WO2014092235A1 - 제빙기 - Google Patents

제빙기 Download PDF

Info

Publication number
WO2014092235A1
WO2014092235A1 PCT/KR2012/011786 KR2012011786W WO2014092235A1 WO 2014092235 A1 WO2014092235 A1 WO 2014092235A1 KR 2012011786 W KR2012011786 W KR 2012011786W WO 2014092235 A1 WO2014092235 A1 WO 2014092235A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
ice
ice tray
ice maker
accommodating
Prior art date
Application number
PCT/KR2012/011786
Other languages
English (en)
French (fr)
Inventor
지준동
이경수
채원영
이정우
이진희
Original Assignee
주식회사 대창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대창 filed Critical 주식회사 대창
Priority to CN201290001382.4U priority Critical patent/CN204806754U/zh
Priority to US14/651,184 priority patent/US20150316306A1/en
Publication of WO2014092235A1 publication Critical patent/WO2014092235A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays

Definitions

  • An embodiment of the present invention relates to an ice maker, and more particularly, to an ice maker having a heater for heating an ice tray during ice-making.
  • a refrigerator in general, includes a refrigerator compartment for storing food and a freezer compartment for freezing food. At this time, an ice maker for manufacturing ice is installed in the freezing compartment or the refrigerating compartment.
  • FIG. 1 is a perspective view showing a conventional ice maker
  • Figure 2 is a view showing a state in which a heater is formed in the lower portion of the conventional ice tray.
  • the conventional ice maker 10 includes an ice tray 11, an ejector 13, a control unit 15, a side guide 17, an ice bank 19, a water supply pipe 21, and a water supply.
  • the ice tray 11 has an ice making space for accommodating water therein.
  • a plurality of partitions may be formed inside the ice tray 11 to separate the ice making space into a plurality of partitions.
  • the ice tray 11 is supplied with water (ie, ice making water) through the water supply pipe 21 and the water supply cup 23. At this time, the water contained in the ice making space in the ice tray 110 is iced by the cold air of the ice making room (not shown).
  • the control unit 15 operates the heater 27 installed at the lower portion of the ice tray 11 to heat the ice tray 11. Then, the frozen ice on the inner surface of the ice tray 11 is slightly melted to easily ice the ice.
  • the heater 27 will be described later with reference to FIG. 3.
  • the controller 15 drives a motor (not shown) to rotate the ejector 13 clockwise.
  • the ejector 13 includes an ejector shaft 13-1 connected to a motor (not shown) and a plurality of ejector pins 13-2 formed to be spaced apart from each other on the ejector shaft 13-1.
  • the motor (not shown) rotates the ejector shaft 13-1 in the clockwise direction
  • the ejector pin 13-2 rotates together with the ejector shaft 13-1, thereby displacing the ice in the ice tray 11. 11) to be separated and pushed upwards.
  • the ice pushed up by the ejector pins 13-2 descends on the side guide 17 formed on one side of the ice tray 11 and is accommodated in the ice bank 19.
  • FIG. 3 is a cross-sectional view taken along line AA ′ of FIG. 1.
  • the heater 27 is formed in combination with the ice tray 11 at the lower surface of the ice tray 11. Specifically, the heater 27 is coupled between the extending portion 11-1 extending from the lower surface of the ice tray 11 and the caulking portion 29 formed on the lower surface of the ice tray 11.
  • the conventional ice maker 10 mainly uses a U-shaped sheath heater as the heater 27.
  • the sheath heater 27 includes a heating wire 41, a magnesium oxide (MgO) powder 44 formed to surround the heating line 41, and a metal pipe 47 formed to surround the magnesium oxide powder 44. At this time, the sheath heater 27 is formed to have a diameter of about 6 ⁇ 8 mm.
  • the heater 27 since the heater 27 has a long heat transfer distance (about 3 to 4 mm) from the heating wire 41 to the ice tray 11, a high power (for example, heating the ice tray 11 to a predetermined temperature) is performed. , 145 W), so there is a problem that power consumption is high.
  • the heater 27 is formed to a large diameter of about 6 ⁇ 8 mm while being exposed to the outside from the lower surface of the ice tray (11). At this time, when the cool air is supplied from the air duct (not shown) formed in the lower portion of the ice tray 11, not only the heater 27 is directly exposed to the cold air, but also because the area exposed to the cold air is large, the heater 27 There is a problem that the temperature rise of is delayed, and heat loss occurs.
  • the heater 27 is caulked by the projection 29-1 formed in the caulking portion 29 between the extension portion 11-1 and the caulking portion 29 so as not to be separated from the lower portion of the ice tray 11 ( Caulking) is formed. In this case, there is a risk that the cocked portion of the heater 27 is crushed and broken.
  • the outer circumferential surface of the heater 27 is made of a rigid metal pipe 47, it is difficult to bring the heater 27 into close contact with the ice tray 11, and therefore, the ice tray 11 is heated from the heater 27. There is a problem that the heat transfer efficiency of the furnace is poor.
  • An embodiment of the present invention is to provide an ice maker with a heater that can reduce power consumption and heat loss while heating the ice tray to a predetermined temperature in a short time.
  • the ice tray At least one heater accommodating portion formed in the ice tray; And a heater having a soft outer shell or an outer shell having an elastic force to be held in close contact with the heater accommodating unit and to heat the ice tray.
  • the time taken to heat the ice tray to a predetermined temperature can be reduced. Can be reduced.
  • the overall temperature of the ice making chamber equipped with the ice maker can be reduced, the ice tray is iced to the ice bank, and the ice tray is cooled to the ice making temperature when the ice is prepared by supplying the ice making water again. This will reduce the time it takes to do so. As a result, the entire ice making time required to complete a cycle of ice making can be reduced, and power consumption consumed in the ice making process can be reduced. Since the heater and the ice tray can be brought into close contact with each other, the heat transfer efficiency can be improved.
  • the heater since the heater has a short heat transfer distance, the ice tray can be heated to a predetermined temperature even at low power, thereby reducing power consumption used to operate the heater itself.
  • FIG. 1 is a perspective view showing a conventional ice maker.
  • Figure 2 is a view showing a state in which a heater is formed in the lower portion of the conventional ice tray.
  • FIG. 3 is a cross-sectional view taken along the line A-A 'in FIG.
  • FIG. 4 is a cross-sectional view of an ice maker according to an embodiment of the present invention.
  • FIG. 5 is a view showing the bottom of the ice tray according to an embodiment of the present invention.
  • FIG. 6 is a view showing a heater is formed in the ice tray in the ice maker according to an embodiment of the present invention.
  • FIG. 7 is a view illustrating various embodiments in which a heater is accommodated in a heater receiving unit in an ice maker according to an embodiment of the present invention.
  • FIG 8 is a view showing another embodiment in which the heater is accommodated in the heater receiving unit in the ice maker according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an ice maker in accordance with another embodiment of the present invention.
  • Figure 10 shows another embodiment of the support ribs in the heater support of the present invention.
  • 11 is an ice maker according to another embodiment of the present invention.
  • FIG. 12 is a graph comparing the performance of a heater according to an embodiment of the present invention and a heater according to the prior art.
  • FIG 4 is a cross-sectional view of an ice maker according to an embodiment of the present invention
  • Figure 5 is a view showing the bottom of the ice tray according to an embodiment of the present invention.
  • the ice maker 100 includes an ice tray 102, an ejector 104, a heater 106, an ice bank 108, and a guide unit 110.
  • the ejector 104 includes an ejector shaft 104-1 connected to a motor (not shown) and a plurality of ejector pins 104-2 formed to be spaced apart from each other.
  • the ice tray 102 has an ice making space for receiving water therein.
  • a plurality of partitions may be formed inside the ice tray 102 to separate the ice making space into a plurality of spaces.
  • each of the separated ice making spaces in the ice tray 102 may be formed to correspond to the ejector pin 104-2.
  • the heater accommodating part 121 may include an accommodating groove 121 formed between the pair of protrusions 121-1 and the pair of protrusions 121-1 protruding from the outer circumferential surface of the ice tray 102. -2).
  • the present invention is not limited thereto, and the heater accommodating part 121 may be formed in various shapes other than those capable of accommodating the heater 106.
  • the heater accommodating part 121 may be made of only an accommodating groove formed on the outer circumferential surface of the ice tray 102 without a separate protrusion.
  • the ejector 104 serves to ice the ice in the ice tray 102 to the ice bank 108 when ice making is completed.
  • the ejector shaft 104-1 rotates in a certain direction (clockwise in FIG. 4)
  • the ejector pin 104-2 rotates clockwise along with the ejector shaft 104-1 and the ice tray ( The ice in 102 is pushed up.
  • the ice pushed up by the ejector pin 104-2 falls on the ice bank 108 through the guide part 110 formed at the side of the ice tray 102.
  • the heater 106 is accommodated in the heater accommodating part 121 formed in the outer peripheral surface of the ice tray 102.
  • the heater 106 may be inserted into and received in the accommodation groove 121-2 formed between the pair of protrusions 121-1.
  • the heater 106 includes a heat generating unit 106-1 and an insulating unit 106-2 formed to surround the heat generating unit 106-1.
  • the heat generating unit 106-1 generates heat when a voltage is applied.
  • a general heating wire for example, nickel-chromium wire or copper-nickel wire, etc.
  • the present invention is not limited thereto, and the heat generating unit 106-1 may be formed in a form in which glass fibers are wound around a heating wire, or may be formed in a form in which a heating wire is wound around the glass fibers.
  • the insulating part 106-2 forms a sheath of the heater 106 and serves to protect the heat generating part 106-1.
  • the insulating unit 106-2 may be made of a soft insulating material or an insulating material having an elastic force.
  • the insulation unit 106-2 may be made of PVC, silicon, rubber, or the like.
  • the heater 106 since the heater 106 has a flexible property, the heater 106 may be stored in close contact with the ice tray 102 in the heater accommodating part 121.
  • the heater 106 of this type may be, for example, a cord heater, but the type of the heater 106 is not limited to the cord heater.
  • the cord heater When the cord heater is used as the heater 106, the cord heater can be formed on the outer circumferential surface of the ice tray 102 because the cord heater is flexible and can be formed small in diameter (for example, 2 to 4 mm). At this time, the area where the heater 106 and the ice tray 102 contact each other can be increased. That is, as shown in FIG. 5, by forming the heater 106 in the zigzag form on the outer circumferential surface of the ice tray 102, the area where the heater 106 and the ice tray 102 contact each other can be improved. The heater 106 can be formed over the entire area of the ice tray 102.
  • the heater 106 is illustrated as being formed in a zigzag shape on the outer circumferential surface of the ice tray 102, but is not limited thereto.
  • the heater 106 may be closely disposed on the outer circumferential surface of the ice tray 102. It may be formed in various forms (eg, spiral form, etc.).
  • the heater accommodating part 121 is illustrated as being continuously formed along the heater 106, the present invention is not limited thereto, and the heater accommodating part 121 may be disconnected at regular intervals.
  • the cord heater when used as the heater 106, the area in which the heater 106 and the ice tray 102 directly contact each other can be widened, and the heater 106 is spread over the entire area of the ice tray 102. Since it can be formed, it is possible to reduce the time taken to heat the ice tray 102 to a predetermined temperature. In this case, since the total temperature of the ice making chamber equipped with the ice maker 100 can be reduced, the ice in the ice tray 102 is iced to the ice bank 108, and then ice is supplied again to manufacture ice. When it is possible to reduce the time taken to cool the ice tray 102 to the ice making temperature. As a result, the entire ice making time required to complete a cycle of ice making can be reduced, and power consumption consumed in the ice making process can be reduced.
  • the heater 106 since the heater 106 has a short heat transfer distance (about 1 to 2 mm) from the heat generating unit 106-1 to the ice tray 102, the heater 106 can be used even at low power (for example, 50 W). 102 can be heated to a predetermined temperature to reduce the power consumption used to operate the heater 106 itself.
  • FIG. 6 is a view showing a heater is formed in the ice tray in the ice maker according to an embodiment of the present invention. Here, the part which the lead wire is connected to the terminal of the heater was shown.
  • the heater 106 is accommodated in the heater accommodating part 121 formed on the outer circumferential surface of the ice tray 102. At this time, the end of the heater 106 is connected to one end of the lead wire 127 to supply power. The other end of the lead wire 127 is electrically connected to a power supply unit (not shown). The end of the heater 106 and the other end of the lead wire 127 are electrically connected, and then protected from the outside through the molding part 125.
  • the molding part 125 is accommodated in the molding receiving groove 123 formed in the ice tray 102.
  • the molding accommodating groove 123 may be formed to extend from the accommodating groove 121-2 of the heater accommodating part 121.
