WO2014094289A1 - 单级开关电源 - Google Patents

单级开关电源 Download PDF

Info

Publication number
WO2014094289A1
WO2014094289A1 PCT/CN2012/087128 CN2012087128W WO2014094289A1 WO 2014094289 A1 WO2014094289 A1 WO 2014094289A1 CN 2012087128 W CN2012087128 W CN 2012087128W WO 2014094289 A1 WO2014094289 A1 WO 2014094289A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
source
switch
switching
Prior art date
Application number
PCT/CN2012/087128
Other languages
English (en)
French (fr)
Inventor
陈威伦
陈迪夫
Original Assignee
Chen Weilun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Weilun filed Critical Chen Weilun
Priority to PCT/CN2012/087128 priority Critical patent/WO2014094289A1/zh
Priority to EP12890476.0A priority patent/EP2937979A4/en
Priority to US14/654,357 priority patent/US9685872B2/en
Priority to JP2015548140A priority patent/JP6218851B2/ja
Priority to CN201280077859.1A priority patent/CN104871421B/zh
Publication of WO2014094289A1 publication Critical patent/WO2014094289A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a single-stage switching power supply, and in particular to a single-stage switching power supply. Background technique
  • Figure 1 to Figure 4 show the typical four-tube, single-stage high-frequency switching power supply topology circuit application schemes, which are basically only used for low-power AC/DC switching power supplies.
  • the simplest solution is shown in Figure 1.
  • With the active clamp network 101 its significant disadvantage is that it is not easy to use in low voltage, high current applications, because the voltage of the output storage capacitor is too low, the control of the clamp network It will be more complicated and there will be a small amount of loss;
  • the problem with the scheme shown in Figure 2 is that there are two more power diodes in the circuit, which increases the size and cost, and the loss of the clamp network;
  • the problem is that it is not completely single-stage, but a single-stage and a half. Its power factor is not easy to correct.
  • the power switch When the power switch is turned on, it also has to withstand twice the current stress from the inductor and the transformer, which increases the loss during conduction.
  • the scheme shown in Figure 4 has a passive clamp network 102, which is not efficient, and adds a pair of power diodes, which increases losses, size and cost.
  • the power switch when the power switch is turned on, it also has to withstand The twice the current stress from the inductor and the transformer exacerbates the losses during turn-on.
  • the embodiment of the present invention provides a single-stage switching power supply, where the single-stage switching power supply includes: a dual-source rectifying unit, configured to convert an alternating current input AC power into at least two direct current sources, a first direct current source and a first Two DC sources;
  • the composite switch unit includes at least a first switch circuit and a second switch circuit for respectively performing power conversion on the first DC source and the second DC source, and jointly outputting DC power, and the first DC source is connected through a storage capacitor
  • the first switching circuit, the first switching circuit is any circuit that can realize the function of the switching circuit, and the second switching circuit is a circuit with the function of the flyback switching circuit.
  • the single-stage dual-source topology, the lossless clamp, the multi-phase interleaved switch, and the dual-source control integrated switching power supply further improve the power conversion efficiency while having complete power factor correction and output hold time. .
  • FIG. 1 is a circuit diagram of a conventional switching power supply topology
  • FIG. 2 is a circuit diagram of a conventional switching power supply topology
  • FIG. 3 is a circuit diagram of a conventional switching power supply topology
  • FIG. 4 is a circuit diagram of a conventional switching power supply topology
  • 5 is a structural block diagram of a single-stage switching power supply of the present invention
  • 6 is a schematic diagram of a topology circuit of a single-stage switching power supply according to the present invention
  • FIG. 8 is a schematic diagram of a topology circuit of a single-stage switching power supply of the present invention.
  • FIG. 9 is a schematic diagram of a topology circuit of a single-stage switching power supply according to the present invention.
  • FIG. 10 is a schematic diagram of a topology circuit of a single-stage switching power supply according to the present invention.
  • FIG. 11 is a circuit diagram of an embodiment of a single-stage switching power supply of the present invention.
  • FIG. 12 is a circuit diagram of a single-phase single-stage switching dual-source control integrated circuit according to an embodiment of the present invention
  • FIG. 13 is a circuit diagram of still another embodiment of a single-stage switching power supply according to the present invention.
  • FIG. 14 is a schematic diagram of a dual-phase single-stage switching dual-source control integrated circuit according to still another embodiment of the present invention. detailed description
  • the present invention discloses a single-stage switching power supply, as shown in FIG. 5 is a structural block diagram of a single-stage switching power supply disclosed by the present invention.
  • the single-stage switching power supply disclosed by the present invention includes: a dual-source rectifying unit 501 for using an alternating current power supply The input alternating current is converted into two direct current sources, which are a first direct current source and a second direct current source respectively; the composite switch unit 502 includes a first switch circuit 5021 and a second switch circuit 5022 for respectively respectively pairing the first direct current source And the second DC source performs power factor correction, and outputs the corrected DC power.
  • the first DC source is connected to the first switch circuit through a storage capacitor, and the second switch circuit is a flyback switch power supply.
  • the dual-source rectifying unit 501 in this embodiment includes: two rectifying bridges, the AC input ends of the two rectifying bridges are connected in parallel, and the DC output negative ends are connected in parallel, thereby converting the input alternating current into two direct current sources.
  • the single-stage switching power supply of the present invention further includes: a convergence unit 503 for feeding a charging current through the composite switching unit 502 into the AC power source to form a closed loop; and a dual source control unit 504 for controlling the first switch of the composite switching unit 502 a circuit and a second switching circuit.
  • the schematic diagram of the topology circuit of the single-stage switching power supply of the present invention the rectifier bridge 601, the AC input terminals of the rectifier bridge 602 are connected in parallel, and the DC output negative terminals are connected in parallel to form a dual-source rectification network, of which two The AC input electrode and the three DC output electrodes are used to generate two DC power sources from the single-phase AC power source, which are a DC source 606 and a DC source 607, wherein one DC source 606 has an input energy storage large capacitor 604, which is called In order to store energy, another DC source 607 is not called an alternating source, thus forming a dual-source DC power supply.
  • the DC source 607 converts the alternating current into direct current through the flyback switch topology circuit 605; the direct current source 606 converts the electrical energy in the large storage capacitor 604 into direct current through the switch topology circuit 603, wherein the switch topology circuit 603 is any switch topology circuit, the switch The topology circuit 603 can be a forward, flyback, push-pull, bridge or any circuit that can realize the function of the switching circuit; the output of the two switching topology circuits outputs DC power in parallel and is stored in the output capacitor 609.
