WO2014092400A1 - 에폭시 수지 조성물 및 인쇄 회로 기판 - Google Patents

에폭시 수지 조성물 및 인쇄 회로 기판 Download PDF

Info

Publication number
WO2014092400A1
WO2014092400A1 PCT/KR2013/011311 KR2013011311W WO2014092400A1 WO 2014092400 A1 WO2014092400 A1 WO 2014092400A1 KR 2013011311 W KR2013011311 W KR 2013011311W WO 2014092400 A1 WO2014092400 A1 WO 2014092400A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
alumina
boron nitride
parts
Prior art date
Application number
PCT/KR2013/011311
Other languages
English (en)
French (fr)
Inventor
김명정
윤종흠
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN201380065257.9A priority Critical patent/CN104870557B/zh
Priority to US14/651,768 priority patent/US9445498B2/en
Publication of WO2014092400A1 publication Critical patent/WO2014092400A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4064Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to an epoxy resin composition, and more particularly, to a printed circuit board comprising an epoxy resin composition and an insulating layer formed from the epoxy resin composition.
  • the printed circuit board may include a circuit pattern formed on an insulating layer, and various electronic components may be mounted on the printed circuit board.
  • the electronic component mounted on the printed circuit board may be, for example, a heat generating element. Heat emitted by the heating element may degrade the performance of the printed circuit board.
  • Epoxy resin compositions containing epoxy resins such as bisphenol A type or bisphenol F type have been used in order to obtain an insulating layer having both electrical insulation and excellent thermal conductivity.
  • N is an integer of 1 or more.
  • Epoxy resin composition according to an embodiment of the present invention comprises an epoxy compound of the following formula, a curing agent, and an inorganic filler, the inorganic filler is alumina (Alumina, Al 2 O 3 ) and boron nitride (Boron Nitride, BN) Include.
  • the inorganic filler is alumina (Alumina, Al 2 O 3 ) and boron nitride (Boron Nitride, BN) Include.
  • R 1 to R 14 may be selected from the group consisting of H, Cl, Br, F, C 1 ⁇ C 3 alkyl, C 2 ⁇ C 3 alkenes, C 2 ⁇ C 3 alkyne, respectively.
  • m, n may be 1, 2 or 3, respectively.
  • the epoxy compound may include an epoxy compound of the following formula, and the curing agent may include diaminodiphenylsulfone.
  • the boron nitride may include spherical boron nitride.
  • the boron nitride may be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the alumina.
  • the inorganic filler may include at least two or more alumina groups classified according to the size of the particles.
  • the inorganic filler includes a first alumina group having an average diameter of particles of 0.3 ⁇ m to 1.0 ⁇ m, a second alumina group having an average diameter of particles of 3.0 ⁇ m to 10.0 ⁇ m, and a third alumina having an average diameter of particles of 15.0 ⁇ m to 50.0 ⁇ m. It can include a group.
  • the first alumina group is included in 5 to 40 parts by weight based on 100 parts by weight of the total epoxy resin composition
  • the second alumina group is included in 5 to 40 parts by weight based on 100 parts by weight of the total epoxy resin composition
  • the third alumina The group may be included in an amount of 30 to 80 parts by weight based on 100 parts by weight of the total epoxy resin composition.
  • the epoxy compound of the above formula with respect to the epoxy resin composition is contained in 3 to 40wt%, the curing agent is included in 0.5 to 30wt%, the inorganic filler may be included in 30 to 96.5wt%.
  • the epoxy resin composition may further include an amorphous epoxy compound.
  • the prepreg according to one embodiment of the present invention is formed by coating or impregnating a fibrous substrate with an epoxy resin composition according to one embodiment of the present invention.
  • a printed circuit board includes a metal plate, an insulating layer formed on the metal plate, and a circuit pattern formed on the insulating layer, wherein the insulating layer is in one embodiment of the present invention.
  • the epoxy resin composition According to the epoxy resin composition.
  • an epoxy resin composition can be obtained.
  • an insulating layer having high thermal conductivity can be obtained, and reliability and heat dissipation performance of a printed circuit board can be improved.
  • FIG. 1 is a cross-sectional view of a printed circuit board according to an embodiment of the present invention.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • wt% may be replaced by parts by weight.
  • an epoxy resin, a curing agent, and an inorganic filler including a mesogen structure and as an inorganic filler, alumina (Alumina, Al 2 O 3 ) and spherical boron nitride (BN) It provides an epoxy resin composition used together.
  • mesogen is a basic unit of liquid crystal and includes a rigid structure.
  • Mesogens may include rigid structures such as, for example, biphenyl, phenylbenzoate, naphthalene.
  • the epoxy resin composition according to one embodiment of the present invention may include 3 wt% to 40 wt%, preferably 3 wt% to 30 wt%, and more preferably 3 wt% to 20 wt% of the epoxy compound with respect to the total epoxy resin composition. .
  • the epoxy compound When the epoxy compound is contained at 3 wt% or less of the total epoxy resin composition, the adhesion may be deteriorated.
  • the epoxy resin composition may include 3 wt% or more of the crystalline epoxy compound with respect to the total epoxy resin composition.
  • the crystalline epoxy compound is included in less than 3wt% of the total epoxy resin composition, it may not be crystallized and the heat conduction effect may be low.
  • the crystalline epoxy compound may be a mesogen (mesogen) compound, such as the formula (1).
  • R 1 to R 14 may be selected from the group consisting of H, Cl, Br, F, C 1 ⁇ C 3 alkyl, C 2 ⁇ C 3 alkenes, C 2 ⁇ C 3 alkyne, respectively.
  • m, n may be 1, 2 or 3, respectively.
  • the crystalline epoxy compound may be represented by the following formula (2).
  • the epoxy equivalent of the epoxy compound according to Formula 2 (hereinafter, may be referred to as 4,4′-biphenolether diglycidyl ether) may be 120 to 300, preferably 150 to 200.
  • fusing point was measured at the temperature increase rate of 10 degree-C / min using the differential scanning calorimetry apparatus (DSC Q100 by TA company
  • the epoxy compound according to Formula 2 has crystallinity at room temperature.
  • the expression of crystallinity can be confirmed using the endothermic peak of the crystal in differential scanning calorimetry.
  • the endothermic peak may appear as a plurality of peaks or broad peaks, the lowest endothermic peak is 60 °C or more, preferably 70 °C or more, the highest endothermic peak is 120 °C or less, preferably It may be up to 100 °C.
  • the epoxy compound according to Formula 2 has a high crystallinity and high thermal conductivity, but may lack room temperature stability.
  • the epoxy resin composition may further include other conventional amorphous epoxy compounds having two or more epoxy groups in the molecule, in addition to the crystalline epoxy compound according to Formula 1 or Formula 2.
  • the amorphous epoxy compound may be included in an amount ratio of 5 wt% to 50 wt%, preferably 10 wt% to 40 wt% of the total epoxy compound (sum of the crystalline epoxy compound and the amorphous epoxy compound).
  • the room temperature stability is insufficient, and when it is contained above 50wt%, thermal conductivity may be insufficient.
  • the amorphous epoxy compound is, for example, bisphenol A, bisphenol F, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl Sulfone, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylketone, fluorenebisphenol, 4,4'-biphenol, 3,3 ', 5,5'-tetra Methyl-4,4'-dihydroxybiphenyl, 2,2'-biphenol, resorcin, catechol, t-butylcatechol, hydroquinone, t-butylhydroquinone, 1,2-dihydroxynaphthalene, 1 , 3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene
  • N is an integer of 1 or more.
  • the epoxy resin composition according to one embodiment of the present invention may include 0.5 wt% to 30 wt% of a curing agent based on the total epoxy resin composition.
  • a curing agent based on the total epoxy resin composition.
  • the curing agent included in the epoxy resin composition may be 4, 4'-diaminodiphenyl sulfone, such as the formula (5).