  • the molding accommodating groove 123 may be formed such that a free space exists to the left and right of the molding part 125 when the molding part 125 is accommodated in the molding accommodating groove 123.
  • the free space existing on the left and right sides of the molding part 125 in the molding accommodating groove 123 may be referred to as a buffer space according to the length error of the heater 106.
  • FIG. 7 is a view illustrating various embodiments in which a heater is accommodated in a heater accommodating unit in an ice maker according to an embodiment of the present invention.
  • an upper end of the accommodating groove 121-2 may be formed in a semicircular shape, and a lower end of the accommodating groove 121-2 may be formed in a square shape.
  • the heater 106 may be formed in a circular shape.
  • the storage groove 121-2 and the heater 106 will be described as cross-sectional shapes. In this case, the upper portion of the heater 106 is in contact with the upper end of the receiving groove 121-2 so that about half of the total area of the heater 106 is in contact with the ice tray 102.
  • the close contact member 131 may be formed between the heater 106 and the inner wall of the accommodation groove 121-2.
  • the close contact member 131 serves to prevent an empty space or air from being present between the heater 106 and the inner wall of the accommodation groove 121-2. That is, the close contact member 131 serves to bring the heater 106 into close contact with the inner wall of the receiving groove 121-2.
  • an adhesive member may be used as the close contact member 131. In this case, the heater 106 can be fixed while being in close contact with the inner wall of the receiving groove 121-2. At this time, when the thermally conductive adhesive member is used as the close contact member 131, the heat conduction efficiency from the heater 106 to the ice tray 102 can be increased.
  • a separate sealing member may be filled in the empty space between the inner wall of the accommodating groove 121-2 and the heater 106 at the bottom of the accommodating groove 121-2.
  • the heater 106 can be fixed in the receiving groove 121-2 while reducing the heat loss of the heater 106.
  • the sealing member may be made of the same material as the close contact member 131.
  • the accommodating groove 121-2 may be formed in a quadrangular shape, and the heater 106 may be formed in a shape corresponding to the accommodating groove 121-2, that is, in a quadrangular form. Since the insulating part 106-2 of the heater 106 is formed by the injection method, it may be formed in a shape corresponding to the shape of the accommodating groove 121-2. In this case, when the heater 106 is inserted into the accommodating groove 121-2, about three quarters of the entire area of the heater 106 comes into contact with the accommodating groove 121-2. The heat transfer efficiency to the tray 102 can be improved. The heater 106 is exposed to the outside to minimize heat loss.
  • the heater 106 may be fitted into the receiving groove 121-2.
  • the heater 106 may be formed in the same size as the receiving groove 121-2 or slightly larger than the receiving groove 121-2.
  • the insulating portion 106-2 of the heater 106 is formed of an insulating material having an elastic force such as silicon or rubber, the heater 106 may be pressed to fit into the receiving groove 121-2. . In this case, the heater 106 may not be damaged in the process of fitting the heater 106 to the receiving groove 121-2. Since the insulating part 106-2 has an elastic force toward the inner wall side of the accommodating groove 121-2, the heater 106 can be prevented from falling out of the accommodating groove 121-2 without a separate structure.
  • the heater 106 is illustrated as being rectangular, but is not limited thereto and may be formed of other polygons.
  • an upper end of the accommodating groove 121-2 may be formed in a semicircle shape, and a lower end of the accommodating groove 121-2 may be formed in a quadrangular shape.
  • the heater 106 may be formed in a shape corresponding to the accommodation groove 121-2. That is, the accommodating groove 121-2 and the heater 106 may be formed in a combination of a semicircle and a quadrangle. In this case, the area where the heater 106 is in contact with the ice tray 102 can be widened while the area where the heater 106 is exposed to the outside can be reduced. In this case, the heater 106 may be fitted into the receiving groove 121-2.
  • the heater 106 is described as being fixed to the receiving groove 121-2 through an adhesive method.
  • the heater 106 is fitted and coupled.
  • the method of fixing the heater 106 to the receiving groove 121-2 is not limited thereto.
  • the heater 106 may be fixed to the receiving groove 121-2 by using both the fitting coupling method and the adhesive method, and fixed to the receiving groove 121-2 using various other coupling methods. You can.
  • FIG 8 is a view showing another embodiment in which the heater is accommodated in the heater receiving unit in the ice maker according to the embodiment of the present invention.
  • an auxiliary protrusion 134 may be formed on an outer circumferential surface of the heater 106.
  • the auxiliary protrusion 134 may be formed to be inclined downward.
  • the auxiliary protrusion 137 is formed in the accommodating groove because the insulating part 106-2 is made of a soft insulating material. It is folded by the inner wall of 121-2 and is inserted in close contact with the outer circumferential surface of the heater 106.
  • the heater 106 When the heater 106 is inserted into the accommodating groove 121-2, the heater 106 is held tightly in the accommodating groove 121-2 by the auxiliary protrusion 134, whereby the heater 106 is It is possible to prevent the departure from the receiving groove (121-2).
  • the auxiliary protrusion 134 is shown as one, but is not limited to this may be formed in two or more.
  • an auxiliary protrusion insertion groove (not shown) corresponding to the auxiliary protrusion 134 may be further formed in the accommodation groove 121-2.
  • the auxiliary protrusion 134 is inserted into the auxiliary protrusion insertion groove (not shown) to fix and support the heater 106.
  • FIG. 9 is a cross-sectional view of an ice maker according to another embodiment of the present invention.
  • the ice maker 100 further includes a heater support 112 formed under the ice tray 102.
  • the heater support part 112 includes a base frame 141 and support ribs 144 protruding upward from the base frame 141.
  • the support rib 144 may be formed to correspond to the receiving groove 121-2 (that is, the heater 106).
  • the heater support 112 may serve as a cover of the heater 106 as it is formed under the ice tray 102.
  • the heater supporter 112 may also serve as an air duct for supplying cold air to the ice tray 102. At this time, the space between the support ribs 144 becomes a passage through which cold air moves.
  • the heater support part 112 is illustrated as being formed under the ice tray 102, the position at which the heater support part 112 is formed is not limited thereto, and the heater support part 112 may be formed at the side of the ice tray 102. It may be formed.
  • a shield 147 may be formed at the end of the support rib 144.
  • the shield 147 may extend from the end of the support rib 144 to the left and right.
  • the shield 147 may be formed to block an inlet of the accommodation groove 121-2. Then, the heater 106 is in a state of being cut off from the outside in the receiving groove 121-2.
  • the shield 147 is described as extending from the end of the support rib 144 to the left and right, but is not limited thereto, the shield 147 is formed separately from the support rib 144 to support the rib Or may be coupled to the end of 144.
  • the heater 106 Since the heater 106 is blocked from the outside in the receiving groove 121-2, even if cold air is supplied to the space between the support ribs 144, the cold air may be prevented from contacting the heater 106. Will be. In this case, it is possible to prevent the temperature rise of the heater 106 from being delayed while supplying cold air to the ice tray 102. In addition, since heat generated in the heater 106 can be prevented from escaping to the outside, heat loss can be reduced.
  • FIG. 10 is a view showing another embodiment of the support rib in the heater support of the present invention.
  • the end of the support rib 144 may be formed in contact with the heater 106.
  • the support rib 144 supports the heater 106, thereby preventing the heater 106 from being separated from the receiving groove 121-2.
  • a shield 147 may be formed at an end of the support rib 144.
  • the shield 147 may be in contact with the heater 106 in a state of being inserted into the receiving groove 121-2.
  • the heater 106 can be reliably cut off from the outside while supporting the heater 106.
  • a shield 147 may be formed at the end of the support rib 144.
  • the shield 147 may be formed to block an inlet of the accommodation groove 121-2.
  • the shielding part 147 may have a support protrusion 147-1 contacting the heater 106. In this case, it is possible to prevent the shield 147 and the support ribs 144 from being deformed by the heater 106 by reducing the area where the shield 147 contacts the heater 106.
  • the heater support part 112 is made of synthetic resin
  • the shield part 147 contacts the heater 106
  • the deformation of the shield part 147, the support rib 144, etc. due to the heat generated by the heater 106 may occur. It can happen.
  • the support protrusion 147-1 is formed on the shield 147 to reduce the area where the shield 147 contacts the heater 106, the heat transferred from the heater 106 to the shield 147. In this way, the heater 106 prevents the shield 147 and the support ribs 144 from being deformed.
  • the shield 147 may extend from the end of the support rib 144 to the lower portion of the pair of protrusions 121-1.
  • the shield 147 may be formed in contact with the heater 106 and the pair of protrusions 121-1, respectively. In this case, not only does it prevent the cold air from contacting the heater 106, but also prevents the shield 147 and the support rib 144 from being deformed by the heater 106.
  • the shield 147 when the shield 147 is formed extending from the end of the support rib 144 to the lower part of the pair of protrusions 121-1, the heat of the shield 147 is generated by the ice tray 102. In this way, the shield 147 and the support rib 144 can be prevented from being deformed.
  • the shield 147 may be formed to surround the lower ends of the pair of protrusions 121-1. In this case, by expanding the area where the shielding portion 147 is in contact with the ice tray 102, the heat of the shielding portion 147 can be quickly generated by the ice tray 102.
  • a sealing member (not shown) may be filled in the empty space between the inner wall of the accommodating groove 121-2 and the heater 106 in the accommodating groove 121-2.
  • the heater 106 may be sealed in the receiving groove 121-2 to reduce heat loss.
  • the sealing member serves as a buffer to prevent the shield 147 and the support rib 144 from being deformed by the heat generated by the heater 106.
  • FIG. 11 is a view showing an ice maker according to another embodiment of the present invention.
  • the heater accommodating part 121 may have a pair of protrusions 121-1 protruding horizontally from the outer circumferential surface of the ice tray 102.
  • the heater 106 may be supported by the pair of protrusions 121-1 in the receiving groove 121-2.
  • the pair of protrusions 121-1 evenly formed over the entire outer circumferential surface of the ice tray 102 are illustrated to protrude horizontally from the outer circumferential surface of the ice tray 102, the present invention is not limited thereto.
  • the heater accommodating portion 121 formed on the side of the outer circumferential surface of the ice tray 102 is formed so that the pair of protrusions 121-1 protrude horizontally from the outer circumferential surface of the ice tray 102, and the ice tray
  • the heater accommodating portion 121 formed on the lower surface of the 102 may be formed such that the pair of protrusions 121-1 protrude perpendicularly from the outer circumferential surface of the ice tray 102.
  • the entire ice tray 102 is uniformly reduced while reducing the time required to heat the ice tray 102 to a predetermined temperature. It can be heated.
  • FIG. 12 is a graph comparing the performance of the heater according to an embodiment of the present invention and the heater according to the prior art.
  • the heater 106 takes a first time t1 to raise the temperature of the ice tray 102 to a predetermined temperature, whereas in the related art. According to the heater, it may be seen that it takes a second time t2 longer than the first time t1 to raise the temperature of the ice tray 102 to a predetermined temperature. This increases the area where the heater 106 is in direct contact with the ice tray 102 by forming the heater 106 in the form of a cord heater, and forms the heater 106 over the entire area of the ice tray 102 to ice It is because the whole tray 102 was heated uniformly. This is because the cold air is blocked from contacting the heater 106 through the heater support 112.
  • the power used in the heater 106 according to an embodiment of the present invention is lower than the power used in the heater according to the prior art. This is because the heater 106 according to an embodiment of the present invention can heat the ice tray 102 to a predetermined temperature even at low power due to a short heat transfer distance.
  • the heater 106 when using the heater 106 according to an embodiment of the present invention, while the temperature of the ice making chamber gradually rises but the rise of the temperature is not large, the heater according to the prior art is used In this case, it can be seen that the temperature rise in the ice making chamber rises rapidly. This is because, as shown in (a) and (b) of FIG. 12, the heater 106 according to an embodiment of the present invention uses low power while heating the ice tray 102 to a predetermined temperature in a short time. .
  • ejector 104-1 ejector axis
  • a pair of protrusions 121-2 Receiving groove
  • base frame 144 support rib
  • shield 147-1 support protrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

