit case 60 (first case portion 61a) and the outer casing 80. Has been placed. That is, there is an air layer between the inner peripheral surface of the heat sink 70 and the outer peripheral surface of the circuit case (first case portion 61a) and between the outer peripheral surface of the heat sink 70 and the inner peripheral surface of the outer casing 80. Exists. Thereby, when the circuit case 60 or the outer casing 80 and the heat sink 70 are in contact with each other, the circuit case 60 or the outer casing 80 is caused by the difference in linear expansion coefficient between the circuit case 60 or the outer casing 80 and the heat sink 70. The crack which generate
  • the heat sink 70 has a bent portion provided so as to be bent inward of the cylindrical member of the heat sink 70.
  • the bent portion of the heat sink 70 is provided at the opening end of the cylindrical member of the heat sink 70 on the base side.
  • the outer casing 80 also has a bent portion provided so as to be bent inward of the cylindrical member of the outer casing 80.
  • the circuit case 60 also has a bent portion provided so as to bend inward of the cylindrical member of the circuit case 60. The bent portion of the heat sink 70 is sandwiched between the bent portion of the outer casing 80 and the bent portion of the circuit case 60.
  • the outer casing 80 is an outer member configured to surround the periphery of the heat sink 70.
  • the outer surface of the outer casing 80 is exposed outside the lamp (in the atmosphere).
  • the outer casing 80 is an insulating cover having an insulating property made of an insulating material. By covering the metal heat sink 70 with the insulating outer casing 80, the insulating property of the light bulb shaped lamp 1 can be improved.
  • the outer casing 80 can be made of an insulating resin material such as PBT, for example.
  • the outer casing 80 is a substantially cylindrical member having a constant thickness and an inner diameter and an outer diameter that gradually change.
  • the outer casing 80 can be configured in a skirt shape so that the inner surface and the outer surface are surfaces of a truncated cone.
  • the outer casing 80 is configured such that the inner diameter and outer diameter gradually decrease toward the base side.
  • the base 90 is a power receiving unit that receives power for causing the LED module 20 (LED 22) to emit light from the outside of the lamp.
  • the base 90 is attached to a socket of a lighting fixture, for example. Thereby, the base 90 can receive electric power from the socket of the lighting fixture when lighting the light bulb shaped lamp 1.
  • the base 90 is supplied with AC power from, for example, a commercial power supply of AC 100V.
  • the base 90 in the present embodiment receives AC power through two contact points, and the power received by the base 90 is input to the power input unit of the drive circuit 50 via the pair of lead wires 53c and 53b.
  • the base 90 has a metal bottomed cylindrical shape, and includes a shell portion 91 whose outer peripheral surface is a male screw, and an eyelet portion 93 attached to the shell portion 91 via an insulating portion 92.
  • a screwing portion for screwing into the socket of the lighting fixture is formed on the outer peripheral surface of the base 90.
  • a screwing portion for screwing with the screwing portion of the case main body portion 61 (second case portion 61b) of the circuit case 60 is formed on the inner peripheral surface of the base 90.
  • the type of the base 90 is not particularly limited, but in the present embodiment, a screwed-type Edison type (E type) base is used.
  • E type screwed-type Edison type
  • the base 90 may be another type of base such as a plug-type base.
  • FIG. 9 is a diagram for explaining a heat dissipation path in the light bulb shaped lamp according to the embodiment of the present invention.
  • the LED module 20, the support 30, the support member 40, the circuit board 51, the circuit element 52, The base 90 is arranged in this order.
  • a region between the LED module 20 and the circuit board 51 in the lamp axis J is defined as a first area A, and a region between the circuit board 51 and the tip of the base 90 in the lamp axis J.
  • the first region A is a region where the temperature rises mainly due to the heat generated in the LED module 20 when the LED module 20 emits light
  • the first area A and the second area B are areas that are physically separated by using the circuit board 51 as a partition wall, and are areas that are separated in terms of temperature distribution.
  • the first region A on the LED module 20 side with respect to the circuit board 51 becomes a high temperature region because the temperature rises due to heat generated in the LED module 20. That is, in the first region A, the heat generated by the LED module 20 becomes dominant.
  • the temperature of the support column 30 and the support member 40 in the first region A is about 95 ° C.
  • the temperature of the heat sink 70 in the first region A is about 90 ° C.
  • the spatial region in the first region A is also a region of 90 ° C. or more due to a temperature increase due to radiant heat from the support column 30, the support member 40, and the heat sink 70 heated by the heat conducted from the LED module 20.
  • the second region B on the base 90 side with respect to the circuit board 51 rises in temperature due to heat generated in the circuit element 52, but becomes a low temperature region which is a lower temperature region than the first region A. That is, in the second region B, heat radiated from the circuit element 52 that generates heat at a temperature lower than the heat generation temperature of the LED module 20 is dominant.
  • the base 90 temperature in the second region B is about 60 ° C.
  • the temperature of the spatial region in the second region B also rises due to the heat generated by the circuit element 52, but is about 85 ° C. at the maximum and is a region of 90 ° C. or less.
  • the first region A is a high temperature region of 90 ° C. or more which is higher in temperature than the second region B when the LED module 20 emits light.
  • the second region B is a medium to high temperature region of 90 ° C. or lower, with the temperature not rising above the first region A when the LED module 20 emits light.
  • the second region B can be further separated into a high temperature region B H and a low temperature region B L which is a lower temperature region than the high temperature region B H.
  • the high temperature region B H is a region surrounded by the heat sink 70
  • the low temperature region B L is a region not surrounded by the heat sink 70.
  • the temperature of the space region of the high temperature region BH becomes a high temperature region around 80 ° C.
  • the low temperature region BL is not surrounded by the heat sink 70, it is hardly affected by the heat generated in the LED module 20, and the temperature rises due to the low temperature heat generated in the circuit element 52.
  • the temperature of the base 90 in the low temperature region BL is 60 ° C. at the maximum, and the spatial region in the low temperature region BL is 60 ° C. or less.
  • the circuit board 51 separates the space area inside the lamp into the first area A and the second area B.
  • the heat generated in the LED module 20 is conducted to the LED module 20 ⁇ the support 30 ⁇ the support member 40 ⁇ the heat sink 70 ⁇ the outer casing 80 and is radiated to the outside as indicated by the black arrows in FIG.
  • the heat generated in the LED module 20 is dissipated through the first region A without being almost conducted to the second region B.
  • Heat is radiated to the outside as a path (heat transfer path). That is, since heat diffuses toward the lower thermal resistance, the heat generated in the LED module 20 is not the circuit board 51 having a higher thermal resistance, but a metal member (the support 30, the support having a lower thermal resistance). It diffuses towards the member 40, heat sink 70). As a result, the heat generated in the LED module 20 is radiated through the metal member in the first region A.
  • the heat generated in the circuit element 52 moves downward in the space area in the case body 61 as shown by the white arrow in FIG.
  • the heat generated in the circuit element 52 is also conducted to the case body 61, and the heat conducted to the first case 61a is radiated to the outside through the heat sink 70 and the outer casing 80, and the second The heat conducted to the case portion 61 b is conducted to the base 90. Since the base 90 is mounted on the lighting fixture when the LED module 20 emits light, the heat conducted to the base 90 is efficiently radiated through the lighting fixture.
  • the heat generated in the circuit element 52 is radiated to the outside using the second region B as a heat dissipation path (heat transfer path).
  • the heat generated in the circuit element 52 includes heat radiated using the high temperature region B H of the second region B as a heat dissipation path and heat radiated using the low temperature region BL of the second region B as a heat dissipation path. is there.
  • the heat generated in the LED module 20 and the heat generated in the circuit element 52 are reduced between the first region A and the second region B. It is possible to dissipate heat through different heat dissipation paths. Therefore, it is possible to achieve both the improvement in heat dissipation of the LED module 20 (LED22) and the improvement in heat dissipation of the drive circuit 50.
  • the circuit element (first circuit element) having high heat resistance among the plurality of circuit elements 52 mounted on the circuit board 51 is positioned in the high temperature region B H of the second region B. It is preferable to implement in.
  • the circuit element (second circuit element) having lower heat resistance than the first circuit element among the plurality of circuit elements 52 be mounted so as to be located in the low temperature region BL of the second region B.
  • the electrolytic capacitor is a circuit element having low heat resistance, it is preferable to mount the electrolytic capacitor so that the capacitance portion is located in the low temperature region BL of the second region B as shown in FIG.
  • the electrolytic capacitor can be easily disposed in the low temperature region BL of the second region B by making the lead terminal longer than the other circuit elements 52. it can.
  • the component temperature of the circuit element 52 is higher than in the case of arranging in the high temperature region BH. Can be reduced by about 5 ° C. Thereby, deterioration of the circuit element 52 can be suppressed and the life of the circuit element 52 can be extended.
  • FIG. 10 is a schematic cross-sectional view of the illumination device according to the embodiment of the present invention.
  • the lighting device 2 As shown in FIG. 10, the lighting device 2 according to the embodiment of the present invention is used by being mounted on, for example, an indoor ceiling, and includes the light bulb shaped lamp 1 according to the above embodiment and the lighting fixture 3. Prepare.
  • the lighting fixture 3 turns off and turns on the light bulb shaped lamp 1 and includes a fixture main body 4 attached to the ceiling and a translucent lamp cover 5 covering the light bulb shaped lamp 1.
  • the appliance body 4 has a socket 4a.
  • a base 90 of the light bulb shaped lamp 1 is screwed into the socket 4a. Electric power is supplied to the light bulb shaped lamp 1 through the socket 4a.
  • the LED module 20 has a COB type structure in which an LED chip is directly mounted on the substrate 21 as a light emitting element.
  • the present invention is not limited to this.
  • a resin container having a recess (cavity), an LED chip mounted in the recess, and a sealing member (phosphor-containing resin) enclosed in the recess
  • An SMD type LED module configured by mounting a plurality of LED elements on a substrate 21 on which metal wiring is formed using a package type LED element (SMD type LED element) made of Absent.
  • SMD type LED element package type LED element
  • substrate was used as the board
  • substrates which formed LED22 and the sealing member 23 on the surface were mutually.
  • One LED module 20 may be configured by bonding.
  • the LED module 20 is configured to emit white light by the blue LED chip and the yellow phosphor, but is not limited thereto.
  • a red phosphor or a green phosphor may be further mixed in addition to the yellow phosphor.
  • the LED chip may emit an LED chip that emits a color other than blue.
  • a combination of phosphor particles that emit light in three primary colors (red, green, and blue) can be used as the phosphor particles.
  • a wavelength conversion material other than the phosphor particles may be used.
  • the wavelength conversion material absorbs light of a certain wavelength such as a semiconductor, a metal complex, an organic dye, or a pigment, and has a wavelength different from the absorbed light.
  • a material containing a substance that emits light may be used.
  • the LED is exemplified as the light emitting element, but other solid light emitting elements such as a semiconductor light emitting element such as a semiconductor laser, an organic EL (Electro Luminescence), or an inorganic EL may be used.
  • a semiconductor light emitting element such as a semiconductor laser, an organic EL (Electro Luminescence), or an inorganic EL may be used.
  • the present invention is useful as a light bulb shaped lamp that can be substituted for a conventional incandescent light bulb and the like, and can be widely used in lighting devices and the like.