  • the single-stage switching power supply of the present invention further includes a power frequency bus network, which is composed of a measuring resistor and a combined measuring resistor. Two resistors are connected in series, one end connected in series is connected to the negative terminal of the dual-source rectified output, and the other end is connected to the power frequency alternating current I PFC , and the intermediate point of the resistor string is connected to the power frequency charging current I CH (3
  • the power frequency charging current flowing through the switch topology circuit 603 is I CH (3 , reflecting the charging current of the alternating current to the large storage capacitor 604;
  • the power frequency alternating current flowing through the switching topology circuit 605 is I Prc , reflecting the power supply
  • the current regulating current of the alternating current; the current passing current of the switching power supply is I AC , and the quantitative relationship between the three is the following formula:
  • the graphical relationship between the three is shown in Figure 7.
  • the voltage V CHQ of the energy storage is basically a pulsating DC power supply;
  • the voltage V AC of the alternating source is a full-wave DC power supply that follows the AC power supply.
  • the figure shows the charging current I CH (the size and shape of the 3 is determined only by the condition of the power supply load;
  • the passing current I AC is determined by the condition of the power supply load and the power factor requirement;
  • the switching topology circuit alternating current I Prc is uniquely determined by the above two currents, and is expressed by the equation:
  • the switching topology circuit alternating current i Prc becomes one of the objective functions that determine the dual source power controller. This is where the principle of power factor correction for dual-source switching topology circuits lies.
  • the dual-source rectification topology has at least four different topological circuits, as shown in Figure 8, Figure 9, and Figure 10.
  • Figure 6 shows a dual-source rectification topology consisting of eight diodes
  • Figure 8 shows a dual-source rectification topology consisting of five diodes
  • Figure 9 shows a dual-source rectification topology consisting of two diodes
  • Figure 10 shows six A dual source rectification topology consisting of a diode.
  • the clamp network in the embodiment of the present invention is a primary lossless clamp network or a secondary lossless clamp.
  • the network is configured to suppress a transient voltage during the turn-off of the switch of the second switch circuit.
  • the secondary lossless clamp network includes: an inductor and a capacitor connected in series, one end of the inductor is connected to the output end of the secondary coil of the transformer of the second switch circuit, and the other end of the inductor is connected to one end of the capacitor, and the other end of the capacitor Connect to the output of the secondary.
  • the primary lossless clamp network includes: an inductor and a capacitor connected in series, the inductor is a coil on the transformer, one end of which is connected to the connection of the primary coil of the second switch circuit and the switch tube, and the other end of the inductor is connected to one end of the capacitor The other end of the capacitor is connected to the primary input ground.
  • a dual-source single-phase single-stage AC/DC power supply circuit as shown in FIG. 11, the dual-source single-phase single-stage AC/DC power supply circuit of the embodiment includes: an AC rectifier bridge 1101 and an AC rectifier bridge 1102, and a large-capacity storage Capacitor 1103, transformer 1104a and transformer 1104b, primary lossless clamp network
  • the AC power After being rectified by the dual-source AC rectifier bridge 1101 and the rectifier bridge 1102, the AC power is decomposed into two DC power sources.
  • the two DC sources are referred to as an energy storage power source 1111 and an alternating power source 1112.
  • the energy storage power circuit has an input storage capacitor 1103, and the alternating power supply circuit does not, thereby forming Dual source DC power supply.
  • Each DC source is connected to a respective transformer 1104a, a primary coil in transformer 1104b, and the other ends of the two primary coils are connected to respective switches 1108 and 1109 to form a two-way single-switch circuit.
  • the switching circuit connected to the alternating power supply adopts a flyback switching power supply topology, or a two-phase interleaved flyback switching circuit or any circuit that can realize the function of the flyback switching circuit, or a switching circuit composed of them in parallel with each other to facilitate Adjust the power factor performance of the power supply, and also to undertake the power conversion power of about half of the total power of the power supply;
  • the switching circuit connected to the energy storage power supply can adopt any known switching power supply topology, such as forward, flyback, push-pull a switch circuit composed of a type, or a bridge type, or a mutual parallel connection thereof, that is, any circuit capable of realizing a switch circuit function, a flyback switching power supply topology circuit is used here to improve the output characteristics of the power supply, in particular It is the performance of low voltage, high current output, and guarantees the output hold time.
  • the lossless clamp network 1107 suppresses transient voltages during the turn-off of the switch.
  • the DC output voltage 1113 is transmitted to the feedback composite signal network 1151 of the primary side through the optocoupler element in the output sampling network 1114, and is combined with the zero current detection signal 1115 into a synonymous composite signal SYN, after being connected to the controller 1120, and then
  • the decoupling circuit recovers the original zero current detection signal 1115 and the DC output voltage 1113 optocoupler sampling signal, and the single-phase single-stage switching dual-source control integrated circuit simultaneously controls the two-way switching circuit according to the sampling signal. Saves a signal access resource.
  • the signal sample of the alternating current is indirectly taken from the sampling signal VAC of the alternating voltage
  • the power factor control current sampling CS is taken from the sum of the voltages of the sampling resistor 1116 and the sampling resistor 1117 in the bus network 1150, thereby making the single
  • the primary lossless clamp network 1106 of the single-stage switching power supply of the present invention includes: a series connected inductor and capacitor, the inductor is a section of the primary winding of the transformer 1104b of the transformer, one end of which is connected to the junction of the primary coil and the switch 1108, and the other end of the inductor is connected to one end of the capacitor Connected, the other end of the capacitor is connected to the input ground of the primary winding of transformer 1104b.
  • the current flowing through it includes, besides the stored inductor current of the primary winding of the transformer 1104b, the discharge current of the capacitor in the clamp network 1106 to the inductor in the clamp network, which is absorbed by the capacitor.
  • the electrical energy is converted into the magnetic energy of the inductor without loss, and contributes to the energy storage process together with the stored inductor current of the primary coil.
  • the switch 1108 When the switch 1108 is turned off, the electrical energy of the transient bounce potential on the primary coil of the transformer 1104b is stored in the capacitor in the clamp network through the inductance in the clamp network, thereby realizing the non-destructive suppression of the transient bounce potential;
  • the inductance in the clamp network is in the same magnet as the primary coil of the transformer 304b, but the induced potentials are opposite in polarity, the inductance potential at this moment is advantageous for further suppressing the power of the transient bounce potential.
  • the detailed working principle of the secondary lossless clamp network 1107 of the single-stage switching power supply of the present invention When the switch tube 1109 is turned on, the primary coil of the transformer 1104a is at the time of energy storage, and there is no current in the second-stage coil, at this time in the clamp network 1107 The stored energy stored in the storage capacitor is released to the inductor, and the absorbed energy of the capacitor is converted into a current in the inductor without loss, and is contributed to the output load together with the current of the magnetic energy in the inductor.