제빙기가 개시된다. 본 발명의 일 실시예에 따른 제빙기는, 아이스 트레이, 아이스 트레이에 형성되는 적어도 하나의 히터 수납부, 및 연질의 외피 또는 탄성력을 갖는 외피를 구비하여 히터 수납부 내에 밀착되어 수납되고, 아이스 트레이를 가열하는 히터를 포함한다.

Description

제빙기
본 발명의 실시예는 제빙기에 관한 것으로서, 보다 상세하게는 이빙 시 아이스 트레이를 가열하는 히터를 구비한 제빙기에 관한 것이다.
일반적으로, 냉장고는 음식물을 냉장 보관하는 냉장실 및 음식물을 냉동 보관하는 냉동실을 구비한다. 이때, 냉동실 또는 냉장실에는 얼음을 제조하기 위한 제빙기가 설치된다.
도 1은 종래의 제빙기를 나타낸 사시도이고, 도 2는 종래의 아이스 트레이의 하부에 히터가 형성된 상태를 나타낸 도면이다.
도 1 및 도 2를 참조하면, 종래의 제빙기(10)는 아이스 트레이(11), 이젝터(13), 제어부(15), 측면 가이드(17), 아이스 뱅크(19), 급수관(21), 급수컵(23), 만빙 레버(25), 및 히터(27)를 포함한다.
종래의 냉장고용 제빙기(10)에 있어서, 아이스 트레이(11)는 내부에 물을 수용하는 제빙 공간을 가진다. 아이스 트레이(11)의 내부에는 복수 개의 격벽이 형성되어 제빙 공간을 복수 개로 분리시킬 수 있다. 아이스 트레이(11)는 급수관(21) 및 급수컵(23)을 통해 물(즉, 제빙수)을 공급받는다. 이때, 아이스 트레이(110) 내의 제빙 공간에 수용된 물은 제빙실(미도시)의 냉기에 의해 제빙된다.
제빙이 완료되면, 제어부(15)는 아이스 트레이(11)의 하부에 설치된 히터(27)를 동작시켜 아이스 트레이(11)를 가열한다. 그러면, 아이스 트레이(11)의 내측면에 얼어붙은 얼음이 살짝 녹으면서 얼음을 용이하게 이빙시킬 수 있게 된다. 히터(27)에 대해서는 도 3을 참조하여 후술하기로 한다.
다음으로, 제어부(15)는 모터(미도시)를 구동시켜 이젝터(13)를 시계 방향으로 회전시킨다. 이젝터(13)는 모터(미도시)와 연결되는 이젝터 축(13-1) 및 이젝터 축(13-1)에서 상호 이격되어 형성되는 복수 개의 이젝터 핀(13-2)을 포함한다. 모터(미도시)가 이젝터 축(13-1)을 시계 방향으로 회전시키면, 이젝터 핀(13-2)이 이젝터 축(13-1)과 함께 회전하면서 아이스 트레이(11) 내의 얼음을 아이스 트레이(11)와 분리시켜 상부로 밀어 올리게 된다. 이젝터 핀(13-2)에 의해 밀어 올려진 얼음은 아이스 트레이(11)의 일측에 형성된 측면 가이드(17)를 타고 내려와 아이스 뱅크(19)에 수용된다.
도 3은 도 1에서 A-A'의 단면을 나타낸 도면이다.
도 2 및 도 3을 참조하면, 히터(27)는 아이스 트레이(11)의 하부면에서 아이스 트레이(11)와 결합하여 형성된다. 구체적으로, 히터(27)는 아이스 트레이(11)의 하부면에서 연장된 연장부(11-1)와 아이스 트레이(11)의 하부면에 형성된 코킹부(29) 사이에 결합되게 된다.
종래의 제빙기(10)는 히터(27)로 U 자형의 시즈 히터(Sheath Heater)를 주로 사용하였다. 시즈 히터(27)는 발열선(41), 발열선(41)을 감싸며 형성되는 산화 마그네슘(MgO) 파우더(44), 및 산화 마그네슘 파우더(44)를 감싸며 형성되는 금속 파이프(47)로 이루어진다. 이때, 시즈 히터(27)는 직경이 약 6 ~ 8 mm로 형성되게 된다.
이와 같이, 히터(27)로 U자형의 시즈 히터를 사용하는 경우, 아이스 트레이(11)와 접촉되는 면적이 한정되어 있기 때문에, 히터(27)와 직접적으로 접촉되지 않는 부분까지 열을 전달하여 아이스 트레이(11)의 온도를 기 설정된 온도까지 가열하는데 많은 시간이 소요된다. 히터(27)가 동작되는 시간이 길어지게 되면, 제빙기(10)가 장착된 제빙실의 전체 온도가 상승하게 된다. 이 경우, 아이스 트레이(11) 내의 얼음을 아이스 뱅크(19)로 이빙시킨 후, 다시 제빙수를 공급받아 얼음을 제조할 때 아이스 트레이(11)를 제빙 온도로 냉각하기까지 많은 시간이 소요되게 된다. 그로 인해, 한 싸이클(Cycle)의 제빙 공정을 완료하기 까지 걸리는 전체 제빙 시간이 길어지게 되고, 제빙 공정에 소비되는 전력 소모가 많아지게 된다.
그리고, 히터(27)는 발열선(41)으로부터 아이스 트레이(11)까지의 열 전달 거리(약 3 ~ 4 mm)가 길기 때문에, 아이스 트레이(11)를 기 설정된 온도까지 가열하는데 고전력(예를 들어, 145 W)을 사용하여야 하므로 전력 소모가 많다는 문제점이 있다.
또한, 히터(27)는 직경이 약 6 ~ 8 mm로 크게 형성되면서 아이스 트레이(11)의 하부면에서 외부로 노출되어 형성된다. 이때, 아이스 트레이(11)의 하부에 형성되는 에어 덕트(미도시)로부터 냉기가 공급되는 경우, 히터(27)가 냉기에 직접 노출될 뿐만 아니라, 냉기에 노출되는 면적이 크기 때문에 히터(27)의 온도 상승이 늦어지게 되고, 열 손실이 발생한다는 문제점이 있다.
또한, 히터(27)는 아이스 트레이(11)의 하부에서 이탈되지 않도록 연장부(11-1)와 코킹부(29) 사이에서 코킹부(29)에 형성된 돌기(29-1)에 의해 코킹(Caulking)되어 형성된다. 이 경우, 히터(27)의 코킹된 부위가 찌그러지면서 파손될 위험이 있게 된다.
또한, 히터(27)의 외주면은 강질의 금속 파이프(47)로 이루어지기 때문에, 히터(27)를 아이스 트레이(11)와 밀착시키는데 어려움이 있으며, 그로 인해 히터(27)에서 아이스 트레이(11)로의 열 전달 효율이 떨어진다는 문제점이 있다.
본 발명의 실시예는 빠른 시간에 아이스 트레이를 기 설정된 온도까지 가열하면서 전력 소모 및 열 손실을 줄일 수 있는 히터를 구비한 제빙기를 제공하고자 한다.
본 발명의 일 실시예에 따른 제빙기는, 아이스 트레이; 상기 아이스 트레이에 형성되는 적어도 하나의 히터 수납부; 및 연질의 외피 또는 탄성력을 갖는 외피를 구비하여 상기 히터 수납부 내에 밀착되어 수납되고, 상기 아이스 트레이를 가열하는 히터를 포함한다.
본 발명의 실시예에 의하면, 히터와 아이스 트레이가 직접 접촉하는 면적을 넓게 할 수 있고, 아이스 트레이의 전 영역에 걸쳐 히터를 형성할 수 있기 때문에, 아이스 트레이를 기 설정된 온도까지 가열하는데 걸리는 시간을 줄일 수 있게 된다. 이 경우, 제빙기가 장착된 제빙실의 전체 온도가 상승하는 것을 줄일 수 있으므로, 아이스 트레이 내의 얼음을 아이스 뱅크로 이빙시킨 후, 다시 제빙수를 공급받아 얼음을 제조할 때 아이스 트레이를 제빙 온도로 냉각하기까지 걸리는 시간을 줄일 수 있게 된다. 그로 인해, 한 싸이클(Cycle)의 제빙 공정을 완료하기 까지 걸리는 전체 제빙 시간을 줄일 수 있고, 제빙 공정에 소비되는 전력 소모를 줄일 수 있게 된다. 그리고, 히터와 아이스 트레이를 밀착시킬 수 있기 때문에, 열 전달 효율을 향상시킬 수 있게 된다.
또한, 히터는 열 전달 거리가 짧기 때문에, 저전력으로도 아이스 트레이를 기 설정된 온도까지 가열할 수 있어 히터 자체를 동작시키는데 사용되는 전력 소모를 줄일 수 있게 된다.
또한, 아이스 트레이의 하부에서 히터를 지지함으로써, 히터가 히터 수납부에서 이탈하는 것을 방지할 수 있게 된다. 그리고, 히터를 히터 수납부 내에 밀폐시킴으로써, 아이스 트레이로 냉기가 공급되더라도 냉기가 히터에 접촉하는 것을 방지할 수 있게 된다. 이 경우, 히터가 냉기로 인해 온도 상승이 늦어지는 것을 방지할 수 있고, 히터에서 발생되는 열이 외부로 빠져나가는 것을 방지하여 열 손실을 줄일 수 있게 된다.
도 1은 종래의 제빙기를 나타낸 사시도.
도 2는 종래의 아이스 트레이의 하부에 히터가 형성된 상태를 나타낸 도면.
도 3은 도 1에서 A-A'의 단면을 나타낸 도면.
도 4는 본 발명의 일 실시예에 따른 제빙기의 단면을 나타낸 도면.
도 5는 본 발명의 일 실시예에 따른 아이스 트레이의 저면을 나타낸 도면.