  • the curing agent of Formula 5 may react with the epoxy compound of Formula 2 to increase the passion stability of the epoxy resin composition.
  • At least one of a phenolic curing agent, an amine curing agent, and an acid anhydride curing agent may be further included in the epoxy resin composition.
  • the phenolic curing agent is, for example, bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy ) Benzene, 1,3-bis (4-hydroxyphenoxy) benzene, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylketone, 4,4'-dihydrate Oxydiphenylsulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphape Nanthrene-10-oxide, phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, hydroquinon
  • the amine curing agent may be, for example, aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines, or the like, and as aliphatic amines, ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexa Methylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethyl ethylene diamine, tetra (hydroxyethyl) ethylene diamine, etc.
  • the polyether polyamines may be one of triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propylamine), polyoxypropylene diamine, polyoxypropylene triamine, and a mixture thereof.
  • examples of the alicyclic amines include isophoronediamine, metacenediamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, 3,9-bis (3 -Aminopropyl) 2,4,8,10-tetraoxaspiro (5,5) undecane, norbornenediamine, etc. are mentioned.
  • aromatic amines examples include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2 , 4-toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodi Phenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine,-(m-aminophenyl) ethylamine,-(p-aminophenyl) Ethylamine, di
  • the acid anhydride-based curing agent is, for example, dodecenyl anhydrous succinic acid, polyadipic anhydride, polyazelate anhydride, polycebacic anhydride, poly (ethyloctadecanoic acid) anhydride, poly (phenylhexadecane diacid) anhydride, methyltetrahydro Phthalic anhydride, methyl hexahydrophthalic anhydride, hexahydrophthalic anhydride, methyl himic acid, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene dicarboxylic anhydride, methylcyclohexene tetracarboxylic anhydride, phthalic anhydride, Trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid anhydride, ethylene glycol bistrimellitate, hept anhydride
  • the epoxy resin composition may further include a curing accelerator.
  • the epoxy resin composition according to one embodiment of the present invention may include 30 wt% to 96.5 wt% of an inorganic filler with respect to the total epoxy resin composition. If the inorganic filler is included in less than 30wt%, high thermal conductivity, low thermal expansion and high temperature heat resistance of the epoxy resin composition are not guaranteed. High thermal conductivity, low thermal expansion and high temperature heat resistance are better as the amount of the inorganic filler added increases, but it does not improve depending on the volume fraction thereof, but improves dramatically from the specific amount added. However, when the addition amount of an inorganic filler is contained more than 96.5 wt%, a viscosity becomes high and moldability deteriorates.
  • Inorganic fillers include alumina (Alumina, Al 2 O 3 ) and boron nitride (Boron Nitride, BN).
  • the alumina may include at least two groups separated according to the size of the particles.
  • the inorganic filler includes an alumina group having an average diameter of particles of 0.3 ⁇ m to 1.0 ⁇ m, an alumina group having an average diameter of particles of 3.0 ⁇ m to 10.0 ⁇ m, and an alumina group having an average diameter of particles of 15.0 ⁇ m to 50.0 ⁇ m. can do.
  • the alumina group having an average diameter of 0.3 ⁇ m to 1.0 ⁇ m may be included in an amount of 5 wt% to 40 wt%, preferably 15 wt% to 30 wt% of the total epoxy resin composition.
  • Alumina groups having an average diameter of 3.0 ⁇ m to 10.0 ⁇ m may be included in amounts of 5 wt% to 40 wt%, preferably 25 wt% to 35 wt%, of the total epoxy resin composition.
  • Alumina groups having an average diameter of particles of 15.0 ⁇ m to 50.0 ⁇ m may be included in an amount of 30 wt% to 80 wt%, preferably 40 wt% to 75 wt% of the total epoxy resin composition.
  • the alumina group having an average diameter of particles of 0.3 ⁇ m to 1.0 ⁇ m is contained at 5 wt% to 40 wt% of the total epoxy resin composition, and the alumina group having an average diameter of particles of 3.0 ⁇ m to 10.0 ⁇ m is used for the entire epoxy resin composition.
  • 5 wt% to 40 wt% and when the alumina group having an average diameter of particles of 15.0 ⁇ m to 50.0 ⁇ m is contained in 30 wt% to 80 wt% of the total epoxy resin composition, the volume ratio is improved by using alumina having a large particle size.
  • the contact path for heat transfer can be maximized by evenly filling the alumina with small or medium particle size and reducing the voids.
  • the content ratio of boron nitride to 100 parts by weight of alumina may be 1 part by weight to 20 parts by weight, preferably 5 parts by weight to 15 parts by weight. If boron nitride contains less than 1 part by weight with respect to 100 parts by weight of alumina, it is difficult to achieve the required thermal conductivity. In addition, when boron nitride contains more than 20 parts by weight with respect to 100 parts by weight of alumina, moldability deteriorates due to viscosity increase.
  • the boron nitride may be spherical boron nitride. Filling boron nitride may not be easy due to the viscosity increase. Accordingly, it may be difficult to achieve the required thermal conductivity when using a plate-like boron nitride.
  • the average diameter of the spherical boron nitride particles may be 5.0 ⁇ m to 30.0 ⁇ m, preferably 10.0 ⁇ m to 20.0 ⁇ m.
  • the epoxy resin composition according to an embodiment of the present invention may include an additive of 0.1wt% to 2wt%, preferably 0.5wt% to 1.5wt% with respect to the total epoxy resin composition.
  • the additive may be, for example, phenoxy. If the additive is added lower than 0.1wt%, it is difficult to obtain the required properties (for example, adhesion), and if it is added higher than 2wt%, moldability is deteriorated due to the viscosity increase.
  • Prepreg can be prepared by coating or impregnating an epoxy resin composition according to one embodiment of the present invention on a fiber substrate or a glass substrate and semi-curing by heating.
  • the epoxy resin composition according to one embodiment of the present invention may be applied to a printed circuit board.
  • 1 is a cross-sectional view of a printed circuit board according to an embodiment of the present invention.
  • the printed circuit board 100 includes a metal plate 110, an insulating layer 120, and a circuit pattern 130.
  • the metal plate 110 may be made of copper, aluminum, nickel, gold, platinum, and an alloy selected from them.
  • an insulating layer 120 made of an epoxy resin composition according to an embodiment of the present invention is formed.
  • the circuit pattern 130 is formed on the insulating layer 120.
  • n 1
  • the thermal conductivity of the epoxy resin compositions of Examples 1 to 4 and Comparative Examples 1 to 4 was measured by an abnormal heating method using a LFA447 type thermal conductivity meter manufactured by NETZSCH. Table 1 shows the results.
  • the epoxy resin composition including the crystalline epoxy compound of Formula 2, 4, 4'-diaminodiphenylsulfone, alumina and boron nitride has a thermal conductivity of 7.8 W / mK or more.
  • the epoxy resin composition including alumina of various sizes and spherical boron nitride, as in Examples 1 and 2 has a thermal conductivity of 11 W / mK or more.
  • the thermal conductivity of the epoxy resin composition containing no boron nitride is 7.01 W / mK, even though the crystalline epoxy compound of Formula 2, 4, 4'-diaminodiphenylsulfone, and alumina are included, as in Comparative Example 1. It can be seen that low.
  • the epoxy resin composition comprising an epoxy compound other than the crystalline epoxy compound of formula (2) and a curing agent other than 4, 4'-diaminodiphenyl sulfone is a thermal conductivity It can be seen that the degree is very low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

본 발명의 한 실시예에 따른 에폭시 수지 조성물은 에폭시 화합물, 경화제, 그리고 무기 충전재를 포함하고, 상기 무기 충전재는 알루미나(Alumina, Al2O3) 및 질화 붕소(Boron Nitride, BN)를 포함한다.