  • the switch 1109 When the switch 1109 is turned off, the electrical energy of the transient bounce potential of the primary coil of the transformer 1104a is coupled to the storage capacitor in the clamp network 1107 through the secondary coil, and the electrical energy of the bounce potential is quickly charged by the capacitor. Ground absorption, realizing the non-destructive suppression of the transient bounce potential of the switch 1109.
  • the transient voltage of the power switch tube 1108 during the turn-off process in this embodiment is suppressed by a primary lossless clamp network 1106;
  • the clamp network 1106 is composed of a capacitor and an inductor to form a coil of the inductor.
  • the same magnetic circuit is shared with the transformer 1104b, wherein the capacitor is used to quickly absorb the voltage of the transient rise, and the inductance is used to store the energy of the transformer by recovering the transient voltage energy absorbed by the capacitor during the energy storage of the transformer. Its clamping effect can be adjusted by the size of the capacitance.
  • the transient voltage that occurs during the turn-off of the power switch 1109 in this embodiment is suppressed by a secondary lossless clamp network 1107, which is used to quickly absorb the transient rise of the primary coupling to the secondary of the transformer 1104a.
  • the voltage, its inductance is used to recover the transient voltage energy absorbed by the capacitor to the output holding capacitor 1110 during the non-output of the transformer, and the clamping effect can also be adjusted by the capacitance. Because of the two clamp networks described, no energy consuming components participate in the storage and recovery of energy, so the two clamp networks are all lossless clamp networks.
  • the single-phase single-stage switching dual-source control integrated circuit 1120 in the present embodiment includes at least one flyback switching power supply controller 1122, such as a commonly used integrated circuit model L6562 or the like, and A flyback switching power supply controller 1123, such as the commonly used integrated circuit model UC3842 or similar controller, and a feedback signal decoupler 1124.
  • the controller 1122 is used to control the power switch 1108, the controller 1123 is used to control the power switch 1109, and the feedback signal decoupler 1124 is used to restore the feedback composite signal SYN to the zero current detection signal ZCD and the output voltage feedback signal FB.
  • a two-phase interleaved single-stage AC/DC power supply circuit as shown in FIG. 13, at least by dual-source AC rectifier bridges 1301 and 1302, a large-capacity storage capacitor 1303, and a two-phase interleaved flyback switching topology circuit 1304, one Any of the switching topology circuits 1305, an optional one of the switching topology circuits 1306 as a standby power supply, and a two-phase interleaved single-stage switching dual source control integrated circuit.
  • the two-phase interleaved single-stage switching dual-source control integrated circuit is shown in FIG.
  • the AC power is rectified by the dual-source AC rectifier bridges 1301 and 1302 and split into two power sources, an energy storage power supply and an alternating power supply.
  • the energy storage power circuit has an input energy storage large capacitor 1303, but not in the alternating power supply circuit, thereby forming a dual source DC power supply.
  • the switching circuit connected to the alternating power supply can only adopt the two-phase interleaved flyback switching power supply topology, so as to adjust the power factor performance of the power supply, and also to bear the power conversion power of about half of the total power of the power supply;
  • the switching circuit can be any known switching power supply topology, such as forward, flyback, push-pull, or bridge.
  • the LLC resonant bridge switching power supply topology circuit is used here to improve the output characteristics of the power supply. , especially low voltage, high current output Outgoing performance, and guaranteed output hold time, but also to undertake power conversion power of about half of the total power of the power supply.
  • the DC output voltage VDC is transmitted to the feedback composite signal network 1351 of the primary side through the optocoupler element in the output sampling network 1314, and is combined with the zero current detection signal of the feedback composite signal network 1351 into a synonymous composite signal SYN1, and then accessed.
  • the decoupling circuit 1324a therein recovers the original zero current detection signal and the optocoupler sampling signal of the DC output voltage, thereby saving one signal access resource.
  • the standby DC output voltage VSB is transmitted to the feedback composite signal network 1352 of the primary side through the optocoupler element in the output sampling network 1344, and is combined with the zero current detection signal of the feedback composite signal network 1352 into a synonymous composite signal SYN2, which is then connected.
  • the decoupling circuit 1324c therein recovers the original zero current detection signal and the optocoupler sampling signal of the standby DC output voltage, thereby saving one signal access resource.
  • the standby power switch topology circuit adopts a flyback topology circuit, including a coaxial composite signal network 1353 composed of two resistors, and the switching current sampling signal CS and the zero current detection signal ZCsb are combined into a composite signal Csb, and the access control is performed.
  • the decoupling circuit 1324b therein recovers the zero current detection signal ZCsb and the switch current sampling signal CS in the original circuit 1353, thereby saving one signal access resource.
  • the signal sample of the AC current is indirectly taken from the sampling signal VAC of the alternating voltage, and the power factor control current samples CSla and CSlb are taken from the confluence, respectively.
  • IpFC IAC ⁇ IcHG It is satisfied that a settable power factor correction effect can be obtained.
  • the single-phase single-stage switching dual-source control integrated circuit 1320 includes at least one two-phase interleaved flyback switching power supply controller 1322, such as a commonly used integrated circuit model FAN9612 or the like, and an LLC resonant switching power supply controller 1323. , such as the commonly used integrated circuit model is
  • the UCC25600 or similar controller is composed of three signal decouplers 1324a, 1324b, 1324c.
  • the controller 1322 is for controlling the switch topology circuit 1304, the controller 1323 is for controlling the switch topology circuit 1305, and the feedback signal decoupler 1324a is for reducing the feedback composite signal SYN1 to the zero current detection signal ZCD1, and the output voltage feedback signal FB.
  • Two signals; the feedback signal decoupler 1324c is used to restore the feedback composite signal SYN2 to the zero current detection signal ZCD2, and the standby output voltage feedback signal FBsb; the same signal decoupler 1324b is used to combine the same
  • the signal Csb is restored to two signals, a zero current detection signal ZCsb and a standby switch current sampling signal CS.
  • the dual source switching topology circuit of the present invention is equivalent to the existing two single source switching topology circuits, some of the control signals of the two topology circuits are related. Therefore, the existing controllers 1122, 1123 of the two topology circuits are integrated into the single-phase dual-source controller 1120, or the existing controllers 1322, 1323 of the two topology circuits are integrated into a two-phase interleaved dual-source controller. 1320, can greatly reduce the complexity of the dual-source switching topology circuit, and enhance the practicality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种单级开关电源,包括:双源整流单元(501),用于将交流电源输入的交流电转换为至少两路直流源,第一直流源(606)和第二直流源(607);复合开关单元,至少包括第一开关电路(603)和第二开关电路(605),用于分别对第一直流源(606)和第二直流源(607)进行功率转换,共同输出直流电,第一直流源(606)通过一储能电容(604)接入第一开关电路(603),第一开关电路(603)为任一可实现开关电路功能的电路,第二开关电路(605)为具有反激式开关电路功能的电路。该单级开关电源在具有完整的功率因数校正和输出保持时间的同时,进一步提升了电源转换效率。