도 6은 본 발명의 일 실시예에 따른 제빙기에서, 아이스 트레이에 히터가 형성된 상태를 나타낸 도면.
도 7은 본 발명의 일 실시예에 따른 제빙기에서, 히터가 히터 수납부에 수납되는 다양한 실시예를 나타낸 도면.
도 8은 본 발명의 일 실시예에 따른 제빙기에서, 히터가 히터 수납부에 수납되는 또 다른 실시예를 나타낸 도면.
도 9는 본 발명의 다른 실시예에 따른 제빙기의 단면을 나타낸 도면.
도 10은 본 발명의 히터 지지부에서 지지 리브의 다른 실시예를 나타낸 도면.
도 11은 본 발명의 또 다른 실시예에 따른 제빙기를 나타낸 도면.
도 12는 본 발명의 일 실시예에 따른 히터와 종래 기술에 따른 히터의 성능을 비교한 그래프.
이하, 도 4 내지 도 12를 참조하여 본 발명의 제빙기의 구체적인 실시예를 설명하기로 한다. 그러나 이는 예시적 실시예에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하 실시예는 진보적인 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.
도 4는 본 발명의 일 실시예에 따른 제빙기의 단면을 나타낸 도면이고, 도 5는 본 발명의 일 실시예에 따른 아이스 트레이의 저면을 나타낸 도면이다.
도 4 및 도 5를 참조하면, 제빙기(100)는 아이스 트레이(102), 이젝터(104), 히터(106), 아이스 뱅크(108), 및 가이드부(110)를 포함한다. 여기서, 이젝터(104)는 모터(미도시)와 연결된 이젝터 축(104-1) 및 이젝터 축(104-1)에 상호 이격하여 형성되는 복수 개의 이젝터 핀(104-2)을 포함한다.
아이스 트레이(102)는 내부에 물을 수용하는 제빙 공간을 가진다. 아이스 트레이(102)의 내부에는 복수 개의 격벽이 형성되어 제빙 공간을 복수 개의 공간으로 분리할 수 있다. 이때, 아이스 트레이(102) 내의 분리된 각 제빙 공간은 이젝터 핀(104-2)과 대응하여 형성될 수 있다.
아이스 트레이(102)의 외주면에는 히터(106)를 수납하는 적어도 하나의 히터 수납부(121)가 형성된다. 예를 들어, 히터 수납부(121)는 아이스 트레이(102)의 외주면에서 돌출되어 형성되는 한 쌍의 돌기부(121-1) 및 한 쌍의 돌기부(121-1) 사이에 형성되는 수납홈(121-2)을 포함할 수 있다. 그러나, 이에 한정되는 것은 아니며 히터 수납부(121)는 히터(106)를 수납할 수 있는 그 이외의 다양한 형태로 형성될 수 있다. 예를 들어, 히터 수납부(121)는 별도의 돌기부 없이 아이스 트레이(102)의 외주면에 형성되는 수납홈 만으로 이루어질 수도 있다.
이젝터(104)는 제빙이 완료된 경우, 아이스 트레이(102) 내의 얼음을 아이스 뱅크(108)로 이빙시키는 역할을 한다. 예를 들어, 이젝터 축(104-1)이 일정 방향(도 4에서는 시계 방향)으로 회전하면, 이젝터 핀(104-2)이 이젝터 축(104-1)과 함께 시계 방향으로 회전하면서 아이스 트레이(102) 내의 얼음을 밀어 올리게 된다. 이때, 이젝터 핀(104-2)에 의해 밀어 올려진 얼음은 아이스 트레이(102)의 측부에 형성된 가이드부(110)를 타고 아이스 뱅크(108)로 낙하하게 된다.
히터(106)는 아이스 트레이(102)의 외주면에 형성된 히터 수납부(121)에 수납된다. 예를 들어, 히터(106)는 한 쌍의 돌기부(121-1) 사이에 형성된 수납홈(121-2)에 삽입되어 수납될 수 있다. 히터(106)는 발열부(106-1) 및 발열부(106-1)를 감싸며 형성되는 절연부(106-2)를 포함한다.
발열부(106-1)는 전압이 인가되면 열을 발생시키는 부분이다. 발열부(106-1)는 일반적인 열선(예를 들어, 니켈-크롬선 또는 구리-니켈선 등)이 사용될 수 있다. 그러나, 이에 한정되는 것은 아니며, 발열부(106-1)는 열선에 유리 섬유가 감기는 형태로 형성되거나, 유리 섬유에 열선을 감는 형태로 형성될 수도 있다.
절연부(106-2)는 히터(106)의 외피를 이루는 부분으로, 발열부(106-1)를 보호하는 역할을 한다. 절연부(106-2)는 연질의 절연 재질 또는 탄성력을 갖는 절연 재질로 이루어질 수 있다. 예를 들어, 절연부(106-2)는 PVC, 실리콘, 고무 등으로 이루어질 수 있다. 이 경우, 히터(106)는 플렉서블(Flexible)한 성질을 가지므로, 히터(106)를 히터 수납부(121) 내에서 아이스 트레이(102)와 밀착하여 수납할 수 있게 된다. 이러한 형태의 히터(106)로는 예를 들어, 코드 히터(Cord Heater)가 있을 수 있으나, 히터(106)의 종류가 코드 히터에 한정되는 것은 아니다.
히터(106)로 코드 히터를 사용하는 경우, 코드 히터는 플렉서블하고 직경을 작게(예를 들어, 2 ~ 4mm) 형성할 수 있기 때문에, 히터(106)를 아이스 트레이(102)의 외주면에 형성할 때, 히터(106)와 아이스 트레이(102)가 접촉하는 면적을 크게 할 수 있다. 즉, 도 5에서 도시하는 바와 같이, 히터(106)를 아이스 트레이(102)의 외주면에 지그 재그 형태로 형성함으로써, 히터(106)와 아이스 트레이(102)가 접촉하는 면적을 향상시킬 수 있고, 아이스 트레이(102)의 전체 영역에 걸쳐 히터(106)를 형성할 수 있게 된다.
여기서는, 히터(106)가 아이스 트레이(102)의 외주면에서 지그 재그 형태로 형성되는 것으로 도시하였으나, 이에 한정되는 것은 아니며 그 이외에 히터(106)를 아이스 트레이(102)의 외주면에 촘촘하게 배치할 수 있는 다양한 형태(예를 들어, 스파이럴 형태 등)로 형성될 수 있다. 또한, 여기서는 히터 수납부(121)가 히터(106)를 따라 연속적으로 형성되는 것으로 도시하였으나, 이에 한정되는 것은 아니며, 히터 수납부(121)가 일정 간격마다 단절되어 형성될 수도 있다.
이와 같이, 히터(106)로 코드 히터를 사용하면, 히터(106)와 아이스 트레이(102)가 직접 접촉하는 면적을 넓게 할 수 있고, 아이스 트레이(102)의 전 영역에 걸쳐 히터(106)를 형성할 수 있기 때문에, 아이스 트레이(102)를 기 설정된 온도까지 가열하는데 걸리는 시간을 줄일 수 있게 된다. 이 경우, 제빙기(100)가 장착된 제빙실의 전체 온도가 상승하는 것을 줄일 수 있으므로, 아이스 트레이(102) 내의 얼음을 아이스 뱅크(108)로 이빙시킨 후, 다시 제빙수를 공급받아 얼음을 제조할 때 아이스 트레이(102)를 제빙 온도로 냉각하기까지 걸리는 시간을 줄일 수 있게 된다. 그로 인해, 한 싸이클(Cycle)의 제빙 공정을 완료하기 까지 걸리는 전체 제빙 시간을 줄일 수 있고, 제빙 공정에 소비되는 전력 소모를 줄일 수 있게 된다.
그리고, 히터(106)는 발열부(106-1)로부터 아이스 트레이(102)까지의 열 전달 거리(약 1 ~ 2 mm)가 짧기 때문에, 저전력(예를 들어, 50 W)으로도 아이스 트레이(102)를 기 설정된 온도까지 가열할 수 있어 히터(106) 자체를 동작시키는데 사용되는 전력 소모를 줄일 수 있게 된다.
도 6은 본 발명의 일 실시예에 따른 제빙기에서, 아이스 트레이에 히터가 형성된 상태를 나타낸 도면이다. 여기서는, 히터의 말단에 리드선이 연결되는 부분을 나타내었다.
도 6을 참조하면, 히터(106)는 아이스 트레이(102)의 외주면에 형성된 히터 수납부(121)에 수납된다. 이때, 히터(106)의 말단은 전원의 공급을 위해 리드선(127)의 일단과 연결된다. 리드선(127)의 타단은 전원부(미도시)와 전기적으로 연결된다. 히터(106)의 말단과 리드선(127)의 타단은 전기적으로 연결된 후, 몰딩부(125)를 통해 외부로부터 보호된다.