Description

에폭시 수지 조성물 및 인쇄 회로 기판
본 발명은 에폭시 수지 조성물에 관한 것으로, 보다 상세하게는 에폭시 수지 조성물 및 에폭시 수지 조성물로부터 형성된 절연층을 포함하는 인쇄 회로 기판에 관한 것이다.
인쇄 회로 기판은 절연층 상에 형성된 회로 패턴을 포함하여, 인쇄 회로 기판 상에는 다양한 전자 부품이 탑재될 수 있다.
인쇄 회로 기판 상에 탑재되는 전자 부품은, 예를 들면 발열 소자일 수 있다. 발열 소자가 방출하는 열은 인쇄 회로 기판의 성능을 떨어뜨릴 수 있다. 전자 부품의 고집적화 및 고용량화에 따라, 인쇄 회로 기판의 방열 문제에 대한 관심이 더욱 커지고 있다.
전기 절연성인 동시에 우수한 열전도성을 가지는 절연층을 얻기 위하여 비스페놀 A 형 또는 비스페놀 F 형 등의 에폭시 수지를 포함하는 에폭시 수지 조성물이 사용되고 있다.
이외에도, 하기 화학식의 에폭시 수지를 포함하는 에폭시 수지 조성물도 사용되고 있다(한국공개공보 제2010-0008771호).
[화학식]
Figure PCTKR2013011311-appb-I000001
여기서, n은 1 이상의 정수이다.
그러나, 이러한 에폭시 수지 조성물들의 열전도성이 충분하지 못하여 소자가 방출하는 다량의 열에 대응하기 어려운 문제가 있다.
본 발명이 이루고자 하는 기술적 과제는 에폭시 수지 조성물 및 인쇄 회로 기판을 제공하는 것이다.
본 발명의 한 실시예에 따른 에폭시 수지 조성물은 하기 화학식의 에폭시 화합물, 경화제, 그리고 무기 충전재를 포함하고, 상기 무기 충전재는 알루미나(Alumina, Al2O3) 및 질화 붕소(Boron Nitride, BN)를 포함한다.
Figure PCTKR2013011311-appb-I000002
여기서, R1 내지 R14은 각각 H, Cl, Br, F, C1~C3 알킬, C2~C3 알켄, C2~C3 알킨으로 구성된 그룹에서 선택될 수 있다. 여기서, m, n은 각각 1, 2 또는 3일 수 있다.
상기 에폭시 화합물은 하기 화학식의 에폭시 화합물을 포함하고, 상기 경화제는 디아미노디페닐설폰을 포함할 수 있다.
Figure PCTKR2013011311-appb-I000003
상기 질화 붕소는 구형의 질화 붕소를 포함할 수 있다.
상기 알루미나 100중량부에 대하여 상기 질화 붕소는 1 내지 20 중량부로 포함될 수 있다.
상기 무기 충전재는 입자의 크기에 따라 구분된 적어도 2이상의 알루미나 그룹을 포함할 수 있다.
상기 무기 충전재는 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 제1 알루미나 그룹, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 제2 알루미나 그룹 및 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 제3 알루미나 그룹을 포함할 수 있다.
상기 제1 알루미나 그룹은 전체 에폭시 수지 조성물 100중량부에 대하여 5 내지 40 중량부로 포함되고, 상기 제2 알루미나 그룹은 전체 에폭시 수지 조성물 100중량부에 대하여 5 내지 40 중량부로 포함되며, 상기 제3 알루미나 그룹은 전체 에폭시 수지 조성물 100 중량부에 대하여 30 내지 80 중량부로 포함될 수 있다.
상기 에폭시 수지 조성물에 대하여 상기 화학식의 에폭시 화합물은 3 내지 40wt%로 포함되고, 상기 경화제는 0.5 내지 30wt%로 포함되며, 상기 무기 충전재는 30 내지 96.5wt%로 포함될 수 있다.
상기 에폭시 수지 조성물은 비결정성 에폭시 화합물을 더 포함할 수 있다.
본 발명의 한 실시예에 따른 프리프레그는 본 발명의 한 실시예에 따른 에폭시 수지 조성물을 섬유질 기재에 코팅 또는 함침시켜 형성된다.
본 발명의 한 실시예에 따른 인쇄 회로 기판은 금속 플레이트, 상기 금속 플레이트 상에 형성되는 절연층, 그리고 상기 절연층 상에 형성되는 회로 패턴을 포함하고, 상기 절연층은 본 발명의 한 실시예에 따른 에폭시 수지 조성물로 이루어진다.
본 발명의 실시예에 따르면, 에폭시 수지 조성물을 얻을 수 있다. 이를 이용하여 열전도성이 높은 절연층을 얻을 수 있으며, 인쇄 회로 기판의 신뢰도와 방열 성능을 높일 수 있다.
도 1은 본 발명의 한 실시예에 따른 인쇄 회로 기판의 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 명세서에서 wt%는 중량부로 대체될 수 있다.
본 발명의 한 실시예에 따르면, 메조겐 구조를 포함하는 에폭시 수지, 경화제 및 무기 충전재를 포함하며, 무기 충전재로 알루미나(Alumina, Al2O3)와 구형의 질화 붕소(Boron Nitride, BN)가 함께 사용되는 에폭시 수지 조성물을 제공한다. 여기서, 메조겐(mesogen)은 액정(liquid crystal)의 기본 단위이며, 강성(rigid) 구조를 포함한다. 메조겐은, 예를 들면 비페닐(biphenyl), 페닐벤조에이트(phenylbenzoate), 나프탈렌(naphthalene)과 같은 강성 구조를 포함할 수 있다.
본 발명의 한 실시예에 따른 에폭시 수지 조성물은 전체 에폭시 수지 조성물에 대하여 3wt% 내지 40wt%, 바람직하게는 3wt% 내지 30wt%, 더욱 바람직하게는 3wt% 내지 20wt% 의 에폭시 화합물을 포함할 수 있다. 에폭시 화합물이 전체 에폭시 수지 조성물의 3wt% 이하로 함유된 경우, 밀착성이 나빠질 수 있다. 에폭시 화합물이 전체 에폭시 수지 조성물의 40wt% 이상으로 함유된 경우 두께 조절이 힘들 수 있다. 이때, 에폭시 수지 조성물은 전체 에폭시 수지 조성물에 대하여 3wt% 이상의 결정성 에폭시 화합물을 포함할 수 있다. 결정성 에폭시 화합물이 전체 에폭시 수지 조성물의 3wt%보다 적게 포함되는 경우, 결정화되지 않아 열전도 효과가 낮을 수 있다.
여기서, 결정성 에폭시 화합물은 하기 화학식 1과 같은 메조겐(mesogen) 화합물일 수 있다.
[화학식 1]
Figure PCTKR2013011311-appb-I000004
여기서, R1 내지 R14은 각각 H, Cl, Br, F, C1~C3 알킬, C2~C3 알켄, C2~C3 알킨으로 구성된 그룹에서 선택될 수 있다. 여기서, m, n은 각각 1, 2 또는 3일 수 있다.
결정성 에폭시 화합물은 하기 화학식 2와 같이 나타낼 수도 있다.
[화학식 2]
Figure PCTKR2013011311-appb-I000005
화학식 2에 따른 에폭시 화합물(이하, 4,4'-biphenolether diglycidyl ether라 지칭할 수 있다)의 에폭시 당량은 120 내지 300, 바람직하게는 150 내지 200일 수 있다. 화학식 2에 따른 에폭시 화합물의 물성은 녹는점(melting point)이 158℃이고, 1H NMR(CDCL3-d6, ppm) 결과는 δ=8.58(s, 2H), δ=8.17-8.19(d, 4H), δ=7.99-8.01(d, 4H), δ=7.33(s, 4H), δ=4.69-4.72(d, 1H), δ=4.18-4.22(m, 1H), δ=3.36-3.40(m, 1H), δ=2.92-2.94(m, 1H) 및 δ=2.74-2.77(m, 1H)이다. 녹는점은 시차 주사 열량 분석 장치(TA사 제품 DSC Q100)를 사용하여 승온속도 10℃/분으로 측정하였다. NMR은 CDCL3-d6에 용해시킨 후 H-NMR 측정하였다.
화학식 2에 따른 에폭시 화합물은 상온에서 결정성을 가진다. 결정성의 발현은 시차 주사 열량 분석에서 결정의 흡열 피크를 이용하여 확인할 수 있다. 이때, 흡열 피크는 복수의 피크 또는 브로드한 피크로 나타날 수 있고, 가장 낮은 온도의 흡열 피크가 60℃ 이상, 바람직하게는 70℃ 이상이고, 가장 높은 온도의 흡열 피크가 120℃ 이하, 바람직하게는 100℃이하일 수 있다.
한편, 화학식 2에 따른 에폭시 화합물은 결정성이 강하여 열전도 특성은 높으나, 상온 안정성이 부족할 수 있다. 이러한 문제를 개선하기 위하여, 에폭시 수지 조성물은 화학식 1 또는 화학식 2에 따른 결정성 에폭시 화합물 외에, 분자 중 에폭시기를 2개 이상 가지는 통상의 다른 비결정성 에폭시 화합물을 더 포함할 수 있다. 비결정성 에폭시 화합물은 전체 에폭시 화합물(결정성 에폭시 화합물과 비결정성 에폭시 화합물의 합)의 5wt% 내지 50wt%, 바람직하게는 10wt% 내지 40wt%의 함량비로 포함될 수 있다. 비결정성 에폭시 화합물이 전체 에폭시 화합물의 5wt%보다 낮게 함유된 경우 상온 안정성이 부족하며, 50wt%보다 높게 함유된 경우 열전도 특성이 부족할 수 있다.