Abstract

 照明用光源の一例である電球形ランプ(1)は、グローブ(10)と、グローブ(10)の内方に向かって延設された支柱(30)と、支柱(30)の一端に接続されたLEDモジュール(20)と、支柱(30)の他端に接続された支持部材(40)と、開口部(70a)に支持部材(40)が嵌め込まれたヒートシンク(70)と、主面が支柱(30)の軸と交差するように配置された回路基板(51)と、回路基板(51)に実装された複数の回路素子(52)と、回路素子(52)を囲むように構成された回路ケース(60)と、回路ケース(60)の一部に接続された口金(90)とを備え、主としてLEDモジュール(20)で発生する熱によって温度上昇する第1領域Aと、主として複数の回路素子(52)で発生する熱によって温度上昇する第2領域Bとが、回路基板(51)によって分離されている。

Description

照明用光源及び照明装置
 本発明は、照明用光源及び照明装置に関し、特に、発光ダイオード(LED:Light Emitting Diode)を用いた電球形ランプ及びこれを用いた照明装置に関する。
 LED等の半導体発光素子は、小型、高効率及び長寿命であることから、様々な製品の光源として期待されている。中でも、電球形LEDランプ(LED電球)は、従来から知られる電球形蛍光灯や白熱電球に代替する照明用光源として開発が進められている(特許文献1)。
 電球形LEDランプは、例えば、光源となるLEDモジュールと、LEDモジュールを覆うグローブと、LEDモジュールを支持する支持部材と、LEDモジュールに電力を供給する駆動回路と、駆動回路を囲むように構成された外郭筐体と、電力を受電する口金とを備える。LEDモジュールは、基板と、基板上に実装された複数のLED(発光素子)とを備える。
特開2006-313717号公報
 近年、配光特性や外観を白熱電球に模した構成の電球形LEDランプが検討されている。例えば、白熱電球に用いられるような透明ガラスからなるグローブ(クリアバルブ)を用いて、当該グローブ内の中心位置にLEDモジュールを中空に保持する構成の電球形LEDランプが提案されている。この場合、例えば、グローブの開口からグローブの中心に向かって延設された支柱を用いて、この支柱の頂部にLEDモジュールを固定する。
 LEDモジュールに実装されるLEDは、発光によってLED自身から熱が発生し、これによりLEDの温度が上昇して光出力が低下する。つまり、LEDは、自身が発する熱によって、発光効率が低下する。
 また、電球形LEDランプではさらなる高光束化が要求されており、LEDが多用された高出力タイプのLEDランプの研究開発が進められている。例えば、40Wや60W相当の明るさの電球形LEDランプが検討されている。このような高ワット化に伴って、LEDモジュールの発熱量が増加するので、LEDモジュールの放熱対策は極めて重要である。
 この対策の一つとして、外郭筐体の内部にヒートシンクを配置し、LEDモジュール(LED)で発生する熱を効率良く放熱することも考えられている。
 一方、LEDモジュールの発光時には駆動回路からも熱が発生する。この駆動回路で発生する発熱によって、駆動回路を構成する回路素子(回路部品)が劣化する。特に、回路素子の中には、耐熱性が低いものも存在する。したがって、駆動回路の放熱対策も重要である。
 しかしながら、LEDモジュールの放熱用にヒートシンクを用いた場合、LEDモジュールの熱引きによって高温となるヒートシンクが駆動回路を囲う構造となるので、駆動回路が高温環境下に置かれることになる。したがって、この場合、回路素子を耐熱限界付近温度でしか動作させることができず、さらなる高ワット化が困難となっていた。
 本発明は、このような課題を解決するためになされたものであり、ヒートシンクを用いた場合であっても、LED(発光素子)の放熱性を向上するとともに駆動回路の放熱性も向上することのできる照明用光源及び照明装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る照明用光源の一態様は、グローブと、前記グローブの内方に向かって延設された支柱と、前記支柱の一端に接続された発光モジュールと、前記支柱の他端に接続された支持部材と、開口部を有し、当該開口部に前記支持部材が嵌め込まれたヒートシンクと、主面が前記支柱の軸と交差するように配置された回路基板と、前記回路基板に実装された複数の回路素子と、前記回路素子を囲むように構成された回路ケースと、前記回路ケースの一部に接続された口金とを備え、前記支柱の軸に沿って、前記発光モジュール、前記回路基板及び前記口金の順に位置しており、主として前記発光モジュールで発生する熱によって温度上昇する第1領域と、主として前記複数の回路素子で発生する熱によって温度上昇する第2領域とが、前記回路基板によって分離されていることを特徴とする。
 また、本発明に係る照明用光源の一態様において、前記ヒートシンクは、前記口金に向かって延設されており、前記第2領域は、高温領域と低温領域とからなり、前記高温領域は、前記ヒートシンクに囲まれる領域であり、前記低温領域は、前記ヒートシンクに囲まれてない領域であって、前記高温領域よりも低温の領域である、としてもよい。
 また、本発明に係る照明用光源の一態様において、前記複数の回路素子のうち耐熱性が高い第1回路素子は、前記高温領域に位置し、前記複数の回路素子のうち第1回路素子よりも耐熱性が低い第2回路素子は、前記低温領域に位置する、としてもよい。
 また、本発明に係る照明用光源の一態様において、前記第2回路素子は、電解コンデンサである、としてもよい。
 また、本発明に係る照明用光源の一態様において、前記発光モジュールの発光時において、前記第1領域は前記第2領域よりも温度上昇する、としてもよい。
 また、本発明に係る照明用光源の一態様において、前記発光モジュールの発光時において、前記第1領域の温度は90℃以上であり、前記第2領域の前記低温領域の温度は60℃以下である、としてもよい。
 また、本発明に係る照明装置の一態様は、上記いずれかの照明用光源を備えることを特徴とする。
 本発明によれば、LED(発光素子)の放熱性の向上と駆動回路の放熱性の向上との両立を図ることができる。
図1は、本発明の実施の形態に係る電球形ランプの外観斜視図である。 図2は、本発明の実施の形態に係る電球形ランプの分解斜視図である。 図3は、本発明の実施の形態に係る電球形ランプの断面図である。 図4(a)は、本発明の実施の形態に係る電球形ランプにおけるLEDモジュールの平面図であり、図4(b)は、図4(a)のA-A’線における同LEDモジュールの断面図であり、図4(c)は、図4(a)のB-B’線における同LEDモジュールの断面図である。 図5は、本発明の実施の形態に係る電球形ランプのLEDモジュールにおけるLED(LEDチップ)周辺の拡大断面図である。 図6は、本発明の実施の形態に係る電球形ランプにおける支柱及び支持部材の構成を示す斜視図である。 図7は、本発明の実施の形態に係る電球形ランプにおける回路ケースの構成を示す断面斜視図である。 図8は、本発明の実施の形態に係る電球形ランプにおけるヒートシンクの構成を示す斜視図である。 図9は、本発明の実施の形態に係る電球形ランプにおける放熱経路を説明するための図である。 図10は、本発明の実施の形態に係る照明装置の概略断面図である。
 以下、本発明の実施の形態に係る照明用光源及び照明装置について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
 以下の実施の形態では、照明用光源の一例として、電球形LEDランプ(LED電球)について説明する。
 (電球形ランプの全体構成)
 まず、本実施の形態に係る電球形ランプ1の全体構成について、図1及び図2を用いて説明する。図1は、本発明の実施の形態に係る電球形ランプの外観斜視図である。また、図2は、本発明の実施の形態に係る電球形ランプの分解斜視図である。なお、図2では、リード線53a~53dは省略している。
 図1及び図2に示すように、本実施の形態に係る電球形ランプ1は、電球形蛍光灯又は白熱電球の代替品となる電球形ランプであって、グローブ10と、光源であるLEDモジュール20と、支柱30と、支持部材40と、駆動回路50と、回路ケース60と、ヒートシンク70と、外郭筐体80と、口金90とを備える。
 なお、電球形ランプ1は、グローブ10と外郭筐体80と口金90とによって外囲器が構成されている。
 以下、本実施の形態に係る電球形ランプ1の各構成要素について、図2を参照しながら、図3を用いて詳細に説明する。図3は、本発明の実施の形態に係る電球形ランプの断面図である。
 なお、図3において、紙面上下方向に沿って描かれた一点鎖線は電球形ランプ1のランプ軸J(中心軸)を示しており、本実施の形態において、ランプ軸Jは、グローブ軸と一致している。また、ランプ軸Jとは、電球形ランプ1を照明装置(不図示)のソケットに取り付ける際の回転中心となる軸であり、口金90の回転軸と一致している。また、図3において、駆動回路50は断面図ではなく側面図で示されている。
 (グローブ)
 図3に示すように、グローブ10は、LEDモジュール20から放出される光をランプ外部に取り出すための略半球状の透光性カバーである。本実施の形態におけるグローブ10は、可視光に対して透明なシリカガラス製のガラスバルブ(クリアバルブ)である。したがって、グローブ10内に収納されたLEDモジュール20は、グローブ10の外側から視認することができる。
 LEDモジュール20は、グローブ10によって覆われている。これにより、グローブ10の内面に入射したLEDモジュール20の光は、グローブ10を透過してグローブ10の外部へと取り出される。本実施の形態において、グローブ10は、LEDモジュール20を収納するように構成されている。
 グローブ10の形状は、一端が球状に閉塞され、他端に開口部11を有する形状である。具体的には、グローブ10の形状は、中空の球の一部が、球の中心部から遠ざかる方向に伸びながら狭まったような形状であり、球の中心部から遠ざかった位置に開口部11が形成されている。このような形状のグローブ10としては、一般的な電球形蛍光灯や白熱電球と同様の形状のガラスバルブを用いることができる。例えば、グローブ10として、A形、G形又はE形等のガラスバルブを用いることができる。
 また、グローブ10の開口部11は、支持部材40の表面に載置される。この状態で、支持部材40と外郭筐体80との間にシリコーン樹脂等の接着剤を塗布することによってグローブ10が固定される。
 なお、グローブ10は、必ずしも可視光に対して透明である必要はなく、グローブ10に光拡散機能を持たせてもよい。例えば、シリカや炭酸カルシウム等の光拡散材を含有する樹脂や白色顔料等をグローブ10の内面又は外面の全面に塗布することによって乳白色の光拡散膜を形成することができる。このように、グローブ10に光拡散機能を持たせることにより、LEDモジュール20からグローブ10に入射する光を拡散させることができるので、ランプの配光角を拡大することができる。
