WO2014094345A1 - 纳米羟基磷灰石/壳聚糖的制备方法 - Google Patents

纳米羟基磷灰石/壳聚糖的制备方法 Download PDF

Info

Publication number
WO2014094345A1
WO2014094345A1 PCT/CN2013/000754 CN2013000754W WO2014094345A1 WO 2014094345 A1 WO2014094345 A1 WO 2014094345A1 CN 2013000754 W CN2013000754 W CN 2013000754W WO 2014094345 A1 WO2014094345 A1 WO 2014094345A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
nano
phosphate
hydroxyapatite
nanohydroxyapatite
Prior art date
Application number
PCT/CN2013/000754
Other languages
English (en)
French (fr)
Inventor
李玲
董燕超
方云
王方育
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2014094345A1 publication Critical patent/WO2014094345A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to a preparation method of nano hydroxyapatite/chitosan, belonging to the technical field of inorganic nano materials.
  • Nano-hydroxyapatite has good biocompatibility and biological activity and is widely used in the repair and replacement of bone tissue, but the material is too brittle, thus limiting its bone replacement at the bearing site.
  • Shell Polysaccharide (CS) is a polysaccharide with a cation after deacetylation of chitin. It has natural degradability, is non-toxic, harmless, non-irritating, biocompatible, and suitable for various tissues and cells. Adhesion and proliferation have various excellent properties such as promotion. If n-HA and CS are made into composite materials, the new materials are expected to improve their mechanical properties in addition to excellent biocompatibility, so there is much room for development in the field of bone substitute materials.
  • n-HA/CS composites are one of the research hotspots in the field of biomedical materials.
  • the book Thein-Han has obtained a porous scaffold with a pore size of 50 ⁇ 120 ⁇ by freeze-drying method, n-HA. It can be evenly distributed in the CS matrix. There is a chemical interaction between n-HA and CS.
  • the mechanical properties of the composite are greatly improved after co-culture with pre-osteoblasts (MC 3T3-E1 ).
  • HA/CS composite materials are micron-sized materials, or materials in which nano-HA is dispersed and distributed in micron-sized CS.
  • nano-hydroxyapatite with particle width and long diameter at the nanometer scale can be easily prepared.
  • the method of chitosan composites is rare.
  • the inverse microemulsion method has attracted attention because of its high thermodynamic stability, fine particle size, uniformity, and simple operation. For example, Zhu et al.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a preparation method of nano hydroxyapatite/chitosan, which can be easily prepared by a reverse microemulsion method to obtain a particle width and a long diameter at a nanometer scale. Nano-hydroxyapatite/chitosan.
  • the preparation method of the nano hydroxyapatite/chitosan has the following steps:
  • the nano hydroxyapatite has a width of 5 to 100 nm and a length of 15 to 800 nm ; and the nano hydroxyapatite/chitosan has a width of 10 to 300 nm and a length of 20 to 990 nm.
  • the nano hydroxyapatite is synthesized by the following method: mixing a phosphate solution, a calcium salt solution and a hexadecanoyltrimethylammonium bromide solution (CTAB) to obtain a reaction system in which Ca 2+ is Ca 2+
  • the concentration of ions is 0.08 ⁇ 500 ⁇ 1 ⁇
  • the concentration of phosphate ions is 0.048 ⁇ 300 mmoH 1
  • the concentration of CTAB is mol-L 1
  • the molar ratio of calcium ion to phosphate ion is 5:3
  • the reaction is carried out for 12 to 96 hours, and the pH is adjusted to be maintained at 8 to 14 ;
  • the obtained product is centrifuged and centrifuged to obtain a microporous membrane.
  • the solid obtained by filtration was washed alternately with water and absolute ethanol for 2 to 20 times, and then dried under vacuum at 30 to 80 ° C to obtain a nano-hydroxyapatite powder.
  • the phosphate is a water-soluble inorganic compound containing a phosphate, a hydrogen phosphate or a dihydrogen phosphate in the formula.