비결정성 에폭시 화합물은, 예를 들면 비스페놀 A, 비스페놀 F, 3,3',5,5'-테트라메틸-4,4'-디히드록시디페닐메탄, 4,4'-디히드록시디페닐술폰, 4,4'-디히드록시디페닐술피드, 4,4'-디히드록시디페닐케톤, 플루오렌비스페놀, 4,4'-비페놀,3,3',5,5'-테트라메틸-4,4'-디히드록시비페닐, 2,2'-비페놀, 레조르신, 카테콜, t-부틸카테콜, 히드로퀴논, t-부틸히드로퀴논, 1,2-디히드록시나프탈렌, 1,3-디히드록시나프탈렌, 1,4-디히드록시나프탈렌, 1,5-디히드록시나프탈렌, 1,6-디히드록시나프탈렌, 1,7-디히드록시나프탈렌, 1,8-디히드록시나프탈렌, 2,3-디히드록시나프탈렌, 2,4-디히드록시나프탈렌, 2,5-디히드록시나프탈렌, 2,6-디히드록시나프탈렌, 2,7-디히드록시나프탈렌, 2,8-디히드록시나프탈렌, 상기 디히드록시나프탈렌의 알릴화물 또는 폴리알릴화물, 알릴화비스페놀A, 알릴화비스페놀F, 알릴화페놀노볼락 등의 2가의 페놀류, 혹은 페놀노볼락, 비스페놀A노볼락, o-크레졸노볼락, m-크레졸노볼락, p-크레졸노볼락, 크실레놀노볼락, 폴리-p-히드록시스티렌, 트리스-(4-히드록시페닐)메탄, 1,1,2,2-테트라키스(4-히드록시페닐)에탄, 플루오로글리시놀, 피로갈롤, t-부틸피로갈롤, 알릴화피로갈롤, 폴리알릴화피로갈롤, 1,2,4-벤젠트리올, 2,3,4-트리히드록시벤조페논, 페놀아랄킬수지, 나프톨아랄킬수지, 디시클로펜타디엔계 수지 등의3가 이상의 페놀류, 테트라브로모비스페놀A 등의 할로겐화비스페놀류로부터 유도되는 글리시딜에테르화물 및 이들로부터 선택된 혼합물 중 하나일 수 있다.
비스페놀 A형 에폭시 화합물의 일 예는 화학식 3과 같다.
[화학식 3]
Figure PCTKR2013011311-appb-I000006
여기서, n은 1 이상의 정수이다.
비스페놀 F형 에폭시 화합물의 일 예는 화학식 4와 같다.
[화학식 4]
Figure PCTKR2013011311-appb-I000007
본 발명의 한 실시예에 따른 에폭시 수지 조성물은 전체 에폭시 수지 조성물에 대하여 0.5wt% 내지 30wt%의 경화제가 포함될 수 있다. 경화제가 전체 에폭시 수지 조성물의 0.5wt% 이하로 함유된 경우, 밀착성이 나빠질 수 있다. 그리고, 경화제가 전체 에폭시 수지 조성물의 30wt% 이상 함유된 경우, 두께 조절이 힘들 수 있다. 에폭시 수지 조성물에 포함되는 경화제는 하기 화학식 5와 같은 4, 4'-디아미노디페닐설폰일 수 있다. 화학식 5의 경화제는 화학식 2의 에폭시 화합물과 반응하여 에폭시 수지 조성물의 열정 안정성을 높일 수 있다.
[화학식 5]
Figure PCTKR2013011311-appb-I000008
에폭시 수지 조성물에 페놀계 경화제, 아민계 경화제, 산무수물계 경화제 중 적어도 하나가 더 포함될 수도 있다.
페놀계 경화제는, 예를 들면 비스페놀A, 비스페놀F, 4,4'-디히드록시디페닐메탄, 4,4'-디히드록시디페닐에테르, 1,4-비스(4-히드록시페녹시)벤젠, 1,3-비스(4-히드록시페녹시)벤젠, 4,4'-디히드록시디페닐술피드, 4,4'-디히드록시디페닐케톤, 4,4'-디히드록시디페닐술폰, 4,4'-디히드록시비페닐, 2,2'-디히드록시비페닐, 10-(2,5-디히드록시페닐)-10H-9-옥사-10-포스파페난트렌-10-옥사이드, 페놀노볼락, 비스페놀A노볼락, o-크레졸노볼락, m-크레졸노볼락, p-크레졸노볼락, 크실레놀노볼락, 폴리-p-히드록시스티렌, 히드로퀴논, 레조르신, 카테콜, t-부틸카테콜, t-부틸히드로퀴논, 플루오로글리시놀, 피로갈롤, t-부틸피로갈롤, 알릴화피로갈롤, 폴리알릴화피로갈롤, 1,2,4-벤젠트리올, 2,3,4-트리히드록시벤조페논, 1,2-디히드록시나프탈렌, 1,3-디히드록시나프탈렌, 1,4-디히드록시나프탈렌, 1,5-디히드록시나프탈렌, 1,6-디히드록시나프탈렌, 1,7-디히드록시나프탈렌, 1,8-디히드록시나프탈렌, 2,3-디히드록시나프탈렌, 2,4-디히드록시나프탈렌, 2,5-디히드록시나프탈렌, 2,6-디히드록시나프탈렌, 2,7-디히드록시나프탈렌, 2,8-디히드록시나프탈렌, 상기 디히드록시나프탈렌의 알릴화물 또는 폴리알릴화물, 알릴화비스페놀A, 알릴화비스페놀F, 알릴화페놀노볼락, 알릴화피로갈롤 및 이들로부터 선택된 혼합물 중 하나일 수 있다.
아민계 경화제는, 예를 들면 지방족 아민류, 폴리에테르폴리아민류, 지환식 아민류, 방향족 아민류 등일 수 있으며, 지방족 아민류로서는, 에틸렌디아민, 1,3-디아미노프로판, 1,4-디아미노프로판, 헥사메틸렌디아민, 2,5-디메틸헥사메틸렌디아민, 트리메틸헥사메틸렌디아민, 디에틸렌트리아민, 이미노비스프로필아민, 비스(헥사메틸렌)트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, N-히드록시에틸에틸렌디아민, 테트라(히드록시에틸)에틸렌디아민 등을 들 수 있다. 폴리에테르폴리아민류로서는, 트리에틸렌글리콜디아민, 테트라에틸렌글리콜디아민, 디에틸렌글리콜비스(프로필아민), 폴리옥시프로필렌디아민, 폴리옥시프로필렌트리아민류 및 이들로부터 선택된 혼합물 중 하나일 수 있다. 지환식 아민류로서는, 이소포론디아민, 메타센디아민, N-아미노에틸피페라진, 비스(4-아미노-3-메틸디시클로헥실)메탄, 비스(아미노메틸)시클로헥산, 3,9-비스(3-아미노프로필)2,4,8,10-테트라옥사스피로(5,5)운데칸, 노르보르넨디아민 등을 들 수 있다. 방향족 아민류로서는, 테트라클로로-p-크실렌디아민, m-크실렌디아민, p-크실렌디아민, m-페닐렌디아민, o-페닐렌디아민, p-페닐렌디아민, 2,4-디아미노아니솔, 2,4-톨루엔디아민, 2,4-디아미노디페닐메탄, 4,4'-디아미노디페닐메탄, 4,4'-디아미노-1,2-디페닐에탄, 2,4-디아미노디페닐술폰, m-아미노페놀, m-아미노벤질아민, 벤질디메틸아민, 2-디메틸아미노메틸)페놀, 트리에탄올아민, 메틸벤질아민, -(m-아미노페닐)에틸아민, -(p-아미노페닐)에틸아민, 디아미노디에틸디메틸디페닐메탄, , '-비스(4-아미노페닐)-p-디이소프로필벤젠 및 이들로부터 선택된 혼합물 중 하나일 수 있다.
산무수물계 경화제는, 예를 들면 도데세닐무수숙신산, 폴리아디핀산무수물, 폴리아젤라인산무수물, 폴리세바신산무수물, 폴리(에틸옥타데칸이산)무수물, 폴리(페닐헥사데칸이산)무수물, 메틸테트라히드로무수프탈산, 메틸헥사히드로무수프탈산, 헥사히드로무수프탈산, 무수메틸하이믹산, 테트라히드로무수프탈산, 트리알킬테트라히드로무수프탈산, 메틸시클로헥센디카르본산무수물, 메틸시클로헥센테트라카르본산무수물, 무수프탈산, 무수트리멜리트산, 무수피로멜리트산, 벤조페논테트라카르본산무수물, 에틸렌글리콜비스트리멜리테이트, 무수헤트산, 무수나딕산, 무수메틸나딕산, 5-(2,5-디옥소테트라히드로-3-푸라닐)-3-메틸-3-시클로헥산-1,2-디카르본산무수물, 3,4-디카르복시-1,2,3,4-테트라히드로-1-나프탈렌숙신산이무수물, 1-메틸-디카르복시-1,2,3,4-테트라히드로-1-나프탈렌숙신산이무수물 및 이들로부터 선택된 혼합물 중 하나일 수 있다.
에폭시 수지 조성물은 경화 촉진제를 더 포함할 수도 있다.
본 발명의 한 실시예에 따른 에폭시 수지 조성물은 전체 에폭시 수지 조성물에 대하여 30wt% 내지 96.5wt%의 무기 충전재를 포함할 수 있다. 무기 충전재가 30wt%보다 적게 포함되면, 에폭시 수지 조성물의 고열전도성, 저열팽창성 및 고온내열성 등이 보장되지 않는다. 고열전도성, 저열팽창성 및 고온내열성은 무기 충전재의 첨가량이 많을수록 좋은데, 그 체적 분율에 따라 향상되는 것은 아니며, 특정 첨가량부터 비약적으로 향상된다. 다만, 무기 충전제의 첨가량이 96.5wt%보다 많이 포함되면, 점도가 높아져 성형성이 약화된다.
무기 충전재는 알루미나(Alumina, Al2O3) 및 질화 붕소(Boron Nitride, BN)를 포함한다.
이때, 알루미나는 입자의 크기에 따라 구분된 적어도 2 이상의 그룹을 포함할 수 있다. 예를 들어, 무기 충전재는 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 그룹, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 알루미나 그룹 및 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 그룹을 포함할 수 있다. 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 그룹은 전체 에폭시 수지 조성물의 5wt% 내지 40wt%, 바람직하게는 15wt% 내지 30wt% 만큼 포함될 수 있다. 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 알루미나 그룹은 전체 에폭시 수지 조성물의 5wt% 내지 40wt%, 바람직하게는 25wt% 내지 35wt% 만큼 포함될 수 있다. 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 그룹은 전체 에폭시 수지 조성물의 30wt% 내지 80wt%, 바람직하게는 40wt% 내지 75wt% 포함될 수 있다. 이와 같이, 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 그룹이 전체 에폭시 수지 조성물의 5wt% 내지 40wt%로 포함되고, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 알루미나 그룹이 전체 에폭시 수지 조성물의 5wt% 내지 40wt%로 포함되며, 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 그룹이 전체 에폭시 수지 조성물의 30wt% 내지 80wt%로 함유되면, 입자의 크기가 큰 알루미나를 이용하여 체적비를 향상시키며, 입자의 크기가 작거나 중간 크기인 알루미나를 골고루 채워 공극을 줄임으로써 열 전달을 위한 접촉 경로(contact path)를 최대화시킬 수 있다.