 また、グローブ10の形状としては、A形等に限らず、回転楕円体又は偏球体であってもよい。グローブ10の材質としては、ガラス材に限らず、アクリル(PMMA)やポリカーボネート(PC)等の樹脂等を用いてもよい。この場合、樹脂に光拡散材を含有させてもよい。
 (LEDモジュール)
 LEDモジュール20は、発光素子を有する発光モジュールであって、白色等の所定の色(波長)の光を放出する。図3に示すように、LEDモジュール20は、グローブ10の内方に配置されており、グローブ10によって形成される球形状の中心位置(例えば、グローブ10の内径が大きい径大部分の内部)に配置されることが好ましい。このように、グローブ10の中心位置にLEDモジュール20が配置されることにより、従来のフィラメントコイルを用いた白熱電球と近似した配光特性を実現することができる。
 また、LEDモジュール20は、支柱30によってグローブ10内に中空に保持されており、リード線53a及び53bを介して駆動回路50から供給される電力によって発光する。本実施の形態では、LEDモジュール20の基板21が支柱30によって支持されている。
 ここで、本発明の実施の形態に係るLEDモジュール20の各構成要素について、図4を用いて説明する。図4(a)は、本発明の実施の形態に係る電球形ランプにおけるLEDモジュールの平面図であり、図4(b)は、図4(a)のA-A’線における同LEDモジュールの断面図である。図4(c)は、図4(a)のB-B’線における同LEDモジュールの断面図である。
 図4の(a)~(c)に示すように、LEDモジュール20は、基板21と、LED22と、封止部材23と、金属配線24と、ワイヤー25と、端子26a及び26bとを有する。本実施の形態におけるLEDモジュール20は、ベアチップが基板21上に直接実装されたCOB(Chip On Board)構造である。以下、LEDモジュール20の各構成要素について詳述する。
 まず、基板21について説明する。基板21は、LED22を実装するための実装基板であり、LED22が実装される面である第1主面(表側面)と、当該第1主面に対向する第2主面(裏側面)とを有する。図4(a)に示すように、基板21は、例えば、平面視(グローブ10の頂部から見たとき)が長方形の矩形板状の基板である。
 基板21は、支柱30の一端に接続される。具体的には、基板21の第2主面と支柱30の第1固定面30aとが面接触するようにして接続される。
 基板21としては、LED22から発せられる光に対して光透過率が低い基板、例えば全透過率が10%以下の白色アルミナ基板等の白色基板又は樹脂被膜された金属基板(メタルベース基板)等を用いることができる。このように、光透過率が低い基板を用いることにより、基板21を透過して第2主面から光が出射することを抑制することができ、色ムラを抑制することができる。また、安価な白色基板を用いることができるので、低コスト化を実現することができる。
 一方、基板21として、光透過率が高い透光性基板を用いることもできる。透光性基板を用いることにより、LED22の光は、基板21の内部を透過し、LED22が実装されていない面(裏側面)からも出射される。したがって、LED22が基板21の第1主面(表側面)だけに実装された場合であっても、第2主面(裏側面)からも光が出射されるので、白熱電球と近似した配光特性を得ることが可能となる。また、LEDモジュール20から全方位に光を放出させることができるので、全配光特性を実現することも可能となる。
 透光性基板としては、例えば、可視光に対する全透過率が80%以上の基板、又は、可視光に対して透明な(すなわち透過率が極めて高く向こう側が透けて見える状態)透明基板を用いることができる。このような透光性基板としては、多結晶のアルミナや窒化アルミニウムからなる透光性セラミックス基板、ガラスからなる透明ガラス基板、水晶からなる水晶基板、サファイアからなるサファイア基板又は透明樹脂材料からなる透明樹脂基板等を用いることができる。
 本実施の形態では、透光性を有する基板21として、焼結アルミナからなる白色の多結晶セラミックス基板を用いた。例えば、厚さ1mmで光の反射率が94%の白色アルミナ基板、又は、厚さ0.635mmで光の反射率が88%の白色アルミナ基板を用いることができる。
 なお、基板21としては、樹脂基板、フレキシブル基板、又はメタルベース基板を用いることもできる。また、基板21の形状としては、長方形に限らず、正方形又は円形等の他の形状のものを用いることもできる。
 また、基板21には、2本のリード線53a及び53bとの電気的接続を行うために、2つの貫通孔27a及び27bが設けられている。リード線53a(53b)は、先端部が貫通孔27a(27b)に挿通されて基板21に形成された端子26a(26b)と半田接続されている。
 次に、LED22について説明する。LED22は、発光素子の一例であって、所定の電力により発光する半導体発光素子である。基板21上の複数のLED22は全て同じものが用いられており、LED22はVf特性が全て同じとなるように選定されている。また、各LED22は、いずれも単色の可視光を発するベアチップである。本実施の形態では、通電されれば青色光を発する青色LEDチップを用いている。青色LEDチップとしては、例えばInGaN系の材料によって構成された、中心波長が440nm~470nmの窒化ガリウム系の半導体発光素子を用いることができる。
 また、LED22は、基板21の第1主面(表側面)のみに実装されており、基板21の長辺方向に沿って複数の列をなすようにして複数個実装されている。本実施の形態では、60W相当の明るさを実現するために、48個のLED22を12直4並で接続しており、一列が12個のLED22からなる素子列を4列並行するように設けている。
 なお、本実施の形態では、複数のLED22を実装したが、LED22の実装数は、電球形ランプの用途に応じて適宜変更すればよい。例えば、豆電球等に代替する低出力タイプのLEDランプの場合、LED22は1個としてもよい。一方、高出力タイプのLEDランプの場合は、1つの素子列内におけるLED22の実装数をさらに増やしてもよい。また、LED22の素子列は、4列に限らず、1~3列としてもよいし、5列以上としてもよい。
 また、基板21上に実装された複数のLED22は、そのうちの一部が支柱30の直上に位置するように配置されていてもよい。この場合、複数のLED22のうちの半分以上が支柱30の直上に位置することが好ましい。つまり、図4(a)に示すように、平面視において、LED22のうちの半分以上が支柱30と重なるように配置されることが好ましい。このようにLED22を配置することによって、LEDモジュール20全体としての放熱性を向上させることができる。
 ここで、本実施の形態で用いられるLED22について、図5を用いて説明する。図5は、本発明の実施の形態に係る電球形ランプのLEDモジュールにおけるLED(LEDチップ)周辺の拡大断面図である。
 図5に示すように、LED22は、サファイア基板22aと、当該サファイア基板22a上に積層された、互いに異なる組成からなる複数の窒化物半導体層22bとを有する。
 窒化物半導体層22bの上面の両端部には、カソード電極22cとアノード電極22dとが設けられている。また、カソード電極22c及びアノード電極22dの上には、ワイヤーボンド部22e及び22fがそれぞれ設けられている。
 互いに隣り合うLED22において、一方のLED22のカソード電極22c及び他方のLED22のアノード電極22dのそれぞれは、ワイヤー25によって金属配線24とワイヤーボンディングされることで接続されている。なお、後述するように、金属配線24を介さずに、隣り合うLED22の電極同士を直接ワイヤー25によって接続してもよい。
 各LED22は、サファイア基板22a側の面が基板21の第1主面と対向するように、透光性のチップボンディング材22gにより基板21の上に実装されている。チップボンディング材22gには、酸化金属からなるフィラーを含有したシリコーン樹脂などを用いることができる。チップボンディング材22gに透光性材料を使用することにより、LED22の側面から出る光の損失を低減することができ、チップボンディング材22gによる影の発生を抑制することができる。
 図4に戻り、次に、封止部材23について説明する。封止部材23は、例えば樹脂からなり、LED22を覆うように基板21上に形成されている。封止部材23は、複数のLED22の一列分を一括封止するように形成されている。本実施の形態では、LED22の素子列が4列設けられているので、4本の封止部材23が形成される。4本の封止部材23の各々は、複数のLED22の並び方向(列方向)に沿って基板21の第1主面上に直線状に設けられている。
 封止部材23は、主として透光性材料からなるが、LED22の光の波長を所定の波長に変換する必要がある場合には、波長変換材が透光性材料に混入される。
 本実施の形態における封止部材23は、波長変換材として蛍光体を含み、LED22が発する光の波長(色)を変換する波長変換部材である。このような封止部材23としては、例えば、蛍光体粒子を含有する絶縁性の樹脂材料(蛍光体含有樹脂)によって構成することができる。蛍光体粒子は、LED22が発する光によって励起されて所望の色(波長)の光を放出する。
 封止部材23を構成する樹脂材料としては、例えば、シリコーン樹脂を用いることができる。また、封止部材23には、光拡散材を分散させてもよい。なお、封止部材23は、必ずしも樹脂材料によって形成する必要はなく、フッ素系樹脂などの有機材のほか、低融点ガラスやゾルゲルガラス等の無機材によって形成してもよい。
 封止部材23に含有させる蛍光体粒子としては、例えば、LED22が青色光を発光する青色LEDである場合、白色光を得るために、例えばYAG系の黄色蛍光体粒子を用いることができる。これにより、LED22が発した青色光の一部は、封止部材23に含まれる黄色蛍光体粒子によって黄色光に波長変換される。そして、黄色蛍光体粒子に吸収されなかった青色光と、黄色蛍光体粒子によって波長変換された黄色光とは、封止部材23中で拡散及び混合されることにより、封止部材23から白色光となって出射される。また、光拡散材としては、シリカなどの粒子が用いられる。
 本実施の形態における封止部材23は、シリコーン樹脂に所定の蛍光体粒子を分散させた蛍光体含有樹脂としており、ディスペンサーによって基板21の第1主面に塗布して硬化させることで形成することができる。この場合、封止部材23の長手方向に垂直な断面における形状は、略半円形となる。
 なお、封止部材23は、直線状ではなく、平面視が矩形状となるように形成してもよい。この場合、封止部材23は、例えば、基板21上の全てのLED22を一括封するように形成してもよい。あるいは、封止部材23は、各LED22を個別に覆うように形成してもよい。この場合、封止部材23は、例えば、略半球状に形成することができる。
 また、基板21の裏面側に向かう光(漏れ光)を波長変換するために、LED22と基板21との間あるいは基板21の第2主面(裏側面)に、第2波長変換部材として、蛍光体粒子とガラス等の無機結合材(バインダー)とからなる焼結体膜等の蛍光体膜(蛍光体層)又は基板21の表面と同じ蛍光体含有樹脂をさらに形成しても構わない。このように、基板21の第2主面に第2波長変換部材をさらに形成することにより、第2主面から光が漏れる場合であっても、基板21の両面から白色光を放出することができる。