  • the phosphate is sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, trisodium phosphate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, ammonium phosphate, ammonium hydrogen phosphate or dihydrogen phosphate. Ammonium.
  • the calcium salt is a water-soluble inorganic compound containing calcium ions.
  • the calcium salt is calcium chloride.
  • the method for preparing the nano hydroxyapatite/chitosan composite material according to the invention comprises uniformly mixing the nano hydroxyapatite with the chitosan acetic acid solution, mixing the mixture with the liquid paraffin, and adding the emulsifier span80 ( Sorbitol anhydride oleate), after the system is fully emulsified, glutaraldehyde is added to carry out cross-linking reaction, and the obtained suspension is collected by centrifugation, washed and vacuum-dried to obtain nano-hydroxyapatite/chitosan composite. material.
  • emulsifier span80 Sorbitol anhydride oleate
  • the preparation method of the reversed-phase microemulsion of the nano-hydroxyapatite/chitosan composite material provided by the invention has the particle width and the long diameter of the obtained product in the nanometer scale range, and the product has good shape and crystallinity.
  • the method has simple preparation process, low cost and is suitable for mass production, and has important application value in the field of biomedicine.
  • Figure 1 is a transmission electron micrograph of nano-hydroxyapatite.
  • Figure 2 is a transmission electron micrograph of nano-hydroxyapatite/chitosan particles.
  • Figure 3 is an infrared spectrum of nano-hydroxyapatite, chitosan and nano-hydroxyapatite/chitosan, wherein the abscissa is the wave number in cm ⁇
  • Figure 4 is an X-ray diffraction spectrum of nano-hydroxyapatite, chitosan and nano-hydroxyapatite/chitosan, wherein the abscissa is 2 ⁇ angle, that is, the angle of diffraction of the diffraction spectrometer, the unit is °;
  • Embodiment 1 A method for preparing nano hydroxyapatite/chitosan, comprising the following process steps:
  • the nano-hydroxyapatite and nano-hydroxyapatite/chitosan were respectively subjected to morphology analysis by transmission electron microscopy (JEM-2100, Japan JEOL Co., Ltd.), as shown in FIG. 1 and FIG. 2, the nano-hydroxyphosphate
  • the stone has a width of 5 to 100 nm and a length of 15 to 800 nm; and the nano-hydroxyapatite/chitosan has a width of 10 to 300 nm and a length of 20 to 990 nm.
  • Nano-hydroxyapatite, chitosan and nano-hydroxyapatite/chitosan were respectively analyzed by infrared spectroscopy using Fourier transform infrared spectrometer (FTLA2000-104, ABB Bbomem, Canada).
  • FTLA2000-104 Fourier transform infrared spectrometer
  • the obtained spectrum is shown in Fig. 3.
  • the absorption peak at 472, 566, 597, 632, 962 cm' 1 is caused by the deformation vibration of ⁇ 0 4 3 ⁇
  • the absorption peak at 1039-1097 cm' 1 is caused by the antisymmetric stretching vibration of ⁇ 0 4 3 —
  • the absorption peak appearing near 3428 cm' 1 is the NH stretching vibration absorption peak of OH and -NH 2 . Infrared diffraction pattern analysis confirmed that the obtained product was indeed nano-hydroxyapatite/chitosan.
  • the nano-hydroxyapatite, chitosan and nano-hydroxyapatite/chitosan were respectively analyzed by X-ray diffraction analyzer, and the obtained spectrum is shown in Fig. 4.
  • 2 ⁇ 25. 9°, 31
  • the diffraction peaks at 8°, 32. 8°, 34°, 39. 8°, 49. 4°, and 53. 1 ° correspond to (002), (211), (300) of nano-hydroxyapatite, respectively. , (202), (310), (321), and (004) crystal faces.
  • Embodiment 2 A method for preparing nano hydroxyapatite/chitosan, comprising the following process steps:
  • the nano-hydroxyapatite has a width of 5 to 100 nm and a length of 15 to 800 nm; and the nano-hydroxyapatite/chitosan has a width of 10 to 300 nm and a length of 20 to 990 nm.
  • Embodiment 3 A method for preparing nano hydroxyapatite/chitosan, comprising the following process steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Cosmetics (AREA)