그리고, 알루미나 100중량부에 대한 질화 붕소의 함량 비는 1중량부 내지 20중량부, 바람직하게는 5중량부 내지 15중량부일 수 있다. 질화 붕소가 알루미나 100중량부에 대하여 1중량부 보다 적게 함유되면 요구되는 열전도율을 달성하기 어렵다. 그리고, 질화 붕소가 알루미나 100 중량부에 대하여 20중량부 보다 많이 함유되면 점도 상승으로 인하여 성형성이 악화된다.
이때, 질화 붕소는 구형의 질화 붕소일 수 있다. 판상의 질화 붕소를 사용할 경우 점도 상승으로 인하여 충진이 용이하지 않을 수 있다. 이에 따라, 판상의 질화 붕소를 사용할 경우 요구되는 열전도율을 달성하기 어려울 수 있다. 구형의 질화 붕소의 입자의 평균 지름은 5.0㎛ 내지 30.0㎛, 바람직하게는 10.0㎛ 내지 20.0㎛일 수 있다.
뿐만 아니라, 높은 열전도 성능이 우수한 질화 붕소, 특히 구형의 질화 붕소를 더 첨가함으로써, 열전도도를 극대화시킬 수 있다.
한편, 본 발명의 한 실시예에 따른 에폭시 수지 조성물은 전체 에폭시 수지 조성물에 대하여 0.1wt% 내지 2wt%, 바람직하게는 0.5wt% 내지 1.5wt%의 첨가제를 포함할 수 있다. 첨가제는, 예를 들면 페녹시(phenoxy)일 수 있다. 첨가제가 0.1wt%보다 낮게 첨가되면 요구하는 특성(예, 점착력)을 얻기 어렵고, 2wt%보다 높게 첨가되면 점도 상승으로 인하여 성형성이 악화된다.
본 발명이 한 실시예에 따른 에폭시 수지 조성물을 섬유 기재나 글라스 기재에 코팅 또는 함침시키고, 가열에 의하여 반경화시킴으로써 프리프레그(prepreg)를 제조할 수 있다.
본 발명의 한 실시예에 따른 에폭시 수지 조성물은 인쇄 회로 기판에 적용될 수 있다. 도 1은 본 발명의 한 실시예에 따른 인쇄 회로 기판의 단면도이다.
도 1을 참조하면, 인쇄 회로 기판(100)은 금속 플레이트(110), 절연층(120) 및 회로 패턴(130)을 포함한다.
금속 플레이트(110)는 구리, 알루미늄, 니켈, 금, 백금 및 이들로부터 선택된 합금으로 이루어질 수 있다.
금속 플레이트(110) 상에는 본 발명의 한 실시예에 따른 에폭시 수지 조성물로 이루어진 절연층(120)이 형성된다.
절연층(120) 상에는 회로 패턴(130)이 형성된다.
본 발명의 한 실시예에 따른 에폭시 수지 조성물을 절연층으로 이용함으로써, 방열 성능이 우수한 인쇄 회로 기판을 얻을 수 있다.
이하, 실시예 및 비교예를 이용하여 더욱 구체적으로 설명한다.
<실시예 1>
화학식 2의 결정성 에폭시 화합물 9.8wt%, 4, 4'-디아미노디페닐설폰 3.2wt%, 페녹시 1wt%, 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 40wt%, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 알루미나 24wt%, 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 16wt%, 구형의 질화 붕소 6wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 실시예 1의 에폭시 수지 조성물을 얻었다.
<실시예 2>
화학식 2의 결정성 에폭시 화합물 6.1wt%, 비스페놀 A(YD011, 국도화학)형 에폭시 화합물 4.5wt%, 4, 4'-디아미노디페닐설폰 3.4wt%, 페녹시 1wt%, 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 40wt%, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 알루미나 24wt%, 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 16wt%, 구형의 질화 붕소 5wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 실시예 2의 에폭시 수지 조성물을 얻었다.
<실시예 3>
화학식 2의 결정성 에폭시 화합물 14.3wt%, 4, 4'-디아미노디페닐설폰 4.7wt%, 페녹시 1wt%, 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 64wt%, 판형의 질화 붕소 16wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 실시예 3의 에폭시 수지 조성물을 얻었다.
<실시예 4>
화학식 2의 결정성 에폭시 화합물 10.6wt%, 4, 4'-디아미노디페닐설폰 3.4wt%, 페녹시 1wt%, 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 36wt%, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 알루미나 21wt%, 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 14wt%, 판형의 질화 붕소 14wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 실시예 4의 에폭시 수지 조성물을 얻었다.
<비교예 1>
화학식 2의 결정성 에폭시 화합물 6.0wt%, 4, 4'-디아미노디페닐설폰 2.0wt%, 페녹시 1wt%, 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 63wt%, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 알루미나 14wt%, 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 14wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 비교예 1의 에폭시 수지 조성물을 얻었다.
<비교예 2>
화학식 6의 에폭시 화합물 6.1wt%, 4, 4'-디히드록시디페닐에테르 3.8wt%, 트리페닐포스핀 0.1wt%, 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 알루미나 90wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 비교예 2의 에폭시 수지 조성물을 얻었다.
[화학식 6]
Figure PCTKR2013011311-appb-I000009
여기서, n은 1이다.
<비교예 3>
비스페놀 F(YX4000, JER)형 에폭시 화합물 26wt%, KTG-105(일본화학) 13.4wt%, 2E4MZ 0.6wt%, 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 40wt% 및 판형 질화 붕소 20wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 비교예 3의 에폭시 수지 조성물을 얻었다.
<비교예 4>
비스페놀 F(YX4000, JER)형 에폭시 화합물 26wt%, KTG-105(일본화학) 13.4wt%, 2E4MZ 0.6wt%, 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 알루미나 50wt% 및 판형 질화 붕소 10wt%를 혼합한 용액을 건조시킨 후, 40kgf/cm2, 180℃에서 90분간 경화시켜 비교예 4의 에폭시 수지 조성물을 얻었다.
NETZSCH사 제품 LFA447형 열전도율계를 사용하는 비정상 열선법에 의하여 실시예 1 내지 4 및 비교예 1 내지 4의 에폭시 수지 조성물의 열전도율을 측정하였다. 표 1은 그 결과를 나타낸다.
표 1
실험번호 열전도도(W/m.K)
실시예 1 12.04
실시예 2 11.50
실시예 3 8.39
실시예 4 7.81
비교예 1 7.01
비교예 2 5.3
비교예 3 1.18
비교예 4 1.14
표 1과 같이, 화학식 2의 결정성 에폭시 화합물, 4, 4'-디아미노디페닐설폰, 알루미나 및 질화 붕소를 포함하는 에폭시 수지 조성물은 열전도도가 7.8W/mK이상임을 알 수 있다. 특히, 실시예 1 및 2와 같이 다양한 사이즈의 알루미나 및 구형의 질화 붕소를 포함하는 에폭시 수지 조성물은 열전도도가 11W/mK 이상임을 알 수 있다.
이에 반해, 비교예 1과 같이 화학식 2의 결정성 에폭시 화합물, 4, 4'-디아미노디페닐설폰 및 알루미나를 포함하더라도 질화 붕소를 포함하지 않는 에폭시 수지 조성물의 열전도도는 7.01W/mK로 상대적으로 낮음을 알 수 있다. 또한, 비교예 3 및 4와 같이, 알루미나 및 질화 붕소를 포함하더라도 화학식 2의 결정성 에폭시 화합물이 아닌 에폭시 화합물 및 4, 4'-디아미노디페닐설폰이 아닌 경화제를 포함하는 에폭시 수지 조성물은 열전도도가 매우 낮음을 알 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (11)