 次に、金属配線24について説明する。金属配線24は、LED22を発光させるための電流が流れる導電性配線であって、基板21の表面上に、所定形状にパターン形成される。図4(a)に示すように、金属配線24は、基板21の第1主面に形成される。金属配線24によって、リード線53a及び53bからLEDモジュール20に給電された電力が各LED22に供給される。
 金属配線24は、各LED素子列における複数のLED22同士を直列接続するために形成されている。例えば、金属配線24は、隣り合うLED22の間に島状に形成されている。また、金属配線24は、各素子列同士を並列接続するために形成されている。各LED22は、ワイヤー25を介して金属配線24と電気的に接続されている。なお、LED22の間の島状の金属配線24は設けなくても構わない。この場合。隣り合うLED22同士は、chip-to-chipでワイヤーボンディングされる。
 金属配線24は、例えば、金属材料からなる金属膜をパターニングしたり、印刷したりすることによって形成することができる。金属配線24の金属材料としては、例えば、銀(Ag)、タングステン(W)、銅(Cu)又は金(Au)等を用いることができる。
 また、封止部材23から露出する金属配線24については、端子26a及び26bを除いて、ガラス材によるガラス膜(ガラスコート膜)又は樹脂材による樹脂膜(樹脂コート膜)によって被覆することが好ましい。これにより、LEDモジュール20における絶縁性を向上させたり、基板21の表面の反射率を向上させたりすることができる。
 ワイヤー25は、例えば金ワイヤー等の電線である。図4(b)に示すように、ワイヤー25は、LED22と金属配線24とを接続する。図5で説明したように、ワイヤー25により、LED22の上面に設けられたカソード電極22c(又はアノード電極22d)とLED22の両側に隣接して形成された金属配線24とがワイヤーボンド部22e(又は22f)を介してワイヤーボンディングされている。
 なお、本実施の形態のように、ワイヤー25は、封止部材23から露出しないように、全体が封止部材23の中に埋め込まれている。これにより、露出するワイヤー25によって光が吸収されたり反射したりすることを防止できる。
 次に、端子26a及び26bについて説明する。端子26a及び26bは、LED22を発光させるための直流電力を、LEDモジュール20の外部から受電するための外部接続端子である。本実施の形態において、端子26a及び26bは、リード線53a及び53bとの半田接続される。
 端子26a及び26bは、貫通孔27a及び27bを囲むように基板21の第1主面に所定形状で形成される。端子26a及び26bは、金属配線24と連続して形成されており、金属配線24と電気的に接続されている。なお、端子26a及び26bは、金属配線24と同じ金属材料を用いて、金属配線24と同時にパターン形成される。
 また、端子26a及び26bは、LEDモジュール20の給電部であり、リード線53a及び53bから受電した直流電力は、金属配線24とワイヤー25とを介して各LED22に供給される。
 (支柱)
 図3に示すように、支柱30は、グローブ10の開口部11の近傍からグローブ10の内方に向かって延設された長尺状部材である。本実施の形態において、支柱30は、当該支柱30の軸がランプ軸Jに沿って延設されている。つまり、支柱30の軸とランプ軸Jとは平行である。
 支柱30は、LEDモジュール20を支持する支持部材として機能し、支柱30の一端にはLEDモジュール20が接続されている。このように、グローブ10の内方に向かって延伸する支柱30にLEDモジュール20が取り付けられることにより、白熱電球と同様の広配光角の配光特性を実現することができる。一方、支柱30の他端には支持部材40が接続されている。
 また、支柱30は、LEDモジュール20(LED22)で発生する熱を放熱させるための放熱部材(ヒートシンク)としても機能する。したがって、支柱30は、アルミニウム(Al)、銅(Cu)又は鉄(Fe)等を主成分とする金属材料又は熱伝導率の高い樹脂材料によって構成することが好ましい。これにより、支柱30を介してLEDモジュール20で発生した熱を効率良く支持部材40に伝導させることができる。なお、支柱30の熱伝導率は、基板21の熱伝導率よりも大きいことが好ましい。本実施の形態において、支柱30は、アルミニウムを用いて成形されている。
 支柱30は、LEDモジュール20と支持部材40との間に挟まれた構成となっている。支柱30のグローブ10の頂部側の一端はLEDモジュール20の基板21の中央部に接続されており、支柱30の口金側の他端は支持部材40の中央部に接続されている。
 ここで、図6を用いて、支柱30の詳細構成について説明する。図6は、本発明の実施の形態に係る電球形ランプにおける支柱及び支持部材の構成を示す斜視図である。
 図6に示すように、支柱30の一端には、LEDモジュール20の基板21との接続部分として、基板21が固定される第1固定面30aが形成されている。本実施の形態において、第1固定面30aは、基板21の第2主面(裏面)と接触する接触面である。LEDモジュール20の基板21と支柱30の第1固定面30aとは、例えばシリコーン樹脂等の接着剤によって固着される。したがって、基板21と第1固定面30aとの間には接着剤が存在する場合もある。また、基板21と支柱30とは、ねじによって固定されていてもよい。
 一方、支柱30の他端には、支持部材40との接続部分として、支持部材40が固定される第2固定面30bが形成されている。本実施の形態において、第2固定面30bは、支持部材40の表面と接触する接触面である。支持部材40と支柱30とは、例えば、接着剤やねじ等の固定部材を用いたり、支柱30を支持部材40に圧入したりすることによって固定することができる。
 支柱30としては、図6に示すように、断面積(支柱30の軸を法線とする平面で切断したときの断面における面積)が一定である中実構造の円柱を用いることができる。つまり、支柱30の任意の断面積が同じであり、支柱30の断面積は、支柱30の長手方向における位置に依らず一定である。この場合、第1固定面30aと第2固定面30bとは円形であり、その面積は同じである。本実施の形態における支柱30は、直径が15mmの円柱である。
 なお、支柱30としては、円柱以外に、四角柱や三角柱等の多角柱を用いることもできる。また、支柱30の形状については、断面積が一定のものに限らず、円柱と角柱とを組み合わせたようなもの等、途中で断面積が変化するような形状であってもよい。
 (支持部材)
 支持部材40は、支柱30を支持する支持台である。図3に示すように、支持部材40は、グローブ10の開口部11を塞ぐように構成されている。また、支持部材40は、ヒートシンク70に接続されている。本実施の形態では、支持部材40は、支持部材40の外周がヒートシンク70の内面に接触するように、ヒートシンク70の第1開口部70aに嵌め込まれている。
 支持部材40は、LEDモジュール20(LED22)で発生する熱を放熱させるための放熱部材(ヒートシンク)としても機能する。したがって、支持部材40は、アルミニウム(Al)、銅(Cu)又は鉄(Fe)等を主成分とする金属材料又は熱伝導率の高い樹脂材料によって構成することが好ましい。これにより、支柱30からの熱を効率良くヒートシンク70に伝導させることができる。本実施の形態において、支持部材40はアルミニウムを用いて成形されている。
 ここで、図3及び図6を参照して、支持部材40の詳細な構成について説明する。図3及び図6に示すように、支持部材40は、段差部を有する円盤状部材であって、直径が小さい径小部41と直径が大きい径大部42とによって構成されている。また、径小部41と径大部42とで段差部が構成されている。例えば、径小部41は、厚さが3mmで直径が18mm程度とすることができ、径大部42は、厚さが3mmで直径が42mm程度とすることができる。なお、段差部の高さは、例えば4mm程度とすることができる。
 径小部41は、支柱30との接続部を構成し、径小部41の中央部の上面には支柱30が接続されている。なお、径小部41には、リード線53a及び53bを挿通するための2つの貫通孔が設けられている。
 径大部42は、ヒートシンク70との接続部を構成し、ヒートシンク70と嵌め合わされる。図3に示すように、支持部材40は、径大部42の外周面がヒートシンク70の内周面に接触するようにしてヒートシンク70の第1開口部70aに嵌め込まれている。これにより、支持部材40の熱をヒートシンク70に効率良く伝導させることができる。
 また、径大部42には、ヒートシンク70の一部をかしめる時のガイド穴として4つの凹部42aが形成されている。凹部42aは、径大部42の上端部の一部を切り欠くようにして形成されている。径大部42の上面にはグローブ10の開口部11が当接し、グローブ10の開口部11が塞がれる。なお、支持部材40とヒートシンク70とは、かしめによって固定するのではなく、シリコーン樹脂等の接着剤を用いて固定することもできる。
 (駆動回路)
 図3に示すように、駆動回路(回路ユニット)50は、LEDモジュール20(LED22)を発光(点灯)させるための点灯回路であって、LEDモジュール20に所定の電力を供給する。例えば、駆動回路50は、一対のリード線53c及び53dを介して口金90から供給される交流電力を直流電力に変換し、一対のリード線53a及び53bを介して当該直流電力をLEDモジュール20に供給するための電源回路である。
 駆動回路50は、回路基板51と、回路基板51に実装された複数の回路素子(電子部品)52とによって構成されている。
 回路基板51は、金属配線がパターン形成されたプリント配線基板であり、当該回路基板51に実装された複数の回路素子52同士を電気的に接続する。回路基板51は、主面がランプ軸Jと交差する姿勢で(主面が支柱30の軸と交差するように)配置されている。本実施の形態において、回路基板51は、主面がランプ軸Jと直交する姿勢で(主面が支柱30の軸と直交するように)配置されている。
 回路素子52は、例えば、電解コンデンサやセラミックコンデンサ等の容量素子、抵抗素子、整流回路素子、コイル素子、チョークコイル(チョークトランス)、ノイズフィルタ、ダイオード又は集積回路素子等の半導体素子等の回路部品である。回路素子52の多くは、回路基板51の口金側の主面に実装されている。
 回路素子52には、耐熱性が高いもの(第1回路素子)と耐熱性が低いもの(第2回路素子)とがある。耐熱性が低い回路素子52としては、電解コンデンサが挙げられる。
 このように構成される駆動回路50は、回路ケース60内に収納されている。本実施の形態では、回路基板51は、ケース本体部61の内面に設けられた突出部(基板保持部)61a1に載置されており、また、回路基板51の主面にはキャップ部62に設けられた突起62aが当接している。これにより、回路基板51が回路ケース60に保持されている。なお、駆動回路50には、調光回路や昇圧回路などを適宜選択して組み合わせてもよい。