Abstract

本发明涉及一种纳米羟基磷灰石/壳聚糖复合材料的制备方法,将纳米羟基磷灰石与壳聚糖的乙酸溶液进行均匀混合后,将混合物与液体石蜡混合,再加入乳化剂span80(山梨糖醇酐油酸酯),待体系充分乳化后,再加入戊二醛进行交联反应,所得悬浮液经离心分离、洗涤真空干燥后收集,即得到纳米羟基磷灰石/壳聚糖复合材料。本发明所提供的纳米羟基磷灰石/壳聚糖复合材料的反相微乳液制备方法,所得产品颗粒宽度及长径均在纳米尺度范围内,产品形貌规则、结晶性好。该方法制备工艺简单,成本低廉,适于批量生产,在生物医学领域有着重要的应用价值。

Description

纳米羟基磷灰石 /壳聚糖的制备方法
技术领域
本发明涉及一种纳米羟基磷灰石 /壳聚糖的制备方法, 属于无机纳米材料技 术领域。
背景技术
纳米羟基磷灰石 (n-HA) 具有良好的生物相容性和生物活性, 被广泛应用 于骨骼组织的修复与替代技术, 但该材料脆性太大, 因而限制了其在承载部位 骨替换与骨修补中的应用。 壳聚说糖(CS ) 是甲壳素脱乙酰化后带有阳离子的多 糖, 具有天然可降解性, 对人体及组织无毒、 无害、 无刺激、 生物相容性良好、 对多种组织细胞的黏附和增殖具有促进作用等多种优良特性。 如将 n-HA与 CS 制成复合材料, 新材料除具备优良的生物相容性之外还可有望改善其力学性能, 因而在骨替代材料领域有较大的发展空间。 针对 n-HA/CS复合材料所开展的研 究是目前生物医学材料领域的研究热点之一,如书 Thein-Han等采用冻干法制得了 孔隙大小为 50〜120 μ πι的多孔支架, n-HA可在 CS基质中均匀分布,在 n-HA 与 CS之间存在着化学相互作用, 复合后材料的机械性能有了较大幅度的提升, 与前成骨细胞(MC 3T3-E1 )共培养的实验结果表明, 与纯 CS相比, 复合材料 具有更好的细胞亲合性, 同时也能更好地促进细胞的增殖 [Thein-Han W. W.; Misra R. D. K., Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering, ACTA BIOMATERIALIA, 2009, 5(4): 1182—1197.]。
目前所制备的 HA/CS复合材料多为微米级材料, 或为纳米 HA分散分布在 微米级的 CS中的材料, 目前能够简便地制备颗粒宽度及长径均在纳米尺度的纳 米羟基磷灰石 /壳聚糖复合材料的方法并不多见。 在制备纳米材料的技术中, 反 相微乳液法因其具有热力学稳定性高、 粒径细小、 均匀、 操作简单等特点而备 受瞩目。如 Zhu等利用反相微乳液法制备了 CS包覆的磁性纳米粒子并成功地将 其用作抗癌药物 5-氟尿嘧啶的药物载体 [Zhu Longzhang; Ma Jingwei; Jia Nengqin; Zhao Yu; Shen Hebai, COLLOIDS AND SURFACES B: BIOINTERFACES, 2009, 68(1): 1 - 6.] c
但目前尚缺少采用反相微乳液法成功制备颗粒宽度及长径均在纳米尺度的 纳米羟基磷灰石 /壳聚糖复合材料的简便制备方法, 如能成功制备, 则将有望在 很大程度上拓展纳米羟基磷灰石 /壳聚糖复合材料在生物医学领域的应用前景。 发明内容
本发明的目的是克服现有技术中存在的不足, 提供一种纳米羟基磷灰石 /壳 聚糖的制备方法, 能够采用反相微乳液法简便地制备得到颗粒宽度与长径均在 纳米尺度的纳米羟基磷灰石 /壳聚糖。