  1. 하기 화학식 1의 에폭시 화합물,
    경화제, 그리고
    무기 충전재를 포함하고,
    상기 무기 충전재는 알루미나(Alumina, Al2O3) 및 질화 붕소(Boron Nitride, BN)를 포함하는 에폭시 수지 조성물:
    [화학식 1]
    Figure PCTKR2013011311-appb-I000010
    여기서, R1 내지 R14은 각각 H, Cl, Br, F, C1~C3 알킬, C2~C3 알켄, C2~C3 알킨으로 구성된 그룹에서 선택될 수 있다. 여기서, m, n은 각각 1, 2 또는 3일 수 있다.
  2. 제1항에 있어서,
    상기 에폭시 화합물은 하기 화학식 2의 에폭시 화합물을 포함하고, 상기 경화제는 디아미노디페닐설폰을 포함하는 에폭시 수지 조성물:
    [화학식 2]
    Figure PCTKR2013011311-appb-I000011
  3. 제2항에 있어서,
    상기 질화 붕소는 구형의 질화 붕소를 포함하는 에폭시 수지 조성물.
  4. 제2항에 있어서,
    상기 알루미나 100중량부에 대하여 상기 질화 붕소는 1 내지 20 중량부로 포함되는 에폭시 수지 조성물.
  5. 제2항에 있어서,
    상기 무기 충전재는 입자의 크기에 따라 구분된 적어도 2이상의 알루미나 그룹을 포함하는 에폭시 수지 조성물.
  6. 제5항에 있어서,
    상기 무기 충전재는 입자의 평균 지름이 0.3㎛ 내지 1.0㎛인 제1 알루미나 그룹, 입자의 평균 지름이 3.0㎛ 내지 10.0㎛인 제2 알루미나 그룹 및 입자의 평균 지름이 15.0㎛ 내지 50.0㎛인 제3 알루미나 그룹을 포함하는 에폭시 수지 조성물.
  7. 제6항에 있어서,
    상기 제1 알루미나 그룹은 전체 에폭시 수지 조성물 100 중량부에 대하여 5 내지 40 중량부로 포함되고, 상기 제2 알루미나 그룹은 전체 에폭시 수지 조성물 100 중량부에 대하여 5 내지 40 중량부로 포함되며, 상기 제3 알루미나 그룹은 전체 에폭시 수지 조성물 100 중량부에 대하여 30 내지 80 중량부로 포함되는 에폭시 수지 조성물.
  8. 제2항에 있어서,
    상기 에폭시 수지 조성물에 대하여 상기 화학식 2의 에폭시 화합물은 3 내지 40wt%로 포함되고, 상기 경화제는 0.5 내지 30wt%로 포함되며, 상기 무기 충전재는 30 내지 96.5wt%로 포함되는 에폭시 수지 조성물.
  9. 제2항에 있어서,
    비결정성 에폭시 화합물을 더 포함하는 에폭시 수지 조성물.
  10. 금속 플레이트,
    상기 금속 플레이트 상에 형성되는 절연층, 그리고
    상기 절연층 상에 형성되는 회로 패턴을 포함하고,
    상기 절연층은 제1항의 에폭시 수지 조성물로 이루어진 인쇄 회로 기판.
  11. 제10항에 있어서,
    상기 질화 붕소는 구형의 질화 붕소이며, 상기 알루미나 100 중량부에 대하여 상기 질화 붕소는 1 내지 20 중량부로 포함되는 인쇄 회로 기판.
PCT/KR2013/011311 2012-12-12 2013-12-06 에폭시 수지 조성물 및 인쇄 회로 기판 WO2014092400A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380065257.9A CN104870557B (zh) 2012-12-12 2013-12-06 环氧树脂组合物以及印刷电路板
US14/651,768 US9445498B2 (en) 2012-12-12 2013-12-06 Epoxy resin composition and printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0144785 2012-12-12
KR1020120144785A KR101984791B1 (ko) 2012-12-12 2012-12-12 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판