 駆動回路50とLEDモジュール20とは、一対のリード線53a及び53bによって電気的に接続されている。また、駆動回路50と口金90とは、一対のリード線53c及び53dによって電気的に接続されている。これら4本のリード線53a~53dは、例えば合金銅リード線であり、合金銅からなる芯線と当該芯線を被覆する絶縁性の樹脂被膜とからなる。
 本実施の形態において、リード線53aは、駆動回路50からLEDモジュール20に高圧側電圧(正電圧)を供給するための導線(プラス側出力端子線)であり、リード線53bは、駆動回路50からLEDモジュール20に低圧側電圧(負電圧)を供給するための導線(マイナス側出力端子線)である。リード線53a及び53bは、支持部材40に設けられた貫通孔に挿通されてLEDモジュール側(グローブ10内)に引き出されている。
 なお、リード線53a(53b)の各々の一端(芯線)は、LEDモジュール20の基板21の貫通孔27a(27b)に挿通されて端子26a及び26bと半田接続されている。一方、リード線53a及び53bの各々の他端(芯線)は、回路基板51の金属配線と半田等によって電気的に接続されている。
 また、リード線53c及び53dは、LEDモジュール20を点灯させるための電力を、口金90から駆動回路50に供給するための電線である。リード線53c及び53dの各々の一端(芯線)は、口金90(シェル部91又はアイレット部93)と電気的に接続されるとともに、各々の他端(芯線)は、回路基板51の電力入力部(金属配線)と半田等によって電気的に接続されている。
 (回路ケース)
 図3に示すように、回路ケース60は、駆動回路50を収納するための絶縁ケースであって、駆動回路50を囲むように構成されている。具体的に、回路ケース60は、回路基板51及び回路素子52を囲むように構成されている。また、回路ケース60は、ヒートシンク70及び口金90内に収納される。
 ここで、図3を参照しながら、図7を用いて回路ケース60の詳細構成について説明する。図7は、本発明の実施の形態に係る電球形ランプにおける回路ケースの構成を示す断面斜視図である。なお、図7において、回路素子は図示していない。
 図7に示すように、回路ケース60は、ケース本体部61とキャップ部62とによって構成されている。
 ケース本体部61は、両側が開口を有する絶縁性のケース(筐体)である。ケース本体部61の内面の複数箇所(例えば3箇所)には、回路基板51を載置するために突出部(基板保持部)61a1が設けられている。突出部61a1の上面に回路基板51が載置される。ケース本体部61は、例えば、ポリブチレンテレフタレート(PBT)等の絶縁性樹脂材料等を用いて構成することができる。
 本実施の形態において、ケース本体部61は、ヒートシンク70と略同形の大径円筒状の第1ケース部61aと、当該第1ケース部61aに連結され、口金90と略同形の小径円筒状の第2ケース部61bとで構成されている。
 図3に示すように、グローブ側に位置する第1ケース部61aはヒートシンク70内に収納されている。駆動回路50の大部分は、この第1ケース部61aによって覆われている。
 一方、口金側に位置する第2ケース部61bは口金90に接続されている。具体的には、第2ケース部61bが口金90内に収納されるように、第2ケース部61bには口金90が外嵌されている。これにより、回路ケース60(ケース本体部61)の口金側の開口が塞がれる。本実施の形態では、第2ケース部61bの外周面には口金90と螺合するための螺合部が形成されており、口金90は第2ケース部61bにねじ込まれることによって回路ケース60(ケース本体部61)に固定される。
 図7に示すように、キャップ部62は、キャップ状に構成された絶縁性の略有底円筒部材である。キャップ部62の蓋部の内面には、回路基板51の主面に向かって突出する複数の突起62aが設けれている。これにより、キャップ部62をケース本体部61に嵌め込んだときに、図3に示すように、キャップ部62の突起62aの先端が回路基板51の表面に当接する。
 キャップ部62も、ケース本体部61と同様に、例えばPBT等の絶縁性樹脂材料等を用いて構成することができる。
 このように構成される回路ケース60は、回路ケース60内の領域が、回路基板51を境界として2つの空間領域に分離されている。本実施の形態において、回路基板51は、ケース本体部61とキャップ部62との間に挟持されているので、回路ケース60は、キャップ部62と回路基板51とで囲まれる領域と、ケース本体部61と回路基板51とで囲まれる領域とに二分されている。
 なお、本実施の形態において、回路ケース60にはキャップ部62を設けたが、キャップ部62を設けずに、ケース本体部61のみによって回路ケース60を構成しても構わない。
 (ヒートシンク)
 ヒートシンク70は、放熱部材であり、支持部材40に接続されている。これにより、LEDモジュール20で発生した熱は、支柱30及び支持部材40を介してヒートシンク70に伝導する。これにより、LEDモジュール20の熱を放熱させることができる。
 本実施の形態において、ヒートシンク70は、口金90に向かって延設されており、駆動回路50を囲むように構成されている。すなわち、ヒートシンク70の内方には駆動回路50が配置されている。駆動回路50は回路ケース60に囲まれているので、ヒートシンク70は、回路ケース60を囲むように構成されている。
 また、本実施の形態において、ヒートシンク70は、回路ケース60の第1ケース部61aと第2ケース部61bとの境界部分にまで延設されている。つまり、第1ケース部61aはヒートシンク70に囲まれているが、第2ケース部61bはヒートシンク70に囲まれていない。
 ヒートシンク70は、熱伝導率が高い材料によって構成することが好ましく、例えば、金属製の金属部材とすることができる。本実施の形態におけるヒートシンク70は、アルミニウムを用いて成形されている。なお、ヒートシンク70は、金属ではなく、樹脂等の非金属材料を用いて形成されていてもよい。この場合、ヒートシンク70は、熱伝導率の高い非金属材料を用いることが好ましい。
 本実施の形態において、ヒートシンク70は、支持部材40と嵌め合わされるように構成されており、本実施の形態では、ヒートシンク70の内周面と支持部材40の外周面とが周方向全体において面接触している。
 ここで、図8を用いてヒートシンク70の詳細構成について説明する。図8は、本発明の実施の形態に係る電球形ランプにおけるヒートシンクの構成を示す斜視図である。
 図8に示すように、ヒートシンク70は、グローブ側の開口部(第1開口部)70aと口金側の開口部(第2開口部)70bとを有する筒体であり、グローブ側の開口部70aは口金側の開口部70bよりも大きくなるように構成されている。具体的に、ヒートシンク70は、肉厚が一定で、内径及び外径が漸次変化する略円筒部材であり、例えば内面及び外面が円錐台の表面となるようにスカート状に構成されている。本実施の形態におけるヒートシンク70は、第1開口部70aから第2開口部70bに向かって内径及び外径が小さくなるように構成されている。したがって、ヒートシンク70の内周面及び外周面は、ランプ軸Jに対して傾斜するように構成されたテーパ面(傾斜面)となっている。
 このように構成されるヒートシンク70は、回路ケース60(第1ケース部61a)及び外郭筐体80との間に所定の隙間を空けるようにして、回路ケース60と外郭筐体80との間に配置されている。つまり、ヒートシンク70の内周面と回路ケース(第1ケース部61a)の外周面との間、及び、ヒートシンク70の外周面と外郭筐体80の内周面との間には、空気層が存在する。これにより、回路ケース60又は外郭筐体80とヒートシンク70とが接触している場合に、回路ケース60又は外郭筐体80とヒートシンク70との線膨張係数の差によって回路ケース60又は外郭筐体80に発生するクラックを抑制することができる。
 また、図8に示すように、本実施の形態において、ヒートシンク70は、当該ヒートシンク70の円筒部材の内方に向かって折れ曲がるように設けられた屈曲部を有する。ヒートシンク70の屈曲部は、ヒートシンク70の円筒部材の口金側の開口端部に設けられている。さらに、図3に示すように、外郭筐体80も、当該外郭筐体80の円筒部材の内方に向かって折れ曲がるように設けられた屈曲部を有する。さらに、回路ケース60も、当該回路ケース60の円筒部材の内方に向かって折れ曲がるように設けられた屈曲部を有する。ヒートシンク70の屈曲部は、外郭筐体80の屈曲部と回路ケース60の屈曲部とによって挟持されている。
 (外郭筐体)
 図3に示すように、外郭筐体80は、ヒートシンク70の周囲を囲むように構成された外郭部材である。外郭筐体80の外面は、ランプ外部(大気中)に露出している。外郭筐体80は、絶縁材料によって構成された絶縁性を有する絶縁性カバーである。絶縁性の外郭筐体80によって金属製のヒートシンク70を覆うことによって、電球形ランプ1の絶縁性を向上させることができる。外郭筐体80は、例えば、PBT等の絶縁性樹脂材料によって構成することができる。
 外郭筐体80は、肉厚一定で、内径及び外径が漸次変化する略円筒部材であり、例えば内面及び外面が円錐台の表面となるようにスカート状に構成することができる。本実施の形態において、外郭筐体80は、口金側に向かって漸次内径及び外径が小さくなるように構成されている。
 (口金)
 口金90は、LEDモジュール20(LED22)を発光させるための電力をランプ外部から受電する受電部である。口金90は、例えば、照明器具のソケットに取り付けられる。これにより、口金90は、電球形ランプ1を点灯させる際に、照明器具のソケットから電力を受けることができる。口金90には、例えばAC100Vの商用電源から交流電力が供給される。本実施の形態における口金90は二接点によって交流電力を受電し、口金90で受電した電力は、一対のリード線53c及び53bを介して駆動回路50の電力入力部に入力される。
 口金90は、金属製の有底筒体形状であって、外周面が雄ネジとなっているシェル部91と、シェル部91に絶縁部92を介して装着されたアイレット部93とを備える。口金90の外周面には、照明器具のソケットに螺合させるための螺合部が形成されている。また、口金90の内周面には、回路ケース60のケース本体部61(第2ケース部61b)の螺合部に螺合させるための螺合部が形成されている。
 口金90の種類は、特に限定されるものではないが、本実施の形態では、ねじ込み型のエジソンタイプ(E型)の口金を用いている。例えば、口金90として、E26形又はE17形、あるいはE16形等が挙げられる。なお、口金90としては、差し込み型の口金等、他のタイプの口金を用いてもよい。
 (本発明の特徴構成)
 以下、本実施の形態に係る電球形ランプ1の特徴について、図9を用いて説明する。図9は、本発明の実施の形態に係る電球形ランプにおける放熱経路を説明するための図である。