여기서, 몰딩부(125)는 아이스 트레이(102)에 형성된 몰딩 수납홈(123)에 수납된다. 몰딩 수납홈(123)은 히터 수납부(121)의 수납홈(121-2)에서 연장되어 형성될 수 있다. 몰딩 수납홈(123)은 몰딩부(125)가 몰딩 수납홈(123) 내에 수납되었을 때, 몰딩부(125)의 좌우로 여유 공간이 존재하도록 형성될 수 있다. 이 경우, 히터(106)의 길이가 기준치 보다 조금 짧거나 길게 제작되더라도, 별도의 설계 변경 없이 그대로 사용할 수 있게 된다. 즉, 몰딩 수납홈(123) 내에서 몰딩부(125) 좌우에 존재하는 여유 공간은 히터(106)의 길이 오차에 따른 완충 공간이라 할 수 있다.
도 7은 본 발명의 일 실시예에 따른 제빙기에서, 히터가 히터 수납부에 수납되는 다양한 실시예를 나타낸 도면이다.
도 7의 (a)를 참조하면, 수납홈(121-2)의 상단은 반원 형태로 형성되고, 수납홈(121-2)의 하단은 사각형 형태로 형성될 수 있다. 그리고, 히터(106)는 원형으로 형성될 수 있다. 여기서는 설명의 편의상 수납홈(121-2)과 히터(106)의 단면 형상으로 설명하기로 한다. 이 경우, 히터(106)의 상단 부분이 수납홈(121-2)의 상단과 접촉하여 히터(106)의 전체 면적 중 약 1/2이 아이스 트레이(102)와 접촉하게 된다.
히터(106)와 수납홈(121-2)의 내벽 사이에는 밀착 유지 부재(131)가 형성될 수 있다. 밀착 유지 부재(131)는 히터(106)와 수납홈(121-2)의 내벽 사이에 빈 공간 또는 에어(Air)가 존재하지 않도록 하는 역할을 한다. 즉, 밀착 유지 부재(131)는 히터(106)가 수납홈(121-2)의 내벽에 밀착하도록 하는 역할을 한다. 밀착 유지 부재(131)로는 예를 들어, 접착 부재가 사용될 수 있다. 이 경우, 히터(106)를 수납홈(121-2)의 내벽에 밀착시키면서 고정시킬 수 있게 된다. 이때, 밀착 유지 부재(131)로 열 전도성 접착 부재를 사용하면, 히터(106)에서 아이스 트레이(102)로의 열 전도 효율을 높일 수 있게 된다. 또한, 수납홈(121-2) 하단에서 수납홈(121-2)의 내벽과 히터(106) 사이의 빈 공간에는 별도의 실링(Sealing) 부재(미도시)가 충진될 수 있다. 이 경우, 히터(106)의 열 손실을 줄이면서 히터(106)를 수납홈(121-2) 내에 고정시킬 수 있게 된다. 이때, 실링 부재(미도시)는 밀착 유지 부재(131)와 동일한 재질로 이루어질 수 있다.
도 7의 (b)를 참조하면, 수납홈(121-2)은 사각형 형태로 형성되고, 히터(106)는 수납홈(121-2)과 대응되는 형태 즉, 사각형 형태로 형성될 수 있다. 히터(106)의 절연부(106-2)는 사출 방식으로 형성되므로 수납홈(121-2)의 형태에 따라 그에 대응되는 형태로 형성할 수 있게 된다. 이 경우, 히터(106)를 수납홈(121-2)에 삽입하면, 히터(106)의 전체 면적 중 약 3/4이 수납홈(121-2)과 접촉하게 되므로, 히터(106)에서 아이스 트레이(102)로의 열전달 효율을 높일 수 있게 된다. 그리고, 히터(106)가 외부로 노출되는 면적은 최소화하여 열 손실을 줄일 수 있게 된다.
여기서, 히터(106)는 수납홈(121-2)에 끼움 결합시킬 수 있다. 히터(106)는 수납홈(121-2)과 동일한 크기로 형성되거나 수납홈(121-2) 보다 조금 크게 형성될 수 있다. 이때, 히터(106)의 절연부(106-2)를 실리콘 또는 고무와 같은 탄성력을 가지는 절연 재질로 형성하면, 히터(106)를 압박하여 수납홈(121-2)에 끼움 결합시킬 수 있게 된다. 이 경우, 히터(106)를 수납홈(121-2)에 끼움 결합시키는 과정에서 히터(106)가 파손될 염려가 없게 된다. 그리고, 절연부(106-2)가 수납홈(121-2)의 내벽측으로 탄성력을 가지기 때문에 별도의 구조물 없이도 히터(106)가 수납홈(121-2)에서 빠지는 것을 방지할 수 있게 된다. 여기서는, 히터(106)가 사각형인 것으로 도시하였으나, 이에 한정되는 것은 아니며 그 이외의 다각형으로 형성될 수 있다.
도 7의 (c)를 참조하면, 수납홈(121-2)의 상단은 반원 형태로 형성되고, 수납홈(121-2)의 하단은 사각형 형태로 형성될 수 있다. 그리고, 히터(106)는 수납홈(121-2)과 대응되는 형태로 형성될 수 있다. 즉, 수납홈(121-2)과 히터(106)는 반원과 사각형의 조합된 형태로 형성될 수 있다. 이 경우, 히터(106)가 아이스 트레이(102)와 접촉하는 면적은 넓히면서 히터(106)가 외부로 노출되는 면적은 줄일 수 있게 된다. 이때, 히터(106)는 수납홈(121-2)에 끼움 결합될 수 있다.
한편, 도 7의 (a)에서는 히터(106)가 접착 방식을 통해 수납홈(121-2)에 고정되는 것으로 설명하고, 도 7의 (b) 및 (c)에서는 히터(106)가 끼움 결합 방식을 통해 수납홈(121-2)에 고정되는 것으로 설명하였으나, 히터(106)가 수납홈(121-2)에 고정되는 방식이 이에 한정되는 것은 아니다. 예를 들어, 히터(106)는 끼움 결합 방식 및 접착 방식을 모두 사용하여 수납홈(121-2)에 고정시킬 수도 있으며, 그 이외의 다양한 결합 방식을 사용하여 수납홈(121-2)에 고정시킬 수 있다.
도 8은 본 발명의 일 실시예에 따른 제빙기에서, 히터가 히터 수납부에 수납되는 또 다른 실시예를 나타낸 도면이다.
도 8을 참조하면, 히터(106)의 외주면에는 보조 돌기(134)가 형성될 수 있다. 이때, 보조 돌기(134)는 하측 방향으로 경사지게 형성될 수 있다. 여기서, 히터(106)를 수납홈(121-2)의 하부에 위치시킨 후 상부로 압박하면, 절연부(106-2)가 연질의 절연 재질로 이루어지기 때문에, 보조 돌기(137)가 수납홈(121-2)의 내벽에 의해 접혀져 히터(106)의 외주면에 밀착된 상태로 삽입되게 된다. 히터(106)가 수납홈(121-2)에 삽입되면, 히터(106)는 보조 돌기(134)에 의해 수납홈(121-2) 내에 꽉 끼인 상태로 있게 되며, 그로 인해 히터(106)가 수납홈(121-2)에서 이탈하는 것을 방지할 수 있게 된다. 여기서는, 보조 돌기(134)가 한 개인 것으로 도시하였으나, 이에 한정되는 것은 아니며 두 개 이상으로 형성할 수도 있다.
한편, 수납홈(121-2) 내에는 보조 돌기(134)와 대응되는 보조 돌기 삽입홈(미도시)이 더 형성될 수도 있다. 이 경우, 히터(106)를 수납홈(121-2) 내에 삽입시키면, 보조 돌기(134)가 보조 돌기 삽입홈(미도시)에 삽입되면서 히터(106)를 고정 지지하게 된다.
도 9는 본 발명의 다른 실시예에 따른 제빙기의 단면을 나타낸 도면이다.
도 9을 참조하면, 제빙기(100)는 아이스 트레이(102)의 하부에 형성되는 히터 지지부(112)를 더 포함한다. 히터 지지부(112)는 베이스 프레임(141) 및 베이스 프레임(141)에서 상부로 돌출되어 형성되는 지지 리브(144)를 포함한다. 여기서, 지지 리브(144)는 수납홈(121-2)(즉, 히터(106))과 대응하여 형성될 수 있다.
히터 지지부(112)는 아이스 트레이(102)의 하부에 형성됨에 따라 히터(106)의 덮개 역할을 할 수 있다. 그리고, 히터 지지부(112)는 냉기를 아이스 트레이(102)로 공급하는 에어 덕트의 역할을 할 수도 있다. 이때, 지지 리브(144)들 사이의 공간이 냉기가 이동하는 통로가 된다. 여기서는, 히터 지지부(112)가 아이스 트레이(102)의 하부에 형성된 것으로 도시하였으나, 히터 지지부(112)의 형성되는 위치가 이에 한정되는 것은 아니며 히터 지지부(112)는 아이스 트레이(102)의 측부에 형성될 수도 있다.
지지 리브(144)의 말단에는 차폐부(147)가 형성될 수 있다. 차폐부(147)는 지지 리브(144)의 말단에서 좌우로 연장하여 형성될 수 있다. 이때, 차폐부(147)는 수납홈(121-2)의 입구를 막으며 형성될 수 있다. 그러면, 히터(106)는 수납홈(121-2) 내에서 외부와 차단된 상태로 있게 된다. 여기서는, 차폐부(147)가 지지 리브(144)의 말단에서 좌우로 연장하여 형성되는 것으로 설명하였으나, 이에 한정되는 것은 아니며, 차폐부(147)는 지지 리브(144)와 별개로 형성되어 지지 리브(144)의 말단에 결합될 수도 있다.