按照本发明提供的技术方案, 所述纳米羟基磷灰石 /壳聚糖的制备方法, 特 征是, 包括以下工艺步骤:
( 1 )将 0.05〜1.5g壳聚糖粉末溶于 5~500mL质量百分浓度为 1~5%的乙酸 水溶液中, 得到壳聚糖溶液;
(2)称取 0.05〜1.5g纳米羟基磷灰石粉末, 与步骤 (1 )得到的壳聚糖溶 液混合, 得到混合物; 将混合物与 100~500mL液体石蜡混合均匀, 再加入 1〜 15mL山梨糖醇酐油酸酯, 进行乳化, 乳化时间为 0.2~50小时; 再加入 l〜15mL 质量百分浓度为 10~50%的戊二醛溶液, 在 30〜95°C的水浴中反应 5〜24小时, 得到悬浮液; 将悬浮液经离心机离心得到固体沉积物, 得到的固体沉积物用氯 仿和无水乙醇交替洗涤 2~20次,再在 30〜80°C真空干燥,得到所述的纳米羟基 磷灰石 /壳聚糖。
所述纳米羟基磷灰石的宽度为 5〜100nm, 长度为 15〜800nm; 所述纳米羟 基磷灰石 /壳聚糖的宽度为 10〜300nm, 长度为 20〜990nm。
所述纳米羟基磷灰石采用以下方法合成得到: 将磷酸盐溶液、 钙盐溶液和 十六垸基三甲基溴化铵溶液 (CTAB) 混合, 得到反应体系, 在该反应体系中 Ca2+离子的浓度为 0.08~500 ηιιηο1·ΐ 磷酸根离子的浓度为 0.048~300 mmoH1, CTAB 的浓度为
Figure imgf000004_0001
mol-L 1, 且钙离子与磷酸根离子的摩尔比为 5:3; 反应 12〜96小时, 并调节 pH值保持在 8〜14; 将得到的产物经离心机离 心后由微孔滤膜过滤,将过滤得到的固体用水和无水乙醇进行交替洗涤 2〜20次, 再在 30〜80°C真空干燥得到纳米羟基磷灰石粉末。
在一个具体实施方式中, 所述磷酸盐为分子式中含有磷酸根、 磷酸氢根或 磷酸二氢根的易溶于水的无机化合物。
在一个具体实施方式中, 所述磷酸盐为磷酸钠、 磷酸氢钠、 磷酸二氢钠、 磷酸三钠、 磷酸钾、 磷酸氢钾、 磷酸二氢钾、 磷酸铵、 磷酸氢铵或磷酸二氢铵。
在一个具体实施方式中, 所述钙盐为含有钙离子的易溶于水的无机化合物。 在一个具体实施方式中, 所述钙盐为氯化钙。
本发明所述的纳米羟基磷灰石 /壳聚糖复合材料的制备方法将纳米羟基磷灰 石与壳聚糖的乙酸溶液进行均匀混合后, 将混合物与液体石蜡混合, 再加入乳 化剂 span80 (山梨糖醇酐油酸酯), 待体系充分乳化后, 再加入戊二醛进行交联 反应, 所得悬浮液经离心分离、 洗涤真空干燥后收集, 即得到纳米羟基磷灰石 / 壳聚糖复合材料。 本发明所提供的纳米羟基磷灰石 /壳聚糖复合材料的反相微乳 液制备方法, 所得产品颗粒宽度及长径均在纳米尺度范围内, 产品形貌规则、 结晶性好。 该方法制备工艺简单, 成本低廉, 适于批量生产, 在生物医学领域 有着重要的应用价值。
说明书附图
图 1为纳米羟基磷灰石的透射电镜相片。
图 2为纳米羟基磷灰石 /壳聚糖颗粒的透射电镜相片。
图 3为纳米羟基磷灰石、 壳聚糖和纳米羟基磷灰石 /壳聚糖的红外光谱图, 其中, 横坐标为波数, 单位为 cm^
图 4为纳米羟基磷灰石、 壳聚糖和纳米羟基磷灰石 /壳聚糖的 X射线衍射谱 图, 其中, 横坐标为 2Θ角, 即衍射谱仪扫描的角度, 单位为 °;