 図9に示すように、本実施の形態における電球形ランプ1では、ランプ軸J(支柱30の軸)に沿って、LEDモジュール20、支柱30、支持部材40、回路基板51、回路素子52及び口金90が、この順で配置されている。
 この場合、図9に示すように、ランプ軸JおけるLEDモジュール20と回路基板51との間の領域を第1領域Aとし、ランプ軸Jおける回路基板51と口金90の先端との間の領域を第2領域Bとすると、第1領域Aは、LEDモジュール20の発光時において、主としてLEDモジュール20で発生する熱によって温度上昇する領域であり、第2領域Bは、LEDモジュール20の発光時において、主として回路素子52で発生する熱によって温度上昇する領域である。
 このように、第1領域Aと第2領域Bとは、回路基板51を隔壁として物理的に分離された領域であるとともに、温度分布的に分離された領域となっている。
 回路基板51を基準にしてLEDモジュール20側の第1領域Aは、LEDモジュール20で発生する熱によって温度上昇するので高温領域となる。つまり、第1領域Aでは、LEDモジュール20で発生する熱が支配的となる。例えば、LEDモジュール20の発光時において、第1領域Aにおける支柱30及び支持部材40の温度は約95℃であり、第1領域Aにおけるヒートシンク70の温度は約90℃である。また、第1領域Aにおける空間領域も、LEDモジュール20から伝導した熱によって熱せられた支柱30、支持部材40及びヒートシンク70からの輻射熱によって温度上昇し、90℃以上の領域となっている。
 一方、回路基板51を基準にして口金90側の第2領域Bは、回路素子52で発生する熱によって温度上昇するが、第1領域Aよりも低い温度の領域である低温領域となる。つまり、第2領域Bでは、LEDモジュール20の発熱温度よりも低い温度で発熱する回路素子52から放射される熱が支配的となる。例えば、LEDモジュール20の発光時において、第2領域Bにおける口金90温度は約60℃である。また、第2領域Bにおける空間領域も、回路素子52が発する熱によって温度上昇するが、最大でも85℃程度であり、90℃以下の領域となっている。
 このように、第1領域Aは、LEDモジュール20の発光時において、第2領域Bよりも温度上昇して90℃以上の高温領域である。一方、第2領域Bは、LEDモジュール20の発光時において、第1領域Aよりも温度は上がらず、90℃以下の中高温領域である。
 第2領域Bは、さらに、高温領域Bと、当該高温領域Bよりも低温の領域である低温領域Bとに分離することができる。高温領域Bは、ヒートシンク70に囲まれる領域であり、低温領域Bは、ヒートシンク70に囲まれてない領域である。
 高温領域Bでは、回路素子52による発熱によって温度上昇するとともに、ヒートシンク70によって囲まれているのでヒートシンク70に伝導したLEDモジュール20の熱の影響も若干受けて温度上昇する。この結果、高温領域Bの空間領域の温度は、80℃前後の高温領域となる。
 また、低温領域Bは、ヒートシンク70によって囲まれていないので、LEDモジュール20で発生した熱の影響はほとんど受けず、ほぼ回路素子52で発生する低温の熱によって温度上昇する。この結果、低温領域Bにおける口金90の温度は最大でも60℃となり、低温領域Bにおける空間領域は60℃以下となる。
 このように、本実施の形態における電球形ランプ1は、回路基板51によってランプ内部の空間領域が第1領域Aと第2領域Bとに分離されている。
 したがって、LEDモジュール20で発生した熱は、図9の黒矢印で示されるように、LEDモジュール20→支柱30→支持部材40→ヒートシンク70→外郭筐体80と伝導して外部に放熱される。
 この場合、回路基板51によって第1領域Aと第2領域Bとが仕切られているので、LEDモジュール20で発生した熱は、第2領域Bにほとんど伝導することなく、第1領域Aを放熱経路(熱伝達経路)として外部に放熱される。つまり、熱は、熱抵抗の低い方へと拡散するので、LEDモジュール20で発生した熱は、熱抵抗の高い回路基板51の方ではなく、熱抵抗の低い金属製の部材(支柱30、支持部材40、ヒートシンク70)の方へと拡散する。この結果、LEDモジュール20で発生した熱は、第1領域Aにおける金属製の部材を介して放熱されることになる。
 一方、回路素子52は回路基板51の口金側に実装されているので、回路素子52で発生した熱は、図9の白矢印で示されるように、ケース本体部61内の空間領域内を下方に向かって伝導し、ケース本体部61(第2ケース部61b)の口金側の開口から口金90に伝導する。また、回路素子52で発生した熱はケース本体部61にも伝導し、このうち第1ケース部61aに伝導した熱はヒートシンク70及び外郭筐体80を介して外部に放熱され、また、第2ケース部61bに伝導した熱は口金90に伝導する。なお、LEDモジュール20の発光時には口金90が照明器具に装着されているので、口金90に伝導した熱は照明器具を介して効率良く放熱される。
 つまり、回路素子52で発生した熱は、第2領域Bを放熱経路(熱伝達経路)として外部に放熱される。この場合、回路素子52で発生した熱は、第2領域Bの高温領域Bを放熱経路として放熱される熱と、第2領域Bの低温領域Bを放熱経路として放熱される熱とがある。
 以上、本実施の形態によれば、ヒートシンク70を用いた構造であっても、LEDモジュール20で発生する熱と回路素子52で発生する熱とを、第1領域Aと第2領域Bとの異なる放熱経路で放熱させることができる。したがって、LEDモジュール20(LED22)の放熱性の向上と駆動回路50の放熱性の向上との両立を図ることができる。
 また、本実施の形態において、回路基板51に実装された複数の回路素子52のうちの耐熱性が高い回路素子(第1回路素子)は、第2領域Bの高温領域Bに位置するように実装することが好ましい。また、複数の回路素子52のうちの第1回路素子よりも耐熱性が低い回路素子(第2回路素子)は、第2領域Bの低温領域Bに位置するように実装することが好ましい。電解コンデンサは、耐熱性が低い回路素子であるので、図9に示すように、容量部分が第2領域Bの低温領域Bに位置するように実装することが好ましい。例えば、図9に示すように、リード形電解コンデンサの場合、リード端子を他の回路素子52よりも長くすることによって、電解コンデンサを容易に第2領域Bの低温領域Bに配置することができる。
 このように、電解コンデンサ等の耐熱性の低い回路素子52を第2領域Bの低温領域Bに配置することにより、高温領域Bに配置する場合と比べて、当該回路素子52の部品温度を5℃程度低下させることができる。これにより、回路素子52の劣化を抑制し、回路素子52の長寿命化を図ることができる。
 (照明装置)
 また、本発明は、このような電球形ランプとして実現することができるだけでなく、電球形ランプを備える照明装置としても実現することができる。以下、本発明の実施の形態に係る照明装置について、図10を用いて説明する。図10は、本発明の実施の形態に係る照明装置の概略断面図である。
 図10に示すように、本発明の実施の形態に係る照明装置2は、例えば、室内の天井に装着されて使用され、上記の実施の形態に係る電球形ランプ1と、点灯器具3とを備える。
 点灯器具3は、電球形ランプ1を消灯及び点灯させるものであり、天井に取り付けられる器具本体4と、電球形ランプ1を覆う透光性のランプカバー5とを備える。
 器具本体4は、ソケット4aを有する。ソケット4aには、電球形ランプ1の口金90がねじ込まれる。このソケット4aを介して電球形ランプ1に電力が供給される。
 (変形例等)
 以上、本発明に係る電球形ランプ及び照明装置について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。
 例えば、上記の実施の形態において、LEDモジュール20は基板21上に発光素子としてLEDチップを直接実装したCOB型の構成としたが、これに限らない。その他のLEDモジュールとしては、発光素子として、凹部(キャビティ)を有する樹脂製の容器と、凹部の中に実装されたLEDチップと、凹部内に封入された封止部材(蛍光体含有樹脂)とからなるパッケージ型のLED素子(SMD型LED素子)を用いて、このLED素子を金属配線が形成された基板21上に複数個実装することで構成されたSMD型のLEDモジュールを用いても構わない。
 また、上記の実施の形態において、LEDモジュール20の基板21としては、1枚の白色基板を用いたが、表面にLED22及び封止部材23を形成した2枚の白色基板の裏側の面同士を貼り合わせることで、1つのLEDモジュール20を構成しても構わない。
 また、上記の実施の形態において、LEDモジュール20は、青色LEDチップと黄色蛍光体とによって白色光を放出するように構成したが、これに限らない。例えば、演色性を高めるために、黄色蛍光体に加えて、さらに赤色蛍光体や緑色蛍光体を混ぜても構わない。また、黄色蛍光体を用いずに、赤色蛍光体及び緑色蛍光体を含有する蛍光体含有樹脂を用いて、これと青色LEDチップとを組み合わせることによりに白色光を放出するように構成することもできる。
 また、上記の実施の形態において、LEDチップは、青色以外の色を発光するLEDチップを用いても構わない。例えば、紫外線発光のLEDチップを用いる場合、蛍光体粒子としては、三原色(赤色、緑色、青色)に発光する各色蛍光体粒子を組み合わせたものを用いることができる。さらに、蛍光体粒子以外の波長変換材を用いてもよく、例えば、波長変換材として、半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質を含んでいる材料を用いてもよい。
 また、上記の実施の形態において、発光素子としてLEDを例示したが、半導体レーザ等の半導体発光素子、有機EL(Electro Luminescence)又は無機EL等、その他の固体発光素子を用いてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明は、従来の白熱電球等に代替される電球形ランプとして有用であり、照明装置等において広く利用することができる。
 1 電球形ランプ
 2 照明装置
 3 点灯器具
 4 器具本体
 4a ソケット
 5 ランプカバー
 10 グローブ
 11 開口部
 20 LEDモジュール
 21 基板
 22 LED
 22a サファイア基板
 22b 窒化物半導体層
 22c カソード電極
 22d アノード電極
 22e、22f ワイヤーボンド部
 22g チップボンディング材
 23 封止部材
 24 金属配線
 25 ワイヤー
 26a、26b 端子
 27a、27b 貫通孔
 30、30A 支柱
 30a 第1固定面
 30b 第2固定面
 40 支持部材
 41 径小部
 42 径大部
 42a 凹部
 50 駆動回路
 51 回路基板
 52 回路素子
 53a、53b、53c、53d リード線
 60 回路ケース
 61 ケース本体部
 61a 第1ケース部
 61a1 突出部
 61b 第2ケース部
 62 キャップ部
 62a 突起
 70 ヒートシンク
 70a、70b 開口部
 80 外郭筐体
 90 口金
 91 シェル部
 92 絶縁部
 93 アイレット部