Publications (1)

Publication Number Publication Date
WO2014092400A1 true WO2014092400A1 (ko) 2014-06-19

Family

ID=50934624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011311 WO2014092400A1 (ko) 2012-12-12 2013-12-06 에폭시 수지 조성물 및 인쇄 회로 기판

Country Status (4)

Country Link
US (1) US9445498B2 (ko)
KR (1) KR101984791B1 (ko)
CN (1) CN104870557B (ko)
WO (1) WO2014092400A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211018A4 (en) * 2014-08-27 2018-08-01 JNC Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822768B (zh) * 2012-11-30 2017-09-08 Lg伊诺特有限公司 环氧树脂组合物和包括使用该环氧树脂组合物的绝缘层的印刷电路板
KR101973685B1 (ko) * 2012-12-12 2019-08-26 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR101973686B1 (ko) 2012-12-12 2019-08-26 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR102012311B1 (ko) * 2012-12-12 2019-08-20 엘지이노텍 주식회사 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR101984791B1 (ko) 2012-12-12 2019-09-03 엘지이노텍 주식회사 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판
KR102034228B1 (ko) * 2012-12-14 2019-10-18 엘지이노텍 주식회사 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판
US11866635B2 (en) 2015-11-19 2024-01-09 Sekisui Chemical Co., Ltd. Thermosetting material and cured product
CN115403743A (zh) * 2022-09-27 2022-11-29 重庆大学 一种高导热球形氮化硼复合环氧树脂的固化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200121A (ja) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd 半導体封止用低圧トランスファ成形材料
JP2001279064A (ja) * 2000-03-31 2001-10-10 Toray Ind Inc 半導体封止用エポキシ樹脂組成物
KR20110017853A (ko) * 2008-05-15 2011-02-22 에보니크 데구사 게엠베하 전자 패키징
JP2011181651A (ja) * 2010-03-01 2011-09-15 Panasonic Corp 放熱基板とその製造方法
KR20120074109A (ko) * 2010-12-27 2012-07-05 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 방열회로기판