具体实施方式 下面结合具体实施例对本发明作进一步说明。
实施例一: 一种纳米羟基磷灰石 /壳聚糖的制备方法, 包括以下工艺步骤:
( 1 )合成纳米羟基磷灰石: 将磷酸钠溶液、 氯化钙溶液和十六烷基三甲基 溴化铵溶液(CTAB)混合, 得到反应体系, 在该反应体系中 Ca2+离子的浓度为 Ο.ΟδπιπιοΙ-υ1, 磷酸根离子的浓度为 0.048ηιιηο1·ΐ CTAB的浓度为 8><1θ ηο1· L-1, 且钙离子与磷酸根离子的摩尔比为 5:3; 反应 12〜96小时, 并调节 ρΗ值保 持在 8;将得到的产物经离心机离心后由 0.22 μ ιη的微孔滤膜过滤,将过滤得到 的固体用水和无水乙醇进行交替洗涤 2次, 再在 30°C真空干燥过夜得到纳米羟 基磷灰石粉末;
(2)将 0.05g壳聚糖粉末溶于 5mL质量百分浓度为 1%的乙酸水溶液中, 得到壳聚糖溶液;
(3 )称取 0.05g步骤(1 )得到的纳米羟基磷灰石粉末或市售产品, 与步骤 (2)得到的壳聚糖溶液混合, 得到混合物; 将混合物与 100 mL液体石蜡混合 均勾, 再加入 lmL山梨糖醇酐油酸酯, 进行乳化, 乳化时间为 0.2小时; 再加 入 lmL质量百分浓度为 10%的戊二醛溶液, 在 30°C的水浴中反应 24小时, 得 到悬浮液; 将悬浮液经离心机离心得到固体沉积物, 得到的固体沉积物用氯仿 和无水乙醇交替洗涤 2次, 再在 30°C真空干燥过夜, 得到所述的纳米羟基磷灰 石 /壳聚糖;
将纳米羟基磷灰石和纳米羟基磷灰石 /壳聚糖分别用透射电电镜 (JEM-2100, 日本 JEOL公司)进行形貌分析, 如图 1、 图 2所示, 所述纳米羟 基磷灰石的宽度为 5〜100 nm, 长度为 15〜800 nm; 所述纳米羟基磷灰石 /壳聚 糖的宽度为 10〜300 nm, 长度为 20〜990 nm。
再将纳米羟基磷灰石、 壳聚糖和纳米羟基磷灰石 /壳聚糖分别用傅立叶转换 红外光谱仪(FTLA2000-104, 加拿大 ABB Bbomem公司)进行红外光谱分析, 所得图谱如图 3所示, 图中 472, 566, 597, 632, 962 cm'1处的吸收峰为 Ρ04 3· 的变形振动引起, 1039-1097 cm'1处的吸收峰为 Ρ04 3—的反对称伸缩振动引起,这 些都是纳米羟基磷灰石的特征吸收峰。 1653cm'1处为壳聚糖中酰胺的 C=0的伸 缩振动吸收峰(酰胺 I谱带), 1599cm'1处的肩峰为胺基的弯曲振动吸收峰(酰 胺 II谱带) , 而在 3428cm'1附近出现的吸收峰为 O-H及 -NH2的 N-H伸縮振动 吸收峰。 红外衍射图谱分析证实, 得到的产品确为纳米羟基磷灰石 /壳聚糖。
将纳米羟基磷灰石、 壳聚糖和纳米羟基磷灰石 /壳聚糖分别用 X射线衍射分 析仪进行物相分析, 所得图谱如图 4所示, 图中 2Θ= 25. 9° 、 31. 8° 、 32. 8° 、 34° 、 39. 8° 、 49. 4° 、 53. 1 ° 处的衍射峰分别对应于纳米羟基磷灰石的( 002)、 ( 211) 、 ( 300) 、 ( 202) 、 ( 310) 、 ( 321) 以及(004)晶面。 图中 2Θ= 12·2° 、 20.1 ° 处的两个峰是壳聚糖的特征衍射峰, 当形成复合材料后, 由于相对含量发 生了变化, 所以与纯的纳米羟基磷灰石及壳聚糖材料相比, 复合材料相应的衍 射峰强度有所下降, 但各衍射峰的出峰位置及各峰之间的相对强度仍保持不变。 X射线衍射图谱的分析结果同样证实了得到的产品确为纳米羟基磷灰石 /壳聚 实施例二: 一种纳米羟基磷灰石 /壳聚糖的制备方法, 包括以下工艺步骤:
( 1 )合成纳米羟基磷灰石: 将磷酸氢钠溶液、 氯化钙溶液和十六垸基三甲 基溴化铵溶液(CTAB)混合, 得到反应体系, 在该反应体系中 Ca2+离子的浓度 为 500mmol*L ,磷酸根离子的浓度为 300mmol,L , CTAB的浓度为 10.5 1θ ηο1 •Ι 且钙离子与磷酸根离子的摩尔比为 5:3; 反应 96小时, 并调节 ρΗ值保持 在 14; 将得到的产物经离心机离心后由 0.22 μ πι的微孔滤膜过滤, 将过滤得到 的固体用水和无水乙醇进行交替洗涤 20次,再在 80°C真空干燥过夜得到纳米羟 基磷灰石粉末;
(2)将 1.5g壳聚糖粉末溶于 500mL质量百分浓度为 5%的乙酸水溶液中, 得到壳聚糖溶液;
(3 )称取 1.5g步骤 (1 ) 得到的纳米羟基磷灰石粉末或市售产品, 与步骤 (2)得到的壳聚糖溶液混合,得到混合物;将混合物与 500mL液体石蜡混合均 匀, 再加入 15mL山梨糖醇酐油酸酯, 进行乳化, 乳化时间为 50小时; 再加入 15mL质量百分浓度为 50%的戊二醛溶液, 在 95°C的水浴中反应 5小时, 得到 悬浮液; 将悬浮液经离心机离心得到固体沉积物, 得到的固体沉积物用氯仿和 无水乙醇交替洗涤 20次, 再在 80°C真空干燥过夜,得到所述的纳米羟基磷灰石 /壳聚糖; 所述纳米羟基磷灰石的宽度为 5〜100nm, 长度为 15〜800nm; 所述纳 米羟基磷灰石 /壳聚糖的宽度为 10〜300nm, 长度为 20〜990nm。
实施例三: 一种纳米羟基磷灰石 /壳聚糖的制备方法, 包括以下工艺步骤:
( 1 )合成纳米羟基磷灰石: 将磷酸二氢钠溶液、 氯化钙溶液和十六垸基三 甲基溴化铵溶液(CTAB)混合, 得到反应体系, 在该反应体系中 Ca2+离子的浓 度为 10 mmol-L 1, 磷酸根离子的浓度为 6 mmol-L"1, CTAB的浓度为 9X10"4 mol •Ι 且钙离子与磷酸根离子的摩尔比为 5:3; 反应 36小时, 并调节 ρΗ值保持 在 10; 将得到的产物经离心机离心后由 0.22 μ πι的微孔滤膜过滤, 将过滤得到 的固体用水和无水乙醇进行交替洗涤 10次,再在 50°C真空干燥过夜得到纳米羟 基磷灰石粉末;
(2)将 lg壳聚糖粉末溶于 250mL质量百分浓度为 2%的乙酸水溶液中, 得到壳聚糖溶液;
(3 )称取 lg步骤(1 )得到的纳米羟基磷灰石粉末或巿售产品,与步骤(2) 得到的壳聚糖溶液混合, 得到混合物; 将混合物与 200mL液体石蜡混合均匀, 再加入 10mL山梨糖醇酐油酸酯,进行乳化,乳化时间为 20小时;再加入 10mL 质量百分浓度为 20%的戊二醛溶液,在 50°C的水浴中反应 12小时,得到悬浮液; 将悬浮液经离心机离心得到固体沉积物, 得到的固体沉积物用氯仿和无水乙醇 交替洗涤 10次, 再在 50Ό真空干燥过夜, 得到所述的纳米羟基磷灰石 /壳聚糖; 所述纳米羟基磷灰石的宽度为 5〜100nm, 长度为 15〜800nm; 所述纳米羟基磷 灰石 /壳聚糖的宽度为 10〜300nm, 长度为 20〜990nm。