Description

单级开关电源 技术领域
本发明关于单级开关电源, 具体的讲是一种单级开关电源。 背景技术
电能在人类能源利用种类中是使用最广泛、 最便利的能源。 随着世界能 源消耗的加快, 对电能的利用效率, 特别是对提升电力电子转换电源的工作 效率, 亦日益得到重视。 作为用电设备的入口电源, 其能效对设备总体的能 效影响甚大, 入口电源的能效提不高, 设备整体的电能效率只会比它低, 而 不会比它高。
图 1至图 4为现有的四种典型的单管、 单级高频开关电源拓扑电路应 用方案, 基本上只是用于小功率的 AC/DC开关电源。 其中最简单的方案 如图 1所示, 带有有源钳位网络 101, 其显著缺点是不易用于低电压, 大 电流的场合, 因为输出储能电容的电压太低, 钳位网络的控制会较复杂, 且还会有少量的损失; 图 2所示的方案存在的问题在于电路中多了两个功 率二极管, 增加了体积和成本, 和钳位网络的损耗; 图 3所示的方案的问 题在于不完全属于单级, 而是单级半, 其功率因素不容易校正, 功率开关 开通时, 也还要承受来自电感和变压器的两倍的电流应力, 加重了导通时 的损耗; 图 4所示的方案带有无源钳位网络 102, 效率做不高, 还多了一 对功率二极管, 增加了损耗, 体积和成本, 同样地情况是, 功率开关开通 时, 也还要承受来自电感和变压器的两倍的电流应力, 加重了导通时的损 耗。
一个能够满足了现代高频开关电源管理规范中多项高端要求的高转换 能效, 高工程指标的高频开关电源, 多少具备交错式、 单级、 软开关、 同 歩整流, 输出管理, 等多项行业前沿技术。 然而, 当下的单级高频开关电 源的性能, 始终未有普适性地有效地提升, 也就意味着产业化和商品化难 以实施。 发明内容
本发明实施例提供了一种单级开关电源, 所述的单级开关电源包括: 双源整流单元, 用于将交流电源输入的交流电转换为至少两路直流源, 第一直流源和第二直流源;
复合开关单元, 至少包括第一开关电路和第二开关电路, 用于分别对第 一直流源和第二直流源进行功率转换, 共同输出直流电, 第一直流源通过一 储能电容接入第一开关电路, 第一开关电路为任一可实现开关电路功能的电 路, 第二开关电路为具有反激式开关电路功能的电路。
通过使用本发明具有单级双源拓扑, 无损钳位, 多相交错开关, 双源控 制集成的开关电源, 在具有完整的功率因素校正和输出保持时间的同时, 进 一歩地提升了电源转换效率。
为让本发明的上述和其他目的、 特征和优点能更明显易懂, 下文特举较 佳实施例, 并配合所附图式, 作详细说明如下。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有的一种开关电源拓扑电路图;
图 2为现有的一种开关电源拓扑电路图;
图 3为现有的一种开关电源拓扑电路图;
图 4为现有的一种开关电源拓扑电路图;
图 5为本发明单级开关电源的结构框图; 图 6为本发明单级开关电源的一种拓扑电路原理图;
图 7为本发明单级开关电源中的电流电压的图示关系;
图 8为本发明单级开关电源的一种拓扑电路原理图;
图 9为本发明单级开关电源的一种拓扑电路原理图;
图 10为本发明单级开关电源的一种拓扑电路原理图;
图 11为本发明单级开关电源一实施例的电路图;
图 12为本发明一实施例中的单相单级开关双源控制集成电路图; 图 13为本发明单级开关电源又一实施例的电路图;
图 14为本发明又一实施例中的双相单级开关双源控制集成电路图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明公开了一种单级开关电源, 如图 5所示为本发明公开的单级开关 电源的结构框图, 本发明公开的单级开关电源包括: 双源整流单元 501, 用 于将交流电源输入的交流电转换为两路直流源, 分别为第一直流源和第二直 流源; 复合开关单元 502, 包括第一开关电路 5021和第二开关电路 5022, 用于分别对第一直流源和第二直流源进行功率因素校正, 输出校正后的直流 电, 第一直流源通过一储能电容接入第一开关电路, 第二开关电路为反激式 开关电源。 本实施例中双源整流单元 501包括: 两个整流桥, 两整流桥的交 流输入端并联, 直流输出负端并联, 从而实现将输入的交流电转换为两路直 流源。 本发明的单级开关电源还包括: 汇流单元 503, 用于将通过复合开关单 元 502的充电电流馈入交流电源形成闭合回路; 双源控制单元 504, 用于控 制复合开关单元 502的第一开关电路和第二开关电路。
如图 6所示, 为本发明的单级开关电源的拓扑电路原理图, 将整流桥 601, 整流桥 602的交流输入端并联, 直流输出负端并联, 形成双源整流网 络, 其中有两个交流输入电极和三个直流输出电极, 用于从单相交流电源中 产生两路直流电源, 分别为直流源 606, 直流源 607, 其中一路直流源 606 中带有输入储能大电容 604, 称为储能源, 另一路直流源 607则没有, 称为 交变源, 从而形成了双源直流供电源。 直流源 607通过反激开关拓扑电路 605, 将交流电转换为直流电; 直流源 606通过开关拓扑电路 603将储能大 电容 604中的电能转换为直流电, 其中开关拓扑电路 603为任意开关拓扑电 路, 开关拓扑电路 603可以为正激式, 反激式, 推挽式, 桥式或任一可实现 开关电路功能的电路; 两个开关拓扑电路的输出以并联的方式输出直流电 會^ 并储存在输出电容 609中。
本发明的单级开关电源还包括工频汇流网络, 由测量电阻和汇合测量电 阻组成。 两个电阻构成串联, 串联后的一端接入双源整流输出的电压负端, 另一端接线汇入工频交变电流 IPFC, 电阻串的中间点接线汇入工频充电电流 ICH(3。 流过开关拓扑电路 603的工频充电电流为 ICH(3, 反映了交流电对储能 大电容 604的充电电流; 流过开关拓扑电路 605的工频交变电流为 IPrc, 反 映了电源对交流电流的调控电流; 开关电源总体的通过电流为 IAC, 三者之 间的定量关系为下述公式:
Figure imgf000005_0001
三者之间的图示关系为图 7所示。 其中, 储能源的电压 VCHQ, 基本上为 脉动直流电源; 交变源的电压 VAC则为跟随交流电源的全波直流电源。 图中 可见充电电流 ICH(3的大小和形状仅由电源负载的状况决定; 开关电源总体 的通过电流 IAC由电源负载的状况和功率因素要求同时决定; 而开关拓扑电 路交变电流 IPrc则由上述两种电流唯一地确定, 用方程表达即为:
Figure imgf000006_0001
开关拓扑电路交变电流 iPrc成为决定了双源电源控制器的目标函数之 一。 这就是双源开关拓扑电路功率因素校正的原理所在之处。
双源整流拓扑至少有四种结构不同的拓扑电路, 如图 8、 图 9、 图 10所 示。 其中图 6中为由八个二极管构成的双源整流拓扑; 图 8为由五个二极管 构成的双源整流拓扑; 图 9为由两个二极管构成的双源整流拓扑; 图 10为 由六个二极管构成的双源整流拓扑。
本发明中的反激式开关电路工作期间, 初级线圈上产生的瞬变电压能量 应当由钳位电路得以抑制, 本发明实施例中的钳位网络为初级无损钳位网络 或次级无损钳位网络, 用于抑制第二开关电路的开关管关断过程中的瞬变电 压。 次级无损钳位网包括: 串联连接的电感和电容, 电感一端连接到所述第 二开关电路的变压器的次级线圈的输出端, 电感的另一端与电容的一端相连 接, 电容的另一端接次级的输出地。 初级无损钳位网包括: 串联连接的电感 和电容, 电感为变压器上的一段线圈, 其一端连接到第二开关电路的初级线 圈与开关管的连接处, 电感的另一端与电容的一端相连接, 电容的另一端接 初级的输入地。 下面结合具体的电路对本发明实施例做进一歩详细说明。
实施例一
一种双源单相单级 AC/DC电源电路, 如图 11所示, 本实施例的双源单 相单级 AC/DC电源电路包括: 交流整流桥 1101和交流整流桥 1102, 大容 量储能电容 1103, 变压器 1104a和变压器 1104b, 初级无损钳位网络
1106, 功率开关管 1108和功率开关管 1109, 单相单级开关双源控制集成电 路。 交流电经过双源交流整流桥 1101和整流桥 1102整流后分解为两路直流 电源, 本实施例中将两路直流源称为储能电源 1111和交变电源 1112。 储能 电源电路中带有输入储能大电容 1103, 交变电源电路中则没有, 从而形成 双源直流供电源。 每个直流源接入各自的变压器 1104a, 变压器 1104b中的 初级线圈, 两初级线圈的另一端连接各自的开关管 1108和 1109, 形成两路 单开关电路。 接入交变电源的开关电路采用反激式开关电源拓扑, 或双相交 错反激式开关电路或任意可实现反激式开关电路功能的电路, 或它们的相互 并联所组成的开关电路以便于调整电源的功率因素性能, 同时也为了承担约 电源总功率一半的电源转换功率; 接入储能电源的开关电路可采用任何已知 的开关电源拓扑, 如正激式, 反激式, 推挽式, 或桥式, 或它们的相互并联 所组成的开关电路, 即任意可实现开关电路功能的电路均可, 此处采用了反 激式开关电源拓扑电路, 是为了提升电源的输出特性, 特别是低电压, 大电 流输出的性能, 和保障输出保持时间, 同时也为了承担约电源总功率一半的 电源转换功率, 同时为一直该开关电路开关管的顺便电压, 本实施例中采 用, 次级无损钳位网络 1107对开关管关断过程中的瞬变电压进行抑制。
直流输出电压 1113, 通过输出取样网络 1114中的光耦元件传递给初级 侧的反馈复合信号网络 1151, 并与零电流检测信号 1115汇合成为一个同歩 复合信号 SYN, 接入控制器 1120后, 再由其中的解耦电路恢复出原有的零 电流检测信号 1115和直流输出电压 1113的光耦采样信号, 单相单级开关双 源控制集成电路根据采样信号同时实现对两路开关电路的控制, 节省了一个 信号接入资源。
储能电源 1111的开关电路的充电电流 ICH(3流过电流采样电阻 1116, 交 变电源 1112的开关电路的功率因素控制电流 IPrc流过电流采样电阻 1117, 这两个电流汇合后流入交流电源。 交流电流的信号采样间接地取自于交变电 压的采样信号 VAC, 功率因素控制电流采样 CS取自于汇流网络 1150中的 采样电阻 1116和采样电阻 1117上的电压之和, 从而使得单相功率因素控制 电流公式表达式: IPFC = IAc - IcHe得以满足, 从而可以获得可设定的功率 因素校正效果。
本发明单级开关电源的初级无损钳位网络 1106的详细工作原理: 初级无损钳位网络 1106包括: 串联连接的电感和电容, 电感为变压器 的变压器 1104b初级线圈上的一段, 其一端连接到初级线圈与开关管 1108 的连接处, 电感的另一端与电容的一端相连接, 电容的另一端接变压器 1104b初级线圈的输入地。 当开关管 1108开通时, 流过其中的电流除了变 压器 1104b初级线圈的储能电感电流外, 另外包含了钳位网络 1106中电容 对钳位网络中电感的放电电流, 此时电容上所吸收的电能得以无损地转换为 电感的磁能, 与初级线圈的储能电感电流一同贡献给储能过程。 当开关管 1108关断时, 变压器 1104b初级线圈上的瞬态反弹电势的电能, 通过钳位 网络中的电感, 储存于钳位网络中的电容上, 实现了无损抑制瞬态反弹电势 的电能; 另由于钳位网络中的电感与其变压器 304b初级线圈处于同一磁 体, 但感应电势极性相反, 此时刻的电感电势有利于进一歩抑制瞬态反弹电 势的电能。
本发明单级开关电源的次级无损钳位网络 1107的详细工作原理: 当开关管 1109开通时, 变压器 1104a初级线圈处于储能时刻, 其次级 线圈中没有电流, 此时钳位网络 1107中的储能电容上所储存的电能释放给 电感, 电容上所吸收的电能得以无损地转换为电感中的电流, 与电感中的磁 能的电流一同贡献给输出负载。 当开关管 1109关断时, 变压器 1104a初级 线圈的瞬态反弹电势的电能, 通过次级线圈, 耦合到了钳位网络 1107中的 储能电容上, 反弹电势的电能被电容以储能的方式快速地吸收, 实现了无损 抑制开关 1109上瞬态反弹电势的电能。