Claims (7)

  1.  グローブと、
     前記グローブの内方に向かって延設された支柱と、
     前記支柱の一端に接続された発光モジュールと、
     前記支柱の他端に接続された支持部材と、
     開口部を有し、当該開口部に前記支持部材が嵌め込まれたヒートシンクと、
     主面が前記支柱の軸と交差するように配置された回路基板と、
     前記回路基板に実装された複数の回路素子と、
     前記回路素子を囲むように構成された回路ケースと、
     前記回路ケースの一部に接続された口金とを備え、
     前記支柱の軸に沿って、前記発光モジュール、前記回路基板及び前記口金の順に位置しており、
     主として前記発光モジュールで発生する熱によって温度上昇する第1領域と、主として前記複数の回路素子で発生する熱によって温度上昇する第2領域とが、前記回路基板によって分離されている
     照明用光源。
  2.  前記ヒートシンクは、前記口金に向かって延設されており、
     前記第2領域は、高温領域と低温領域とからなり、
     前記高温領域は、前記ヒートシンクに囲まれる領域であり、
     前記低温領域は、前記ヒートシンクに囲まれてない領域であって、前記高温領域よりも低温の領域である
     請求項1に記載の照明用光源。
  3.  前記複数の回路素子のうち耐熱性が高い第1回路素子は、前記高温領域に位置し、
     前記複数の回路素子のうち第1回路素子よりも耐熱性が低い第2回路素子は、前記低温領域に位置する
     請求項2に記載の照明用光源。
  4.  前記第2回路素子は、電解コンデンサである
     請求項3に記載の照明用光源。
  5.  前記発光モジュールの発光時において、前記第1領域は前記第2領域よりも温度上昇する
     請求項1~4のいずれか1項に記載の照明用光源。
  6.  前記発光モジュールの発光時において、前記第1領域の温度は90℃以上であり、前記第2領域の前記低温領域の温度は60℃以下である
     請求項2に記載の照明用光源。
  7.  請求項1~6のいずれか1項に記載の照明用光源を備える
     照明装置。
PCT/JP2013/006618 2012-12-20 2013-11-11 照明用光源及び照明装置 WO2014097535A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014515397A JP5793721B2 (ja) 2012-12-20 2013-11-11 照明用光源及び照明装置
CN201390000973.4U CN204829330U (zh) 2012-12-20 2013-11-11 照明用光源及照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-278576 2012-12-20
JP2012278576 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014097535A1 true WO2014097535A1 (ja) 2014-06-26