Claims

1、一种纳米羟基磷灰石 /壳聚糖的制备方法,其特征是,包括以下工艺步骤:
( 1 )将 0.05〜1.5g壳聚糖粉末溶于 5~500mL质量百分浓度为 1~5%的乙酸 水溶液中, 得到壳聚糖溶液;
(2)称取 0.05〜1.5g纳米羟基磷灰石粉末, 与步骤 (1 )得到的壳聚糖溶 液混合, 得到混合物; 将混合物与 100~500mL液体石蜡混合均匀, 再加入 1〜 15mL山梨糖醇酐油酸酯, 进权行乳化, 乳化时间为 0.2~50小时; 再加入 l~15mL 质量百分浓度为 10~50%的戊二醛溶液, 在 30〜95°C的水浴中反应 5〜24小时, 得到悬浮液; 将悬浮液经离心机离心得到固体沉积物, 得到的固体沉积物用氯 仿和无水乙醇交替洗涤 2〜20次,再在 30〜80°C真空干燥,得到所述的纳米羟基 磷灰石 /壳聚糖。
2、如权利要求 1所述的纳米羟基磷灰石 /壳聚糖的制备方法, 其特征是: 所 述纳米羟基磷灰石的宽度为 5〜100nm, 长度为 15〜800nm; 所述纳米羟基磷灰 石 /壳聚糖的宽度为 10〜300nm, 长度为 20〜990n书m。
3、如权利要求 1所述的纳米羟基磷灰石 /壳聚糖的制备方法, 其特征是: 所 述纳米羟基磷灰石采用以下方法合成得到: 将磷酸盐溶液、 钙盐溶液和十六烷 基三甲基溴化铵溶液(CTAB)混合, 得到反应体系, 在该反应体系中 Ca2+离子 的浓度为 0.08〜500 mmol-L 1, 磷酸根离子的浓度为 0.048~300 mmol-L 1, CTAB 的浓度为 Sx lO^lO^x lO"4 mol-L-1, 且钙离子与磷酸根离子的摩尔比为 5:3; 反 应 12〜96小时, 并调节 pH值保持在 8〜14; 将得到的产物经离心机离心后由 微孔滤膜过滤, 将过滤得到的固体用水和无水乙醇进行交替洗涤 2〜20次, 再在 30〜80°C真空干燥得到纳米羟基磷灰石粉末。
4、如权利要求 3所述的纳米羟基磷灰石 /壳聚糖的制备方法, 其特征是: 所 述磷酸盐为分子式中含有磷酸根、 磷酸氢根或磷酸二氢根的易溶于水的无机化 合物。
" 5、如权利要求 4所述的纳米羟基磷灰石 /壳聚糖的制备方法, 其特征是: 所 述磷酸盐为磷酸钠、 磷酸氢钠、 磷酸二氢钠、 磷酸三钠、 磷酸钾、 磷酸氢钾、 磷酸二氢钾、 磷酸铵、 磷酸氢铵或磷酸二氢铵。
6、如权利要求 3所述的纳米羟基磷灰石 /壳聚糖的制备方法, 其特征是: 所 述钙盐为含有钙离子的易溶于水的无机化合物。
7、如权利要求 6所述的纳米羟基磷灰石 /壳聚糖的制备方法, 其特征是: 所 述钙盐为氯化钙。
PCT/CN2013/000754 2012-12-19 2013-06-25 纳米羟基磷灰石/壳聚糖的制备方法 WO2014094345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210554538.8 2012-12-19
CN2012105545388A CN102977385A (zh) 2012-12-19 2012-12-19 纳米羟基磷灰石/壳聚糖的制备方法

Publications (1)

Publication Number Publication Date
WO2014094345A1 true WO2014094345A1 (zh) 2014-06-26

Family

ID=47851752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000754 WO2014094345A1 (zh) 2012-12-19 2013-06-25 纳米羟基磷灰石/壳聚糖的制备方法

Country Status (2)

Country Link
CN (1) CN102977385A (zh)
WO (1) WO2014094345A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417516A (zh) * 2015-12-18 2016-03-23 瓮福(集团)有限责任公司 一种饲料级磷酸二氢钙生产方法
CN105597155A (zh) * 2015-12-30 2016-05-25 湖北赛罗生物材料有限责任公司 一锅法制备羟基磷灰石-天然高分子纳米复合物的方法
EP3341327A4 (en) * 2015-08-26 2019-04-24 Honeywell International Inc. PARTICULATE HYDROXYAPATITE COMPOSITIONS AND METHODS OF PREPARATION THEREOF