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594291A (en) 1984-07-17 1986-06-10 The Dow Chemical Company Curable, partially advanced epoxy resins
US4847348A (en) 1987-07-17 1989-07-11 The Dow Chemical Company Imide Modified epoxy resins
JPH06216484A (ja) * 1993-01-18 1994-08-05 Hitachi Chem Co Ltd 金属ベース銅張り積層板
JPH06334288A (ja) * 1993-05-20 1994-12-02 Furukawa Electric Co Ltd:The 金属ベースプリント基板
KR100276206B1 (ko) 1998-10-12 2000-12-15 리 존시 에폭시 수지 조성물
TWI305292B (ko) 2001-09-27 2009-01-11 Sumitomo Chemical Co
KR20040039090A (ko) 2002-10-31 2004-05-10 삼성광주전자 주식회사 제빙기
TW200602427A (en) 2004-03-30 2006-01-16 Taiyo Ink Mfg Co Ltd Thermosetting resin composition and multilayered printed wiring board comprising the same
WO2006120993A1 (ja) 2005-05-10 2006-11-16 Nippon Steel Chemical Co., Ltd. エポキシ樹脂組成物および硬化物
JP4285491B2 (ja) 2006-02-28 2009-06-24 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、及び半導体封止材料
US7829188B2 (en) 2006-04-03 2010-11-09 E.I. Du Pont De Nemours And Company Filled epoxy compositions
TW200804449A (en) 2006-06-07 2008-01-16 Sumitomo Chemical Co Epoxy resin composition and epoxy resin hardened material
KR101423151B1 (ko) 2006-11-13 2014-07-25 신닛테츠 수미킨 가가쿠 가부시키가이샤 결정성 수지 경화물, 결정성 수지 복합체 및 그 제조방법
JP2008277407A (ja) * 2007-04-26 2008-11-13 Matsushita Electric Ind Co Ltd プリント配線板及びその製造方法とこれを用いたモジュール
JP5472103B2 (ja) 2008-05-30 2014-04-16 ダイソー株式会社 エポキシ樹脂硬化物、及びエポキシ樹脂接着剤
US7885494B2 (en) 2008-07-02 2011-02-08 Sony Ericsson Mobile Communications Ab Optical signaling for a package-on-package stack
JP5265461B2 (ja) 2008-07-16 2013-08-14 新日鉄住金化学株式会社 結晶性変性エポキシ樹脂、エポキシ樹脂組成物及び結晶性硬化物
KR101044114B1 (ko) 2009-06-15 2011-06-28 삼성전기주식회사 인쇄회로기판용 수지 조성물 및 이를 이용한 인쇄회로기판
CN101962465A (zh) * 2009-07-21 2011-02-02 聚鼎科技股份有限公司 导热电绝缘高分子材料及包含该导热电绝缘高分子材料的散热基板
CN102695739B (zh) 2009-08-27 2014-08-13 Abb研究有限公司 可固化环氧树脂组合物
JP2011181650A (ja) 2010-03-01 2011-09-15 Panasonic Corp 放熱基板とその製造方法
JP2011181648A (ja) 2010-03-01 2011-09-15 Panasonic Corp 放熱基板とその製造方法
JP2011181652A (ja) 2010-03-01 2011-09-15 Panasonic Corp 放熱基板及びその製造方法とモジュール
CN101974208B (zh) 2010-08-20 2012-11-14 广东生益科技股份有限公司 高导热树脂组合物及使用其制作的高导热覆金属箔板
JP5761639B2 (ja) * 2010-09-30 2015-08-12 日本発條株式会社 接着剤樹脂組成物、その硬化物、及び接着剤フィルム
KR101854948B1 (ko) 2011-03-28 2018-05-04 히타치가세이가부시끼가이샤 수지 조성물, 수지 시트, 수지 시트 경화물, 수지 시트 적층체, 수지 시트 적층체 경화물 및 그 제조 방법, 반도체 장치, 그리고 led 장치
KR20120109266A (ko) 2011-03-28 2012-10-08 김강 방열판과 그 제조 방법
JP2013007028A (ja) 2011-05-20 2013-01-10 Nitto Denko Corp 封止用シートおよび電子部品装置
CN103797068A (zh) * 2011-07-12 2014-05-14 Lg伊诺特有限公司 环氧树脂组合物以及使用该环氧树脂组合物的辐射热电路板
KR101326934B1 (ko) * 2011-08-31 2013-11-11 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 방열회로기판
CN104822768B (zh) * 2012-11-30 2017-09-08 Lg伊诺特有限公司 环氧树脂组合物和包括使用该环氧树脂组合物的绝缘层的印刷电路板
KR102012311B1 (ko) 2012-12-12 2019-08-20 엘지이노텍 주식회사 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR101984791B1 (ko) 2012-12-12 2019-09-03 엘지이노텍 주식회사 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판
KR101973685B1 (ko) * 2012-12-12 2019-08-26 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR101973686B1 (ko) * 2012-12-12 2019-08-26 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
KR102034228B1 (ko) * 2012-12-14 2019-10-18 엘지이노텍 주식회사 에폭시 수지 조성물, 이를 이용한 프리프레그 및 인쇄 회로 기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200121A (ja) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd 半導体封止用低圧トランスファ成形材料
JP2001279064A (ja) * 2000-03-31 2001-10-10 Toray Ind Inc 半導体封止用エポキシ樹脂組成物
KR20110017853A (ko) * 2008-05-15 2011-02-22 에보니크 데구사 게엠베하 전자 패키징
JP2011181651A (ja) * 2010-03-01 2011-09-15 Panasonic Corp 放熱基板とその製造方法
KR20120074109A (ko) * 2010-12-27 2012-07-05 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 방열회로기판

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211018A4 (en) * 2014-08-27 2018-08-01 JNC Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
US10202530B2 (en) 2014-08-27 2019-02-12 Jnc Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and method of producing heat dissipating member

Also Published As

Publication number Publication date
CN104870557B (zh) 2018-09-25
CN104870557A (zh) 2015-08-26
US20150319854A1 (en) 2015-11-05
KR101984791B1 (ko) 2019-09-03
US9445498B2 (en) 2016-09-13
KR20140076343A (ko) 2014-06-20

Similar Documents

Publication Publication Date Title
WO2014092404A1 (ko) 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
WO2014092400A1 (ko) 에폭시 수지 조성물 및 인쇄 회로 기판
WO2014092402A1 (ko) 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
WO2014092403A1 (ko) 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
WO2014084555A1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
WO2014092401A1 (ko) 수지 조성물 및 이를 이용한 인쇄 회로 기판
JP5324094B2 (ja) エポキシ樹脂組成物および硬化物
WO2013032238A2 (en) Epoxy resin compound and radiant heat circuit board using the same
WO2013009114A2 (en) Epoxy resin compound and radiant heat circuit board using the same
WO2012091320A2 (en) Epoxy resin compound and radiant heat circuit board using the same
EP2662395B1 (en) Epoxy resin, epoxy resin compound comprising the same, and radiant heat circuit board using the compound
WO2012161490A2 (en) Epoxy resin compound and radiant heat circuit board using the same
WO2013015659A2 (en) Epoxy resin compound and radiant heat circuit board using the same
KR101952356B1 (ko) 에폭시 수지 조성물 및 이를 이용한 인쇄 회로 기판
WO2015167149A1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄회로기판
KR102022430B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR102172295B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄회로기판
KR102012312B1 (ko) 에폭시 수지 조성물 및 이를 이용하는 인쇄 회로 기판
KR102172297B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄회로기판
KR102172298B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄회로기판
KR101985255B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR102104524B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR101985256B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR102111600B1 (ko) 에폭시 수지 조성물 및 이를 이용하는 인쇄 회로 기판
KR102104525B1 (ko) 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14651768

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13861982

Country of ref document: EP

Kind code of ref document: A1