本实施例中功率开关管 1108在关断过程中出现的瞬变电压, 由一个初 级无损钳位网络 1106来抑制; 所述的钳位网络 1106由一个电容和一个电感 组成, 形成该电感的线圈与变压器 1104b共享相同的磁路, 其中的电容用作 于快速地吸收瞬变上升的电压, 其电感用作于在变压器储能期间, 回收电容 上所吸收的瞬变电压能量给变压器储能, 其钳位效果可由电容量的大小来调 整。 本实施例中功率开关管 1109在关断过程中出现的瞬变电压, 由一个次 级无损钳位网络 1107来抑制, 其中的电容用于快速地吸收变压器 1104a初 级耦合到次级的瞬变上升的电压, 其电感用于在变压器非输出期间, 回收电 容上所吸收的瞬变电压能量给输出保持电容 1110, 其钳位效果也可由电容 量的大小来调整。 由于所述的两种钳位网络中, 没有耗能元件参与能量的储 存和恢复, 因此所述的两种钳位网络均为无损钳位网络。
如图 12所示为本实施例中的单相单级开关双源控制集成电路 1120, 包 括至少一个反激式开关电源控制器 1122, 如常用的集成电路型号为 L6562 或类似的控制器, 和一个反激式开关电源控制器 1123, 如常用的集成电路 型号为 UC3842或类似的控制器, 和一个反馈信号解耦器 1124组成。 控制 器 1122用于控制功率开关 1108, 控制器 1123用于控制功率开关 1109, 反 馈信号解耦器 1124用于将反馈复合信号 SYN, 还原为零电流检测信号 ZCD 和输出电压反馈信号 FB。
实施例二
一种双相交错单级 AC/DC电源电路, 如图 13所示, 至少由双源交流整 流桥 1301和 1302, 大容量储能电容 1303, 一个双相交错反激式开关拓扑电 路 1304, 一个任何一种的开关拓扑电路 1305, 一个可选的任何一种的开关 拓扑电路 1306作为待机电源, 和一个双相交错单级开关双源控制集成电路 组成。 双相交错单级开关双源控制集成电路如图 14所示。 交流电经过双源 交流整流桥 1301和 1302整流后分解为两路电源, 储能电源和交变电源。 储 能电源电路中带有输入储能大电容 1303, 交变电源电路中则没有, 从而形 成双源直流供电源。 接入交变电源的开关电路只能采用双相交错反激式开关 电源拓扑, 以便于调整电源的功率因素性能, 同时也为了承担约电源总功率 一半的电源转换功率; 接入储能电源的开关电路可采用任何一种已知的开关 电源拓扑, 如正激式, 反激式, 推挽式, 或桥式, 此处采用了 LLC谐振桥 开关电源拓扑电路, 是为了提升电源的输出特性, 特别是低电压, 大电流输 出的性能, 和保障输出保持时间, 同时也为了承担约电源总功率一半的电源 转换功率。
直流输出电压 VDC, 通过输出取样网络 1314中的光耦元件传递给初级 侧的反馈复合信号网络 1351, 并与反馈复合信号网络 1351的零电流检测信 号汇合成为一个同歩复合信号 SYN1 , 再接入图 14所示的控制器 1320后, 再由其中的解耦电路 1324a恢复出原有的零电流检测信号和直流输出电压的 光耦采样信号, 因此节省了一个信号接入资源。
待机直流输出电压 VSB, 通过输出取样网络 1344中的光耦元件传递给 初级侧的反馈复合信号网络 1352, 并与反馈复合信号网络 1352的零电流检 测信号汇合成为一个同歩复合信号 SYN2, 再接入控制器后, 再由其中的解 耦电路 1324c恢复出原有的零电流检测信号和待机直流输出电压的光耦采样 信号, 因此又节省了一个信号接入资源。
待机电源开关拓扑电路采用了反激式拓扑电路, 包括一个有两个电阻组 成的同歩复合信号网络 1353, 其开关电流采样信号 CS与零电流检测信号 ZCsb汇合成为一个复合信号 Csb, 接入控制器后, 再由其中的解耦电路 1324b恢复出原有电路 1353中的零电流检测信号 ZCsb和开关电流采样信号 CS, 因此又节省了一个信号接入资源。
储能电源 1311的开关电路的充电电流 ICH(3流过电流采样电阻 1316, 交 变电源的开关电路的功率因素控制电流 IPrc为流过电流采样电阻 1317a的电 流 IPFCa, 和 1317b的电流 IPFCb之和, 这三个电流汇合后流入交流电源。 交 流电流的信号采样间接地取自于交变电压的采样信号 VAC, 功率因素控制 电流采样 CSla和 CSlb分别取自于汇流网络 1350中采样电阻 1316和采样 电阻 1317a, 1317b上的电压之和, 从而使得双相交错功率因素控制电流方 程表达式:
Figure imgf000010_0001
IpFC = IAC― IcHG 得以满足, 从而可以获得可设定的功率因素校正效果。
单相单级开关双源控制集成电路 1320至少由一个双相交错反激式开关 电源控制器 1322, 如常用的集成电路型号为 FAN9612或类似的控制器, 和 一个 LLC谐振式开关电源控制器 1323, 如常用的集成电路型号为
UCC25600或类似的控制器, 和三个信号解耦器 1324a, 1324b, 1324c组 成。 控制器 1322用于控制开关拓扑电路 1304, 控制器 1323用于控制开关 拓扑电路 1305, 反馈信号解耦器 1324a用于将反馈复合信号 SYN1 , 还原为 零电流检测信号 ZCD1, 和输出电压反馈信号 FB两个信号; 反馈信号解耦 器 1324c用于将反馈复合信号 SYN2, 还原为零电流检测信号 ZCD2, 和待 机输出电压反馈信号 FBsb两个信号; 同歩信号解耦器 1324b用于将同歩复 合信号 Csb, 还原为零电流检测信号 ZCsb和待机开关电流采样信号 CS两 个信号。