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977385A (zh) * 2012-12-19 2013-03-20 江南大学 纳米羟基磷灰石/壳聚糖的制备方法
CN103495204B (zh) * 2013-09-11 2014-08-13 山西医科大学 负载细胞外全基质的壳聚糖/纳米羟基磷灰石缓释微球及其制备方法
CN107050523A (zh) * 2016-12-23 2017-08-18 江南大学 一种新型β‑磷酸三钙/壳聚糖复合仿生水凝胶的制备方法
CN110172199B (zh) * 2019-06-25 2022-03-01 扬州大学 一种羟基磷灰石/超高分子量聚乙烯纳米复合物的制备方法
CN110564040A (zh) * 2019-09-23 2019-12-13 泉州宁遇新材料有限公司 一种天然防腐蚀、抗氧化hdpe塑料及其制备方法
CN113433112A (zh) * 2021-06-25 2021-09-24 辽宁大学 用于拉曼光谱检测的表面性质可控的sers基底及其制备方法和应用
CN115784697B (zh) * 2022-11-29 2024-02-23 广州市贤达建材有限公司 一种自保温蒸压加气砌块及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489231A (zh) * 2011-12-26 2012-06-13 重庆科技学院 羟基磷灰石/聚乳酸/壳聚糖复合微球的制备方法
CN102977385A (zh) * 2012-12-19 2013-03-20 江南大学 纳米羟基磷灰石/壳聚糖的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396340C (zh) * 2006-09-05 2008-06-25 四川大学 复合型纳米羟基磷灰石/医用高分子材料组织工程支架材料及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489231A (zh) * 2011-12-26 2012-06-13 重庆科技学院 羟基磷灰石/聚乳酸/壳聚糖复合微球的制备方法
CN102977385A (zh) * 2012-12-19 2013-03-20 江南大学 纳米羟基磷灰石/壳聚糖的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, XIANGNAN ET AL.: "Preparation and Performance of Drug-Loaded Nano-Hydroxyapatite/Chitosan Microspheres.", JOURNAL OF CENTRAL SOUTH UNIVERSITY ( SCIENCE AN TECHNOLOGY)., vol. 42, no. 5, May 2011 (2011-05-01), pages 1232 - 1237 *
YU , JIA ET AL.: "Synthesis and Characterization of One Dimension Hydroxyapatite Nanomaterials China Ceramics", vol. 45, no. 10, October 2009 (2009-10-01), pages 34 - 36 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3341327A4 (en) * 2015-08-26 2019-04-24 Honeywell International Inc. PARTICULATE HYDROXYAPATITE COMPOSITIONS AND METHODS OF PREPARATION THEREOF
CN105417516A (zh) * 2015-12-18 2016-03-23 瓮福(集团)有限责任公司 一种饲料级磷酸二氢钙生产方法
CN105597155A (zh) * 2015-12-30 2016-05-25 湖北赛罗生物材料有限责任公司 一锅法制备羟基磷灰石-天然高分子纳米复合物的方法

Also Published As

Publication number Publication date
CN102977385A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2014094345A1 (zh) 纳米羟基磷灰石/壳聚糖的制备方法
Ruihua et al. Preparation and characterization of a quaternized chitosan
Ranjbar et al. Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation
Mushi et al. Strong and tough chitin film from α-chitin nanofibers prepared by high pressure homogenization and chitosan addition
Salama et al. Synthesis of N-guanidinium-chitosan/silica hybrid composites: efficient adsorbents for anionic pollutants
US9289746B2 (en) Amine grafted chitosan nanofiber, method for preparation thereof and its use in heavy metal adsorption
Feng et al. Tunable chitosan hydrogels for adsorption: Property control by biobased modifiers
Alinavaz et al. Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: Ciprofloxacin delivery, release kinetics and antibacterial activity
Lakra et al. Development of cellulose acetate-chitosan-metal organic framework forward osmosis membrane for recovery of water and nutrients from wastewater
CN112675715B (zh) 一种聚酰胺纳米复合膜及其制备方法和应用
Ma et al. Ultrafine and carboxylated β-chitin nanofibers prepared from squid pen and its transparent hydrogels
Xiao et al. MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration
EP3443015A1 (en) Process for biopolymer extraction for obtaining fibrous biopolymers, fibrous biopolymers obtained with said process and fibrous alginate amide
Zhang et al. Rapid and manual-shaking exfoliation of amidoximated cellulose nanofibrils for a large-capacity filtration capture of uranium
CN105254811A (zh) 一种羧甲基壳聚糖季铵盐及其制备方法
CN108423649B (zh) 含多糖基团的叠层状球形羟基磷灰石及其制备方法与应用
CN107185500A (zh) 一种杂化羟基磷灰石多孔材料的制备及应用
Zhang et al. Synthesis of oxidized glycerol monooleate-chitosan polymer and its hydrogel formation for sustained release of trimetazidine hydrochloride
Sun et al. Efficient lysozyme adsorption on chitosan/hydroxyapatite hybrid membrane via in situ synthesis
AU2021107526A4 (en) The preparation method and application of malic acid-chitosan nanoporous hydrogel microspheres
Hajili et al. Fabrication of 3D hierarchically porous chitosan monoliths by thermally induced phase separation of chemically modified chitin
CN107413314B (zh) 一种去除废水中铬的方法
Cicek Ozkan Cellulose and chitosan biopolymer composites reinforced with graphene and their adsorption properties for basic blue 41
Sargin et al. Production of magnetic chitinous microcages from ephippia of zooplankton Daphnia longispina and heavy metal removal studies
Pighinelli et al. Structure and properties of nanocrystalline chitosan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865699

Country of ref document: EP

Kind code of ref document: A1