Family

ID=50977902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006618 WO2014097535A1 (ja) 2012-12-20 2013-11-11 照明用光源及び照明装置

Country Status (3)

Country Link
JP (1) JP5793721B2 (ja)
CN (1) CN204829330U (ja)
WO (1) WO2014097535A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206920A (zh) * 2016-08-29 2016-12-07 上海瑞丰光电子有限公司 Led封装结构、封装方法及具有该led封装结构的led灯

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083505A (ja) * 2000-06-21 2002-03-22 Toshiba Lighting & Technology Corp 電球形蛍光ランプおよび照明器具
JP2011100682A (ja) * 2009-11-09 2011-05-19 Panasonic Corp 光源装置
JP2011138784A (ja) * 2009-02-04 2011-07-14 Panasonic Corp ランプ
JP2012022897A (ja) * 2010-07-14 2012-02-02 Panasonic Corp ランプ及び照明装置
JP2012054213A (ja) * 2010-09-03 2012-03-15 Panasonic Corp ランプ
JP2012227163A (ja) * 2010-11-04 2012-11-15 Panasonic Corp 電球形ランプ及び照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083505A (ja) * 2000-06-21 2002-03-22 Toshiba Lighting & Technology Corp 電球形蛍光ランプおよび照明器具
JP2011138784A (ja) * 2009-02-04 2011-07-14 Panasonic Corp ランプ
JP2011100682A (ja) * 2009-11-09 2011-05-19 Panasonic Corp 光源装置
JP2012022897A (ja) * 2010-07-14 2012-02-02 Panasonic Corp ランプ及び照明装置
JP2012054213A (ja) * 2010-09-03 2012-03-15 Panasonic Corp ランプ
JP2012227163A (ja) * 2010-11-04 2012-11-15 Panasonic Corp 電球形ランプ及び照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206920A (zh) * 2016-08-29 2016-12-07 上海瑞丰光电子有限公司 Led封装结构、封装方法及具有该led封装结构的led灯

Also Published As

Publication number Publication date
JP5793721B2 (ja) 2015-10-14
CN204829330U (zh) 2015-12-02
JPWO2014097535A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5830668B2 (ja) 発光装置及び照明用光源
JP2014157795A (ja) 照明用光源および照明装置
JP6098928B2 (ja) 照明用光源及び照明装置
JP2014157691A (ja) 発光装置及び照明用光源
JPWO2014013671A1 (ja) 電球形ランプ及び照明装置
JP5948666B2 (ja) 照明用光源及び照明装置
JP5793721B2 (ja) 照明用光源及び照明装置
JP6206789B2 (ja) 照明用光源および照明装置
JP5588569B2 (ja) 電球形ランプ及び照明装置
JP5563730B1 (ja) 照明用光源及び照明装置
WO2014030276A1 (ja) 電球形ランプ及び照明装置
JP6191813B2 (ja) 照明用光源及び照明装置
JP6225397B2 (ja) 照明用光源及び照明装置
JP5417556B1 (ja) 電球形ランプ及び照明装置
JP2015053233A (ja) 照明用光源及び照明装置
JP5967483B2 (ja) 照明用光源
JP5493058B1 (ja) 電球形ランプ及び照明装置
JP5420118B1 (ja) 電球形ランプ及び照明装置
WO2014041721A1 (ja) 照明用光源及び照明装置
WO2014024339A1 (ja) 電球形ランプ、照明装置及び電球形ランプの製造方法
WO2014010146A1 (ja) 電球形ランプ及び照明装置
JP6187926B2 (ja) 照明用光源及び照明装置
JP5433818B1 (ja) 電球形ランプ及び照明装置
EP2759759A1 (en) Illumination light source and lighting apparatus
JPWO2014006790A1 (ja) 電球形ランプ、照明装置及び電球形ランプの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014515397

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863914

Country of ref document: EP

Kind code of ref document: A1