히터(106)는 수납홈(121-2) 내에서 외부와 차단된 상태에 있기 때문에, 지지 리브(144)들 사이의 공간으로 냉기가 공급되더라도 냉기가 히터(106)에 접촉하는 것을 방지할 수 있게 된다. 이 경우, 아이스 트레이(102)로 냉기를 공급하면서도 히터(106)의 온도 상승이 늦어지는 것을 방지할 수 있게 된다. 그리고, 히터(106)에서 발생되는 열이 외부로 빠져나가는 것을 방지할 수 있으므로, 열 손실을 줄일 수 있게 된다.
도 10은 본 발명의 히터 지지부에서 지지 리브의 다른 실시예를 나타낸 도면이다. 도 10의 (a)를 참조하면, 지지 리브(144)의 말단은 히터(106)와 접촉하여 형성될 수 있다. 이 경우, 지지 리브(144)는 히터(106)를 지지하게 되며, 그로 인해 히터(106)가 수납홈(121-2)에서 이탈하는 것을 방지할 수 있게 된다.
도 10의 (b)를 참조하면, 지지 리브(144)의 말단에는 차폐부(147)가 형성될 수 있다. 이때, 차폐부(147)는 수납홈(121-2) 내에 삽입된 상태에서 히터(106)와 접촉될 수 있다. 이 경우, 히터(106)를 지지하면서 히터(106)를 외부와 확실히 차단시킬 수 있게 된다.
도 10의 (c)를 참조하면, 지지 리브(144)의 말단에는 차폐부(147)가 형성될 수 있다. 차폐부(147)는 수납홈(121-2)의 입구를 막으며 형성될 수 있다. 차폐부(147)에는 히터(106)와 접촉하는 지지 돌기(147-1)가 형성될 수 있다. 이 경우, 차폐부(147)가 히터(106)와 접촉하는 면적을 줄여줌으로써, 히터(106)로 인해 차폐부(147) 및 지지 리브(144)가 변형되는 것을 방지할 수 있게 된다.
즉, 히터 지지부(112)가 합성 수지로 이루어진 경우, 차폐부(147)가 히터(106)와 접촉하면 히터(106)에서 발생하는 열로 인해 차폐부(147) 및 지지 리브(144) 등에 변형이 발생할 수 있게 된다. 그런데, 차폐부(147)에 지지 돌기(147-1)를 형성하여 차폐부(147)가 히터(106)와 접촉하는 면적을 줄여주면, 히터(106)에서 차폐부(147)로 전달되는 열을 줄일 수 있어 히터(106)로 인해 차폐부(147) 및 지지 리브(144)가 변형되는 것을 방지할 수 있게 된다.
도 10의 (d)를 참조하면, 차폐부(147)는 지지 리브(144)의 말단에서 좌우로 한 쌍의 돌기부(121-1)의 하부까지 연장되어 형성될 수 있다. 이때, 차폐부(147)는 히터(106) 및 한 쌍의 돌기부(121-1)와 각각 접촉하며 형성될 수 있다. 이 경우, 냉기가 히터(106)와 접촉하는 것을 차단할 뿐만 아니라, 히터(106)로 인해 차폐부(147) 및 지지 리브(144)가 변형되는 것을 방지할 수 있게 된다.
즉, 차폐부(147)를 지지 리브(144)의 말단에서 좌우로 한 쌍의 돌기부(121-1)의 하부까지 연장하여 형성하면, 차폐부(147)의 열을 아이스 트레이(102)로 발열할 수 있기 때문에, 차폐부(147) 및 지지 리브(144)가 변형되는 것을 방지할 수 있게 된다.
도 10의 (e)를 참조하면, 차폐부(147)는 한 쌍의 돌기부(121-1)의 하단을 감싸며 형성될 수도 있다. 이 경우, 차폐부(147)가 아이스 트레이(102)와 접촉하는 면적을 넓힘으로써, 차폐부(147)의 열을 아이스 트레이(102)로 보다 신속하게 발열할 수 있게 된다.
한편, 수납홈(121-2) 내에서 수납홈(121-2)의 내벽과 히터(106) 사이의 빈 공간에는 실링 부재(미도시)가 충진될 수 있다. 이 경우, 히터(106)를 수납홈(121-2) 내에 밀봉하여 열 손실을 줄일 수 있다. 그리고, 실링 부재(미도시)가 일종의 완충 역할을 하여 차폐부(147) 및 지지 리브(144)가 히터(106)에서 발생하는 열로 변형되는 것을 방지할 수 있게 된다.
도 11은 본 발명의 또 다른 실시예에 따른 제빙기를 나타낸 도면이다.
도 11을 참조하면, 히터 수납부(121)는 한 쌍의 돌기부(121-1)가 아이스 트레이(102)의 외주면에서 수평하게 돌출되어 형성될 수 있다. 이 경우, 히터(106)가 수납홈(121-2) 내에서 한 쌍의 돌기부(121-1)에 의해 지지될 수 있게 된다. 여기서는, 아이스 트레이(102)의 외주면 전 영역에 걸쳐 균등하게 형성된 한 쌍의 돌기부(121-1)가 아이스 트레이(102)의 외주면에서 수평하게 돌출된 것으로 도시하였으나, 이에 한정되는 것은 아니다. 예를 들어, 아이스 트레이(102)의 외주면 중 측면에 형성되는 히터 수납부(121)는 한 쌍의 돌기부(121-1)가 아이스 트레이(102)의 외주면에서 수평하게 돌출하도록 형성하고, 아이스 트레이(102)의 하부면에 형성되는 히터 수납부(121)는 한 쌍의 돌기부(121-1)가 아이스 트레이(102)의 외주면에서 수직하게 돌출하도록 형성할 수도 있다.
이와 같이, 아이스 트레이(102)의 외주면 전 영역에 걸쳐 히터(106)를 균일하게 형성함으로써, 아이스 트레이(102)를 기 설정된 온도까지 가열하는데 걸리는 시간을 줄이면서 아이스 트레이(102) 전체를 균일하게 가열할 수 있게 된다.
도 12는 본 발명의 일 실시예에 따른 히터와 종래 기술에 따른 히터의 성능을 비교한 그래프이다.
도 12의 (a)를 참조하면, 본 발명의 일 실시예에 따른 히터(106)는 아이스 트레이(102)의 온도를 기 설정된 온도까지 상승시키는데 제1 시간(t1)이 걸리는데 반하여, 종래기술에 따른 히터는 아이스 트레이(102)의 온도를 기 설정된 온도까지 상승시키는데 제1 시간(t1)보다 긴 제2 시간(t2)이 걸리는 것을 볼 수 있다. 이는 히터(106)를 코드 히터와 같은 형태로 형성함으로써 히터(106)가 아이스 트레이(102)와 직접 접촉하는 면적을 넓히고, 히터(106)를 아이스 트레이(102)의 전 영역에 걸쳐 형성하여 아이스 트레이(102) 전체를 균일하게 가열하였기 때문이다. 또한, 히터 지지부(112)를 통해 냉기가 히터(106)에 접촉하는 것을 차단하였기 때문이다.
도 12의 (b)를 참조하면, 본 발명의 일 실시예에 따른 히터(106)에서 사용되는 전력이 종래기술에 따른 히터에서 사용되는 전력보다 낮은 것을 볼 수 있다. 이는 본 발명의 일 실시예에 따른 히터(106)는 열 전달 거리가 짧아 저전력으로도 아이스 트레이(102)를 기 설정된 온도까지 가열할 수 있기 때문이다.
도 12의 (c)를 참조하면, 본 발명의 일 실시예에 따른 히터(106)를 사용하는 경우, 제빙실의 온도는 서서히 상승하되 온도의 상승폭이 크지 않은데 반하여, 종래 기술에 따른 히터를 사용하는 경우, 제빙실의 온도가 급격히 상승하면서 온도의 상승폭도 큰 것을 볼 수 있다. 이는 도 12의 (a) 및 (b)에서 보는 바와 같이, 본 발명의 일 실시예에 따른 히터(106)는 아이스 트레이(102)를 기 설정된 온도까지 빠른 시간에 가열하면서 저전력을 사용하기 때문이다.
이상에서 대표적인 실시예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
[부호의 설명]
100 : 제빙기 102 : 아이스 트레이
104 : 이젝터 104-1 : 이젝터 축
104-2 : 이젝터 핀 106 : 히터
106-1 : 발열부 106-2 : 절연부
108 : 아이스 뱅크 110 : 가이드부
112 : 히터 지지부 121 : 히터 수납부
121-1 : 한 쌍의 돌기부 121-2 : 수납홈
123 : 몰딩 수납홈 125 : 몰딩부
127 : 리드선 131 : 밀착 유지 부재
134 : 보조 돌기
141 : 베이스 프레임 144 : 지지 리브
147 : 차폐부 147-1 : 지지 돌기