由于本发明的双源开关拓扑电路, 相当于现有的两个单源开关拓扑电 路, 但两个拓扑电路的一些控制信号却是相关的。 因此, 将两个拓扑电路的 现有的控制器 1122, 1123集成为单相双源控制器 1120, 或将两个拓扑电路 的现有的控制器 1322, 1323集成为双相交错双源控制器 1320, 就能够极大 地降低双源开关拓扑电路的复杂性, 增强实用性。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述, 以 上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于 本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上 均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求书
1、 一种单级开关电源, 其特征在于, 所述的单级开关电源包括: 双源整流单元, 用于将交流电源输入的交流电转换为至少两路直流源, 第一直流源和第二直流源;
复合开关单元, 至少包括第一开关电路和第二开关电路, 用于分别对所 述的第一直流源和第二直流源进行功率转换, 共同输出直流电, 所述的第一 直流源通过一储能电容接入第一开关电路, 所述第一开关电路为任一可实现 开关电路功能的电路, 所述第二开关电路为具有反激式开关电路功能的电 路。
2、 如权利要求 1所述的单级开关电源, 其特征在于, 所述的双源整流 单元包括: 两个整流桥, 所述的整流桥的交流输入端并联, 两个整流桥的直 流输出负端并联, 两个整流桥的直流输出正端作为双源整流单元的两个直流 输出端。
3、 如权利要求 1所述的单级开关电源, 其特征在于, 所述的复合开关 单元包括: 初级无损钳位网络和 /或次级无损钳位网络, 用于抑制所述的第 二开关电路中的开关管关断过程中的瞬变电压。
4、 如权利要求 3所述的单级开关电源, 其特征在于, 所述的次级无损 钳位网络包括: 串联连接的电感和电容, 所述电感一端连接到所述第二开关 电路的变压器的次级线圈的输出端, 所述电感的另一端与电容的一端相连 接, 所述电容的另一端接次级线圈的输出地。
5、 如权利要求 3所述的单级开关电源, 其特征在于, 所述的初级无损 钳位网络包括: 串联连接的电感和电容, 所述电感为第二开关电路的变压器 的变压器初级线圈上的一段, 其一端连接到所述第二开关电路的初级线圈与 开关管的连接处, 所述电感的另一端与电容的一端相连接, 所述电容的另一 端接初级线圈的输入地。
6、 如权利要求 1所述的单级开关电源, 其特征在于, 所述的单级开关 电源还包括: 汇流单元, 用于将通过所述复合开关单元中流过第一开关电路 的充电电流与流过第二开关电路的开关电流馈入所述交流电源。
7、 如权利要求 6所述的单级开关电源, 其特征在于, 所述的汇流单元 包括至少两串联连接的电阻, 所述两串联电阻的一端接到双源整流单元的直 流输出负端, 另一端连接到第二开关电路中的开关管的接地端, 用于引入功 率因素校正电流, 所述两串联电阻的中间端与所述储能电容的负端相连接, 用于接收通过第一开关电路中所述储能电容的充电电流, 所述的功率因素校 正电流和通过所述储能电容的充电电流汇集为通过所述复合开关单元的汇流 电流并馈入所述交流电源。
8、 如权利要求 1所述的单级开关电源, 其特征在于, 所述的单级开关 电源还包括双源控制单元, 用于控制所述复合开关单元的第一开关电路和第 二开关电路。
9、 如权利要求 8所述的单级开关电源, 其特征在于, 所述的双源控制 单元为单相双源控制电路, 所述的单相双源控制电路包括:
反激式开关电源控制器, 用于控制所述第二开关电路;
第一开关电源控制器, 用于控制所述第一开关电路。
10、 如权利要求 9所述的单级开关电源, 其特征在于, 所述的单相双源 控制电路还包括: 反馈信号解耦器, 用于将反馈复合信号还原为零电流检测 信号和输出电压反馈信号。
11、 如权利要求 8所述的单级开关电源, 其特征在于, 所述的双源控制 单元为双相交错双源控制电路, 所述的双相交错双源控制电路包括:
双相交错反激式开关电源控制器, 用于控制所述第二开关电路; 第一开关电源控制器, 用于控制所述第一开关电路。
12、 如权利要求 9所述的单级开关电源, 其特征在于, 所述的双相交 源控制电路还包括: 反馈信号解耦器, 用于将反馈复合信号还原为零电 测信号和输出电压反馈信号。
13、 如权利要求 9所述的单级开关电源, 其特征在于, 所述的双相交 源控制电路还包括: 同歩信号解耦器, 用于将同歩复合信号还原为零电 测信号和待机开关电流采样信号。
PCT/CN2012/087128 2012-12-21 2012-12-21 单级开关电源 WO2014094289A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/087128 WO2014094289A1 (zh) 2012-12-21 2012-12-21 单级开关电源
EP12890476.0A EP2937979A4 (en) 2012-12-21 2012-12-21 POWER SOURCE OF UNIPOLAR SWITCH
US14/654,357 US9685872B2 (en) 2012-12-21 2012-12-21 Single-pole switch power source
JP2015548140A JP6218851B2 (ja) 2012-12-21 2012-12-21 シングルステージスイッチ電源
CN201280077859.1A CN104871421B (zh) 2012-12-21 2012-12-21 单级开关电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087128 WO2014094289A1 (zh) 2012-12-21 2012-12-21 单级开关电源