Claims (19)

  1. 아이스 트레이;
    상기 아이스 트레이에 형성되는 적어도 하나의 히터 수납부; 및
    연질의 외피 또는 탄성력을 갖는 외피를 구비하여 상기 히터 수납부 내에 밀착되어 수납되고, 상기 아이스 트레이를 가열하는 히터를 포함하는, 제빙기.
  2. 제1항에 있어서,
    상기 히터는,
    코드 히터(Cord Heater)인, 제빙기.
  3. 제1항에 있어서,
    상기 히터는,
    상기 아이스 트레이의 외주면에 지그 재그 또는 스파이럴 형태로 형성되는, 제빙기.
  4. 제1항에 있어서,
    상기 히터 수납부는, 상기 아이스 트레이의 외주면에 형성되는 수납홈을 포함하며,
    상기 히터는, 상기 수납홈에 삽입되어 밀착되는, 제빙기.
  5. 제4항에 있어서,
    상기 히터는,
    상기 수납홈의 형상과 대응되는 형상으로 형성되어 상기 수납홈과 밀착되고, 다각형 및 다각형과 반원형이 조합된 형태 중 어느 하나로 형성되는, 제빙기.
  6. 제4항에 있어서,
    상기 제빙기는,
    상기 수납홈의 내벽과 상기 히터 사이에 형성되는 밀착 유지 부재를 더 포함하는, 제빙기.
  7. 제6항에 있어서,
    상기 밀착 유지 부재는,
    열 전도성 접착 부재인, 제빙기.
  8. 제4항에 있어서,
    상기 히터는,
    상기 히터의 외주면에 형성되고, 상기 히터를 상기 수납홈 내에서 고정 지지하는 적어도 하나의 보조 돌기를 포함하는, 제빙기.
  9. 제8항에 있어서,
    상기 히터 수납부는,
    상기 수납홈 내에 상기 보조 돌기와 대응되는 형상으로 형성되고, 상기 보조 돌기가 삽입되는 보조 돌기 삽입홈을 더 포함하는, 제빙기.
  10. 제1항에 있어서,
    상기 제빙기는,
    상기 아이스 트레이에 형성되고, 상기 히터의 말단과 상기 히터에 전원을 공급하는 리드선의 일단이 연결된 부위에 형성되는 몰딩부가 수납되는 몰딩 수납홈을 더 포함하며,
    상기 몰딩 수납홈은, 상기 몰딩부의 좌우에 상기 히터의 길이 오차에 따른 완충 공간이 각각 형성되는, 제빙기.
  11. 제1항에 있어서,
    상기 제빙기는,
    상기 아이스 트레이의 일측에서 상기 히터를 지지하는 히터 지지부를 더 포함하는, 제빙기.
  12. 제11항에 있어서,
    상기 히터 지지부는,
    상기 아이스 트레이의 하부에 형성되는 베이스 프레임; 및
    상기 베이스 프레임에서 상부로 돌출되어 형성되고 상기 히터와 접촉되어 상기 히터를 지지하는 지지 리브를 포함하는, 제빙기.
  13. 제12항에 있어서,
    상기 히터 지지부는,
    상기 지지 리브의 말단에 형성되고, 상기 히터 수납부 내의 히터를 차폐시키는 차폐부를 더 포함하는, 제빙기.
  14. 제13항에 있어서,
    상기 히터 지지부는,
    상기 차폐부에서 돌출되어 형성되고 상기 히터와 접촉하는 지지 돌기를 더 포함하는, 제빙기.
  15. 제13항에 있어서,
    상기 히터 수납부는, 상기 아이스 트레이의 외주면에 형성되고 히터가 삽입되는 수납홈을 포함하며,
    상기 차폐부는, 상기 수납홈 내에 삽입되어 상기 히터와 접촉되는, 제빙기.
  16. 제13항에 있어서,
    상기 히터 수납부는, 상기 아이스 트레이의 외주면에 형성되고 히터가 삽입되는 수납홈을 포함하며,
    상기 제빙기는, 상기 수납홈의 내벽과 상기 히터 사이의 빈 공간을 충진하며 형성되는 실링 부재를 더 포함하는, 제빙기.
  17. 제13항에 있어서,
    상기 히터 수납부는,
    상기 아이스 트레이의 외주면에 돌출되어 형성되는 한 쌍의 돌기부 및 상기 한 쌍의 돌기부 사이에 형성되고 상기 히터가 삽입되는 수납홈을 포함하며,
    상기 차폐부는,
    상기 지지 리브의 말단에 형성되고, 상기 한 쌍의 돌기부에 접촉되어 상기 히터로부터 전달되는 열을 상기 한 쌍의 돌기부를 통해 방열시키는, 제빙기.
  18. 제1항에 있어서,
    상기 히터 수납부는,
    상기 아이스 트레이의 외주면에서 수평하게 돌출되어 형성되는 한 쌍의 돌기부; 및
    상기 한 쌍의 돌기부 사이에 형성되고 상기 히터가 삽입되는 수납홈을 포함하는, 제빙기.
  19. 제1항에 있어서,
    상기 제빙기는,
    상기 히터 수납부 내에서 상기 히터를 커버하며 충진되는 실링 부재를 더 포함하는, 제빙기.
PCT/KR2012/011786 2012-12-10 2012-12-28 제빙기 WO2014092235A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201290001382.4U CN204806754U (zh) 2012-12-10 2012-12-28 制冰机
US14/651,184 US20150316306A1 (en) 2012-12-10 2012-12-28 Icemaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120142886 2012-12-10
KR10-2012-0142886 2012-12-10

Publications (1)

Publication Number Publication Date
WO2014092235A1 true WO2014092235A1 (ko) 2014-06-19

Family

ID=50934507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011786 WO2014092235A1 (ko) 2012-12-10 2012-12-28 제빙기

Country Status (4)

Country Link
US (1) US20150316306A1 (ko)
KR (1) KR20140074795A (ko)
CN (1) CN204806754U (ko)
WO (1) WO2014092235A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170122644A1 (en) * 2015-11-04 2017-05-04 Samsung Electronics Co., Ltd. Ice maker and refrigerator having the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385391B1 (ko) * 2015-04-27 2022-04-27 주식회사 대창 제빙기
WO2016148467A1 (ko) * 2015-03-13 2016-09-22 주식회사 대창 제빙기
KR102365733B1 (ko) * 2015-03-13 2022-02-21 주식회사 대창 다이렉트 접속 방식 고효율 이빙 히터를 구비하는 제빙기
KR101696864B1 (ko) * 2015-06-17 2017-01-16 동부대우전자 주식회사 냉장고의 제빙 어셈블리 및 그 조립방법
KR101705644B1 (ko) 2015-06-18 2017-02-10 동부대우전자 주식회사 냉장고의 제빙장치 및 그 제조 방법
KR101705662B1 (ko) 2015-06-18 2017-02-10 동부대우전자 주식회사 냉장고의 제빙장치 및 그 제조 방법
KR101705655B1 (ko) * 2015-06-18 2017-02-10 동부대우전자 주식회사 냉장고의 제빙장치 및 그 제조 방법
EP3862690A4 (en) * 2018-10-02 2022-07-27 LG Electronics Inc. ICE MAKER AND REFRIGERATOR WITH IT
EP3653960B1 (en) 2018-11-16 2022-02-16 LG Electronics Inc. Ice maker
WO2020101384A1 (en) * 2018-11-16 2020-05-22 Lg Electronics Inc. Ice maker and refrigerator
US11874045B2 (en) 2018-11-16 2024-01-16 Lg Electronics Inc. Ice maker and refrigerator
WO2020101369A1 (ko) 2018-11-16 2020-05-22 엘지전자 주식회사 아이스 메이커 및 냉장고
EP3653965B1 (en) 2018-11-16 2023-10-25 LG Electronics Inc. Ice maker and refrigerator
EP3653964A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker and refrigerator
WO2020101370A1 (ko) 2018-11-16 2020-05-22 엘지전자 주식회사 아이스 메이커 및 냉장고
US11421926B2 (en) 2018-11-16 2022-08-23 Lg Electronics Inc. Ice maker and refrigerator
EP3653975B1 (en) 2018-11-16 2023-09-20 LG Electronics Inc. Home appliance with an ice maker
EP3653958B1 (en) 2018-11-16 2023-09-27 LG Electronics Inc. Refrigerator
EP3653967B1 (en) * 2018-11-16 2022-06-29 LG Electronics Inc. Ice maker and refrigerator
US11578904B2 (en) * 2018-11-16 2023-02-14 Lg Electronics Inc. Ice maker and refrigerator
CN114838546B (zh) 2018-11-16 2023-12-29 Lg电子株式会社 制冰器及冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090801A (ja) * 2003-09-16 2005-04-07 Mitsubishi Electric Corp 製氷装置
KR20060009405A (ko) * 2006-01-12 2006-01-31 이재한 개량된 히터를 가지는 제빙기
KR20060099728A (ko) * 2005-03-14 2006-09-20 엘지전자 주식회사 면상히터를 구비한 제빙기
US20080053140A1 (en) * 2006-08-31 2008-03-06 Nidec Sankyo Corporation Manufacturing method for ice making device and ice making device
KR20110080104A (ko) * 2010-01-04 2011-07-12 삼성전자주식회사 냉장고

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952539A (en) * 1974-11-18 1976-04-27 General Motors Corporation Water tray for clear ice maker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090801A (ja) * 2003-09-16 2005-04-07 Mitsubishi Electric Corp 製氷装置
KR20060099728A (ko) * 2005-03-14 2006-09-20 엘지전자 주식회사 면상히터를 구비한 제빙기
KR20060009405A (ko) * 2006-01-12 2006-01-31 이재한 개량된 히터를 가지는 제빙기
US20080053140A1 (en) * 2006-08-31 2008-03-06 Nidec Sankyo Corporation Manufacturing method for ice making device and ice making device
KR20110080104A (ko) * 2010-01-04 2011-07-12 삼성전자주식회사 냉장고

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170122644A1 (en) * 2015-11-04 2017-05-04 Samsung Electronics Co., Ltd. Ice maker and refrigerator having the same

Also Published As

Publication number Publication date
US20150316306A1 (en) 2015-11-05
KR20140074795A (ko) 2014-06-18
CN204806754U (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2014092235A1 (ko) 제빙기
ES2437672T3 (es) Dispositivo de refrigeración para disyuntor y disyuntor que comprende dicho dispositivo
WO2013154305A1 (en) Refrigerator and manufacturing method thereof
CN208738898U (zh) 无线充电器
WO2012111942A2 (en) Refrigerator
WO2013137681A1 (en) Refrigerator
CN107112608B (zh) 一种电池组的热管理装置
EP2946155A1 (en) Refrigerator
WO2010150977A2 (en) Ice maker, refrigerator having the same, and ice making method thereof
WO2010087593A1 (en) Refrigerator
WO2012039553A2 (en) Refrigerator
US8450970B1 (en) Small footprint portable battery charging station
WO2011043615A2 (en) Ice maker and refrigerator including the same
KR20160088777A (ko) 제빙기
WO2015026009A1 (ko) 저장 용기
WO2019132401A1 (ko) 고주파 해동기기를 구비한 냉장고
WO2019074225A1 (ko) 열전 소자를 이용한 냉온장고 및 전원 공급 방법
WO2014092329A1 (ko) 제빙기
CN208190757U (zh) 一种手机外壳保暖充电装置
CN221530130U (zh) 电池包箱体及车辆
WO2020091388A1 (ko) 히터 및 이를 포함하는 제빙기, 그리고 이를 포함하는 냉장고
CN209881481U (zh) 终端设备充电壳
CN219511114U (zh) 除霜装置
CN103512311B (zh) 具有线束的制冷器具
KR100728536B1 (ko) 제빵용 컨디셔너의 제상장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001382.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14651184

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12890123

Country of ref document: EP

Kind code of ref document: A1