Publications (1)

Publication Number Publication Date
WO2014094289A1 true WO2014094289A1 (zh) 2014-06-26

Family

ID=50977572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087128 WO2014094289A1 (zh) 2012-12-21 2012-12-21 单级开关电源

Country Status (5)

Country Link
US (1) US9685872B2 (zh)
EP (1) EP2937979A4 (zh)
JP (1) JP6218851B2 (zh)
CN (1) CN104871421B (zh)
WO (1) WO2014094289A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170170735A1 (en) * 2015-12-10 2017-06-15 Hyundai Motor Company Resonant converter system
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10075065B2 (en) 2016-04-15 2018-09-11 Emerson Climate Technologies, Inc. Choke and EMI filter circuits for power factor correction circuits
US10312798B2 (en) 2016-04-15 2019-06-04 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US9965928B2 (en) 2016-04-15 2018-05-08 Emerson Climate Technologies, Inc. System and method for displaying messages in a column-by-column format via an array of LEDs connected to a circuit of a compressor
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
DE102018106886B4 (de) * 2018-03-22 2022-04-21 Infineon Technologies Americas Corp. Wandlerschaltung
TWI686042B (zh) * 2018-12-07 2020-02-21 群光電能科技股份有限公司 電源轉換裝置
CN112134473B (zh) * 2019-06-24 2022-03-22 宏碁股份有限公司 电源供应器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414792A (zh) * 2008-12-02 2009-04-22 福州大学 差动升降压直流斩波器型高频链逆变器
US7535734B2 (en) * 2006-10-19 2009-05-19 Heng-Yi Li High power-factor AC/DC converter with parallel power processing
JP2010124567A (ja) * 2008-11-18 2010-06-03 Nayuta:Kk スイッチング電源装置
CN101980434A (zh) * 2010-10-16 2011-02-23 曹文领 单级桥式功率因数校正变换器电路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288774A (ja) * 1985-06-13 1986-12-18 Fujitsu Ltd Dc/dcコンバ−タ装置
KR0119883B1 (ko) * 1994-12-22 1997-10-30 김광호 스위칭 전원장치용 컨트롤러 및 이를 이용한 스위칭 전원장치
JP3728575B2 (ja) * 1997-09-25 2005-12-21 大平電子株式会社 低損失スナバ回路付きスイッチング電源装置
KR100296635B1 (ko) * 1998-03-07 2001-10-25 윤종용 저전압보호회로를갖는스위칭모드전원공급장치
JP3230052B2 (ja) * 1998-03-23 2001-11-19 有限会社フィデリックス 電源装置
US6069801A (en) * 1998-07-16 2000-05-30 Vlt Corporation Power factor correction in switching power conversion
US6115271A (en) 1999-10-04 2000-09-05 Mo; Chan Ho Simon Switching power converters with improved lossless snubber networks
JP2002101660A (ja) * 2000-07-04 2002-04-05 Fiderikkusu:Kk スイッチング電源装置
JP2002291248A (ja) * 2001-03-29 2002-10-04 Nagano Japan Radio Co フライバック型スイッチング電源装置
US6950319B2 (en) * 2003-05-13 2005-09-27 Delta Electronics, Inc. AC/DC flyback converter
DE10330605A1 (de) * 2003-07-07 2005-01-27 Deutsche Thomson-Brandt Gmbh Schaltnetzteil
CN100511942C (zh) 2003-11-19 2009-07-08 南京航空航天大学 正反激双向dc-dc变换器的控制方法
TW200623597A (en) 2004-08-30 2006-07-01 Advanced Energy Ind Inc Bipolar power supply with lossless snubber
US7648499B2 (en) * 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
EP1865592B1 (en) * 2006-06-05 2011-08-17 STMicroelectronics Srl Switched-mode electronic power device
CN101192792B (zh) 2006-11-24 2010-05-12 北京新雷能有限责任公司 无损电流缓冲器电路构成的变换器电路
JP2009100554A (ja) 2007-10-17 2009-05-07 Sharp Corp 部分電圧共振型スイッチング電源回路及びそれを備えた空気調和機
US8952293B2 (en) * 2008-03-14 2015-02-10 Illinois Tool Works Inc. Welding or cutting power supply using phase shift double forward converter circuit (PSDF)
TWM354157U (en) * 2008-10-30 2009-04-01 Silitek Electronic Guangzhou Power supply apparatus
CN101795061B (zh) 2010-03-03 2012-01-11 哈尔滨工业大学 适用于电流源型隔离全桥升压拓扑的无源无损缓冲电路
JP5853368B2 (ja) * 2011-01-13 2016-02-09 富士通株式会社 Dc−dcコンバータ、電源装置、及び情報処理装置
CN201937459U (zh) * 2011-01-20 2011-08-17 浙江大学 利于有源反激式功率因数校正装置谐波削减补偿控制电路
CN102752913B (zh) * 2012-02-07 2015-12-30 深圳市比格利电源科技有限公司 Led驱动电源及led照明灯具
US9602018B2 (en) * 2012-03-20 2017-03-21 Infineon Technologies Austria Ag Power converter with reduced power consumption in standby mode
CN202602533U (zh) * 2012-04-06 2012-12-12 英飞特电子(杭州)股份有限公司 功率因数校正电路及其制作的集成电路和开关电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535734B2 (en) * 2006-10-19 2009-05-19 Heng-Yi Li High power-factor AC/DC converter with parallel power processing
JP2010124567A (ja) * 2008-11-18 2010-06-03 Nayuta:Kk スイッチング電源装置
CN101414792A (zh) * 2008-12-02 2009-04-22 福州大学 差动升降压直流斩波器型高频链逆变器
CN101980434A (zh) * 2010-10-16 2011-02-23 曹文领 单级桥式功率因数校正变换器电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937979A4 *

Also Published As

Publication number Publication date
JP2016500506A (ja) 2016-01-12
EP2937979A4 (en) 2016-10-19
CN104871421A (zh) 2015-08-26
US20150333633A1 (en) 2015-11-19
EP2937979A1 (en) 2015-10-28
CN104871421B (zh) 2018-07-13
JP6218851B2 (ja) 2017-10-25
US9685872B2 (en) 2017-06-20

Similar Documents

Publication Publication Date Title
CN108448913B (zh) 一种单级式基于交错并联无桥pfc电路和llc谐振的隔离型ac-dc变换器
WO2014094289A1 (zh) 单级开关电源
CN106685231B (zh) 一种原边钳位型软开关全桥变换器及其不对称控制方法
CN108900100B (zh) 一种单相高效高频隔离型整流器
WO2019140801A1 (zh) 一种双输出端口充电电路及其控制方法
CN105896986B (zh) 一种谐振变换器及其控制方法
CN105305829B (zh) 电流型单向dc‑dc变换器及对称双pwm加移相控制方法
CN111478611B (zh) 一种相位关联磁化电流双向复位的辅助谐振换流极逆变器
JP2016500506A5 (zh)
CN102281006A (zh) 一种新型三电平软开关变换器
CN106100344A (zh) 一种具有升高电压增益的llc谐振变换器
CN108235509B (zh) 一种集成降压Cuk和LLC电路的单级LED驱动电路
CN112003467B (zh) 一种三开关管无桥型Cuk功率因数校正变换器
CN105515417A (zh) 双输出单相pfc变换器及其组合式功率变换系统和控制方法
CN103412181B (zh) 用于升压型功率因数校正的电感电流过零检测电路
CN101997418A (zh) 一种llc型串并联谐振变换器
CN106230264A (zh) 一种高效单向llc 谐振dc‑dc 变换电路拓扑结构
CN114301313A (zh) 一种无输入储能电感隔离谐振软开关型三相pfc变换器及其控制方法
CN109194164A (zh) 一种双输出交直流变换器及其控制方法
Jin et al. A self-driven current-doubler-rectifier three-level converter with integrated magnetics
CN104780692B (zh) 一种单级无桥双Boost与Flyback集成的LED驱动电路
KR20140091191A (ko) 단일 전력단 교류/직류 컨버터
CN110649802B (zh) 一种单级谐振式ac-dc功率因数校正变换装置的校正方法
CN109302078A (zh) 基于同步整流模式的dc-dc开关电源
CN103441690B (zh) 高频交流侧串联实现紧调整输出的组合变流器的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890476

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015548140

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14654357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012890476

Country of ref document: EP